Verification of Open Systems

Moshe Y. Vardi*

Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.
Email: vardi@cs.rice.edu, URL: http://www.cs.rice.edu? vardi

Abstract. In computer system design, we distinguish between closed and open systems.
A closed system is a system whose behavior is completely determined by the state of
the system. An open system is a system that interacts with its environment and whose
behavior depends on this interaction. The ability of temporal logics to describe an ongoing
interaction of a reactive program with its environment makes them particularly appropriate
for the specification of open systems. Nevertheless, model-checking algorithms used for the
verification of closed systems are not appropriate for the verification of open systems. Correct
verification of open systems should check the system with respect to arbitrary environments
and should take into account uncertainty regarding the environment. This is not the case with
current model-checking algorithms and tools. Module checking is an algorithmic method
that checks, given an open system (modeled as a finite structure) and a desired requirement
(specified by a temporal-logic formula), whether the open system satisfies the requirement
with respect to all environments. In this paper we describe and examine module checking
problem, and study its computational complexity. Our results show that module checking is
computationally harder than model checking.

1 Introduction

Temporal logics, which are modal logics geared towards the description of the temporal or-
dering of events, have been adopted as a powerful tool for specifying and verifying reactive
systems [Pnu81]. One of the most significant developments in this area is the discovery of al-
gorithmic methods for verifying temporal-logic properties of finite-state systems [CE81, QS81,
LP85,CES86, VW86a]. This derives its significance both from the fact that many synchronization
and communication protocols can be modeled as finite-state systems, as well as from the great
ease of use of fully algorithmic methods. Experience has shown that algorithmic verification
techniques scale up to industrial-sized designs [CGH195], and tools based on such techniques
are gaining acceptance in industry [BBG194]

We distinguish here between two types of temporal logics: universal and non-universal. Both
logics describe the computation tree induced by the system. Formulas of universal temporal logics,
such as LTL, YCTL, and YCTL*, describe requirements that should hold in all the branches of
the tree [GL94]. These requirements may be either linear (e.g., in all computations, only finitely
many requests are sent) as in LTL or branching (e.g., in all computations we eventually reach a
state from which, no matter how we continue, no requests are sent) as in YCTL. In both cases, the
more behaviors the system has, the harder it is for the system to satisfy the requirements. Indeed,
universal temporal logics induce the simulation order between systems [Mil71, CGB86]. That is,
a system M simulates a system M’ if and only if all universal temporal logic formulas that are
satisfied in M’ are satisfied in M as well. On the other hand, formulas of non-universal temporal
logics,such as CTL and CTL*, may also impose possibility requirements on the system (e.g., there
exists a computation in which only finitely many requests are sent) [EH86]. Here, it is no longer
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true that simulation between systems corresponds to agreement on satisfaction of requirements.
Indeed, it might be that adding behaviors to the system helps it to satisfy a possibility requirement
or, equivalently, that disabling some of its behaviors causes the requirement not to be satisfied.

We also distinguish between two types of systems: closed and open [HP85]. A closed system
is a system whose behavior is completely determined by the state of the system. An open system is
a system that interacts with its environment and whose behavior depends on this interaction. Thus,
while in a closed system all the nondeterministic choices are internal, and resolved by the system,
in an open system there are also external nondeterministic choices, which are resolved by the
environment [Hoa85]. In order to check whether a closed system satisfies a required property, we
translate the system into some formal model, specify the property with a temporal-logic formula,
and check formally that the model satisfies the formula. Hence the name model checking for
the verification methods derived from this viewpoint. In order to check whether an open system
satisfies a required property, we should check the behavior of the system with respect to any
environment, and often there is much uncertainty regarding the environment [FZ88]. In particular,
it might be that the environment does not enable all the external nondeterministic choices. To see
this, consider a sandwich-dispensing machine that serves, upon request, sandwiches with either
ham or cheese. The machine is an open system and an environment for the system is an infinite
line of hungry people. Since each person in the line can like either both ham and cheese, or only
ham, or only cheese, each person suggests a different disabling of the external nondeterministic
choices. Accordingly, there are many different possible environments to consider.

It turned out that model-checking methods are applicable also for verification of open systems
with respect to universal temporal-logic formulas [MP92, KV96, KV97]. To see this, consider
an execution of an open system in a maximal environment; i.e., an environment that enables
all the external nondeterministic choices. The result is a closed system, and it is simulated by
any other execution of the system in some environment. Therefore, one can check satisfaction
of universal requirements in an open system by model checking the system viewed as a closed
system (i.e., all nondeterministic choices are internal). This approach, however, can not be adapted
when verifying an open system with respect to non-universal requirements. Here, satisfaction of
the requirements with respect to the maximal environment does not imply their satisfaction with
respect to all environments. Hence, we should explicitly make sure that all possibility requirements
are satisfied, no matter how the environment restricts the system. For example, verifying that the
sandwich-dispensing machine described above can always eventually serve ham, we want to
make sure that this can happen no matter what the eating habits of the people in line are. Note
that while this requirement holds with respect to the maximal environment, it does not hold, for
instance, in an environment in which all the people in line do not like ham.

Module checking is suggested in [KV96, KVW97,KV97] as a general method for verification
of open systems (we use the terms “open system” and “module” interchangeably). Given a module
M and a temporal-logic formula ¢, the module-checking problem asks whether for all possible
environments &, the execution of M in £ satisfies . There are two ways to model open systems.
In the first approach [KV96, KVW97], we model open systems by transition systems with a
partition of the states into two sets. One set contains system states and corresponds to states
where the system makes a transition. The second set contains environment states and corresponds
to states where the environment makes a transition. For a module M , let Vi, denote the unwinding
of M into an infinite tree. We say that M satisfies ¢ iff 1) holds in all the trees obtained by pruning
from V3 subtrees whose root is a successor of an environment state. The intuition is that each
such tree corresponds to a different (and possible) environment. We want ¢ to hold in every
such tree since, of course, we want the open system to satisfy its specification no matter how the
environment behaves.

We examine the complexity of the module-checking problem for non-universal temporal



logics. It turns out that for such logics module checking is much harder than model checking; in
fact, module checking as is as hard as satisfiability. Thus, CTL module checking is EXPTIME-
complete and CTL* module checking is 2EXPTIME-complete. In both cases the complexity in
terms of the size of the module is polynomial.

In the second approach to modeling open systems [KV97], we look at the states of the
transition system in more detail. We view these states as assignment of values to variables. These
variables are controlled by either the system or by the environment. In this approach we can
capture the phenomenon in which the environment the has incomplete information about the
system; i.e., not all the variables are readable by the environment. Let us explain this issue in
greater detail.

An interaction between a system and its environment proceeds through a designated set
of input and output variables. In addition, the system often has internal variables, which the
environment cannot read. If two states of the system differ only in the values of unreadable
variables, then the environment cannot distinguish between them. Similarly, if two computations
of the system differ only in the values of unreadable variables along them, then the environment
cannot distinguish between them either and thus, its behaviors along these computations are the
same. More formally, when we execute a module M with an environment £, and several states in
the execution look the same and have the same history according to £’s incomplete information,
then the nondeterministic choices done by £ in each of these states coincide. In the sandwich-
dispensing machine example, the people in line cannot see whether the ham and the cheese are
fresh. Therefore, their choices are independent of this missing information. Given an open system
M with a partition of M ’s variables into readable and unreadable, and a temporal-logic formula
1, the module-checking problem with incomplete information asks whether the execution of A/
in & satisfies v, for all environments £ whose nondeterministic choices are independent of the
unreadable variables (that is, £ behaves the same in indistinguishable states).

It turns out that the presence of incomplete information makes module checking more com-
plex. The problem of module checking with incomplete information is is EXPTIME-complete
and 2EXPTIME-complete for CTL and CTL*, respectively. In both cases, however, the complex-
ity in terms of the size of the module is exponential, making module checking with incomplete
information quite intractable.

2 Module Checking

The logic CTL* is a branching temporal logic. A path quantifier, ©# (“for some path”) or A (‘“for
all paths™), can prefix an assertion composed of an arbitrary combination of linear time operators.
There are two types of formulas in CTL*: state formulas, whose satisfaction is related to a specific
state, and path formulas, whose satisfaction is related to a specific path. Formally, let AP be a
set of atomic proposition names. A CTL* state formula is either:

— true, false, or p, forp € AP.
— 2, V1, or ¢ A1 where ¢ and ¢ are CTL* state formulas.
— Fy or Ap, where ¢ is a CTL* path formula.

A CTL* path formula is either:

— A CTL* state formula.
- e, eV, o AN, Go, Fp, Xp,or U, where ¢ and ¢ are CTL* path formulas.

The logic CTL* consists of the set of state formulas generated by the above rules.
The logic CTL is a restricted subset of CTL*. In CTL, the temporal operators G, F', X, and U
must be immediately preceded by a path quantifier. Formally, it is the subset of CTL* obtained by



restricting the path formulas to be G, F'yo, X¢, U, where ¢ and ¢ are CTL state formulas.
Thus, for example, the CTL* formula ¢ = AGF(p A EXq) is nota CTL formula. Adding a path
quantifier, say A, before the F' temporal operator in ¢ results in the formula AGAF (p A EXq),
which is a CTL formula. The logic VCTL* is a restricted subset of CTL* that allows only universal
path quantification. Thus, it allows only the path quantifier A, which must always be in the scope
of an even number of negations. Note that assertions of the form — A, which is equivalent to
E—14), are not possible. Thus, the logic YCTL* is not closed under negation. The formula ¢ above
is not a YCTL* formula. Changing the path quantifier ¥ in ¢ to the path quantifier A results in
the formula AGF(p A AX¢q), which is a VCTL* formula. The logic VCTL is defined similarly,
as the restricted subset of CTL that allows only universal path quantification. The logics ICTL*
and JCTL are defined analogously, as the existential fragments of CTL* and CTL, respectively.
Note that negating a VCTL* formula results in an 3CTL* formula.

The semantics of the logic CTL* (and its sub-logics) is defined with respect to a program
P = (AP, W, R, wp, L), where AP is the set of atomic propositions, W is a set of states,
R C W x W is a transition relation that must be total (i.e., for every w € W there exists w’ € W
such that R(w, w')), wo is an initial state, and L : W — 24 maps each state to a set of atomic
propositions true in this state. For w and w’ with R(w, w’), we say that w’ is a successor of w and
we use bd(w) to denote the number of successors that w has. A path of P is an infinite sequence
7 =w’ w', ... of states such that for every i > 0, we have R(w', w't!). The suffix w?, wi*! ...
of 7 is denoted by 7*. We use w = ¢ to indicate that a state formula ¢ holds at state w, and we
use T |= ¢ to indicate that a path formula ¢ holds at path 7 (with respect to a given program P).
The relation |= is inductively defined as follows.

— For all w, we have that w |= true and w [~ false.

— For an atomic proposition p € AP, we have w = piff p € L(w)

- wE —piffw £ .

—wkEeVyiffwlEporw .

— w | Ey iff there exists a path 7 = wy, wy, . . . such that wy = w and 7 |= ¢.

— 7 |= ¢ for a state formula ¢ iff w® = ¢.

-7 piff 7 £ .

-TlEeVYiffrEporw = ¢.

-1k Xpiffr! = .

— 7 |= U iff there exists j > 0 such that 7/ =« and for all 0 < i < j, we have 7 |= ¢.

The semantics above considers the Boolean operators — (“negation”) and V (“or”), the
temporal operators X (“next”) and U (“until”), and the path quantifier A. The other operators are
superfluous and can be viewed as the following abbreviations.

P A = ~((=¢) V () Cand).
Fy = truelU ¢ (“eventually”).

- G = ~F-p (“always”).

- Ap = = FE-p (“for all paths”).

A closed system is a system whose behavior is completely determined by the state of the
system. We model a closed system by a program. An open system is a system that interacts with
its environment and whose behavior depends on that interaction. We model an open system by a
module M = (AP, Wy, W., R, wo, L), where AP, R, wp, and L are as in programs, W¥; is a set
of system states, W. is a set of environment states, and we often use ¥ to denote W, U WW..

We assume that the states in M are ordered. For each state w € W, let suce(w) be an ordered
tuple of w’s R-successors; i.e., succ(w) = (wy, . .., Wyaw)), Where for all 1 < i < bd(w), we



have R(w,w;), and the w;’s are ordered. Consider a system state w, and an environment state
we. Whenever a module is in the state w;, all the states in succ(w,) are possible next states. In
contrast, when the module is in state w., there is no certainty with respect to the environment
transitions and not all the states in succ(w. ) are possible next states. The only thing guaranteed,
since we consider environments that cannot block the system, is that not all the transitions from
w, are disabled. For a state w € W, let step(w) denote the set of the possible (ordered) sets of
w’s next successors during an execution. By the above, step(ws) = {suce(w;)} and step(w,)
contains all the nonempty sub-tuples of succ(w. ).

For k € NN, let [k] denote the set {1,2,... k}. An infinite tree with branching degrees
bounded by £ is a nonempty set 7' C [k]* such that if z - ¢ € T where € [k]* and ¢ € [k],
then also z € T, and for all 1 < ¢’ < ¢, we have that z - ¢ € T'. In addition, if z € T, then
x -1 € T. The elements of T" are called nodes, and the empty word ¢ is the root of T'. For every
node € T, we denote by d(x) the branching degree of #; that is, the number of ¢ € [k] for
which z - ¢in T'. A path of T'is a set # C T such that ¢ € T" and for all z € 7, there exists a
unique ¢ € [k] such that z - ¢ € . Given an alphabet ¥, a X-labeled tree is a pair (T, V') where
Tisatree and V : T' — X maps each node of 7" to a letter in . A module M can be unwound
into an infinite tree (Ths, Vas) in a straightforward way. When we examine a specification with
respect to M, the specification should hold not only in {T'as, Vas) (which corresponds to a very
specific environment that does never restrict the set of its next states), but in all the trees obtained
by pruning from (T, Var) subtrees whose root is a successor of a node corresponding to an
environment state. Let exec(M ) denote the set of all these trees. Formally, (T, V) € exec(M)
iff the following holds:

- V(E) = wo.
— Forallz € T with V(z) = w,thereexists (wy, . . ., wy) € step(w) suchthat TN({z} xIN) =
{r-1,2-2,...,2z -n}andforall 1 <e < n wehave V(z-¢) = w,.

Intuitively, each tree in exec(M ) corresponds to a different behavior of the environment. We will
sometimes view the trees in exec(M) as 24P labeled trees, taking the label of a node z to be
L(V(x)). Which interpretation is intended will be clear from the context.

Given a module M and a CTL* formula +, we say that M satisfies v, denoted M |=, v,
if all the trees in exec(M ) satisfy 1. The problem of deciding whether M satisfies ¢ is called
module checking. We use M = 1 to indicate that when we regard M as a program (thus refer
to all its states as system states), then M satisfies 1». The problem of deciding whether M = ¢
is the usual model-checking problem [CE81, CES86, EL85, QS81]. It is easy to see that while
M =, ¢ implies that M |= 1, the other direction is not necessarily true. Also, while M |=
implies that M £, —), the other direction is not true as well. Indeed, M =, 1 requires all the
trees in exzec( M) to satisfy ¢. On the other hand, M = ¢ means that the tree (Tys, Vas) satisfies
. Finally, M [, —¢ only tells us that there exists some tree in exzec( M) that satisfies ¢.

As explained earlier, the distinction between model checking and module checking does not
apply to universal temporal logics.

Lemmal. [KV96, KVW97] For universal temporal logics, the module-checking problem and
the model-checking problem coincide.

In order to solve the module-checking problem for non-universal logics, we use nonde-
terministic tree automata. Tree automata run on X-labeled trees. A Biichi tree automaton is
A={(¥D,Q,q,6, F), where X is an alphabet, D is a finite set of branching degrees (positive
integers), Q is a set of states, go € @ is an initial state, 6 : Q x X x D — 29" is a transition
function satisfying 6(¢,0,d) € Q4, forevery ¢ € Q, 0 € ¥,andd € D, and F C @ is an
acceptance condition.



A run of A on an input X-labeled tree (7', V') with branching degrees in D is a ()-labeled tree
(T, r) such that r(¢) = ¢o and for every « € T', we have that (r(z - 1),r(x-2),...,7(z-d)) €

8(r(x),V(x),d(x)). If, for instance, (1 - 1) = ¢, V(1-1) = 0,d(1-1) = 2,and (¢, 0,2) =
{{41,92),{qa, ¢5) }, then either »(1 - 1-1) = gy and »(1 - 1 -2) = gp,0r (1 -1-1) = ¢4 and
r(1-1-2)=g¢s.Givenarun (T, r) and a path 7 C T', we define

Inf(r|7) = {q € Q : forinfinitely many « € w, we have r(z) = ¢}.

That is, Inf (r|7) is the set of states that r visits infinitely often along 7. A run (7', r) is accepting
iff for all paths # C 7', we have Inf(r|w) N F' # (. Namely, along all the paths of 7', the run
visits states from F infinitely often. An automaton .4 accepts (7', V'} iff there exists an accepting

n (T,7) of Aon (T,V). We use L(A) to denote the language of the automaton A; i.e., the
set of all trees accepted by .A. In addition to Biichi tree automata, we also refer to Rabin tree
automata. There, I’ C 29 x 29, and a run is accepting iff for every path 7 C 7', there exists a
pair (G, B) € F such that Inf(r|7) NG # 0 and Inf(r|x) N B = 0.

The size of an automaton .4, denoted |.4|, is defined as |Q| + |8| + | F'|, where |é] is the sum
of the lengths of tuples that appear in the transitions in §, and | F'| is the sum of the sizes of the
sets appearing in /' (a single set in the case A is a Biichi automaton, and 2m sets in the case .4
is a Rabin automaton with m pairs). Note that |.4]| is independent of the sizes of X' and D. Note
also that .A can be stored in space O(].A|).

3 The Complexity of Module Checking

We have already seen that for non-universal temporal logics, the model-checking problem and
the module-checking problem do not coincide. In this section we study the complexity of CTL
and CTL* module checking. We show that the difference between the model-checking and the
module-checking problems reflects in their complexities, and in a very significant manner.

Theorem 2. [KV96]

(1) The module-checking problem for CTL is EXPTIME-complete.
(2) The module-checking problem for CTL* is 2EXPTIME-complete.

Proof (sketch): We start with the upper bounds. Given M and ), we define two tree automata.
Essentially, the first automaton accepts the set of trees in exzec(M) and the second automaton
accepts the set of trees that does not satisfy . Thus, M =, 1 iff the intersection of the automata
is empty.

Recall that each tree in exzec( M) is obtained from (T, Vas) by pruning some of its subtrees.
The tree (Tyr, Var) is a 24P -labeled tree. We can think of a tree (T, V) € exec(M) as the
(24F U { L })-labeled tree obtained from (T, Vas) by replacing the labels of nodes pruned in
(T, V) by L. Doing so, all the trees in exzec(M ) have the same shape (they all coincide with
Thr), and they differ only in their labeling. Accordingly, we can think of an environment to
(Tar, Var) as a strategy for placing L’s in {Ts, Vas): placing a L in a certain node corresponds
to the environment disabling the transition to that node. Since we consider environments that do
not “block” the system, at least one successor of each node is not labeled with L. Also, once
the environment places a L in a certain node x, it should keep placing L’s in all the nodes of
the subtree that has = as its root. Indeed, all the nodes to this subtree are disabled. The first
automaton, Ay, accepts all the (247 U { L })-labeled tree obtained from (T, V) by such a
“legal” placement of L’s. Formally, given a module M = (AP, W;, W., R, wo, L), we define
Ay = 24P U {L1},D,Q, q0, 6, Q), where



— D = Jy,ew 1bd(w)}. That is, D contains all the branching degrees in M (and hence also all
branching degrees in in Thy).

- @ =W x {T,F, L}). Thus, every state w of M induces three states (w, T}, {w,F), and
(w, LYin Apy. Intuitively, when A s is in state (w, L), it canread only the letter L. When Ay
isin state (w, T),itcanread only letters in 24 . Finally, when A 5 isin state (w, i), itcanread
both letters in 24 and the letter L. Thus, while a state (w, I-) leaves it for the environment
to decide whether the transition to w is enabled, a state (w, T) requires the environment
to enable the transition to w, and a state {w, L) requires the environment to disable the
transition to w. The three types of states help us to make sure that the environment enables
all transitions from system states, enables at least one transition from each environment state,
and disables transitions from states that the transition to them have already been disabled.

= qo0 = (wo, T).
— The transition function § : Q@ x ¥ x D — 29" is defined for w € W and k = bd(w) as
follows. Let suce(w) = {(wy, ..., w).

e Forw e W, UW, andm € {F, L}, we have
8((w,m), L, k) = {(wr, L), (wa, L), ..., (wg, 1))
e Forw € W and m € {T,F}, we have
8((w, m), L(w), k) = ((wi, T), (w2, T), ..., (wy, T)).
e Forw € W, and m € {T,F}, we have

6(<w’ m>’ L(w)’ k) = { <<w1’ T>’ <w2’ '_>’ RS <wka '_>>a
({wy, F), (wa, T), ooy {wi, B,

(w1, ), (wn,F), - (e, T 1

Thatis, 6({w, m), L(w), k) contains k k-tuples. When the automaton proceeds according
to the :th tuple, the environment can disable the transitions to all w’s successors, except
the transition to w;, which must be enabled.
Note that 6 is not defined for the case k # bd(w) or when the input that not meet the restriction
imposed by the T, and L annotations, or the labeling of w.

Let k be the maximal branching degree in M. It is easy to see that |@Q]| < 3 - |W] and
|6] < k - |R|. Thus, assuming that |[WW| < | R|, the size of .43y is bounded by O(k - |R]).

Recall that a node of (7', V') € L(Ayy) that is labeled L stands for a node that actually does
not exist in the corresponding pruning of (7'3s, Var). Accordingly, if we interpret CTL* formulas
over the trees obtained by pruning subtrees of (T, Vas) by means of the tress recognized by
Az, we should treat a node that is labeled by L as a node that does not exist. To do this, we define
a function f : CTL* formulas — CTL* formulas such that f(£) restricts path quantification to
paths that never visit a state labeled with L. We define f inductively as follows.

- fla) =«

- f(=8) =~ f(&).

- f&1 V&) = &)V f(&).
- [(EE) = E((G-L) A f(E)).
- fAQ) = A((FL)V f(£)).
- f(X&) = XF(§).

- f(&U&) = f(&)U f(&).



For example, f(EqU(AFp)) = E((G-L) A (qU(A((FL) V Fq)))). When ¢ is a CTL
formula, the formula f(¢/) is not necessarily a CTL formula. Still, it has a restricted syntax: its
path formulas have either a single linear-time operator or two linear-time operators connected by
a Boolean operator. By [KG96], formulas of this syntax have a linear translation to CTL.

Given 1, let Ap -y be a Biichi tree automaton that accepts exactly all the tree models of
f(—=%) with branching degrees in D. By [VW86b], such Ap _; of size 2% 0¥ exists.

By the definition of satisfaction, we have that M |=, ¢ iff all the trees in exec(M) satisfy
. In other words, if no tree in exec( M) satisfies —¢/. Recall that the automaton .4,y accepts a
(24 U{ L })-labeled tree iff it corresponds to a “legal” pruning of (T, V) by the environment,
with a pruned node being labeled by L. Also, the automaton .Ap — accepts a (247 U{ L})-labeled
tree iff it does not satisfy ¢/, with path quantification ranging only over paths that never meet a node
labeled with L. Hence, checking whether M =, 1 can be reduced to testing £(Axr )N L(Ap -y )
for emptiness. Equivalently, we have to test £(Aar x Ap -y ) for emptiness. By [VW86b], the
nonemptiness problem of Biichi tree automata can be solved in quadratic time, which gives us an
algorithm of time complexity O(|R|? - 28 O(¥D),

The proof is similar for CTL*. Here, following [ES84, EJ88], we have that Ap - is a Rabin
tree automaton with 2¢2°"*" states and 200%D pairs. By [EJ88, PR89], checking the emptiness
of £(Apr x Ap. ) can then be done in time (k - |R|)27"*" . 28270

It remains to prove the lower bounds. To get an EXPTIME lower bound for CTL, we reduce
CTL satisfiability, proved to be EXPTIME-complete in [FL79, Pra80], to CTL module checking.
Given a CTL formula ¢, we construct a module M and a CTL formula ¢ such that the size of M
is quadratic in the length of v, the length of ¢ is linear in the length of ¢, and % is satisfiable iff
M £, —p. The proof is the same for CTL*. Here, we do a reduction from satisfiability of CTL*,
proved to be 2EXPTIME-hard in [VS85]. See [KV96] for more details. ]

When analyzing the complexity of model checking, a distinction should be made between
complexity in the size of the input structure and complexity in the size of the input formula; it
is the complexity in size of the structure that is typically the computational bottleneck [LP85].
We now consider the program complexity [VW86a] of module checking; i.e., the complexity
of this problem in terms of the size of the input module, assuming the formula is fixed. It is
known that the program complexity of LTL, CTL, and CTL* model checking is NLOGSPACE
[VW86a, BVW94]. This is very significant since it implies that if the system to be checked is
obtained as the product of the components of a concurrent program (as is usually the case), the
space required is polynomial in the size of these components rather than of the order of the
exponentially larger composition. We have seen that when we measure the complexity of the
module-checking problem in terms of both the program and the formula, then module checking
of CTL and CTL* formulas is much harder than their model checking. We now claim that when
we consider program complexity, module checking is still harder.

Theorem 3. [KV96] The program complexity of CTL and CTL* module checking is PTIME-
complete.

Proof: Since the algorithms given in the proof of Theorem 2 are polynomial in the size of the
module, membership in PTIME is immediate.

We prove hardness in PTIME by reducing the Monotonic Circuit Value Problem (MCV),
proved to be PTIME-hard in [Gol77], to module checking of the CTL formula F F'p. In the
MCYV problem, we are given a monotonic Boolean circuit « (i.e., a circuit constructed solely of
AND gates and OR gates), and a vector (i, ..., #,) of Boolean input values. The problem is to
determine whether the outputof «w on (21, ..., z,) is 1.



Let us denote a monotonic circuitby a tuple &« = (G, G, Gin, gour, T}, Where Gy is the set
of AND gates, (73 is the set of OR gates, (;,, is the set of input gates (identified as g1, - . ., gn),
Jour € Gy U G3 U Gy, is the output gate, and 7' C G x G denotes the acyclic dependencies in
a, thatis (g, ¢') € T iff the output of gate ¢’ is an input of gate g.

Given a monotonic circuit &« = (G, G'3, Gin, gout, T') and an input vector x = {21, ..., Zn),
we construct a module M, x = ({0, 1}, G'v, G3 U Gin, R, gour, L), Where

- R=TU{{g,9):9 € Gin}.
— For g € Gy U G3,wehave L(g) = {1}.For g; € Gy, we have L(g;) = {x;}.

Clearly, the size of M, x is linear in the size of «. Intuitively, each tree in exec(M, )
corresponds to a decision of « as to how to satisfy its OR gates (we satisfy an OR gate by
satisfying any nonempty subset of its inputs). It is therefore easy to see that there exists a tree
(T, V) € exec(M, ) such that (T, V) = AGTI iff the output of & on # is 1. Hence, by the
definition of module checking, we have that M, x =, EFO0 iff the output of & on @ is 0. a

4 Module Checking with Incomplete Information

We first need to generalize the definition of trees from Section 2. Given a finite set 7, an 1"-tree is
anonempty set 7' C 7 such thatif s - v € T, where s € T and v € T, then also s € T". When
T is not important or clear from the context, we call 7" a tree. The elements of 7" are called nodes,
and the empty word ¢ is the root of T'. For every s € T, the nodes s - v € T where v € T are
the children of s. An T-tree T' is a full infinite tree if T' = T*. Each node s of T" has a direction
in 7. The direction of the root is some designated vy € 7. The direction of a node s - v is v. A
path wof T'is a set # C 7T such that ¢ € 7 and for every s € 7 there exists a unique v € 7" such
that s - v € 7. Given two finite sets 7" and X', a X-labeled Y -tree is a pair (T, V') where T is an
T-tree and V : T" — X maps each node of 7" to a letter in 2. When 7" and X' are not important
or clear from the context, we call (7', V') a labeled tree.

For finite sets X and Y, and anode s € (X x Y)*, let hidey (s) be the node in X* obtained
from s by replacing each letter (z - y) by the letter . For example, when X =Y = {0, 1}, the
node 0010 of the (X x Y')-tree on the right corresponds, by hidey , to the node 01 of the X -tree
on the left. Note that the nodes 0011,0110,and 0111 of the (X x Y')-tree also correspondto the
node 01 of the X -tree.

Let 7 be a finite set. For a Z-labeled X-tree (T, V'), we define the Y -widening of (T, V'),
denoted widey ({T',V')), as the Z-labeled (X x Y')-tree (T", V') where forevery s € T', we have
hidey'(s) C T" and for every t € T", we have V'(t) = V' (hidey (t)). Note that for every node
t €T’ and z € X, the childrent - (z - y) of ¢, for all y, agree on their label in (7", V'}. Indeed,
they are all labeled with V (hidey (t) - x).

We now describe a second approach to modeling open systems. We describe an open system
by amodule M = (1,0, H, W, wy, R, L), where

1,0, and H are sets of input, readable output, and hidden (internal) variables, respectively.

We assume that 7, O, and H are pairwise disjoint, we use K to denote the variables known

to the environment; thus X' = I U O, and we use P to denote all variables; thus P = K U H.

W is a set of states, and wy € W is an initial state.

- R C W x W is a total transition relation. For {w, w’) € R, we say that v’ is a successor of
w. Requiring R to be total means that every state w has at least one successor.

— L : W — 2F maps each state to the set of variables that hold in this state. The intuition is

that in every state w, the module reads L(w) N I and writes L(w) N (O U H).



A computation of M is a sequence wy, wiy, ... of states, such that for all : > 0 we have
(wi, wit1) € R. We define the size |[M| of M as (|W|  |P|) + |R|. We assume, without loss
of generality, that all the states of M are labeled differently; i.e., there exist no w; and w, in
W for which L(w;) = L(w,) (otherwise, we can add variables in H that differentiate states
with identical labeling). With each module M we can associate a computation tree {Tas, Vas)
obtained by pruning M from the initial state. More formally, {T'sr, Vas) is a 2% labeled 2% -tree
(not necessarily with a fixed branching degree). Each node of {73y, Vas) corresponds to a state of
M , with the root corresponding to the initial state. A node corresponding to a state w is labeled
by L(w) and its children correspond to the successors of w in M . The assumption that the nodes
are labeled differently enable us to embody (Ths, Var) ina (2F)*-tree, with a node with direction
v labeled v.

A module M is closed iff I = (). Otherwise, it is open. Consider an open module M . The
module interacts with some environment & that supplies its inputs. When M is in state w, its
ability to move to a certain successor w’ of w is conditioned by the behavior of its environment.
If, for example, L(w’) N I = ¢ and the environment does not supply o to M, then M cannot
move to w’. Thus, the environment may disable some of M’s transitions. We can think of an
environment to M as a strategy £ : (25)* — {T, 1} that maps a finite history s of a computation
(as seen by the environment) to either T, meaning that the environment enables M to execute
s, or 1, meaning that the environment does not enable M to execute s. In other words, if M
reaches a state w by executing some s € (25)*, and a successor v’ of w has L(w) N K = o,
then an interaction of M with £ can proceed from w to w’ iff £(s - ) = T. We say that the tree
((25)*, £) maintains the strategy applied by £. We denote by M <1 € the execution of M in &;
that is, the tree obtained by pruning from the computation tree (7'3s, Vas) subtrees according to £.
Note that £ may disable all the successors of w. We say that a composition M < £ is deadlock free
iff for every state w, at least one successor of w is enabled. Given M , we can define the maximal
environment Ep, 4, for M. The maximal environment has &4, (2) = T forall z € (ZK )*; thus
it enables all the transitions of M .

Recall that in Section 2, we modeled open systems using system and environment states, and
only transitions from environment states may be disabled. Here, the interaction of the system
with its environment is more explicit, and transitions are disabled by the environment assigning
values to the system’s input variables.

The hiding and widening operators enable us to refer to the interaction of A with £ as seen
by both M and £. As we shall see below, this interaction looks different from the two points of
views. First, clearly, the labels of the computation tree of M , as seen by £, do not contain variables
in H. Consequently, £ thinks that (77, Vas) is a 2K _tree, rather than a 2 -tree. Indeed, &€ cannot
distinguish between two nodes that differ only in the values of variables in H in their labels.
Accordingly, a branch of (Tys, Vas) into two such nodes is viewed by £ as a single transition.
This incomplete information of £ is reflected in its strategy, which is independent of H . Thus,
successors of a state that agree on the labeling of the readable variables are either all enabled
or all disabled. Formally, if ((2%)*, £) is the {T, L }-labeled 2% -tree that maintains the strategy
applied by £, then the { T, L }-labeled 2”-tree wide o) (((2%)*, £)) maintains the “full” strategy
for £, as seen by someone that sees both K and H.

Another way to see the effect of incomplete information is to associate with each environment
£ atree obtained from {77, Vas) by pruning some of its subtrees. A subtree with root s € Ty is
pruned iff K’ (hide(,m(s)) = L.Every twonodes s; and s, that are indistinguishable according
to £’s incomplete information have hid@(zH)(S]) = hid@(zH)(Sz). Hence, either both subtrees
with roots s; and s, are pruned or both are not pruned. Note that once £(x) = L for some
s € (25)*, we can assume that £(s - t) forall ¢ € (25)* isalso L. Indeed, once the environment
disables the transition to a certain node s, it actually disables the transitions to all the nodes



in the subtree with root s. Note also that M <1 & is deadlock free iff for every s € Ty with
&E(hidegymy(s)) = T, at least one direction v € 2 has s - v € Tiy and E(hidegymy(s - v)) = T.

5 The Complexity of Module Checking with Incomplete Information

The module-checking with incomplete information problem is defined as follows. Let M be a
module, and let ¢ be a temporal-logic formula over the set P of M ’s variables. Does M <« &
satisfy 1 for every environment £ for which M < £ is deadlock free? When the answer to the
module-checking question is positive, we say that M reactively satisfies v, denoted M =, .
Note that when H = {, i.e., there are no hidden variables, then we get the module-checking
problem, which was studied in Section 3.

Even with incomplete information, the distinction between model checking and module
checking does not apply to universal temporal logics.

Lemmad. [KV97] For universal temporal logics, the module-checking with incomplete infor-
mation problem and the model-checking problem coincide.

Dealing incomplete information for non-universal logics is complicated. The solution we
suggest is based on alternating tree automata and is outlined below. In Sections 5.1 and 5.2, we
define alternating tree automata and describe the solutions in detail. We start by recalling the
solution to the module-checking problem. Given M and +, we proceed as follows.

Al. Define a nondeterministic tree automaton Ay, that accepts all the 2% labeled trees that
correspond to compositions of M with some £ for which M <1 € is deadlock free. Thus, each
tree accepted by .4y is obtained from (T3s, Vas) by pruning some of its subtrees.

A2. Define a nondeterministic tree automaton A, that accepts all the 2F -labeled trees that do
not satisfy .

A3. M =, ¢ iff no composition M <1 £ satisfies =9, thus iff the intersection of A s and A-y
is empty.

The reduction of the module-checking problem to the emptiness problem for tree automata
implies, by the finite-model property of tree automata [Eme85], that defining reactive satisfaction
with respect to only finite-state environments is equivalent to the current definition.

In the presence of incomplete information, not all possible pruning of {73, Vas) correspond
to compositions of M with some £. In order to correspond to such a composition, a tree should
be consistent in its pruning. A tree is consistent in its pruning iff for every two nodes that the
paths leading to them differ only in values of variables in H (i.e., every two nodes that have
the same history according to £’s incomplete information), either both nodes are pruned or both
nodes are not pruned. Intuitively, hiding variables from the environment makes it easier for M
to reactively satisfy a requirement: out of all the pruning of (T'yr, Vas) that should satisfy the
requirement in the case of complete information, only these that are consistent should satisfy the
requirement in the presence of incomplete information. Unfortunately, the consistency condition
is non-regular, and cannot be checked by an automaton. In order to circumvent this difficulty,
we employ alternating tree automata. We solve the module-checking problem with incomplete
information as follows.

B1. Define an alternating tree automaton .Axs -, that accepts a {T, L}-labeled 2K _tree iff it
corresponds to a strategy {(25)*, €) such that M <1 £ is deadlock free and does not satisfy .

B2. M k=, 4 iff all deadlock free compositions of M with £ that is independent of H satisfy 1,
thus iff no strategy induces a computation tree that does not satisfy ), thus iff A pz -y
is empty.



We now turn to a detailed description of the solution of the module-checking problem with
incomplete information, and the complexity results it entails. For that, we first define formally
alternating tree automata.

5.1 Alternating Tree Automata

Alternating tree automata generalize nondeterministic tree automata and were first introduced in
[MS87]. An alternating tree automaton A = (X, @, qo, &, &) runs on full X-labeled 7"-trees (for
an agreed set 7" of directions). It consists of a finite set ) of states, an initial state g9 € @, a
transition function é, and an acceptance condition « (a condition that defines a subset of Q).

For a set 7 of directions, let BT (7" x @) be the set of positive Boolean formulas over
T x @; i.e., Boolean formulas built from elements in 7 x ) using A and V, where we also
allow the formulas true and false and, as usual, A has precedence over V. The transition function
§:Q x ¥ — BT(Y x Q) maps a state and an input letter to a formula that suggests a new
configuration for the automaton. For example, when 7" = {0, 1}, having

6((]’0) = (0’(11) A (0’(12) \ (0’(12) A (l,qz) /\(la(B)

means that when the automaton is in state ¢ and reads the letter o, it can either send two copies, in
states ¢; and ¢, to direction O of the tree, or send a copy in state ¢, to direction 0 and two copies,
in states ¢, and ¢3, to direction 1. Thus, unlike nondeterministic tree automata, here the transition
function may require the automaton to send several copies to the same direction or allow it not to
send copies to all directions.

A run of an alternating automaton A on an input X-labeled 7-tree (T, V') is a tree (T, r)
in which the root is labeled by ¢ and every other node is labeled by an element of 7 x Q.
Each node of 7, corresponds to a node of 7'. A node in 7}, labeled by (z, ¢), describes a copy
of the automaton that reads the node z of 7" and visits the state ¢. Note that many nodes of 7',
can correspond to the same node of 7'; in contrast, in a run of a nondeterministic automaton on
(T, V') there is a one-to-one correspondence between the nodes of the run and the nodes of the
tree. The labels of a node and its children have to satisfy the transition function. For example, if
(T, V)isa{0,1}-tree with V(e) = a and 6(go,a) = ((0,41) V (0,42)) A ((0,¢3) V (1, q2)), then
the nodes of (7}, r) at level 1 include the label (0, ¢;) or (0, ¢2), and include the label (0, ¢3) or
(1, ¢2). Each infinite path p in (7}, ) is labeled by a word r(p) in Q“. Let inf(p) denote the set
of states in @ that appear in r(p) infinitely often. A run (7)., ») is accepting iff all its infinite paths
satisfy the acceptance condition. In Biichi alternating tree automata, v C ), and an infinite path
p satisfies « iff inf(p) N # 0. As with nondeterministic automata, an automaton accepts a tree
iff there exists an accepting run on it. We denote by £(.4) the language of the automaton A; i.e.,
the set of all labeled trees that A accepts. We say that an automaton is nonempty iff £(.A) # 0.

We define the size |.A4]| of an alternating automaton A = (X, Q, qo, 6, &) as |Q| + |«| + |8],
where |()| and |« are the respective cardinalities of the sets @ and «v, and where || is the sum of
the lengths of the satisfiable (i.e., not false) formulas that appear as 6(q¢, ) for some ¢ and o.

5.2 Solving the Problem of Module-Checking with Incomplete Information

Theorem 5. [KV97] Given a module M and a CTL formula i over the sets 1,0, and H, of M ’s
variables, there exists an alternating Biichi tree automaton Ayy  over {T, L}-labeled 27V° -
trees, of size O(|M | * |¢|), such that L(Anr ) is exactly the set of strategies € such that M <1 €
is deadlock free and satisfies .

Proof (sketch): Let M = (I,0, H,W,wy, R, L),andlet K = TUO.Forw € W and v € 2%,
we define s(w,v) = {v' | (w,w') € R and L(v')N K = v} and d(w) = {v | s(w,v) # 0}.



That s, s(w, v) contains all the successors of w that agree in their readable variables with v. Each
such successor corresponds to a node in (Tys, Vas) with a direction in hide (_ZIH) (v). Accordingly,
d(w) contains all directions v for which nodes corresponding to w in (T'ys, Vas) have at least one
successor with a direction in hide(_le)(v).

Essentially, the automaton .47, is similar to the product alternating tree automaton obtained
in the alternating-automata theoretic framework for CTL model checking [BVW94]. There, as
there is a single computation tree with respect to which the formula is checked, the automaton
obtained is a 1-letter automaton. Here, as there are many computation trees to check, we get a
2-letter automaton: each {T, L}-labeled tree induces a different computation tree, and Aas
considers them all. In addition, it checks that the composition of the strategy in the input with A/
is deadlock free. We assume that ¢ is given in a positive normal form, thus negations are applied
only to atomic propositions. We define Axry = ({T, L}, @, g0, 6, ), where

- Q=W x(cd(p)U{pT}) x{¥,3})U{q0}, where cl(¢) denotes the set of ¢’s subformulas.
Intuitively, when the automaton is in state (w, ¢, V), it accepts all strategies for which w is
either pruned or satisfies ¢, where ¢ = pr is satisfied iff the root of the strategy is labeled T .
When the automaton is in state (w, ¢, 3}, it accepts all strategies for which w is not pruned
and it satisfies . We call ¥ and 3 the mode of the state. While the states in W x {pT } x {V, 3}
check that the composition of M with the strategy in the input is deadlock free, the states in
W x cl(¢) x {¥, 3} check that this composition satisfies ¢. The initial state o sends copies
to check both the deadlock freeness of the composition and the satisfaction of .

— The transition function § : @ x ¥ — B+ (25 x Q) is defined as follows (with m € {3,V}).

e 8(qo, L) = false,and 6(qo, T) = 6({wo, pT,3), T) Aé({wo, v, 3}, T).
e Forall w and ¢, we have §({w, ¢, V), L) = true and §({w, ¢, 3}, L) = false.
o S({w,pT,m), T) =
(\/’UEZK \/w’Es(w,v)(U’ <w/’ pT, E|>)) A (/\’UEZK /\w’Es(w,v)(U’ <w/’ pT, V)))

(w,p,m), T) =trueif p € L(w), and §({w, p, m), T) = false if p ¢ L(w).

(w,—p,m), T)=trueif p ¢ L(w), and 6({w,—p, m), T) = falseif p € L(w).

<wa w1 e, m)a T) = 6(<wa P15, m>’ T) A 6(<wa ¥2, m>’ T)

<wa w1V, m)a T) = 6(<wa P15, m>’ T) \ 6(<wa ¥2, m>’ T)

<wa AXQDa m>’ T) = /\’L)EZK /\w’Es(w,v)(U’ <w/a ®s V))

6 <wa EXQD’ m>’ T) = \/’L)EZK \/w’Es(w,v)(U’ <w/’ ¥ E|>)

§({w, Ap1 U, m), T) =

8({w, g2, m), TIV(6((w, o1, m), TIAN, cax Awresqu ) (v (W' AprU @2, V).
i 6(<wa EQDIUQDZa m>’ T) =
8((w, 2, m), TIV(6({w, p1,m), TIAV ,eax Vresquw o) (v: (0 Ee1U 2, 3))).
hd 6(<w’ AG@? m>’ T) = 6(<w’ @ m>, T)/\ /\’L)EZK /\w’Es(w,v)(U’ <w/’ AGSD’ V))
hd 6(<w’ EG@? m>’ T) = 6(<w’ @ m>, T) A \/’L)EZK \/w’Es(w,v)(U’ <w/a EG@? El))

Consider, for example, a transition from the state {w, AX ¢, 3). First, if the transition to w

is disabled (that is, the automaton reads L), then, as the current mode is existential, the run

is rejecting. If the transition to w is enabled, then w’s successors that are enabled should

satisfy . The state w may have several successors that agree on some labeling v € 25

and differ only on the labeling of variables in . These successors are indistinguishable by

the environment, and the automaton sends them all to the same direction v. This guarantees
that either all these successors are enabled by the strategy (in case the letter to be read in
direction v is T) or all are disabled (in case the letter in direction v is ). In addition, since
the requirement to satisfy ¢ concerns only successors of w that are enabled, the mode of the
new states is universal. The copies of .47 4 that check the composition with the strategy



to be deadlock free guarantee that at least one successor of w is enabled. Note that as the
transition relation R is total, the conjunctions and disjunctions in é cannot be empty.

- o =W x G(¢) x {3,¥}, where G(v)) is the set of all formulas of the form AGy or EGy
in el(+). Thus, while the automaton cannot get trapped in states associated with “Until-
formulas” (then, the eventuality of the until is not satisfied), it may get trapped in states
associated with “Always-formulas” (then, the safety requirement is never violated).

We now consider the size of Aps -y Clearly, |Q] = O(|]W] * |¢|). Also, as the transition
associated with a state (w, ¢, m) depends on the successors of w, we have that |§| = O(| R|*|¢]).
Finally, || < |@], and we are done.

Extending the alternating automata described in [BVW94] to handle incomplete information
is possible thanks to the special structure of the automata, which alternate between universal and
existential modes. This structure (the “hesitation condition”, as called in [BVW94]) exists also
in automata associated with CTL* formulas, and imply the following analogous theorem.

Theorem 6. [KV97] Given a module M and a CTL* formula 1 over the sets 1,0, and H,
of M ’s variables, there exists an alternating Rabin tree automaton Ay 5 over {T, L}-labeled
21V0 trees, with |W| * 20UYD) states and two pairs, such that L(Apr ) is exactly the set of
strategies £ such that M <1 & is deadlock free and satisfies .

We now consider the complexity bounds that follow from our algorithm.

Theorem 7. [KV97] The module-checking problem with incomplete information is EXPTIME-
complete for CTL and is 2EXPTIME-complete for CTL*.

Proof (sketch): The lower bounds follows from the known bounds for module checking with
complete information [KV96]. For the upper bounds, in Theorems 5 and 6 we reduced the
problem M |=, 4 to the problem of checking the nonemptiness of the automaton .Axs -y .
When v is a CTL formula, Aas -y is an alternating Biichi automaton of size O(|M| * |¢|). By
[VW86b, MS95], checking the nonemptiness of Az -y is then exponential in the sizes of M and
¥. When 1) is a CTL* formula, the automaton Ajps -y is an alternating Rabin automaton, with
|W | % 29U%D) states and two pairs. Accordingly, by [EJ88, MS95], checking the nonemptiness of
Apr -y is exponential in |T¥| and double exponential in |¢]. O

As the module-checking problem for CTL is already EXPTIME-hard for environments with
complete information, it might seem as if incomplete information can be handled at no cost.
This is, however, not true. By Theorem 3, the program complexity of CTL module checking
with complete information is PTIME-complete. On the other hand, the time complexity of the
algorithm we present here is exponential in the size of the both the formula and the system. Can
we do better? In Theorem 8 below, we answer this question negatively. To see why, consider a
module M with hidden variables. When A interacts with an environment £, the module seen
by £ is different from A . Indeed, every state of the module seen by &£ corresponds to a set of
states of M . Therefore, coping with incomplete information involves some subset construction,
which blows-up the state space exponentially. In our algorithm, the subset construction hides in
the emptiness test of A xs vy .

Theorem 8. [KV97] The program complexity of CTL module checking with incomplete informa-
tion is EXPTIME-complete.



Proof (sketch): The upper bound follows from Theorem 7. For the lower bound, we do a
reduction from the outcome problem for two-players games with incomplete information, proved
to be EXPTIME-hard in [Rei84]. A two-player game with incomplete information consists of an
AND-OR graph with an initial state and a set of designated states. Each of the states in the graph
is labeled by readable and unreadable observations. The game is played between two players,
called the OR-player and the AND-player. The two players generate together a path in the graph.
The path starts at the initial state. Whenever the game is at an OR-state, the OR-player determines
the next state. Whenever the game is at an AND-state, the AND-player determines the next state.
The outcome problem is to determine whether the OR-player has a strategy that depends only
on the readable observations (that is, a strategy that maps finite sequences of sets of readable
observations to a set of known observations) such that following this strategy guarantees that, no
matter how the AND-player plays, the path eventually visits one of the designated states.

Given an AND-OR graph (' as above, we define a module M such that M reactively satisfies
a fixed CTL formula ¢ iff the OR-player has no strategy as above. The environments of Mg
correspond to strategies for the OR-player. Each environment suggests a pruning of (Tas,, Vs )
such that the set of paths in the pruned tree corresponds to a set of paths that the OR-player can
force the game into, no matter how the AND-player plays. The module M¢; is very similar to (7,
and the formula ¢ requires the existence of a computation that never visits a designated state.
The formal definition of M and ¢ involves some technical complications required in order to
make sure that the environment disables only transitions from OR-states. O

6 Discussion

The discussion of the relative merits of linear versus branching temporal logics is almost as
early as these paradigms [Lam80]. One of the beliefs dominating this discussion has been “while
specifying is easier in LTL, model checking is easier for CTL’. Indeed, the restricted syntax of
CTL limits its expressive power and many important behaviors (e.g., strong fairness) can not
be specified in CTL. On the other hand, while model checking for CTL can be done in time
O(|P]  |%|) [CES86], it takes time O(|P| * 2/¥!) for LTL [LP85]. Since LTL model checking
is PSPACE-complete [SC85], the latter bound probably cannot be improved. The attractive
computational complexity of CTL model checking have compensated for its lack of expressive
power and branching-time model-checking tools can handle systems with extremely large state
spaces [BCMT90, McM93, CGL93].

If we examine this issue more closely, however, we find that the computational superiority of
CTL over LTL is not that clear. For example, as shown in [Var95, KV95], the advantage that CTL
enjoys over LTL disappears also when the complexity of modular verification is considered. The
distinction between closed an open systems discussed in this paper questions the computational
superiority of the branching-time paradigm further.

Our conclusion is that the debate about the relative merit of the linear and branching paradigms
will not be settled by technical arguments such as expressive power or computational complexity.
Rather, the discussion should focus on the attractiveness of the approaches to practitioners who
practice computer-aided verification in realistic settings. We believe that this discussion will end
up with the conclusion that both approaches have their merits and computer-aided verification
tools should therefore combine the two approaches rather than “religiously” adhere to one or the
other.
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