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Abstract

Long-range corrected hybrid density functionals (LC-DFT), with range separation

parameters optimally tuned to obey Koopmans’ theorem, are used to calculate the first-

order hyperpolarizabilities of prototypical charge-transfer compounds p-nitroaniline

(PNA) and dimethylamino nitrostilbene (DANS) in gas phase and various solvents.

It is shown that LC-DFT methods with default range separation parameters tend to
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underestimate hyperpolarizabilities (most notably in solution), and that the tuning

scheme can sharply improve results, especially in the cases when the standard LC-

DFT errors are largest. Nonetheless, we also identify pathological cases (two pyrrole

derivatives) for which LC-DFT underestimates the hyperpolarizabilities, regardless of

tuning. It is noted that such pathological cases do not follow the usual inverse relation

between the hyperpolarizability and amount of exact exchange, and thus this behavior

may serve as a diagnostic tool for the adequacy of LC-DFT.
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Introduction

Because of their applications in nonlinear optics (NLO), conjugated charge-transfer organic

compounds have generated much interest in industry and academia since the invention of

lasers in the 1960s1 and up to present day.2–9 Specifically, this class of compounds are

known to exhibit very large hyperpolarizability tensor βijk components (i.e., first-order NLO

responses) along the direction of charge transfer,10–14 and their applications include, e.g., fre-

quency doubling of low power diode lasers, electrooptic modulation, optical signal processing,

imaging enhancements, and frequency upconversion lasing.15 But despite all the interest and

research around NLO, the design of materials with tailor-made optical properties remains

challenging. Furthermore, the accurate experimental determination of hyperpolarizabilities

and other NLO characteristics can be difficult in some cases due to the many intricacies

involved in the different techniques available for such determinations.16 Hence, reliable the-

oretical predictions of NLO properties are particularly valuable in this field of research.

Obtaining accurate estimates for βijk by theoretical methods is, however, a challenge on

its own. There are mainly two reasons for this: (1) hyperpolarizabilities are highly sensitive

to electronic correlation effects17 (even if purely dynamical), and (2) exact exchange plays an
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important role in the description of charge-transfer excitations.18–20 To complicate the issue

further, organic charge-transfer compounds of interest in NLO are typically medium to large

sized molecules, often ruling out the possibility of using high-level, computationally expen-

sive, electronic structure methods to calculate their properties. Traditional density functional

theory (DFT) methods, such as hybrids and generalized gradient approximations (GGAs),

are applicable to large molecules and can account for (dynamic and some static) correla-

tions. However, these methods have an incorrect asymptotic exchange potential behavior,

which leads to an underestimation of charge-transfer excitation energies and, consequently, a

large (at times catastrophic) overestimation of hyperpolarizabilities.21–25 Although inclusion

of 100% Hartree-Fock (HF) exchange should in principle fix this problem, in practice results

are often unsatisfactory due to the reliance of DFT in the error cancellation between inexact

exchange and correlation terms.

Long-range corrected (LC)-DFT methods26–31 offer a possibility to restore the correct

asymptotic exchange potential behavior and, simultaneously, avoid the inclusion of 100%

Hartree-Fock exchange. In LC-DFT, the interelectronic Coulomb operator r−112 is partitioned

into a short-range (SR) component and its long-range (LR) complement

1

r12
=

1− erf(ωr12)

r12︸ ︷︷ ︸
SR

+
erf(ωr12)

r12︸ ︷︷ ︸
LR

, (1)

where erf is the error function and ω a parameter defining the range separation (not to

be confused with the symbol often used to denote the frequencies in frequency-dependent

hyperpolarizabilities). In spite of being a trivial equality, Eq. 1 allows for meaningful

manipulations of a functional since one can now evaluate the exchange energy as

ELC−DFT
x = ESR−DFT

x (ω) + ELR−HF
x (ω). (2)

Thus, the amount of exact exchange included in ELC−DFT
x increases with the interelectronic
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distance, leading to the correct asymptotic behavior for the exchange potential and an im-

proved description of charge-transfer processes. Numerous studies have found that LC-DFT

methods provide better estimates for hyperpolarizabilities and related properties in charge-

transfer compounds as compared to hybrid and GGA functionals.18,32–42 However, some

recent works have also concluded that LC-DFT does not consistently outperform hybrids

and GGAs; for example, in Ref. 43, the range-separated CAM-B3LYP provides the best

results in some solvents, but the standard hybrid B3LYP is better in others. These two

seemingly contradictory observations may be reconciled by considering the fact that the

optimal range separation parameter ω in LC-DFT has been shown to be strongly system

dependent.44 Therefore, if the optimal ω value for a certain system is close to zero and far

from the default value obtained via the functional’s original parametrization, one could ex-

pect a GGA functional to be more adequate than its LC-GGA counterpart. This, of course,

poses the question of how to determine the optimal range separation parameter.

A nonempirical methodology to estimate the optimal ω for a determined system has

been proposed by Stein et al.45–48 (for a recent review, see Ref. 49). The scheme relies on

demanding that the molecule, and its corresponding anion, obey Koopmans’ theorem.50 The

difference between the HOMO and LUMO energies in optimally tuned LC-DFT by the afore-

mentioned criterion provides a good approximation to the fundamental gap (the difference

between ionization potential and electron affinity). Thus, these methods are sometimes re-

ferred to as “gap tuning” schemes. It has been shown that these techniques greatly improve

the accuracy of transition energies in charge-transfer excitations.45–48,51–53 Furthermore, a re-

cent study by Sun and Autschbach54 indicated that gap tuning methods can also yield better

hyperpolarizabilities than LC-DFT with default parameters for prototypical charge-transfer

compounds such as p-nitroaniline (PNA) and dimethylamino nitrostilbene (DANS). We note,

however, that Nénon et al.55 found tuned LC-DFT to be inadequate for the calculation of po-

larizabilities (αij) and second-order hyperpolarizabilities (γijkl) in large π-conjugated chains.

In the present paper, we explore further the possibility of improving the description of
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hyperpolarizabilities, specifically first-order hyperpolarizabilities, by tuned LC-DFT. The

main contributions of this work are the following: (1) some of the above mentioned results

by Sun and Autschbach54 are confirmed, (2) it is shown that the improvement of tuned

over standard LC-DFT for describing βijk in charge-transfer compounds is much more dra-

matic in polar media (solvent effects were not investigated in Ref. 54), and (3) a cautionary

note on pathological cases for LC-DFT (tuned or not) is provided, along with a possible

diagnostic tool to identify such cases. The specific effects of solvent and wavelength, which

have been shown to significantly affect the quality of DFT predictions,43 on frequency de-

pendent hyperpolarizabilities are also investigated. For these purposes, we study PNA and

DANS in various media as model systems for charge-transfer compounds. Two recently

synthesized56,57 charge-transfer pyrrole derivatives, 1 and 2 (see Figure 1), comprise the

pathological cases that appear to be difficult to handle for LC-DFT. These will serve to

illustrate the application of our proposed diagnostic tool.

NH2 NO2 NMe2
NO2

PNA DANS

N

N

N

N

N

O

O

1
2

Figure 1: Molecular structures of the compounds studied in this work.

Theory and Methods

Hyperpolarizabilities

The use of different conventions for reporting hyperpolarizabilities has been recognized

as the source of much confusion, leading to erroneous experiment-theory and experiment-

experiment comparisons.58–60 To avoid these issues, we dedicate this section to clarify the
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conventions and hyperpolarizability measures employed here.

All hyperpolarizabilities in this work are reported in the “T” convention. The name

for this convention comes from the fact that it defines (hyper)polarizabilities based on the

Taylor expansion of the induced dipole moment µ as a function of the field F

µi(F ) = µ0
i + αijFj +

1

2!
βijkFjFk +

1

3!
γijklFjFkFl + · · · (3)

where µ0 is the dipole moment in the absence of the field, α the polarizability, β the

first-order hyperpolarizability, γ the second-order hyperpolarizability, and so on. The T

convention is most prevalent in computational quantum chemistry, although one should be

aware that a phenomenological convention (called like that because it absorbs numerical

factors in the hyperpolarizability definitions), the X convention, is also commonly used by

experimentalists. For second harmonic generation first-order hyperpolarizabilities, the T and

X conventions are related by βT (−2w;w,w) = 4βX(−2w;w,w); further details about the

relations between conventions may be found in the paper by Reis.60

Regarding the actual hyperpolarizability measures used here, consider the component of

the first hyperpolarizability along the permanent dipole moment in the T convention

βT
z = βzzz +

1

3
(βzxx + 2βxzx + βzyy + 2βyzy) . (4)

We report the often used quantity denoted as β||, which is given in terms of βT
z as β|| =

(3/5)βT
z . Additionally, in some calculations, we also provide the total hyperpolarizability

βtot given as

βtot =
√
β2
x + β2

y + β2
z (5)

where

βi = βiii +
1

3

∑
i 6=j

(βijj + βjij + βjji). (6)

The βtot values given here are frequency independent and the coordinate system is defined
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by the standard orientation of the molecules. This is purely a convenience based on the way

hyperpolarizability tensors are printed in the output file generated by the program used for

the calculations (see Computational details section). For β||, some of the reported values are

static while other are frequency dependent; this is explicitly stated in every relevant case to

avoid any kind of ambiguity. As is customary in quantum chemistry, hyperpolarizabilities

are given in atomic units (a.u.), which are related to the electrostatic units (esu) through

the relations 1 a.u. = 1.4818× 10−25 esu for α, 1 a.u. = 8.6393× 10−33 esu for β, and 1 a.u.

= 5.0367× 10−40 esu for γ.

Gap tuning schemes

As stated in the Introduction, the gap tuning schemes of LC-DFT demand that the molecule,

and its corresponding anion, obey Koopmans’ theorem.45–48 The physical motivation behind

these criteria lays on the fact that this theorem holds for exact Kohn-Sham DFT.61,62 Recall

that Koopman’s theorem states that the energy of the HOMO is equal in magnitude and

opposite in sign to the ionization potential (this leads to the first criterion, that is, that the

molecule obey Koopman’s theorem). A more accurate IP can be thought of as improving

the description of the donor group in a charge-transfer compound. Likewise, precise electron

affinities (EAs) could be related to a better description of the properties of the acceptor.

Since no analogous rule to Koopman’s theorem exists for EAs, one requires instead the anion

of the system of interest to obey the aforementioned theorem (the second criterion). The

range-separation parameter ω provides the free variable to optimize in order to satisfy these

constrains. Thus, mathematically, ω is chosen as the minimizer of the function

Jgap(ω) = JIP (ω) + JEA(ω) (7)

with

JIP (ω) = |εωH(N) + Eω(N − 1)− Eω(N)| , (8)
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JEA(ω) = |εωH(N + 1) + Eω(N)− Eω(N + 1)| (9)

where εωH is the energy of the HOMO and Eω(N) the total energy for the N -electron system.

Note that this procedure for determining ω makes no reference to empirical data, thus

providing a physically sound ω without the bias introduced by traditional parametrizations

based on selected benchmark sets.

A simple argument to motivate the use of gap tuning for improving the description of

hyperpolarizabilities can be derived using the two-level model.10,58,60 This model, also known

as the two-state approximation, is based on a sum-over-states expression assuming that the

hyperpolarizability can be well approximated by considering only one excitation (the main

charge-transfer excitation). In the static frequency limit, the two-level model approximates

βT
z as60

βT
z =

6µ2
eg,z(µe,z − µg,z)

w2
eg

, (10)

where µeg,z = 〈Ψe|µ̂z|Ψg〉, µe,z and µg,z are transition and dipole moments for the excited

and ground states in the z direction, and weg is the transition energy |Ψg〉 → |Ψe〉. Although

Eq. 10 does not yield quantitative results (it largely overestimates βT
z ), it usually repro-

duces qualitative trends correctly and accounts for a large part of the hyperpolarizability

in a converged sum-over-states expression.52,63,64 In any case, the hyperpolarizability in Eq.

10 depends on the inverse of the square of the transition energy weg, which is known to be

improved by gap tuning schemes.45–48,51–53 Thus, one could expect more accurate hyperpo-

larizability predictions from tuned LC-DFT functionals as compared to their unoptimized

counterparts.

Computational details

All calculations were carried out using the Gaussian 09 suite of programs.65 Two GGAs, one

traditional hybrid, and three LC-DFT functionals are used in this work; these are, respec-

tively, PBE, B97-D, B3LYP, CAM-B3LYP, ωB97X-D, and LC-ωPBE. The Gaussian code
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was modified in order to compute hyperpolarizabilities using the LC-ωPBE functional, and

also to calculate the charge-transfer indices of Le Bahers et al.66 Unless otherwise noted,

the geometries utilized in the calculations were optimized at the CAM-B3LYP/6-31G(d,p)

level of theory using standard thresholds defined by Gaussian’s Opt keyword. Hyperpolar-

izabilities were also evaluated at the MP2 level of theory, to use as reference in certain of

the benchmark calculations. Default parameters given by the Polar keyword are used in the

computation of hyperpolarizabilities; this implies the analytical evaluation of these quanti-

ties for DFT methods, but numerical for MP2. These calculations employ the 6-311+G(d,p)

and 6-311++G(d,p) basis sets, which have been shown to be adequate for the prediction of

first-order NLO properties.67 Calculations on the excited states of 1 and 2 were performed

using time dependent density functional theory (TDDFT). The densities of the ground and

excited states were analyzed using Gaussview68 to visually characterize the charge transfer

nature of the excitations. All computations reported to be done in solvent media utilized the

polarizable continuum model (PCM; SCRF keyword) to mimic solvation effects.69 We note

that the PCM results shown here correspond to the non-equilibrium solvation limit, which is

the default option for TDDFT in Gaussian when excited state geometries are not optimized.

Regarding the optimization of the range separation parameter, we take here a minimalist

approach and select the ω value that minimizes Jgap among the set ω/bohr−1 = {1× 10−4,

0.1, 0.2, 0.3, 0.4, 0.5}; the internal options (IOps) of the Gaussian software are used to set

the ω values (1 × 10−4 is the smallest value that can be requested). We use this approach

for the following reasons: (1) predicted properties do not change radically for ω values that

differ by about ±0.01 bohr−1, (2) this same methodology has been shown to be appropriate

for describing other charge-transfer compounds,52 (3) it is computationally inexpensive, and

(4) we compare mostly against experimental hyperpolarizabilities, which have certain margin

of error, making a finer tuning of ω not meaningful. From now on, we shall use an asterisk

(*) to distinguish between tuned and non-tuned LC-DFT methods. Hence, for example,

LC-ωPBE* and ωB97X-D* utilize range separation parameters that minimize Jgap, rather
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than their default 0.4 and 0.2 bohr−1 ω values, respectively.

Results and discussion

PNA in gas phase and solution

In this section, we assess the performance of LC-ωPBE* and ωB97X-D* against traditional

GGAs, hybrids, and non-tuned LC-DFT functionals in the prediction of the first-order hy-

perpolarizabilities of PNA. For convenience, the optimal ω values utilized are listed in Table

1; in general, the range separation parameter is smaller in more polar media (although this

may be partly an effect of the insufficiency of PCM to describe the solvent; vide infra).

Table 2 compares the experimental43,59,60,70–73 β|| values for PNA in various solvents and

at different wavelengths with data predicted by DFT functionals. Globally, tuned LC-DFT

methods (LC-ωPBE* and ωB97X-D*) provide the best agreement with experiment, having

mean absolute errors (MAEs) of about 15%. This represents a substantial improvement over

non-tuned LC-DFT (MAEs of 27 and 21% for LC-ωPBE and ωB97X-D, respectively), which

tend to underestimate hyperpolarizabilities in solution; the mean error (ME = theory − ex-

periment) for LC-ωPBE is −27%. On the other hand, pure GGAs have an opposite tendency

and overestimate β|| (ME = 23%, MAE = 29% for PBE; ME = 24%, MAE = 30% for B97-

D). It seems therefore that tuned LC-DFT can alleviate some of the problems of standard

LC-DFT and GGAs. We also note that the traditional hybrid B3LYP provides rather good

agreement with experiment in solution, but poor results for the gas phase. Furthermore,

B3LYP is ultimately outclassed by the tuned LC-DFT methods.

Table 1: Optimal range separation parameters (bohr−1) for PNA.

Media LC-ωPBE ωB97X-D
Gas 0.3 0.2

1,4-Dioxane 0.1 0.1
Acetone 0.1 1× 10−4

Methanol 1× 10−4 1× 10−4
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Table 2: Comparison of experimental and theoretical β|| data (in a.u.) for PNA in different
media and at various wavelengths (nm). All calculations use the 6-311+G(d,p) basis. The
original experimental values are from various references,59,70–73 but have been conveniently
compiled and corrected/adapted from different conventions in Refs. 43,60.

Media λ Expt. PBE LC-ωPBE LC-ωPBE* B97-D ωB97X-D ωB97X-D* B3LYP
Gas 1,064 1,072 2,131 1,090 1,222 2,140 1,262 1,262 1,744

1,4-Dioxane Inf. 2,250 1,912 1,343 1,844 1,922 1,504 1,690 1,840
1,4-Dioxane 1,064 2,760 4,314 2,032 3,834 4,332 2,422 2,943 3,472
1,4-Dioxane 1,907 1,596 2,270 1,471 2,165 2,280 1,668 1,902 2,112

Acetone Inf. 3,305 3,804 2,606 3,723 3,828 2,990 3,517 3,718
Acetone 1,064 4,317 4,836 2,461 4,438 4,851 2,935 3,746 4,109
Acetone 1,907 2,162 2,423 1,742 2,390 2,430 1,960 2,260 2,392

Methanol Inf. 4,027 3,952 2,704 3,980 3,980 3,107 3,656 3,870
Methanol 1,064 5,334 4,717 2,434 4,772 4,731 2,897 3,680 4,035
ME (a.u.) - - - - 393 -993 172 408 -675 -241 52

MAE (a.u.) - - - - 622 997 397 625 734 461 513
ME (%) - - - - 23 -27 9 24 -16 -3 10

MAE (%) - - - - 29 27 16 30 21 15 22

Given that tuned LC-DFT has the best overall performance in the calculations presented

in Table 2, it is interesting to investigate further the correlation between Jgap and the error

in hyperpolarizabilities, and its dependence on solvent and frequency. Figure 2 shows the

relationship between Jgap and the error in DFT hyperpolarizabilities (β||) with respect to

experiment (error = theory − experiment) for PNA. All three panels in this figure show

the same data, but classified differently by functional, media, and wavelength, in order to

facilitate the inspection of the data and reveal important trends. These trends (which will

in short be analyzed in detail) are the following:

• LC-DFT functionals tend to underestimate (i.e., yield negative errors) β|| in solution

when Jgap is large. This error becomes more positive (increasing roughly linearly) as

Jgap decreases, providing overall better results. Hybrids and GGAs also display larger

absolute errors when Jgap is large. In fact, data with errors that are within 20% of the

experimental β|| are clustered around the region Jgap ≤ 0.05 Hartree.

• At a given wavelength, the error in β|| in methanol is more negative as compared to

the less polar acetone.
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• For LC-DFT data in a given solvent, the error in β|| is more negative at 1,064 nm than

at 1,907 nm or infinite wavelength.

It is worth noting that, although hybrids and GGAs are generally considered inadequate for

calculating hyperpolarizabilities, results from these functionals are seen to be quite reason-

able when Jgap is not very large. This occurs only in solution so that it may be possible that

the strong charge-transfer predicted by hybrids and GGAs is unphysical in the gas phase,

but is made possible in solution by means of the stabilization provided by polarization of the

solvent by the solute. However, LC-DFT has the advantage that it can be tuned to reduce

Jgap in different media, something that cannot be done with standard hybrids and GGAs.

A more detailed quantification of the dependence of the quality of DFT β|| predictions

on frequency and solvent is carried out in Figure 3. In this figure, the MEs and MAEs

for the hyperpolarizability data at 1,064 nm and infinite wavelength in 1,4-dioxane, acetone

and methanol are plotted to analyze the interactions between these variables and different

functionals. It is seen from the top right panel of Figure 3 that GGAs and non-tuned LC-DFT

functionals have opposite trends in the mean error as function of wavelength; for LC-DFT

the error is more negative at 1,064 nm than at infinite wavelength. This observation indicates

that GGAs exaggerate the increase in hyperpolarizability when going from the static limit

to 1,064 nm, whereas LC-DFT underestimates this effect. Tuned LC-DFT and hybrids

ameliorate these issues, providing overall lower absolute errors. From the top right panel

of Figure 3, it can also be appreciated that all functionals provide lower MAEs at infinite

wavelength (i.e., in the static limit).

The relationship between solvent and DFT error, analyzed in the two panels at the

bottom of Figure 3, is also an interesting one. All functionals display significantly more

negative MEs (∼ 10-20%) in methanol (ε = 35.69) than in acetone (ε = 20.49) or 1,4-

dioxane (ε = 2.21). In fact, all functionals tend to underestimate hyperpolarizabilities in the

highly polar methanol. However, GGAs and tuned LC-DFT with very low amounts of HF

exchange (PBE, B97-D, and LC-ωPBE*) do provide good results in this solvent. Note also
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culated by DFT for PNA. All three panels show the same data, but classified differently by
functional, media, and wavelength.
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the very large improvements of tuned LC-ωPBE over its non-tuned version, which become

more noticeable as the dielectric constant of the media increases; the MAEs are reduced by

5, 24, and 38% in 1,4-dioxane, acetone, and methanol, respectively. The same can be said

about ωB97X-D and its tuned variant ωB97X-D*, except that the improvements are more

moderate in this case because the default ω = 0.2 a.u. in ωB97X-D is closer to its optimal

values in solution than that of LC-ωPBE (0.4 a.u.). Also, ωB97X-D* underestimates β|| in

methanol more strongly than LC-ωPBE*, most likely due to the inclusion of a higher amount

of HF exchange in the former via its short-range part, which is hybrid.

Table 3: Differences in averages of errors (ME/MAE in percentage with respect to experi-
ment) in β|| at 1,064 nm and infinite wavelength, and in different media for PNA calculated
using data from Table 2. All calculations use the 6-311+G(d,p) basis and CAM-B3LYP/6-
31G(d,p) geometries.

Difference PBE LC-ωPBE LC-ωPBE* B97-D ωB97X-D ωB97X-D* B3LYP Mean
1,064 nm − Inf.† 20/16 -10/10 13/7 19/16 -8/8 -3/3 2/7 4.6/9.6
Dioxane − Gas‡ -42/42 -28/25 25/25 -43/43 -30/-5 -11/-11 -37/-37 -23.8/-12.7
Acetone − Gas‡ -87/-87 -45/41 -11/-11 -87/-87 -50/14 -31/-4 -68/-58 -54.0/-27.4
MeOH − Gas‡ -110/-87 -56/53 -25/-3 -111/-88 -63/28 -49/13 -87/-28 -71.6/-17.6
Acetone − Dioxane§ -7/-22 1/-1 -3/-21 -7/-22 2/-2 6/-6 0/-13 -1.1/-12.4
MeOH − Acetone§ -20/-7 -12/12 -14/2 -20/-8 -13/13 -17/10 -18/5 -16.3/3.5
MeOH − Dioxane§ -27/-29 -10/10 -16/-23 -27/-30 -12/12 -11/4 -18/-8 -17.4/-9.0
†Using all data at 1,064 nm and infinite wavelength in solution.
‡Using data at 1,064 nm only to avoid bias from the dependence of the error on the frequency.
§Using data at 1,064 nm and infinite wavelength.

So far we have discussed the main trends of the data in Table 2 and Figure 3 focusing

mostly on the performance of the different functionals. However, these data also allows us to

draw some important conclusions regarding the adequacy of the PCM-TDDFT combination

to account for solvent effects and frequency dependence in hyperpolarizability calculations.

In particular, it seems that PCM and TDDFT are insufficient to properly describe these

effects. This is best appreciated in Table 3, which shows the differences in averages of errors

(ME/MAE) in β|| at 1,064 nm and infinite wavelength, and in different media for PNA (e.g.,

in the first row of this Table the average of data at infinite wavelength is subtracted form the

average at 1064 nm, which for PBE is 20% in ME and 16% in ME). It is seen by the large

differences in errors that all methods have poor solvent dependence of hyperpolarizabilities.
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Still, tuned LC-DFT does tend to give smaller differences in errors than the rest of the

functionals. The dependence of the error on frequency is in general smaller than for solvent,

but not negligible and is quite large ( 15-20%) for GGAs in particular.

Table 4: Effects of tuning, media, and frequency on the errors in β|| (with respect to exper-
iment) determined using Yates algorithm on data from Table 2.

(a) Gas and 1,4-Dioxane/Acetone/Methanol
Variable change Effect on ME (%) Effect on MAE (%)
Mean 7.8/-5.5/-11.8 20.8/16.0/20.8
X1: LC-ωPBE −→ LC-ωPBE* 19.3/14.5/13.8 6.3/-7.0/-7.8
X2: Gas −→ Solution -1.3/-14.5/-20.75 11.75/7.0/11.8
X1 ×X2 13.3/8.5/7.8 0.3/-13.0/-13.8

(b) 1,4-Dioxane and Acetone/Acetone and Methanol
Variable change Effect on ME (%) Effect on MAE (%)
Mean -11.6/-18.4 25.4/22.4
X1: LC-ωPBE −→ LC-ωPBE* 20.9/19.4 -7.1/-15.4
X2: 1,4-Dioxane −→ Acetone -0.4 -5.4
X2: Acetone −→ Methanol -6.4 2.4
X1 ×X2 -0.9/-0.6 -4.9/-3.4
X3: Inf. −→ 1,064 nm 4.9/-7.9 2.4/5.4
X1 ×X3 6.9/2.9 0.4/-5.4
X2 ×X3 -12.9/0.1 0.6/2.4
X1 ×X2 ×X3 -3.9/-0.1 -8.4/2.6

It is also enlightening to carry out an statistical analysis of the effects of tuning, media,

and frequency on the error in β|| utilizing Yates algorithm.74 This analysis allows to rigorously

determine the effect of each of the above variables and their interactions (in the statistical

sense) on the error. These results are shown in Table 4 and are interpreted as follows: the

mean is the average of the ME/MAE for all calculations considered; a negative value for

X1: LC-ωPBE −→ LC-ωPBE* refers to a decrease in the mean of the ME/MAE due to

tuning and vice versa; X2: Gas −→ Solution gives the average change in error when going

from the gas phase to solution; X1 × X2 is the interaction between variables X1 and X2,

and it is negative if tuning reduces the error when going from gas to solution, etc. So,

for example, the MAE of LC-ωPBE in acetone and methanol is 22.4% + 15.4% = 37.8%,

whereas for LC-ωPBE* this value is 22.4% - 15.4% = 7%. The data in Table 4 reveal

that all variables considered and their interactions can have notable effects on the MEs or

MAEs. Large dependence of the errors on the interactions are evidence of the insufficiency
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(also discussed above) of the particular PCM-TDDFT combination to describe frequency

dependent hyperpolarizabilities in solution. Furthermore, the largely negative values for the

effects of X1: LC-ωPBE −→ LC-ωPBE* and X1 × X2 on the MAEs confirm that tuning

tends to improve the description of hyperpolarizabilities, specially in more polar media.

Before closing this discussion regarding PNA, we must note that there are sources of

error in our theory-experiment comparisons. Among these, the most notable are the neglect

of vibrational contributions to the hyperpolarizability and the error in the experimental β||

values. However, these errors are likely to be too small to affect the conclusions reached here.

For example, the vibrational contributions to β|| have been estimated to reduce the hyperpo-

larizability by no more than about 5% at the considered frequencies,43,75 whereas the error

in the gas phase measurement of β|| is reported to be around 4%.70 Nonetheless, we provide

as a sanity check Table 5. This Table illustrates the improvement of tuned over standard

LC-DFT when comparing with static βtot values calculated by the MP2 method, which has

been shown to produce reasonably accurate molecular hyperpolarizabilities.22,40,67,76–78 The

qualitative observations that can be drawn from Table 5 are similar to those obtained when

using experimental data as reference; LC-DFT tends to underestimate hyperpolarizabilities,

the tuning procedure roughly halves this error, and the improvement is more noticeable in

polar environments. We also note that, although MP2 tends to somehow overshoot βijk

values compared to coupled cluster calculations, this effect is usually small when using large

enough basis sets, similar to the ones used here (see, e.g., Refs. 40 and 43). In addition, LC-

ωPBE* and ωB97X-D* have MEs of −4% and −9%, respectively, when compared to MP2.

This supports good results from tuned LC-DFT if MP2 is slightly overshooting hyperpo-

larizabilities. Thus, it seems safe to conclude that tuning the range separation parameter

provides a significant improvement on the description of the hyperpolarizability of PNA in

different media by LC-DFT.
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Table 5: Comparison of MP2 and DFT βtot data (in a.u.) for PNA. All calculations use the
6-311+G(d,p) basis and CAM-B3LYP/6-31G(d,p) geometries.

Media MP2 LC-ωPBE LC-ωPBE* ωB97X-D ωB97X-D*
Gas 1,616 1,218 1,305 1,337 1,337

1,4-Dioxane 3,019 2,573 3,073 2,507 2,816
Methanol 6,225 4,499 6,634 5,179 6,127
ME (a.u.) - - -857 51 -612 -193

MAE (a.u.) - - 857 258 612 193
ME (%) - - -22 -4 -17 -9

MAE (%) - - 22 9 17 9

DANS in gas phase and solution

We now turn our attention to the performance tuned LC-DFT relative to other DFT methods

in the description of the first-order hyperpolarizabilities of the larger DANS molecule. The

optimal ω values utilized are listed in Table 6. In Table 7, the predictions of the β|| values for

DANS given by different functionals are compared with static MP2 data in the gas phase, and

experimental measurements in CHCl3 at 1,908 nm. There are not nearly as much reference

data for DANS as there are for PNA but, nevertheless, the trends regarding LC-DFT errors

in this Table mirror those noted for PNA in the preceding discussion. Again, LC-DFT

underestimates the first order NLO responses, and the tuning procedure greatly improves

results, particularly in solvent media. If anything, we must note that this improvement is

much larger for DANS than for PNA; the 62% MAE of LC-ωPBE is reduced to 14% by

tuning for DANS, whereas these percentages are 29% and 16% for PNA (Table 2). The

absolute errors of tuned LC-DFT are larger for DANS than for PNA, but these errors are

similar and remain reasonable percentage wise. This observation is in agreement with the

results by Sun and Autschbach.54

Table 6: Optimal range separation parameters (bohr−1) for DANS.

Media LC-ωPBE ωB97X-D
Gas 0.2 0.2

CHCl3 0.1 1× 10−4

We also note that, in the gas phase, the optimal LC-ωPBE range separation parameter
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Table 7: Comparison of DFT β|| data (in a.u.) with MP2/6-311++G(d,p) (gas phase, static
limit) and experiment (chloroform, 1,908 nm) for DANS. All DFT calculations use the 6-
311+G(d,p) basis. The reference MP2 and experimental data have been taken from Ref.
43.

Media λ Reference PBE LC-ωPBE LC-ωPBE* B97-D ωB97X-D ωB97X-D* B3LYP
Gas Inf. 10,194 23,834 5,960 8,930 23,676 7,680 7,680 16,551

CHCl3 1,908 70,000 153,334 12,692 58,548 152,918 18,614 57,447 66,415
ME (a.u.) - - - - 48,487 -30,771 -6,358 48,200 -26,950 -7,534 1,386

MAE (a.u.) - - - - 48,487 30,771 6,358 48,200 26,950 7,534 4,971
ME (%) - - - - 126 -62 -14 125 -49 -21 29

MAE (%) - - - - 126 62 14 125 49 21 34

for DANS (0.2 bohr−1) is smaller than that of PNA (0.3 bohr−1). The inverse relationship

between system size and optimal ω has been noticed before44 and thus, since the default ω in

LC-ωPBE is 0.4 bohr−1, it is not surprising that the improvements of tuning are more drastic

for DANS compared to PNA. In solution, the minimization of Jgap leads to further smaller

ω values for DANS, as is the case for PNA too. Furthermore, for both PNA and DANS, the

traditional hybrid B3LYP yields rather good results in solution, but largely overestimates

gas phase hyperpolarizabilities.

Important differences between the accuracy of DFT predictions for PNA and DANS can

also be noticed. The most notable of these is the extremely poor performance of GGAs (over

100% error) for DANS, compared to the relatively good predictions of these functionals for

PNA in solution. In this case, the error due to the wrong asymptotic behavior of the DFT

exchange potential becomes more severe due to DANS being a larger molecule than PNA.

This leads to the well known catastrophic overestimation of the first-order NLO response

of GGAs as the system grows larger. Thus, although the optimal ω in LC-DFT decreases

with increasing size of the system leading to more “GGA-like” behavior, one should be

careful to maintain the correct asymptotic behavior of the exchange. All these observations

support the case of tuned LC-DFT being the best choice among DFT methods for predicting

hyperpolarizabilities.

Before closing this discussion, a note on the validity of the tuning procedure in larger

molecules is germane here. It has been pointed out79 that tuned LC-DFT is, by construc-
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tion, not size-consistent; all of its ingredients are size-consistent, so that tuning breaks this

property unless the optimal ω for subsystems A and B, plus noninteracting supersystem

A+B, are all the same, which is unlikely given the dependence of the optimal ω on system

size. By a similar reasoning, tuned LC-DFT is also not expected to be (in general) size-

extensive. Thus, one may expect a deterioration of results for tuned LC-DFT as the size of

the system increases. This may explain the unsatisfactory results of gap tuning schemes for

polarizabilities and second-order hyperpolarizabilities in large π-conjugated chains,55 as well

as the larger absolute errors in β|| for DANS compared to PNA observed here and in Ref. 54.

Nevertheless, it should also be noted that other types of functionals are also known to fail

in describing the NLO properties of large molecules, despite being size-extensive (see, e.g.,

Refs. 54,55). In fact, for first-order hyperpolarizabilities, the increase in error with molecu-

lar size of traditional GGAs, hybrids, and LC-DFT is larger than for tuned LC-DFT. Thus,

tuning methods still appear to be desirable over standard functionals for the prediction of

first-order hyperpolarizabilities.

Diagnostic tool

In the previous examples, we have seen that the accurate prediction of hyperpolarizabili-

ties by DFT depends crucially on the amount of exact exchange incorporated, which can

be varied through the tuning of the range-separation parameter in LC-DFT. It is generally

recognized, here and elsewhere,21–25 that pure GGAs tend to overestimate NLO responses,

whereas the opposite is true when including large amounts of HF exchange. Tuned LC-

DFT can interpolate between these two extremes leading to a more balanced description

of hyperpolarizabilities. However, this perspective suggests that, if the usual trends over-

estimation/underestimation trends of GGAs/HF are not obeyed, then tuned LC-DFT will

be unable to improve results significantly over these approaches. This is the basic idea for

what could be regarded as a “diagnostic tool” that we propose here to assess whether the

prediction of hyperpolarizabilities can be improved by the tuning procedure of LC-DFT.
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To illustrate this diagnostic tool consider the pyrrole-based compounds 1 and 2 (see

Figure 1 for structures). The hyperpolarizabilities calculated for these compounds using a

variety of methods are summarized in Table 8; the errors are also computed using MP2/6-

311+G(d,p) data as reference, which are usually very accurate in gas phase40,43 (see also

discussion in the PNA results section). As can be seen from this Table, HF and all DFT

methods strongly underestimate the hyperpolarizability (∼ 50% error). It is striking that

the strongest underestimations are seen in traditional hybrids (B3LYP) and GGAs (PBE),

normally assumed to exaggerate NLO responses. Moreover, the tuning procedure results

in a lower ω = 0.2 bohr−1 but the hyperpolarizability is reduced (and results worsened)

for LC-ωPBE. CAM-B3LYP (ω = 0.33 bohr−1) and ωB97X-D (ω = 0.2 bohr−1) perform

similarly to tuned LC-ωPBE. It seems therefore that, since all types of DFT methods largely

underestimate βtot, pyrroles 1 and 2 constitute some kind of pathological case for DFT

hyperpolarizabilities.

Table 8: Comparison between MP2 and DFT hyperpolarizabilities βtot (in a.u.) for pyrrole-
based compound 1 and 2. All calculations use the 6-311+G(d,p) basis and CAM-B3LYP/6-
311++G(d,p) geometries, except CAM-B3LYP, ωB97X-D, and B3LYP which use the 6-
311++G(d,p) basis and geometries fully optimized at those levels.

Method 1 2 ME (%)
MP2 2,387 2,643 - -
HF 1,016 1,215 -56

PBE 510 1,185 -67
LC-ωPBE 1,464 1,790 -35
LC-ωPBE* 1,043 1,535 -49

CAM-B3LYP 1,100 1,578 -47
ωB97X-D 1,132 1,564 -47
B3LYP 670 1,289 -62

To investigate further the cause of this failure of DFT methods in describing the hyper-

polarizabilities of 1 and 2, we analyze the charge transfer properties of these compounds,

as well as the relationship between β|| and ω. Firstly, the difference in density between the

ground and excited state are shown in Figure 4. A good degree of charge transfer from the

pyrrole to the dicyano and enolate groups for 1 and 2, respectively, can be appreciated in
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this Figure. The indices by Le Bahers et al.66 DCT and qCT , which measure the distance

and charge transferred, respectively, where calculated at the LC-ωPBE/6-311+G(d,p) level

to be DCT = 2.6 bohr and qCT = 0.5 a.u. for 1, and DCT = 3.1 bohr and qCT = 0.5 a.u. for

2. As a reference, for PNA these values are DCT = 5.2 bohr and qCT = 0.6 a.u. It is notable

that, although the hyperpolarizability values of the pyrroles and PNA are similar in magni-

tude, in 1 and 2 the spatial extent of the charge transfer estimated by DCT is much smaller

than for PNA. Nevertheless, 1 and 2 do appear to be charge transfer compounds with NLO

properties rather similar to PNA; indeed, assessment of the individual components of βtot

reveals that the hyperpolarizability is dominated by a single component in the direction of

the dipole moment.

Figure 4: Difference in total electronic density (isocontour value of 0.001 a.u.) between the
ground and first two excited states of 1 and 2 at the LC-ωPBE/6-311+G(d,p) level. Yellow
(blue) regions indicate a gain (loss) of density in the excited state.

A very striking difference between PNA and the pyrrole compounds is, however, discov-

ered when analyzing the dependence of β|| as a function of the range separation parameter.

Figure 5 shows this difference; it is seen that, for PNA, β|| decays as ω increases, whereas the

opposite is true for 1 and 2 (although there is a small decrease in going from ω = 0.4 bohr−1

to ω = 0.5 bohr−1). The behavior of PNA represents some sort of “ideal” for charge-transfer

compounds, and it reflects the usual GGA/HF overestimation/underestimation trends as

well as other related observations that we have noted in previous studies.32,52,64,80,81 The

opposing trend of the pyrroles could perhaps be related to the much smaller charge transfer
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distance DCT in these compounds as compared to PNA. Regardless of that, it is clear that

the trends observed for 1 and 2 defy the conventional belief that GGAs overestimate hyper-

polarizabilities and that inclusion of HF exchange leads to more moderate NLO responses.

Hence, a relationship between the hyperpolarizability and ω similar to that observed for the

pyrrole derivatives studied here (i.e., an increase in β|| along with ω) can serve as diagnostic

tool to identify pathological cases in which DFT methods underestimate the NLO response,

and the tuning procedure will be unlikely to improve LC-DFT results.

 

H
yp

er
p

o
la

ri
za

b
ili

ty
 β

|| 
(a

.u
.)

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Range separation parameter (bohr-1)
0.1 0.2 0.3 0.4 0.5

PNA
Pyrrole 1
Pyrrole 2

Figure 5: First-order hyperpolarizabilities β|| at 1,064 nm calculated at the LC-ωPBE/6-
311+G(d,p) level as a function of the range separation parameter ω. Tuned LC-DFT will
be less likely to improve β|| in compounds displaying the atypical trend of pyrroles 1 and 2.

Conclusions

We have shown that a physically motivated, nonempirical, procedure for tuning the range

separation parameter in LC-DFT leads to sharp improvements in the description of first-order

hyperpolarizabilities in prototypical charge-transfer compounds, such as PNA and DANS, in

a wide variety of media. Furthermore, tuned LC-DFT overall performs better than any other

type of functionals tested here including standard hybrids, GGAs, and LC-DFT. Nonetheless,

we have also identified examples of pathological cases in which all types of DFT methods

strongly underestimate the first-order NLO response. However, a simple qualitative tool
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based on the dependence between the hyperpolarizability and ω was proposed to identify

such cases. We also found that the PCM-TDDFT combination is insufficient to account for

the dependence on solvent and frequency of the hyperpolarizabilites, but tuned LC-DFT

still can provide a reasonable agreement with experimental results. Caution should also

be exercised when calculating properties of large molecules because the tuning procedure

is not, in general, size-extensive, so that results deteriorate with increasing system size.

Nevertheless, these errors are still smaller for tuned LC-DFT than for traditional GGAs,

hybrids, and LC-DFT. Considering all this, we believe that tuned LC-DFT should become a

primary choice for the prediction of first-order hyperpolarizabilities among currently available

DFT methods.
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(55) Nénon, S.; Champagne, B.; Spassova, M. I. Assessing Long-range Corrected Functionals

With Physically-adjusted Range-separated Parameters for Calculating the Polarizability

and the Second Hyperpolarizability of Polydiacetylene and Polybutatriene Chains. Phys.

Chem. Chem. Phys. 2014, 17, 7083-7088.

(56) Asiri, A. M.; Faidallah, H. M.; Al-Thabaiti, S. A.; Ng, S. W.; Tiekink, E. R. T. 2-[(1-

Methyl-1H-pyrrol-2-yl)methylidene]propanedinitrile. Acta Cryst. 2012, E68, o1170.

30



(57) Asiri, A. M.; Al-Youbi, A. O.; Alamry, K. A.; Faidallah, H. M.; Ng, S. W.; Tiekink,

E. R. T. Ethyl (2E)-2-cyano-3-(1-methyl-1H-pyrrol-2-yl)prop-2-enoate. Acta Cryst. 2011,

E67, o2315.

(58) Willets, A.; Rice, J. E.; Burland, D. M.; Shelton, D. Problems in the Comparison of

Theoretical and Experimental Hyperpolarizabilities. J. Chem. Phys. 1992, 97, 7590-7599.
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