


Abstract

Models and Methods for Evolutionary Histories Involving

Hybridization and Incomplete Lineage Sorting

by

Yun Yu

Hybridization plays an important evolutionary role in several groups of organisms. A

phylogenetic approach to detecting hybridization entails sequencing multiple loci across

the genomes of a group of species of interest, reconstructing their gene trees, and exploit-

ing their differences as signal of hybridization. However, methods that follow this approach

mostly ignore population effects, such as incomplete lineage sorting (ILS). Given that hy-

bridization occurs between closely related organisms, ILS may very well be at play and,

hence, must be accounted for in the analysis framework. Methods that account for both

hybridization and ILS currently exist for only very limited cases. The contributions of my

work are two-fold:

• I devised the first parsimony criterion for the inference of phylogenetic networks

(topologies alone) in the presence of ILS, along with new algorithms for the infer-

ence.

• I devised the first likelihood criterion for the inference of phylogenetic networks

(topologies, branch lengths, and inheritance probabilities) in the presence of ILS,

along with new algorithms for the inference.



iii

I have implemented all the algorithms in our open-source, publicly available PhyloNet

software package, and studied their performance in extensive simulation studies. Both the

parsimony and likelihood approaches show very good performance in terms of identifying

the location of hybridization events, as well as estimating the proportions of genes inherited

through hybridization. Also, the parsimony approach shows good performance in terms of

efficiency on handling large data sets in the experiments. For the likelihood approach, I

used information criteria and cross-validation to account for the model selection issue, and

used parametric bootstrap to evaluate the confidence of the inferred species phylogenies.

Furthermore, I analyzed two biological data sets (a data sets of yeast genomes and another

of house mouse genomes) and found support for hybridization in both.

My work will allow, for the first time, systematic phylogenomic analyses of data sets

where hybridization is suspected. Thus, biologists will be able now to revisit existing

analyses and conduct new ones with richer evolutionary models and inference methods.

Further, the computational techniques presented here can be extended to other reticulate

evolutionary events, such as horizontal gene transfer, which are believed to be ubiquitous

in bacteria.
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Chapter 1

Introduction

Phylogenetic trees have long been a mainstay of biology, providing an interpretative model

of the evolution of molecules and characters and a backdrop against which comparative

genomics and phonemics are conducted. Nevertheless, some evolutionary events, most

notably horizontal gene transfer (HGT) in prokaryotes and hybridization in eukaryotes,

necessitate going beyond trees [BvIJ+13]. These events result in reticulate evolutionary

histories, best modeled by phylogenetic networks, which account for both vertical and non-

vertical evolutionary events [Nak10]. Reticulation events result in genomic regions with

local genealogies that are incongruent with the speciation pattern. Several methods and

heuristics utilize this incongruence as a signal for inferring reticulation events and recon-

structing phylogenetic networks from local genealogies. These methods, which are sur-

veyed in [HRS10, Nak10, Nak13], assume that reticulation events are the sole cause of

all incongruence among the gene trees and seek phylogenetic networks to explain all the

incongruence.

However, in addition to hybridization, the incongruence among gene trees may be partly

1
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caused by incomplete lineage sorting (ILS), or deep coalescence events [Mad97]. Recent

studies have documented large extents of incomplete lineage sorting in groups of organ-

isms across the Tree of Life [SWCL05, PIME06, TSIN08, KWK08, CHW+09, WAD+09,

HDH+11, TKS+12]. Therefore ignoring the presence of incomplete lineage sorting could

result in an over- or under-estimation of the amount of hybridization events and/or wrong

inference of the location of these events. Indeed, several recent studies have shown that

detecting hybridization in practice can be complicated by the presence incomplete lineage

sorting (ILS) [GKB+10, EM12, SLM+12a, The12, MR12]. A wide array of methods have

been developed for species tree inference from gene tree topologies when all incongruence

is assumed to be due to incomplete lineage sorting; see [DR09, LYK+09, RY08] for recent

surveys of such methods.

Recently, a set of methods were devised to analyze data where reticulation and ILS

might both be simultaneously at play [HOLM06, MK09, Kub09, JML09, YTDN11, JSO12].

However, these methods are all applicable to simple scenarios of species evolution and

mostly assume a known hypothesis about the topology of the phylogenetic network. And

therefore, general methods for reconstructing such evolutionary histories are still missing.

1.1 Contributions of this thesis

The contributions of my work are two-fold:

• I devised the first parsimony criterion for the inference of phylogenetic networks

(topologies alone) in the presence of ILS, along with new algorithms for the infer-

ence.
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• I devised the first likelihood criterion for the inference of phylogenetic networks

(topologies, branch lengths, and inheritance probabilities) in the presence of ILS,

along with new algorithms for the inference.

I have implemented all the algorithms in our open-source, publicly available PhyloNet

software package [TRN08], and studied their performance in extensive simulation stud-

ies. Both the parsimony and likelihood approaches show very good performance in terms

of identifying the location of hybridization events, as well as estimating the proportions

of genes that underwent hybridization. Also, the parsimony approach shows good perfor-

mance in terms of efficiency on handling large data sets in the experiments. Further, I

analyzed two biological data sets (a data set of yeast genomes and another of house mouse

genomes) and found support for hybridization in both.

My work will allow, for the first time, systematic phylogenomic analyses of data sets

where hybridization is suspected. Thus, biologists will be able now to revisit existing

analyses and conduct new ones with richer evolutionary models and inference methods.

Further, the computational techniques presented here can be extended to other reticulate

evolutionary events, such as horizontal gene transfer, which are believed to be ubiquitous

in bacteria.



Chapter 2

Background

2.1 Incomplete lineage sorting

Incomplete lineage sorting is best understood under the coalescent model [DR06, DS05a,

Hud83, Nei86, Nei87, Ros02, Taj83, Tak89]. The coalescent model views gene lineages

moving backward in time, eventually coalescing down to one lineage. The term coales-

cence refers to the process in which, looking backward in time, two gene lineages merge at

a common ancestor. Under the coalescent model, the evolution of a gene is viewed “back-

ward” in time; that is, from the leaves toward the root. Therefore, we refer to lineages

“entering” a directed branch b = (u, v) as those that, when looking backward in time, come

directly from under node v. Similarly, we refer to lineages “exiting” a branch b = (u, v)

as those that, when looking backward in time, come directly from under node u. In each

time interval between species divergences, lineages entering the interval from a more re-

cent time period might or might not coalesce—an event whose probability is determined

largely by the population size and branch lengths. ILS, or deep coalescence, refers to the

4
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case in which two lineages fail to coalesce before their speciation events. It is more likely

to happen for a larger population or a shorter branch length. For example, in Fig. 2.1, the

reconciliation (a way gene tree is reconciled within the branches of a species phylogeny)

shown in blue lines within the branches of the species tree ST indicates that lineage from

A and lineage from B did not coalesce on branch (r, w), and instead, both of them went

further. After entering the branch incident with the root r, lineage from B coalesce with C

first and then coalesce with A. The resulting gene tree is g2 on the left, which disagree with

the species tree ST . In this case, we say incomplete lineage sorting occurred on branch

(r, w) of ST .

A CB

t
A CB A CB A C B

ST gt1 gt2 gt3g1 g2 g3

w

r

Figure 2.1: Gene/species tree incongruence due to ILS. Given species tree ST , with con-

stant population size throughout and time t in coalescent units (number of generations di-

vided by the population size) between the two divergence events, each of the three gene tree

topologies g1, g2, and g3 may be observed, with probabilities 1 − (2/3)e−t, (1/3)e−t, and

(1/3)e−t, respectively. Blue lines within the branches of the species tree is the coalescent

history of gene tree g2.
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2.2 The species/gene tree problem under ILS

The phenomenon of species tree/gene tree incongruence arises in phylogenomic studies

[Mad97], and incomplete lineage sorting is one of the factor that may cause this incongru-

ence. A wide array of methods have been developed for species tree inference from gene

tree topologies when all incongruence is assumed to be due to incomplete lineage sorting;

see [DR09, LYK+09, RY08] for recent surveys of such methods.

In Fig. 2.1, the blue lines within the branches of ST is called a coalescent history,

which describes how a gene evolves within the branches of a phylogenetic tree. Let V (t)

denote the set of nodes in a tree t, and let tu denote the subtree of tree t that is rooted at node

u. Given gene tree g and species tree T , a coalescent history is a function h : V (g)→ V (T )

such that the following conditions hold:

• if w is a leaf in g, then h(w) is the leaf in T with the same label (in the case of

multiple alleles, h(w) is the leaf in T with the label of the species from which the

allele labeling leaf w in g is sampled); and,

• if w is a node in gv, then h(w) is a node in Th(v).

Given a species tree T and a gene tree g, HT (g) denotes the set of all coalescent histories;

mathematical properties and algorithms for computing HT (g) have been given [Ros07,

TRIN07].

Under the coalescent model, a gene tree can be viewed as a random variable conditional

on a species tree. For the species tree ((A,B), C), with time t between species divergences,

Fig. 2.1 shows the three possible outcomes for the gene tree topology random variable,
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along with their probabilities. In fact, Degnan and Salter [DS05b] gave the mass probability

function of a gene tree topology g for a given species tree ψ with branch lengths λ as

Pψλ(G = g) =
∑

h∈Hψ(g)

∏
b

p(b, h), (2.1)

where p(b, h) is the probability within a given branch b of the species tree ψ that the coales-

cence events specified by the coalescent history h occur. In this equation, the summation

is taken over all coalescent histories of the gene tree topology, given the species tree and

its branch lengths, and the product is taken over all branches of the species tree. Later,

Wu [Wu12] proposed an algorithm for faster computation of Pψλ(G = g) without explic-

itly enumerating coalescent histories. Given a collection of gene trees G , the inference of

species tree becomes finding the optimal species tree ψ∗λ∗ such that

ψ∗λ∗ = argmaxψλ
P (G |ψλ) = argmaxψλ

∏
g∈G

P (g|ψλ). (2.2)

On the other hand, a parsimony approach was proposed for the same goal using min-

imizing deep coalescence (MDC) as criterion. Given a coalescent history h, the number

of extra lineages arising from h on a branch b = (u, v) in a specie tree ψ is the number

of gene tree lineages exiting branch b from below node u toward the root, minus one. So

for the species tree and coalescent history shown in Fig. 2.1, the number of extra lineages

on branch (r, w) is 1. Then XL(ψ, g), the minimum number of extra lineages required to

reconcile a gene tree g within the branches of a species tree ψ, can be calculated as

XL(ψ, g) = min
h∈Hψ(g)

XL(ψ, h). (2.3)

where XL(ψ, h) is the number of extra lineages arising from coalescent history h on the

entire species tree ψ which is the sum of the extra lineages over all branches of ψ given h.
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Finally, the inference of species tree given a collection of gene trees G becomes finding the

optimal species tree ψ∗ such that

ψ∗ = argminψXL(ψ,G ) = argminψ
∑
g∈G

XL(ψ, g). (2.4)

Efficient algorithms for finding optimal ψ∗ have been developed for cases when the gene

tree is rooted or unrooted, binary or non-binary, and on single and multiple alleles [TN09,

YWN11a, YWN11b].

2.3 Incomplete lineage sorting and hybridization

Hybridization plays an important evolutionary role in several groups of organisms. A

phylogenetic approach to detect hybridization entails sequencing multiple loci across the

genomes of a group of species of interest, reconstructing their gene trees, and taking their

differences as indicators of hybridization. For example, in Fig. 2.2A, there are two gene

trees growing within the branches of the phylogenetic network. At the reticulation node,

the ancestral alleles B in these two gene trees are inherited from different parents, which

results in two different gene tree topologies ((A,B), C) and (A, (B,C)). So the incongru-

ence among gene trees can be signal of hybridization when incomplete lineage sorting is

not involved.

As hybridization occur between closely related species, incomplete lineage sorting oc-

curs in similar scenario. Fig. 2.2B gave an example of what may happen if hybridization

and incomplete lineage sorting are both taken into the picture. The ancestral alleles B in

red gene tree and blue gene tree are inherited from different parents at the reticulation node,

which is the same as what is shown in Fig. 2.2A. However, after that, incomplete lineage
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A B C A B C

(A) (B)

Figure 2.2: Illustration of scenario where incomplete lineage sorting may blur the signal of

hybridization. (A) A phylogenetic network and two gene trees (one in blue and the other in

red) where incomplete lineage sorting is not involved. (B) A phylogenetic network and two

gene trees (one in blue and the other in red) where incomplete lineage sorting is involved

and blur the signal of hybridization.

sorting occurred in the red gene tree, and as a result, the red gene tree and blue gene tree

have the same topology. In this case, incomplete lineage sorting actually blurs the signal of

hybridization. And therefore, methods ignoring the presence of incomplete lineage sorting

could result in an over- or under-estimation of the amount of hybridization events and/or

wrong inference of the location of these events. It is important to account for incomplete

lineage sorting and hybridization simultaneously.

Recently, attemps have been made for this task [HOLM06, MK09, Kub09, JML09,

YTDN11, JSO12]. However, they all focused on very limited special cases where the

phylogenetic network topology is known and contains one or two hybridization events, and

a single allele sampled per species.
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2.4 Phylogenetic networks

The term phylogenetic network has grown to become an umbrella term that encompasses

any non-treelike model [HRS10]; therefore, it is important to explicitly describe the phy-

logenetic network model used. Since I am concerned with hybridization and deep coa-

lescence, I use the evolutionary, or hybridization, phylogenetic network model given in

[Nak10], which I now briefly review.

Definition 1 A phylogenetic X -network, or X -network for short, N is an ordered pair

(G, `), whereG = (V,E) is a directed, acyclic graph (DAG) with V = {r}∪VL∪VT ∪VN ,

where

• indeg(r) = 0 (r is the root of N );

• ∀v ∈ VL, indeg(v) = 1 and outdeg(v) = 0 (VL are the external tree nodes, or leaves,

of N );

• ∀v ∈ VT , indeg(v) = 1 and outdeg(v) ≥ 2 (VT are the internal tree nodes of N );

and,

• ∀v ∈ VN , indeg(v) = 2 and outdeg(v) = 1 (VN are the reticulation nodes of N ),

E ⊆ V ×V are the network’s edges, including reticulation edges whose heads are reticula-

tion nodes, and tree edges whose heads are tree nodes., and ` : VL →X is the leaf-labeling

function, which is a bijection from VL to X .

I use V (N) and E(N) to denote the set of nodes and edges of phylogenetic network N

respectively. Fig. 2.3 shows an example of a phylogenetic network based on Definition 1.
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In addition to the topology of a phylogenetic network N , I associate with each branch

b = (u, v) in the network a branch length, denoted by λb (equivalently, λ(u,v)), which

reflects the time in coalescent units between the two endpoints of the branch. To describe all

branch lengths of a phylogenetic network, a vector λ with one entry per branch is provided.

In addition, for each reticulation node h, with two parent edges b1 = (u, h) and b2 = (v, h),

I associate inheritance probabilities γb1 (equivalently, γ(u,h)) and γb2 (equivalently, γ(v,h)),

such that γb1 , γb2 ∈ [0, 1] and γb1 + γb2 = 1. The parameter γ(x,h) is taken to denote the

proportion of alleles in the population h that are inherited from population x. To describe

all hybridization probabilities associated with a phylogenetic network, a vector γ with one

entry per reticulation edge is provided.

A DCB

r

h
u v

w t7t6

t5
t4

t3

t2t1

γ 1-γ
t8 t9

i j k l

Figure 2.3: A phylogenetic network N , and its associated branch lengths and inheritance

probabilities. The network has 9 nodes (solid circles), which include the root r, one

network-node, h, 4 leaves (bijectively labeled by the set X = {A,B,C,D}), and 3 in-

ternal tree-nodes. Shown also are the branch lengths (red) and inheritance probabilities

(blue).

Note that a phylogenetic tree is a phylogenetic network with VN = ∅. For a phyloge-

netic tree T , γb = 1 for all b ∈ E(T ). Hence, we omit the inheritance probabilities γ and
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use Tλ to denote a phylogenetic tree T with branch lengths λ .

2.5 Coalescent histories on phylogenetic networks

The notion of coalescent histories is central to my work. In this section, I will introduce

the definition of coalescent history given a gene tree and a phylogenetic network [YDN12,

YDLN14]. Here, I distinguish between cases where whether the branch lengths of the gene

tree and phylogenetic network are taken into account or not.

2.5.1 Using only topologies of gene trees

In Section 2.2, the definition of coalescent history on species tree is introduced. A similar

notion of coalescent histories can be defined on phylogenetic networks. Let N be a phylo-

genetic network and u be a node in V (N). I denote by Nu the set of nodes in N that are

under node u (that is, the set of nodes that are reachable from the root of N via at least one

path that goes through node u). I can now define a coalescent history of a gene tree g and a

species (phylogenetic) network N as a function h : V (g)→ V (N) such that the following

conditions hold:

• if w is a leaf in g, then h(w) is the leaf in N with the same label (the same as above

in the case of multiple alleles); and,

• if w is a node in gv, then h(w) is a node in Nh(v).

Given a phylogenetic network N and a gene tree g, I denote by HN(g) the set of all coales-

cent histories. See Fig. 2.4 for an illustration.
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Figure 2.4: Illustrations of coalescent histories of a gene tree within the branches of a

phylogenetic network. The top part is the given phylogenetic network N and gene tree g

and the bottom part is ten possible coalescent histories. For visual clarity, gene tree nodes

are mapped to branches in the phylogenetic network; under our mathematical definition

of a coalescent history (see text), drawing a set of gene tree nodes inside a branch e =

(u, v) in the phylogenetic network corresponds to mapping all those nodes to node v in the

phylogenetic network.

The algorithm given in [TRIN07] for computing the set HT (g) does not apply to the

case when the species phylogeny is a network; that is, for computing HN(g). Further, a

phylogenetic network is parameterized with inheritance probabilities γ that must be asso-

ciated properly with the coalescent histories to obtain the gene tree probability.
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2.5.2 Using both topologies and branch lengths of gene trees

Given a gene tree g and a species tree ST , if both the topology and branch lengths of the

gene tree are taken into account, then there is only one way of reconciling g within the

branches of ST . However, when the species phylogeny is a network N , there might be

more than one reconciliation due to different paths gene lineages can take at reticulation

nodes of N when tracing them backwards in time.

First, I use τψλ
(v) to denote the height of node v in phylogeny ψ with branch lengths

λ. Then given a gene tree gλ′ and a phylogenetic network Nλ,γ , a coalescent history with

respect to coalescence times can be defined as a function ht : V (gλ′)→ E(Nλ,γ), such that

the following condition holds: for h ∈ HN(g), if h(v) = (x, y) and τNλ
(x) > τgλ′ (v) ≥

τNλ
(y), then ht(v) = (x, y). And τgλ′ (v) tells us exactly on which point of branch (x, y)

coalescent event v happens. Furthermore, I denote the set of coalescent histories with re-

spect to coalescence times for gene tree gλ′ and phylogenetic network Nλ,γ by HNλ,γ
(gλ′).

Clearly, HNλ,γ
(gλ′) ⊆ HN(g), but HNλ,γ

(gλ′) itself changes with both λ and λ′.

To better illustrate it, an example is shown in Fig. 2.5, where the same phylogenetic

network and gene tree are used as the ones in Fig. 2.4, but with branch lengths. We

can see that there are only two coalescent histories with respect to coalescence times, ht1

and ht2, resulting from different paths b1 and b2 took at the reticulation node. And their

corresponding coalescent histories in Fig. 2.4 are h5 and h6, respectively. It is important

to note that some λ and λ′ may result in HNλ,γ
(gλ′) = ∅, which means gλ′ cannot be

reconciled within the branches of Nλ,γ with respect to their coalescence times.
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Figure 2.5: A phylogenetic network Nλ,γ , a gene tree gλ′ , and the two possible coalescent

histories with respect to coalescence times of gλ′ within the branches of Nλ,γ . One allele

is sampled from taxa A and C, and two alleles from taxon B. As shown in the figure, τ1, τ2

and τ3 are the heights of the three internal nodes of gλ′ , and η1, η2, η3 and η4 are the heights

of four internal nodes of Nλ,γ .



Chapter 3

Parsimonious inference of phylogenetic

networks

In this chapter, I propose methods for inferring phylogenetic network from a collection

of gene trees under a parsimony criterion MDC (minimizing deep coalescence). More

specifically, given a phylogenetic network N and a collection of gene trees G , the goal is

to infer the optimal phylogenetic network N∗ such that

N∗ = argminNXL(N,G ) (3.1)

where XL(N,G ) is the minimum total number of extra lineages required to reconcile all

gene trees G within the branches of N , which equals

XL(N,G ) =
∑
g∈G

XL(N, g) (3.2)

where XL(N, g) denotes the minimum number of extra lineages required to reconcile g

within the branches of N . Note that for this maximum parsimony method N represents the

topology of the network only.

16
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3.1 Computing the minimum number of extra lineages given

a phylogenetic network and a gene tree

Given a coalescent history h and a phylogenetic network N , the number of extra lineages

arising from h on the entire network N , denoted by XL(N, h), is the sum of the extra

lineages over all branches of N (excluding branches that have zero lineages exiting them).

Table 3.1 lists the number of extra lineages of all coalescent histories in Fig. 2.4.

Using coalescent histories, the minimum number of extra lineages required to reconcile

gene tree g within the branches of N , denoted by XL(N, g), can then be calculated by

XL(N, g) = min
h∈HN (g)

XL(N, h) (3.3)

Obviously, under MDC (minimizing deep coalescence) criterion, the optimal coalescent

history refers to the one that results in the fewest number of extra lineages [Mad97, TN09],

and thus,

XL(N, g) =
∑

e∈E(N)

[ke(g)− 1] (3.4)

where ke(g) is the number of extra lineages on edge e of N in the optimal coalescent

history of gene tree g. When the species phylogeny N is a tree, efficient algorithms have

been developed to compute term ke(g) in Eq. 3.4 for cases when the gene tree is rooted

or unrooted, binary or non-binary, and on single and multiple alleles [TN09, YWN11a,

YWN11b].

In this section, I propose two methods for computing XL(N, g) the minimum number

of extra lineages that is required to reconcile a given gene tree within the branches of a

given phylogenetic network. One of the two methods is based on the concept of multil-
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Table 3.1: The number of extra lineages of all coalescent histories in Fig. 2.4. For every

coalescent history h, columns from 2 to 7 list number of extra lineages on every branch

given h. Branch 6 is the branch incident into the root of the species network N . A dash

means no gene lineages enter that branch. Therefore, the total number of extra lineages

of a coalescent history is the summation taken over all branches of the species network.

The highlighted coalescent histories are the optimal ones under parsimony which have the

minimum number of total extra lineages.

XL(N, h) on each branch Total

1 2 3 4 5 6

h1 0 0 − 1 − 0 1

h2 0 − 0 − 1 0 1

h3 1 0 − 1 − 0 2

h4 1 − 0 − 1 0 2

h5 1 1 − 1 − 0 3

h6 1 − 1 − 1 0 3

h7 1 1 − 2 − 0 4

h8 1 − 1 − 2 0 4

h9 1 0 0 1 1 0 3

h10 1 0 0 1 1 0 3
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abeled (MUL) tree [YBN13], and the other is based on the concept of weighted ancestral

configurations [YRN13].

3.1.1 An algorithm based on MUL trees

Central to this algorithm is converting the phylogenetic network to a multilabeled tree, or

MUL tree [HOLM06]. A MUL tree is not a true phylogenetic tree, since its leaves are not

uniquely labeled by a taxa set. However, I show in this work that the MUL tree representa-

tion of a phylogenetic network allows us to extend the calculation of the minimum number

of extra lineages of gene tree on a phylogenetic tree in a straightforward manner to cases

where hybridization may be involved.

Given a phylogenetic network N and a gene tree G , the approach for computing the

minimum number of extra lineages to reconcile gene tree G within the branches of network

N has three steps. First, N is converted into a MUL tree T ; second, the alleles at the tips

of G are mapped in every valid way to the tips of T ; and, finally, the minimum number

of extra lineages of N and G is computed as the minimum, over all allele mappings, of

number of extra lineages of G given T (see Fig. 3.1).

Step 1: Converting the phylogenetic network to MUL tree

Central to our formulation/algorithm for computing the probability of a gene tree given

a phylogenetic network is converting the phylogenetic network to a multilabeled tree, or

MUL tree [HOLM06]. A MUL tree is not a true phylogenetic tree, since its leaves are

not uniquely labeled by a taxa set. However, we show in this work that the MUL tree

representation of a phylogenetic network allows us to extend coalescent-based calculations
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Figure 3.1: Illustration of the conversion from a phylogenetic network to a MUL tree, as

well as all allele mappings associated with the case in which single alleles a, b, c and d

were sampled from each of the four species A, B, C and D, respectively.

of gene tree probabilities in a straightforward manner to cases where hybridization may be

involved.

It is straightforward to convert a phylogenetic network into its corresponding MUL tree.

The main idea is to process the phylogenetic network in a bottom-up fashion, traversing its

nodes from the leaves towards the root. Every time a network-node h is encountered, a

copy of the tree rooted at h is created, and each of h’s two parents points to exactly one

of these two copies. As the traversal operates in a bottom-up fashion, it is guaranteed

that when a network-node is encountered, there are no network-nodes remaining “under”

it (they would have been processed already). In addition to the topology, the conversion

maps the branch lengths and inheritance probabilities to the appropriate branches as well.

Finally, as a single edge in a phylogenetic network N may give rise to multiple edges in

the MUL tree T , in order to keep track of which branches in the MUL tree originated from

the same branch in the phylogenetic network, we build during the conversion a mapping w
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from the set of the MUL tree branches to the set of the phylogenetic network branches, such

that φ(e′) = e if branch e′ in the MUL tree corresponds to branch e in the phylogenetic

network. The usage of this φ mapping will become clearer below. Upon completion of

this step of converting the phylogenetic network N , its branch lengths λ and inheritance

probabilities γ, the result is a MUL tree T along with its branch lengths λ′, inheritance

probabilities γ′, and the branch mapping φ : E(T ) → E(N). The full description of the

procedure is given formally in Algorithm 1 (NetworkToMULTree).

Algorithm 1: NetworkToMULTree.
Input: Phylogenetic X -network N ; branch lengths λ; inheritance probabilities γ.

Output: MUL tree T ; branch lengths λ′; inheritance probabilities γ′; edge mapping

φ : E(T )→ E(N).

T ← N and set φ(e′) = e where e′ ∈ E(T ) is a copy of e ∈ E(N);

λ′←λ;

foreach b ∈ E(T ) do

γ′b ← 1;

while traversing the nodes of T bottom-up do

if node h has two parents, u and v then
Create a copy of Th whose root is new node h′ and set φ(e′) = φ(e) where

e′ ∈ E(Th′) is a copy of e ∈ E(Th);

Add a new edge (v, h′) to T and γ′(v,h′) ← γ(v,h);

Delete edge (v, h) from T , as well as γ′(v,h), λ
′
(v,h) and φ(v,h);

return T ;
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The MUL tree T that corresponds to the phylogenetic network N of Fig. 2.3 is given in

Fig. 3.2. In this example, traversing the phylogenetic network from the leaves towards the

root, the reticulation node h is encountered who has parents u and v, a copy of the subtree

rooted at h is created, and then one of the two copies of h is attached as a child of u, and

the other is attached as a child of v, resulting in the MUL tree shown in Fig. 3.2 along

with its branch lengths and inheritance probabilities. The corresponding branch mapping

φ : E(T )→ E(N) is listed below:

• φ((u, i)) = (u, i), φ((v, l)) = (v, l), φ((u, h)) = (u, h), φ((v, h′)) = (v, h), φ((r, u)) =

(r, u), and φ((r, v)) = (r, v).

• φ((h,w)) = φ((h′, w′)) = (h,w).

• φ((w, j)) = φ((w′, j′)) = (w, j).

• φ((w, k)) = φ((w′, k′)) = (w, k).

A D

r

u v

CB

h

t7t6

t5t9t3

t2t1

γ 1-γ

CB

h'

t7
t6

t4

i lj j'k k'

t8
t4w w'

Figure 3.2: The MUL tree, branch lengths (red), and inheritance probabilities (blue), that

correspond to the phylogenetic network of Fig. 2.3, as generated by Algorithm 1. In the

MUL tree, each branch has an inheritance probability; values not shown here equal 1.
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It is important to note that it is possible that two different phylogenetic network topolo-

gies give rise to the same MUL tree topology, and under certain settings of branch lengths

and inheritance probabilities, the networks may also give rise to identical MUL tree topolo-

gies and branch parameters (which, by definition, would result in non-identifiability of the

topology and/or parameter values). However, if the parameter values differ between the

two networks, they may still be identifiable, even though the two networks give rise to the

same MUL tree topology. This issue is illustrated in Fig. 3.3.

E DCBA

α β

γ

E DCBA

α
β

γ

N1 N2

E DCBA EEE

α β
γ γ

1-α 1-β
1-γ 1-γ

E DCBA EEE

α β
γ γ

1-α 1-β
1-γ 1-γ

T1 T2

Figure 3.3: Two phylogenetic networks N1 and N2, along with their corresponding MUL

trees T1 and T2, respectively. T1 and T2 share the same topology but differ in inheritance

probabilities.

The phylogenetic network N1 involves a hybridization between A and B, a hybridiza-

tion between C and D, and a hybridization of the two hybrids. MUL tree T1 is obtained

from N1. The phylogenetic network N2 involves a hybridization between A and C, a hy-
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bridization between B and D, and a hybridization between the two hybrids. MUL tree

T2 is obtained from N2. As shown in the figure, T1 and T2 share the same topology, but

differ in inheritance probabilities. Further, different lengths of the branches of the two net-

works would result in different branch lengths of the MUL trees produced from each of the

networks.

Step 2: Mapping the alleles to the leaves of the MUL tree

In computing the minimum number of extra lineages required to reconcile a gene tree

within the branches of a phylogenetic network, all the alleles sampled from species x are

mapped to the single leaf labeled x in the species phylogeny. However, unless the phyloge-

netic network N does not have any reticulation nodes, the resulting MUL tree T contains

leaf sets that are labeled by the same species x. For example, in Fig. 3.1, the MUL tree has

two leaves labeled B and two leaves labeled C. In this case, it is important to map the al-

leles systematically to the leaves of the MUL tree so as to cover exactly all the coalescence

patterns that would arise had the alleles been mapped to the phylogenetic network.

I denote by cx the set of leaf nodes in T that are labeled by species x. For example, cB

for the MUL tree in Fig. 3.1 is the set of the two leaves labeled by B. Now, consider a

locus l. I denote by Ax (for x ∈ X ) the set of alleles sampled from species x for locus l,

and by ax the size of this set (i.e., ax = |Ax|). In the example of Fig. 3.1, one allele b was

sampled from species B; hence, AB = {b} and aB = 1. An allele mapping is a function

f : (∪x∈X Ax) → (∪x∈X cx) such that if f(a) = d, and d ∈ cx, then a ∈ Ax. In other

words, f maps an allele from species x to a leaf in the MUL tree labeled by x. Let FT,g

denote the set of all such allele mappings f given MUL tree T and gene tree G ; in Fig. 3.1,
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FT,g = {f1, f2, f3, f4}.

Step 3: Computing the minimum number of extra lineages of a gene tree on the MUL

tree

Once the MUL tree T and the set of all allele mappings FT,g are obtained, the mini-

mum number of extra lineages of gene tree G within MUL tree T can be computed as the

minimum number of extra lineages of G within T over all possible allele mappings. Let

XL(T, g) be the minimum number of extra lineages of G within T , andXL(T, g, f) be the

minimum number of extra lineages of G within T under allele mapping f . Then XL(T, g)

can be computed as

XL(T, g) = min
f∈FT,g

XL(T, g, f). (3.5)

Before introducing how to complete the computation in Eq. 3.5, it is important to first

understand what is coalescent history given a gene tree and a MUL tree. Let T be a MUL

tree, G be a gene tree, and f be an allele mapping. Then, a coalescent history is a function

h : V (g)→ V (T ) such that the following conditions hold:

• if w is a leaf in G , then h(w) = f(a) where a is the allele that labels leaf w; and,

• if w is a node in gv, then h(w) is a node in Th(v).

I denote by HT,f (g) the set of all coalescent histories of gene tree G within the branches of

MUL tree T given the allele mapping f .

Table 3.2 lists all the coalescent histories of the gene tree and the corresponding MUL

tree of the phylogenetic network in Fig. 2.4. Each row in the table gives the branches of the

MUL tree (see Fig. 3.4 for numbers of branches of the MUL tree) on which the coalescent
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events, represented by the gene tree internal nodes x, y and z, occur. For each coalescent

history within the branches of the MUL tree, the corresponding coalescent history within

the branches of the original phylogenetic network in Fig. 2.4 is given in the last column.

Note that there is a 1-1 correspondence, which implies that the allele mappings of the

MUL tree do cover exactly all the coalescence patterns that would arise had the alleles

been mapped to the phylogenetic network.

A DCB CB

1
2

3

4
5

6
7

Figure 3.4: The MUL tree from Fig. 3.2 with its branches numbered.

As shown in Eq. 3.4, XL(N, g) is equal to the minimum number of extra lineages

over all coalescent histories of gene tree G within the branches of phylogenetic network

N . This also applies to XL(T, g, f). I denote by HT,f (g) the set of all coalescent histories

of G within the branches of T under mapping f , and by XL(T, h) the number of extra

lineages of a certain coalescent history h ∈ HT,f (g). Then XL(T, g, f) in Eq. 3.5 can be

calculated as

XL(T, g, f) = min
h∈HT,f (g)

XL(T, h). (3.6)

Converting a phylogenetic network into a MUL tree enables me to avoid dealing with

network topologies and make use of the existing techniques that have been developed for

trees. More specifically, techniques for fast computing Eq. 3.4 without explicitly enumerat-

ing all coalescent histories when N is a tree [TN09, YWN11a, YWN11b] can be applied to
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Table 3.2: The coalescent histories of the gene tree topology and the corresponding MUL

tree of phylogenetic network in Fig. 2.4. Allele mappings in first column are from Fig.

3.1. In the second column, x, y, and z are the internal nodes of the gene tree, and each

number corresponds to the branch in the MUL tree (see Fig. 3.4) to which the internal

nodes of the gene tree is mapped. The last column shows the 1-1 correspondence between

the coalescent history of the gene tree given the MUL tree and the coalescent history of the

gene tree given the phylogenetic network in Fig. 2.4.

Allele mapping x y z Coal. hist. in Fig. 2.4

f1

7 1 7 h1

7 2 7 h3

7 3 7 h5

7 7 7 h7

f2 7 7 7 h10

f3 7 7 7 h9

f4

7 4 7 h2

7 5 7 h4

7 6 7 h6

7 7 7 h8
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XL(T, g, f), too. However, MUL tree is not a regular species tree, special attention needs

to be paid to sets of branches in the MUL tree that correspond to single branches in the

phylogenetic network, since coalescence events within these branches are not independent.

Let me illustrate this issue using MUL tree T and allele mapping f2 in Fig. 3.1. Under

this mapping, the optimal coalescent history is shown on the left in Fig. 3.5. Tracing allele

from B and allele from C independently implicitly indicates that tracing the evolution of

these two alleles in the phylogenetic network, no coalescence event should occur on the

branch incident into leaf B in the network. And the number extra linages is 0 for both

edge (h1, w1) and (h2, w2). However, if going back to the original phylogenetic network,

the corresponding coalescent history on the right in Fig. 3.5 shows clearly that there is 1

extra lineage on edge (h,w) of the network. In fact, edge (h1, w1) and (h2, w2) in MUL

tree are both copies of edge (h,w) in the network, or φ(h1, w1) = φ(h2, w2) = (h,w),

which implies that branches in the MUL tree that originally come from the same branch in

the phylogenetic network should be handled together. More specifically, let e′ be an edge

in N . Given the mapping φ from the branches of T to the branches of N , the pre-image

(or, inverse image) φ−1(e′) is the set of all branches in T that map to b′ under φ. That is,

φ−1(e′) = {e ∈ E(T ) : φ(e) = e′}, where E(T ) is the set of T ’s branches.to account for

this issue. Then, Eq. 3.4 is modified for MUL tree as follows

XL(T, g, f) =
∑

e′∈E(N)

[
∑

e∈φ−1(e′)

ke(g, f)− 1]. (3.7)

where ke(g, f) is number of lineages on branch e in the optimal coalescent history of G

under allele mapping f . Techniques to compute ke(g, f) completely follow the existing
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methods [TN09, YWN11a, YWN11b].

A B C D
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Figure 3.5: Illustration of the dependence of the sets of branches in the MUL tree that

correspond to single branches in the phylogenetic network. Given gene tree, MUL tree and

allele mapping f2 in Fig. 3.1, the optimal coalescent histories of the gene tree within the

branches of the MUL tree (Left) and its corresponding coalescent history in the original

phylogenetic network (Right).

Finally, plugging Eq. 3.7 into Eq. 3.5, the minimum number of extra lineages of a gene

tree G within a MUL tree T can be calculated by

XL(T, g) = min
f∈FT,g

∑
e′∈E(N)

[
∑

e∈φ−1(e′)

ke(g, f)− 1]. (3.8)

The running time of this method depends on the number of allele mappings which is

exponential in a combination of the number of alleles sampled and the number of retic-

ulation nodes. More precisely, for every leaf x in N , let a(x) be the number of al-

leles sampled from x and h(x) be the maximum number of reticulation nodes on all

possible paths from x to the root of N , then the number of allele mappings is at most

2
∑
x∈VL(N) h(x)a(x) where VL(N) is the set of leaves of N . In addition, the MUL tree T con-

verted from N can have at most
∑

x∈VL(N) h(x) leaves, so XL(T, g, f) can be computed in
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O(
∑

x∈VL(N) h(x)) time [YWN11b, YWN11a]. As a result, XL(T, g) can be computed in

O(
∑

x∈VL(N) h(x) · 2
∑
x∈VL(N) h(x)a(x)) time. Clearly, the running time of this method does

not change for different gene tree topologies.

3.1.2 An algorithm based on weighted ancestral configurations

Ancestral configurations on networks

Central to this method is the concept of weighted ancestral configuration (AC, or simply

configuration). When its unweighted version was first introduced, it was defined on species

trees for computing the probability of gene tree topologies [Wu12]. However, the concept

is extended significantly here to apply to networks.

Given a species network N with q = |VN | reticulation nodes numbered 1, 2, . . . , q and

a gene tree g on set Y of alleles, an ancestral configuration can be associated with a node

v of N , denoted by ACv, or an edge e of N , denoted by ACe, and is an element of the set

2Y × Zq × R where the first element is the set of all subsets of alleles in Y , the second is

the set of all vectors of integers of size q, and the third element is the set of real numbers.

When the context is clear, I omit the subscript. For an AC (B, a, w), the interpretation is as

follows:

• B ⊆ A: a set of lineages that exist at the point (node or edge) with which the AC is

associated.

• a[i], for 1 ≤ i ≤ q: an index for the AC split that occurred at reticulation node i and

gave rise to B.



31

• w: a weight of the AC; I discuss below how to set/use this entry.

Given two ACs, AC1 = (B1, a1, w1) and AC2 = (B2, a2, w2), then AC1 and AC2 are

considered to be compatible if for each i, 1 ≤ i ≤ q, either a1[i] = a2[i] or a1[i] · a2[i] = 0;

otherwise, the two ACs are incompatible. Further, if B1 = B2 and a1 = a2, I say that the

two ACs are identical.

Ancestral configurations are computed in a bottom-up fashion by algorithm below. Two

major operations that occur as the algorithm proceed bottom-up are:

• Splitting an AC whenever a reticulation node is encountered. Let (B, a, w) be an

AC on the edge incident out of reticulation node k. Further, assume that for each

reticulation node i (1 ≤ i ≤ q), we have a counter oi, that is initialized to 0 at the start

of an algorithm. Splitting (B, a, w) at node k results in two ACs AC1 = (B1, a1, w1)

and AC2(B2, a2, w2), each associated with one of the two reticulation edges, such

that B1 ∪ B2 = B, B1 ∩ B2 = ∅, a1[k] = a2[k] = ok + 1, and ok is incremented by

1. For the weights, w1 = w and w2 = 0.

• Merging two ACs whenever an internal tree node is encountered. Let (B1, a1, w1)

and (B2, a2, w2) be two compatible ACs associated with the edges incident from a

tree node u. Then, these two ACs are merged into one AC (B, a, w) at node u where

B = B1 ∪ B2 and a[i] = max{a1[i], a2[i]} for all 1 ≤ i ≤ q. For the weights,

w = w1 + w2.

For AC = (B, a, w) I denote by n(AC) the quantity |B|. I denote by A C the set of ACs

associated with a node or edge. When A C is associated with an edge, it denotes the set

of ACs that result after all coalescence events took place on the edge. Fig. 3.6 shows the
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sets of all ACs constructed during the executions of the algorithms CountXL below. In

this example, in the network on the right in Fig. 3.6, the first configuration listed (with

the constituent set {a, b1, b2}) on branch 4 is compatible with the first configuration listed

(with the constituent set {c}) on branch 5, but is incompatible with the second configuration

listed (with the constituent set {c, b1, b2}) on branch 5.

BA D

{(y,[0],0)}

{(a,[0],0)} {(b,[0],0)} {(d,[0],0)}

{(a,[1],0),
(ay,[2],0)}

{(dy,[1],0),
(d,[2],0)}

{(a,[0],0)}
{(y,[0],0)}

{(d,[0],0)}
{(Φ,[1],0),
(y,[2],0)}

{(a,[1],0),
(ay,[2],1)}

{(dy,[1],1),
(d,[2],0)}

{(ady,[1],1),(ady,[2],1)}

{(y,[1],0),
(Φ,[2],0)}

{(bc,[0],0)}

C

{(c,[0],0)}

{(b,[0],0)} {(c,[0],0)}

Figure 3.6: The ancestral configurations that result during the computations given phylo-

genetic network and gene tree ((a, d), (b, c)) in Fig. 2.4 under the parsimony approach.

Configurations in blue represent configurations generated for nodes and configurations in

red represent configurations generated for branches. Curly braces and commas are removed

from the ACs for compactness (e.g., ady is the set {a, d, y}). The two identical weighted

ACs at the root of the network match the two optimal coalescent histories, h1 and h2, in

Table 3.1.

Assume m and n are two gene lineages that meet at some node in a gene tree g. When

reconciling g within the edges of a species network N , after the two entered the same edge

of N , they might or might not have coalesced before leaving that edge, the probability of
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which depends on the length (in terms of time) and width (in terms of population size) of

that edge. Therefore, one configuration entering a edge of N might give rise to several dif-

ferent configurations leaving that edge with different probabilities. For example, suppose a

gene tree g has a subtree ((a, b)x, c)y (tree with root y, leaf-child c of the root, child x of the

root, and two leaves a and b that are children of x). Then if a configuration ({a, b, c}, p, w)

entered a edge of N , it could give rise to one of three different configurations leaving that

branch, including {a, b, c} {x, c} and {y}. I denote by Coal(B, g), for a set B of lineages

and gene tree g, the set of all sets of lineages that B could coalesce into with respect to

the topology of g. Ancestral configurations provide a compact representation of coalescent

histories, thus allowing for efficient computing: while redundant parts that appear in dif-

ferent coalescent histories must be computed explicitly every time they are encountered,

particularly over the different allele mappings employed in the approaches of [YBN13] in-

troduced in Chapter 3.1 , using ancestral configurations ameliorates this by computing the

values only once for each ancestral configuration. Further, when these computations are

coupled with network space search, local perturbations to candidate networks necessitate

new computations to only a small number of ancestral configurations. I now show how to

use configurations to compute XL(N, g) efficiently.

Counting the number of extra lineages under ILS and hybridization

For a configuration AC, I denote by xl(AC) the minimum number of extra lineages arising

from coalescing the extant gene lineages in AC to the present gene lineages in AC. In this

method, weight w in (B, a, w) ∈ A C corresponds to xl(AC), where A C is either A C v

where v is a node, or A C b where b is a edge.
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Observation 1 Let AC = (B, a, w) be a configuration entering a edge b and AC+ =

(B+, a+, w+) be a configuration that AC coalesced into before leaving b. Then

w+ = w + max{n(AC+)− 1, 0} (3.9)

where n(AC+) is the number of lineages on edge b.

I define a function called CreateCACsForXL which takes a gene tree g, an edge b =

(u, v) of the network N and a set of ACs A C v that enter edge b, and returns a set of ACs

A C (u,v) that exit edge b. See Alg. 2 for details. Note that although one configuration

can coalesce into several different configurations along an edge, under parsimony only

the one that has the minimum total number of extra lineages needs to be kept. Therefore

|A C v| = |A C (u,v)| and there is a 1-1 correspondence between configurations in |A C v|

and configurations in |A C (u,v)|. Note that if node v is a reticulation node, |A C v| here

represents the set of ACs that about to enter branch (u, v) after splitting.

Algorithm 2: CreateCACsForXL.
Input: Gene tree g, edge b = (u, v), set of ACs A C v

Output: A set of ACs A C (u,v)

foreach (B, a, w) ∈ A C v do

B+ ← argminB′∈Coal(B,g)|B′|;

Compute w+ using Eq. 3.9;

A C (u,v) ← A C (u,v) ∪ (B+, a, w+) ;

return A C (u,v)

For a phylogenetic network N and a gene tree g, the algorithm for computing the min-

imum number of extra lineages required to reconcile g within N is shown in Alg. 3. Ba-
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sically, I traverse the nodes of the network in post-order. For every node v I visit, the set

of ACs A C v for node v will be constructed based on its type. Recall that there are four

types of nodes in a phylogenetic network, which are leaves, reticulation nodes, internal tree

nodes, and the root. Finally when the root ofN is reached, we are able to obtainXL(N, g).

It is important to note that although this algorithm is much more efficient than the

MUL tree based one in simulation study (see Section 3.4.1.4.1), the running time of this

algorithm is still exponential for some data sets, as the complexity of the problem is open

and conjectured to be NP-hard.

Reducing the number of configurations

At every reticulation node v in the species network, every configuration AC in A C v is

split in all 2n(AC) possible ways. This may result in multiple configurations which contain

the same set of gene lineages but are all distinct because of different index values (the

second element of an AC) in some A C . Since the running time (and memory usage) of the

algorithms depends on the number of configurations, it is important to reduce the number

of configurations so as to speed up the computation. Here, I make use of articulation nodes

in the graph (an articulation node is a node whose removal disconnects the phylogenetic

network). Obviously, the reticulation nodes inside the sub-network rooted at an articulation

node are independent of the reticulation nodes outside the sub-network. So at articulation

node v I reset the index vectors in all ACs in A C v to 0’s so that all configurations at v

containing the same set of gene lineages become identical. More precisely, when traversing

the species network, after constructing A C v for some internal tree node v as described in

Alg. 3, if v is an articulation node, the index vector is reset to 0’s in every AC in A C v.
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Algorithm 3: CountXL.
Input: Phylogenetic network N with q reticulation nodes, gene tree g

Output: XL(N, g)

while traversing the nodes of N in post-order do

if node v is a leaf, who has parent u then
A C v ← {(B, a, 0)} where B is the set of leaves in g that are sampled from

the species associated with v and a is a vector of q 0’s ;

A C (u,v) ← CreateCACsForXL(g, (u, v),A C v);

else if node v is a reticulation node, who has child w, and two parents u1 and u2

then

A C v ← A C (v,w);

foreach AC ∈ A C v do
Split AC in every possible way into pairs of ACs, and for each pair, add

one AC to A C (u1,v) and the other AC to A C (u2,v);

else if node v is an internal tree node, who has two children w1 and w2 then

foreach pair (AC1, AC2) of compatible ACs in A C (v,w1) ×A C (v,w2) do

Merge AC1 and AC2 and add the resulting AC to A C v;

if node v is an internal tree node, who has a parent u then

A C (u,v) ← CreateCACsForXL(g, (u, v),A C v);

else

return minAC∈A C v xl(AC);
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Then A C v is updated to be A C ′v as follows such that only the configuration containing

the minimum weight is left:

A C ′v = {argmin(B,a,w)∈A C vw} (3.10)

where a is a zero vector.

3.1.3 Estimating inheritance probabilities

In this section, I describe how to estimate inheritance probabilities under MDC criterion

[YBN13]. Given a collection G of gene trees, once the optimal coalescent histories for

all of them are computed within the branches of a phylogenetic network N , the inheri-

tance probabilities associated with the reticulation nodes are estimated as follows. Let x

be a reticulation node in N. Given the optimal coalescent histories computed, let lx be the

number of lineages that trace the left parent in all the coalescent histories, and let rx be

the number of lineages that trace the right parent in all the coalescent histories. Then, the

probability associated with the left reticulation edge incident with x is lx/(lx + rx) and the

probability associated with the right reticulation edge incident with x is rx/(lx + rx).

Note that some gene tree may have multiple equally optimal coalescent histories, which

implies that at some reticulation node x of N some gene lineages going left or right yields

the same number of extra lineages. In this case, these gene lineages are considered to be

informative when estimating inheritance probability of x, and hence they are ignored in

the computation. For example, given phylogenetic network N in Fig. 3.1, for gene tree

((a, b), (c, d)), according to its optimal coalescent history shown on left in Fig. 3.7, gene

lineage went left and one gene lineage went right at reticulation node v, so for this gene
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x x

Figure 3.7: Illustration of estimating inheritance probabilities under MDC criterion.

Given phylogenetic network in Fig. 3.1, (Left) the optimal coalescent history of gene

tree ((a, b), (c, d)), and (Right) the two equally optimal coalescent histories of gene tree

((b, c), (a, d)).

tree itself, inheritance probability of both edge incident with x is 0.5. However, consider

gene tree ((a, d), (b, c)) which has two equally optimal coalescent histories shown on right

in Fig. 3.7. Clearly, at reticulation node x the ancestral allele of (b, c) went left in one

optimal coalescent history (blue lines) and went right in the other (red lines), both of which

yield the same number of extra lineages. In other word, both these two gene lineages are

informative when estimating the probability of alleles going left (or right) at x under MDC

criterion. Therefore, it will be considered as 0 gene lineages going left and 0 gene lineages

going right at reticulation node x during the computation.

3.2 Handling gene tree uncertainty

When analyzing biological data set, gene tree topologies are estimated from sequence data,

as such, there is uncertainty about them. In Bayesian inference, this uncertainty is reflected

by a posterior distribution of gene tree topologies. In a parsimony analysis, several equally
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optimal trees are computed. I propose here a way for incorporating this uncertainty into the

framework above [YBN13].

Assume there are k loci under analysis, and for each locus i, a Bayesian analysis of the

sequence alignment returns a collection of gene trees gi1, . . . , g
i
q, along with their associated

posterior probabilities pi1, . . . , p
i
q (pi1 + . . . + piq = 1). Now, let G be the set of all distinct

tree topologies computed on all k loci, and for each g ∈ G let pg be the sum of posterior

probabilities associated with all gene trees computed over all loci whose topology is g.

Thus, pg =
∑k

i=1 p
i
g and

∑
g∈G pg = k Then, Eq. 3.2 is replaced by

XL(N,G ) =
∑
g∈G

[XL(N, g)× pg] (3.11)

Note that if pij = 1 or 0 for each i and j, then Eq. 3.11 is equivalent to Eq. 3.2. I additionally

allow the pij terms to be between 0 and 1 (and therefore pg to be non-integer values) in order

to reflect uncertainty in the estimated gene trees.

In the case where a maximum parsimony analysis is conducted to infer gene trees on the

individual loci, a different treatment is necessary, since for each locus, all inferred trees are

equally optimal. For locus i, let g be the strict consensus of all optimal gene tree topologies

found. Then, Eq. 3.2 becomes

XL(N,G ) =
∑
g∈G

min
g′∈b(g)

XL(N, g′) (3.12)

where b(g) is the set of all binary refinements of gene tree topology g. Note that if g

contains nodes of very high degrees, this approach is computationally infeasible if done in

a brute-force fashion (explicitly considering all possible refinements). However, using the

MUL-tree conversion technique, the efficient algorithms for [YWN11a, YWN11b] apply

directly and achieve this computation in polynomial time, as opposed to the exponential
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time of the brute-force approach. Also, AC-based algorithm is modified slightly to avoid

explicitly considering all possible refinements of the gene tree,

3.3 Inferring a phylogenetic network

In this section, I describe that given a collection of gene trees G how I search the network

space to find the optimal phylogenetic network N∗ such that N∗ = argminNXL(N,G).

Note that when I say the space of phylogenetic networks, only network topologies are

considered. The materials in this section are from paper [YBN13, YDLN14].

3.3.1 Neighborhood of a phylogenetic network

For a fixed number of taxa n, the space of phylogenetic networks consists of an infinite

set of non-overlapping subspaces, each of which contains phylogenetic networks that have

the same number of reticulation nodes. I denote each subspace by Ω(n, k) where k is the

number of reticulation nodes. From this definition, clearly Ω(n, 0) is the tree space.

Given a phylogenetic network N ∈ Ω(n, k), I define four types of operations for net-

work rearrangement as follows.

• Adding a reticulation edge (δ1):

1. Let (u1, v1) and (u2, v2) be two distinct edges in N such that v2 is not a prede-

cessor of u1.

2. Delete the two edges (u1, v1) and (u2, v2).
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3. Add two new nodes x1 and x2 and five new edges (u1, x1), (x1, v1), (u2, x2),

(x2, v2), and (x1, x2) to network N .

• Removing a reticulation edge (δ2):

1. Let (u, v) be an edge in N such that v is a reticulation node and u is a tree node.

2. Delete the two nodes u and v and the five edges (w, u), (u, z), (u, v), (x, v) and

(v, y), where w is the parent node of u, z is the child node of u other than v, x

is the parent node of v other than u, and y is the child node of v.

3. Add two new edges (w, z) and (x, y) to network N .

• Relocating the destination of a reticulation edge (δ3):

1. Let (u1, v1) and (u2, v2) be two distinct edges in N such that v1 is a reticulation

node and v2 is not a predecessor of u1.

2. Delete node v1 and the four edges (u1, v1), (u2, v2), (w, v1), and (v1, z), where

w is the parent node of v1 other than u1 and z is the child node of v1.

3. Add a new nodes x and four new edges (u2, x), (x, v2), (u1, x), and (w, z) to

network N .

• Relocating the source of an edge (δ4):

1. Let (u1, v1) and (u2, v2) be two distinct edges in N such that u1 is neither a

reticulation node nor a predecessor of v2.

2. Delete node u1 and the four edges (u1, v1), (u2, v2), (w, u1), and (u1, z), where

w is the parent node of u1 and z is a child node of u1 other than v1.
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3. Add a new nodes x and four new edges (u2, x), (x, v2), (x, v1), and (w, z) to

network N .

I denote the set of phylogenetic networks that can be obtained by applying operation δi

to N by δi(N), where 1 ≤ i ≤ 4. Clearly, for a phylogenetic network N ∈ Ω(n, k),

all networks in δ1(N) are in Ω(n, k + 1), all networks in δ2(N) are in Ω(n, k − 1), and

all networks in δ3(N) ∪ δ4(N) are in Ω(n, k).Finally, the neighborhood of a phylogenetic

network N , denoted by ∆(N), can be defined based on these operations, depending on the

searching strategies (see 3.3.2).

3.3.2 Search strategies

Due to the fact that the space of phylogenetic networks is very big, it is infeasible to enu-

merate and evaluate all possible phylogenetic networks during the search even when an

upper bound of the number of reticulation nodes is given. Hence, I employ the hill climb-

ing heuristic to search the network space in order to find the optimal phylogenetic network

given a collection of gene trees. Hill-climbing is a commonly used mathematical optimiza-

tion technique for local search. Here, I implemented simple hill climbing, as well as one of

its variants steepest ascent hill climbing.

Simple hill climbing

Starting from some phylogenetic network N , I randomly pick a neighbor of N , say N ′.

If N ′ is a better candidate than N where XL(N ′, G) < XL(N,G), N is replaced by N ′.

Then the search continues. This process is repeated until the number of consecutive failure
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reaches some preset value.

For simple hill climbing, the neighborhood of a phylogenetic network N is defined to

be
⋃

1≤i≤4 δi(N), so a neighbor of a phylogenetic network N can be generated by applying

one of the four types of operations of network rearrangement defined in the Section 3.3.1.

Here, each of these four operations is associated with a weight. In order to propose a

random neighbor of a network, the type of operation to be applied to generate the neighbor

is first randomly selected according to their weights, and then the edges involved in that

operation are randomly picked.

The simple hill climbing heuristic I am employing here does not guarantee to find global

optimal solution. Due to random choices during the search, two different runs may take

completely different paths and end up with different local optimums, even if these two runs

start the search from the same starting network. So in order to avoid getting stuck at some

local optimum, the whole process is performed multiple times and finally the phylogenetic

network with the highest likelihood score from those runs is claimed to be the optimal

solution. On the other hand, it is known that the choice of starting point of the search is

very important, so I will discuss about it next. Generally speaking, the farther the starting

phylogenetic network is from the global optimal one, the less likely the search is to discover

the global optimal one, or the longer time it takes. So it is good to start the search from

some reasonable species phylogenies, like binary resolutions of majority consensus species

tree, or the optimal species tree under MDC criterion [Mad97, TN09, YWN11a, YWN11b].

However, given a collection of gene trees of n taxa, the optimal phylogenetic network in

Ω(n, k + 1) does not have to be in δ1(N∗k ) where N∗k is the optimal phylogenetic network

in Ω(n, k). So it is also important to start the search from some random points so that
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more phylogenetic network space will be covered during the search, and hopefully by that

I could avoid getting stuck at some local optimum. However, sometimes it may not be

ideal to choose some totally random starting network due to the fact that the space of

phylogenetic network is very big especially for a large number of taxa. So some random

networks which are 2 or 3 operations (see Section 3.3.1) away from the one of best guess,

like MDC tree, may be a good choice. To sum up, it is very important that the search will

be performed from multiple starting points which are carefully chosen so that the method

will have a higher chance to infer the global optimal solution.

Steepest ascent hill climbing

Given a collection of gene trees G with n taxa, in order to infer the optimal parsimonious

phylogenetic network with at mostm reticulation nodes, in addition to simple hill climbing,

I proposed the steepest ascent, one of the variants of hill climbing, for searching the space

of phylogenetic networks (See Alg. 4).

Basically, my strategy is to start search in space Ω(n, k) from the starting network N ,

where k is the number of reticulation nodes in N , until some local optimum is reached in

that space, then jump to Ω(n, k+ 1) and continue the search there. This process terminates

when the local optimum in Ω(n,m) is reached, or the locally optimal score in Ω(n, i) is no

better than that in Ω(n, i+ 1) where i < m.

More specifically, starting from some network N ∈ Ω(n, k) where k ≤ m, I first

examine every network in δ3(N) ∪ δ4(N) and find the one that results in the minimum

number of extra lineages, say N∗, such that N∗ = argminN ′∈δ3(N)∪δ4(N)XL(N ′, G). If

XL(N∗, G) < XL(N,G), which means N∗ is a better network than the current one given
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Algorithm 4: SteepestAscentForNetworkSearch.
Input: Gene trees G , a starting phylogenetic network N and the maximum number of

reticulation nodes m

Output: A phylogenetic network N

continueSearch← true ;

while continueSearch = true do

N∗ ← N ;

flag ← true ;

while flag = true do

foreach N ′ ∈ δ3(N) ∪ δ4(N) do

if XL(N ′, G) < XL(N∗, G) then

N∗ ← N ′ ;

if XL(N,G) > XL(N∗, G) then

N ← N∗ ;

else

flag ← false ;

if the number of reticulation nodes in N is less than m then

foreach N ′ ∈ δ1(N) do

if XL(N ′, G) < XL(N∗, G) then

N∗ ← N ′ ;

if XL(N,G) > XL(N∗, G) then

N ← N∗ ;

else

continueSearch← false ;

else

continueSearch← false ;

return N ;
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G under MDC criterion, N is replaced by N∗ and the search is then continued in Ω(n, k)

from the new N ; otherwise, the search ends in Ω(n, k) since the local optimum in that

subspace is considered to be achieved. In the latter case, if k has reached the pre-specified

upper bound of the number of reticulation nodesm, the whole search terminates and returns

N as the final inferred phylogenetic network. Otherwise, we are now considering moving

to space Ω(n, k + 1). More specifically, the current network N will be compared with

network N∗ = argminN ′∈δ1(N)XL(N ′, G). If N∗ is better, N will be replaced and the

search will then continue in space Ω(n, k+ 1) from the new N ; otherwise, N is considered

to be the final inferred network and the whole search terminates.

Similar to simple hill climbing, steepest ascent does not guarantee to find global optimal

solution either. In my implementation, it is more deterministic than simple hill climbing,

in the sense that given gene trees G , a starting phylogenetic network N and the maximum

number of reticulation nodes m, the method always returns the same network. This is

because when examining all networks in δi, the orders of those networks being enumerated

are fixed. Therefore, different from simple hill climbing, for each starting point, the search

only needs to be performed once. However, in order to avoid getting stuck at some local

optimum, it is still important to start the search from multiple different starting points so

that hopefully more phylogenetic network space will be covered during the search.
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3.4 Performance

3.4.1 Simulation study

To study the performance of the criterion and the method in terms of the accuracy of the

inferred phylogenetic networks, the accuracy of the inheritance probabilities they estimate

and the efficiency on large dataset, I did intensive simulation studies [YBN13]. Also, I com-

pared the efficiency between the MUL-tree based method and AC based method [YRN13].

3.4.1.1 Evaluating the inference of phylogenetic networks

To evaluate the power of this parsimony approach at inferring phylogenetic networks along

with inheritance probabilities, I considered four phylogenetic networks (Fig. 3.8) depicting

evolutionary scenarios that present different challenges.

The phylogenetic network in Scenario I includes speciation after hybridization. Sce-

nario II presents two independent hybridization events involving terminal taxa (leaves).

Scenario III includes a hybrid species that further speciates, and then the two sister taxa

hybridize again. Scenario IV includes two hybridization events the more recent of which

involves a descendant and a descendant of a parent of the of the earlier hybrid. These

different phylogenetic networks allow me to examine how combinations of speciation and

hybridization affect the detectability of hybridization in particular, and the inference of phy-

logenetic networks in general. Further, I varied the inheritance probabilities associated with

the hybridization events in the phylogenetic networks. For Scenario I, I considered α ∈

{0.0, 0.3, 0.5}. For Scenario II and III, I considered (α, β) ∈ {(0.0, 0.5), (0.3, 0.3), (0.5, 0.5)}.

Since the hybridization events in Scenario IV are overlapping, I considered (α, β) ∈
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Figure 3.8: Phylogenetic networks depicting different hybridization/divergence/extinction

scenarios. The α and β parameters denote the proportions (or, probabilities) of alleles that

are inherited from the “left” parents of the reticulation nodes (1 − α and 1 − β denote the

proportions of the alleles that are inherited from the “right” parents of the nodes).

{(0.0, 0.5), (0.3, 0.3), (0.5, 0.0), (0.5, 0.5), (0.5, 1.0)} in this case. The rationale for select-

ing the three values 0.0, 0.3, and 0.5 is that they represent no hybridization, ”skewed”

hybridization (different genetic contributions of the two parents to the hybrid), and perfect

hybridization (equal genetic contributions of the two parents to the hybrid). Finally, to vary

the extend of deep coalescence within each of the four evolutionary histories, I consid-

ered two settings for branch lengths (are measured in coalescent units): setting 1, in which

t1 = t2 = t3 = t4 = 1.0, and setting 2, in which t1 = t2 = t3 = t4 = 2.0. All reticulation

branches have length 0. As the extent of ILS increases as branches become shorter, I expect

setting 1 to provide more challenging data for the method.

Using each combination of phylogenetic network, inheritance probabilities, and branch
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length setting, I used the ms program [Hud02] to generate 10, 25, 50, 100, 500, 1000 and

2000 gene trees within the branches of the phylogenetic networks. To obtain statistically

significant results, I generated 100 data sets per parameter setting and evaluated the perfor-

mance as averaged over these 100 data sets, for each point in the parameter space. In these

experiments, a single allele per species per gene was sampled.

Using the input sets of gene tree topologies, I inferred phylogenetic networks along with

inheritance probabilities. In this experiments, I started from the optimal species tree under

MDC by the exact method in [TN09] and searched the network space using steepest ascent

described in Section 3.3.2. I assume knowledge of the true number of hybridization events

and made inference with these (known) numbers of hybridization events. More specifically,

for data sets corresponding to Scenario I, I inferred phylogenetic networks with one retic-

ulation node, and for the other three scenarios, I inferred phylogenetic networks with two

reticulation nodes. I discuss later the issues arising when I do not control for the number of

hybridization events. I compared each inferred phylogenetic network against the (known)

true phylogenetic network in terms of the topology and estimated inheritance probability.

For comparing the topologies of two phylogenetic networks, I used the dissimilarity mea-

sure of [NWL04, TRN08] which computes the symmetric difference between the two sets

of taxa clusters induced by the two networks. Results of the application of my methods to

gene trees under Scenarios I, II, and III are given in Fig. 3.9.

In terms of the accuracy of the inferred phylogenetic network topology, we observe that

as the number of gene trees used increases, the error in the estimated network decreases.

For all three evolutionary scenarios, using about 50 gene trees under time setting 2 for

branch lengths results in phylogenetic network inferences with 0 error. However, the per-



50

Ti
m

e 
se

tti
ng

 1
Ti

m
e 

se
tti

ng
 2

In
he

rit
an

ce
 p

ro
ba

bi
lit

ie
s

Ph
yl

og
en

et
ic

 n
et

w
or

k 
to

po
lo

gi
es

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Er
ro

r o
f n

et
w

or
k 

in
fe

re
nc

e

 

 
setting 1
setting 2

0 30 60 90 120
0

0.25

0.5

α=0.3

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Er
ro

r o
f n

et
w

or
k 

in
fe

re
nc

e

 

 
setting 1
setting 2

0 30 60 90 120
0

0.25

0.5

α=0.5

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Er
ro

r o
f n

et
w

or
k 

in
fe

re
nc

e

 

 
setting 1
setting 2

0 30 60 90 120
0

0.25

0.5

α=0.3, β=0.3

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Er
ro

r o
f n

et
w

or
k 

in
fe

re
nc

e

 

 
setting 1
setting 2

0 30 60 90 120
0

0.25

0.5

α=0.5, β=0.5

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Er
ro

r o
f n

et
w

or
k 

in
fe

re
nc

e

 

 
setting 1
setting 2

0 30 60 90 120
0

0.25

0.5

α=0.3, β=0.3

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Er
ro

r o
f n

et
w

or
k 

in
fe

re
nc

e

 

 
setting 1
setting 2

0 30 60 90 120
0

0.25

0.5

α=0.5, β=0.5

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Es
tim

at
ed

 in
he

rit
an

ce
 p

ro
ba

bi
lit

ie
s

0 30 60 90 120
0.2

0.4

0.6
α=0.3

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Es
tim

at
ed

 in
he

rit
an

ce
 p

ro
ba

bi
lit

ie
s

0 30 60 90 120
0.3

0.5

0.7 α=0.5

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Es
tim

at
ed

 in
he

rit
an

ce
 p

ro
ba

bi
lit

ie
s

0 30 60 90 120
0.2

0.4

0.6
α=0.3

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Es
tim

at
ed

 in
he

rit
an

ce
 p

ro
ba

bi
lit

ie
s

0 30 60 90 120
0.3

0.5

0.7 α=0.5

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Es
tim

at
ed

 in
he

rit
an

ce
 p

ro
ba

bi
lit

ie
s

 

 

alpha
beta

0 30 60 90 120
0.2

0.5

0.8 α=0.5, β=0.5

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Es
tim

at
ed

 in
he

rit
an

ce
 p

ro
ba

bi
lit

ie
s

 

 

alpha
beta

0 30 60 90 120
0

0.3

0.6
α=0.3, β=0.3

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Es
tim

at
ed

 in
he

rit
an

ce
 p

ro
ba

bi
lit

ie
s

 

 

alpha
beta

0 30 60 90 120
0

0.3

0.6
α=0.3, β=0.3

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Es
tim

at
ed

 in
he

rit
an

ce
 p

ro
ba

bi
lit

ie
s

 

 

alpha
beta

0 30 60 90 120
0.2

0.5

0.8 α=0.5, β=0.5

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Es
tim

at
ed

 in
he

rit
an

ce
 p

ro
ba

bi
lit

ie
s

 

 

alpha
beta

0 30 60 90 120
0.2

0.4

0.6
α=0.3, β=0.3

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled
Es

tim
at

ed
 in

he
rit

an
ce

 p
ro

ba
bi

lit
ie

s

 

 

alpha
beta

0 30 60 90 120
0.3

0.5

0.7 α=0.5, β=0.5

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Es
tim

at
ed

 in
he

rit
an

ce
 p

ro
ba

bi
lit

ie
s

 

 

alpha
beta

0 30 60 90 120
0.2

0.4

0.6
α=0.3, β=0.3

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of gene trees sampled

Es
tim

at
ed

 in
he

rit
an

ce
 p

ro
ba

bi
lit

ie
s

 

 

alpha
beta

0 30 60 90 120
0.3

0.5

0.7 α=0.5, β=0.5

Figure 3.9: Accuracy of the inferred phylogenetic networks and inheritance probabilities.

The three columns from left to right correspond to Scenarios I, II, and III in Fig. 3.8,

respectively. One allele per gene per species is sampled.
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formance is different under time setting 1, which incorporates larger extents of incomplete

lineage sorting. Here, we see that using about 50 gene trees results in correct network in-

ference only under Scenario II, which is the least challenging for all scenarios considered.

When we consider Scenario I, which adds to Scenario II the complexity of divergence after

hybridization, we observe that the number of genes required to obtain accurate phylogenetic

networks increases significantly (by an order of magnitude). For Scenario III, we observe

that even with 2000 gene trees, the search heuristic fails to identify the true phylogenetic

network. It is important to note here that we must distinguish between the performance of

the optimality criterion and that of the search heuristic employed for inference. In this case,

my search heuristic begins with a species tree that minimizes the number of extra lineages

(or, deep coalescences) over all possible tree candidates, given the set of gene tree. Using

this tree, the search proceeds in a hill descent fashion, each time exploring all neighboring

topologies of the current optimal network, and continuing with the best found. An artifact

of this search heuristic is that if the true network cannot be obtained from the starting tree

in any possible way, then this search heuristic would not converge to the true network. Of

course, this problem could be ameliorated by random restarts of the search heuristic or by

exhaustively starting from all possible trees. While the former is also not guaranteed to

result in convergence to the true network, the latter is prohibitive but for data sets with very

small numbers of taxa, given the exponentially large size of the tree space. Nevertheless,

we have inspected the cases pertaining to Scenario III and verified that the reason behind

the lack of convergence to 0-error networks is the criterion: The number of extra lineages

in the optimal network that the heuristic infers is smaller than that in the true network.

This is not surprising, since parsimonious reconciliation and inference is known to have
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consistency issues, even when ILS is the only event at play [TN09, TN10, TR11]. Finally,

we observe that the performance is better for inheritance probabilities that are closer to 0.5.

This is due to the fact that under these settings the contributions of the two parents to the

genetic makeup of a hybrid species is more balanced, providing more phylogenetic signal

for the method to infer the correct evolutionary history.

In terms of estimating the inheritance probabilities, the results show that my search

heuristic makes very good estimates, regardless of the evolutionary scenario and branch

length setting. Even though branch length setting 2 yields slightly more accurate estimates,

which is expected, it is important to note that the method produces very good estimates

even for the shorter branch lengths, where the extent of ILS is much larger. Further, it is

worth emphasizing that these good estimates are obtained even with the smallest data sets

(in terms of the number gene trees). This is a strength of the method.

3.4.1.2 More loci or more alleles?

Given the finite resources associated with any phylogenomic analysis, a natural question to

ask is: In order to obtain more accurate inferences of phylogenetic networks and inheritance

probabilities, should one sample more loci across the genomes or more alleles per locus?

To explore this question, I used the above simulation procedure to generate gene trees under

evolutionary Scenario IV, where 1, 2, 4 and 8 alleles per locus per species were sampled.

The multi-allele gene trees were then used as input in the inference procedure. The results

of this experiment are shown in Fig. 3.10.

Several observations are in order. First, in the case of this evolutionary scenario, the

ability of the method to infer the correct topology of the phylogenetic network is not af-
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Figure 3.10: The effect of the number of alleles. Accuracy of the phylogenetic networks

and inheritance probabilities estimated from gene trees simulated under Scenario IV, with

true inheritance probabilities α = β = 0.3, where the number of alleles sampled per species

also varies. Top and bottom rows correspond to time settings 1 and 2, respectively.

fected much by the branch length settings, unlike the performance on the other three sce-

narios. However, in this case, the method always overestimates the inheritance probability

(by about 5% hybridization), more so in the case of time setting 1. Second, in this case,

the estimates of the probability β of the lower (closer to the leaves) hybridization are more

accurate than that of the estimates of α, which is unlike Scenarios II and III, where we

did not observe any differences in the quality of the estimates of the two hybridization

events. The reason for this is that in this scenario, some lineages, or alleles, from species D

that trace different parents at the hybridization event undergo a further hybridization event,

affecting the coalescence patterns towards the root. Regarding the benefit obtained by in-
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creasing the number of alleles, none are observed in terms of the inheritance probability,

and some are observed in terms of the phylogenetic network accuracy under time setting 1.

That is, if the branches are very short, sampling two alleles, instead of one, improves the

quality of the inferred network significantly. However, adding alleles beyond that does not

seem to add more power, or signal, to the method. Under the other three scenarios, a single

allele was already sufficient to provide highly accurate estimates. In summary, given the

experimental settings I used here, there does not seem to be much benefit in sampling many

alleles per species. Rather, sampling more loci per genome, particularly when the number

of loci afforded is smaller than 100, provides more benefit. It is worth mentioning that the

probabilistic method of [YDN12] yields very accurate estimates of the inheritance proba-

bilities under this evolutionary scenario, even when a single allele is sampled per species

(see supplementary material of [YDN12]).

3.4.1.3 Evaluating running time on large data sets

To study the performance of my method in terms of efficiency, I did experiments on another

sets of simulated data in which larger numbers of taxa are involved. I first generated 100

random species trees with 10, 20 and 40 taxa respectively using PhyloGen [Ram12]. In

order to yield relatively similar amount of incongruence that might arise caused by ILS

among the contained gene trees of the three sets of species trees, I adjusted the total heights

of those species trees to 8, 16 and 32 (in coalescent units), respectively. From each species

tree, I then generated random species networks with 1, 2, 3, 4 and 5 reticulation nodes

respectively. When expanding a species network with n reticulation nodes to a species

network with n+1 reticulation nodes, I randomly selected two existing edges in the species
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network and connected their midpoints from the higher one to the lower one and then the

lower one becomes a new reticulation node. For every reticulation node, I assigned random

values from 0 to 1 as its inheritance probability. Finally, I simulated 25, 50, 100 and 200

gene trees respectively within the branches of each species network using the ms program

[Hud02].

Using the input sets of gene tree topologies, I inferred phylogenetic networks assuming

the knowledge of the true number of reticulation nodes. In this experiments, I started from

the optimal species tree under MDC inferred by the heuristics in [TN09] and searched the

network space using steepest ascent described in Section 3.3.2. When scoring a phyloge-

netic network, the AC-based method for computing the minimum number of extra lineages

introduced in Section 3.1.2 was used. Through the combinations of various numbers of

taxa and various numbers of reticulation nodes, I expect to see how the running time of our

method is affected. The results are shown in Fig. 3.11. It is not surprising that the running

time increases with the increase of the number of taxa and the number of reticulation nodes.

But overall our method is able to finish the computations on all data sets in a reasonable

amount of time. For the largest data set which has 40 taxa and 5 reticulation nodes, 75% of

the computations are able to finish within 24 hours. We can see that there are many outliers

which means that some data sets took much more time than others, especially for larger

data sets. In fact, the running time of our method for computing the minimum number of

extra lineages for a phylogenetic networks and a collection of gene trees using ancestral

configurations is significantly effected by the topological features of the gene trees and

phylogenetic network.

The accuracy of the inferred phylogenetic networks is given in Fig. 3.12. For a fixed
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Figure 3.11: Running time of phylogenetic network inference. The three columns from

left to right correspond to data sets with 10, 20 and 40 taxa, respectively. The six rows

from bottom to top correspond to data sets with 0, 1, 2, 3, 4 and 5 reticulation nodes,

respectively. In each sub-figure, the x-axis is the number of gene trees sampled and the

y-axis is the running time in seconds.
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number of taxa, the error of network inference increases with the number of reticulation

nodes. It is expected because the addition of reticulation nodes increases the complexity of

the phylogenetic networks. On the other hand, for a fixed number of reticulation nodes, the

error of network inference decreases as the number of taxa increases. This happens because

for a network with larger number of taxa, the randomly added reticulation nodes may have

a higher chance to be independent of each other, which actually makes the inference easier.
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Figure 3.12: Accuracy of inferred phylogenetic networks. The three columns from left to

right correspond to data sets with 10, 20 and 40 taxa, respectively.

3.4.1.4 Efficiency of the algorithms

3.4.1.4.1 MUL-tree based method vs. AC based method

To study the efficiency of the AC based method compared to that of the MUL-tree based

method, I ran both of them on synthetic data generated as follows. I first generated 100

random 24-taxon species trees using PhyloGen [Ram12], and from these I generated ran-

dom species networks with 1, 2, 4, 6 and 8 reticulation nodes. When expanding a species

network with n reticulation nodes to a species network with n + 1 reticulation nodes, I
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randomly selected two existing edges in the species network and connected their midpoints

from the higher one to the lower one and then the lower one becomes a new reticulation

node. Then, I simulated 10, 20, 50, 100, 200, 500 and 1000 gene trees respectively within

the branches of each species network using the ms program [Hud02]. Since the MUL-tree

method is computationally very intensive, when I run the simulation I bounded the time at

24 hours (that is, killed jobs that did not complete within 24 hours). All computations were

run on a computer with a quad-core Intel Xeon, 2.83GHz CPU, and 4GB of RAM.

The results of the running time of both methods are shown in Fig. 3.13. Overall, both

methods spent more time on data sets where the species networks contain more reticulation

nodes. It is not surprising given the fact that adding more reticulation nodes increases the

complexity of the networks in general. We can see that the speedup of the AC-based method

over the MUL-tree based method also increased when the number of reticulation nodes in

the species networks increased. In the best cases, the method achieves an improvement of

about 5 orders of magnitude. In this figure, I only plot the results of the computations that

could finish in 24 hours across all different number of loci sampled. In fact, the AC based

method finished every computation in less than 3 minutes, even for the largest data set

which contained species networks with 8 reticulations and 1000 gene trees. For the MUL-

tree based method, out of 100 repetitions the numbers of repetitions that were able to finish

in 24 hours across all different loci are 100, 100, 99, 96 and 88 for data sets containing

species networks with 1, 2, 4, 6 and 8 reticulation nodes.

It is not surprising to see that for a fixed number of taxa the running time increases sig-

nificantly when the number of reticulation nodes in the species networks increased. How-

ever, even for the same number of reticulation nodes, we can see that the running time still
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Figure 3.13: The running times (ln of number seconds) of the MUL-tree based (t(MUL)), and

AC-based (t(AC)) methods for computing parsimonious reconciliations, as well as the speedup

log10(t(MUL)/t(AC)).
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differs significantly from case to case. For MUL tree based method, it depends on the num-

ber of allele mappings which is decided by the configurations of the reticulation nodes. For

AC based method, I discuss in details about different factors that affect the running time of

the algorithm in Section 3.4.1.4.2.

3.4.1.4.2 Factors affecting the efficiency of the AC based method

There are several factors that can affect the number of configurations generated during

the computation which directly dominates the running time of the algorithm. Two of the

factors that affect performance are the number of leaves under a reticulation node, as well

as the topology of the gene tree. I considered a “controlled” data set, where I controlled

the placement of the reticulation node as well as the shapes of the gene trees. In particular,

I considered three networks in Fig. 3.14, each with a single reticulation node, yet with

1, 8, and 15 leaves under the reticulation node, respectively. Further, I considered two

gene trees: g1, for which XL(N, g1) = 0, whose topology is “contained” with each of

the three networks, and g2, whose disagreement with the three phylogenetic networks is

very extensive that all coalescence events must occur above the root of the phylogenetic

networks. I ran the AC based method on every pair of phylogenetic network and gene tree.

The results are listed in Table 3.3. In the case of g1, for every articulation node v of

the network, A C v has only one element AC and n(AC) = 1, resulting in short running

for all three networks. However, for gene tree g2, for every articulation node v, A C v

has only one element AC and n(AC) equals the number of leaves under v. Further, at

a reticulation node, every configuration AC contributes 2n(AC) configurations to each of
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Figure 3.14: Synthetic data with controlled placements of the reticulation nodes. (Top) A

species tree ST . (Middle) N1, N2 and N3 are three phylogenetic networks constructed by

adding one reticulation edge to ST at three different locations. (Bottom) Two gene trees g1,

which is contained in all three networks, and g2, whose coalescent events have to happen

above the root of all three networks.

its parents. Therefore, the running time on g2 increased when the number of nodes under

the reticulation nodes in the phylogenetic network increased. Furthermore, for g2, I found

that the number of allele mappings when using the MUL-tree based method is equal to the

largest size of A C v generated during computation, unless the number of configurations
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was reduced at articulation nodes. This is easy to see. For the AC based algorithm, if the

number of configurations is not reduced at articulation nodes, the elements of A C R, where

R is the root of the network, correspond to the exponential (in the number of reticulation

nodes) number of paths that lineages could take. A similar situation arises for allele map-

pings. Nevertheless, since a typical gene tree involves coalescent events under the root,

thus by decreasing the size of the set of ancestral configurations, the AC based algorithm

improves upon the MUL-tree based algorithm in terms of efficiency. Comparing g1 and g2

we observe that for parsimony reconciliations, the more coalescent events that are allowed

to occur under reticulation nodes with respect to the topology of the gene tree, the faster

the AC based method is.

Table 3.3: The results of running the AC based algorithm for computing the minimum

number of extra lineages given gene trees and species networks in Fig. 3.14. |A C h| is the

number of configurations at the reticulation node h andmax|A C | is the maximum number

of configurations generated at a node during computation. The first node that contains the

largest ACv in post-order of traversal is labeled by m in Fig. 3.14. Furthermore, the last

column is the number of allele mappings if using the MUL-tree based method.

g1 g2

|A C h| max|A C | running time (s) |A C h| max|A C | running time (s) #allele mappings

N1 1 2 0.011 1 2 0.016 2

N2 1 2 0.013 1 256 (28) 0.105 256

N3 1 2 0.013 1 32768 (215) 32.551 32768

Another factor that affect the efficiency of the AC based method is dependency of the

reticulation nodes. To address this issue, I considered another “controlled” data set in Fig.
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3.15, which contains two networks, each with 7 reticulation nodes, yet one having them all

independent and the other all dependent to each other. In this case, the numbers of nodes

under all reticulation nodes are the same for both networks, so the difference in running

time should come from the dependency of reticulation nodes. Similar to the previous data

set, two gene trees are considered here. One is “contained” and the other is very “different”

from the networks. The AC based method was run on every pair of phylogenetic network

and gene tree.
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Figure 3.15: The effects of dependency of reticulation nodes in the species network and

different gene tree topologies on the running time of the AC-based algorithms. (Left) A

species tree ST . (Middle) N1 and N2 are two species networks constructed by adding

seven reticulation edges to ST at different locations. (Right) two gene trees g1, which is a

contained tree of both N1 and N2, and g2 whose coalescent events have to happen above

the root of both species networks.

The results are listed in Table 3.4. It is not surprising to see that the running time
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for N1 is much less than that for N2 since the number of configurations is reduced at

articulation nodes in N1 while N2 does not have any articulation nodes except for the root.

Again, the sub-network rooted at an articulation node is independent from other part of the

network, so the A C set for that articulation node only needs to contain a “summary” of

the network. For counting the minimum number of extra lineages, it means the A C set

of an articulation node only needs to carry one element that has the minimum number of

extra lineages. Now let us consider the highest reticulation node h in N1. For g1, since all

lineages under node h have coalesced into one lineage, n(ACh) = 1 and it gave rise to 2

ACs to its parent node m. For g2, no coalescent events could happen below the root, so

n(ACh) = 7 which represented the 7 leaves under it and it gave rise to 27 ACs to its parent

node m. Even though |A Cm| = 128 for g2, after merging with the configurations coming

from branch (x, h) at articulation node x, again, only the one with the minimum number

of extra lineages will be kept. For both g1 and g2, their max|A C | imply a big speedup

of the AC based method comparing to the number of allele mappings 268435456 for the

MUL-tree based method. In fact, species network N1 indicates another reason why the AC

based algorithm is faster, which is because the existences of reticulation nodes under an

articulation node v are transparent to the reticulation nodes outside the sub-network rooted

at v. In contrast, when building the set of allele mappings, all possible combinations of the

ways that every leaf lineage goes at every reticulation node need to be considered. On the

other hand, for network N2, there is no articulation node, so all configurations being split

at every reticulation node merge back at the root. So, for g2 whose coalescent events can

only occur above the root of N2, the largest size of A C v generated during computation is

equal to the number of allele mappings in the MUL-tree based method.
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Table 3.4: The results of running the AC based algorithm for computing the minimum

number of extra lineages given gene trees and species networks in Fig. 3.15. |A C h|

is the number of configurations at the highest reticulation node h and max|A C | is the

maximum number of configurations generated at a node during computation. The first

node that contains the largest ACv set in post-order of traversal is labeled by m in Fig.

3.15. Furthermore, the last column is the number of allele mappings if using the MUL-tree

based method.

g1 g2

|A C h| max|A C | running time (s) |A C h| max|A C | running time (s) #allele mappings

N1 1 2 0.014 1 128 (27) 0.039 268435456

N2 874 5914 2.85 5040 40320 55.684 40320

To sum up, for the data sets of the same size (e.g., number of taxa and reticulation

nodes), the running time of the AC based algorithm for computing the minimum number

of extra lineages increases when there are more leaves under reticulation nodes and when

the reticulation nodes are more dependent on each other. With respect to the topology of

the gene tree and the species network, the more coalescent events that are allowed under

reticulation nodes the faster the method is. For most cases, the AC based method is signif-

icantly much faster than the MUL-tree based one. The gain in terms of efficiency comes

from avoiding allele mappings that are guaranteed to result in suboptimal reconciliations

or correspond to configurations being removed at articulation nodes.
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3.4.2 Reanalysis of a yeast (Saccharomyces) data set

I reanalyzed the yeast data set of [RWKC03a] using this parsimony approach [YBN13].

This data set consists of 106 loci, each present in exactly a single copy in each of seven

Saccharomyces species, S. cerevisiae (Scer), S. paradoxus (Spar), S. mikatae (Smik), S.

kudriavzevii (Skud), S. bayanus (Sbay), S. castellii (Scas), S. kluyveri (Sklu), and the out-

group fungus Candida albicans (Calb). I reconstructed gene trees from sequence data using

maximum parsimony with strict consensus in PAUP* [Swo96] and Bayesian inference in

MrBayes [HR01]. In each of 106 gene trees, the genes from the five species Scer, Spar,

Smik, Skud and Sbay formed a monophyletic group. From a parsimony perspective,

all coalescent events involving genes from these five species occur at or below their most

recent common ancestor. Therefore, in the analysis, I only focused on the evolutionary

history of these five species.

It is important to note that the gene trees used in the analysis here are not all binary.

In the case where the gene trees were inferred by maximum parsimony, I used the strict

consensus of all optimal trees found for each gene, which resulted in non-binary trees. In

the case of Bayesian inference, I used each gene tree with its posterior probability. See

Section 3.2 for how I accounted uncertainty in gene trees using these two approaches.

Using our method, I inferred the optimal species networks containing 0, 1 and 2 retic-

ulation nodes. The resulting species networks inferred from gene trees reconstructed by

maximum parsimony are shown in Fig. 3.16 along with inheritance probabilities and total

number of extra lineages. The optimal species tree in Fig. 3.16A has been reported by

several studies [ELP07b, RWKC03a, TN09]. The optimal species network containing one
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Figure 3.16: Analysis of the yeast data set, where gene trees are reconstructed using MP.

Optimal species phylogenies, along with inheritance probabilities, inferred from gene trees

reconstructed by maximum parsimony for the yeast data set of [RWKC03a]. (A) The op-

timal species tree (network with 0 reticulation nodes). (B) The optimal species network

containing one reticulation node. (C) The optimal species network containing two retic-

ulation nodes. For each species phylogeny, the total number of extra lineages (XL) is

computed using Eq. (3.12) and reported.

reticulation node in Fig. 3.16B has also been proposed as an alternative evolutionary his-

tory under the stochastic framework of [BS10], the parsimony framework of [TN09] and

the likelihood framework of [YDN12]. It is worth mentioning that the inheritance probabil-

ity inferred by our method is almost the same as that inferred by the probabilistic approach

of [YDN12]. The optimal species network with two reticulation nodes in Fig. 3.16C was

not reported in any of the aforementioned studies.

For gene trees reconstructed using MrBayes, the inferred species networks are shown

in Fig. 3.17. The optimal species tree in Fig. 3.17A has been reported as a very close

candidate [ELP07b, TN09]. The optimal species network containing one reticulation node

in Fig. 3.17B has the same topology as the one inferred from gene trees reconstructed by

maximum parsimony in Fig. 3.16B, but with a slightly higher inheritance probability.
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Figure 3.17: Analysis of the yeast data set, where gene trees are reconstructed using

Bayesian inference. Optimal species phylogenies, along with inheritance probabilities,

inferred from gene trees reconstructed by MrBayes for the yeast data set of [RWKC03a].

(A) The optimal species tree (network with 0 reticulation nodes). (B) The optimal species

network containing one reticulation node. (C) The optimal species network containing two

reticulation nodes. For each species phylogeny, the total number of extra lineages (XL) is

computed using Eq. 3.11 and reported.

3.4.3 The model selection problem

A major confounding issue that arises when inferring phylogenetic network topologies is

that of determining the correct number of reticulation events [Nak10]. As we observed in

the yeast data set analysis, adding a single reticulation node to the optimal species tree re-

duces the number of extra lineages by about 70%. Further, adding an additional reticulation

node to the optimal species network with a single reticulation node reduces the number of

extra lineages by about a half. This is the classical model selection problem arising in the

domain of phylogenetic networks: Increasing the complexity of the phylogenetic network

topology by adding more reticulation nodes to it mostly improves the fit of the data. Sim-

ply minimizing the sum of the number of hybridization events and deep coalescence events

does not solve the problem. Further, minimizing a weighted sum of these two numbers
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raises the questions of how to weight them and whether weights are data-dependent or not.

As I pointed out above, when analyzing the simulated data, I assumed knowledge of the

true number of reticulation nodes. To understand the performance of the method when this

assumption is removed, I inferred phylogenetic networks with up to 4 reticulation nodes

from the data I generated in Section 3.4.1.1, and explored the number of extra lineages

in these inferred networks as a function of the number of reticulation nodes. The results

for Scenario III are shown in Fig. 3.18; similar results were observed under the other

scenarios.
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Figure 3.18: Network complexity and the number of extra lineages. The decrease in the

number of extra lineages in the inferred phylogenetic network as a function of the increase

in number of hybridization events inferred. The results were obtained from data pertaining

to Scenario III in Section 3.4.1.1 under two different settings of the inheritance probabili-

ties and two different settings of the branch lengths.

As the figure shows, the number of extra lineages of the optimal species networks keeps

decreasing as more reticulation nodes are added. Thus, using the minimization of the

number of extra lineages as the optimality criterion, without penalizing complexity, may
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result in gross overestimation of the amount of reticulation in the data. Inspecting the data

in Fig. 3.18 closely, we observe that for branch length setting 2, the decrease in the number

of extra lineages is similar when going from 0 to 1 reticulation nodes and from 1 to 2

reticulation nodes, and then that decrease becomes slower. Thus, the rate of decrease in

extra lineages might be helpful in determining a stopping criterion. However, the situation

is more challenging under branch length setting 1, where the extent of ILS is very large,

and adding reticulation nodes, though are clearly false positives, help decrease the number

of extra lineages at a similar rate to that of the true reticulation nodes. In other words, using

the rate of decrease in extra lineages must also account for branch length information.

As discussed above, adding an arbitrary reticulation event to a phylogenetic network

might improve the number of extra lineages. A question that arises here is: Does the im-

provement in the number of extra lineages resulting from adding the true reticulation event

differ from that of adding a different, arbitrary reticulation event? To explore this ques-

tion empirically, I plotted the distributions of the number of extra lineages of all networks

in the neighborhood of the optimal species tree and the optimal species network with one

reticulation event of the yeast data set. The results are shown in Fig. 3.19.

The results show an interesting trend. In the case of the neighbors of the optimal species

tree, the number of extra lineages in the optimal network is very different from the num-

bers of the other neighbors: it falls in a bin by itself, and the next larger bin corresponds to

networks with more than 40 extra lineages. On the other hand, when considering all neigh-

bors of the optimal network with a single reticulation node, the optimal network with two

reticulation nodes was not a clear candidate: several other networks fall within the same

bin, and over 20 other networks are within 10 extra lineages from the optimal one. These
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Figure 3.19: Distribution of the number of extra lineages in the neighborhood of an optimal

species network. (Left) The distribution of the number of extra lineages of all networks

formed from the species tree in Fig. 3.16A by adding a single reticulation edge in all

possible ways. (Right) The distribution of the number of extra lineages of all networks

formed from the species network in Fig. 3.16B by adding a single reticulation edge in

all possible ways. All results are based on the gene trees reconstructed using maximum

parsimony, and binned in ranges of size 10 (left) and size 5 (right).

results combined can be taken as strong support for the optimal network in Fig. 3.16B and

as a poor support for the optimal network in Fig. 3.16C. In other words, looking at the data

from this perspective, the analysis supports a single reticulation event in the yeast data set.

Last but not least, I set out to quantify the support for the two networks in Fig. 3.16 in

terms of their likelihoods. To achieve this, I scored the likelihood of each network (while

using the reported inheritance probabilities in the figure, but estimating branch lengths)

given the data (the 106 gene tree topologies reconstructed using maximum parsimony)

by the probabilistic method described in Section 4.1.1. The results, in terms of the log

likelihoods and values of AIC [Aka74], AICc [BA02], and BIC [Sch78] information criteria

are summarized in Table 3.5.
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Table 3.5: Log likelihoods and values of three information criteria computed for the three

species phylogeny candidates in Fig. 3.16.

-log likelihood AIC AICc BIC

Phylogeny of Fig. 3.16A 205 416 417 424

Phylogeny of Fig. 3.16B 157 325 326 338

Phylogeny of Fig. 3.16C 152 319 320 338

Clearly, the network with a single reticulation node results in significantly improved

likelihood and values of the information criteria, whereas the improvement in these values

as the second reticulation node is added is negligible. In fact, based on the BIC value, the

second reticulation event does not make any difference in the fit of the data to the model.

This analysis gives further support the evolutionary history in Fig. 3.16B over the other

two. Moreover, this analysis illustrates how to combine the speed of a parsimony analysis

with the accuracy of a probabilistic analysis to obtain a solid evolutionary history.

The materials in this section are from [YBN13].



Chapter 4

Probabilistic inference of phylogenetic

networks

In this chapter, I propose methods for inferring phylogenetic network from a collection of

gene trees under maximum likelihood. More specifically, given a phylogenetic network

N and a collection of gene trees G , the goal is to infer the optimal phylogenetic network

N∗λ∗,γ∗ such that

N∗λ∗,γ∗ = argmaxNλ,γ
P (G |Nλ,γ) (4.1)

where P (G |Nλ,γ) is the probability of observing gene trees G given phylogenetic network

Nλ,γ , which equals

P (g|Nλ,γ) =
∏
g∈G

P (g|Nλ,γ) (4.2)

where P (g|Nλ,γ) denotes the probability of observing g given Nλ,γ . Note that we need to

distinguish between cases where whether the branch lengths of gene trees are used or not.

73
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4.1 Computing the probability of a gene tree given a phy-

logenetic network

4.1.1 Using only topologies of the gene trees

Given a phylogenetic network Nλ,γ , the probability of observing a gene tree topology g

can be computed by

P (g|Nλ,γ) =
∑

h∈HNλ,γ
(g)

P (h|Nλ,γ), (4.3)

where P (h|Nλ,γ) is the probability of observing coalescent history h given phylogenetic

network Nλ,γ which can be computed by

P (h|Nλ,γ) =
w(h)

d(h)

∏
b∈E(Nλ,γ)

wb(h)

db(h)
γ
ub(h)
b pub(h)vb(h)(λb). (4.4)

In this equation, ub(h) and vb(h) denote the number of lineages enter and exit edge b of

Nλ,γ under coalescent history h. pub(h)vb(h)(λb) is the probability of ub(h) gene lineages

coalescing into vb(h) during time λb [Tav84]. And wb(h)/db(h) is the proportion of all

coalescent scenarios resulting from ub(h) − vb(h) coalescent events that agree with the

topology of the gene tree [DS05b]. This quantity without the b subscript corresponds to

the root of N . In Table 4.1, an example of how Eq. 4.4 is computed is given for the

phylogenetic network and gene tree in Fig. 2.4.

In this section, I propose two methods for computing P (g|Nλ,γ) the probability of

observing a gene tree topology g given a phylogenetic network Nλ,γ . One of the two

methods is based on the concept of multilabeled (MUL) tree [YDN12], and the other is

based on the concept of weighted ancestral configurations [YRN13].
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Table 4.1: The probabilities of all coalescent histories in Fig. 2.4. For every coalescent

history h, columns from 2 to 7 list the probability of having h on every branch of the

species network N , where ti is the branch length of branch i. Branch 6 corresponds to the

branch incident into the root of the species network N . A dash means no gene lineages

enter that branch. Therefore, the total probability of a coalescent history is the product

taken over all branches of the species network. In Fig. 2.4, coalescent events y and z can

only happen above the root of N . For every coalescent history, the highlight cell shows

where coalescent event x happens.

P (h|N) on each branch

1 2 3 4 5 6

h1 g21(t1) γ − g22(t4) − 1/3

h2 g21(t1) − 1− γ − g22(t5) 1/3

h3 g22(t1) γ2g21(t2) − g22(t4) − 1/3

h4 g22(t1) − (1− γ)2g21(t3) − g22(t5) 1/3

h5 g22(t1) γ2g22(t2) − (1/3)g32(t4) − 1/3

h6 g22(t1) − (1− γ)2g22(t3) − (1/3)g32(t5) 1/3

h7 g22(t1) γ2g22(t2) − g33(t4) − 1/9

h8 g22(t1) − (1− γ)2g22(t3) − g33(t5) 1/9

h9 g22(t1) γ 1− γ g22(t4) g22(t5) 1/9

h10 g22(t1) γ 1− γ g22(t4) g22(t5) 1/9



76

4.1.1.1 An algorithm based on MUL trees

In this Section 3.1.1, I proposed an algorithm for computing the minimum number of extra

lineages required to reconcile a gene tree within the branches of a phylogenetic network

based on the concept of MUL tree. The insight of this method is that converting a phyloge-

netic network into a tree, in certain extent, enable us to make use of existing methods that

work on tree topologies. This technique can also be used for computing the probability of

a gene tree topology given a phylogenetic network.

The algorithm consists of three steps. The first two are exactly the same as the ones

used in this Section 3.1.1, which are converting the phylogenetic network into MUL tree,

and creating allele mappings. Once the phylogenetic network Nλ,γ is converted into MUL

tree Tλ′,γ′ and the set of all allele mappings is produced (a straightforward computational

task, yet results in a number of allele mappings that is exponential in a combination of

the number of alleles sampled and the number of reticulation nodes), the probability of

observing gene tree topology g is found by summing the probability of g given the MUL

tree over all possible allele mappings. Then, the probability of observing gene tree topology

g is found by summing over all possible allele mappings:

P (g|Nλ,γ) =
∑

f∈FT,g

P (g|Tλ′,γ′ , f). (4.5)

In this equation, the P (g|Tλ′,γ′ , f) term accounts for all coalescent histories of a given

mapping, which, when combined with the summation over all allele mappings, accounts

for all coalescent histories within the branches of a phylogenetic network. This formula-

tion naturally gives rise to a likelihood setup for estimating the parameters of a reticulate

evolutionary history from a collection of gene trees described by their topologies.
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To complete the framework, I now provide a formula for P (g|Tλ′,γ′ , f), which is the

probability of a gene tree given a MUL tree and an allele mapping. Similar to the issue

raised in Fig. 3.5, special attention needs to be paid to sets of branches in the MUL tree

that correspond to single branches in the phylogenetic network, since coalescence events

within these branches are not independent. Additionally, each branch in the MUL tree

may have a inheritance probability associated with it that is neither 0 nor 1, and must be

accounted for in computing the probabilities. Accounting for these two cases gives rise to

P (g|Tλ′,γ′ , f) =
∑

h∈HT,f (g)

w(h)

d(h)

n−2∏
b=1

γ′b
vb(h)P ′b(h), (4.6)

where the P ′b(h) terms are symbolic quantities, that do not individually evaluate to any

value. Instead, they play a role in simultaneously computing the probability along pairs of

branches in the MUL tree that share a single source branch in the phylogenetic network.

More formally, let b′ = (u, v) be a branch in Nλ,γ . Recall that given the mapping φ from

the branches of T to the branches of Nλ,γ , the pre-image (or, inverse image) φ−1(b′) is the

set of all branches in T that map to b′ under φ. That is, φ−1(b′) = {e ∈ E(T ) : φ(e) = b′},

where E(T ) is the set of T ’s branches. Then, I define

ub′(h) =
∑

b∈φ−1(b′)

ub(h) and vb′(h) =
∑

b∈φ−1(b′)

vb(h). (4.7)

This equation states that the number of lineages ub′(h) that enters (working backward in

time) branch b′ in the phylogenetic network equals the sum of the numbers of lineages that

enter all branches of the MUL tree that map to branch b′. The number of lineages vb′(h)

that exists branch b′ is defined similarly. In Figure 3.5, the number of lineages that enters

branch b′ = (h,w) in the phylogenetic network equals the sum of the number of lineages
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that enter branch b1 = (h1, w1) and the number of lineages that enter branch b2 = (h2, w2)

in the MUL tree.

Then, I use the following equation to evaluate the probability in Equation (4.6):

∏
b∈φ−1(b′)

P ′b(h) =
1

db′(h)
pub′ (h)vb′ (h)(λb′)(ub′(h)− vb′(h))!

∏
b∈φ−1(b′)

wb(h)

(ub(h)− vb(h))!
, (4.8)

where db′(h) is computed using the formula in [DS05b], with ub′(h) and vb′(h) as param-

eters. In the example of branches b′, b1 and b2 that I just illustrated, Equation (4.8) states

that P ′b1(h)P ′b2(h) evaluates to

1

db′(h)
pub′ (h)vb′ (h)(λb′)(ub′(h)− vb′(h))!

wb1(h)

(ub1(h)− vb1(h))!

wb2(h)

(ub2(h)− vb2(h))!
.

The term pub′ (h)vb′ (h)(λb′) gives the probability that ub′(h) lineages coalesce into vb′(h)

lineages within time λ(b′). The term

[(ub′(h)− vb′(h))!
∏

b∈φ−1(b′)

(wb(h)/(ub(h)− vb(h))!)]

corresponds to the quantity wb′(h) in [DS05b]. Finally, the term

∏
b∈φ−1(b′)

(wb(h)/(ub(h)− vb(h))!)

is the number of restrictions for the ordering of coalescent events within branch b′.

Similar to the algorithm for computing the minimum number of extra lineages of a

gene tree given a phylogenetic network based on MUL tree, the number of allele mappings

dominates the running time of this algorithm. See Section 3.1.1 for an analysis.

4.1.1.2 An algorithm based on weighted ancestral configurations

The concept of weighted ancestral configuration (AC) is introduced in Section 3.1.2 for

algorithm for counting the minimum number of extra lineages. It can also be used here to
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compute the probability of observing a gene tree topology given a phylogenetic network.

The same definition of AC is used, but with weight w in AC = (B, a, w) being interpreted

as p(AC), which denotes the cumulative probability of the extant gene lineages in AC

coalescing into the present gene lineages in AC from time 0. Accordingly, the two main

operations that occur as the algorithm proceed bottom-up need to change for the parts where

weights are involved:

• At a reticulation node, when splitting AC = (B, a, w) into all possible pairs of

AC1 = (B1, a1, w1) and AC2 = (B2, a2, w2), weights should be updated as w1 = w

and w2 = 1.

• At an internal tree node, when merging two compatible ACs AC1 = (B1, a1, w2)

and AC2 = (B2, a2, w2) into AC2 = (B, a, w), weight w should be set to w1 · w2.

Lemma 1 Let B be a set of gene lineages entering branch b of network N with branch

length λb. Then the probability of observing a set of gene lineages B+ leaving branch b is

pt(B,B
+, b) = p|B|,|B+|(λb)

wb(B,B
+)

db(B,B+)
, (4.9)

where p|B|,|B+|(λb) is the probability that |B| gene lineages coalesce into |B+| gene lin-

eages within time λb, wb(B,B+) is the number of ways that coalescent events can occur

along edge b to coalesce B into B+ with respect to the gene tree topology, and db(B,B+)

is the number of all possible orderings of |B| − |B+| coalescent events.

Observation 2 Let AC = (B, a, w) be a configuration entering an edge b and AC+ =

(B+, a+, w+) be a configuration that AC coalesced into when leaving b. Then w+ =

w · pt(B,B+, b).
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I define a function called CreateCACsForProb which takes a gene tree g, an edge

b = (u, v) of the network N and a set of ACs A C v that enter edge b, and returns a set of

all possible ACs A C (u,v) that exit edge b. See Alg. 5 for details. Recall that Coal(B, g)

in the function denotes the set of all sets of lineages that a set of lineages B could coalesce

into with respect to the topology of gene tree g. If no coalescent events occur on edge b,

|A C v| = |A C (u,v)|; otherwise, |A C v| < |A C (u,v)|.

Algorithm 5: CreateCACsForProb.
Input: Gene tree g, an edge b = (u, v), a set of ACs A C v

Output: A set of ACs A C (u,v)

foreach (B, a, w) ∈ A C v do

foreach B+ ∈ Coal(B, g) do

Compute w+ using Rule 2;

if ∃(B′, a′, w′) ∈ A C (u,v) where B′ = B+ and a′ = a then

w′ ← w′ + w+;

else

A C (u,v) ← A C (u,v) ∪ (B+, a, w+) ;

return A C (u,v);

The algorithm for calculating the probability of observing a gene tree g given a species

network N is given in Alg. 6. The basic idea is similar to the parsimony method described

in Section 3.1.2, where ancestral configuration sets are being built when traversing the

network bottom-up and the final probability can be obtained after the configuration set for

the root has been constructed. To better illustrate this process, an example is given in Fig.
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4.1 which shows the sets of all ACs constructed during the executions.

BA C

{(a,[0],1)}

{(a,[0],1)}

{(bc,[0],g22(t1)),
(y,[0],g21(t1))}

{(d,[0],1)}

{(b,[0],1)} {(c,[0],1)}

{(bc,[0],g22(t1)),
(y,[0],g21(t1))}

{(Φ,[1],1),(bc,[2],(1-γ) g22(t3)),
(y,[2],(1-γ) g21(t3)),

(c,[3],1-γ),(b,[4],1-γ),
(Φ,[5],1),(y,[6],1-γ)}

2

2

{(bc,[1],g22(t1)γ g22(t2)),
(y,[1],g22(t1)γ g21(t2)),(Φ,[2],g22(t1)),

(b,[3],g22(t1)γ),(c,[4],g22(t1)γ),
(y,[5],g21(t1)γ),(Φ,[6],g21(t1))}

2
2

{(abc,[1],g22(t1)γ g22(t2)),
(ay,[1],g22(t1)γ g21(t2)),(a,[2],g22(t1)),

(ab,[3],g22(t1)γ),(ac,[4],g22(t1)γ),
(ay,[5],g21(t1)γ),(a,[6],g21(t1))}

2

2 {(d,[1],1),(dbc,[2],(1-γ) g22(t3)),
(dy,[2],(1-γ) g21(t3)),

(dc,[3],1-γ),(cb,[4],1-γ),
(d,[5],1),(dy,[6],1-γ)}

2
2

{(abc,[1],g22(t1)γ g22(t2)g33(t4)),
(ay,[1],g22(t1)γ (g22(t2)g32(t4)/3+g21(t2)g22(t4))),

(a,[2],g22(t1)),(ab,[3],g22(t1)γg22(t4)),
(ac,[4],g22(t1)γg22(t4)),

(ay,[5],g21(t1)γg22(t4)),(a,[6],g21(t1))}

2
2

{(d,[1],1),(dbc,[2],(1-γ) g22(t3)g33(t5)),
(dy,[2],(1-γ) (g22(t3)g32(t5)/3+g21(t3)g22(t5))),

(dc,[3],(1-γ)g22(t5)),(db,[4],(1-γ)g22(t5)),
(d,[5],1),(dy,[6],(1-γ)g22(t5))}

2

2

{(abcd,[1],g22(t1)γ g22(t2)g33(t4)),(ayd,[1],g22(t1)γ (g22(t2)g32(t4)/3+g21(t2)g22(t4))),
(adbc,[2],g22(t1)(1-γ) g22(t3)g33(t5)),

(ady,[2],g22(t1)(1-γ) (g22(t3)g32(t5)/3+g21(t3)g22(t5))),
(abcd,[3],g22(t1)γg22(t4)(1-γ)g22(t5)),(adcb,[4],g22(t1)γg22(t4)(1-γ)g22(t5)),

(ayd,[5],g21(t1)γg22(t4)),(ady,[6],g21(t1)(1-γ)g22(t5))}

2 2
2

2

D

{(d,[0],1)}

{(bc,[0],1)}

{(b,[0],1)}

{(c,[0],1)}

Figure 4.1: The ancestral configurations that result during the computations given phylo-

genetic network and gene tree ((a, d), (b, c)) in Fig. 2.4 under the probabilistic approach.

Configurations in blue represent configurations generated for nodes and configurations in

red represent configurations generated for branches. Curly braces and commas are removed

from the ACs for compactness (e.g., ady is the set {a, d, y}). The branch length of branch

i (i = 1, . . . , 5) is represented by ti.

It is important to note that although this algorithm is much more efficient than the MUL

tree based one in simulation study (see Section 4.4.1.2.1), the running time of this algorithm

can still be exponential for some data sets, as the complexity of the problem is open and

conjectured to be NP-hard.
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Algorithm 6: CalProb.
Input: Phylogenetic network N including topology, edge lengths and inheritance probabilities, gene

tree g

Output: P (g|N)

while traversing the nodes of N in post-order do

if node v is a leaf, whose parent is u then
A C v ← {(B, a, 1)} where B is the set of leaves in g sampled from the species associated

with v and a is a vector of q 0’s;

A C (u,v) ← CreateCACsForProb(g, (u, v),A C v);

else if node v is a reticulation node, who has child w, and two parents u1 and u2 then

A C v ← A C (v,w);

S1 ← ∅;

S2 ← ∅;

foreach AC ∈ A C v do
Split AC in every possible way into pairs of ACs, and for each pair, add one AC to S1

and the other AC to S2 ;

foreach (B, a,w) ∈ S1 do

w ← w · γ|B|
(u1,v)

;

A C (u1,v) ← CreateCACsForProb(g, (u1, v), S1);

foreach (B, a,w) ∈ S2 do

w ← w · γ|B|
(u2,v)

;

A C (u2,v) ← CreateCACsForProb(g, (u2, v), S2);

else if node v is an internal tree node, who has two children w1 and w2 then

foreach pair (AC1, AC2) of compatible ACs in A C (v,w1) ×A C (v,w2) do

Merge AC1 and AC2 and add the resulting AC to A C v;

if node v is an internal tree node, who has a parent u then

A C (u,v) ← CreateCACsForProb(g, (u, v),A C v);

else

Let BR be the root lineage of the gene tree g ;

return
∑

(B,a,w)∈A Cv
w · pt(B,BR,+∞);
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4.1.2 Using both topologies and branch lengths of the gene trees

Given a species tree, the method for computing the probability of observing a gene tree

with branch lengths was introduced in [RY03]. In this section, I propose the first method

for computing this probability when the given species phylogeny is a network [YDLN14].

Note that for this method both the gene tree and the phylogenetic network need to be

ultrametric.

Given a phylogenetic network Nλ,γ , the probability of observing a gene tree gλ′ can be

calculated by

P (gλ′|Nλ,γ) =
∑

ht∈HNλ,γ
(gλ′ )

P (ht|Nλ,γ), (4.10)

where P (ht|Nλ,γ) is the probability of observing coalescent history with respect to coa-

lescence times ht given phylogenetic network Nλ,γ . For an edge b = (u, v) ∈ E(Nλ,γ), I

define Tb(ht) to be {τgλ′ (w) : w ∈ ht−1(b)} ∪ {τNλ,γ
(v)} in an increasing order, so Tb(ht)

contains a list of ordered coalescence times of the coalescent events in ht that occur on

branch b plus the time of node v of N , where Tb(ht)k stands for the kth element in Tb(ht).

Furthermore, I denote by ub(ht) the number of gene lineages entering edge b and vb(ht)

the number of gene lineages leaving edge b under ht. Then the probability of observing a

coalescent history with respect to coalescence time ht can be calculated as follows:

P (ht|Nλ,γ) =
∏

b=(u,v)∈E(Nλ,γ)

[ |Tb(ht)|−1∏
k=1

fc(ub(ht)− k + 1, Tb(ht)k+1 − Tb(ht)k)

× 1(
ub(ht)−k+1

2

)]× fn(vb(ht), τNλ,γ
(u)− Tb(ht)|Tb(ht)|)× γ

ub(ht)
b

(4.11)

which is taken as a product of the probabilities of ht on every branch ofNλ,γ , where fc(j, t)

is the probability of j gene lineages waiting for time t to coalesce into j − 1 gene lineages
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which can be computed as fc(j, t) =
(
j
2

)
e−(j2)t [Kin82a, Kin82b], 1/

(
ub(ht)−k+1

2

)
is the

probability of a particular pair of gene lineages among ub(ht)− k + 1 lineages coalescing

, and fn(j, t) is the probability of no coalescent events happening among j gene lineages

for time t which can be computed as fn(j, t) = e−(j2)t [Kin82a, Kin82b]. After substituting

these terms, Eq. 4.11 becomes

P (ht|Nλ,γ) =
∏

b=(u,v)∈E(Nλ,γ)

[ |Tb(ht)|−1∏
k=1

e−(ub(ht)−k+1
2 )(Tb(ht)k+1−Tb(ht)k)

]

× e−(vb(ht)2 )(τNλ,γ
(u)−Tb(ht)|Tb(ht)|) × γub(ht)b .

(4.12)

Table 4.2 shows how the probabilities of observing ht1 and ht2 in Fig. 2.5 are calculated

according to Eq. 4.12, respectively.

Table 4.2: The probabilities of all coalescent histories with respect to coalescence times in

Fig. 2.5. For every ht, columns from 2 to 7 list the probability of having ht on every branch

of the species network Nλ,γ . Branch 6 corresponds to the branch incident into the root of

the species network . A dash means no gene lineages enter that branch. Therefore, the total

probability of a coalescent history with respect to coalescence times is the product taken

over all branches of the species network. In Fig. 2.5, coalescent events y and z can only

happen above the root of Nλ,γ . For every ht, the highlight cell shows where coalescent

event x happens.

Probability of each branch

1 2 3 4 5 6

ht1 e−η4 γ2e−(η3−η4) − 3e−(τ3−η3)e−(η1−τ3) 1 3e−(τ2−η1)e−(τ1−τ2)

ht2 e−η4 − (1− γ)2e−(η2−η4) 1 3e−(τ3−η2)e−(η1−τ3) 3e−(τ2−η1)e−(τ1−τ2)

Similar to the technique used in Section 3.1.1 and Section 4.1.1.1, P (gλ′ |Nλ,γ) can be
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computed using the concept of MUL tree. More specifically, I first convert the phylogenetic

network to a MUL tree. Then under every allele mapping, I compute the set of coalescent

histories with respect to coalescence times and use Eq. 4.12 to compute the probability of

every coalescent history. Note that again special attention needs to be paid to the sets of

edges in MUL tree that come from the same edge in the original network.

Here, I will focus on the algorithm for computing P (gλ′|Nλ,γ) based on weighted an-

cestral configurations, since it is faster than the one based on MUL tree. The definition

and operations of the weighted ancestral configuration follow the one used in algorithm for

computing the probability of observing a gene tree topology given a phylogenetic network

in Section 4.1.1.2.

I define a function called alg:CreateCACsForProbUsingBL (see Alg. 7), which takes

a gene tree gλ′ , a branch b = (u, v) of the phylogenetic network and a set of ACs A C v that

enter branch b as input, and returns the set of ACs A C (u,v) that exit branch b according

to the topology of the gene tree with respect to the coalescence times. Coal(B, g) in the

function denotes the set of all sets of lineages that a set of lineages B could coalesce into

with respect to the topology of gene tree g. Suppose there should be some coalescent event

happening on branch b, which means there is a node w in gλ′ where τNλ,γ
(v) ≤ τgλ′ (w) <

τNλ,γ
(u) and Lw ⊆ Lv, where Lw is the set of taxa under node w in gλ′ and Lv is the

set of taxa under node v in Nλ,γ . Note that some ACs in A C v here may not contain all

gene lineages that are required for coalescent event represented by w to occur. In this case,

they will be removed. And for those ACs in A C v that contribute to A C (u,v), there is a

1-1 correspondence between them and those in A C (u,v), because once time constraints are

imposed it is deterministic what coalescent events would occur for gene lineages in an AC
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on a branch. And therefore, |A C v| ≤ |A C (u,v)|. Note that if node v is a reticulation node,

|A C v| here represents the set of ACs that about to enter branch (u, v) after splitting.

The main idea of the algorithm is similar to the one in Section 3.1.2 for computing the

minimum number of extra lineages of a gene tree topology given a phylogenetic network

and to the one in Section 4.1.1.2 for computing the probability of observing a gene tree

topology given a phylogenetic network. We basically traverse the network in a bottom-up

fashion while building ancestral configuration sets for nodes being visited, and the final

probability can be obtained once the ancestral configuration set has been constructed for

the root. The complete algorithm is given in Alg. 8. Besides, I used the same technique

introduced in 3.1.2 to reduce the number of configurations at articulation nodes of the

network. Again, the running time of this algorithm is still exponential for some data sets,

as the complexity of the problem is open and conjectured to be NP-hard.

4.2 Handling gene tree uncertainty

Gene tree topologies may have uncertainty when they are estimated from sequence data.

In Section 4.2, I proposed ways to handle gene trees with uncertainty when parsimony

approach is used to infer species phylogeny. In this section, I proposed a way for incorpo-

rating the uncertainty of gene trees into my probabilistic framework [YDN12, YDLN14].

Assume there are k loci under analysis, and for each locus i, a Bayesian analysis of the

sequence alignment returns a collection of gene trees gi1, . . . , g
i
q, along with their associated

posterior probabilities pi1, . . . , p
i
q (pi1 + . . . + piq = 1). Now, let G be the set of all distinct

tree topologies computed on all k loci, and for each g ∈ G let pg be the sum of posterior
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Algorithm 7: CreateCACsForProbUsingBL.
Input: a gene tree gλ′ , an edge (x, y) ∈ E(Nλ,γ), a set of ACs A C y

Output: a set of ACs A C (x,y)

Let Vg be the set of internal nodes of gλ′ ordered by their heights increasing;

A C (x,y) ← ∅;

foreach (B, a,w) ∈ ACy do

t← τNλ,γ
(y);

B+ ← B;

p← λ
|B|
(x,y);

foreach v ∈ Vg do

if τNλ,γ
(y) ≤ τgλ′ (v) < τNλ,γ

(x) then

Let Lv be the set of taxa under node v in gλ′ ;

Let LB is the set of taxa that coalesce into B;

if Lv ⊆ LB then

p← p· e−(
|B+|

2 )(τgλ′ (v)−t);

t← τgλ′ (v);

Apply the coalescent event represented by v to B+ and the resulting B+

contains one less lineages;

else if Lv ∩ LB 6= ∅ then

p← 0;

Break;

if p 6= 0 then

if |B+| 6= 1 then

p← p· e−(
|B+|

2 )(τNλ,γ
(x)−t);

A C (x,y) ← A C (x,y) ∪ (B+, a, w· p);

return A C (x,y);
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Algorithm 8: CalProbUsingBL.
Input: Phylogenetic network Nλ,γ , gene tree gλ′

Output: P (gλ′ |Nλ,γ)

while traversing the nodes of N in post-order do

if node v is a leaf, whose parent is u then
A C v ← {(B, a, 1)} where B is the set of leaves in gλ′ sampled from the species

associated with v and a is a vector of q 0’s;

A C (u,v) ← CoalACs(gλ′ , (u, v),A C v);

else if node v is a reticulation node, who has child w, and two parents u1 and u2 then

A C v ← A C (v,w);

S1 ← ∅;

S2 ← ∅;

foreach AC ∈ A C v do
Split AC in every possible way into pairs of ACs, and for each pair, add one to

S1 and the other to S2 ;

A C (u1,v) ← CreateCACsForProbUsingBL(gλ′ , (u1, v), S1);

A C (u2,v) ← CreateCACsForProbUsingBL(gλ′ , (u2, v), S2);

else if node v is an internal tree node, who has two children w1 and w2 then

foreach pair (AC1, AC2) of compatible ACs in A C (v,w1) ×A C (v,w2) do

Merge AC1 and AC2 and add the resulting AC to A C v;

if node v is an internal tree node, who has a parent u then

A C (u,v) ← CoalACs(gλ′ , (u, v),A C v);

else

Create a virtual node r′ with height +∞;

A C (r′,v) ← CoalACs(gλ′ , (r
′, v),A C v);

return
∑

(B,a,w)∈A C (r′,r)
w;
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probabilities associated with all gene trees computed over all loci whose topology is g.

Thus, pg =
∑k

i=1 p
i
g and

∑
g∈G pg = k Then, Eq. 4.2 becomes

P (G |Nλ,γ) =
∏
g∈G

[P (g|Nλ,γ)]pg . (4.13)

Note that if pij = 1 or 0 for each i and j, then Eq. 3.11 is equivalent to Eq. 3.2. I additionally

allow the pij terms to be between 0 and 1 (and therefore pg to be non-integer values) in order

to reflect uncertainty in the estimated gene trees.

In the case where a maximum parsimony analysis is conducted to infer gene trees on the

individual loci, a different treatment is necessary, since for each locus, all inferred trees are

equally optimal. For locus i, let g be the strict consensus of all optimal gene tree topologies

found. Then, Eq. 4.2 can be replaced by either

P (G |Nλ,γ) =
∏
g∈G

max
g′∈b(g)

P (g′|Nλ,γ) (4.14)

or

P (G |Nλ,γ) =
∏
g∈G

∑
g′∈b(g)

P (g′|Nλ,γ) (4.15)

Notice that under this Eq. 4.15, a completely unresolved gene tree g (that is, a star) would

have probability 1, regardless of the phylogenetic network Nλ,γ .

4.3 Inferring a phylogenetic network

Given a collection of gene trees, in order to find the optimal phylogenetic network under

maximum likelihood, I used the same method for searching the space of phylogenetic net-

works described in Section 3.3. During the search, for each network topology proposed, we

need to optimize its branch lengths and inheritance probabilities which I described below.



90

4.3.1 Optimizing branch lengths and inheritance probabilities of a

phylogenetic network

In this section, I describe that given a collection of gene trees G how to find the optimal

branch lengths λ∗ and inheritance probabilities γ∗ for a given network topology N , where

λ∗,γ∗ = argmaxλ,γP (G |Nλ,γ). I will discuss the two cases where gene trees G have and

do not have branch lengths separately [YDLN14].

4.3.1.1 Using only topologies of gene trees

A heuristic for finding the optimal branch lengths for a given species tree topology was

introduced in [Wu12]. Here, I am using the same method but in the case of phylogenetic

networks I am optimizing not only branch lengths but also inheritance probabilities. In

particular, an initial value of likelihood is first calculated with every branch length initial-

ized to be 1.0 and inheritance probability initialized to be 0.5. Then the elements in [λ,γ]

are optimized one by one separately using the well-known Brent’s method [Bre73]. More

specifically, while the Brent’s method is varying the value of one element in [λ,γ] in order

to find a local optimum, the values of all other elements are fixed. After the local optimum

is found, the element is replaced by this new value and then the Brent’s method moves to

the next element for optimization. Updating all elements in [λ,γ] once is called a round.

After each round of optimization, I compare the new likelihood score of P (G |Nλ′,γ′),

where λ′ and γ′ are newly updated in this round, with the one after previous round. If the

improvement is smaller than some predetermined threshold or some predetermined maxi-

mum number of rounds is reached, λ′ and γ′ are claimed to be optimum and the process
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terminates. Since elements in [λ,γ] are optimized one by one separately, it is not guar-

anteed to find the global optimal solution. To avoid getting stuck at local optimum, the

order of which the elements in [λ,γ] are being optimized is shuffled at every round. In

practice, I see very accurate estimates in the simulation study. All parameters used in this

optimization process, including those for the Brent’s method, are listed in Chapter 5.

Given a phylogenetic network N and a gene tree g, note that the set of coalescent

histories HNλ,γ
(g) remains the same no matter how the branch lengths λ and inheritance

probabilities γ of N change, so as the set of ancestral configurations themselves at every

node of N . Hence, while varying the value of [λ,γ] in order to maximize P (G |Nλ,γ),

there is no need to recompute the ancestral configuration sets after computing them once.

Instead, what we need to do is only to update the probabilities of ancestral configurations

if necessary. More specifically, when the length of a branch (u, v) changes, only the prob-

abilities of ancestral configurations at the ancestor nodes of u and node u itself need to

be updated. Similarly, when the inheritance probabilities of two branches incident into a

reticulation node v change, only the probabilities of ancestral configurations at the ancestor

nodes of v need to be updated. Since the method of calculating P (G |Nλ,γ) needs to be

called many times when optimizing λ and γ of a phylogenetic network N given N and

gene trees G , doing computation from scratch only once significantly improves the effi-

ciency due to the fact that only updating the corresponding probabilities in the afterward

computations is trivial in terms of running time, especially for large data sets. However,

since all ancestral configurations need to be saved in order to allow us to avoid computing

them again, as a tradeoff, a lot of memory is required.
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4.3.1.2 Using both topologies and branch lengths of gene trees

As I mentioned, the set of coalescent histories of a gene tree g within the branches of a

phylogenetic network N does not change with the branch lengths or inheritance probabili-

ties of N if only the topology of gene tree g is considered. In other word, given gene tree

g without branch lengths, a phylogenetic network N with any values of branch lengths and

inheritance probabilities is valid. In theory, a branch length can be anything in R+ ∪ {0}

and inheritance probability can be anything in [0, 1]. That is why every element in [λ,γ]

can be optimized independently, as described in Section 4.3.1.1.

However, it is no longer the case if both topologies and branch lengths of the gene trees

need to be taken into account. There are two reasons for that. First, as I mentioned in

Section 4.1.2, calculating the probability of observing a gene tree gλ′ given a phylogenetic

network Nλ,γ requires Nλ,γ to be ultrametric (so as gλ′). However, optimizing the branch

lengths of Nλ,γ separately does not guarantee the ultrametricy of Nλ,γ . Second, even if

some λ makes Nλ,γ an ultrametric phylogenetic network, it is still considered invalid if gλ′

could not be reconciled within the branches of Nλ,γ with that set of branch lengths. As I

mentioned before, if a set of taxa L coalesced at time t in gλ′ , the height of the most recent

common ancestor node of any two taxa in L in the phylogenetic network Nλ,γ must be

lower than gλ′ .

Now I describe how I deal with these two issues. Let Gt be a collection of gene trees

with branch lengths. First, in order to guarantee the ultrametricy, instead of optimizing

branch lengths and inheritance probabilities of phylogenetic network Nλ,γ , I optimize the

height of every internal node of Nλ,γ and inheritance probabilities, denoted by φ of N .
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Second, in order to ensure that the phylogenetic network N with φ is valid for every gene

tree in Gt, I compute a vector φupper from Gt such that every element in φupper is an upper

bound of the corresponding element in φ. I use φupper(v) to denote the upper bound of the

height of node v. Now I describe how φupper is computed. I denote the coalescence time

of x and y in gene tree gλ′ by tgλ′ (x, y), where x and y are two leaves of gλ′ . So tgλ′ (x, y)

is equal to the height of the most recent common ancestor node of x and y in gλ′ . For every

pair of taxa x and y in phylogenetic networkN , I first find their minimum coalescence time

in gene trees Gt , denoted by tGt(x, y), such that tGt(x, y) = mingλ′∈Gt tgt(x, y) − ε. Let

Lv represents the set of taxa that are reachable from v in phylogenetic network N . Then,

for every internal node u of N , if it is a tree node, φupper(u) = min{tGt(x, y) : x ∈

Lv1 − Lv2 , y ∈ Lv2 − Lv1}, where v1 and v2 are two child nodes of u. If Lv1 − Lv2 = ∅ or

Lv2−Lv1 = ∅, φupper(u) is set to +∞. If it is a reticulation node, φupper(u) = φupper(v)

where v is the child node of u.

The heuristic I devised for optimizing φ and γ is as follows. I first compute φupper

from the gene trees Gt, and then initialize γ to be all 0.5 and φ to be some value ac-

cording to φupper. More specifically, I first set φ to be the same as φupper. Then I

traverse the nodes of N in post-order. For every node v being visited, if v is a leaf, the

height of it is set to 0. Otherwise, if v is not the root, φ(v) has to be some value between

maxD(v) andminA(v) wheremaxD(v) = max{φ(w): w is a descendant node of v} and

minA(v) = min{φ(u): u is an ancestor node of v} to ensure the related branch lengths

will not be negative. So if φ(v) ≥ minA(v), φ(v) is reset to maxD(v) + (minA(v) −

maxD(v))/(dDiff + 1) where dDiff is the difference between the depth of node v and the

minimum depth of its parent nodes. If φ(v) = +∞, φ(v) is reset to maxD(v) + 1. After
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initializing φ and γ, an initial value of likelihood is calculated. Then the iterative process

for optimization itself is similar to what is described in Section 4.3.1.1 where the elements

in [φ,γ] are optimized one by one separately using Brent’s method. It is important to note

that when φ(v) is being varied for optimization for a node v in N , its value needs to stay

in (maxD(v),min{minA(v),φupper(v)}) to make sure (i) it will not result in negative

branch lengths; (ii) all Gt can be reconciled within the branches of Nλ,γ . Again, the global

optimum is not guaranteed from this heuristic.

Given a phylogenetic network Nλ,γ and a gene tree gλ′ , the set of coalescent histo-

ries HNλ,γ
(gλ′) may change with λ. So during the optimization, P (Gt|Nλ,γ) needs to be

computed from scratch every time λ is changed. On the other hand, much less memory is

required compared to the optimization in Section 4.3.1.1, because no ancestral configura-

tions need to be stored and also the number of coalescent histories is usually much smaller

when both topologies and branch lengths of the gene trees need to be considered.

4.4 Performance

4.4.1 Simulation study

To study the performance of the criterion and the method in terms of the accuracy of the

inferred branch lengths and inheritance probabilities, as well as the identifiability issue, I

did intensive simulation studies [YDN12]. Also, I compared the efficiency between the

MUL-tree based method and AC based method [YRN13].
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4.4.1.1 Identifiability of hybridization using gene tree topologies

To study the power of the likelihood approach at identifying hybridization events using

gene tree topologies only, I did intensive simulation study. More specifically, I evolved

gene trees within the branches of phylogenetic networks, while varying branch lengths

and inheritance probabilities, and investigated two questions: (1) how much data (gene

trees) is needed to obtain accurate inference of the parameters (branch lengths and/or in-

heritance probabilities)? (2) are the parameters always identifiable? To answer these two

questions, I investigated six different phylogenetic network topologies in Fig. 4.2 that in-

volved single reticulation scenario (Scenario VI) , two reticulation scenarios (dependent

(Scenario I) and independent (Scenario IV and V), and cases with extinctions involving

the species that hybridize (Scenario II and III). Further, I varied the inheritance probabil-

ities associated with the hybridization events in the phylogenetic networks. For Scenario

I and II, I considered (α, β) ∈ {(0.0, 0.5), (0.3, 0.3), (0.5, 0.0), (0.5, 0.5), (0.5, 1.0)}. For

Scenario III and VI, I considered α ∈ {0.0, 0.3, 0.5}. For Scenario IV and V, I consid-

ered (α, β) ∈ {(0.0, 0.5), (0.3, 0.3), (0.5, 0.5)}. The rationale for selecting the three values

0.0, 0.3, and 0.5 is that they represent no hybridization, ”skewed” hybridization (different

genetic contributions of the two parents to the hybrid), and perfect hybridization (equal ge-

netic contributions of the two parents to the hybrid). Finally, to vary the extend of deep coa-

lescence within each of the four evolutionary histories, I considered two settings for branch

lengths (are measured in coalescent units): setting 1, in which t1 = t2 = t3 = t4 = 1.0,

and setting 2, in which t1 = t2 = t3 = t4 = 2.0. All reticulation branches have length

0. As the extent of ILS increases as branches become shorter, I expect setting 1 to provide
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more challenging data for the method.

Using each combination of phylogenetic network, inheritance probabilities, and branch

length setting, I used the ms program [Hud02] to generate 10, 20, 50, 100, 500, 1000 and

2000 gene trees within the branches of the phylogenetic networks. To obtain statistically

significant results, I generated 100 data sets per parameter setting and evaluated the perfor-

mance as averaged over these 100 data sets, for each point in the parameter space. In these

experiments, a single allele per species per gene was sampled.

4.4.1.1.1 Accuracy of inference

In this section, I studied the performance of the method in terms of estimating the branch

lengths and inheritance probabilities when no extinction events were involved in the parents

of hybrid populations in the phylogenetic networks. For the four scenarios I, IV, V, and

VI, the parameters (branch lengths and inheritance probabilities) are identifiable, and we

focused on the accuracy of our method for inferring these parameters from samples of gene

trees that were simulated as discussed in the previous section. That is, given a sample G of

gene tree topologies, and a phylogenetic network topology N , I solved

λ∗,γ∗ ← argmaxλ,γP (G |Nλ,γ), (4.16)

In this experiment, instead of using the heuristics in Section 4.3.1.1 to optimize these pa-

rameters, I used grid search. More specifically, to infer the inheritance probabilities I used

a grid search of values between 0 and 1 with step length of 0.01, and for the branch lengths

I used a grid search of values between 0.1 and 4.0 with step length of 0.1.

The results are shown in Figs. 4.3—4.6 below. We can see that both inheritance prob-
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Figure 4.2: Phylogenetic networks depicting different hybridization/divergence/extinction

scenarios. The α and β parameters denote the proportions (or, probabilities) of alleles that

are inherited from the “left” parents of the network-nodes (1 − α and 1 − β denote the

proportions of the alleles that are inherited from the “right” parents of the nodes).

abilities and branch lengths can be estimated with very high accuracy provided that no

extinction events were involved in the parents of hybrid populations. Further, this accuracy

can be achieved even when using the smallest number of gene trees I used in the study,
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which is 10. Under these settings, estimates using my framework seemed to converge

quickly to the true values.
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Figure 4.3: Estimates of α and β on Scenario I. Rows from top to bottom correspond to

true (α, β) values of (0.0, 0.5), (0.3, 0.3), and (0.5, 1.0), respectively.
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Figure 4.4: Estimates of α and β on Scenario IV. Rows from top to bottom correspond to

true (α, β) values of (0.0, 0.5), (0.3, 0.3), and (0.5, 0.5), respectively.

4.4.1.1.2 Identifiablity

In this section, I investigated the performance of the method, as well as identifiability is-

sues, when phylogenetic signal from at least one of the species involved in the hybridization
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Figure 4.5: Estimates of α, β, t2, t3, and t4 on Scenario V. Rows from top to bottom

correspond to true (α, β) values of (0.0, 0.5), (0.3, 0.3), and (0.5, 0.5), respectively. All

plots correspond to true values of t1 = t2 = t3 = t4 = 1.0.

is completely lost. I used the same inference procedure described in previous section to op-

timize branch lengths and inheritance probabilities of Scenario II and Scenario III.

The results of Scenario II is shown in Fig. 4.7. We can see that if the correct (true) val-
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Figure 4.6: Estimates of α, t2, and t3 on Scenario VI. Rows from top to bottom correspond

to true α values of 0.0, 0.3, and 0.5, respectively. All plots correspond to true values of

t2 = t3 = 1.0.

ues of branch lengths are used, the inheritance probabilities are identifiable, and converge

to the true values. However, unlike the cases that did not involved extinctions, a larger num-

ber of gene trees is now required to obtain an accurate estimate (while there are only three



102

possible gene tree topologies, a large number of gene trees need be sampled in order for

the three topologies frequencies to be informative). The time setting 1 where t2 = t3 = 1

amounts to a large extent of deep coalescence events, which blurs the phylogenetic signal,

and results in slight over- or under-estimation of the inheritance probabilities.
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Figure 4.7: Estimates of α and β on Scenario II. Rows from top to bottom correspond to

true (α, β) values of (0.0, 0.5), (0.3, 0.3), and (0.5, 1.0), respectively.
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However, if both branch lengths and inheritance probabilities are to be estimated, then

issues of unidentifiability arise, as I now show. Consider the phylogenetic network depicted

by Scenario II in Fig. 4.2. Let λ be the branch lengths vector with λ1 ≡ t1 = s, λ2 ≡ t2 =

p, and λ3 ≡ t3 = q, and let γ be the inheritance probabilities vector with γ1 ≡ α = a and

γ2 ≡ β = b. For a given set G of gene trees, other vectors λ′ and γ′ can be obtained such

that

P (G |Nλ,γ) = P (G |Nλ′,γ′), (4.17)

by setting the branch lengths arbitrarily to t1 = s′, t2 = p′, t3 = q′, and then setting the

inheritance probabilities as follows

α = − (ep
′ − 1)(eq − 1)abep+q

′

(eq′ − 1)(ep+q − bep+p′+q′ − ep′+q′ + bep′+q′)
(4.18)

and

β = −(ep+q − bep+p′+q′ − ep′+q′ + bep
′+q′)e−(p+q)

ep′ − 1
. (4.19)

For example, if I use p = 2.0, q = 2.0, a = 0.5, b = 0.5, p′ = 1.7, q′ = 1.7, and then

set α = 0.9088149157446168 and β = 0.29101947060819205 (based on the above two

formulas), then the same probability of any set of gene trees on the phylogenetic network

of Scenario II in Fig. 4.2 can be obtained.

If I sample two alleles per species B (and a single or more alleles per each of the two

species A and C), this lack of identifiability case disappears, since now the number of gene

tree topologies is greater than the number of parameters being estimated. However, in

practice, the value of t1 does affect the identifiability of the parameter values, since the

larger it is, the higher the probability that the two alleles sampled from B would coalesce
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and give a signal similar to that provided by a single allele. This point is illustrated by the

results shown in Fig. 4.8.

To produce these results, I parameterized the phylogenetic network of Scenario II above

with two different sets of values:

• network1: t2 = t3 = 2.0, α = β = 0.5.

• network2: t2 = t3 = 1.7, α = 0.9088149157446168 and β = 0.29101947060819205.

As discussed above, the probability of each of the three gene tree topologies ((a, b), c),

((a, c), b), and ((b, c), a), is the same under both networks. However, now consider the

case where two alleles from B are sampled. In this case, there are 15 different gene tree

topologies, which can be grouped into 9 categories, where all gene tree topologies within

the same category have identical probabilities, regardless of the species phylogeny:

1. (b2, ((b1, c), a)) and (b1, ((b2, c), a))

2. (b1, (c, (b2, a))) and (b2, (c, (b1, a)))

3. (c, (b1, (b2, a))) and (c, (b2, (b1, a)))

4. ((b1, c), (b2, a)) and ((b2, c), (b1, a))

5. (a, (b2, (b1, c))) and (a, (b1, (b2, c)))

6. (a, (c, (b1, b2)))

7. (b1, (b2, (a, c))) and (b2, (b1, (a, c)))

8. (c, (a, (b1, b2)))
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Figure 4.8: The probabilities of the 9 different gene tree topologies (when a single allele is

sampled from each of two species A and C, and two alleles are sampled from species B)

on the two phylogenetic networks obtained by parameterizing the values of α, β, t2 and t3

differently for Scenario II; see text. Left to right, top to bottom: t1 = 0.25, 0.5, 1.0, 2.0,

4.0, and 8.0, respectively.
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9. ((b1, b2), (a, c))

The probabilities of each of these 9 gene tree topologies (I choose one gene tree topology

per category), as a function of the value of t1 are shown in Fig. 4.8.

Clearly, the two networks exhibit the gene tree topologies with different probabilities,

when t1 = 0.25. However, the gap between the probabilities starts closing as the value

of t1 increases. When t1 = 4.0 or 8.0, the gaps are too small to be even observed in any

realistic data set (of a few thousand loci). At these branch lengths, the three topologies

with non-negligible probabilities are the ones of categories 6, 8, and 9, which have the two

alleles of B coalesce before either of them coalesce with alleles of the other two species.

In other words, while sampling two alleles from B help ameliorate the identifiability

issue, a relatively large sample (in terms of the number of loci) needs to be used, and the

the time between hybridization and the subsequent divergence must not be too large, for

methods to uniquely identify the parameter values.

Furthermore, in the special case where α = 0.0, a phylogenetic tree, with appropriate

branch lengths can be found, to fit the data exactly with the same probability that the phy-

logenetic network would. Consider the phylogenetic network N in Fig. 4.9(left), which

reflects Scenario II in Fig. 4.2 in the case where α = 0.0.

Let λ be the branch lengths vector with λ1 ≡ t1, λ2 ≡ t2, and λ3 ≡ t3, and let γ be the

hybridization probabilities vector with γ1 ≡ β. Now, consider the phylogenetic tree T in

Fig. 4.9(right). Then, if I set t as a function of β, t2, and t3, as follows:

t(β, t2, t3) = − ln(βet2 + 1− β) + t2 + t3, (4.20)
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Figure 4.9: (Left) A phylogenetic network with one of the parents of the hybrids being

extinct. (Right) A phylogenetic tree with divergence time t between the two speciation

events.

then,

P (G |Nλ,γ) = P (G |Tt) (4.21)

for any set G of gene trees. See Fig. 4.10 for values of t(α, t2, t3).
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Figure 4.10: Values of t(α, t2, t3) based on Equation (4.20); from left to right: α = 0.1,

0.5, and 0.9, respectively.

This result shows that as t2 increases, the value of t becomes unaffected by t2, and that

increasing t proportionally to the increase in t3 always maintains identical probabilities of

gene trees under both phylogenies in Fig. 4.9, as reflected by the derivatives:

∂t

∂t2
= 1− βet2

βet2 + 1− β
= 1− 1

1 + 1−β
βet2

(4.22)
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and

∂t

∂t3
= 1. (4.23)

Clearly,

lim
t2→∞

∂t

∂t2
= 0. (4.24)

Now consider the phylogenetic network of Scenario III in Fig. 4.2. In this case, both

species involved in the hybridization are extinct. Surprisingly, the results in Fig. 4.11 show

that if the correct (true) values of branch lengths is used, the inheritance probability α is

identifiable, and can be estimated with high accuracy as the number of gene trees sampled

increases.
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Figure 4.11: Estimates of α on Scenario III. (Left) α = 0.0; (right) α = 0.3.

However, if both branch lengths and inheritance probability are to be estimated, then

issues of unidentifiability arise, as I now show. Let λ be the branch lengths vector with

λ1 ≡ t1 = s, λ2 ≡ t2 = p, and λ3 ≡ t3 = q, and let γ be the hybridization probabilities

vector with γ1 ≡ α = a. For a given set G of gene trees, other vectors λ′ and γ′ can be

obtained such that

PN,λ,γ(G ) = PN,λ′,γ′(G ), (4.25)
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by setting the inheritance probability arbitrarily to α = a′ and the branch lengths arbitrarily

to t1 = s′, t3 = q′, and

t2 = − ln
2a′ep+q(a′ − 1) + 2aep+q

′
(1− a) + 2aeq

′
(a− 1) + eq

′

eq′(2a′2 + 1− 2a′)
+ p+ q − q′. (4.26)

For example, if I use p = 1.0, q = 2.0, a = 0.8, a′ = 0.1, q′ = 1.8, and then set

p′ = 1.050498643 (based on the above formula), the same probability of any set of gene

trees on the phylogenetic network of Scenario III in Fig. 4.2 can be obtained.

Furthermore, a phylogenetic tree, with appropriate branch lengths can be found, to fit

the data exactly with the same probability that the phylogenetic network would. Let λ be

the branch lengths vector with λ1 ≡ t1, λ2 ≡ t2, and λ3 ≡ t3, and let γ be the inheritance

probabilities vector with γ1 ≡ α. Now, consider the phylogenetic tree T in Fig. 4.9(right).

Then, if I set t as a function of α, t2, and t3, as follows:

t(α, t2, t3) = − ln(2α2 + 2αet2 − 2α2et2 + 1− 2α) + t2 + t3 (4.27)

then,

PN,λ,γ(G ) = PT,t(G ) (4.28)

for any set G of gene trees. See Fig. 4.12 for values of t(α, t2, t3).

This result shows that as t2 increases, the value of t becomes unaffected by t2, and that

increasing t proportionally to the increase in t3 always maintains identical probabilities of

gene trees under both the phylogenetic network of Scenario III and the phylogenetic tree

in Fig. 4.9, as reflected by the derivatives:

∂t

∂t2
= 1− 1

1 + 1
et2

(
1

2α(1−α) − 1
) (4.29)
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Figure 4.12: Values of t(α, t2, t3) based on Equation (4.27); from left to right: α = 0.1,

0.5, and 0.9, respectively.

and

∂t

∂t3
= 1. (4.30)

Clearly,

lim
t2→∞

∂t

∂t2
= 0. (4.31)

4.4.1.2 Efficiency of the algorithms

4.4.1.2.1 MUL-tree based method vs. AC based method

To study the efficiency of the AC based method compared to that of the MUL-tree based

method for computing the probability of observing a gene tree topology given a phyloge-

netic network, I ran both methods on the same datasets I used for compare the efficiency

between the AC based method and MUL-tree based method for computing the minimum

number of extra lineages of a gene tree and a phylogenetic network in Section 3.4.1.4.1.

All computations that could not finish in 8 hours were killed.

Part of the running times of the AC based algorithm are shown in Fig. 4.13. Only the

results of the computations that could finish successfully in 8 hours across all loci were
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plotted. We can see that the number of data points in the figure decreased significantly

when the number of reticulation nodes in the species networks increased. In fact, out of 100

repetitions, the numbers of repetitions that finished the computations successfully across all

different loci are 99, 96, 84, 54 and 32 for data sets containing species networks with 1, 2, 4,

6 and 8 reticulation nodes respectively. Those computations failed not only because of the

8 hours time limit. Part of them are due to memory issues: the number of configurations

generated during the computation in order to cover all the possible coalescence patterns

that could arise is huge. And the increase in the number of reticulation nodes in the species

network might result in a very large increase in the number of configurations.
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Figure 4.13: The running time (ln of number of seconds) of the AC based algorithm for

computing the probability of gene tree topologies given a species network on the data sets

described in Section 3.4.1.4.1. The columns from left to right correspond to data sets

containing species networks with 1, 4 and 8 reticulation nodes, respectively.

On the other hand, for the MUL-tree based method, none of the computations finished

within the time limit. Then I run the MUL-tree based method on a smallest dataset which

contains only one gene tree and a species network with only one reticulation node for up to

24 hours, but still failed. In contrast, the AC based method only needed 0.4 seconds on the
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same data set which implies a speedup of at least 5 orders of magnitude.

4.4.1.2.2 Factors affecting the efficiency of the AC based method

From Fig. 4.13, we can see that the running time of the AC based method differed signif-

icantly from case to case, even for data sets of the same size (same size of gene tree sets

and same reticulation nodes in the networks). I found that There are several factors that

can affect the number of configurations generated during the computation which directly

dominates the running time of the algorithm. Two of the factors that affect performance

are the number of leaves under a reticulation node, as well as the topology of the gene tree.

I considered a “controlled” data set in Fig. 3.14, the same one which I used to investigate

the factors that affects the efficiency of the AC based method for parsimony approach (see

Section 4.4.1.2.2 for a detailed description of this data set). I ran the AC based method on

every pair of phylogenetic network and gene tree.

The results are listed in Table 4.3. First of all, for both g1 and g2, the running time

of the algorithm increased when there are more nodes under the reticulation nodes in the

phylogenetic network, which is the same as we see for parsimony method (see Table 3.3).

Furthermore, for the same network, the running time on g2 is always faster than that on

g1, which implied that gene trees all of whose coalescent events have to happen above the

root result in shorter computation times than other gene trees. This is in stark contrast to

the parsimony method where such gene trees take the longest running time (see Table 3.3).

For the MUL-tree based method, the probability is computed by summing up the probabil-

ities of all coalescent histories in MUL-tree under all allele mappings. However, for most
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cases, the number of coalescent histories is much larger than the number of configurations

generated [Wu12]. That is part of the reason why the AC-based algorithm outperforms the

MUL-tree based algorithm for computing the probability in terms of efficiency.

Table 4.3: The results of running the AC based algorithm for computing the probability

of gene tree topologies given gene trees and species networks in Fig. 3.14. |A C h| is the

number of configurations at the reticulation node h andmax|A C | is the maximum number

of configurations generated at a node during computation. The first node v in post-order of

traversal that contains the largest ACv set is labeled by m in Fig. 3.14. Furthermore, the

last column is the number of valid allele mappings if using the MUL-tree based method.

g1 g2

|A C h| max|A C | running time (s) |A C h| max|A C | running time (s) #allele mappings

N1 1 16 0.075 1 2 0.019 2

N2 8 813 0.526 1 256 (28) 0.232 256

N3 15 98286 617.845 1 32768 (215) 34.968 32768

To study the third factor that impacts performance which is the dependency of the retic-

ulation nodes in the phylogenetic network (roughly, how many of them fall on a single path

to the root), another “controlled” data set is considered, the one in Fig. 3.15. Again, I ran

the AC based method on every pair of gene tree and phylogenetic network in the figure.

The results are shown in Table 4.4. Basically, we see the same trend as the one we see

in Section 3.4.1.4.2 for parsimony approach, where the more dependent to each other the

reticulation nodes in the phylogenetic network are, the more ancestral configurations are

generated during the computation, which means the more running time it needs.
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Table 4.4: The results of running the AC based algorithm for computing the probability

of gene tree topologies given gene trees and species networks in Fig. 3.15. |A C h| is the

number of configurations at the highest reticulation node h and max|A C | is the maximum

number of configurations generated at a node during computation. The first node v in

post-order of traversal that contains the largest ACv set is labeled by m in Fig. 3.15.

Furthermore, the last column is the number of valid allele mappings if using the MUL-tree

based method.

g1 g2

|A C h| max|A C | running time (s) |A C h| max|A C | running time (s) #allele mappings

N1 7 274 0.26 1 128 (27) 0.124 268435456

N2 9928 146433 1336.494 5040 40320 57.418 40320

4.4.2 Reanalysis of a yeast (Saccharomyces) data set

I reanalyzed the yeast data set of [RWKC03b] using the method described in Section 4.1.1

[YDN12]. The data set consists of 106 loci, each with a single allele sampled from seven

Saccharomyces species S. cerevisiae (Scer), S. paradoxus (Spar), S. mikatae (Smik), S. ku-

driavzevii (Skud), S. bayanus (Sbay), S. castellii (Scas), S. kluyveri (Sklu), and the outgroup

fungus Candida albicans (Calb) (see Section 3.4.2 for the analysis using parsimony ap-

proach on the same data set). Given that there is no indication of coalescences deeper than

the MRCA of Scer, Spar, Smik, Skud, and Sbay [TN09], I focused only on the evolutionary

history of these five species. I inferred gene trees using Bayesian inference in MrBayes

[HR01] and using maximum parsimony with strict consensus in PAUP* [Swo96].

The species tree that has been reported for these five species, based on the 106 loci,
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is shown in Fig. 4.14A [RWKC03b]. Further, additional studies inferred the tree in Fig.

4.14B as a very close candidate for giving rise to the 106 gene trees, under the coalescent

model [ELP07a, TN09]. Notice that the difference between the two trees is the place-

ment of Skud, which flags hybridization as a possibility. Indeed, the phylogenetic network

topologies in Fig. 4.14C-D have been proposed as an alternative evolutionary history, under

the stochastic framework of [BS10], as well as the parsimony framework of [YTDN11].

t3
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Sbay Skud Smik Scer Spar

A CB

t3

t2
t1

Sbay Skud Smik Scer Spar
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t4
t3

Smik Scer Spar
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Figure 4.14: Various hypotheses for the evolutionary history of a yeast data set. (A)

The species tree for the five species Sbay, Skud, Smik, Scer, and Spar, as proposed in

[RWKC03b], and inferred using a Bayesian approach [ELP07a] and a parsimony approach

[TN09]. (B) A slightly suboptimal tree for the five species, as identified in [ELP07a, TN09].

(C)—(E) The three phylogenetic networks that reconcile both trees in (A) and (B), and

which we reported as equally optimal evolutionary histories under a parsimony criterion in

[YTDN11]. (F) A phylogenetic network that postulates Smik and Skud as two sister taxa

whose divergence followed a hybridization event.

Using the 106 gene trees, I estimated the times t1, t2, t3, t4 and γ for the six phylogenies

in Fig. 4.14 that maximize the likelihood function (I used a grid search of values between
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0.05 and 4, with step length of 0.05 for branch lengths, and values between 0 and 1 with

step length of 0.01 for γ). Table. 4.5 lists the values of the parameters computed using Eq.

4.13 on the gene trees inferred by MrBayes and Table. 4.6 lists the values of the parameters

computed using Eq. 4.14 on the gene trees inferred by PAUP*, as well as the values of three

information criteria, AIC [Aka74], AICc [BA02] and BIC [Sch78], in order to account for

the number of parameters and allow for model selection.

Table 4.5: Parameter values estimated for the six phylogenies in Fig. 4.14, as well as

the values of three information criteria, using gene tree topologies inferred by a Bayesian

analysis (using MrBayes).

Species phylogeny t1 t2 t3 t4 γ −lnL AIC AICc BIC

Fig. 4.14A 0.05 0.85 2.05 N/A N/A 284 575 576 583

Fig. 4.14B 0.2 0.85 2.05 N/A N/A 276 559 560 567

Fig. 4.14C 0.4 0.65 2.05 N/A 0.59 274 556 556 567

Fig. 4.14D 2.95 0.7 2.1 0.85 0.5 247 504 504 517

Fig. 4.14E 0.6 0.05 2.05 0.2 0.0 276 563 564 577

Fig. 4.14F 0.9 0.05 2.15 N/A 0.27 325 659 659 669

Out of the 106 gene trees (using either of the two inference methods), roughly 100 trees

placed Scer and Spar as sister taxa, which potentially reflects the lack of deep coalescence

involving this clade (and is reflected by the relatively large t3 values estimated). Roughly

25% of the gene trees did not show monophyly of the group Scer, Spar, and Smik, thus

indicating a mild level of deep coalescence involving these three species (and reflected by
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Table 4.6: Parameter values estimated for the six phylogenies in Fig. 4.14, as well as

the values of three information criteria, using gene tree topologies inferred by maximum

parsimony (using PAUP*).

Species phylogeny t1 t2 t3 t4 γ −lnL AIC AICc BIC

Fig. 4.14A 0.3 1.25 3.6 N/A N/A 205 416 417 424

Fig. 4.14B 0.2 1.35 3.6 N/A N/A 208 423 423 431

Fig. 4.14C 1.1 1.05 3.6 N/A 0.34 188 384 385 395

Fig. 4.14D 3.45 1.15 3.6 3.05 0.34 157 325 326 338

Fig. 4.14E 0.3 1.25 3.6 N/A 1.0 205 420 421 434

Fig. 4.14F 1.55 0.05 3.7 N/A 0.18 252 512 512 523

the relatively small t2 values estimated). However, a large proportion of the 106 gene trees

indicated incongruence involving Skud. This pattern is reflected by the very low estimates

of the time t1 on the two phylogenetic trees in Fig. 4.14. On the other hand, analysis

under the phylogenetic network models of Fig. 4.14C-D indicates a larger divergence time,

with substantial extent of hybridization. These latter hypotheses naturally result in a better

likelihood score. When accounting for model complexity, all three information criteria

indicated that these two phylogenetic network models with extensive hybridization and

larger divergence time between Sbay and the (Smik,(Scer,Spar)) clade provide better fit for

the data. Further, while both networks produced identical hybridization probabilities, the

network in Fig. 4.14D had much lower values of the information criteria than those of

the network in Fig. 4.14E. The networks in Fig. 4.14E-F have lower support (under all
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measures) than the other four phylogenies. In summary, our analysis gives higher support

for the hypothesis of extensive hybridization, a low degree of deep coalescence, and long

branch lengths than to the hypothesis of a species tree with short branches and extensive

deep coalescence. It is worth mentioning that while the three networks in Fig. 4.14C-

E were reported as equally optimal under a parsimonious reconciliation [TN09], my new

framework can distinguish among the three, and identifies the network in Fig. 4.14D as

best, followed by the one in Fig. 4.14C (the network of Fig. 4.14E is found to be a worse

fit than either of the two species tree candidates).

4.4.3 Analysis of a house mouse (Mus musculus) data set

I used this maximum likelihood approach to analyze a data set of house mouse (Mus mus-

culus) genomes [YDLN14]. In this data set, I used two Mus musculus domesticus samples

from [SLM+12b], which represent one population from France (in the Massif Central)

and another population from Germany (in the vicinity surrounding Cologne and Bonn).

I also used three Mus musculus musculus samples obtained from [SLM+12b, DYS+12,

YWD+11], and which represent a population in Czechoslovakia (Studenec) [SLM+12b],

another population in Kazakhstan (Almaty) [SLM+12b], and a third population from China

(Urumqi in Xinjiang Province) [DYS+12, YWD+11].

Staubach et al. [SLM+12b] found substantial genome-wide evidence of subspecific

introgression in all four populations, amounting to 3% of the genome in the two M. m. d.

populations (one from France and the other from Germany), 4% in an M. m. m. population

from Kazakhstan, and 18% of an M. m. m. population from the Czech Republic. However,
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it is important to note that the method HAPMIX [PTP+09], which was used in [SLM+12b],

does not explicitly account for ILS.

My study included all of the samples in the study of [SLM+12b]. Furthermore, My

study included additional samples from an M. m. m. population from China [YWD+11]

that were not used in the study of [SLM+12b]. In total, 20, 639 local phylogenies were used

(see how gene trees were reconstructed from genome-wide sequence data in [YDLN14])

in the analysis. From the reconstructed gene trees, I inferred the optimal phylogenetic

networks with 0, 1, 2 and 3 reticulation nodes, respectively, using the method described

in Section 4.1.1, 4.3.1.1 and 3.3.2 (only topologies of gene trees were used). For each of

them, the search was run 50 times and top 5 networks were saved. All other parameters

were set to their default values as listed in Section 5. Since all five populations under

analysis are closely related, about 40% of the reconstructed local trees were partially, not

fully, resolved. When likelihood scores of phylogenetic networks are calculated using these

trees, I used Eq. 4.15 to account for uncertainties. The inferred networks are shown in Fig.

4.15.

Furthermore, to account for model complexity, I calculated the values of three informa-

tion criteria, AIC, AICc and BIC, as well as the error of cross-validation, for the optimal

inferred networks with the number of reticulation nodes from 0 to 3 respectively. More

specifically, I did 10-fold cross-validation and only binary gene trees in the validation sets

were used to calculate the error. The results are given in Table 4.7.

We can see that there is a significant improvement in a phylogenetic network with a

single reticulation over no reticulations, a significant improvement in a phylogenetic net-

work with two reticulations over a single reticulation for both three information criteria and
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Figure 4.15: The inferred phylogenetic networks of the M. musculus dataset. The rows

from top to bottom contain top 5 phylogenetic networks with 0, 1, 2 and 3 reticulation

nodes, respectively. In each row, networks are listed from left to right with an decreasing

value of log likelihood shown under each of them.

cross-validation. However, when I continued the search for the optimal network with three

reticulations, I found that the improvement gained by considering a third reticulation event

was insignificant based on the information criteria, and that there was no improvement
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Table 4.7: The results of information criteria and cross validation of the optimal inferred

species networks of the M. musculus dataset. N(k) refers to the optimal inferred species

network with k reticulation nodes.

lnL AIC AICc BIC Error of cross-validation

N(0) -47329 94664 94664 94688 7.69×10−5

N(1) -46756 93527 93527 93583 5.36×10−5

N(2) -46392 92806 92806 92893 4.03×10−5

N(3) -46300 92635 92635 92754 4.13×10−5

at all based on cross-validation. I thus called the optimal phylogenetic network with two

reticulations as my hypothesis for the evolutionary history of this set of genomes. Since

the likelihood scores of top five networks with 2 reticulations are all very close (see Fig.

4.15C), they can be somehow summarized as shown in Fig. 4.16, with the inferred branch

lengths and inheritance probabilities. The phylogenetic network is not ultrametric, and it

is worth emphasizing that the branch lengths are given in coalescent units. Thus, the lack

of ultrametricity could be due to different population sizes or, to a lesser degree, different

generation times.

The results I obtained differ from [SLM+12b] not only in terms of the number of pop-

ulations involved, but also by accounting for the evolutionary history of the populations

involved. I consider the percentages of the genome with introgressed origin reported by

[SLM+12b] to be over-estimates since introgression involving an ancestral population that

later split into more than one extant population would be multiply reported for each extant

population in the case of [SLM+12b]. On the other hand, the same percentages would
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Figure 4.16: The optimal phylogenetic network inferred on the house mouse (Mus mus-

culs) data set. A single individual was sampled from each of five populations: M.m. do-

mesticus from France (DF), M.m domesticus from Germany (DG), M.m. musculus from

the Czech Republic (MZ), M.m. musculus from Kazakhstan (MK), and M.m. musculus

from China (MC). The analysis found multiple, almost equally optimal, phylogenetic net-

works with two reticulation events. These multiple networks all agreed on the recipient

populations, but disagreed on the donor populations. One hybridization (the top dashed

horizontal arrow) involves the MRCA of DF and DG as a recipient population, yet seems

to have involved MK, MC, or their MRCA as the donor population. The second hybridiza-

tion (the bottom dashed horizontal arrow) involves MZ as a recipient population, yet seems

to have involved DF, DG, or their MRCA as the donor population. Branch lengths in coa-

lescent units (on the tree branches) and inheritance probabilities (on the horizontal edges)

are shown.
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be under-estimated in the case where admixed populations were used in place of the non-

admixed reference populations required by HAPMIX, as [SLM+12b] did by using puta-

tively introgressed mouse samples to construct the reference populations. Notably, my new

methodology does not require the use of non-admixed reference populations.

I hypothesize that the more recent introgression event in Figure 4.16 is due to gene flow

from secondary contact where the ranges of the two M. musculus subspecies overlapped,

roughly at the border between Germany and the Czech Republic. The biological interpre-

tation of the more ancient introgression event is less clear. I conjecture that the event is

related to gene flow during and after subspecific divergence. Further study may provide

important clues to the mechanistic basis of the evolution of subspecies in M. musculus and

the process of speciation itself.

4.5 Parametric Bootstrap

With the increasing interest in reconstruction of phylogenetic trees, in order to evaluate

how confident one should be in a reconstructed phylogeny, bootstrapping has been widely

used for decades since it was first proposed as a method for obtaining confidence limits on

phylogenies [Fel85]. Here, I employ parametric bootstrap evaluate the confidence of the

edges in an inferred phylogenetic network.

In Fig. 4.17, I illustrate given a collection of gene trees how to infer a phylogenetic

network with parametric bootstrap. Basically, after a phylogenetic network N is inferred

from the original set of gene tree G , within the branches of N I first simulate k sets of

gene trees independently, each of which has the same size as G , where k is some pre-
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specified number which should be large enough to get a precise estimate of bootstrap value

(in PhyloNet, the default value of k is 100). Then from each simulated set of gene trees,

a phylogenetic network is inferred using the same method and settings as the one used to

obtain the original phylogenetic network N from gene trees G . Finally, by comparing the

k inferred phylogenetic networks with N , I am able to obtain the support of every edge in

N .

This parametric bootstrap works for maximum likelihood (ML) inference using both

gene trees with and without branch lengths. In PhyloNet, when only the topologies of gene

trees were used, I implemented my own simulator to generate topologies of gene trees from

a given phylogenetic network. And when both the topologies and branch lengths of gene

trees were needed, an external software ms [Hud02] was called to simulate gene trees with

branch lengths.

The bootstrap value of an edge in the inferred phylogenetic network N is calculated as

the proportion of networks in N1, . . . , Nk that contain the same edge. I consider edge b1

in network N1 and edge b2 in network N2 to be the same if they satisfy the following two

conditions:

• b1 and b2 induce the same set of softwired clusters [HRS10],

• b1 and b2 are either both tree edges or both reticulation edges.

The materials in this section are from [YDLN14].
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Figure 4.17: Illustration of parametric bootstrap to access the significance of the edges in

the inferred phylogenetic network.



Chapter 5

Usage of PhyloNet to infer phylogenetic

networks

I have implemented all methods discussed in this thesis in PhyloNet [TRN08], which is an

open-source software package for phylogenetic network inference and analysis.

The inferNetwork ML functionality infers a phylogenetic network from a collection of

gene tree.It takes a collection of gene trees and the maximum number of reticulations and

returns optimal inferred phylogenetic networks along with branch lengths and inheritance

probabilities. There are many parameters for the users to specify; See Table 5.1 for details.

The materials in this section are from [YDLN14].
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Table 5.1: The usage of command inferNetwork ML in PhyloNet. The first two parameters
are mandatory and all others are optional.

InferNetwork ml (gt1 [, gt2...]) numReticulations [-a taxaMap] [-bl] [-b threshold] [-s startingNetwork] [-n
numNetReturned] [-h {s1 [, s2...]}] [-w (w1,w2,w3,w4)] [-f maxFailure] [-x numRuns] [-m maxNetExam-
ined] [-d maxDiameter] [-p (rel,abs)] [-r maxRounds] [-t maxTryPerBr] [-i improveThreshold] [-l maxBL]
[-pl numProcessors] [-di]

Parameter Illustration Default
(gt1 [, gt2 . . .]) Comma delimited list of gene tree identifiers. -

numReticulations Maximum number of reticulations to add to the species
network.

-

-a taxaMap Gene tree / species network taxa association. -
-bl Use the branch lengths of the gene trees for the inference. No

-b threshold Gene trees bootstrap threshold. Edges of gene trees
whose bootstrap values are under it will be contracted.

100

-s startingNetwork The network to start search from. MDC tree
-n numNetReturned Number of top optimal networks to return. 1

-h {s1 [, s2 . . .]} A set of specified hybrid species. The size of this set
equals the number of reticulation nodes in the inferred
network.

-

-w (w1, w2, w3, w4) The weights of operations (δ1, δ2, δ3, δ4) for network
arrangement during the network search.

(0.15, 0.15, 0.2, 0.5)

-f maxFailure The maximum number of consecutive failures before the
search terminates.

100

-x numRuns The number of runs of the search. 10

-m maxNetExamined Maximum number of network topologies to examine dur-
ing the search in each run.

+∞

-d maxDiameter Maximum diameter to make an rearrangement during
network search.

+∞

-p (rel, abs) The original stopping criterion of Brents algorithm for
optimizing branch lengths and inheritance probabilities
of a network.

(0.01, 0.001)

-r maxRound Maximum number of rounds to optimize branch lengths
and inheritance probabilities for a network topology.

100

-t maxTryPerBr Maximum number of trial per branch in one round to op-
timize branch lengths and inheritance probabilities for a
network topology.

100

-i improveThreshold Minimum threshold of improvement to continue the next
round of optimization of branch lengths and inheritance
probabilities.

0.001

-l maxBL Maximum branch lengths considered during optimiza-
tion.

6

-pl numProcessors Number of processors if you want the computation to be
done in parallel.

1

-di Output the Rich Newick string of the inferred network
that can be read by Dendroscope [HS12].

No



Chapter 6

Conclusions and future work

In this work, I devised the first parsimony and likelihood criteria for the inference of phy-

logenetic networks in the presence of ILS, along with new algorithms for the inference.

Both methods are general enough to allow for multiple hybridizations, multiple alleles per

species, and arbitrary divergence patterns following hybridization. For each of them, I pro-

posed a way of handling uncertainty in gene tree topologies when gene trees are estimated

from sequences. Furthermore, for the likelihood approach, I used information criteria and

cross-validation to account for the model selection issue. Also, I employed parametric

bootstrap to evaluate the confidence of the inferred species phylogenies.

I studied the performance of the algorithms in extensive simulation studies. For the

likelihood approach, it showed very good performance in terms of identifying the location

of hybridization events, as well as estimating the proportions of genes inherited through

hybridization. I also discussed the identifiability of phylogenetic networks from gene tree

topologies. As for the parsimony approach, it also estimated accurate phylogenetic net-

work topologies along with inheritance probabilities, and in addition, it showed good per-
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formance in terms of efficiency of handling large data sets in the experiments. Furthermore,

for both likelihood and parsimony approaches, I investigated the factors (i.e., the topologies

of gene trees and species networks) that affect the efficiencies of the algorithms.

My work allows, for the first time, systematic phylogenomic analyses of data sets where

hybridization is suspected. Thus, it allows us now to revisit existing analyses and conduct

new ones with richer evolutionary models and inference methods. In particular, using the

new methods, I reanalyzed two biological data sets, a data sets of yeast (Saccharomyces)

genomes and another of house mouse (Mus musculus) genomes, and found support for

hybridization in both of them.

Finally, I have implemented all the algorithms in our open-source, publicly available

PhyloNet software package.

6.1 Future work

I now discuss four main directions for future work.

First is to improve the scalability of the methods to larger data sets. Nowadays, with

the improvement of the DNA sequencing techniques, more and more data sets are being

available to biologists. Our work provides, for the first time, a general framework for

inferring species phylogenies in the presence of both hybridization and incomplete lineage

sorting. However, in practice, it is not feasible for our methods to deal with large data sets,

say data sets with hundreds of taxa. There are two main challenges here. One is the huge

space of the phylogenetic networks during the search. A straightforward idea is to narrow

the search space, for example by using biological and geographical knowledge about the
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species. The second challenge is that evaluating a candidate network is time-consuming,

especially for the probabilistic approach in which computing the likelihood of the network

requires optimizing the branch lengths and inheritance probabilities of that network. An

alternative way is to use heuristics instead of doing exact computation. By solving these

two challenges, our methods could scale up to larger data sets.

Another problem is to relax the two assumptions of our methods. First assumption is

that each locus is independent, which is a very common assumption in this area and al-

most all methods for inferring species phylogenies are developed under this assumption.

To ensure this, loci are usually sampled far away from each other such that they can be

considered independent. However, since independence is not guaranteed, it is important

that dependence among loci can be taken into account when species phylogenies are in-

ferred from them. Another assumption is that gene trees have already been estimated from

sequences, which allows us to focus only on maximizing the probability of observing gene

trees. This assumption is made assuming that gene trees were reconstructed without er-

ror, which can be avoided. So it is important that we compute the likelihood of a species

phylogeny directly from gene sequences. Maddison [Mad97] gave the formula as follows

∏
loci

∑
possible gene trees

[P (sequences|gene tree) · P (gene tree|species phylogeny)]. (6.1)

Now we are not assuming that gene trees have been reconstructed, so, for every locus,

every possible gene tree must be considered. For each of them, P (sequences|gene tree) and

P (gene tree|species phylogeny) are calculated separately. The former one can be computed

by [Fel81], and we have already devised methods for the latter. Therefore, to have the

complete likelihood model, which does the computation from gene sequences, it is just a
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matter of of implementation.

Last but not least, our methods infer species phylogenies assuming hybridization and

incomplete lineage sorting are the only two factors that cause gene tree incongruence. How-

ever, other factors may be at play, like gene duplication and loss. So it is important to go

beyond these two.



Bibliography

[Aka74] H. Akaike, A new look at the statistical model identification., IEEE Trans

Automat Contr 19 (1974), 716–723.

[BA02] K.P. Burnham and D.R. Anderson, Model selection and multi-model infer-

ence: a practical-theoretic approach., 2nd ed., Springer Verlag, New York,

2002.

[Bre73] R.P. Brent, Algorithms for minimization without derivatives, Prentice- Hall,

Englewood Clifts, New Jersey, 1973.

[BS10] E.W. Bloomquist and M.A. Suchard, Unifying vertical and nonvertical evo-

lution: A stochastic ARG-based framework, Systematic Biology 59 (2010),

no. 1, 27–41.

[BvIJ+13] Eric Bapteste, Leo van Iersel, Axel Janke, Scot Kelchner, Steven Kelk,

James O McInerney, David A Morrison, Luay Nakhleh, Mike Steel, Leen

Stougie, and James Whitefield, Networks: expanding evolutionary thinking,

Trends in Genetics 29 (2013), no. 8, 439–441.

132



133

[CHW+09] K. A. Cranston, B. Hurwitz, D. Ware, L. Stein, and R. A. Wing, Species trees

from highly incongruent gene trees in rice, Syst. Biol. 58 (2009), 489–500.

[DR06] J. H. Degnan and N. A. Rosenberg, Discordance of species trees with their

most likely gene trees, PLoS Genet. 2 (2006), 762–768.

[DR09] J.H. Degnan and N.A. Rosenberg, Gene tree discordance, phylogenetic in-

ference and the multispecies coalescent, Trends in Ecology and Evolution 24

(2009), no. 6, 332–340.

[DS05a] J. H. Degnan and L. A. Salter, Gene tree distributions under the coalescent

process, Evolution 59 (2005), 24–37.

[DS05b] J.H. Degnan and L.A. Salter, Gene tree distributions under the coalescent

process, Evolution 59 (2005), 24–37.

[DYS+12] John Didion, Hyuna Yang, Keith Sheppard, Chen-Ping Fu, Leonard McMil-

lan, Fernando de Villena, and Gary Churchill, Discovery of novel variants in

genotyping arrays improves genotype retention and reduces ascertainment

bias, BMC Genomics 13 (2012), no. 1, 34.

[ELP07a] S. V. Edwards, L. Liu, and D. K. Pearl, High-resolution species trees without

concatenation, PNAS 104 (2007), 5936–5941.

[ELP07b] , High-resolution species trees without concatenation, Proc. Natl.

Acad. Sci. U. S. A 104 (2007), 5936–5941.



134

[EM12] Anders Eriksson and Andrea Manica, Effect of ancient population structure

on the degree of polymorphism shared between modern human populations

and ancient hominins, Proceedings of the National Academy of Sciences 109

(2012), no. 35, 13956–13960.

[Fel81] J. Felsenstein, Evolutionary trees from gene frequencies and quantitative

characters: finding maximum likelihood estimates, Evolution 35 (1981),

1229–1242.

[Fel85] , Confidence limits on phylogenies: an approach using the bootstrap,

Evolution 39 (1985), 783–791.

[GKB+10] Richard E. Green, Johannes Krause, Adrian W. Briggs, Tomislav Maricic,

Udo Stenzel, Martin Kircher, Nick Patterson, Heng Li, Weiwei Zhai, Markus

Hsi-Yang Fritz, Nancy F. Hansen, Eric Y. Durand, Anna-Sapfo Malaspinas,

Jeffrey D. Jensen, Tomas Marques-Bonet, Can Alkan, Kay Prfer, Matthias

Meyer, Hernn A. Burbano, Jeffrey M. Good, Rigo Schultz, Ayinuer Aximu-

Petri, Anne Butthof, Barbara Hber, Barbara Hffner, Madlen Siegemund,

Antje Weihmann, Chad Nusbaum, Eric S. Lander, Carsten Russ, Nathaniel

Novod, Jason Affourtit, Michael Egholm, Christine Verna, Pavao Rudan, De-

jana Brajkovic, eljko Kucan, Ivan Guic, Vladimir B. Doronichev, Liubov V.

Golovanova, Carles Lalueza-Fox, Marco de la Rasilla, Javier Fortea, Antonio

Rosas, Ralf W. Schmitz, Philip L. F. Johnson, Evan E. Eichler, Daniel Falush,

Ewan Birney, James C. Mullikin, Montgomery Slatkin, Rasmus Nielsen,



135

Janet Kelso, Michael Lachmann, David Reich, and Svante Pbo, A draft se-

quence of the Neandertal genome, Science 328 (2010), no. 5979, 710–722.

[HDH+11] A. Hobolth, J. Dutheil, J. Hawks, M. Schierup, and T. Mailund, Incomplete

lineage sorting patterns among human, chimpanzee, and orangutan suggest

recent orangutan speciation and widespread selection, Genome Research 21

(2011), 349356.

[HOLM06] K.T. Huber, B. Oxelman, M. Lott, and V. Moulton, Reconstructing the evolu-

tionary history of polyploids from multilabeled trees, Molecular Biology and

Evolution 23 (2006), no. 9, 1784–1791.

[HR01] J. P. Huelsenbeck and F. Ronquist, MRBAYES: Bayesian inference of phylo-

genetic trees, Bioinformatics 17 (2001), 754–755.

[HRS10] D.H. Huson, R. Rupp, and C. Scornavacca, Phylogenetic networks: Con-

cepts, algorithms and applications, Cambridge University Press, New York,

2010.

[HS12] D.H. Huson and C. Scornavacca, Dendroscope 3: an interactive tool for

rooted phylogenetic trees and networks., Systematic Biology 61 (2012),

1061–7.

[Hud83] R. R. Hudson, Testing the constant-rate neutral allele model with protein

sequence data, Evolution 37 (1983), 203–217.

[Hud02] , Generating samples under a Wright-Fisher neutral model of genetic

variation, Bioinformatics 18 (2002), 337–338.



136

[JML09] S. Joly, P. A. McLenachan, and P. J. Lockhart, A statistical approach for

distinguishing hybridization and incomplete lineage sorting, Am. Nat. 174

(2009), no. 2, E54–E70.

[JSO12] G. Jones, S. Sagitov, and B. Oxelman, Statistical inference of allopolyploid

species networks in the presence of incomplete lineage sorting, arXiv (2012),

1208.3606.

[Kin82a] J. F. C. Kingman, The coalescent, Stochast. Proc. Appl. 13 (1982), 235–248.

[Kin82b] , On the genealogy of large populations, J. Appl. Prob. 19A (1982),

27–43.

[Kub09] L. S. Kubatko, Identifying hybridization events in the presence of coalescence

via model selection, Syst. Biol. 58 (2009), no. 5, 478–488.

[KWK08] Chih-Horng Kuo, John P. Wares, and Jessica C. Kissinger, The Apicomplexan

whole-genome phylogeny: An analysis of incongruence among gene trees,

Mol. Biol. Evol. 25 (2008), no. 12, 2689–2698.

[LYK+09] L. Liu, L. L. Yu, L. Kubatko, D. K. Pearl, and S. V. Edwards, Coalescent

methods for estimating phylogenetic trees, Mol. Phylogenet. Evol. 53 (2009),

320–328.

[Mad97] W. P. Maddison, Gene trees in species trees, Syst. Biol. 46 (1997), 523–536.



137

[MK09] C. Meng and L. S. Kubatko, Detecting hybrid speciation in the presence of

incomplete lineage sorting using gene tree incongruence: A model, Theor.

Popul. Biol. 75 (2009), no. 1, 35–45.

[MR12] M.L. Moody and L.H. Rieseberg, Sorting through the chaff, nDNA gene

trees for phylogenetic inference and hybrid identification of annual sunflow-

ers (Helianthus sect Helianthus), Molecular Phylogenetics And Evolution 64

(2012), 145–155.

[Nak10] L. Nakhleh, Evolutionary phylogenetic networks: models and issues, The

Problem Solving Handbook for Computational Biology and Bioinformatics

(L. Heath and N. Ramakrishnan, eds.), Springer, New York, 2010, pp. 125–

158.

[Nak13] Luay Nakhleh, Computational approaches to species phylogeny inference

and gene tree reconciliation, Trends in Ecology & Evolution 28 (2013),

no. 12, 719–728.

[Nei86] M. Nei, Stochastic errors in DNA evolution and molecular phylogeny, Evolu-

tionary Perspectives and the New Genetics (H. Gershowitz, D. L. Rucknagel,

and R. E. Tashian, eds.), Alan R. Liss, New York, 1986, pp. 133–147.

[Nei87] , Molecular evolutionary genetics, Columbia University Press, New

York, 1987.



138

[NWL04] L. Nakhleh, T. Warnow, and C.R. Linder, Reconstructing reticulate evolution

in species–theory and practice, Proc. 8th Ann. Int’l Conf. Comput. Mol. Biol.

(RECOMB04), 2004, pp. 337–346.

[PIME06] D. A. Pollard, V. N. Iyer, A. M. Moses, and M. B. Eisen, Widespread discor-

dance of gene trees with species tree in Drosophila: evidence for incomplete

lineage sorting, PLoS Genet. 2 (2006), 1634–1647.

[PTP+09] Alkes L. Price, Arti Tandon, Nick Patterson, Kathleen C. Barnes, Nicholas

Rafaels, Ingo Ruczinski, Terri H. Beaty, Rasika Mathias, David Reich, and

Simon Myers, Sensitive detection of chromosomal segments of distinct an-

cestry in admixed populations, PLoS Genet 5 (2009), e1000519.

[Ram12] A. Rambaut, Phylogen v1.1, http://tree.bio.ed.ac.uk/software/phylogen/

(2012).

[Ros02] N. A. Rosenberg, The probability of topological concordance of gene trees

and species trees, Theor. Pop. Biol. 61 (2002), 225–247.

[Ros07] N.A. Rosenberg, Counting coalescent histories, Journal of Computational

Biology 14 (2007), 360–377.

[RWKC03a] A. Rokas, B. L. Williams, N. King, and S. B. Carroll, Genome-scale ap-

proaches to resolving incongruence in molecular phylogenies, Nature 425

(2003), 798–804.



139

[RWKC03b] A. Rokas, B.L. Williams, N. King, and S.B. Carroll, Genome-scale ap-

proaches to resolving incongruence in molecular phylogenies, Nature 425

(2003), 798–804.

[RY03] B. Rannala and Z. Yang, Bayes estimation of species divergence times and

ancestral population size using dna sequences from multiple loci., Genetics

164 (2003), 1645–1656.

[RY08] B. Rannala and Z. Yang, Phylogenetic inference using whole genomes, Annu.

Rev. Genomics Hum. Genet. 9 (2008), 217–231.

[Sch78] G.E. Schwarz, Estimating the dimension of a model., Annals of Statistics 6

(1978), 461–464.

[SLM+12a] F. Staubach, A. Lorenc, P.W. Messer, K. Tang, D.A. Petrov, and D. Tautz,

Genome patterns of selection and introgression of haplotypes in natural

populations of the house mouse (mus musculus), PLoS Genetics 8 (2012),

e1002891.

[SLM+12b] Fabian Staubach, Anna Lorenc, Philipp W. Messer, Kun Tang, Dmitri A.

Petrov, and Diethard Tautz, Genome patterns of selection and introgression

of haplotypes in natural populations of the house mouse (Mus musculus),

PLoS Genet 8 (2012), no. 8, e1002891.

[SWCL05] J. Syring, A. Willyard, R. Cronn, and A. Liston, Evolutionary relationships

among Pinus (Pinaceae) subsections inferred from multiple low-copy nu-

clear loci, American Journal of Botany 92 (2005), 2086–2100.



140

[Swo96] D. L. Swofford, PAUP*: Phylogenetic analysis using parsimony (and other

methods), 1996, Sinauer Associates, Underland, Massachusetts, Version 4.0.

[Taj83] F. Tajima, Evolutionary relationship of DNA sequences in finite populations,

Genetics 105 (1983), 437–460.

[Tak89] N. Takahata, Gene genealogy in three related populations: consistency prob-

ability between gene and population trees, Genetics 122 (1989), 957–966.
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