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Abstract

This paper revisits the buckling analysis of a benchmark cylindrical

panel undergoing snap-through when subjected to transverse loads. We show

that previous studies either overestimated the buckling load and identified

a false buckling mode, or failed to identify all secondary solution branches.

Here, a numerical procedure composed of the arclength and branch switching

methods is used to identify the full postbuckling response of the panel. Addi-

tional bifurcation points and corresponding secondary paths are discovered.

Parametric studies of the effect of the rise and thickness of the panel on the

buckling and postbuckling responses are also performed.
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1. Introduction

Cylindrical shells are widely used in aerospace, mechanical, and civil en-

gineering applications as structural components in aircraft, tanks, pipelines,

and offshore platforms. These structures have efficient load-carrying capa-

bilities but exhibit high risk of buckling failures.

Early studies on the buckling analysis of cylindrical shells used the clas-

sical buckling theory to approximate the bucking loads and mode shapes by

assuming membrane prebuckling stress states [1–4]. This approach ignores

bending effects before buckling and usually overestimates buckling loads.

Later, more rigorous buckling analyses were performed with the consider-

ation of linear prebuckling deformations [5–8] and nonlinear prebuckling

deformations [9, 10], but did not focus on postbuckling responses. Koiter

[11] proposed a perturbation approach to conduct initial postbuckling anal-

ysis, which was later adopted by many researchers [12–15]. These meth-

ods are typically valid only in the vicinity of critical points. Potier-Ferry

and coworkers [16–19] extended Koiter’s idea and developed an asymptotic-

numerical method to compute nonlinear postbuckling responses.

Other numerical approaches widely used to perform nonlinear postbuck-
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ling analysis of shell structures are path following schemes. Among them, the

Newton-Raphson methods were initially attractive for solving large nonlinear

systems but they usually lose convergence at limit points and cannot trace

the unstable equilibrium paths. Some of these disadvantages were solved by

replacing the load control with displacement control [20, 21], but this ap-

proach still fails to track the whole postbuckling path beyond a displacement

limit point. Riks [22] proposed a more efficient arclength method that can

trace the entire (stable and unstable) postbuckling equilibrium paths. Mod-

ified versions were later proposed by Crisfield [23] and Tsai et al. [24] to

handle more complicated postbuckling behavior.

Despite the great progress made in the path following approaches, some

features of the postbuckling behavior still remained unnoticed. A circu-

lar cylindrical panel, studied by Sabir [25], was afterwards used by many

researchers [26–35] as a benchmark example to demonstrate the capability

of shell or shell-like elements in simulating large deformations buckling and

postbuckling processes. All these researchers successfully identified the limit-

point buckling and the corresponding symmetric postbuckling responses by

utilizing path following methods. However, these studies did not correctly

identify the physical buckling behavior of this panel. Recently, Wardle et
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al. [36, 37] found using the asymmetric meshing technique (AMT) that a

bifurcation buckling in asymmetric mode exists before the first limit point

on the equilibrium path.

In this work, an arclength method combined with a branch-switching

method [38, 39] is used to perform the nonlinear buckling and postbuckling

analysis of cylindrical panels. For the benchmark example, we find that

two previously undetected pairs of bifurcation points and consequently two

other pairs of secondary paths exist. A small interval of one secondary path

is stable, while the other equilibria on this path and all states on the other

path are unstable. Intervals of stable equilibria identified on secondary paths,

while not reachable through a continuous stable path, are still important:

perturbations in the system may lead to dynamic jumps to these states. The

identification of additional unstable equilibria also reveals that the degree of

instability of the system is higher than what researchers previously found.

The numerical approach used in this paper has several advantages over

the AMT recommended by Wardle et al. [36, 37]: (1) no prior knowledge of

the bifurcation modes is needed, and (2) the same mesh is used for tracing

all secondary paths of the structure. The accuracy and reliability of this

method is tested on the benchmark example.
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This paper is organized as follows. In Section 2, we briefly introduce the

nonlinear buckling analysis algorithm. In Section 3, we apply the method to a

benchmark example and compare with the results available in the literature.

Additional bifurcation points and secondary paths are also obtained in this

section. In Section 4, we perform a parametric study of the influence of the

rises, thicknesses and boundary conditions on the variation of critical points

and postbuckling responses. Conclusions are outlined in Section 5.

2. Nonlinear buckling and postbuckling analysis

In this section, we briefly introduce a numerical procedure, combining

the arclength and branch-switching methods, which can reliably determine all

critical points and corresponding postbuckling responses including bifurcated

secondary paths.

2.1. Critical points on the equilibrium path

An elastic system typically loses stability when the tangent stiffness K

becomes singular. Points on the equilibrium path with singular tangent stiff-

ness are called critical points, further differentiated as limit and bifurcation

points (Fig. 1). A null right eigenvector z of the tangent stiffness K at a
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critical point satisfies:

Kz = 0. (1)

limit point

(a) A limit point

bifurcation point

direction I

direction II

(b) A bifurcation point

Figure 1: Critical points on equilibrium paths.

When an elastic structure is subjected to a conservative loading, the

tangent stiffness K is symmetric and Eq. (1) also implies zTK = 0. For an

incremental-iterative method, the incremental displacement ∆u and loading

∆λ satisfy K∆u = ∆λq. Premultiplying both sides of with zT and using

zTK = 0, we get

zTq∆λ = 0 (2)

Three configurations satisfy Eq. (2): (1) ∆λ = 0, denoting a limit point

(Fig. 1a); (2) zTq = 0, indicating a bifurcation point (Fig. 1b); or (3) ∆λ = 0

and zTq = 0 simultaneously, implying the coincidence of a bifurcation and
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limit point. In practice, limit points are indeed identified as points of zero

variation in the load factor, but bifurcation points are not detected based on

the above. Instead in this paper, several lowest eigenvalues of the tangent

stiffness K are monitored when tracing the primary equilibrium path. Zero

eigenvalues of the tangent stiffness indicate the location of critical points, out

of which, those not already identified by ∆λ = 0 are the bifurcation points.

For the case of a multiple bifurcation point or of the coincidence of a limit

point and a bifurcation point, multiple eigenvalues are zero at the same time.

Finally, note that only conservative systems are considered in this paper.

2.2. Switching to secondary paths

After the detection of bifurcation points, the branch-switching method

proposed in [38, 39] is adopted to switch from the primary equilibrium path

to a secondary path. At a simple bifurcation point, the eigenvector φj of the

zero eigenvalue λj indicates the direction of one secondary path j, and can

be used as a perturbation of the solution on the primary path. To switch to

the secondary path j, the eigenvector φj is scaled and added to the solution

in the following way:

uj = u± ‖u‖
τj

φj

‖φj‖
(3)
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where, τj is a scaling factor, u is the converged displacement vector on the

primary path, and uj represents the a predictor for the secondary path j.

The arclength method can then be used to correct the predictor uj and

follow additional solutions on the secondary path j.

Two important aspects of this branch-switching method are noted here.

First, two directions are typically associated with one secondary path, as

shown in Fig. 1b and they correspond to the plus and minus sign in Eq. (3).

Second, the value of the scaling factor τj is usually less than 100 based on our

simulation experience (a too large value can lead to a solution that remains

on the primary path, while a too small one may lead to divergence). An

adaptive approach with a restart option that can rerun a new simulation

directly from the bifurcation point is therefore recommended to alleviate the

computational cost of possible adjustment of τj, as used in this paper.

The branch-switching method can also deal with a multiple bifurcation

point, where multiple eigenvalues become zero simultaneously. The eigenvec-

tors of the zero eigenvalues at the multiple bifurcation point span a space that

contains the directions of possible secondary paths. In general, two kinds of

bifurcation buckling are possible: single-mode and multiple-mode buckling.

For the single-mode buckling case, the Eq. (3) can be used to determine the
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corresponding secondary path, while for the multiple-mode buckling case,

a linear combination of all related eigenvectors can be used to predict the

secondary path:

uj = u±
n∑

i=1

‖u‖
τi

φi

‖φi‖
, (4)

where, uj is a predictor on the multiple-mode bifurcated path. The arclength

method can then be used to correct the predictor and trace the remaining

solutions on this secondary path.

2.3. The combined numerical procedure

The combined numerical procedure used to perform a thorough nonlin-

ear buckling and postbuckling analysis of cylindrical panels is summarized as

follows: (1) the primary equilibrium path is traced by the arc-length method

while monitoring the lowest eigenvalues λj of the tangent stiffness K; (2) all

critical points on the primary path are found by identifying all zero eigenval-

ues λj; (3) the critical points are classified into limit and bifurcation points

by checking whether ∆λ = 0; (4) the bifurcation points are differentiated into

simple and multiple bifurcation points by the multiplicity of zero eigenvalues;

(5) the branch-switching method (Eq. (3) or (4)) is used to switch from the
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primary path to a secondary path at a bifurcation point; (6) the remaining

solutions on the secondary path are traced using the arclength method; and

(7) If another secondary path is present, a restart option is used to go directly

to the bifurcation point and repeat steps (4) and (5).

3. Benchmark example and solutions

The benchmark example is a circular cylindrical panel (radius R = 2540 mm

and thickness t = 6.35 mm) with simply supported longitudinal edges of

length a = 508 mm and free curved circumferential edges of projected length

b = 507.15 mm (Fig. 2). The material is isotropic with Young’s modulus

E = 3102.75 MPa, and Poisson’s ratio ν = 0.3. PC represents the symmetry

plane perpendicular to the circumferential edge and PL is the symmetry plane

perpendicular to the longitudinal edge. A point load is applied in positive

z direction at the center of the panel. The numerical simulations are per-

formed with the Finite Element Analysis Program (FEAP), a research code

that includes most commonly used finite element algorithms and provides a

reliable framework for developing new user formulations [40].
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Figure 2: Benchmark cylindrical panel.

3.1. Limit points and primary equilibrium path

Due to the symmetric geometry, loading and boundary conditions of the

panel, many researchers [25–35] intuitively assumed that this problem only

has symmetric solutions and performed the analysis on one quarter of the

panel to save computational time. Such approach completely eliminates the

possibility of identifying possible bifurcation points and secondary paths.

In this paper, the full panel is modeled with 27-node solid elements, which

are free of locking. Alternative ways to avoid locking are also available using

an 8-node solid element or a shell element, with enhanced strain formulation

or reduced integration. Fig. 3 shows a mesh convergence study for the 27-

node solid element, where the number of elements in the circumferential

and longitudinal directions are increased, while one element is always used

in the thickness direction. The limit load obtained using the most refined
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mesh (2304 elements) is used as a reference value for calculating the relative

errors in Fig. 3b. All the following simulations are performed using 144 27-

node solid elements that lead to less than 1.8% relative error. The simply

supported boundary condition is enforced using the nodes in the middle layer

of each longitudinal edge.
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Figure 3: A mesh convergence study

An arclength method is used to trace the primary path (Fig. 4a) and the

obtained solution (solid line) is compared to the result from [35] (squares).

The central deflection is the positive z-direction displacement of the center

point of the panel (Fig. 2). On the equilibrium path, one pair of load-limit

points (points with horizontal tangents) can be identified, indicating that

the panel exhibits limit-point buckling at Plim = 595.20 N. Fig. 4b shows the

associated buckling mode that is symmetric to both center planes PC and
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PL (Fig. 2).
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Figure 4: Symmetric solutions of the benchmark example

3.2. Secondary equilibrium paths

To identify bifurcation points, several lowest eigenvalues of the tangent

stiffness of the system are monitored when tracing the primary equilibrium

path. A branch-switching method [38, 39] is then employed to switch to

secondary paths at bifurcation points.

Fig. 5a shows the two lowest eigenvalues of the tangent stiffness on the

primary equilibrium path: they are initially positive at zero load, and de-

crease as the applied load increases. This plot identifies a bifurcation point

at the location where the lowest eigenvalue becomes zero (at a load smaller

than the limit load). At this bifurcation point, the branch-switching method

is adopted to switch to the secondary path. Fig. 5b shows this secondary
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Figure 5: Previously known solution paths of the benchmark example.

equilibrium path (dashed line) together with the primary equilibrium path

(solid line). The secondary equilibrium path obtained in [36] using the AMT

is also shown in this figure for comparison (cross markers). The AMT re-

quires modeling the structure with an asymmetric mesh that has the same

pattern as the corresponding bifurcation mode, typically not available but

”assumed” when generating the mesh, which can lead to incorrect results.

Here, the bifurcation buckling load is 537.10 N, which identifies the criti-

cal load at 90 % of the limit load (595.20 N), the overestimated critical value

predicted by [25–35]. Fig. 6a shows the bifurcation buckling mode, which is

asymmetric to the center plane PC , and symmetric to the center plane PL.

The stability of this secondary equilibrium path can be determined by mon-
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Figure 6: Characteristics of the secondary equilibrium path 1

itoring the eigenvalues of the tangent stiffness on the secondary equilibrium

path (Fig. 6b). It can be observed from this figure that the lowest eigen-

value λ1 is always negative. Thus, the entire secondary equilibrium path 1

is unstable.

3.3. Additional secondary equilibrium paths

Although Wardle et al. [36, 37] successfully obtained one secondary equi-

librium path for the benchmark example, they did not recognize that multi-

ple pairs of bifurcation points and secondary equilibrium paths exist. In this

subsection, two other pairs of bifurcation points and secondary equilibrium

paths are identified. Note that this analysis is still performed on the original

mesh, unlike the AMT that would require two more meshes for this task.

In order to identify all critical (limit and bifurcation) points, more eigen-
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(a) Five lowest eigenvalues
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Figure 7: Solutions of the benchmark example.

values of the tangent stiffness are monitored. Fig. 7a shows the five lowest

eigenvalues of the tangent stiffness on the primary equilibrium path. It can

be seen from this figure that the eigenvalue of the fifth mode (dotted line) is

the lowest that is always positive: the third and fourth eigenvalues become

negative indicating additional bifurcations. Two more pairs of bifurcation

points are thus identified and the corresponding secondary equilibrium paths

are obtained. The primary equilibrium path and all three secondary equi-

librium paths are shown in Fig. 7b. The bifurcation buckling mode of the

secondary equilibrium path 2 (Fig. 8a), is asymmetric with respect to the

center plane PL but symmetric with respect to the center plane PC . The sec-

ondary equilibrium path 3 is associated with the bifurcation buckling mode

that is asymmetric with respect to both center planes PC and PL, but sym-
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metric with respect to the center point of the panel (Fig. 8b).
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Figure 8: Additional bifurcation buckling modes

To reveal the stability of secondary equilibrium paths 2 and 3, eigenvalues

of the tangent stiffness on these secondary equilibrium paths are examined.

Fig. 9a shows the three lowest eigenvalues of the tangent stiffness on the

secondary equilibrium path 2. It can be seen that all eigenvalues are positive

for the load interval 171.6 N to 173.8 N, indicating that the equilibrium states

in this loading range, represented by solid line in Fig. 9b, are stable on the

secondary equilibrium path 2. Fig. 10 shows the four lowest eigenvalues

of the tangent stiffness on secondary equilibrium path 3. Two eigenvalues

are always negative for all the states on this path, denoting that the entire

secondary path 3 corresponds to unstable states.

Snap-through is dynamic process and a full understanding of the post
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Figure 9: Stability of equilibria on secondary path 2
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Figure 10: The four lowest eigenvalues of the tangent on secondary path 3.

snap response can only be obtained through a transient analysis. However,

the identification of additional pairs of bifurcation points and secondary paths

leads to a more thorough understanding of the buckling and postbuckling be-

havior of the panel. Moreover, all these equilibria, stable or unstable, provide

useful insight into the dynamic characteristics of the system. First, the sta-

ble equilibria on the secondary path 2 could potentially be reached under
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certain conditions (perturbations). Second, unstable equilibria are potential

energy hilltops and act as repulsors in the dynamic behavior of the system.

The energy hilltops and ridges between them serve as approximate basins of

attractions for the two stable equilibria. Third, the presence of additional

unstable branches indicates that the benchmark example has a degree of in-

stability higher than what researchers previously found. Knowledge of the

degree of instability and corresponding modes provide valuable information

in choosing adequate algorithms for the transient analysis and avoiding the

inconsistent stability of time integrators that plagues the simulation of sys-

tems with risk of snap-through[41] .

4. Parametric studies of the cylindrical panel

The nonlinear buckling behavior of shell structures is greatly influenced

by the geometry and boundary conditions. Here, an investigation of the

influence of the rise, thickness and boundary conditions on the nonlinear

buckling responses is conducted. In all following figures, secondary equilib-

rium paths are classified into three categories based on the types of asymmet-

ric deformation modes obtained. We denote as path C an equilibrium path

asymmetric to center plane PC but symmetric to center plane PL (Fig. 6a),
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as path L an equilibrium path asymmetric to center plane PL but symmetric

to center plane PC (Fig. 8a), and as path B an equilibrium path asymmetric

to both planes (Fig. 8b), but symmetric to the center point of the panel.

4.1. The influence of the rise on the buckling behavior

The rise of the cylindrical panel in the benchmark example is h=12.68 mm.

Here, we conduct a parametric study by varying the rise from 3.04 mm to

14.32 mm. No critical point exists and consequently buckling does not occur

for panels with small rise (Fig. 11a). The structure displays an initial soften-

ing behavior followed by stiffening. When the rise of the panel is increased,

the structure exhibits limit-point buckling with one pair of load-limit points

(Fig. 11b). As the rise of the panel is further increased, a secondary path

L appears after the first limit point (Fig. 11c). The structure with this rise

loses stability when the first limit point is reached.

Figs. 11d, 11e and 11f show equilibria of cylindrical panels with higher

rises that have two types of secondary paths. The new secondary path C

initially appears between the bifurcation points of secondary path L, as shown

in Fig. 11d. When the rise of the panel is further increased, these secondary

paths become longer and the bifurcation points move toward the limit points.

In Fig. 11f, the secondary path C appears earlier than secondary path L.
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(d) h=7.73 mm
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(e) h=8.11 mm
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(f) h=8.62 mm
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(g) h=9.76 mm
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Figure 11: Equilibrium paths of panels with different rises.

Under static load, panels with these rises still buckle symmetrically at the

first limit point. A panel with higher rises has three pairs of secondary

paths (Fig. 11g, 11h and 11i). The last secondary path B initially appears

between the bifurcation points of secondary path L (Fig. 11g). As the rise is

increased, the secondary path C starts before the first limit point (Fig. 11h).
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Therefore, a panel with this rise bifurcates asymmetrically before reaching

the limit point. When the rise of the panel is further increased, the ratio of

the critical load identified at the bifurcation point of the secondary path C

to the load of the first limit point continues to decrease, but secondary paths

L and B still occur after the first limit point.

4.2. The influence of the thickness on the buckling behavior

The thickness of the benchmark cylindrical panel is t=6.35 mm. The fol-

lowing parameter study examines the influence of thickness, which is varied

from 22.86 mm to 5.59 mm while keeping all other parameters unchanged.

Fig. 12 shows the variation of all equilibrium paths when changing the thick-

ness of the panel, which identifies the same trend as shown in Fig. 11 and

indicates that decreasing the thickness of the panel has a similar influence

on the number and location of critical points and the shapes of postbuckling

responses as increasing the rise of the panel.

It can be concluded that the number and location of critical points and

the shapes of postbuckling responses are sensitive to the variation of the rise

and thickness of a cylindrical panel. Multiple pairs of bifurcation points and

secondary paths exist for many cases discussed above. Thus, a robust numer-

ical procedure, like the one recommended in this paper, which can reliably
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(c) t = 11.68 mm
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(d) t = 10.41 mm
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(e) t = 9.14 mm
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(f) t = 9.90 mm

0 5 10 15 20 25

0

500

1000

1500

2000

Central deflection [mm]

P
oi

nt
 lo

ad
 [N

]

 

 

Primary equilibrium path
Secondary equilibrium path L
Secondary equilibrium path C
Secondary equilibrium path B

(g) t = 8.38 mm
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(h) t = 7.87 mm
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(i) t = 6.86 mm

Figure 12: Equilibrium paths of panel with different thickness.

detect all critical points and obtain corresponding postbuckling responses in-

cluding all secondary paths is necessary for performing a thorough buckling

and postbuckling analysis of cylindrical panels. If only the arclength method

is used, all bifurcation points and secondary paths in Fig. 11c to 11i and

Fig. 12c to 12i can not be detected. Secondary paths L and B in these plots
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still can not be obtained even when the AMT with the specifically assumed

bifurcation mode recommended in [36] is employed.

4.3. The influence of boundary conditions on the buckling behavior

This study uses the same geometry and external load of the benchmark

example, while the boundary conditions are changed. When a 3D solid ele-

ment is used to model the cylindrical panel, multiple layers of nodes exist in

the thickness direction. The choice of the layer of nodes to be constrained

greatly influences the buckling and postbuckling responses.

Fig. 13 shows the primary equilibrium paths obtained by applying the

same constraint (restricting translations in x, y, and z direction) to the nodes

on three different layers. The constraint on the top layer leads to the lowest

limit load (black dashed line), while the support on the bottom layer (red

dotted line) results in the largest limit load. The postbuckling responses on

the primary path are also very different; two displacement-limit points exist

for the constraint on the middle layer.

The number and location of bifurcation points and secondary paths are

also very sensitive to the boundary constraint. Fig. 14 shows the primary

and secondary paths when the constraint is applied to nodes on the top and

bottom layers, while the results of the constraint on the middle layer (three
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Figure 13: Primary equilibrium paths of supports on three different layers

pairs of bifurcation points and secondary paths) are already shown in Fig. 7b.

The secondary path C appears before the first limit point, while secondary

paths L and B appear after the limit point. In contrast, only one pair of

bifurcation points and a secondary path L exist after the first limit point for

the constraint on the top layer (Fig. 14a), and only two pairs of bifurcation

points, and secondary paths C and L appear after the first limit point when

the constraint is applied to the bottom layer (Fig. 14b).

5. Concluding remarks

This paper presents a finite element buckling and postbuckling analysis

of cylindrical panels. It is shown that many previous studies of a commonly

used benchmark cylindrical panel [25–35] overestimated the buckling load

and failed to identify the correct buckling mode shape. A numerical pro-
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Figure 14: Primary and secondary paths of supports on two different layers

cedure combining the arclength with branch-switching methods is used to

identify all critical points and trace all postbuckling responses. This nu-

merical procedure has two major advantages over the one recommended in

[36, 37]: (1) no prior knowledge of the bifurcation modes is required, and

(2) the same mesh can be used to compute all secondary paths. Using this

approach, two additional pairs of bifurcation points and secondary equilib-

rium paths are captured for the benchmark example. A small portion of the

equilibria on one pair of secondary paths are stable, while all other equilib-

rium states on the bifurcated paths are unstable. These results provide a

deeper understanding of the complex buckling and postbuckling behavior of

the cylindrical panel and also contributes to the understanding of how the

transient trajectories organize.
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An investigation of the influence of the rise, thickness and boundary

conditions on the buckling and postbuckling behavior was also performed. It

is found that these features have a great impact on the number and location

of critical points and the postbuckling responses. Increasing the rise of the

panel has the same effect on the appearance of bifurcation and limit-point

buckling as decreasing the thickness. Multiple pairs of bifurcation points and

secondary paths exist for cylindrical panels with a wide range of geometric

parameters. Even when the same constraint is applied to the nodes on

different layers in the thickness direction, the limit loads on the primary path,

and the number and location of secondary paths are dramatically different.
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