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Abstract Low-density parity-check (LDPC) codes and
convolutional Turbo codes are two of the most power-
ful error correcting codes that are widely used in mod-
ern communication systems. In a multi-mode baseband
receiver, both LDPC and Turbo decoders may be re-
quired. However, the different decoding approaches
for LDPC and Turbo codes usually lead to different
hardware architectures. In this paper we propose a uni-
fied message passing algorithm for LDPC and Turbo
codes and introduce a flexible soft-input soft-output
(SISO) module to handle LDPC/Turbo decoding. We
employ the trellis-based maximum a posteriori (MAP)
algorithm as a bridge between LDPC and Turbo codes
decoding. We view the LDPC code as a concatenation
of n super-codes where each super-code has a simpler
trellis structure so that the MAP algorithm can be
easily applied to it. We propose a flexible functional
unit (FFU) for MAP processing of LDPC and Turbo
codes with a low hardware overhead (about 15% area
and timing overhead). Based on the FFU, we propose
an area-efficient flexible SISO decoder architecture to
support LDPC/Turbo codes decoding. Multiple such
SISO modules can be embedded into a parallel decoder
for higher decoding throughput. As a case study, a
flexible LDPC/Turbo decoder has been synthesized on
a TSMC 90 nm CMOS technology with a core area of
3.2 mm?. The decoder can support IEEE 802.16e LDPC
codes, IEEE 802.11n LDPC codes, and 3GPP LTE

Y. Sun (X) - J. R. Cavallaro

Department of Electrical and Computer Engineering Rice
University, 6100 Main Street, Houston, TX 77005, USA
e-mail: ysun@rice.edu

J. R. Cavallaro
e-mail: cavallar@rice.edu

Turbo codes. Running at 500 MHz clock frequency, the
decoder can sustain up to 600 Mbps LDPC decoding or
450 Mbps Turbo decoding.
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1 Introduction

Practical wireless communication channels are inher-
ently “noisy” due to the impairments caused by channel
distortions and multipath effect. Error correcting codes
are widely used to increase the bandwidth and energy
efficiency of wireless communication systems. As a core
technology in wireless communications, forward error
correction (FEC) coding has migrated from basic con-
volutional/block codes to more powerful Turbo codes
and LDPC codes. Turbo codes, introduced by Berrou
et al. in 1993 [4], have been employed in 3G and
beyond 3G wireless systems, such as UMTS/WCDMA
and 3GPP Long-Term Evolution (LTE) systems. As a
candidate for 4G coding scheme, LDPC codes, which
were introduced by Gallager in 1963 [13], have re-
cently received significant attention in coding theory
and have been adopted by some advanced wireless sys-
tems such as IEEE 802.16e WiMAX system and IEEE
802.11n WLAN system. In future 4G networks, inter-
networking and roaming between different networks
would require a multi-standard FEC decoder. Since
Turbo codes and LDPC codes are widely used in many
different 3G/4G systems, it is important to design a
configurable decoder to support multiple FEC coding
schemes.
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In the literature, many efficient LDPC decoder VLSI
architectures have been studied [6, 9, 12, 14, 18, 24, 27,
29, 35, 37, 39, 45, 47]. Turbo decoder VLSI architec-
tures have also been extensively investigated by many
researchers [5, 8, 20, 21, 25, 30, 33, 41, 44]. However,
designing a flexible decoder to support both LDPC
and Turbo codes still remains very challenging. In this
paper, we aim to provide an alternative to dedicated
silicon that reduces the cost of supporting both LDPC
and Turbo codes with a small additional overhead. We
propose a flexible decoder architecture to meet the
needs of a multi-standard FEC decoder.

From the theoretical point of view, there are some
similarities between LDPC and Turbo codes. They can
both be represented as codes on graphs which define
the constraints satisfied by codewords. Both families
of codes are decoded in an iterative manner by em-
ploying the sum-product algorithm or belief propa-
gation algorithm. For example, MacKay has related
these two codes by treating a Turbo code as a low-
density parity-check code [23]. On the other hand, a
few other researchers have tried to treat a LDPC code
as a Turbo code and apply a turbo-like message passing
algorithm to LDPC codes. For example, Mansour and
Shanbhag [24] introduce an efficient turbo message
passing algorithm for architecture-aware LDPC codes.
Hocevar [18] proposes a layered decoding algorithm
which treats the parity check matrix as horizontal lay-
ers and passes the soft information between layers to
improve the performance. Zhu and Chakrabarti [50]
looked at the super-code based LDPC construction and
decoding. Zhang and Fossorier [46] suggest a shuffled
belief propagation algorithm to achieve a faster decod-
ing speed. Lu and Moura [22] propose to partition the
Tanner graph into several trees and apply the turbo-like
decoding algorithm in each tree for faster convergence
rate. Dai et al. [12] introduce a turbo-sum-product
hybrid decoding algorithm for quasi-cyclic (QC) LDPC
codes by splitting the parity check matrix into two sub-
matrices where the information is exchanged.

In our early work [38], we have proposed a super-
code based decoding algorithm for LDPC codes. In
this paper, we extend this algorithm and present a
more generic message passing algorithm for LDPC
and Turbo decodings, and then exploit the architecture
commonalities between LDPC and Turbo decoders.
We create a connection between LDPC and Turbo
codes by applying a super-code based decoding algo-
rithm, where a code is divided into multiple super-codes
and then the decoding operation is performed by iter-
atively exchanging the soft information between super-
codes. In the LDPC decoding, we treat a LDPC code
as a concatenation of n super-codes, where each super-
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code has a simpler trellis structure so that the maxi-
mum a posteriori (MAP) algorithm can be efficiently
performed. In the Turbo decoding, we modify the tradi-
tional message passing flow so that the proposed super-
code based decoding scheme works for Turbo codes as
well.

Contributions of this paper are as follows. First, we
introduce a flexible soft-input soft-output (Flex-SISO)
module for LDPC and Turbo codes decoding. Sec-
ond, we introduce an area-efficient flexible functional
unit (FFU) for implementing the MAP algorithm in
hardware. Third, we propose a flexible SISO decoder
hardware architecture based on the FFU. Finally, we
show how to enable parallel decoding by using multiple
such Flex-SISO decoders.

The remainder of the paper is organized as follows.
Section 2 reviews the super-code based decoding al-
gorithm for LDPC codes. Section 3 presents a Flex-
SISO module for LDPC/Turbo decoding. Section 4
introduces a flexible functional unit (FFU) for LDPC
and Turbo decoding. Based on the FFU, Section 5
describes a dual-mode Flex-SISO decoder architecture.
Section 6 presents a parallel decoder architecture us-
ing multiple Flex-SISO cores. Section 7 compares our
flexible decoder with existing decoders in the literature.
Finally, Section 8 concludes the paper.

2 Review of Super-code Based Decoding Algorithm
for LDPC Codes

By definition, a Turbo code is a parallel concatenation
of two super-codes, where each super-code is a con-
stituent convolutional code. Naturally, Turbo decoding
procedure can be partitioned into two phases where
each phase corresponds to one super-code processing.
Similarly, LDPC codes can also be partitioned into
super-codes for efficient processing as previously men-
tioned in Section 1. Before proceeding with a discussion
of the proposed flexible decoder architecture, it is de-
sirable to review the super-code based LDPC decoding
scheme in this section.

2.1 Trellis Structure for LDPC Codes

A binary LDPC code is a linear block code specified by
a very sparse binary M x N parity check matrix:

H-x" =0, (1)

where x is a codeword (x € C) and H can be viewed
as a bipartite graph where each column and row in
H represent a variable node and a check node, re-
spectively. Each element of the parity check matrix is
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Figure 1 Trellis representation for LDPC codes where a two-
state trellis diagram is associated with each check node.

either a zero or a one, where nonzero elements are
typically placed at random positions to achieve good
performance. The number of nonzero elements in each
row or each column of the parity check matrix is called
check node degree or variable node degree. A regular
LDPC code has the same check node and variable node
degrees, whereas an irregular LDPC code has different
check node and variable node degrees.

The full trellis structure of an LDPC code is enor-
mously large, and it is impractical to apply the MAP
algorithm on the full trellis. However, alternately, a
(N, M-N) LDPC code can be viewed as M parallel
concatenated single parity check codes. Although the
performance of a single parity check code is poor, when
many of them are sparsely connected they become a
very strong code. Figure 1 shows a trellis representation
for LDPC codes where a single parity check code is
considered as a low-weight two-state trellis, starting at
state 0 and ending at state 0.

2.2 Layered Message Passing Algorithm for LDPC
Codes

The main idea behind the layered LDPC decoding is
essentially the Turbo message passing algorithm [24].
It has been shown that the layered message passing
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Figure 2 Dividing a factor graph into sub-graphs.
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Figure 3 A block-structured parity check matrix, where each
block row (or layer) defines a super-code. Each sub-matrix of the
parity check matrix is either a zero matrix or a z x z cyclically
shifted identity matrix.

algorithm can achieve a faster convergence rate than
the standard two-phase message-passing algorithm for
structured LDPC codes [18, 24]. To be more general,
we can divide the factor graph of an LDPC code into
several sub-graphs [38] as illustrated in Fig. 2. Each sub-
graph corresponds to a super-code. If we restrict that
each sub-graph is loop-free, then each super-code has a
simpler trellis structure so that the MAP algorithm can
be efficiently performed.

As a special example, the block-structured Quasi-
Cyclic (QC) LDPC codes used in many practical com-
munication systems such as 802.16e and 802.11n can be
easily decomposed into several super-codes. As shown
in Fig. 3, a block structured parity check matrix can
be viewed as a 2-D array of square sub-matrices. Each
sub-matrix is either a zero matrix or a z-by-z cyclically
shifted identity matrix I, with random shift value x.
The parity check matrix can be viewed as a concate-
nation of n super-codes where each block row or layer
defines a super-code. In the layered message passing
algorithm, soft information generated by one super-
code can be used immediately by the following super-
codes which leads to a faster convergence rate [24].

3 Flexible SISO Module

In this section, we propose a flexible soft-input soft-
output (SISO) module, named Flex-SISO module, to
decode LDPC and Turbo codes. The SISO module is
based on the MAP algorithm [3]. To reduce complexity,
the MAP algorithm is usually calculated in the log do-
main [31]. In this paper, we assume the MAP algorithm
is always calculated in the log domain.

The decoding algorithm underlying the Flex-SISO
module works for codes which have trellis representa-
tions. For LDPC codes, a Flex-SISO module was used
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Figure 4 Flex-SISO module.

to decode a super-code. For Turbo codes, a Flex-SISO
module was used to decode a component convolutional
code. Iteration performed by the Flex-SISO module is
called sub-iteration, and thus one full iteration contains
n sub-iterations.

3.1 Flex-SISO Module

Figure 4 depicts the proposed Flex-SISO module. The
output of the Flex-SISO module is the a posteriori
probability (APP) log-likelihood ratio (LLR) values,
denoted as X,(u), for information bits. It should be
noted that the Flex-SISO module exchanges the soft
values A, (u) instead of the extrinsic values in the iter-
ative decoding process. The extrinsic values, denoted
as A.(u), are stored in a local memory of the Flex-
SISO module. To distinguish the extrinsic values gen-
erated at different sub-iterations, we use A.(u; old) and
Ae(u; new) torepresent the extrinsic values generated in
the previous sub-iteration and the current sub-iteration,
respectively. The soft input values X;(u) are the out-
puts from the previous Flex-SISO module, or other
previous modules if necessary. Another input to the
Flex-SISO module is the channel values for parity bits,
denoted as A.(p), if available. For LDPC codes, we do
not distinguish information and parity bits, and all the
codeword bits are treated as information bits. However,
in the case of Turbo codes, we treat information and
parity bits separately. Thus the input port A.(p) will not
be used when decoding of LDPC codes. At each sub-
iteration, the old extrinsic values, denoted as A.(u; old),
are retrieved from the local memory and should be
subtracted from the soft input values A;(z) to avoid
positive feedback.

A generic description of the message passing algo-
rithm is as follows. Multiple Flex-SISO modules are
connected in series to form an iterative decoder. First,
the Flex-SISO module receives the soft values X;(u)
from upstream Flex-SISO modules and the channel
values (for parity bits) A.(p) if available. The A;(u) can
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be thought of as the sum of the channel value A.(u)
(for information bit) and all the extrinsic values A, (i)
previously generated by all the super-codes:

i) = he(w) + Y ho(w). )

Note that prior to the iterative decoding, A;(u) should
be initialized with A.(u). Next, the old extrinsic value
Ae(u; old) generated by this Flex-SISO module in the
previous iteration is subtracted from X;(u) as follows:

Ae(w) = Xi(u) — Ao(u; old). 3)

Then, the new extrinsic value A.(u«; new) can be com-
puted using the MAP algorithm based on A,(u), and
Ac(p) if available. Finally, the APP value is updated as

Ao (1) = Xi(u) — de(u; old) + Ao (u; new). 4)

Then this updated APP value is passed to the down-
stream Flex-SISO modules. This computation repeats
in each sub-iteration.

3.2 Flex-SISO Module to Decode LDPC Codes

In this section, we show how to use the Flex-SISO
module to decode LDPC codes. Because QC-LDPC
codes are widely used in many practical systems, we
will primarily focus on the QC-LDPC codes. First,
we decompose a QC-LDPC code into multiple super-
codes, where each layer of the parity check matrix
defines a super-code. After the layered decomposition,
each super-code comprises z independent two-state sin-
gle parity check codes. Figure 5 shows the super-code
based, or layered, LDPC decoder architecture using the
Flex-SISO modules. The decoder parallelism at each
Flex-SISO module is at the level of the sub-matrix size
Z, because these z single parity codes have no data
dependency and can thus be processed simultaneously.
This architecture differs than the regular two-phase
LDPC decoder in that a code is partitioned into mul-
tiple sections, and each section is processed by a same
processor. The convergence rate can be twice faster
than that of a regular decoder [18].

L Flex-SISO 1 Flex-SISO 2 Flex-SISO n J

Ai(u) A(W—P ) A, =+ D) A (u)
A A A

A,(u;old) "Jg(u,new) v v
Memory Memory Memory

Figure 5 LDPC decoding using Flex-SISO modules where a
LDPC code is decomposed into n super-codes, and n Flex-SISO
modules are connected in series to decode.



J Sign Process Syst (2011) 64:1-16

APP <« A.(u)
Memory <
V. (p)=0
Flex-SISO v
Aiw) | A(u) LDPC Ao(ut)
g +> MAP Processor
A =
4. (u;0ld) "/ie(u;new)

Extrinsic
Memory

Figure 6 LDPC decoder architecture based on the Flex-SISO
module.

Since the data flow is the same between different
sub-iterations, one physical Flex-SISO module is in-
stantiated, and it is re-used at each sub-iteration, which
leads to a partial-parallel decoder architecture. Figure 6
shows an iterative LDPC decoder hardware architec-
ture based on the Flex-SISO module. The structure
comprises an APP memory to store the soft APP val-
ues, an extrinsic memory to store the extrinsic values,
and a MAP processor to implement the MAP algorithm
for z single parity check codes. Prior to the iterative
decoding process, the APP memory is initialized with
channel values A.(u), and the extrinsic memory is ini-
tialized with 0.

The decoding flow is summarized as follows. It
should be noted that the parity bits are treated as
information bits for the decoding of LDPC codes. We
use the symbol uy to represent the k-th data bit in the
codeword. For check node m, we use the symbol u,, «
to denote the k-th codeword bit (or variable node) that
is connected to this check node m. To remove corre-
lations between iterations, the old extrinsic message
is subtracted from the soft input message to create a
temporary message A, as follows

AU i) = Ai(Ur) — Ae(Upm i old), Q)

where A;(uy) is the soft input log likelihood ratio (LLR)
and A, (U, k; old) is the old extrinsic value generated by
this MAP processor in the previous iteration. Then the
new extrinsic value can be computed as:

Dt i; new) =Y Bt ). (6)

ik

where the H operation is associative and commutative,
and is defined as [15]

+ eA(Ltl)eA(Ltz)

A(up) BA(uz) = log o o (7)
Finally, the new APP value is updated as:
o (Uk) = My (U k) + A (U k3 NEW). ®)

For each sub-iteration /, Egs. (5)—(8) can be executed
in parallel for check nodes m = [z to [z + z — 1 because
there are no data dependency between them.

3.3 Flex-SISO Module to Decode Turbo Codes

In this section, we show how to use the Flex-SISO mod-
ule to decode Turbo codes. A Turbo code can be nat-
urally partitioned into two super-codes, or constituent
codes. In a traditional Turbo decoder, where the extrin-
sic messages are exchanged between two super-codes,
the Flex-SISO module can not be directly applied,
because the Flex-SISO module requires the APP val-
ues, rather than the extrinsic values, being exchanged
between super-codes. In this section, we made a small
modification to the traditional Turbo decoding flow so
that the APP values are exchanged in the decoding
procedure.

3.3.1 Review of the Traditional Turbo Decoder
Structure

The traditional Turbo decoding procedure with two
SISO decoders is shown in Fig. 7. The definitions of
the symbols in the figure are as follows. The informa-
tion bit and the parity bits at time k are denoted as
uy and ( p,(cl), p,(f), p,({") ), respectively, with wuy, p,(c’) €
{0, 1}. The channel LLR values for u; and p,(j) are
denoted as A.(uy) and A.( p,(f)), respectively. The a priori
LLR, the extrinsic LLR, and the APP LLR for u; are

denoted as A, (ug), Ae(ux), and A, (uy), respectively.

e A1) Aul) VCW)JA%(M)
Ly Au u
> SISO 1 —»ﬂ—» SISO 2
A1) —e> -»110(14) > > 12, (1)
NI
g il

Figure 7 Traditional Turbo decoding procedure using two SISO
decoders, where the extrinsic LLR values are exchanged between
two SISO decoders.
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In the decoding process, the SISO decoder computes
the extrinsic LLR value at time k as follows:

he(utg) = max o (si-1) + Vi (k-1 50) + Br(s10)
U=
- umzxo{akfl(skfl) + ¥k (Sk—1, Sk) + Br(si)}-
U=

)

The o and B metrics are computed based on the for-
ward and backward recursions:

k(51 = max{oe-1(si-1) + Ve(sio1. 50} (10)
Br(sk) = rsrzzf{ﬁkﬂ(s;m) + Vi (ks Sk 1)} (11)
where the branch metric yy is computed as:

Vi = i+ Oeti) + 2ai)) + Y pi - 2e(p). (12)

The extrinsic branch metric y; in Eq. 9 is computed as:

vi =Y p re(p). (13)
The max*(-) function in Egs. 9-11 is defined as:

mzx(a, b) = max(a, b) + log(l + e~1*70). (14)
The soft APP value for uy is generated as:

)"o(uk) = )\e(uk) + )\a(uk) + )\c(uk)~ (15)

In the first half iteration, SISO decoder 1 computes
the extrinsic value /\; (ux) and pass it to SISO decoder 2.
Thus, the extrinsic value computed by SISO decoder 1
becomes the a priori value Ag (uy) for SISO decoder 2 in
the second half iteration. The computation is repeated
in each iteration. The iterative process is usually termi-
nated after certain number of iterations, when the soft
APP value A, (uy) converges.

3.3.2 Modified Turbo Decoder Structure Using
Flex-SISO Modules

In order to use the proposed Flex-SISO module for
Turbo decoding, we modify the traditional Turbo de-
coder structure. Figure 8 shows the modified Turbo
decoder structure based on the Flex-SISO modules.

It should be noted that the modified Turbo decoding
flow is mathematically equivalent to the original Turbo
decoding flow, but uses a different message passing
method. The modified data flow is as follows. In the
first half iteration, Flex-SISO decoder 1 receives soft
LLR value A} (uy) from Flex-SISO decoder 2 through
de-interleaving (1] (uy) is initialized to channel value
Ac(uy) prior to decoding). Then it removes the old ex-
trinsic value ! (uy; old) from the soft input LLR A (uy)
to form a temporary message A (ux) as follows (for
brevity, we drop the superscript “1" in the following
equations)

Me(u) = Ai(ug) — he(ug; old). (16)

To relate to the traditional Turbo decoder structure,
this temporary message is mathematically equal to the
sum of the channel value A.(ux) and the a priori value
Aq(ug) in Fig. 7:

Ar(ug) = Ae(ug) + Aq(uy). (17)

Thus, the branch metric calculation in Eq. 12 can be re-
written as:
Yk = Uk - A(ug) + ZP? (PP, (18)

1

The extrinsic branch metric () calculation, and the
extrinsic LLR (X, (1)) calculation, however, remain the
same as Egs. 13 and 9-11, respectively. Finally, the soft
APP LLR output is computed as:

Ao(ur) = Ae(ui) + de(uy; new).

(19)

In the Flex-SISO based iterative decoding proce-
dure, the soft outputs A!(u) computed by Flex-SISO
decoder 1 are passed to Flex-SISO decoder 2 so that

Figure 8 Modified Turbo 1<
decoding procedure using two [
Flex-SISO modules. The soft AP Ap2)
LLR values are exchanged Flex-SISO1 Flex-SISO2
between two SISO modules. A(u) Al_(u) Alt(u) MAP L () Az-(u) j,z,(u) MAP 22 (1)
1 o : H 1 o
EJ::_ Processor EJ::_ Processor

2 (s o0ld)

22 (u;0ld)

1 . 2 .
v A o(u;new) v A e(u;new)

Memory

Memory
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Figure 9 Turbo decoder architecture based on the Flex-SISO
module.

they become the soft inputs A7(u) for Flex-SISO de-
coder 2 in the second half iteration. The computation
is repeated in each half-iteration until the iteration
converges. Since the operations are identical between
two sub-iterations, only one physical Flex-SISO module
is instantiated, and it is re-used for two sub-iterations.
Figure 9 shows an iterative Turbo decoder architec-
ture based on the Flex-SISO module. The architecture
is very similar to the LDPC decoder architecture shown
in Fig. 6. The main differences are: 1) the Turbo de-
coder has separate parity channel LLR inputs whereas
the LDPC decoder treats parity bits as information
bits, 2) the Turbo decoder employs the MAP algorithm
on an N-state trellis whereas the LDPC decoder ap-
plies the MAP algorithm on z independent two-state
trellises, and 3) the interleaver/permuter structures are
different (not shown in the figures). But despite these
differences, there are certain important commonalities.
The message passing flows are the same. The memory
organizations are similar, but with a variety of sizes de-
pending on the codeword length. The MAP processors,
which will be described in the next section, have similar
functional unit resources that will be configured using
multiplexors for each algorithm. Thus, it is natural to
design a unified SISO decoder with configurable MAP
processors to support both LDPC and Turbo codes.

4 Design of a Flexible Functional Unit

The MAP processor is the main processing unit in both
LDPC and Turbo decoders as depicted in Fig. 6 and
Fig. 9. In this section, we introduce a flexible functional

additional overhead.
4.1 MAP Functional Unit for Turbo Codes

In a Turbo MAP processor, the critical path lies in the
state metric calculation unit which is often referred to
as add-compare-select-add (ACSA) unit. As depicted
in Fig. 10, for each state m of the trellis, the decoder
needs to perform an ACSA operation as follows:

oy = mzx(ao + v0, a1 + 1), (20)

where oy and «; are the previous state metrics, and
yo and y; are the branch metrics. Figure 10b shows
a circuit implementation for the ACSA unit, where a
signed-input look-up table “LUT-S" was used to imple-
ment the non-linear function log(1 + e~™). This circuit
can be used to recursively compute the forward and
backward state metrics based on Egs. 10 and 11.

4.2 MAP Functional Unit for LDPC Codes

In the layered QC-LDPC decoding algorithm, each
super-code comprises z independent single parity check
codes. Each single parity check code can be viewed as
a terminated two-state convolutional code. Figure 11
shows an example of the trellis structure for a single
parity check node.

An efficient MAP decoding algorithm for single
parity check code was given in [16]: for independent

u0 +ul+u2+u3 =0 (GF2)

Figure 11 Trellis structure for a single parity check code.
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Figure 12 A forward-backward decoding flow to compute the
extrinsic LLRs for single parity check code.

random variables ug, u1, ..., u; the extrinsic LLR value

for bit uy is computed as:

M) = YEAw), (1)
~fur}

where the compact notation ~{u;} represents the set
of all the variables with u; excluded. For brevity, we
define a function f(a,b) to represent the operation
Ai(uy) B x;i(up) as follows

1+ e

,b) =log ——, 22
f(a,b) =log b (22)
where a £ A;(u;) and b £ A;(uy). Figure 12 shows a
forward-backward decoding flow to implement Eq. 21.
The forward () and backward (B) recursions are

defined as:

a1 = flo, vi) (23)
Bk = f(Br+1s V1), (24)

where yx = A;(uy) and is referred to as the branch
metric as an analogy to a Turbo decoder. The « and g
metrics are initialized to +o0 in the beginning. Based
on the @ and B metrics, the extrinsic LLR for uy is
computed as:

A(ug) = flok, Br)- (25)

Figure 13 shows a MAP processor structure to de-
code the single parity check code. Three identical
f(a, b) units are used to compute «, B, and A values.
To relate to the top level LDPC decoder architecture

I t st
sy 370 Hip

LLL

Stack

Output stream

== AOAMA2 ...

Figure 13 MAP processor structure for single parity check code.
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Table 1 LUT approximation for g(x) = log(1 + e My,
[x] x| =0 0 < |x] £0.75 075 < x| <2
g(x) 0.75 0.5 0.25 0

x| > 2

as shown in Fig. 6, the inputs to this MAP processor
are the temporary metrics A,(u,, %), and the outputs
from this MAP processor are the extrinsic metrics
he(Um k3 new).

To compute Eq. 22 in hardware, we separate the
operation into sign and magnitude calculations:

sign( f(a, b)) = sign(a) sign(b),
| f(a, b)| = min(lal, |b]) + log(1 4 e~ 14+1PD)

— log (1 + e_||“'_|b|> . (26)

Compared to the classical “tanh” function used in
LDPC decoding W(x) = —log(tanh(|x/2|)), the f(-)
function is numerically more robust and less sensitive to
quantization noise. Due to its widely dynamic range (up
to +00), the W (x) function has a high complexity and is
prone to quantization noise. Although many approxi-
mations have been proposed to improve the numerical
accuracy of W(x) [26, 29, 48], it is still expensive to
implement the W(x) function in hardware. However,
the non-linear term in the f(-) function has a very small
dynamic range:

0 < g(x) 2log(l +e ) <0.7,

thus the f(-) function is more easily to be implemented
in hardware by using a low complexity look-up table
(LUT). To implement g(x) in hardware, we propose to
use a four-value LUT approximation which is shown in
Table 1. For fixed point implementation, we propose
to use Q.2 quantization scheme (Q total bits with 2
fractional bits). Table 2 shows the proposed LUT im-
plementation for Q.2 quantization. It should be noted
that g(x) is the same as the non-linear term in the
Turbo max*(-) function (c.f. Eq. 14). Thus, the same
look-up table configuration can be applied to the Turbo
ACSA unit. In Section 4.4, we will show the decoding
performance by using this look-up table.

Figure 14 depicts a circuit implementation for the
LDPC | f(a, b)| functional unit using two look-up ta-
bles “LUT-S” and “LUT-U”, where LUT-S and LUT-

U implement log(1 + e_||"|_|b||) and log(1 + e~(al+1bD)y,

Table 2 LUT implementation for Q.2 quantization.

X 0o 1 2 3 4 5 6 7 8 =8
gy 3 2 2 2 1 1 1 1 1 0
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Figure 14 Circuit diagram for the LDPC |f(a, b)| functional
unit.

respectively. The difference between LUT-S and LUT-
U is that: LUT-S is a signed-input look-up table that
takes both positive and negative data inputs whereas
LUT-U is an unsigned-input look-up table (half size of
LUT-S) that only takes positive data inputs.

4.3 Proposed Flexible Functional Unit (FFU)

If we compare the LDPC | f(a, b)| functional unit (c.f.
Fig. 14) with the Turbo ACSA functional unit (c.f.
Fig. 10), we can see that they have many commonali-
ties except for the position of the look-up tables and
the multiplexor. To support both LDPC and Turbo
codes with minimum hardware overhead, we propose
a flexible functional unit (FFU) which is depicted in
Fig. 15. We modify the look-up table structure so that
each look-up table can be bypassed when the bypass
control signal is high. A select signal was used to switch
between the LDPC mode and the Turbo mode. The
functionality of the proposed FFU architecture is sum-
marized in Table 3.

The word lengths for X, Y, V, and W are all 9 bits.
To evaluate the area efficiency of the proposed FFU,
we have described the LDPC f(a, b) unit, the Turbo
ACSA unit, and the proposed FFU in Verilog HDL,

bypass1
X >
| » LUT-U
Y > + — l bypass2
bypassl +
Y
v > R
W- > + PLLUTS} MsB  select
M Z
MSB >l o + Hi—>
> ‘ b
>

Figure 15 Circuit diagram for the flexible functional unit (FFU)
for LDPC/Turbo decoding.

Table 3 Functional description of the FFU.

Signals LDPC Mode Turbo Mode

select 1 0

bypassl 0 1

bypass2 1 0

X |al oo

Y D] Y0

Vv |al ai

w —1b] 71

4 | f(a, D) max* (a0 + yo, 1 + y1)

and synthesized them on a TSMC 90 nm CMOS tech-
nology. The maximum achievable frequency (assum-
ing no clock skews) and the synthesized area at two
frequencies (400 and 800 MHz) are summarized in
Table 4. As can be seen, the proposed flexible func-
tional unit FFU has only about 15% area and timing
overhead compared to the dedicated functional units.
The area efficiency is achieved because many logic
gates can be shared between LDPC and Turbo modes.

4.4 Fixed Point Decoding Performance

To evaluate the fixed-point decoding performance
using the look-up table based FFU, we perform
float-point and bit-accurate fixed-point simulations for
LDPC and Turbo codes using BPSK modulation over
an AWGN channel. As a good trade-off between
complexity and performance, we use 6.2 quantization
scheme for channel LLR inputs for fixed-point LDPC
and Turbo decoders.

Figure 16 shows the bit error rate (BER) simulation
result for a WiIMAX LDPC code with code-rate =
1/2, and code-length = 2,304. The maximum number
of iterations is 15. As can be seen from Fig. 16, the
fixed-point FFU solution has a very small performance
degradation (< 0.05 dB) at BER level of 10~ com-
pared to the floating point solution. We also plot a
BER curve for the scaled minsum solution [11], which
is a sub-optimal approximation algorithm without using
the look-up tables. As can be seen from the figure,
the look-up table based FFU solution can deliver a
better decoding performance than the scaled minsum
solution. The complexity of adding the look-up tables is
relatively small because the word length of the data in

Table 4 Synthesis results for different functional units.

Functional unit | f(a,b)| ACSA FFU

Max frequency 920 MHz 885 MHz 815 MHz
Area (400 MHz) 1,192 pum? 1,263 um? 1,419 um?
Area (800 MHz) 1,882 um? 2,086 pm? 2,423 pm?

@ Springer
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Figure 16 Simulation results for a rate 1/2, length 2304 WiMAX
LDPC code.

the look-up table is only 2-bit. Figure 17 compares the
convergence speed of the layered decoding algorithm
with the standard two-phase decoding algorithm.
Figure 18 shows the BER simulation result for
3GPP-LTE Turbo codes with block sizes of 6,144, 1,024,
240, and 40. The maximum number of Turbo iterations
is 6 (12 half iterations). The sliding window length is
32. As can be seen from the figure, the FFU based
fixed-point decoder has almost no performance loss
compared to the floating point case. The proposed FFU

15 : : .
14 + I Standard algorithm
131 Layered algorithm ]

Average number of iterations

O = N Wk NN
T T T T T

0.75 1 1.25 1.5 1.75 2 225
Eb/No [dB]

Figure 17 Comparison of the convergence speed.
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Figure 18 Simulation results for 3GPP-LTE Turbo codes with a
variety of block sizes.

solution will deliver a better decoding performance
than the sub-optimal max-logM AP solution.

From these simulation results, we conclude that the
proposed look-up table based FFU is a good solution
for supporting high performance LDPC and Turbo
decoding requirements.

5 Design of A Flexible SISO Decoder

Built on top of the FFU arithmetic unit, we introduce
a flexible SISO decoder architecture to handle LDPC
and Turbo codes. Figure 19 illustrates the proposed
dual-mode SISO decoder architecture. The decoder
comprises four major functional units: alpha unit (&),
beta unit (8), extrinsic-1 unit, and extrinsic-2 unit. The
decoder can be reconfigured to process: i) an eight-state
convolutional Turbo code, or ii) 8 single parity check
codes.

5.1 Turbo Mode

In the Turbo mode, all the elements in the Flex-SISO
decoder will be activated. For Turbo decoding, we use
the Next Iteration Initialization (NII) sliding window
algorithm as suggested in [1, 19]. The NII approach
can avoid the calculation of training sequences as ini-
tialization values for the g state metrics, instead the
boundary metrics are initialized from the previous iter-
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Figure 19 Flexible SISO decoder architecture.

ation. As a result, the decoding latency is smaller than
the traditional sliding window algorithm which requires
a calculation of training sequences [25, 43], and thus
only one B unit is required. Moreover, this solution
is very suitable for high code-rate Turbo codes, which
require a very long training sequence to obtain reliable
boundary state metrics. Note that this scheme would
require an additional memory to store the boundary
state metrics.

A dataflow graph for NII sliding window algorithm
is depicted in Fig. 20, where the X-axis represents the
trellis flow and the Y-axis represents the decoding time
so that a box may represent the processing of a block
of L data in L time steps, where L is the sliding
window size. In the decoding process, the o metrics are
computed in the natural order whereas the 8 metrics
and the extrinsic LLR ().) are computed in the reverse

Trellis L 2L 3L 4L ...

»

oy,
)

NII Init
—

15 a

Figure 20 Data flow graph for Turbo decoding.

order. By using multiple FFUs, the o and 8 units are
able to compute the state metrics in parallel, leading to
areal time decoding with a latency of L.

The decoder works as follows. The decoder uses
soft LLR value A;(x) and old extrinsic value A.(u; old)
to compute A,(u) based on Eq. 16. A branch metric
calculation (BMC) unit is used to compute the branch
metrics y(u, p) based on Eq. 18, where u, p € {0, 1}.
Then the branch metrics are buffered in a y stack for
backward (8) metric calculation. The @ and 8 metrics
are computed using Egs. 10 and 11. The boundary S
metrics are initialized from an NII buffer (not shown in
Fig. 19). A dispatcher unit is used to dispatch the data
to the correct FFUs in the /8 unit. Each «/8 unit has
fully-parallel FFUs (eight of them), so the eight-state
convolutional trellis can be processed at a rate of one-
stage per clock cycle.

To compute the extrinsic LLR as defined in Eq. 9,
we first add B metrics with the extrinsic branch metrics
y¢(p), where y¢(p) is retrieved from the y stack, as
y¢(0) =0, y°(1) = y(0, 1) = A.(p). The extrinsic LLR
calculation is separated into two phases which is shown
in the right part of Fig. 19. In phase 1, the extrinsic-1
unit performs eight ACSA operations in parallel using
eight FFUs. In phase 2, the extrinsic-2 unit performs
6 max*(a, b) operations and 1 subtraction. Finally, the
soft LLR X, (u) is obtained by adding A.(u; new) with
A (1), where A,(u) is also retrieved from the y stack, as
ri(u) =y(1,0).

5.2 LDPC Mode

In the LDPC mode, a substantial subset (more than
90%) of the logic gates will be reused from the Turbo
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Figure 21 Flexible SISO decoder architecture in LDPC mode.

mode. As shown in Fig. 21, three major functional
units (o unit, 8 unit, and the extrinsic-1 unit) and two
stack memories are reused in the LDPC mode. The
extrinsic-2 unit will be de-activated in the LDPC mode.
The decoder can process 8 single parity check codes in
parallel because each of the « unit, 8 unit, and extrinsic-
1 unit has eight parallel FFUs.

The dataflow graph of the LDPC decoding (c.f.
Fig. 12) is very similar to that of the Turbo decoding
(c.f. Fig. 20). The decoder works as follows. The de-
coder first computes A,(«) based on Eq. 5. In the LDPC
mode, the branch metric y is equal to A,(u). Prior to
decoding, the o and B metrics are initialized to the
maximum value. Assuming the check node degree is L.
In the first L cycles, the « unit recursively computes the
« metrics in the forward direction and store them in an
a stack. In the next L cycles, the 8 unit recursively com-
putes the B metrics in the backward direction. At the
same time, the extrinsic-1 unit computes the extrinsic
LLRs using the « and 8 metrics. While the 8 unit and
the extrinsic-1 unit are working on the first data stream,
the « unit can work on the second stream which leads
to a pipelined implementation.

Table 5 Flex-SISO decoder area distribution.

Unit Area (mm?)
a-unit 0.014
B-unit 0.014
Extrinsic-1 unit 0.014
Extrinsic-2 unit 0.004
« and y stack memories 0.045
Control logic & others 0.007
Total 0.098

@ Springer

5.3 Performance

The proposed Flex-SISO decoder has been synthesized
on a TSMC 90 nm CMOS technology. Table 5 summa-
rizes the area distribution of this decoder. The maxi-
mum clock frequency is 500 MHz and the synthesized
area is 0.098 mm?. The Flex-SISO is a basic building
block in a LDPC decoder or a Turbo decoder, and
can be reconfigured to process an eight-state trellis
for a Turbo code, or eight check rows for a LDPC
code. As the baseline design, a single Flex-SISO de-
coder can approximately support 30-40 Mbps (LTE)
Turbo decoding, or 40-50 Mbps (802.16¢ or 802.11n)
LDPC decoding. In a parallel processing environment,
multiple SISO decoders can be used to increase the
throughput.

Turbo
Permuter Parity Mem
v
Adu;old) Ai(u) A 4
A

A\ 4 l «») v l v i

£ Flex- g Flex- g Flex-
= SISO = SISO = SISO
& Core 1 i Core 2 & Core P

[ I I

Adu;new)

Figure 22 Parallel LDPC/Turbo decoder architecture based on
multiple Flex-SISO decoder cores.
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Table 6 Performance of the proposed parallel decoder (3.2 mm? core area, 500 MHz clock frequency, TSMC 90 nm technology).
Supported codes Code size (bit)  Parallelism Quantization ~Max. iteration ~ Max. throughput (Mbps)  Latency
LDPC 802.16e 576-2,304 7 =24-96 6.2 15 600 1,590 cycles
LDPC 802.11n 648-1,944 7z =27-81 6.2 15 500 1,620 cycles
Turbo 3GPP-LTE  40-6,144 Sub-block =1-12 6.2 6 450 6,822 cycles

6 Parallel Decoder Architecture Using Multiple
Flex-SISO Decoder Cores

For high throughput applications, it is necessary to use
multiple SISO decoders working in parallel to increase
the decoding speed. For parallel Turbo decoding, mul-
tiple SISO decoders can be employed by dividing a
codeword block into several sub-blocks and then each
sub-block is processed separately by a dedicated SISO
decoder [7, 20, 30, 41, 42]. For LDPC decoding, the
decoder parallelism can be achieved by employing mul-
tiple check node processors [10, 14, 32, 40, 49].

Based on the Flex-SISO decoder core, we proposed
a parallel LDPC/Turbo decoder architecture which is
shown in Fig. 22. As depicted, the parallel decoder
comprises P Flex-SISO decoder cores. In this architec-
ture, there are three types of storage. Extrinsic memory
(Ext-Mem) is used for storing the extrinsic LLR values
produced by each SISO core. APP memory (APP-
Mem) is used to store the initial and updated LLR
values. The APP memory is partitioned into multiple
banks to allow parallel data transfer. Turbo parity
memory is used to store the channel LLR values for
each parity bit in a Turbo codeword. This memory is
not used for LDPC decoding (parity bits are treated as
information bits for LDPC decoding). Two permuters
are used to perform the permutation of the APP values
back and forth.

As a case study, we have designed a high-throughput,
flexible LDPC/Turbo decoder to support the following
three codes: 1) 802.16e WiMAX LDPC code, 2) 8§02.11n
WLAN LDPC code, and 3) 3GPP-LTE Turbo code.
Table 6 summarizes the performance and design para-
meters for this decoder. The number of the Flex-SISO
decoders is chosen to be 12.

For LDPC decoding, with 12 available Flex-SISO
cores the decoder can process up to 12 x 8 = 96 check
nodes simultaneously. Because the sub-matrix size z is
between 24 to 96 for 802.16e LDPC codes, and 27 to 81
for 802.11n, the proposed decoder always guarantees
that all of the z check nodes within a layer can be
processed in parallel.

For 3GPP-LTE Turbo decoding, the codeword can
be partitioned into M sub-blocks for parallel process-
ing. LTE Turbo code uses a quadratic permutation
polynomial (QPP) interleaver [36] so that it allows
conflict free memory access as long as M is a factor of
the codeword length. There are 188 different codeword
sizes defined in LTE. For LTE Turbo codes, all of the
codewords can support a parallelism level of 8, some of
the codewords can support parallelism level of 10 or 12.
Because we have 12 Flex-SISO cores available, we will
dynamically allocate the maximum possible number
of Flex-SISO cores (8 < M < 12) constrained on the
QPP interleaver parallelism. As an example, for the
maximum codeword size of 6144, we can allocate all of
the 12 Flex-SISO cores to work in parallel. It should
be noted that the parallelism level has some impact on
the error performance of the decoder due to the edge
effects caused by the sub-block partitioning [17].

This parallel and flexible decoder has been imple-
mented in Verilog HDL and synthesized on a TSMC
90 nm CMOS technology using Synopsys Design Com-
piler. The maximum clock frequency of this decoder
is 500 MHz. The synthesized core area is 3.2 mm?,
which includes all of the components in this decoder.
Table 6 summarizes the features of this decoder. The
decoder can be configured to support IEEE 802.16e
LDPC codes, IEEE 802.11n LDPC codes, and 3GPP
LTE Turbo codes. Compared to a dedicated LDPC

Table 7 Turbo decoder architecture comparison with existing solutions.

This work [2] [34] [28]
Modes Turbo, LDPC Viterbi, Turbo, LDPC Turbo, LDPC Viterbi, Turbo, LDPC, RS
Technology 90 nm 65 nm 130 nm 90 nm
Clock frequency 500 MHz 400 MHz 200 MHz NA
Core area 3.2 mm? 0.62 mm? NA NA
Throughput (LDPC) 600 Mbps (@15 iter.) 257 Mbps (@10 iter.) 11.2 Mbps (@10 iter.) 70 Mbps
Throughput (Turbo) 450 Mbps? (@6 iter.) 18.6 Mbps? (@5 iter.) 86.5 Mbps® (@8 iter.) 14 Mbps?

4Binary Turbo code
"Double-binary Turbo code

@ Springer



14

J Sign Process Syst (2011) 64:1-16

decoder solution [37], this flexible decoder has only
about 15-20% area overhead when normalized to the
same throughput target (with the same number of
iterations). Compared to a dedicated Turbo decoder
solution [30], our flexible decoder shows only about
10-20% area overhead when normalized to the same
technology and the same throughput and code length.

7 Related Work and Architecture Comparison

Multi-mode Turbo decoders are an increasingly impor-
tant component in mobile wireless devices. To support
multi-mode decoding, the ASIC/ASIP/MPSoC/SIMD
architectures have been recently proposed [2, 28, 34].
In [2], a reconfigurable application-specific instruction-
set processor (ASIP) architecture is presented for con-
volutional, Turbo, and LDPC code decoding. In [34], a
multi processor system on chip (MPSoC) architecture
is described for LDPC and Turbo code decoding. In
[28], a SIMD-like processor architecture is proposed for
Viterbi, Turbo, Reed-Solomon, and LDPC decoding.
Table 7 shows the architecture comparison and tradeoff
analysis of these decoders. Each approach has different
benefit in terms of flexibility. Our focus is to achieve
highest throughput for both LDPC and Turbo codes.
As can be seen from the table, the proposed decoder
can support very high throughput LDPC/Turbo decod-
ing at a small silicon area cost.

8 Conclusion

In this work, we present a flexible decoder architecture
to support LDPC and Turbo codes. We propose a
dual-mode Flex-SISO decoder as a basic building block
in LDPC and Turbo decoders. Our study has been
focused on the Flex-SISO decoder architecture design
and implementation. We unify the decoding process
for LDPC and Turbo codes so that the same Flex-
SISO decoder can be re-used for both cases resulting
in more than 80% resource sharing. To increase de-
coding throughput, we propose a parallel LDPC/Turbo
decoder using multiple Flex-SISO cores. With a core
area of 3.2 mm?, the decoder is able to sustain 600 Mbps
802.11e LDPC decoding, 500 Mbps 802.11n LDPC de-
coding, or 450 Mbps 3GPP LTE Turbo decoding. The
proposed architecture can significantly reduce the cost
of a multi-mode receiver.
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