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The Fourier Coefficients of Siegel 

Modular Forms of Degree Two 

by 

Rudolph Lolo Saldana 

In this thesis, two conjectures concerning the 

Fourier coefficients of Siegel modular forms of 

degree two are presented. From these two conjectures, 

which have a certain "naturality" and simplicity 

within the framework of known results, are derived 

formulae which completely determine the generator 

of the graded ring of modular forms of even weight 

through its Fourier coefficients. Additionally, 

to add credence to the conjectures, one of three 

known methods of generating Fourier coefficients 

of modular forms is used to obtain a table of 

coefficients with which to illustrate the conjectures. 

It may be mentioned that this set of Fourier coeffi¬ 

cients, in itself, represents the first known table 

of any length for the Siegel modular forms of 

degree two. 
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Introduction 

One of the main results of a paper by 

H. Resnikoff [7] is that the graded ring (finite 

sums) of Siegel modular forms of degree two is 

generated by the Eisenstein series 0^. Consequently, 

this has given rise to a new interest in the form 

0^ and has, in fact, led the author to two conjectures 

concerning the Fourier coefficients of these modular 

forms. From these two conjectures can be derived 

new formulae which will completely determine 0^ 

through its Fourier coefficients. 

The purpose of this paper is to present these 

two conjectures and the derived results. Additionally, 

to add credence to the conjectures, we have chosen 

one of three known methods of generating Fourier 

coefficients of modular forms and have obtained a 

table of coefficients with which to illustrate the 

conjectures. This set of Fourier coefficients, in 

itself, represents the first known table of any 

length for the Siegel modular forms of degree two. 

Background; Investigations into the Fourier 

coefficients of Siegel modular forms began with the 

work of C. L. Siegel [9,10] in 1939 in which the 
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coefficients for the Eisenstein series of degree* 

n were expressed in terms of p-adic densities. 

His formula, by its generality, is extra-ordinarily 

complex and proves to be unapplicable for extensive 

calculations. In 1964 for the degree two Eisenstein 

series, H. Maass [6] expanded the p-adic densities 

of Siegel's formula to obtain an explicit expression 

for the Fourier coefficients associated with primi¬ 

tive matrices. This formula is of course still 

complicated. 

What Maass needed to complete the evaluation 

of the Eisenstein coefficients in the degree two 

case was an equation for the imprimitive matrix 

coefficients. Using an extention of the Hecke 

operator theory, Maass [6] determined an identity 

satisfied by the Eisenstein coefficients. He then at¬ 

tempted to show that the identity could be simplified 

to yield a recursive equation for the imprimitive 

matrix coefficients and that the coefficients, a (T), 
ft, tJ2\ " 

for T= ( /9 
J i were a function only of the two 

V3 Z2 / 

parameters e(T)=g.c.d !, (tp t2» t^) and D(T)=|2T|/e^(T) 

Unfortunately, we have found an error in his proof 

([6]-Satz 2) which invalidates his simplified 

recursive equation and leaves the dependence of 
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a (T) on e(T) and D(T) an open question, w t 

In Appendix I of this paper, we will be 

able to correct the error in Maass' proof to show 

that the Hecke operator identity is indeed recursive 

for the imprimitive matrix coefficients. However, 

we will not be able to simplify the identity nor be 

able to conclude that a (T) is a function only w 

of e(T) and D(T). This being the case, we single 

out this last statement as Maass' Conjecture. 

In 1970 using certain differential operators 

which are independent of the modular group, 

Resnikoff showed his result that 0^ generates 

the graded ring of Siegel modular forms of even 

weight. Later he pointed out the existence of 

recursive equations for the Fourier coefficients of 

the four algebraic generators of this same graded 

ring which could be obtained from the differential 

operator theory [8]. These equations while 

complicated are not intertwined with the number 

theoretic complexities of Siegel's and Maass' 

formulae. Moreover, they demonstrate how one generates 

other modular forms from the knowledge of the 04- 

coefficients. For this reason, we have chosen this 

method for generating the table in this paper(p.79). 
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The Conjectures: In this thesis, we state two 

conjectures concerning the Fourier coefficients 

of modular forms of degree two. It may be mentioned 

that these two conjectures have a certain naturality 

and simplicity within the framework of known results. 

Moreover, for the large set of coefficients generated 

by the method above, the conjectures are found to 

hold. 

The first conjecture is an explicit expression 

for the Fourier coefficients associated with imprimi- 

tive matrices in terms of primitive matrix coefficients. 

Thus once the primitive matrix coefficients are 

determined, one also has the imprimitive matrix 

coefficients. The equation of the conjecture has a 

form similar to the known solution of the degree one 

Sisenstein series coefficients, and appears to hold for 

all modular forms of arbitrary weights. An immediate 

consequence of the conjecture is a trivial proof of 

Maass' Conjecture. 

In contrast to this, the second conjecture 

applies only to the Fourier coefficients of the 

Eisenstein series of weight four. This conjecture 

relates a sum of these degree two 0^-coefficients 

to the known coefficients of the classical (degree 

iv 



one) Eisenstein series of weight four. A geometric 

similarity between this conjecture and an identity of 

E. Witt is readily noticed. 

Finally, under the assumption of the second 

conjecture, we prove recursive equations for the 

0^-coefficients of primitive matrices. Coupling 

this with a special case of the first conjecture, we 

have the formulae to completely determine 0^. This 

points out that if the conjectures are true, then 

there still exist some unknown fundamental relationships 

between the classical modular forms and forms of 

higher degree. 

The first two chapters, comprising the first 

part of this paper, are devoted to development and 

to the two conjectures. Chapter I considers some 

general facts pertaining to modular forms in n-space; 

while Chapter II contains the two conjectures and the 

derived consequences. The last three chapters 

(Part Two) take up the subject of generating a table 

of Fourier coefficients. The recursive equations 

and as much of the differential theory as is necessary 

to derive them are given in Chapter III. Chapter IV 

explores some aspects of evaluating the coefficients 
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by the equations and outlines an algorithm used 

on a Control Data Corporation 3800 computer. The 

table of obtained coefficients is given in Chapter 

V along with an extended table for the <p^ coefficients 

calculated by means of the equations derived from 

the conjectures. 

For comparisions, Siegel's generating formula 

as well as Maass' results are given in Appendix I. 

Also included is our proof of the recursive nature 

of the Hecke operator identity mentioned above. 

Appendix II contains the computer time and cost 

requirements needed to complete the table in Part 

Two of this paper. 

vi 



PART ONE 

PRELIMINARIES AND THE TWO CONJECTURES 
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I. General Remarks 

Prior to stating and deriving consequences of the 

conjectures of this paper, it will be necessary to formal¬ 

ize some of the concepts to be used. Since the conjectures 

will relate modular forms of degrees 1 and 2, we have ! 

found it reasonable to present most of the material in 

this chapter in its general setting for degree n. In¬ 

cluded are results which we can call upon, as the occasions 

arise, later in this paper. 

A. Modular Forms 

Let H* denote the set of all symmetric complex 

n-by-n matrices, Z » Z^n^= X + i Y = (z^j) (lsksi<;n), 

with positive definite imaginary part Y. In symbols, 

this means Z = Z and Y>0, where (*) indicates 

matrix transpose and Y>0 indicates that the matrix Y 

4 is positive definite. By definition, H* is the Siegel 

Upper-Half Plane of degree n. The (homogenous) Modular 

Group of degree n is the group ^(2n) consisting of 

all 2n-by-2n matrices M satisfying the condition 

M (I-D M I MT - I; 
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where A, B,C,D are integral square matrices of order 

n and E = E^n^ and 0 = are respectively the 

identity and zero matrices of order n. 

M(2n) has in H* a discontinuous analytic 

representation given by the mapping 

Z - M <Z> = (AZ+B)* (CZ+D)"1 

of Hi onto itself. Since the matrices M and -M n 

give the same mapping, we define the Siegel Modular Group 

of degree n, rn, to be the factor group of ^2n) 

by its normal subgroup {E^n\ -E^n^} of order two. 

Definition JL: A complex-valued function f (Z) 

on H* is said to be a Siegel modular form of degree n 

and weight w (denoted briefly as f^(rn,w)) if 

n(n+l) 
z 

(i) f(Z) is an holomorphic function of the 

complex varibles z^ (lsks^n) of Z in H* , 

(ii) For every M = , 

f(M<Z>) |CZ+D|_w = f(Z) 

where |•| indicates determinant. 
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It has been shown by Koecher [3] that for n>l (£•) 

and (ii) together imply 

(iii) f(Z) is bounded in H^. 

For n=l, however, (iii) should also be included in 

the definition of modular form. 

From this definition, we find that the product 

nw must be an even integer. This follows since M = E 

and -M = -T2 both represent the identity transformation 

in r , yielding 

f(-EZ) - f(Z) 

and by (ii) 

f(-EZ) = (-lfWf(Z). 

Hence we have proved that modular forms not vanishing 

identically can exist only in the case nw=0 (mod 2). 

Additionally, it is known that modular forms of 

negative weight vanish identically and that modular forms 

of weight zero are necessarily constants. The first 
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statement follows directly form the boundedness property 

of modular forms, while the latter requires more work 

and is found in [4]. 

B. Existence of Modular Forms (Eisenstein Series) 

To prove the existence of modular forms, we will 

define a set of functions called Eisenstein series and 

show that they are indeed modular forms. We proceed by 

making the following definition for two matrices P and 

Q. 

Definition 2: A pair of integral n-by-n matrices 

P and Q will be called coprime (denoted by [P,Q] 

if there exist integral matrices X and Y satisfying 

the relation; PX + QY = E. Further, matrices P and 

T T 
Q are said to form a symmetric pair if PQ = QP . 

The Eisenstein series of degree n and weight 

w is then defined to be 

(1-2) * (Z) - E |CZ+D|”w 

” [C,D] 

where the summation extends over all n-by-n coprime 

symmetric matrix pairs [C,D]. It can be proved that 

such a series converges absolutely and uniformly for 

all points provided that w>n +1 [5]. 
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0W(Z) is a modular form of weight w. For apply 

successively the conditions of^tie definition: 

(i) That 0 (Z) is holomorphic at all points 
+ w 

Z € Hn is assured by the uniform convergence of the series 

on compact subsets of 

(ii) Let Mx 

with 

Z1 = (A1Z+B1)(C1Z-H)1)"1 

then 

>A\ 

“ (cy) 
Consider 0 (Z,), 

W li 

| CZ^+D | - |C(A1Z-«1)(C1Z-H)1)“
1-H)| 

- ICJZ-TOJJ"1 \Q2Z+D2\ 

where 

C2 ® CA^"H)C^j ^2 ™ • 

Hence 

z 
CC,D] 

|C2Z+D2| 
W 

To prove that 0W(
Z^) - |C^Z+D^|W^W(Z), it suffices to 
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prove that as [C,D] runs over all coprime symmetric 

pairs, so does [€2^2]. 

First of all we have 

(C2D2) = (CD)M1, (CD) = (C2D2)M"1 

implying that [C2,D2] are coprime and distinct for 

different [C,D]. Moveover by equation (1-1), 

MXIM^ - I, MTI-1M = I"1, MTIM = I, 

CD
T
 - DC

T
 « (CD)I(CD)

T
 - (CD)M1IM^(CD)

T 

- C2DT . D2C*( 

hence [C2,D2] is a symmetric pair if [C,D] is. The 

result then follows. 

(iii) The final condition for 0 (Z) to be a 

modular form amounts to showing that the Eisenstein series 

(1-2) can be expressed as a Fourier series at ®. The 

proof is a consequence of a generalized Lipschitz formula 

and can be found in [5]. 

Hence modular forms do exist, and we can give an 
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explicit formula for them in the case of Eisenstein 

series. The importance of these Eisenstein series 

will become apparent as we.develope Chapter II. 

C. Fourier Expansion of Modular Forms 

1. Definition 3^: A matrix A is called 

properly (improperly) unimodular if and only if A 

and A"1 are both integral such that |A| = + 1(|A| = -1) 

where |»| indicates determinant. Furthermore, a 

unimodular matrix is a matrix that is either properly 

unimodular or improperly unimodular. 

For a matrix M, in r of the form 
m \ in 

u S 1 
0 IT1/ w^ere s an integral symmetric matrix 

and U is a unimodular matrix, we can infer from 

Definition 1 that f(Z+£>) = f(Z) for fe(rn,w) 

and U = E. In particular, this implies that 

modular forms are periodic with period one in every 

element of ZfH^ Hence, we can develop the 

Fourier series of a modular form, 

(1-3) f(Z) - Z a (T)e
2TTicr(TZ) ip w 

where the summation extends over all semi-integral 

matrices T (i.e., the off-diagonal elements are 

half-integers) and o(*) “ trace (•)• 
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Letting S = 0 in the above matrix and again 

using Definition 1, we see that for f€(Fn,w), 

(1-4) f(Z) = f(Z[U]) 

T 
where Z[U] = U ZU. Also by observing that the trace of 

a matrix product is invariant under a cyclic permutation 

in the succession of the factors(i.e., Q(ABC) = a(CAB)), 

we have 

f(Z[U]) = Eaw(T)e 
2TriCT(TU

1ZU) 

(1-5) 
= Za^De2"^™ Z> 

Za (T[(UT)"1])e2TTicr^TZ^ 
m W 

Therefore a comparison of the coefficients of (1-3) and 

(1-5) by means of (1-4) allows us to conclude by the 

uniqueness of Fourier expansions that 

a„(T) - aw(T[(UT)-1]) 

where U is an arbitrary unimodular matrix. Replacing 

(UT)-1 by U, we get 

(1-6) aw(T) " aw<TCu3>- 
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We exploit this relationship in the following definition. 

Definition 4: Two matrices A and B are said 

to be unimodularly equivalent if for some unimodular 

matrix U, we have B = A[U] where A[U] = U^AU. In 

this case B is said to be a unimodular transformation 

of A. 

This defines an equivalence relation on the set 

of semi-integral matrices T. Relation (1-6) then 

implies that the coefficient a (T) depends only upon 

the unimodular equivalence class (T) to which T 

belongs. Here, of course, (T) denotes the equivalence 

class for the matrix T. 

Separating the semi-integral matrices into 

classes (T) and letting 

1L) T^OO 1 

where 

e(T^Z) = e2iTia(T^Z)^ equation (1-3) becomes 

f<Z> “ ZT)V
T>f(T)<Z> 
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summed over all the different classes of semi-integral 

matrices. 

It is known from the boundedness property of 

modular forms that a
w(
T) - 0» unless . T^O (semi¬ 

positive definite) [4]. As a consequence of this, we 

write (1-7) as 

(1-8) f(Z) - E a (T)fm(Z) 
(T)a0 M '■T’) 

We also define 3L to be the set of all n-by-n semi- 

integral, semi-positive definite matrices, and u «* 

2. For the applications we have in mind (namely 

differential equations involving the Fourier Series of 

modular forms - Part Two), we will need the expression 

for the Fourier series of a modular form raised to the 

k-th power. The result for fe(rn,w) expressed as in 

equation (1-8) is 

(1-9) 

fk(Z) s n 
(D)*0 1 

k 
D - T, T. 

1 1 

where CD number of solutions of D 
k 
E \ and T1«sn. 
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This follows directly by noting that 

fT(Z) fs(Z) = E e[(Tx+S^Z] 

(1-10) 

Ti+Si 

Tl€(T), Sie(S) 

Since the sum of two matrices in IT is again in S' , 
n n* 

the equation 

T^+S^ — D-p and T2€«TJJ 

holds for only a finite number of semi-integral matrices 

and S^. Suppose it has in all CD solutions. Then, 

since 

U^T^U +U^S^U = U^D^U, U unimodular, 

the equation has the same number of solutions 

for all matrices unimodularly equivalent to D. 

Hence every element of the class D appears in the sum 

(I-10) the same number of times and equation (1-9) follows 

by induction on k. 

D. Siegel Operator 

In this section we will define an operator, $, 

which maps the modular forms of degree n>l 
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to those of degree n-1 with the 

same weight: i.e., $:(r w)-(rn_1}w). From the action 

of this operator, we will be able to determine a relation 

between some Fourier coefficients of degree n and those 

of degree n-1. 

Toward this end, it is a straightforward veri¬ 

fication to show that if Z = <EH* , then the matrix 

Z^ obtained by cancelling the last row and column of 

Z is an element of H* ^ Conversely, for every 

Z^€H^_p we have Z » -Pr0vlded \>0. Then 

for fe(rn,w), we have the following proposition defining 

the Siegel Operator §.[4]. ^ 

Proposition .1: Let f€(Fn,w) • then lim f^j^^ 

exists and is a modular form of degree n-1 and weight 

w. This limit function is denoted by §(f(Z)). 

Implicit in the proof of the proposition is 

that the terms of f(Z) = E a (T)f,Tx(Z) }W) 
(T)sO w n 

involving matrices T for which |T|^0 vanish in the 

limit and only those terms for which |T| =0 survive. 

We then obtain 

§(f(z)) - z aw(T1)ffx x<z) f(r i,w) 
(T1)20 

W 1
 '■V n 1 
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where is an n-1 by n-1 semi-integral matrix 

and where by definition 

explicit expression for the Fourier coefficients 

associated with matrices of determinant zero. Indeed, 

if we let T be a semi-integral matrix of order 2 

such that |T| = 0, it is not hard to see that there 

exists a unimodular matrix U such that 

(An explicit method for determining the U is given 

in section F of this chapter.) 

Now if for this T, a (T) 

of an Eisenstein series of degree 

(i-u) 

In the case that we restrict ourselves to 

Eisenstein series of degree 2, we can obtain an 

integral, > 0. 

(I-U) 

is a Fourier coefficient 

2, then by equation 



where a
w(

m) = the Fourier coefficient for the Eisenstein 

series of the classical modular group, n=l. In this 

case, the coefficients of 0w€(Fpw) are well known to 

be 1 

(I-X2) N<«> = (-^B/22W %.!<») 
w 

where 

1c a^Cm) = T d (the elementary divisor function), 
d j m 

d>0 

and Bn are the Bernoulli numbers, defined for instance 

by 

(1-13) Z cot Z = 1 - Z 
n=l 

B 22nZ2n 

~hn)! .. 

For reference we note that (-1)W/22W 
B. = 240, -504, -264, 

w 
and 54,600/691 for w = 4, 6, 10, and 12 respectively. 

In concluding this present section, we distinguish 

those modular forms f€(r ,w) which have no terms in n 
T for which |T| - 0. 
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Definition _5: A function fe(rn,w) is called 

a cusp form if 

*<f(Z)) = 0 

i.e., f is in the kernel of the Siegel f operator. 

E. Witt's Identity 

E. Witt [12] proved a theorem in 1939 from 

which we will obtain an identity between a sum of degree 

two Fourier coefficients and a product of degree one 

coefficients. The importance of this identity (to our 

paper) is that it bears some geometric similarity to the 

second conjecture in Chapter II. Further, it provides 

a check which we use when calculating degree two coefficients 

If f^ and f2^rn,w^» t^ien ^ “ af^ + ^2 w^ere 

a,b are any complex constants is also a modular form 

of the same weight. Therefore, the collection of modular 

forms, (rn,w), of fixed weight form a vector space over 

the complex numbers. It is well known that this space 

is finite dimensional. In particular, if we let /?(w) 

denote the number of linearly independent modular forms 

in (Tpw), we have 



(1-14) 
w s 2 mod 12 

w ^ 2 mod 12 

where [x] denotes the greatest integer sx. 

Witt's theorem can be stated as follows: 

Proposition 2 (Witt): For every modular form 

f€(rn,w)» we have the expansion 

m n 
E E a. .f • (Z-. )g. (Z«) 
i=l j=l 1 1 J z 

where the f^(l^ism) and gj(l^jsn) are linearly 

independent modular forms in (^ ,w) and 

respectively and ni+n2 = n. 

For fc(r2,w) and w = 2, 4, 6, 8, 10, equation 

(1-14) yields p(w) = 1. Hence the theorem implies 

the following expansion 

f f^zp fx(z2) 

where 

f (r-L.w). 



18 

Expressing f and f-^ by their Fourier series yields, 

by uniqueness of Fourier expansions, the Witt identity; 

for fixed t^, t2» The sum is taken over all 11^ | ^2A/E^t^ 

and a
w(^j[) » 1 = 1* 2 » are the Fourier coefficients for 

the classical modular form f^. 

F. Minkowski Reduced Domains 

remarks, we will look a bit more closely at the set IT 

of all semi-integral matrices of order 2 such that 

T^O. It was shown in section B that to completely specify 

the Fourier series of a modular form, we need only 

determine the coefficients associated with classes of 

unimodularly equivalent matrices in IT. By appealing 

to the classical quadratic reduction theory of Minkowski 

and Gauss, we will be able to fix in each class a 

typical representative satisfying certain extremal 

properties which will be useful for our purposes. 

(1-15) 

In concluding this present chapter of preliminary 

Consider all real symmetric matrices A ■ 
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With each matrix A associate a point in 3-dimensional 

real vector space with coordinates (a, c,b). For 

simplicity of notation, we shall use this triplet 

(a,c,b) to denote the matrix A. We also note that 

the set of points corresponding to the' matrices T^TT 

are a lattice in this real space. 

Definition 6.: A Minkowski reduced matrix is a 

matrix T = (ajCjb)^^ satisfying the condition 

|b|sa<c or,if a = c then 0<b^a . 

The set of all Minkowski reduced matrices will be denoted 

by Rm. We have the following lemma concerning RM [H], 

Lemma JL: No two Minkowski reduced matrices are 

properly unimodularly equivalent. 

The next proposition tells us that for every 

T^IT there exists a unique properly unimodular equivalent 

matrix in R^. 

Proposition 3 (Minkowski): Let T = (a,c,b) 

2 
be an arbitrary element of F with A = 4ac-b s»0, then 

there exists a finite succession of proper unimodular 

transformations which will reduce T to a unique element 

of RJ,J (called the reduced matrix for T). 



Proof: Clearly if T is already reduced, the 

unimodular matrix E will work. Therefore, let 

nR
M, S± = 1

1^ , and W = (j "J) . For some 

integer n^, 

= T[S^] = (a> nla+nlb+c> 2n^a+b) 

— (a^, Cp b^) 

can be determined such that -a^<b^£ap 

Case I: ai<ci implies we are finished,since 

we have chosen b-^ such that -a^cb^sap 

Case II: a-^ = Cp but -a^^b^<0, then 

T2 = T^[W] is reduced since the application of W 

takes (a1,c1,b1)-*(c1,a1,-b1) = (a2,c2,b2) implying 

T2^RM* 

Case III: ci<ai> then if T2 = T^[W], we 

have c2<a2 by the act^on °f W. If -a2<b2*£a, we're 

through. If not, there exist an n2(=Z such that 

T3 = T2[S2] has -a^cb^a^. If is not reduced, 

apply W again and get = Tg[W]; thus having repeated 

the entire procedure over again. What remains to be 

shown is that for some k, T^. will be reduced, i.e., 
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after finitely many steps, this process leads to a matrix 

Tk€RM* 
o ~ 2 

To this end, note that a^A^ = 4 
2 2 implies ak"^akck+^k&® or aks^ck = ^ak+l un(^er the 

action of W where -a^cb^3^. Hence as long as 
~ 2 
A^a^, 80 that we will always be considering 

Case III at each repetition of the procedure. Further, 

starting with some positive number for a, a finite 

number of applications of S followed by W will 

2 ~ produce a number a^<A. 

So suppose then that we are at the point such 

that 

A>ak» ck<ak* 

Then on application of W, we have 

Tk+1 = Tk^W^ = (ak+l’ck+l»bk+l) = ^ck,ak»"bk^ 

“ak<bk*ak» 

and on application of S, 

Tk+2 " Tk+1^ “ ^ak+2’ck+2’bk+2^ " ^ck’n ck"bkn+ak’2nck"bk^ 
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where n is determined such that 

Now if |n|^2 , we have ck+2sak+2 

"ak+2<bk+2*ak+2‘ 

since 

4a?(n2c 

'k+2 
k-nbk+ak)+(n2b2+n2b2) 

~ZL 

n2(4a kck_bk 

4a? '] 

aak[0+4-^] = aksck = ak+2 . 

If |n| = 0 , we have s^nce 

ck+2 = ak>ck = ak+2 * 

Now |n| = 1 , we cannot have ck+2<ak+2’ s^nce then we 

would have 

ck+2 “ ck"bk+ak<ck " ak+2 

implying that ak<bk contrary to the assumption on 

ak and bk> Hence in all cases, ck+2^ak+2 anc* 
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”^^1 | 12 * ^ still not in R^ (which 

may happen if ak+2 = ck+2) , then TR+3 = Tk+2IWRM* 

Uniqueness of the reduced matrix for T follows 

from Lemma 1. 

QED 

An immediate corollary is 

Corollary JL: Let T be an arbitrary semi-positive 

definite matrix and let TR be the Minkowski reduced 

matrix for T. Then 

CT(T)^CT(TR) 

equality holding if and only if T = TR. 

The proposition along with the lemma assures us 

that contains only one representative from each 

properly unimodular equivalence class (T). In addition, 

in the proof of the proposition we are given an explicit 

method for reducing a matrix T^JT to an element of R^ 

(and hence to its associated equivalence class). 

Recalling that coefficients of modular forms 

are invariant under unimodular equivalences (1-6), 

we find that the set R^ is too large for our purposes. 
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We are able to obtain a subset R of RM which will 

be sufficient for our needs. Here, we get 

R = { T = (a,c,b): T^O" and O^b^a^c ) 

This comes by identifying elements of R^ by the 

improper unimodular transformation U = . 

Its action identifies matrices (a,c,b) with matrices 

(a,c,-b). 

We see that R contains one representative 

from each class of unimodularly equivalent positive 

definite matrices which is Minkowski reduced and has 

positive off-diagonal element. We shall call R the 

set of unimodularly reduced matrices in O'. 

2. A useful geometric interpretation of the 

semi-positive, semi-integral matrices O' is given in 

the following [11]. 

Proposition 4: For 2-by-2 symmetric real matrices 

A, let S = {A = A^O} containing the lattice O'. Then 

we have 

(a) The space S is a convex circular cone 

with vertex at the origin in Euclidean three space, 

(b) The lattice R^ is contained in a convex 

pyramid with vertex at the origin. 
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Noting that for matrices T = (a,c,b)sO, a 

c must be positive; we have pictorially, 

Definition 1\ For a fixed number a, define 

the q-trace plane to be P^ = {A: A is real symmetric 

and CT(A) = a} where a (A) denotes the trace of A. 

With respect to Figure 1, we see that the set 

of all semi-positive definite matrices T^P^ lie within 

a closed disk of radius a, for if T = (a,c,b)sO, then 

ac s 0 
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so that 

4ac + a2 + c2 s b2 + a2 + c2, 

. . j 

or 

(c2 - 2ac + a2) + b2 «s a2 + 2ac + c2, 

and so 

(c-a)2 + b2 s (a+c)2 = CT(T) = a. 

The first quadrant for a few of these trace 

planes with coordinates y^ = c-a and y2 = b is given 

in figure 2. The lattice points in the figure represent 

elements of P OS' and the points within the triangles, 
v 

elements of P^nR. Points outside the triangles have 

been identified by the reduced matrices to which they 

are equivalent. 

The results of the previous section tell us that 

we need only evaluate the Fourier coefficients of modular 

forms on the lattice points in the first quadrant of each 

trace plane; and in particular on lattice points within 

the closed reduced triangle in quadrant 1. 
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Figure 2: Lattice Points by Trace Planes - P 
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(Figure 2: Cont. ) 
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II. The Two Conjectures for Fourier Coefficients 

In this chapter and for the remainder of the 

paper, we restrict ourselves to and the Siegel 

modular group T = r2. It is the purpose of this 

chapter to present and derive consequences of two 

conjectures concerning the Fourier coefficients 

a
w(T) for f€(r2,w). We begin by formalizing the 

definition of primitive and imprimitive matrices. 

Let S’ be the set of all semi-integral, semi-positive 

matrices. 

Definition For T = (a,c,b)sir , we call 

d(=Z^ a divisor of T if the matrix T/d defined 

by T/d = (a/d, c/d, b/d) is an element of S’. 

Definition j): A matrix T^S1 is called a 

primitive matrix if the only divisor of T is 1; 

otherwise T is called an imprimitive matrix. 

A. Conjectured Equation for Imprimitive Matrices: 

Let T = (a,c,b)(=3’ with |T| = A = ac- ^ We 

know by Appendix I (Proposition Al) that primitive 

matrices with the same determinant have equal Fourier 

coefficients in the expansion of an Eisenstein series. 

With this in mind, we form 9KCJ where tn. = fall 

primitive matrices in S’ with determinant** A ). 
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+ 

Also since 4A=0(mod 4) for A$52 and 4A=3(mod 4) 

for A$ z, we choose the matrices (1,A,0) and 

(1,-^1,1) as representatives for 31^, dependent on 
» - J. 

whether A6 TL or A$Z , respectively. 

For an arbitrary matrix. with determinant 

A, define 

(II-l) [T]p 
(1 j A* 0) | ACZ 

Now with these preliminaries, we can state the first 

conjecture of this paper. 

Conjecture 1 (Imprimitive matrix): Let 

Then for f€(r2»w) with Fourier coefficients a (T), 
™ w 

we have 

(XX-2) aw(T) d-\(t|]p) 

where d is a divisor of T. 

Remarks 

(1) First of all, we should like to emphasize 

that the conjecture as stated is an expression for all 
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forms fe(r2,w) where w is arbitrary. In particular, 

if application of (II-2) is made to the coefficients 

of Table I (Part Two - Chapter V), we find the conjecture 

holds. This table lists Fourier coefficients 

for the two Eisenstein series 0^ and 0^ and the two 

cusp forms X^Q and X-j^. 

(2) In the case that ar (T) is the Fourier w 

coefficient for an Eisenstein series in (r2,w) and 

T = (Q g)€!r, (II-2) yields the elementary divisor 

solution as it should (Chapter I-Section D). 

(3) No information on the values of the Fourier 

coefficients of primitive matrices is gotten from (II-2). 

Consequently, to evaluate (II-2) one must know the 

value of the coefficients on the primitive representatives 

(1,4,0) and 

(4) As pointed out in the introduction to this 

paper, both Siegel [10] and Maass [6] have obtained 

equations for the Fourier coefficients of Eisenstein 

series associated with imprimitive matrices (Appendix 

I- equations (AI-1) and (AI-3), respectively). A 

glance at these equations gives the obvious conclusion 

that they are more complex than (II-2). Moreover, 

they hold only for Eisenstein series. 
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(5) There is a close similarity in form 

between equation (II-2) and equation (AI-3) of Appendix 

I. This latter equation, which was derived from the 

Hecke operator theory [6], does not appear to be a 

consequence of (II-2) nor vice versa. Nevertheless, 

this strongly suggests that a proof of this conjecture 

might lie within the Hecke operator theory of Maass 

or an extention of this theory. 

Then if Conjecture I is true, Maass’ Conjecture 

(Appendix I) is true. That is, a
wCO is a function 

only of the parameters e(T) and D(T); so that we 

can write aw(T) = aw(e,D). Moreover, the conjecture 

yields the following explicit expression for the function 

aw(*»*) in terms of aw(*,*) evaluated on the primitive 

matrices: 

(6) Let T = t£, and define 

e = e(T) - g.c.d(t1,t2,t3) and D = D(T) = |2T|/e2. 
1* 2* 3 

2 

This is a straight forward application of the definitions 

of e and D and the fact that coefficients of primitive 

matrices with the same determinant are equal. 
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B. A Witt Type Conjecture for the 0^ c oefficients; 

In this section we will state a conjectured 

identity between the Fourier coefficients of the 

Eisenstein series 0^ of degree 2 and 0^ of degree 

1. It will be seen that the conjecture bears a marked 

geometric similarity to Witt's identity (1-15). More¬ 

over, in the next section we will show that this conjecture 

yields a recursive equation for the 0^-coefficients 

(of degree 2) associated with primitive matrices T^jr. 

This is just what is needed to completely determine the 

0^-coefficients in the degree 2 case by Conjecture I. 

Without confusion, we will let a (.) be the 
w 

Fourier coefficient for 0^ of degrees one and two. 

In the former case, the argument of a (*) will be 
w 

an integer, and in the latter, an element of u. 

Also for fixed integers a and b, we define 

T , = {T = (a,c,b)€3T:a(T) = a and b = b}. 
OL j D 

Conjecture II (0^-identity); If a and b 

are fixed integers satisfying a^|b|2:0, then 

v 



(II— 3 ) a^(a-b)a^(a+b) 

(II-4) 
120 s a4 

(II-5) a4(a+b)[a4(a+b)-a4(a^)] 
J 

f if (a-b)=l,3 (mod 4) if (a-b)=2 (mod 4) 

if (a-b)nO (mod 4), b odd 
V. 

where a^(.) are the Fourier coefficients for 0^. 

Remarks: 

(1) Unlike the first conjecture, this one is 

a statement about the 0^-Fourier coefficients only. 

For the coefficients of Tables I and II (Part Two- 

Chapter V), the conjecture is found to hold. 

(2) No immediate generalizations of these 

equations to forms of other weights (if they exist) 

are known at this time. Perhaps, since 0^ is 

distinguished as the generator of the graded ring of 

degree 2 modular forms [7] (and Part Two of this paper), 

we cannot expect such a simple identity for other forms. 
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(3) Equations (II-3) and (II-4) hold for b 

both even and odd, whereas (II-5) holds only for b 

odd. The equation for (a-b)HO(mod 4) and b even 

has eluded us and consequently none is known in this 

case. Nevertheless, as we shall see in the next 

section, equation (II-3) alone is sufficient to 

generate all the 0^-coefficients for primitive matrices, 

and thus all 0^-coefficients. 

(4) As mentioned at the head of this section, 

the conjecture bears a geometric similarity to Witt's 

identity. In order to see this, we write Witt's identity 

(1-15) for 0^-coefficients as 

a4^a)a4(c) = ?   a/.(a,c,b), for fixed a,c. 
* | b | zljac 4 

We note that fixing a and c in this equation amounts 

to fixing the trace plane Pa with a = a+c. In this 

context the sum on the right is a sum of the coefficients 

associated with all lattice points on a line segment 

parallel to the y^ axis in the trace plane coordinates 

y^ = c-a and y2 = b of figure 2. 

In contrast to this, equations (11-3,4,5) are 



statements about the sum of coefficients associated 

with all the lattice points on a line segment, T . , 
a, D 

parallel to the axis. Hence the geometric 

similarity between Witt's identity and Conjecture II 

lies in the geometry of the lattice points taken in 

their respective sums. In addition, both of these sums 

are equal to a sum of products of classical 0^- 

coefficients. 

Since the equations of the conjecture do not 

appear to be direct consequences of Witt's Theorem, the 

comparison statements above are intended only to show 

that Conjecture II has a certain "naturality" within 

the framework of known results. 

C. A Theorem for the primitive Matrix Coefficients 

of 0 4: 

If the first conjecture were true (II-2), then 

all that remains to completely determine the Fourier 

coefficients of a modular form is to determine the 

coefficients for the primitive representatives (1,A,0) 

and (1,^—., 1). In the case that the modular form is 

the Eisenstein series of weight 4, 0^, we will show 

that some rather simple recursive equations do exist 

for these primitive 0^-coefficients if Conjecture II 
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is valid. 

1. Toward this end, we prove a general lemma. 

Lemma 2: Let a
w(') Fourier coefficients 

for fe(r2,w). If a and b are fixed integers 

satisfying a^|b|s:0 with bnm(mod 2) and a-b=n(mod 4), 

then there exist® integers a^O and cs- (2m^n) such that 

2 

3(4c+(2m+n)) ^2 w 
(a,e-i+ A ,a-2i) 

Tea: a,b 
E aM(g,c-i+^2?+I^^~2,a-2i-l) 

g(4c+(2m+n))-l ^ i2+i 
w 4 

4 

m+n = 0(mod 2 ) 
for A 

m+n = 1 (mod 2 ) 

Proof: Let a and b be fixed integers satisfying 

the hypothesis of the lemma. For every T = (a,c,b)£;i , 
U j u 

we have a(T) = a+c = a; so that a = a and 

c _ ajHjc-a)^ Using this, we get 

E a
w(|-i,§+i,b) 

Teir £ a,,(T) - 

2 K2 0 
2L^- * i2 

a, b 
w 

,i2
+i 

aw(a^i-i,^i,b) 



for 
(c-a) = 0(mod 2) 

(c-a) = l(mod 2). 

Now since the unimodular transformation 

U ^ QJ takes matrices (a,c,b) to matrices 

(a+c-b, a, 2a-b), and since the Fourier coefficients 

of modular forms are invariant under unimodular trans¬ 

formations, we rewrite the above equation as 

(XI-6) r, E a„(a-b,|-i,(a-b)-2i) 
2 . 2 , w Z 

a -b ^ A l 
21 

a,b 
aw(a-b,^^- -i, (a-b)-2i-l) 

■+i 

j (c-a) H 0 (mod 2) 

for \ 
(c-a) H 1 (mod 2). 

Next we note that for a-bnn(mod 4) and b=m(mod 

we have c-a=(n+m) (mod 2) and a+b=(2m+n) (mod 4). This 

latter congruence implies that there exists an integer 

S = a+b-^2m+n)^ Coupling this with the fact that 

as|b|:>0 implies cs-(—m^n). Finally, we introduce the 

other parameter 2 of the lemma by defining a=a-b^0. 

This completes the proof, since substitution of the 
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parameters 3 and c in equation (II-6) yields the 

desired result. 

QED 

With this lemma as preparation, we prove the 

main result of this section. We recall that a,(T) = a (m) w w 

is in agreement with the convention that a
w(') be used 

for both degree 1 and 2 coefficients. 

arbitrary integer. Then if Conjecture II is true, we 

have 

if Note that this 

Theorem JL (Primitive Matrix): Let c be an 

(II-7) a4(l,A,0) = a4(4A+l) - S a4(l,A-i
2-i,0) 

• 2 .. ,. i^+i^A 
0<i 

where A = csO, and 

AQ •• 1 
where A = — and c^l. 

Proof: Let Q = {(a,b) :a ,b<=z,a>bs:0 and a-b *= 1}. 
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Now as the tuplets (a,b) range over Q, Lemma 2 

and equation (II-3) of Conjecture II imply 

(II-9) 

a^(l)a^(4c4-2m+l) = 120 

r 
^m+l^i2 

2m+2 a4(l,c-i-h^,l-2i) 

\ 

E a4(l,c-i-ff,-2i) 

c-&7>i2+i 

for 
m H 1 (mod 2) 

m = 0(mod 2) 

2nrt*l 
holds for every integer c s - (—4~-■). 

From (1-12) we have a4(l) = 240, and thus 

from (II-9) we obtain for m = 0 and for every c^O, 

2a,(4c+l) = \ a.(l,c-i,-2i), 
* cai^+i 4 

and for m = -1 and for every c^l, 

2a4(4c-l) = E a4(l,c-i,l-2i). 

oi2 

Next consider the unimodular transformation 
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(a,c,b) into 

In particular, for the matrix Sn with n = i, we 

have 

s“' (l'-l)whi which takes a matrix A = 

A[Sn] = (a,n a+nb+c,-2na-b). 

(l»c-i,-2i) [Si] = (l,c-i
2-i,0) 

and 

(l,c-i,l-2i) [Si3 - (l,c-i
2,l). 

Since Fourier coefficients of modular forms 

are invariant under unimodular transformations, we 

have under the action of S^: 

2a4(4c+l) = E a4(l,c-i
2-i,0) 

2 ^ c*iz+i 

for every c^O, and 

2a4(4c-l) I a4(l,c-i2,l) 

c>i2 

for every cal. 

The equations of the theorem follow directly 

2 2 
from these by noting the symmetry of i and i +i 
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about 0 and % respectively, and by defining A 

appropriately. 

QED 

Remarks i 

(1) It is evident that equations (II-7) and 

(II-8) are recursive equations. Moreover, they are 

evaluated solely from the classical theory of modular 

forms as we shall show below. 

(2) Since 0^ generates the graded ring of 

modular forms of degree two [7] it may be too much to 

hope for simple recursion relationships for the other 

forms. 

(3) Comparing the equations of the theorem with 

Maass’ explicit formula for the primitive matrices 

(AI-2) in Appendix I, we see that the former are indeed 

much simpler to apply. 

(4) Using Conjecture I with w = 4 and the 

equation of the theorem, we can determine all the 0^- 

coefficients. 

(5) Should one use the equations in (4) to 

generate some 0^-coefficients, several checks on the 

data can be made from known identities. Some are used 

in Part II of this paper to verify Table I and are given 
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in Chapter IV, section D. 

(6) Table II, Chapter V gives a list of 04~ 

coefficients generated by the equations in (4); see p.82. 

2. Examples of applications of the theorem 

(a) We will show that the equations of Theorem 

1 can be written such that the degree 2, 0^-coefficients 

of primitive matrices are functions only of the degree 

1, 0^-coefficients. We give the results in the following 

lemmas: 

Lemma _3: Let A be an arbitrary integer such 

that A^O. Then if Conjecture II is true, we have 

(11-10) a4(l,A,0) = L a(2i)a4(4A-8i+l) 

0^2i^A 

where 

a(2i) - - E a(2i-j2-j) 

j2+js2i 

and 

a(0) = 1 

Proof: The proof will follow by induction on 

A. Clearly the conclusion is true for A = 0. Hence 

inductively we will assume the conclusion holds for all 



44 

ns:A and prove it holds for A+l. 

From equation (II-7), we have 

a4(l,A+l,0) = 
a
4(4A+5) - S a4(l,A+l-i

2-i,0) # 

i2+i<:A+l 
0<i 

Further, it follows from the inductive hypothesis and 

(II-10) that 

a4(l,A+l,0) = a4(4A+5) - Z E <x(2j) 

i2+i^A+l 0^2jiA+l-i2-i 
0<i 

i2+i. ' a4 (4 A- 8'(j +=2^=-)+5 ) 

and, by letting k = j-l—^ 
i2+i 

a
4(l,A+l, 0) = a4(4A+5) - E E a(2k-i -i) 

i^+i^A+1 0s2k<:A+l 
i>0 

• a4(4A-8k+5). 

Then, by interchanging the summations, we obtain the 

desired result for A+l. 
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a
4(l,A+l,0) = a^(4A+5) + S C- 

0^2k^A+l 
E a(2k-i2-i)] 

i2+i^2k 

and 

I 

a^(4A-8k+5). 

QED 

Lemma 4: Let A be an arbitrary positive real 

number satisfying 4A=3 (mod 4) and define m = . 

Then if Conjecture II is true, we have 

(II-11) a4(l,m,l)= E p(i)a,(4m-4i+3) 
4 i=l 4 

where 

e(i) - -2 E p(i-j2) 

j 2<i 
j>0 

and 

e<D - 2 

Proof; The proof will follow by induction on 

m. First we note that as A ranges over the positive 

real numbers satisfying 4A=3(mod 4), m ranges over 
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all the integers ^1; and the induction is valid\ 

By [2], a4(l,l,l) = 27-3-5-7 and by (1-12), 

a, (3) *= 2®*3*5*7, hence (11-11) is true for m «* 1, 

Now assume the conclusion holds for all nan, we will 

prove it holds for m+1. 

From equation (II-8), 

a4(l,m+l,l) = 2Ca4(4m-l)- E a4(l,m+l-i
2,1)] # 

i2<m+l 
i>0 

From the inductive hypothesis and (11-11), 

nH-l-r 
a4(l,m+l,l) - 2[a4(4m-l)- E Z p(j )a4(4m-4(k +j )+7)] 

i"<m+l j-1 

i>0 

2 
and, by letting k = i ,+j. 

m+1 
a4(l,m+l,l) = 2[a4(4m-l)- E Z e(k-i )a4(4m-4k+7)] 

i2<m+l k=i2+l 
i>0 

Also since i>0 and 0<iz+lsksm+l, we have 2<jk<:m+l 

2 2 
and i ^k-1 or i <k. Hence we can interchange the 

sums in the last equation and get 
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m+1 9 

a4(l,m+l,l) = 2[a4(4m~l)+ y [- 2 B (k-iz)]a4(4m-4k+7) ] 
k=2 i2<k 

i>0 

or equivalently, 

.2, m+1 
a4.(l>m+lj 1) = E [-2 S B (k-) ]a/ (4m-4k+7) H k=1 9 + R 1 iZ<k 

i>0 

where 8 (1) = 2 

QED 

For completeness, we tabulate a few of the a(‘) and 

g(*) coefficients. 

i a(2i) B(l) 
• 1 a (21) B (i) 

0 1 — 7 -7 80 

1 -1 2 8 10 -128 

2 1 - 4 9 -13 200 

3 -2 8 10 16 -308 

4 3 ~16 11 -21 464 

5 -4 28 12 28 -688 

6 5 -48 13 -35 1008 
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(b) Another consequence of Conjecture II is 

an identity for degree 1 0^-coefficients and an identity 
O 

for the elementary divisor function gQ(in) = J] d . 
J dim 

These come about by coupling Witt’s identity (1-15) 

on the first column of the trace planes with the 

equations of Lemmas 3 and 4. (Recall that a column 

on a trace plane is the set of all lattice points 

T = (ajCjb)^ such that (a+c) = a and 0^b^2A/ac; 

we denote the first column as the column with a=l). 

First we reformulate Witt's identity on the 

first column in the following lemma. 

Lemma 5_ (Witt's identity - 1st column): Let 

f€(r£,w) with Fourier coefficients aw(T). Then the 

Fourier coefficients for the first column of the trace 

plane Pm_^ are related by 

aw(l)aw(m) = Z aw(l,m-i2,0) 

iZ£m 

+2 E a (l,m-i2-i,1) 
o w , 

iz+i<m 
Osi 

m+1 
Proof: By definition, the first column of P 
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consist of all matrices T = (l,m,b)e;r where 

|b|s:2vfn. Let T, = (l,m,b),be2 and let S be the 
1 n 

unimodular matrix, Sn = (g ^), The b’s decompose 

into two groups, b=0 (mod 2) and b=l (mod 2). Taking 

each case separately, we get 

Case 1: Let b=0 (mod 2). i.e., b = 2w, w^Z 

and choose n = —b/2. Then we can write T^ as 

Tb[S fc ] = (l,(-|)2-|2-hn,-b+b) = (l,m-|fo). 
~Z 

By the assumption on b, we get 
S'. 

Tb[S-^-] = (ljW-^p ,0) = (l,W-w^,0) 

and this must be true for all Ibl^.yE, implying 

4w ^4m or for all w such that w ^m. 

Case 2: Let b=l (mod 2), i.e., b = 2w+l, w£2Z 

For the unimodular matrix S above with n = 
n L 7 

we have 

VSl-b3 = (1> (^^C^b-hn, (l-b)+b) 
~r 

- (l>m+l^ ,1) 

By the assumption on b, we get 
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Tbtsl-b} “ <l,m 1~('4W+i:>2.l) 
~7~ 

—2 — 
  /i   l-4w -4w+l i\ 
= (l,m 7T ,1) 

(l,m-w2-w,1) 

I 

and this must be true for all |b|£2^n implying 

4w +4w+ls4m or for all w such that w 4w<m-%<m. 

The invariance of the Fourier coefficients 

under unimodular transformation (1-6) gives the 

desired result. 
QED 

Now the coupling Lemma 5 and Lemmas 3 and 4, 

we get the following identity for the classical 0^- 

coefficients. Here, we recall that a^(m)=240cTg(m) 

by (1-12). 

Lemma 6: Let a^(.) be the classical 0^- 

coefficients. Then if Conjecture II is true, we have 

2m 
240 aA(m) = E Y(k)aA(4m-2k+l) 

4 k=0 4 

where 

YOO 

E a(k-i ; 

i2^k 
keO (mod 2) 

E 2p(k-i2-i+l), ksl (mod 2) 

i2+i*sk 
Osi 
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Here a(0 and 8(0 are the functions defined in 
■ -m 

Lemmas 3 and 4, respectively. 

Proof: By Lemma 5, we get 

(11-12) 

240 a4(m) = E a4(l,m-i2,0)+2 E a4(l,m-i2-i,i) 

i2^m i2+i<m 
Osi 

First term: Denoting the first term on the 

right side of (11-12) by and substituting the 

results of Lemma 3, we get 

Fj - E S a(2j)a4(4m-4[i
2-2j]+l) 

i2sm 0fi2jsm-i2 

where a(.) is defined by the Lemma 3. 

Letting k = i2+2j implies 2j = k-i2, so that 

F1 = E S a(k-i2)a.(4m-4k+l)* 
1
 9 9 H 

i^^m i^ksm 

Interchanging the summations yields 

Fi “ E E a(k-i2)aA(4m-4k+l) 
k=0 .2 . 4 0 
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Second term: Letting F2 denote the second 

term in (11-12), we get by substitution of the results 

of Lemma 4; 

F9 = 2 E E a(j)a4(4m-4(i2+i+j-l)-l) 
i2+i<m l^j^m-i2-i 

Ctei 

where fi(*) is defined by Lemma 4. 

Letting k = i2+i+j-l implies j = k2-i2-i+l, 

so that 

F2 = 2 E E p(k-i2-i+l)a4(4m-4k-l) , 
i2+i<m i2+isk^m-l 
Osi 

Interchanging summations implies 

F9 = 2 E E a(k-i2-i+l)a4(4m-4k-l) 
k“° iW 

is:0 

Combining the first and second terms, we get 
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240 a^(m) F1 +F2 

m _.2 
S [ S a(k-i^)]a4(4m-4k+l) 

k=0 .2 , l sk 

m-1 ..2 , 
+ S [2 z e(k-i -i+l)]a, (4m-4k-l) 

k=° i2+i£k 
isO 

Finally, noting that 

4m-4k-l = 4m-2(2k+l)+l 

and 

4m-4k+l = 4m-2(2k)+l 

we get the results of the lemma. 

QED 

This lemma yields immediately the following 

identity for the elementary divisor functions r 

(11-13) 240 o3(m) 
2m 
E Y(k)ao(4m-2k+l) 
k=0 J 

where y(*) i-s the function defined by Lemma 6. Here 
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again, we point out that (11-13) holds if Conjecture 

II is true. Investigations into Dickson's classic 

reference [ll has not produced evidence that this 
✓ 

identity (if it is true) is known. We tabulate a few 

of the Y(.) coefficients. 

i YU) i v(i) 

0 1 7 -40 

1 4 8 3 

2 2 9 72 

3 -8 10 2 

4 -1 11 -128 

5 20 12' -4 

6 -2 13 220 



PART TWO 

TABLE OF FOURIER COEFFICIENTS 
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III. The Differential Operators add Recursive Equations 

In the first part of this paper, we have stated 

two conjectures concerning the Fourier coefficients of 

degree two modular forms. We are aware that new con¬ 

jectures are often met with skepticism when introduced 

without a sufficient base of examples to render them 

credible. In order to try to mitigate this, we have 

generated a large set of Fourier coefficients for 

selected modular forms with which to substantiate the 

conjectures. This, admittedly, only adds credence 

to the conjectures and can afford no insights for proof. 

It is the purpose of this chapter and the next two to 

present these coefficients and the method used in 

generating them. 

Igusa proved in his fundamental structure 

theorem [2] that the graded ring of modular forms of even 
J 

weight is generated by the Eisenstein series of weights 

4, 6, 10, and 12. Following Igusa, the Eisenstein 

series of weight 10 and 12 can be replaced by the cusp 

forms, # / 

(III-l) Xl0 - -43867 • 2"12* 3-2* TX- 53_1 

and 
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(III-2) 

Xl2 = 131*593 * 2"13* 3"7-5"3-7_2-337_1(32720|+2.530g 

-6910^2)* 

1 

Although the algebraically independent modular 

forms 0^, 0g, xxo* an<* X12 generate the graded ring, 

H. Resnikoff [7] has shown that 04 and its image 

under certain non-linear differential operators 

generate the same ring. Therefore, the forms 

04»^6,XlO’Xl2 are not algebraically dependent, but 

are differentiably dependent. That is, in the sense 

that there is a non-trivial polynomial with complex 

coefficients in the functions $4* 06*^10*^12* an<* 

their derivatives which vanishes. Moreover, the 

conclusion states that complete information about the 

graded ring of forms lies in 04 and hence in its 

Fourier coefficients. 

Our main concern in this chapter shall be to 

show that from this same differential operator theory 

recursive equations for the 04,06,Xl(), and Xl2 

coefficients can be derived. Then in Chapter IV, we 

will develope an effective algorithm for evaluating 

these equations. The resulting table of coefficients 
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is given in Chapter V. 

1. The differential operators are defined 

follows for f€(r,w): 

Dnf 

3 
2n+Y-n 

w 
n-7 

where 

d Z ~ 

2 

Tz 2 
- k 

a 2 

9zi2Sz12 

Furthermore, we have 

Proposition 5: (1) Dn: (r,w)-*(r,n(2w+2)) 

(2) Dn f is a cusp form. 

[7] shows that Dnf can be expressed in the form 

(IXI-3) Dnf = 
2n 
S Ak(w,n)f 

k=l 

2n-k. n-rk 
dZr 

where 

2n 
Ak(w,n) = n 

j=0 
J^k 

1 “n 

( w -j) 
k-j 

Applying the differential operators to the 

as 

generators of the graded ring of modular forms, we 
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can state the results of [7]. 

Proposition 6_. 

(i) D1^ = 26-32-5-7TT
2
XIO 

(ii) D1^ = 26.32-7-llm
204xlo 

(iii) D1^ - 32/24.52TT
2
XioXi2 

(iv) D X^Q =2*3 *5’04X
4
Q-3 '2 '5^XJQX^2^ 

It is easily seen that 

e(TZ) = (2rri)2n|T|ne (TZ) . 

This and equation (1-9) lead to the following: 

Lemma 7_: For f€ (r,w) with Fourier coefficients 

a
4(*)> 

(i) 3zf(T)(Z) “ (2TT.l)2n|T|nf(T)(Z) 

(ii) 3^fk(Z) = (2TTi)2n E nawCi)|D|
nCDf(D)(Z) 

k 
D-ST* 

1 

(iii) f'(Z)a"fk(Z)»(2ni)2n s n+ka (T.) 
(F)aO 1 w 1 

£+k 

0 

F® E Tj[ 

>+k ^ 

-VOP)®) 
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Proof: 

(ii) 3 

(iii) 

(i) a"fT(z) = a?CT |(T)
C<T1Z>] 

= z. an^(TiZ) 
T1(=(T) 

- E (2TTi)
2n|T1 |ne(T,Z) 

TX6(T) 
1 1 

- ( 2TT i ) 2n 1T j nf (T) (Z) . 

zf(z>k ” az^,D? 0 n
aw('5.)cDf(D)(z>] (D)^0 

0,^0 VWwZo*™' 

(2nl)2n(D),0 i^VlD|V(D)«) 

f'(Z)3"f
k(Z) = [ J^V^jCZ)] 

*[(2ni)2n Z Ja (T.)|G|nC f, ,(Z)3 
G^O 1 w l « \G) 

(2Tii)2n E IT a' (T.) T E"T. |n.CFf ,v, (Z) 
F^O 1 w 1 M J F (F)v 

-f.+k ;.+k 

-t,+k 
F=E T. 

QED 



Hence equation (III-3) with this lemma becomes 

Dnf - 
2n n t 
S Ak(w,n)[(27ti)Zn E( n 

k=l K FsO i=l 
J, 

(III-4) 

- s C(2nl)2n S (AtCw.n)-! “ T.|) 
FsO k-1 K j=m J : 

2n 
F=E T 

2n 
fn 

where Ai,(w,m) = n ( —“ 2n 
k j=0 k-j 

j+k 
For the case n=l, we have 

Lemma 8: 

D1f - A1(w,l)faf + A2(w,i)af
2 

= S C(2rri)2(A1(w,l)|T2|+A2(w, 
(D)*0 1 11 

D=T!+T2 

E | )CFf(F)(Z)] 

2n 

£1
aJ5|i)3cFf (F)^Z) 

and m = 2n-k+l. 

lDl)aw<Tl>a*<V3 

•V(D)<Z) 
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where Mw,l) * \) and A2(w,l) = <±H). 
8wz 8wz 

2. Resnikoff [8] pointed out that by substitution 

of the Fourier expansion of 04>0g>Xio> an<* ^12 ^nto 

the differential equations of Proposition 6 one could 

produce non-linear recursion formulae for the coefficients 

of these modular forms. Using equations (III-4) and 

lemma 8 we record these recursion relationships in the 

following propositions. 

Proposition 7: Let a^(T) and cxo^) be 

the Fourier coefficients of 0^ and ^XQ respectively. 

Then for every TsO, 

2U-32-5-7C10(T) - S f7|Tj-30|T1|}.4CT1)«4(T2). 
A-Ai A2 

(III-5) T^O 

Proof: Using equation (i) of proposition with y^g 

expressed in its Fourier expansion and lemma 8 to 

express D^0^ in its series expansions, we have by 

uniqueness of Fourier expansions the result. 

QED 

Proposition 8_: Let a^(T) and c^g(T) be 

the Fourier coefficients of 0^ and ^g respectively. 
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Then for every T^O , 

E f22-36-41-61|T1 |2-2'38* 7-61 |T,+T0 I 2 
T
=
T
I+T2+T3+T4 

1 11 
Tt>0 

+22 37* 7*41 |T1+T2+T31
2-33- 7-41-61 |Tj 

+T2+T3+T4|2+23» 32 7*11* 132' 21|T1| |T3| 

(III-6) -22* 3-7'll* 13'19^311^1 |T3+T4| 

-23' 3 *7 'll'13-19*31 iTj+T^ |T3j 

+2*7-11* 192- 311T-|+T21 |T3+T41} 

C10^T1^C10^T2^C10^T3^C10^T4^ 

*T«T +T1+T2+T jf' 3* 5-59,a^(To)cio(Ti)cio(T2)cio<T3>=io(:T4 

V°.T!>0 

for i>0 

Proof: Using equation (III-2) to expand D y^Q in 

its Fourier series and equation (1-9) to express the 

4 2 products of 04Xioan<* ^XlOv12^ *-n ser*-es> equation 

iv of Proposition 6 yields the conclusion of the 

theorem. 

QED 
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Proposition 9_: Let a^(T) and c^CO be 

the Fourier coefficients of 0g and respectively 

and let a^(T) and cio(T) be defined as above. Then 

for every TsO, 

(1II'7) T-/+T CflllTl^l^nagCT^a^^) 

TjaO 

~29* 34-7-ll a4(T1)c1Q(T2)]-0 

and (III-8) 

j = CC19|T|-78|I2|}CIO(TI)CIO(T2) 

Ti>0 -,2 

I 
C
10^

T
1^
C
12^

T
2^

=0 

We remark that while the relationships of the 

propositions are well defined, some further investi¬ 

gation will be necessary to show that they recursively 

determine the 04>0(j>Xio and X12 coefficients. This 

is the purpose of the next chapter. 
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IV. Reduction of the Problem and the Algorithm for 

Computation 

The purpose of this chapter is to demonstrate 

that an effective algorithm exists for calculating the 

coefficients for 04»0g>Xio an(* X12 the relation 
t 

ships of the last chapter. 

A. Preliminary Remarks 

(1) All the Fourier coefficients aw(T) of 

the Eisenstein series, 0 , for w = 4,6,8,10 and w 
which satisfy a(T)^2 have been calculated by Igusa 

[2]. For reference, we tabulate his results here. 

w Vo V 
4 25* 33* 5*7 

6 24
-33' 5*7'11 

8 26* 32* 5*61 

10 24* 34
 5-7'11*19'277' 43867"1 

w *«<£ b 

4 27* 3*5'•7 

6 26* 32
 7'11 

8 28* 3* 5* 7 

10 26' 3*7MMl"1 
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(2) The action of the Siegel Operator (Chapter 

I-D) gives us the formula for aw(T) when T=(Q Q) . 

Rewriting the result here 

(IV-2) aw(T) = aw(m) = a^Da^On). 

aw(l)=240, -504, -264, 54^°° for w = 4,6,10 and 12. 

CT^C*) is the elementary divisor function. 

(3) Using the known coefficients 3
W(Q 

for 0^,0g, and 0^Q given by (IV-1), and expanding 

X^Q in its Fourier series, we can determine from 

(III-l) that CIQ(Q I) ** %• Witt's identity (1-15) 
1 h then gives us c10(^ j)= Thus all the 

Fourier coefficients are known for CT(T)^2. Further, 

since xio is a cusp form, c1Q(T) ■ 0 for all 

T^ir such that 1T| =0 (Definition 5). 

(4) From Chapter I-F, we know that we need only 

evaluate the Fourier coefficients of modular forms 

for lattice points in the reduced triangles of each 

trace plane (fig. 2). That is, on the set 

R = {T=(a,c,b) = TPIT and O^b^a^c}. 

Moreover, Proposition 3 gives us an algorithm for reducing 
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any arbitrary matrix T^S’ to an element of R. 

B. Decompositions of Matrices 

Even though the remarks of the previous 

section tell us that we need only evaluate the co¬ 

efficients for the lattice points of the triangles 

of a given trace plane, the question still remains 

as to which trace plane and what lattice points 

within the reduced triangle to consider first. To 

answer this question, we must look at the recursive, 

equations to be solved. Namely the equations of 

Propositions 7,8, and 9. 

One first of all notices that the recursive 

equations consist of terms of the Fourier coefficients 

of matrices associated with a decomposition of a 

positive definite matrix T. If we are ever going 

to hope to solve for a particular coefficient of a 

given matrix A63", this matrix T must contain A 

as one of the terms in a decomposition of T. We 

also see that the decompositions of T which we 

will require have the general form, 

T 
m 
E T 

i=0 
i + 

n 
E S 

j-1 
j 
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where T£>0(0^i^m) and Sj.>0 (O^jsn). Therefore, 

if we define the augumented matrix of A to be 

T = J) + n (0 0), 

we have most certainly forced the coefficient of A 

to appear at least once in the evaluation of the 

equation for T. 

We prove the following lemma. 

Lemma IQ; Let T be a matrix of the form 

(IV-3) T - A+m(^ \) + n (g g) 

where A = ('ax»a2*a3^ *-s an e^ement of 

S’. Then for any decomposition of T of the form 

m n 
(IV-4) T = E T. + E S. 

i=0 j=0 3 

where 

Ti^Ctfp ti2» ^"iS^5,0 (O^ism) 

Sj = (Sj 1 ’ Sj 2 ’ Sj 3 ^S° 
and (0<:j^n) , 
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we have 

(i) a(A)>a(Sj) for every Os;j<;n , 

(ii) a (A) saCT^) for every 0<;i<;m , 

and (iii) if CT(A)=CT(TC) for some O^i^m, 

then t?2^a3» 

Proof: Let T be an arbitrary positive definite 

matrix defined by (IV-3). We recall that positive 

definite matrices must have strictly positive 

diagonal entries, and semi-positive definite matrices 

must have either positive or zero entries on the 

diagonal. Then for any decomposition of T defined 

by equation (IV-4) , we must have 

m n 
a.+m = Et.. + E s.., j=l,2 
J i=01J i=0 

where a.^1, t^.sl, and s ..2:0. 
J J J 

A 

(i) Suppose that there exists an Osisn such that 

sJ.^a.^1, j=l,2. Then for a decomposition we must 
J 1 

have 

a. +msm+l+ st. >m+l+a. 
J J 

which is absurd. Hence we get 
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Sij<aj ^°r ever^ Osi^n, j=l,2, 
and therefore 

a(S^) ~ ®il"^i2^1^2 = 

for every O^i^n. 
A 

(ii) Suppose that there exists an Osism such that 

tC^a.^1 j=l,2. Then assuming the decomposition to 

be valid, we get 

aj+m^ttj4m>aj+m 

which is impossible. Therefore we must have 

t £a^ for every O^i^m, j=l,2. 
J 

From this we have 

CT(T^) = tii+ti2^af+a2 = c(A) 

for every O^i^m. 

(iii) Note that by argument similar to the above 

CT(A) = a(T^) can hold only for one matrix T^O^i^m 
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in which case, ^ii=ai an<^ ^i2=a2* assumi-n8 
A A 

a(A)=a(T£), Osi^m , we get tjj = l f°r avary Osi(^i)^m 

and s..=0 for every Osi^n, j=l,2. Hence for 

T^>0(0si(sj=i)^m), we must have |T| = 1 ui3 

ti3 1 

>0 implying 

t^ <2 ci3 
have 

or that I tjL3! ^1 • For S^O^isn), we must 

2 
s:0 implying -s^^O such that s

i3=0 

for every 0^i;sn. In particular, equals the null 

matrix for every O^i^n. Now assume that (iii) is 

not true, then t^3<a3* For the decomposition to be 

valid (using the above conclusions),we must have 

ag+m=t^.j+* • •*ft£3+.. .+tm3^t£3-hn<a3+m 

a contradiction. Hence (iii). 

QED 

This lemma shows that by introducing a given 

matrix A=(apa2»a^)cO’ into the recursion equations 

by means of (IV-3), we can obtain an equation in the 
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Fourier coefficient associated with A. Further, if 

the coefficients for all lattice points T = (tp C2> 

with cx(T) = a (A) and t
3>a3 and for all lattice 

points on previous trace planes are known, the resulting 

equation can be solved for the A-coefficient. This 

follows directly from the lemma since the matrices of 

the decomposition of T,T^ and of equation (IV-4), 

all occur on previous trace planes or on the same trace 

plane as A with t^a^. 

In summary, the answer to the question at the 

head of this section is that we may begin on any 

trace plane with any lattice point A = (a^,a2»a^) 

where the coefficients associated with lattice points 

T = (tpt2,tg) on previous trace planes and on the 

same trace plane with t^a^ are known. Further, we 

know that lattice points outside the reduced triangle 

are equivalent to lattice points on previous trace 

planes (Corollary 1). Hence with respect to figure 

2, within each trace plane Pa we are at liberty to 

begin with any lattice point A = (apa2>a3) with 

(a^^^) = a and Once beginning on a 

given column (defined by the set of all lattice points 

T such that (a^H^) = a and O^a^^TapfJ, one must 
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take the lattice points of that column in the reduced 

triangle in descending order of a^. 

C, The Computation 

Using the above information, we are now in a 

position to see that with the possible exception of 

finitely many matrices Tea", the Fourier coefficients 

of 04>06>XiO’ anc* X12 are comPutable from the 

recursive equations. 

The following procedure was used in evaluating 

the coefficients a^(T) of 0^ and °f Xio 

on a Control Data Corporation 3800 Computer. Time 

requirements and costs necessary to complete this task 

are given in Appendix II. 

1. For initialization of the recursion, we 

assumed the values of a^(T) and for a(T)ts2 

given by (IV-1) and by remark of section A, respectively. 

2. We set all values of = 0 for 

|T{ = 0 by remark 3 of section A, and determined all 

values of a^(T) for T = Q) by equation (IV-2). 

3. Using the method summarized at the end 

of section B, a matrix T^<=R was selected on the 

trace plane P^. Then the matrix T = T^+3(^ was 

formed to be decomposed as in (IV-4). 
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4. An (unsophisticated) method of determining 

all decompositions of T and evaluating equation (III-6) 

for a^(T^) was mechanized. 

5. Letting T = T^ in equation (III-5) and 

determining the needed decompositions of T as in 4, 

we evaluated (III-5) for C^Q(T^). 

6. We proceeded calculating the coefficients 

down columns of the reduced triangles in trace plane 

3 with steps 3,4 and 5. At each determination of 

the coefficient a^(T^), we used step 5 to determine 

C10^T1^ ^or t*ie same Ti* 

7. Observing the natural ordering of the trace 

planes, we repeated step 6 to the other trace planes. 

A similar mechanization was made for the evaluation 

of the 0g and coefficients using equations 

(III-7) and (III-8), respectively. 

D. Checks on the Computations 

The following checks we used to verify the 

coefficients obtained from the computer program which 

used the above procedure. The primary checks consist 

of programming verification and Witt's identity; while 

the secondary checks make use of the results of 

Maass [6]. 
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Primary Checks: 

1. Using the recursive relationships, some 

initial unknown coefficients were calculated independent 

of the computer program. A comparison of these 

coefficients to the computer calculated coefficients 

was made for program verification. 

2. Since the recursive equations do not 

depend on the invariance of the coefficients under 

unimodular transformations, a few coefficients for 

lattice points on trace plane three and four not in 

R were calculated. These were then compared to the 

coefficients in R. 

3. Upon completion of each column in a given 

trace plane, an application of Witt's identity (1-15) 

was made. 

Secondary Checks: 

1. By appendix I, primitive matrices with 

the same determinant have equal Fourier coefficients. 

All coefficients for primitive matrices were calculated 

for 04 and XlQ. 

2. Selected imprimitive matrices were sub¬ 

stituted into equation (AI-3) of Appendix I. This 
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resulted in an equation for the coefficients ofv 

these imprimitive matrices in terms of primitive 

matrix coefficients. Then using the computer cal¬ 

culated primitive matrix coefficients, the former 

coefficients were evaluated. 

3. The congruence condition of equation 

(AI-4) of Appendix I was applied to applicable 

lattice points. 
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V. The Calculated Coefficients of 04>0(5>Xio an<^ ^12 

1. Using the algorithm and checks of the 

previous chapter, the 04>06>vio’ and ^12 Four:i-er 

coefficients were calculated and tabulated in Table 

I. Since primitive matrices with equal determinants 

have equal Fourier coefficients, the table includes 

only the primitive representatives (1,A,0) and 

The 0^ and coefficients were calculated 

and verified for almost all matrices T^g" with |T|«sl2 

(Table I-a). These coefficients complete the know¬ 

ledge of the 0^ and Fourier coefficients for 

all lattice points on trace planes a^7 and parts 

of trace planes 8 through 13 (figure 2). An inspection 

of the time required to generate each of these 

coefficients (Appendix II) indicates why no additional 

coefficients were calculated. 

Similarly, the 0^ and coefficients for 

matrices T<=3' with |T|^4 were calculated (Table 1-b). 

These calculations used the recursive equations of 

(III-7) and (III-8), respectively. Included are all 

coefficients of trace planes a^4 along with two 
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coefficients of trace plane 5. As before, the table 

has been limited only by the computation time required 

for each coefficient. 

It is important to note that the Fourier 
i 

coefficients of Table I represent the first known 

table of any length for Siegel modular forms. More¬ 

over, the two conjectures of Part One are found to be 

true for the coefficients given in this table. This, of 

course, adds a great deal of support to the conjectures. 

2. Table II contains a set of conjectured 0^- 

coefficients. The primitive matrix coefficients were 

calculated using the conjectured equations of Lemmas 

3 and 4 (Chapter II), and the imprimitive matrix 

coefficients by a special case of the Conjecture I. 

The table extends Table I to lattice points on all 

trace planes a^lO and to parts of trace planes 

11 through 26. This set includes matrices T<=:r such 

that |T|^25. All applicable checks of Chapter IV- 

section D have been applied to these additional coefficients 

and have been found to hold. 
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Table I_ 

Fourier Coefficients for 04>0(3>Xio> and v^o 

a. Coefficients of 0^ and x^g 

04 *10 

4|T| T a^CT) 4CIQ(T) 

3 <1,1,1) 13,440. -1. 

4 (1,1,0) 30,240. 2. 

7 (1,2,1) 138,240. 16. 

8 (1,2,0) 181,440. -36. 

11 (1,3,1) 362,880. -99. 

12 (1,3,0) 497,280. 272. 

12 (2,2,2) 604,800. -240. 

15 (1,4,1) 967,680. 240. 

16 (1,4,0) 997,920. •1,056. 

16 (2,2,0) 1,239,840. -32. 

19 0,5,1) 1,330,560. 253. 

20 (1,5,0) 1,814,400. 1,800. 

23 (1,6,1) 2,903,040. -2,736. 

24 (1,6,0) 2,782,080. 1,464. 

27 (1,7,1) 3,279,360. 4,284. 

27 (3,3,3) 3,642,240. 15,399. 

28 (1,7,0) 4,008,960. -12,544. 
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Table I-a (continued) 

H *io 
4|T| T aA(T) 4C10(T) 

28 (2,4,2) 5,114,880. -4,352. 

31 (1,8,1) 5,806,080. . 6,816. 

32 (1,8,0) 5,987,520. 19,008. 

32 (2,4,0) 7,439,040. 576. 

35 (1,9,1) 6,531,840. -27,270. 

36 (1,9,0) 7,650,720. 4,554. 

36 (3,3,0) 8,467,200. 43,920. 

39 (1,10,1) 10,644,480. 6,864. 

40 (1,10,0) 9,555,840. -39,880. 

43 (1,11,1) 10,039,680. 66,013. 

44 (1,11,0) 13,426,560 26,928. 

44 (2,6,2) 16,329,600 -23,760. 

47 (1,12,1) 17,418,240. -44,064. 

48 (4,4,4) 20,818,560. -135,424. 

48 (1,12,0) 15,980,160. -12,544. 

48 (2,6,0) 19,958,400. -126,720. 

51 (1,13,1) 16,208,640. 108,102. 
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Table I_ - (continued) 

b. Coefficients of 0^ and ^2 

*6 *12 

4|T| T   a6(T) 12-C12(T) 

3 44,352. 1. 

4 (1,1,0) 166,320. 10. 

7 (1,2,1) 2,128,896. -88. 

8 (1,2,0) 3,792,096. -132. 

11 (1,3,1) 15,422,400. 1275. 

12 (1,3,0) 23,462,208. 736. 

12 (2,2,2) 24,881,472. 2784. 

15 (1,4,1) 65,995,776. 

16 (1,4,0) 85,322,160. 

16 (2,2,0) 90,644,400. 
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Table II 

Conjectured Fourier Coefficients for 0^ 

*4_ 
ALU  T VT' 

52 (1,13,0) 18,264,960. 

55 (1,14,1) 24,192,000. 

56 (1,14,0) 23,950,080. 

59 (1,15,1) 24,312,960. 

6° (1,15,0) 28,062,720. 

60 (2, 8,2) 35,804,160. 

60 (4, 4,1) 35,804,160. 

63 (1,16,1) 34,974,720. 

63 (3, 6,3) ' 38,707,200. 

64 (1,16,0) 31,963,680. 

64 (2, 8,0) 39,947,040. 

64 (4, 4,0) 41,882,400. 

67 (1,17,1) 30,360,960. 

68 (1,17,0) 38,465,280. 

71 (1,18,1) 49,351,680. 

72 (1,18,0) 42,638,400. 

72 (3, 6,0) 47,537,280. 

75 (1,19,1) 42,349,440. 

75 (5, 5,5) 44,029,440. 
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Table II - (continued) 

41T | T a4^T) 

76 (1,19,0) 49,230,720. 

76 (2,10,1) 59,875,200. 

79 (1,20,1) 59,996,160. 

80 (1,20,0) 59,875,200. 

80 (2,10,0) 74,390,400. 

80 (4, 6,4) 74,390,400. 

83 (1,21,1) 56,246,400. 

84 (1,21,0) 63,624,960. 

87 (1,22,1) 78,382,080. 

88 (1,22,0) 67,616,640. 
91 (1,23,1) 66,528,000. 

92 (1,23,0) 84,188,160. 

92 (2,12,2) 107,412,480. 

92 (4, 6,2) 107,412,480. 

95 (1,24,1) 101,606,400. 

96 (1,24,0) 91,808,640. 

96 (2,12,0) 114,065,280. 

96 (4, 6,0) 114,065,280. 

99 (1,25,1) 85,276,800. 

99 (3, 9,3) 95,074,560. 

100 (1,25,0) 93,774,240. 

100 (5, 5,0) 97,554,240. 
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Appendix 1^ Siegel's and Maass' Results 

1. In [10], C. L. Siegel proved the following 

equation for the Fourier coefficients, aw(T), of the 

general Eisenstein series of degree n and weight' 

w. For T>0, 

(AI-1) 

nw 

aM(T)=(-l)‘T 2 n(w- -1 
~2~ 

n-1 
n 

k=0 

w-k 
TTT 

r(w-|) 

n+1 

[T|
W nso(T) 

p v 

where p ranges through the prime numbers, and 

S (T)= E e-2nia(TRp)(v(R))_w 

p R modi p 

P 

is the p-adic density. Here the sum is over a 

complete system (mod 1) of different n-rowed 

symmetric rational matrices Rp which have a power 

of p as a denominator. v(Rp) equals the product 

of the divisors of Rp (Definition 8). 

In order to calculate the coefficients using 

this formula, one has to calculate the p-adic densities 

for all p including p=2. In some cases, the Siegel 

operator identity (1-11) may be used to go around 
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these tedious calculations. For n=2, this was the 

method used by J. Igusa in [2] to calculate a few 

of the coefficients. His table in reproduced in 

Chapter IV, section A of this paper. 
i 
t 

2. For the degree two Eisenstein series, 

H. Maass ([6]-Satz 1) expanded the p-adic densities 

in (AI-1) to obtain an expression for the coefficients 

associated with primitive matrices (Definition 9). 

Letting $w be an Eisenstein series in O^jw) with 

Fourier coefficients a (T), Maass* result is stated % \Y 

as follows. 

Proposition A1 (Primitive Matrix): For w^2 

and T(>0) primitive, 

r 

(AI-2) aw(T)-V
4
B

W
2w_2 jkj ^ 

•(q+ldlB)”-1^) 

with 

bw(T)=(- 
2T|'W-3/2 

p^2|2T 
[(l-tfjp1'”) 

• E P^1 (3-2w>d2(j +1) (3+2w) 
U=o +V p 
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Here d=d(T)= the discriminant of the imaginary 

quadratic field associated with >J-\ 2Tl, (4) is 

the Legendre symbol, is the highest power of 

p dividing |2T|, and 

3 
p>2 

p=2 

(greatest integer). The polynominal (xfB)w~^ is 

evaluated by the identification of Bv with Bv - 

the v Bernoulli number (defined by equation 

(1-13)). 

We note, as did Maass, that for a primitive 

matrix T, equation (AI-2) yields a value for a
w(T) 

which is dependent only on the determinant of T. 

Hence we conclude that every primitive matrix with 

the same determinant has the same Fourier coefficient. 

3. (a) From the Hecke operator theory applied 

to Eisenstein series of degree 2, Maass obtained the 

following identity for a
w(T) ([6]-equation 28). 

For T(>0) imprimitive and w^2, 
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(AI-3) aw(T)-(l+p
w"1)(14pw_2)aw(^ )-p2w"3aw(^2> 

-- O 1 10 
* p]> 

p-1 9 up 

• S Pw'2vVri o» 
u=0 p 

where p is an arbitrary prime number dividing T. 

Terms in the equation are included with the convention 

that the argument of a
w(®) must be an element of 

3"={semi-integral, semi-positive definite matrices}. 

In the same paper ([6]-Satz 2),Maass attempted 

to show that a simplified version of equation (AI-3) 

was recursive for the imprimitive matrix coefficients 

and that a
w(T) for T=(tpt2»tg) was a function 

only of the parameters e(T)=g.c.d. an(* 

2 
D(T)=|2T|/e (T). Unfortunately, we have found an error 

in his paper which invalidates his simplified recursive 

equation and leaves the dependence of a
w(f) 

on e(T) 

and D(T) an open question. 

In what follows, we will be able to partly 

correct the work of Maass by concluding that equation 

(AI-3) is a recursive equation for the imprimitive 

matrix coefficients in terms of primitive matrix 
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coefficients. However, we will not be able to 

simplify equation (AI-3) nor be able to obtain the 

conclusion that aw(T) is a function only of e(T) 

and D(T). Nevertheless we still believe this last 

statement to be correct and single it out as 

Maass* Conjecture: For degree two Eisenstein 

series with Fourier coefficients a (T), we have 

(AI-4) aw(T)=aw(e(T),D(T)) 

where aw(*,*) is a function only of e(T) and D(T). 

(b) Before proving the assertion about equation 

(AI-3), we note that for T^IT, e(T) has a standard 

prime factorization as 

e(T)= n qVq 

q*2 

where v^= ordinal of e(T) at q. For this prime 

factorization of e(T), we let Eg(T)={q:v^O} and 

he(T)=Ev^. We also make the following definition. 

Definition AI-1: The e^(T) factorization of 

D(T) is the prime factorization of D(T) as the following 

, 2w u 
D(T)-4'- n q q n q q 

q:>2 qs2 



89 

where 

o, 4JD(T) 

ll, 4|D(T), 

and Wq=vq, if 1^2. Here Vq is the ordinal of 

e(T) at q. 

Letting hD(T)=i;Wq, we see that hD(T)<;he(T) 

since Wq=0 for every q£Ee(T). 

Now let p^E (T) and recall that a (T) is 

invariant under unimodular transformations, T-*T[U]. 

Then, every T=(t^,t£,t^clT can be normalized such 

that (t-^e(T)“^,p)=l and t^O. To see this, let 

ti=mie(T). The second condition can always be met 

-*(t2,tptg) works. Similarly, if (m^,p)>l and 

works. 

Proposition A2(Imprimitive Matrix): For 

w&2 and T(>0) imprimitive, equation (AI-3) is 
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a recursive equation for the imprimitive matrix v 

coefficients aw(T) in terms of the primitive 

matrix coefficients. 

Proof: In equation. (AI-3) we may assume 

that the imprimitive matrix T=(t£,t2>t^)^ is 

normalized as above. The proof will then follow 

by induction on the number of prime elements composing 

e(T), namely he(T). First of all for a fixed 

imprimitive matrix we examine the types of 

matrice S, that will occur on the right hand side 

of equation (AI-3). Here S is of the form 

S=(sp s2, Sg)^* Fixing pfEg(T) and defining 

e=e(T) and D=D(T), we have the following results. 

(i) If then e(S)=p“^e(T) and 

D(S)=|2S|e‘2(S)=|2T|e'2(T)=D(T). 
m 

(ii) If S=-=-»67, then the same arguments 

-2 
yield e(S)=p e(T) and D(S)=D(T). 

(iii) If S=12T[J then s1-p'
2t1, 

-1 -2 
S2”t2* an<* s3~p" t3* So t^iat» e(S)=p~ e(T) 

D(S)=| 2S|e2(S)=p2D(T)» 

(iv) If (teu^p-1, t^n^e, and S=^2T[“ g]<=;r, 

-2 2 -1 p 

then Sj=p (m^u -hnyi+m^e, s2=p ^m^u+m^e, and 
_o 

s^m^e; so that |2S|=p | 2T |. We then have three 

cases. 
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A. e(S)=p”^e(T), D(S)=D(T) iff p | (mi^+m^u+ii^ ) 

and [p /[(mjU +m3u+ni2) or P'/(2m]U+m3) ]. 

B. e(S)=p“2e(T), D(S)=p2D(T) iff p/(m^^+nigU+n^)• 

C. e(S)=e(T), D(S)=p"2D(T) iff p2|(m1u2+m3u+m2) 

and p|(2m^u+m3). 

With the cases (i-iv) enumerated for a fixed 

Tf=g; and p<=Ee(T), define A(T,p)={Sc3’: S occurs on 

the right hand side of (AI-3)}. Also define 

A(T;e«,D')=A(T,p)nCS^3':e(S)=e‘ andD(S)=D'}. In 

particular, we see that 

) 

A(T, p )=A(T; p “ 1e, D )uA(T; p” 2e, D) 

UA(T;p~2e,p2D)UA(T;e,p‘2D) 

« A^ U A2 U A^ U A^ , 

so that (AI-3) may be written as 

4 
(AI-3') a(T)- E E m,(S)a (S), 

w i=l SzAt 
1 w 

where the m^(S)e z The convention of equation 

(AI-3) is also interpreted to mean that in the sets 

Aj=A(T;e^,D^), e^ and must be integers; otherwise 

AJL-0. 
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With these statements as preliminaries, we 

begin the induction proof. Suppose T is an 

arbitrary (normalized) imprimitive matrix in j 

such that h (T)=l and let p^E (T). Then 
c c 

hD(T)=0 or 1 (since hD(T)she(T)). hD(e)«0 implies 

A^ contains only primitive matrices and A^=0,2si^4. 

Hence the proposition holds. Similarly, hjj(T)=l 

implies contains only primitive matrices, 

k^=ky=(p, and A^=0 or A^0. If A^=0, the pro¬ 

position holds as before. If A^0, then every 

S^A^ can be normalized and substituted for T in 

equation (AI-3) determining the sets A^,lsi^4. 

Since hp(S)=hjj(T)-l=0 , the arguments above applied 

to the A! determine that a„(S) for SeA, are 

functions only of primitive matrix coefficients. 

Hence we conclude that this proposition is true 

for Tand h (T)=l. 
£2 

Now suppose that the proposition holds for 

every imprimitive Tcir with h (T)=n. We will show 
C5 

that the proposition holds for every T<=3” with 

he(T)=n+l. To this end, let T (normalized)^ such 

that h (T)=n+1. Since the terms of (AI-31) with 

S(=A^,A2, and A^ all have he(S)sn, we can write them 

in terms of primitive matrix coefficients by the 
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inductive hypothesis. As before A^=0 or A^0. 

If A^=0, we are through. If A^0, every S^A^ 

may be normalized and substituted for T in equation 

(AI-3) determining the sets A£, l^i^4. Again the 

sets A|,l^i^3 cause no problem by the inductive 

hypothesis and A^0 or A£=0. If A^=0, we are 

through. If A^0, we repeat the process again for 

^2^4* Process terminate since at each 
stage he(S^)=n+l, but hD(S^)^hD(T)-i. Thus the 

proof is complete. 

QEP 

We note that equations (AI-2) and (AI-3) 

give a method for generating all the coefficients 

of degree two Eisenstein series. Equation (AI-2) 

solves the problem for all primitive matrices 

and equation (AI-3) reduces imprimitive matrix 

calculations down to primitive matrix calculations. 

4. No effort has been made to ultilize the 

results above for computations of the coefficients in 

this paper. However, the following congruence 

relationship for the Eisenstein coefficients of 

degree 2 and weight ws4 has been used as a check in 

Chapter IV. 
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(AI-4) a (T)=0(mod ^w'1^) 
w2w-2 

where Bw are the Bernoulli numbers ( Chapter I- 

equation (I-13)>. Equation (AI-4) holds for all 

T>0 where d the discriminant is not equal to 

-4 or -p, a prime number. Reference for (AI-4) 

is Maass' paper [6], 
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Appendix II; Computer Time and Cost Requirements 

The recursive equations for the 0^ and F°urier 

coefficients (Chapter III - equations III-3 and III-4) 

were mechanized on an available Control Data Corporation 

3800 computer. This task was divided into three 

distinct programming and verification phases with a 

fourth phase added for actual computations. These 

are described as follows; 

(1) Mechanization of the algorithm for 

determining the reduced matrix of an arbitrary 

matrix Tprr (Chapter I-sectionF). 

(2) Mechanization of a method for determining 

all decompositions (in the form of equation IV-4) 

for the augmented matrix of Tg? (Chapter IV-section 

B). 

(3) Mechanization of the recursive equations 

for the 0^ and Fourier coefficients given by 

Propositions (7) and (8). (The method employed here 

was outlined in Chapter IV-section D and used the 

results of (1) and (2) above.) 

(4) Computation of the 0^ and Fourier 

coefficients given in Table I (Chapter V). 

Since all of these phases were performed on a 
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time permitting and computer availability schedule 

over a three month period, we have found it extremely 

difficult to estimate the total time and cost required 

to perform the entire task. However, for the 0^ 

and coefficients actually tabulated in Table 

I (Chapter V), a very accurate account was kept and 

showed that 17.3 hours of computer time at $550/hr. 

(total “ $9,515) was needed. This, of course, does 

not give a total account for phase (4), since there 

were numerous runs aborted for one reason or another 

(computer priorities, computer tape drive failure, 

etc.). Also, it must be mentioned that, with the 

exception of upgrading the method used in (2), very 

little effort was spent in optimizing the computer 

program. 

Table AII-1 gives a breakdown of 

the time mentioned above. Here the computational 

time needed for each 0^ and coefficient is 

tabulated versus the matrix of the coefficient. Since 

it was found that the computations in (2) required the 

most time, it is obvious from the table why we had 

to revamp the method used for determining the 

decompositions. We do not look upon this change 

as a big sophistication of the program; however, with 
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the change a substantial decrease in time required 

was achieved. This change gave a more predictable 

rate of growth to the time required. 

To conclude this appendix, we have tabulated 

in Table AII-2 the number of decompositions, (C^^of 

a matrix T used in the recursive equations (III-3) 

and (III-4). From these values, it is seen that the 

growth rate of time required (after the change above) 

is very similar to the growth rate of the number of 

terms in the recursive equations used. This, of 

course, is as it should be. 
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Table AII-1 

Computation Time for the 

$4 and Coefficients 

T Computation T Computation 
 time-minutes*   time-minutes* 

(1,2,1) 2.1 (3,3,3) 9.9 

(1,2,0) 1.2 (3,3,2) 11.7 

(1,3,1) 6.4 (3,3,1) 14.7 

(1,3,0) 2.3 (3,3,0) 17.4 

(2,2,2) 23.1 (1,6,1) 4.8 

(2,2,1) 11.7 (1,6,0) 6.4 

(2,2,0) 3.5 (2,5,2) 19.8 

(1,4,1) 15.0 (2,5,1) 24.3 

(1,4,0) 4.9 (2,5,0) 28.8 

(2,3,2) 68.4 (3,4,3) 24.4 

(2,3,1) 24.9 (3,4,2) 30.6 

(2,3,0) 10.8 (3,4,1) 38.6 

**(1,5,1) 2.2 (3,4,0) 58.3 

(1,5,0) 3.6 (1,7,1) 9.3 

(2,4,2) 4.2 (1,7,0) 11.2 

(2,4,1) 7.0 (2,6,2) 34.5 

(2,4,0) 10.3 (2,6,1) 39.7 

* Sum of the computation 
coefficients. 

time for the 04 and x10 

** Reprogrammed at this point. 
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Table AII-1 (continued) 

T Computation 
time-minutes 

(2,6,0) 44.8 

(3,5,3) 74.1 

(3,5,2) 81.7 

(3,5,1) 98.3 

(3,5,0) 117.3 

(4,4,4) 119.7 

(1,8,1) 12.5 

(1,8,0) 14.7 

(2,7,1) 83.8 

(1,9,1) 28.9 

(1,9,0) 32.7 
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Table All-2 

Number of Terms in the Recursive Equations 

(III-3)~and (III-4) 

T 

Left Hand 
Side of 
Equation 
III-4 

Right Hand 
Side of 
Equation 
III-4 

Right Hand 
Side of 
Equation 
III-3 

(1,2, 1) 16 17 4 

(1,2, 0) 40 44 6 

(1,3, 1) 100 117 6 

(1,3, 0) 176 220 8 

(2,2, 2) 64 77 9 

(2,2, 1) 160 207 10 

(2,2, 0) 284 394 13 

(1,4, 1) 332 449 8 

0,4, 0) 516 736 10 

(2,3, 2) 400 573 14 

(2,3, 1) 728 1,147 16 

(2,3, 0) 1,112 1,863 20 

0,5, 1) 853 1,302 10 

(1,5, 0) 1,212 1,948 12 

(2,4, 2) 1,384 2,429 21 

(2,4, 1) 2,212 4,187 24 

(2,4, 0) 3,072 6,172 27 
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Table All-2- (Continued) 

T 

Left Hand 
Side of 
Equation 
III-4 

Right Hand 
Side of 
Equation 
III-4 

Right Hand 
Side of 
Equation 
III-3 

(3,3,3) 1,000 1,635 22 

(3,3,2) 1,856 3,411 26 

(3,3,1) 2,924 5,826 28 

(3,3,0) 4,016 8,534 32 

(1,6,1) 1,840 3,142 12 

(1,6,0) 2,480 4,428 14 

(2,5,2) 3,676 7,637 30 

(2,5,1) 5,344 11,939 32 

(2,5,0) 7,032 16,528 34 

(3,4,3) 3,556 7,443 34 

(3,4,2) 5,781 13,313 40 

(3,4,1) 8,272 20,538 42 

(3,4,0) 10,764 28,184 44 

(1,7,1) 3,542 6,684 14 

(1,7,0) 4,596 9,024 16 

(2,6,2) 8,128 19,734 39 

(2,6,1) 11,168 28,871 40 

(2,6,0) 14,112 38,215 43 

(3,5,3) 9,694 24,873 50 
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Table All-2- (Continued) 

T 

Left Hand 
Side of 
Equation 
III-4 

Right Hand 
Side of 
Equation 
III-4 

Right Hand 
Side of 
Equation 
III-3 

(3,5,2) 

(3,5,1) 

(3.5.0) 

(4,4,4) 
(1.8.1) 

(1,8,0) 

(2.7.1) 

(1.9.1) 

(1,9,0) 

14,320 40,142 56 

6,920 16,763 

6,280 12,964 

7,896 16,920 

15,976 44,494 

10,435 23,399 

12,800 29,720 

47 

16 

18 

48 

18 

20 
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