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Abstract

Deep neural networks (DNNs) have proven to be adept at accurately automating many tasks (e.g., image
and text classification [138, 145], object detection [203], text generation [198], and more). Across most
domains, DNNs tend to achieve better performance with increasing scale, both in terms of dataset and
model size [56, 116, 133]. As such, the benefit of DNNs comes at a steep computational (and monetary)
cost, which can limit their applicability. This document aims to identify novel and intuitive techniques that
can make deep learning more usable across domains and communities.
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1 Overview

A goal of improving the overall usability of deep learning is broad and ambiguous. To make this goal more
specific, we decompose deep learning workflows into two major components:

• The Model

• The Training Setup

All research presented in this document focuses upon one of these key areas. In the following sections, we
will more rigorously define the goal of making deep learning more usable and highlight specific avenues by
which this goal can be achieved. By connecting these ideas to the key components of a deep learning system
outlined above, we identify specific, novel techniques that make leveraging deep learning-based technology
much easier for everyday practitioners.

1.1 Motivation

What does it take for a technology like deep learning to become more widely adopted? Currently, three major
considerations influence such adoption:

• Performance: the models and techniques we develop must solve their specified task accurately.

• Cost: the models and techniques we develop must be affordable.

• Complexity: the models and techniques we develop must be (relatively) simple to implement.

Any novel technique that claims to make deep learning more practically useful must tangibly improve (at
least) one of these areas. In this document, we maintain this context and propose a variety of techniques that
make the training and use of DNNs more performant, efficient, and accessible. Along the way, we place an
emphasis upon methods that are both practical and provable (i.e., coming with theoretical guarantees).

1.2 The Model

One factor that influences the computational expense of deep learning is the size of current DNNs. Due to their
size, DNNs are quite expensive to host and train, where we can define expense in terms of monetary cost, time
to implement, training latency, required hardware, and more. Although large DNNs are incredibly powerful,
their size creates a barrier to entry for their use—implementing systems and infrastructure to effectively
support these models becomes increasingly difficult as they scale [45, 217]. Despite these considerations,
DNNs seem to continue growing exponentially in size [27, 59]. With this in mind, we might wonder: How
can we make large models easier to use for “normal” practitioners?

To reduce the memory overhead and latency of training large DNNs, we could completely avoid training
the full model, adopting instead a sparse training strategy that separately trains small, randomly-sampled
portions of the model. This approach was explored with the proposal of independent subnetwork training
(IST) [258], which trains a feed-forward network by breaking it into several, smaller subnetworks that are
trained in parallel on separate devices. Although this technique was later extended to other DNN architectures
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and training regimes [61, 62, 236], we consider its extension to graph convolutional networks (GCNs) [141]
via Graph Independent Subnetwork Training (GIST) in Section 2. We find that performing training over
a sparse selection of model parameters improves compute and memory efficiency, while maintaining or
improving the performance of the underlying GCN. Overall, such an approach enables larger GCNs to be
trained to impressive performance levels with more modest resources.

Beyond the difficulty of training large DNNs, deploying these models for use in practical applications can
incur significant costs due to the hardware and compute requirements of hosting large models. Ideally, we
would be able to capture the knowledge and performance of larger models with a much smaller DNN—an
idea that is being actively explored by neural network pruning techniques [71, 163]. Although pruning
methodologies for DNNs are mostly based upon heuristics [72, 110, 170], we explore pruning techniques that
i) perform well, ii) come with theoretical guarantees, and iii) run efficiently. For example, we propose an
iterative, Sparse Structured Pruning algorithm (i-SpaSP) in Section 4 that runs orders of magnitude faster
than other provable pruning techniques, performs competitively in experiments, and comes with theoretical
performance guarantees for multi-layer DNNs. Additionally, in Section 3, we connect analysis of pruned
DNNs [251] with existing convergence rates for DNNs trained with stochastic gradient descent [191], thus
theoretically proving that high-performing subnetworks can be discovered with minimal pre-training. Going
further, we extend this analysis to distributed pruning algorithms [19] that can be used to significantly speed
up the pruning process.

Despite large models being favored in modern applications, we see in this document that leveraging
sparsity in the DNN’s underlying model architecture can make the training process more tractable with
limited hardware resources and even improve DNN performance in the process. Going further, pruning
techniques can be used to reduce the size of DNNs with minimal performance deterioration, which decouples
the performance of such models from their size [74]. Here, we focus upon pruning techniques that come with
rigorous theoretical guarantees and explore ideas that can improve the efficiency of such provable algorithms
by orders of magnitude, thus making them more practically applicable. Combined together, the methods
presented in this work focus upon modifications to the DNN model that, in turn, make the training and
deployment of deep learning systems more performant and less costly.

1.3 The Training Setup

The standard training process for a DNN assumes access to a large database of training examples that may
or may not have supervised labels. Using a pre-specified set of hyperparamters, the network then performs
several training epochs over this dataset, having its parameters optimized according to some objective function.
Although this strategy usually works well, there are a few notable issues that may arise when applied in the
real world. For example, data is not static in most practical applications—the training set changes constantly
as new data becomes available. Additionally, choosing suboptimal hyperparameters can drastically deteriorate
training performance and efficiency, possibly even requiring the training process to be repeated from scratch.
In this work, we explore solutions to such issues that can be easily implemented by practitioners, making
DNNs more applicable and performant even in non-standard training settings.

Beyond being computationally expensive, the training process for DNNs requires the setting of several
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relevant hyperparameters, such as the learning rate or momentum. Currently, curated hyperparameter
settings and schedules are widely-used across the deep learning community [37, 38]. If chosen correctly,
hyperparameter schedules can improve DNN training efficiency and performance by a large margin [213, 216].
Furthermore, hyperparameter scheduling is a fundamental concept within deep learning that can be applied to
a variety of different training settings [214, 243]. Inspired by prior work in low-precision training for DNNs
[75, 76], we analyze a variety of different hyperparameter schedules that dynamically adapt network precision
along the training trajectory in Section 6. Such scheduling approaches are simple to implement and have a
huge impact on DNN training efficiency and performance.

Given that practical deep learning applications typically experience a constant influx of new data, DNNs
trained using standard techniques must be intermittently re-trained to ensure available data is being modeled
accurately. Re-training DNNs from scratch in this way is quite computationally expensive, thus raising the
question: Is there a training paradigm that can better cope with the dynamic nature of data? Recently,
several works have pioneered the training of DNNs in a streaming fashion [102, 103, 104]. With streaming,
the learning process occurs in a single pass, where quick updates are performed over each new example
of data that is exposed to the DNN. Although such techniques allow DNNs to be dynamically adapted to
incoming streams of data, existing strategies require extensive pre-training procedures and leave a majority
of network parameters fixed during streaming, which makes their implementation complex and can hinder
performance. In Section 5, we explore a simplified, end-to-end streaming learning approach for DNNs,
finding that such a technique is high-performing, cheap to deploy, simple to implement, and capable of being
analyzed theoretically [29].

Although the standard approach for training DNNs is rarely questioned, we will see throughout the
course of this document that exploring improvements to this process can yield impressive benefits. Streaming
learning has the potential to revolutionize DNN training by allowing low cost adaptations of DNNs to new
data, as opposed to constantly re-training them from scratch. By proposing simple, yet powerful, approaches
for streaming learning, we enable practitioners to reduce the cost—in terms of implementation complexity,
computational expense, latency, and more—of leveraging deep learning-based technology in highly dynamic
environments. Additionally, exploring new avenues of hyperparameter scheduling (e.g., for DNN training
precision) allows us to find small, practical modifications to the DNN training process that can improve the
performance of DNNs while significantly reducing overhead.

2 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

The graph convolutional network (GCN) is a go-to solution for machine learning on graphs, but its training is
notoriously difficult to scale both in terms of graph size and the number of model parameters. Although some
work has explored training on large-scale graphs, we pioneer efficient training of large-scale GCN models with
the proposal of a novel, distributed training framework, called GIST. GIST disjointly partitions the parameters
of a GCN model into several, smaller sub-GCNs that are trained independently and in parallel. Compatible
with all GCN architectures and existing sampling techniques, GIST i) improves model performance, ii)
scales to training on arbitrarily large graphs, iii) decreases wall-clock training time, and iv) enables the
training of markedly overparameterized GCN models. Remarkably, with GIST, we train an astonishgly-wide

4



Cluster

Batch #2

Global 
GCN 

Model

subGCNs

subAgg

subTrain #1

Batch #1
subTrain #2

Figure 1: GIST pipeline: subGCNs divides the global GCN into sub-GCNs. Every sub-GCN is trained
by subTrain using mini-batches (smaller sub-graphs) generated by Cluster. Sub-GCN parameters are
intermittently aggregated through subAgg.

32 768-dimensional GraphSAGE model, which exceeds the capacity of a single GPU by a factor of 8×, to
SOTA performance on the Amazon2M dataset.

2.1 Introduction

Since not all data can be represented in Euclidean space [26], many applications rely on graph-structured
data. For example, social networks can be modeled as graphs by regarding each user as a node and friendship
relations as edges [171, 186]. Alternatively, in chemistry, molecules can be modeled as graphs, with nodes
representing atoms and edges encoding chemical bonds [14, 24].

To better understand graph-structured data, several (deep) learning techniques have been extended to the
graph domain [50, 87, 174]. Currently, the most popular one is the graph convolutional network (GCN) [141],
a multi-layer architecture that implements a generalization of the convolution operation to graphs. Although
the GCN handles node—and graph—level classification, it is notoriously inefficient and unable to support
large graphs [35, 36, 81, 122, 255, 262], making practical, large-scale applications difficult to handle.

To deal with these issues, node partitioning methodologies have been developed. These schemes can be
roughly categorized into neighborhood sampling [36, 92, 276] and graph partitioning [43, 262] approaches.
The goal is to partition a large graph into multiple smaller graphs that can be used as mini-batches for training
the GCN. In this way, GCNs can handle larger graphs during training, expanding their potential into the realm
of big data. However, the size of the underlying model is still limited by available memory capacity, thus
placing further constraints on the scale of GCN experimentation.

Although some papers perform large-scale experiments [43, 262], the models (and data) used in GCN
research remain small in the context of deep learning [141, 227], where the current trend is towards incredibly
large models and datasets [27, 45]. Despite the widespread moral questioning of this trend [97, 169, 209], the
deep learning community continues to push the limits of scale. Overparameterized models yield improvements
in tasks like zero or few-shot learning [27, 199], are capable of discovering generalizable solutions [182], and
even have desirable theoretical properties [191].
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Although deeper GCNs may perform poorly due to oversmoothing [141, 149], GCNs should similarly
benefit from overparameterization, meaning that larger hidden layers may be beneficial. Furthermore, recent
work indicates that overparameterization is most impactful on larger datasets [116], making overparameterized
models essential as GCNs are applied to practical problems at scale. Moving in this direction, our work
provides an efficient training framework for wide, overparameterized GCN models—beyond the memory
capacity of a single GPU—of any architecture that is compatible with existing training techniques.

Our Proposal. Inspired by independent subnetwork training (IST) [258], our methodology randomly
partitions the hidden feature space in each layer, decomposing the global GCN model into multiple, narrow
sub-GCNs of equal depth. Sub-GCNs are trained independently for several iterations in parallel prior to having
their updates synchronized; see Figure 1. This process of randomly partitioning, independently training, and
synchronizing sub-GCNs is repeated until convergence. We call this method Graph Independent Subnetwork
Training (GIST), as it extends the IST framework to the training of GCNs.

Though IST was previously unexplored in this domain, we find that GIST pairs well with any GCN archi-
tecture, is compatible with node sampling techniques, can scale to arbitrarily large graphs, and significantly
reduces wall-clock training time, allowing larger models and datasets to be explored. In particular, we focus
on training “ultra-wide” GCNs (i.e., GCN models with very large hidden layers), as deeper GCNs are prone
to oversmoothing [149] and GIST’s model partitioning strategy can mitigate the memory overhead of training
these wider GCNs. The contributions of this work are as follows:

• We develop a novel extension of IST for training GCNs, show that it works well for training GCNs
with a variety of architectures, and demonstrate its compatibility with commonly-used GCN training
techniques like neighborhood sampling and graph partitioning.

• We show that GIST can be used to reach state-of-the-art performance with reduced training time relative
to standard training methodologies. GIST is a compatible addition to GCN training that improves
efficiency.

• We use GIST to enable the training of markedly overparameterized GCN models. In particular, GIST is
used to train a two-layer GraphSAGE model with a hidden dimension of 32 768 on the Amazon2M
dataset. Such a model exceeds the capacity of a single GPU by 8×.
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Figure 2: GCN partition into m = 2 sub-GCNs. Orange and blue colors depict different feature partitions.
Both hidden dimensions (d1 and d2) are partitioned. The output dimension (d3) is not partitioned. Partitioning
the input dimension (d0) is optional, but we do not partition d0 in GIST.

2.2 What is the GIST of this work?

Algorithm 1: GIST Algorithm
Parameters: T synchronization iterations, m sub-GCNs, ζ local iterations,
c clusters, G training graph.

ΨG(·,Θ)← randomly initialize GCN
{G(j)}cj=1 ← Cluster(G, c)
for t = 0, . . . , T − 1 do{

ΨG(·,Θ(i))
}m
i=1
← subGCNs(ΨG(·,Θ),m)

Distribute each ΨG(·,Θ(i)) to a different worker
for i = 1, . . . ,m do

for z = 1, . . . , ζ do
ΨG(·,Θ(i))← subTrain(Θ(i), {G(j)}cj=1)

end
end
ΨG(·,Θ)← subAgg({Θ(i)}mi=1)

end

GCN Architecture. The GCN [141] is arguably the most widely-used neural network architecture on graphs.
Consider a graph G comprised of n nodes with d-dimensional features X ∈ Rn×d. The output Y ∈ Rn×d′ of
a GCN can be expressed as Y = ΨG(X,Θ), where ΨG is an L-layered architecture with trainable parameters
Θ. If we define H0 = X, we then have that Y = ΨG(X,Θ) = HL, where an intermediate ℓ-th layer of the
GCN is given by

Hℓ+1 = σ(ĀHℓΘℓ). (1)

In (1), σ(·) is an element-wise activation function (e.g., ReLU), Ā is the degree-normalized adjacency
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matrix of G with added self-loops, and the trainable parameters Θ = {Θℓ}L−1
ℓ=0 have dimensions Θℓ ∈

Rdℓ×dℓ+1 with d0 = d and dL = d′. In Figure 2 (top), we illustrate nested GCN layers for L = 3, but our
methodology extends to arbitrary L. The activation function of the last layer is typically the identity or
softmax transformation—we omit this in Figure 2 for simplicity.

GIST overview. We overview GIST in Algorithm 1 and present a schematic depiction in Figure 1. We
partition our (randomly initialized) global GCN into m smaller, disjoint sub-GCNs with the subGCNs
function (m = 2 in Figures 1 and 2) by sampling the feature space at each layer of the GCN; see Section 2.2.1.
Each sub-GCN is assigned to a different worker (i.e., a different GPU) for ζ rounds of distributed, independent
training through subTrain. Then, newly-learned sub-GCN parameters are aggregated (subAgg) into
the global GCN model. This process repeats for T iterations. Our graph domain is partitioned into c sub-
graphs through the Cluster function (c = 2 in Figure 1). This operation is only relevant for large graphs
(n > 50 000), and we omit it (c = 1) for smaller graphs that don’t require partitioning.1

2.2.1 subGCNs: Constructing Sub-GCNs

GIST partitions a global GCN model into several narrower sub-GCNs of equal depth. Formally, consider an
arbitrary layer ℓ and a random, disjoint partition of the feature set [dℓ] = {1, 2, . . . , dℓ} into m equally-sized
blocks {D(i)

ℓ }mi=1.2 Accordingly, we denote by Θ
(i)
ℓ = [Θℓ]D(i)

ℓ ×D(i)
ℓ+1

the matrix obtained by selecting

from Θℓ the rows and columns given by the ith blocks in the partitions of [dℓ] and [dℓ+1], respectively.
With this notation in place, we can define m different sub-GCNs Y(i) = ΨG(X(i);Θ(i)) = H

(i)
L where

H
(i)
0 = X

[n]×D(i)
0

and each layer is given by:

H
(i)
ℓ+1 = σ(ĀH

(i)
ℓ Θ

(i)
ℓ ). (2)

Notably, not all parameters within the global GCN model are partitioned to a sub-GCN. However, by
randomly re-constructing new groups of sub-GCNs according to a uniform distribution throughout the training
process, all parameters have a high likelihood of being updated.

Sub-GCN partitioning is illustrated in Figure 2-(a), where m = 2. Partitioning the input features is
optional (i.e., (a) vs. (b) in Figure 2). We do not partition the input features within GIST so that sub-GCNs
have identical input information (i.e., X(i) = X for all i); see Section 2.4.1. Similarly, we do not partition the
output feature space to ensure that the sub-GCN output dimension coincides with that of the global model,
thus avoiding any need to modify the loss function. This decomposition procedure (subGCNs function in
Algorithm 1) extends to arbitrary L.

2.2.2 subTrain: Independently Training Sub-GCNs

Assume c = 1 so that the Cluster operation in Algorithm 1 is moot and {G(j)}cj=1 = G. Because Y(i)

and Y share the same dimension, sub-GCNs can be trained to minimize the same global loss function. One
1Though any clustering method can be used, we advocate the use of METIS [134, 135] due to its proven efficiency in large-scale

graphs.
2For example, if dℓ = 4 and m = 2, one valid partition would be given by D(1)

ℓ = {1, 4} and D(2)
ℓ = {2, 3}.
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application of subTrain in Algorithm 1 corresponds to a single step of stochastic gradient descent (SGD).
Inspired by local SGD [158], multiple, independent applications of subTrain are performed in parallel
(i.e., on separate GPUs) for each sub-GCN prior to aggregating weight updates. The number of independent
training iterations between synchronization rounds, referred to as local iterations, is denoted by ζ, and the
total amount of training is split across sub-GCNs.3 Ideally, the number sub-GCNs and local iterations should
be increased as much as possible to minimize communication and training costs. In practice, however, such
benefits may come at the cost of statistical inefficiency; see Section 2.4.1.

If c > 1, subTrain first selects one of the c subgraphs in {G(j)}cj=1 to use as a mini-batch for SGD.
Alternatively, the union of several sub-graphs in {G(j)}cj=1 can be used as a mini-batch for training. Aside
from using mini-batches for each SGD update instead of the full graph, the use of graph partitioning does
not modify the training approach outlined above. Some form of node sampling must be adopted to make
training tractable when the full graph is too large to fit into memory. However, both graph partitioning and
layer sampling are compatible with GIST (see Sections 2.4.2 and 2.4.4). We adopt graph partitioning in the
main experiments due to the ease of implementation. The novelty of our work lies in the feature partitioning
strategy of GIST for distributed training, which is an orthogonal technique to node sampling; see Figure 3 and
Section 2.2.4.

2.2.3 subAgg: Aggregating Sub-GCN Parameters

After each sub-GCN completes ζ training iterations, their updates are aggregated into the global model
(subAgg function in Algorithm 1). Within subAgg, each worker replaces global parameter entries within
Θ with its own, independently-trained sub-GCN parameters Θ(i), where no collisions occur due to the
disjointness of sub-GCN partitions. Thus, subAgg is a basic copy operation that transfers sub-GCN
parameters into the global model.

Not every parameter in the global GCN model is updated by subAgg because, as previously mentioned,
parameters exist that are not partitioned to any sub-GCN by the subGCNs operation. For example, focusing
on Θ1 in Figure 2-(a), one worker will be assigned Θ

(1)
1 (i.e., overlapping orange blocks), while the other

worker will be assigned Θ
(2)
1 (i.e., overlapping blue blocks). The rest of Θ1 is not considered within subAgg.

Nonetheless, since sub-GCN partitions are randomly drawn in each cycle t, one expects all of Θ to be updated
multiple times if T is sufficiently large.

2.2.4 What is the value of GIST?

Architecture-Agnostic Distributed Training. GIST is a generic, distributed training methodology that can
be used for any GCN architecture. We implement GIST for vanilla GCN, GraphSAGE, and GAT architectures,
but GIST is not limited to these models; see Section 2.4.

Compatibility with Sampling Methods. GIST is NOT a replacement for graph or layer sampling. Rather, it
is an efficient, distributed training technique that can be used in tandem with node partitioning. As depicted in

3For example, if a global model is trained on a single GPU for 10 epochs, a comparable experiment for GIST with two sub-GCNs
would train each sub-GCN for only 5 epochs.
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Figure 3: Illustrates the difference between GIST and node sampling techniques within the forward pass of
a single GCN layer (excluding non-linear activation). While graph partitioning and layer sampling remove
nodes from the forward pass (i.e., either completely or on a per-layer basis), GIST partitions node feature
representations (and, in turn, model parameters) instead of the nodes themselves.

Figure 3, GIST partitions node feature representations and model parameters between sub-GCNs, while graph
partitioning and layer sampling sub-sample nodes within the graph.

Interestingly, we find that GIST’s feature and parameter partitioning strategy is compatible with node
partitioning—the two approaches can be combined to yield further efficiency benefits. For example, GIST
is combined with graph partitioning strategies in Section 2.4.2 and with layer sampling methodologies in
Section 2.4.4. As such, we argue that GIST offers an easy add-on to GCN training that makes larger scale
experiments more feasible.

Enabling Ultra-Wide GCN Training. GIST indirectly updates the global GCN through the training of
smaller sub-GCNs, enabling models with hidden dimensions that exceed the capacity of a single GPU to
be trained; in our experiments, we show results where GIST allows training of models beyond the capacity
of a single GPU by a factor of 8×. In this way, GIST allows markedly overparametrized (“ultra-wide")
GCN models to be trained on existing hardware. In Section 2.4.2, we leverage this capability to train a
two-layer GCN model with a hidden dimension of 32 768 on Amazon2M. Overparameterization through width
is especially relevant to GCNs because deeper models suffer from oversmoothing [149]. We do not explore
depth-wise partitions of different GCN layers to each worker, but rather focus solely upon partitioning the
hidden neurons within each layer.

Improved Model Complexity. Consider a single GCN layer, trained over M machines with input and
output dimension of di−1 and di, respectively. For one synchronization round, the communication complexity
of GIST and standard distributed training is O( 1

M didi−1) and O(Mdidi−1), respectively. GIST reduces
communication by only communicating sub-GCN parameters. Existing node partitioning techniques cannot
similarly reduce communication complexity because model parameters are never partitioned. Furthermore,
the computational complexity of the forward pass for a GCN model trained with GIST and using standard
methodology isO( 1

MN2di+
1

M2Ndidi−1) andO(N2di+Ndidi−1), respectively, where N is the number of
nodes in the partition being processed.4 Node partitioning can reduce N by a constant factor but is compatible
with GIST.

Relation to IST. Our work extends the IST distributed training framework—originally proposed for fully-
4We omit the complexity of applying the element-wise activation function for simplicity.
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connected network architectures [258]—to GCNs. Due to the unique aspects of GCN training (e.g., non-
euclidean data and aggregation of node features), it was previously unclear whether IST would work well
in this domain. Though IST is applicable to a variety of architectures, we find that it is especially useful
for efficiently training GCNs to high accuracy. GIST i) provides speedups and performance benefits, ii) is
compatible with other efficient GCN training methods, and iii) enables training of uncharacteristically-wide
GCN models, allowing overparameterized GCNs to be explored via greater width. The practical utility of
GIST and interplay of the approach with unique aspects of GCN training differentiate our work from the
original IST proposal.

2.3 Related Work

GCN training. In spite of their widespread success in several graph related tasks, GCNs often suffer from
training inefficiencies[81, 122]. Consequently, the research community has focused on developing efficient
and scalable algorithms for training GCNs [35, 36, 43, 92, 262, 276]. The resulting approaches can be divided
roughly into two areas: neighborhood sampling and graph partitioning. However, it is important to note
that these two broad classes of solutions are not mutually exclusive, and reasonable combinations of the two
approaches may be beneficial.

Neighborhood sampling methodologies aim to sub-select neighboring nodes at each layer of the GCN,
thus limiting the number of node representations in the forward pass and mitigating the exponential expansion
of the GCNs receptive field. VRGCN [35] implements a variance reduction technique to reduce the sample
size in each layer, which achieves good performance with smaller graphs. However, it requires to store all the
intermediate node embeddings during training, leading to a memory complexity close to full-batch training.
GraphSAGE [92] learns a set of aggregator functions to gather information from a node’s local neighborhood.
It then concatenates the outputs of these aggregation functions with each node’s own representation at each
step of the forward pass. FastGCN [36] adopts a Monte Carlo approach to evaluate the GCN’s forward pass
in practice, which computes each node’s hidden representation using a fixed-size, randomly-sampled set of
nodes. LADIES [276] introduces a layer-conditional approach for node sampling, which encourages node
connectivity between layers in contrast to FastGCN [36].

Graph partitioning schemes aim to select densely-connected sub-graphs within the training graph, which
can be used to form mini-batches during GCN training. Such sub-graph sampling reduces the memory footprint
of GCN training, thus allowing larger models to be trained over graphs with many nodes. ClusterGCN [43]
produces a very large number of clusters from the global graph, then randomly samples a subset of these
clusters and computes their union to form each sub-graph or mini-batch. Similarly, GraphSAINT [262]
randomly samples a sub-graph during each GCN forward pass. However, GraphSAINT also considers the bias
created by unequal node sampling probabilities during sub-graph construction, and proposes normalization
techniques to eliminate this bias.

As explained in Section 2.2, GIST also relies on graph partitioning techniques (Cluster) to handle large
graphs. However, the feature sampling scheme at each layer (subGCNs) that leads to parallel and narrower
sub-GCNs is a hitherto unexplored framework for efficient GCN training.

Distributed training. Distributed training is a heavily studied topic [210, 268]. Our work focuses on
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m d0 d1 d2 Cora Citeseer Pubmed OGBN-Arxiv

Baseline 81.52± 0.005 75.02± 0.018 75.90± 0.003 70.85± 0.089

2 ✓ ✓ ✓ 80.00± 0.010 75.95± 0.007 76.68± 0.011 65.65± 0.700
✓ ✓ 78.30± 0.011 69.34± 0.018 75.78± 0.015 65.33± 0.347

✓ ✓ 80.82± 0.010 75.82± 0.008 78.02± 0.007 70.10± 0.224

4 ✓ ✓ ✓ 76.78± 0.017 70.66± 0.011 65.67± 0.044 54.21± 1.360
✓ ✓ 66.56± 0.061 68.38± 0.018 68.44± 0.014 52.64± 1.988

✓ ✓ 81.18± 0.007 76.21± 0.017 76.99± 0.006 68.69± 0.579

8 ✓ ✓ ✓ 48.32± 0.087 45.42± 0.092 54.29± 0.029 40.26± 1.960
✓ ✓ 53.60± 0.020 54.68± 0.030 51.44± 0.002 26.84± 7.226

✓ ✓ 79.58± 0.006 75.39± 0.016 76.99± 0.006 65.81± 0.378

Table 1: Test accuracy of GCN models trained on small-scale datasets with GIST. We selectively partition
each feature dimension within the GCN model, indicated by a check mark.

synchronous and distributed training techniques [154, 256, 266]. Some examples of synchronous, distributed
training approaches include data parallel training, parallel SGD [4, 274], and local SGD [158, 221]. Our
methodology holds similarities to model parallel training techniques, which have been heavily explored [23, 83,
89, 142, 194, 272]. More closely, our approach is inspired by IST, explored for feed-forward networks in [258].
Later work analyzed IST theoretically [155] and extended its use to more complex ResNet architectures [62].
We empirically explore the extension of IST to the GCN architecture, finding that IST-based methods are
suited well for GCN training. However, the IST framework is applicable to network architectures beyond the
GCN.

2.4 Experiments

We use GIST to train different GCN architectures on six public, multi-node classification datasets; see
Appendix A.1 for details. In most cases, we compare the performance of models trained with GIST to that
of models trained with standard methods (i.e., single GPU with node partitioning). Comparisons to models
trained with other distributed methodologies are also provided in Appendix A.2. Experiments are divided
into small and large scale regimes based upon graph size. The goal of GIST is to i) train GCN models to
state-of-the-art performance, ii) minimize wall-clock training time, and iii) enable training of very wide
GCN models.

2.4.1 Small-Scale Experiments

In this section, we perform experiments over Cora, Citeseer, Pubmed, and OGBN-Arxiv datasets [120, 208].
For these small-scale datasets, we train a three-layer, 256-dimensional GCN model [141] with GIST; see
Appendix A.1.3 for further experimental settings. All reported metrics are averaged across five separate
trials. Because these experiments run quickly, we use them to analyze the impact of different design and
hyperparameter choices rather than attempting to improve runtime (i.e., speeding up such short experiments is
futile).
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L m
Reddit Dataset

GraphSAGE GAT

F1 Time Speedup F1 Time Speedup

2 - 96.09 105.78s 1.00× 89.57 1.19hr 1.00×
2 96.40 70.29s 1.50× 90.28 0.58hr 2.05×
4 96.16 68.88s 1.54× 90.02 0.31hr 3.86×
8 95.46 76.68s 1.38× 89.01 0.18hr 6.70×

3 - 96.32 118.37s 1.00× 89.25 2.01hr 1.00×
2 96.36 80.46s 1.47× 89.63 0.95hr 2.11×
4 95.76 78.74s 1.50× 88.82 0.48hr 4.19×
8 94.39 88.54s (1.34×) 70.38 0.26hr (7.67×)

4 - 96.32 120.74s 1.00× 88.36 2.77hr 1.00×
2 96.01 91.75s 1.32× 87.97 1.31hr 2.11×
4 95.21 78.74s (1.53×) 78.42 0.66hr (4.21×)
8 92.75 88.71s (1.36×) 66.30 0.35hr (7.90×)

L m
Amazon2M Dataset

GraphSAGE (di = 400) GraphSAGE (di = 4 096)

F1 Time Speedup F1 Time Speedup

2 - 89.90 1.81hr 1.00× 91.25 5.17hr 1.00×
2 88.36 1.25hr (1.45×) 90.70 1.70hr 3.05×
4 86.33 1.11hr (1.63×) 89.49 1.13hr (4.57×)
8 84.73 1.13hr (1.61×) 88.86 1.11hr (4.65×)

3 - 90.36 2.32hr 1.00× 91.51 9.52hr 1.00×
2 88.59 1.56hr (1.49×) 91.12 2.12hr 4.49×
4 86.46 1.37hr (1.70×) 89.21 1.42hr (6.72×)
8 84.76 1.37hr (1.69×) 86.97 1.34hr (7.12×)

4 - 90.40 3.00hr 1.00× 91.61 14.20hr 1.00×
2 88.56 1.79hr (1.68×) 91.02 2.77hr 5.13×
4 87.53 1.58hr (1.90×) 89.07 1.65hr (8.58×)
8 85.32 1.56hr (1.93×) 87.53 1.55hr (9.13×)

Table 2: Performance of models trained with GIST on Reddit and Amazon2M. Parenthesis are placed around
speedups achieved at a cost of >1 deterioration in F1 and m =“-” refers to the baseline.

Which layers should be partitioned? We investigate whether models trained with GIST are sensitive to
the partitioning of features within certain layers. Although the output dimension d3 is never partitioned, we
selectively partition dimensions d0, d1, and d2 to observe the impact on model performance; see Table 1.
Partitioning input features (d0) significantly degrades test accuracy because sub-GCNs observe only a portion
of each node’s input features (i.e., this becomes more noticeable with larger m). However, other feature
dimensions cause no performance deterioration when partitioned between sub-GCNs, leading us to partition
all feature dimensions other than d0 and dL within the final GIST methodology; see Figure 2-(b).

How many Sub-GCNs to use? Using more sub-GCNs during GIST training typically improves runtime
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because sub-GCNs i) become smaller, ii) are each trained for fewer epochs, and iii) are trained in parallel.
We find that all models trained with GIST perform similarly for practical settings of m; see Table 1. One
may continue increasing the number sub-GCNs used within GIST until all GPUs are occupied or model
performance begins to decrease.

GIST Performance. Models trained with GIST often exceed the performance of models trained with standard,
single-GPU methodology; see Table 1. Intuitively, we hypothesize that the random feature partitioning within
GIST, which loosely resembles dropout [220], provides regularization benefits during training.

2.4.2 Large-Scale Experiments

For large-scale experiments on Reddit and Amazon2M, the baseline model is trained on a single GPU and
compared to models trained with GIST in terms of F1 score and training time. All large-scale graphs are
partitioned into 15 000 sub-graphs during training.5 Graph partitioning is mandatory because the training
graphs are too large to fit into memory. One could instead use layer sampling to make training tractable (see
Section 2.4.4), but we adopt graph partitioning in most experiments because the implementation is simple and
performs well.

Reddit Dataset. We perform tests with 256-dimensional GraphSAGE [92] and GAT [227] models with two to
four layers on Reddit; see Appendix A.1.4 for more details. As shown in Table 2, utilizing GIST significantly
accelerates GCN training (i.e., a 1.32× to 7.90× speedup). GIST performs best in terms of F1 score with
m = 2 sub-GCNs (i.e., m = 4 yields further speedups but F1 score decreases). Interestingly, the speedup
provided by GIST is more significant for models and datasets with larger compute requirements. For example,
experiments with the GAT architecture, which is more computationally expensive than GraphSAGE, achieve
a near-linear speedup with respect to m.

Amazon2M Dataset. Experiments are performed with two, three, and four-layer GraphSAGE models [92]
with hidden dimensions of 400 and 4 096 (we refer to these models as “narrow” and “wide”, respectively). We
compare the performance (i.e., F1 score and wall-clock training time) of GCN models trained with standard,
single-GPU methodology to that of models trained with GIST; see Table 2. Narrow models trained with GIST
have a lower F1 score in comparison to the baseline, but training time is significantly reduced. For wider
models, GIST provides a more significant speedup (i.e., up to 7.12×) and tends to achieve comparable F1
score in comparison to the baseline, revealing that GIST works best with wider models.

Within Table 2, models trained with GIST tend to achieve a wall-clock speedup at the cost of a lower F1
score (i.e., observe the speedups marked with parenthesis in Table 2). When training time is analyzed with
respect to a fixed F1 score, we observe that the baseline takes significantly longer than GIST to achieve a fixed
F1 score. For example, when L = 2, a wide GCN trained with GIST (m = 8) reaches an F1 score of 88.86
in ∼ 4 000 seconds, while models trained with standard methodology take ∼ 10 000 seconds to achieve a
comparable F1 score. As such, GIST significantly accelerates training relative to model performance.

5Single-GPU training with graph partitioning via METIS is the same approach adopted by ClusterGCN [43], making our
single-GPU baseline a ClusterGCN model. We adopt the same number of sub-graphs as proposed in this work.
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L m
F1 Score (Time in hours)

di = 400 di = 4 096 di = 8 192 di = 16 384 di = 32 768

2 - 89.38 (1.81) 90.58 (5.17) OOM OOM OOM
2 87.48 (1.25) 90.09 (1.70) 90.87 (2.76) 90.94 (9.31) 90.91 (32.31)
4 84.82 (1.11) 88.79 (1.13) 89.76 (1.49) 90.10 (2.24) 90.17 (5.16)
8 82.56 (1.13) 87.16 (1.11) 88.31 (1.20) 88.89 (1.39) 89.46 (1.76)

3 - 89.73 (2.32) 90.99 (9.52) OOM OOM OOM
2 87.79 (1.56) 90.40 (2.12) 90.91 (4.87) 91.05 (17.7) OOM
4 85.30 (1.37) 88.51 (1.42) 89.75 (2.07) 90.15 (3.44) OOM
8 82.84 (1.37) 86.12 (1.34) 88.38 (1.37) 88.67 (1.88) 88.66 (2.56)

4 - 89.77 (3.00) 91.02 (14.20) OOM OOM OOM
2 87.75 (1.79) 90.36 (2.77) 91.08 (6.92) 91.09 (26.44) OOM
4 85.32 (1.58) 88.50 (1.65) 89.76 (2.36) 90.05 (4.93) OOM
8 83.45 (1.56) 86.60 (1.55) 88.13 (1.61) 88.44 (2.30) OOM

Table 3: Performance of GraphSAGE models of different widths trained with GIST on Amazon2M. m =“-”
refers to the baseline and “OOM” marks experiments that cause out-of-memory errors.

2.4.3 Training Ultra-Wide GCNs

We use GIST to train GraphSAGE models with widths as high as 32 000 (i.e., 8× beyond the capacity of
a single GPU); see Table 3 for results and Appendix A.1.5 for more details. Considering L = 2, the best-
performing, single-GPU GraphSAGE model (di = 4 096) achieves an F1 score of 90.58 in 5.2 hours. With
GIST (m = 2), we achieve a higher F1 score of 90.87 in 2.8 hours (i.e., a 1.86× speedup) using di = 8 192,
which is beyond single GPU capacity. Similar patterns are observed for deeper models. Furthermore, we find
that utilizing larger hidden dimensions yields further performance improvements, revealing the utility of wide,
overparameterized GCN models. GIST, due to its feature partitioning strategy, is unique in its ability to train
models of such scale to state-of-the-art performance.

2.4.4 GIST with Layer Sampling

As previously mentioned, some node partitioning approach must be adopted to avoid memory overflow when
the underlying training graph is large. Although graph partitioning is used within most experiments (see
Section 2.4.2), GIST is also compatible with other node partitioning strategies. To demonstrate this, we
perform training on Reddit using GIST combined with a recent layer sampling approach [276] (i.e., instead of
graph partitioning); see Appendix A.1.6 for more details.

As shown in Table 4, combining GIST with layer sampling enables training on large-scale graphs, and
the observed speedup actually exceeds that of GIST with graph partitioning. For example, GIST with layer
sampling yields a 1.83× speedup when L = 2 and m = 2, in comparison to a 1.50× speedup when graph
partitioning is used within GIST (see Table 2). As the number of sub-GCNs is increased beyond m = 2,
GIST with layer sampling continues to achieve improvements in wall-clock training time (e.g., speedup
increases from 1.83× to 2.90× from m = 2 to m = 4 for L = 2) without significant deterioration to model
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L # Sub-GCNs
GIST + LADIES

F1 Score Time Speedup

2 Baseline 89.73 3 359.91s 1.00×
2 89.29 1 834.59s 1.83×
4 88.42 1 158.51s 2.90×

3 Baseline 89.57 4 803.88s 1.00×
2 86.52 2 635.18s 1.82×
4 86.72 1 605.32s 3.00×

Table 4: Performance of GCN models trained with a combination of GIST and LADIES [276] on Reddit.
Here, the baseline represents models trained with LADIES in a standard, single-GPU manner.

performance. Thus, although node partitioning is needed to enable training on large-scale graphs, the feature
partitioning strategy of GIST is compatible with numerous sampling strategies (i.e., not just graph sampling).

2.5 Conclusion

We present GIST, a distributed training approach for GCNs that enables the exploration of larger models and
datasets. GIST is compatible with existing sampling approaches and leverages a feature-wise partition of
model parameters to construct smaller sub-GCNs that are trained independently and in parallel. We have
shown that GIST achieves remarkable speed-ups over large graph datasets and even enables the training of
GCN models of unprecedented size. We hope GIST can empower the exploration of larger, more powerful
GCN architectures within the graph community.

3 How much pre-training is enough to discover a good subnetwork?

Neural network pruning is useful for discovering efficient, high-performing subnetworks within pre-trained,
dense network architectures. However, more often than not, it involves a three-step process—pre-training,
pruning, and re-training—that is computationally expensive, as the dense model must be fully pre-trained.
Luckily, several works have empirically shown that high-performing subnetworks can be discovered via
pruning without fully pre-training the dense network. Aiming to theoretically analyze the amount of dense
network pre-training needed for a pruned network to perform well, we discover a theoretical bound in the
number of SGD pre-training iterations on a two-layer, fully-connected network, beyond which pruning via
greedy forward selection [251] yields a subnetwork that achieves good training error. This threshold is
shown to be logarithmically dependent upon the size of the dataset, meaning that experiments with larger
datasets require more pre-training for subnetworks obtained via pruning to perform well. Additionally, we
propose a distributed version of greedy forward selection that significantly speeds up the pruning process
via parallelization across several compute sites and yields identical theoretical guarantees. We empirically
demonstrate the validity of our theoretical results across a variety of architectures and datasets, including fully-
connected networks trained on MNIST and several deep convolutional neural network (CNN) architectures
trained on CIFAR10 and ImageNet.
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3.1 Introduction

The proposal of the Lottery Ticket Hypothesis (LTH) [71] has led to significant interest in using pruning
techniques to discover small (sometimes sparse) models that perform well. LTH has been empirically validated
and is even applicable in large-scale settings [39, 72, 79, 163, 180, 269, 271], revealing that high-performing
subnetworks can be obtained by pruning dense, pre-trained models and fine-tuning the pruned weights to
convergence (i.e., either from their initial values or some later point) [40, 84, 204].

Neural network pruning tends to follow a three step process, including pre-training, pruning, and re-
training, where pre-training is the most costly step [71, 254]. To circumvent the cost of pre-training, several
works explore the possibility of pruning networks directly from initialization (i.e., the “strong lottery ticket
hypothesis”) [73, 200, 232], but subnetwork performance could suffer. Adopting a hybrid approach, good
subnetworks can also be obtained from models with minimal pre-training [41, 254] (i.e., “early-bird” tickets),
providing hope that high-performing pruned models can be discovered without incurring the full training cost
of the dense model.

Empirical analysis of pruning techniques has inspired associated theoretical developments. Several
works have derived bounds for the performance and size of subnetworks discovered in randomly-initialized
networks [173, 190, 195]. Other theoretical works analyze pruning via greedy forward selection [251, 252].
In addition to enabling analysis with respect to subnetwork size, pruning via greedy forward selection was
shown to work well in practice for large-scale architectures and datasets. However, greedy forward selection
is quite slow compared to heuristic pruning techniques (e.g., pruning based on ℓ1-norm of weights [148]),
which diminishes the algorithm’s practical applicability. Some findings from these works apply to randomly-
initialized networks given proper assumptions [173, 190, 195, 251], but no work yet analyzes how different
levels of pre-training impact the performance of pruned networks from a theoretical perspective.

Our Proposal. We adopt the greedy forward selection pruning framework and analyze subnetwork per-
formance with respect to the number of SGD pre-training iterations performed on the dense model. From
this analysis, we discover a threshold in the number of pre-training iterations—logarithmically dependent
upon the size of the dataset—beyond which subnetworks obtained via greedy forward selection perform well
in terms of training error. Such a finding offers theoretical insight into the early-bird ticket phenomenon
and provides intuition for why discovering high-performing subnetworks is more difficult in large-scale
experiments [163, 204, 254].

Given that pruning via greedy forward selection is slow compared to heuristic techniques, we propose
a distributed variant of greedy forward selection that can parallelize and accelerate the pruning process
across multiple compute sites. Distributed greedy forward selection is shown to achieve identical theoretical
guarantees compared to the centralized variant and used to accelerate experiments with greedy forward
selection within this work. In particular, we perform extensive experiments (i.e., two-layer networks on
MNIST and CNNs on CIFAR10 and ImageNet) to validate our theoretical analysis, finding that the amount of
pre-training required to discover a subnetwork that performs well is consistently dependent on the size of the
dataset.
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3.2 Preliminaries

Notation. Vectors are represented with bold type (e.g., x), while scalars are represented by normal type (e.g.,
x). ∥ · ∥2 represents the ℓ2 vector norm. Unless otherwise specified, vector norms are always considered to be
ℓ2 norms. [N ] is used to represent the set of positive integers from 1 to N (i.e., [N ] = {1 . . . N}). We denote
the ball of radius r centered at µ as B(µ, r).

Network Parameterization. We consider two-layer neural networks of width N :

f(x,Θ) = 1
N

N∑
i=1

σ(x,θi), (3)

where Θ = {θ1, . . . ,θN} represents all weights within the two-layer neural network. In (3), σ(·,θi)

represents the activation of a single neuron as shown below:

σ(x,θi) = biσ+(a
⊤
i x). (4)

Here, σ+ is an activation function with bounded 1st and 2nd-order derivatives; see Assumption 1. The weights
of a single neuron are θi = [bi,ai] ∈ Rd+1, where d is the dimension of the input vector.

Two-layer networks are relevant to larger-scale architectures and applications [18, 113, 189] and have the
special property of separability between hidden neurons—the network’s output can be derived by computing
(4) separately for each neuron. Notably, we do not leverage any results from mean-field analysis of two-layer
networks [219, 251], choosing instead to analyze the network’s performance when trained directly with
stochastic gradient descent (SGD) [191].

The Dataset. We assume that our network is modeling a dataset D, where |D| = m. D =
{
x(i), y(i)

}m
i=1

,
where x(i) ∈ Rd and y(i) ∈ R for all i ∈ [m]. During training, we consider an ℓ2-norm regression loss over
the dataset:

L[f ] = 1
2 · E(x,y)∼D

[
(f(x,Θ)− y)2

]
. (5)

We define y =
[
y(1), y(2), . . . , y(m)

]
/
√
m, which represents a concatenated vector of all labels within the

dataset scaled by a factor
√
m. Similarly, we define ϕi,j = σ(x(j),θi) as the output of neuron i for the

j-th input vector in the dataset and construct the vector Φi = [ϕi,1, ϕi,2, . . . , ϕi,m] /
√
m, which is a scaled,

concatenated vector of output activations for a single neuron across the entire dataset. We useMN to denote
the convex hull over such activation vectors for all N neurons:

MN = Conv {Φi : i ∈ [N ]} . (6)

Here, Conv{·} denotes the convex hull.MN forms a marginal polytope of the feature map for all neurons
in the two-layer network across every dataset example. We use Vert(MN ) to denote the vertices of the
marginal polytopeMN (i.e., Vert(MN ) = {Φi : i ∈ [N ]}). Using the constructionMN , the ℓ2 loss can

18



be easily defined as follows:

ℓ(z) =
1

2
∥z− y∥2, (7)

where z ∈MN . Finally, we define the diameter of the spaceMN as DMN
= max

u,v∈MN

∥u− v∥2.

Distributed Pruning. For the distributed variant of greedy forward selection, we consider local compute
nodes V = {vi}Vi=1, which communicate according to an undirected connected graph G = (V, E). Here, E is
a set of edges, where |E| = E and (vi, vj) ∈ E indicates that nodes vi and vj can communicate with each
other. For simplicity, our analysis assumes synchronous updates, that the network has no latency, and that
each node has an identical copy of the data D.

3.3 Pruning with greedy forward selection

Algorithm 2: Centralized Greedy Forward Selection for Two-Layer Networks
z0 = 0

for k = 1, 2, . . . do
# Step I: select a new neuron
qk = argmin

q∈Vert(MN )
ℓ( 1k (zk−1 + q))

# Step II: add neuron to the current subnetwork
zk = zk−1 + qk

# Step III: uniform average of neuron outputs
uk = 1

kzk

end
Stopping Criterion: ℓ(uk) ≤ ϵ

Centralized Setting. We first consider a centralized setting in which greedy forward selection is performed
on a single compute node. We assume the existence of a dense, two-layer network of width N , from which
the pruned model is constructed. For now, no assumption is made regarding the amount of pre-training for
the dense model. Given a subset of neuron indices from the dense model S ⊆ [N ], we denote the output of
the pruned subnetwork that only contains this subset of neurons as follows:

fS(x,Θ) = 1
|S|
∑
i∈S

σ(x,θi). (8)

Beginning from an empty subnetwork (i.e., S = ∅), we aim to discover a subset of neurons S⋆ =

argminS⊆[N ] L[fS ] such that |S⋆| ≪ N . In other words, we are trying to solve the following objective.

min
z∈MN

ℓ(z) (9)

We want to find a convex combination of neuron activations that minimizes an empirical regression loss
over dataset D. Instead of discovering an exact solution to this difficult combinatorial optimization problem,
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greedy forward selection [251] is used to find an approximate solution. At each iteration k, we select the
neuron that yields the largest decrease in loss:

Sk+1 = Sk ∪ i⋆, i⋆ = argmin
i∈[N ]

L[fSk∪i]. (10)

Using constructions from Section 3.2, we can write the update rule for greedy forward selection as:

(Select new neuron): qk = argmin
q∈Vert(Mn)

ℓ
(
1
k · (zk−1 + q)

)
(11)

(Add neuron to subnetwork): zk = zk−1 + qk (12)

(Uniform average of neuron outputs): uk =
1

k
· zk. (13)

In words, (11)-(13) include the output of a new neuron, given by qk, within the current subnetwork at
each pruning iteration based on a greedy minimization of the training loss ℓ(·). Then, the output of the
pruned subnetwork over the entire dataset at the k-th iteration, given by uk ∈MN , is computed by taking a
uniform average over the activation vectors of the k active neurons in zk. This pruning procedure, outlined in
Algorithm 2, is the same as that of [251], but more explicitly matches the procedure in (10) by adopting a
fixed, uniform average over selected neurons at each iteration. Within our analysis, rewriting the update rule
as in (11)-(13) makes the comparison of subnetwork and dense network loss intuitive, as the output of both
dense and pruned networks is formulated as a uniform average over neuron activations.

Notably, the greedy forward selection procedure in (11)-(13) can select the same neuron multiple times
during successive pruning iterations. Such selection with replacement could be interpretted as a form of
training during pruning—multiple selections of the same neuron is equivalent to modifying the neuron’s
output layer weight bi in (4). Nonetheless, we highlight that such “training” does not violate the core purpose
and utility of pruning: we still obtain a smaller subnetwork with performance comparable to the dense
network from which it was derived.

Distributed Setting. Next, we consider a distributed setting in which the greedy forward selection process
is distributed across multiple compute nodes. Recall that the set of neurons considered by greedy forward
selection is given by Vert(MN ) = {Φi : i ∈ [N ]}. In the distributed setting, we assume that the weights
associated with each neuron are uniformly and disjointly partitioned across compute sites. More formally, for
j ∈ [V ], we define A(j) as the indices of neurons on vj and Θ(j) = {θi : i ∈ A(j)} as the neuron weights
contained on vj . Going further, we consider {Φi : i ∈ A(j)} and denote the convex hull over this subset of
neuron activations asM(j)

N . We assume that A(j)
⋂A(k) = ∅ for j ̸= k and that

⋃V
j=1A(j) = [N ].

Algorithm 3 aims to solve the objective given by (9) but in the distributed setting. We maintain a global
set of active neurons throughout the pruning process that is shared across compute nodes, denoted as Sk at
pruning iteration k. At each pruning iteration k, we perform a local search over the neurons on each vj ∈ V ,
then aggregate the results of these local searches and add a single neuron (i.e., the best option found by any
local search) into the global set. Intuitively, Algorithm 3 adopts the same greedy forward selection process
from Algorithm 2 but runs it in parallel across compute nodes.
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Algorithm 3: Distributed Greedy Forward Selection for Two-Layer Networks

z
(j)
0 = 0, ∀j ∈ [V ]

for k = 1, 2, . . . do
# Step I: compute a local estimate of the next iterate
for vi ∈ V do

q
(i)
k = argmin

q∈Vert(M(i)
N )

ℓ( 1k (zk−1 + q))

z
(i)
k = zk−1 + q

(i)
k

Broadcast: L(i) = ℓ(z
(i)
k )

end

# Step II: determine and broadcast the best local iterate
for vi ∈ V do

ik = argmin
i∈[V ]

L(i)

if ik == i then
Broadcast: zk = z

(i)
k

end
end

# Step III: update the current, global iterate
for vi ∈ V do

uk = 1
kzk

end
end
Stopping Criterion: ℓ(uk) ≤ ϵ

3.4 How much pre-training do we really need?

As previously stated, no existing theoretical analysis has quantified the impact of pre-training on the perfor-
mance of a pruned subnetwork. Here, we solve this problem by extending existing analysis for pruning via
greedy forward selection to determine the relationship between SGD pre-training and subnetwork training
loss. Full proofs are deferred to Appendix B.1, but we provide a sketch of the analysis within this section. We
begin with all assumptions that are necessary for our analysis.

Assumption 1. For some constant δ ∈ R, we assume the first and second derivatives of the network’s
activation function are bounded, such that |σ′

+(·)| ≤ δ and |σ′′
+(·)| ≤ δ for σ+ defined in (4).

In comparison to [251], Assumption 1 lessens restrictions on the activation function6 and removes
boundedness assumptions on data and labels. Under these assumptions, we provide a bound for the loss of a
subnetwork obtained after k iterations of greedy forward selection.

6We only require the first and second-order derivatives of the activation function to be bounded, whereas [251] imposes a Lipschitz
bound and a bound on the maximum output value of the activation function.
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Lemma 1. The following expression for the objective loss is true for iterates derived after k iterations of the
update rule in (11)-(13) with a two-layer network of width N :

ℓ(uk) ≤
1

k
ℓ(u1) +

1

2k
D2

MN
+

k − 1

k
LN (14)

Here, LN represents the loss achieved by the dense network.

This result is similar in flavor to [251]; yet, here it is derived under milder assumptions and modified to
consider the loss of the dense network. Assuming LN is sufficiently small, Lemma 1 tells us that the pre-
defined stopping criterion (ℓ(uk) ≤ ϵ) will be reached in k ≥ O

(
1
ϵ

)
iterations of Algorithm 2. Additionally,

because Algorithm 2 selects a single neuron during each iteration, the resulting subnetwork satisfies the
sparsity constraint |Sk| = O

(
1
ϵ

)
.

From here, we follow the setup described in Section 3.3 to generalize Lemma 1 to the distributed case
under identical assumptions.

Lemma 2. Algorithm 3 achieves a convergence rate that is identical to that of Lemma 1 when applied to a
two-layer network of width N . The algorithm terminates after k = O

(
1
ϵ

)
iterations and O ((Bd+ V B)/ϵ)

total communication, where B is an upper bound on the total cost of broadcasting a real number to all nodes
in the network G.

This result generalizes Lemma 1 to the distributed variant of greedy forward selection. The communication
overhead of Algorithm 3 is proportional to the input dimension of the neural network d and number of compute
nodes V . With this in mind, distributed greedy forward selection enables the pruning process to be parallelized
across multiple compute nodes with minimal communication overhead (i.e., no dependence upon the hidden
dimension N ) while achieving the same per-iteration convergence rate. Given that both centralized and
distributed variants of greedy forward selection achieve an identical convergence rate with respect to the
number of pruning iterations, all theoretical results that follow apply to both algorithms.

Because assumptions in Lemmas 1 and 2 match those of [191], we can generalize the convergence result
to the stochastic case (i.e., with respect to randomness over SGD iterations) and consider the number of
pre-training iterations performed on the dense network.

Theorem 1. Assume Assumption 1 holds and that a two-layer network of width N was pre-trained for t

iterations with SGD over a dataset D of size m. Additionally, assume that Nd > m2 and m > d, where d

represents the input dimension of data in D.7 Then, a subnetwork obtained from this dense network via k

iterations of greedy forward selection satisfies the following:

E[ℓ(uk)] ≤
1

k
E[ℓ(u1)] +

1

2k
E[D2

MN
] +

(k − 1)ζ

2mk

(
1− c

d

m2

)t

L0,

where L0 is the loss of the dense network at initialization, c and ζ are positive constants, and all expectations
are with respect to randomness over SGD iterations on the dense network.

7This overparameterization assumption is mild in comparison to previous work [8, 60]. Only recently was an improved,
subquadratic requirement derived [218].
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Trivially, the loss in Theorem 1 only decreases during successive pruning iterations if the rightmost L0
term does not dominate the expression (i.e., all other terms decay as O( 1k )). If this term does not decay
with increasing k, the upper bound on subnetwork training loss deteriorates, thus eliminating any guarantees
on subnetwork performance. Interestingly, we discover that the tightness of the upper bound in Theorem 1
depends on the number of dense network SGD pre-training iterations as follows.8

Theorem 2. Adopting identical assumptions and notation as Theorem 1, assume the dense network is pruned
via greedy forward selection for k iterations. The resulting subnetwork is guaranteed to achieve a training
loss ∝ O( 1k ) if t—the number of SGD pre-training iterations on the dense network—satisfies the following
condition:

t ⪆ O
(

− log(k)

log
(
1− c d

m2

)) , where c is a positive constant. (15)

Otherwise, the loss of the pruned network is not guaranteed to improve over successive iterations of greedy
forward selection.

Discussion.9 Our O( 1k ) rate in Lemmas 1 and 2 matches that of previous work under mild assumptions, and
explicitly expresses the loss of the subnetwork with respect to the loss of the dense network. Assumption
1 is chosen to align with the analysis of [191]. This combination enables the training loss of the pruned
subnetwork to be expressed with respect to the number of pre-training iterations on the dense network as
shown in Theorem 1.

Theorem 2 states that a threshold exists in the number of SGD pre-training iterations of a dense network,
beyond which subnetworks derived with greedy selection are guaranteed to achieve good training loss.
Denoting this threshold as t⋆, in the case that m2 ≫ d, limm→∞ t⋆ =∞, implying that larger datasets require
more pre-training for high-performing subnetworks to be discovered. When m2 ≈ d, limm→cd t

⋆ = 0; i.e.,
minimal pre-training is required for subnetworks to perform well on small datasets. Interestingly, t⋆ scales
logarithmically with the dataset size, implying that the amount of required pre-training will plateau as the
underlying dataset becomes increasingly large.

Our finding provides theoretical insight regarding i) how much pre-training is sufficient to discover a
subnetwork that performs well and ii) the difficulty of discovering high-performing subnetworks in large-
scale experiments (i.e., large datasets require more pre-training). Because several empirical heuristics for
discovering high-performing subnetworks without full pre-training have already been proposed [253, 254],
we choose to not focus on deriving novel empirical methods. Nonetheless, we do propose a distributed
variant of the greedy forward selection algorithm to accelerate the pruning process (see Section 3.6.1) for
which all theoretical results hold. Our results specifically focus upon training accuracy, while generalization
performance could be a more realistic assessment of subnetwork quality. It is possible that our analysis can be

8We also derive a similar result using gradient descent (GD) instead of SGD; see Appendix B.1.
9A faster rate can be achieved with greedy forward selection given Assumption 1 if B(y, γ) ∈ MN ; see Appendix B.1.4. This

result still holds under our milder assumptions, but the proof is similar to [251]. It is true that such a result indicates that subnetworks
perform well without pre-training when B(y, γ) ∈ MN , which seems to lessen the significance of Theorem 2. However, we analyze
this assumption practically within Appendix B.2 and show that, even for extremely small scale experiments, the assumption i) never
holds at initialization and ii) tends to require more training for larger datasets, which aligns with findings in Theorem 2.
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combined with theoretical results for neural network generalization performance [10, 150], but we leave such
analysis as future work.

3.5 Related Work

Neural Network Pruning. Many variants have been proposed for both structured [93, 148, 162, 251]
and unstructured [65, 66, 71, 94] pruning. Generally, structured pruning, which prunes entire channels or
neurons of a network instead of individual weights, is considered more practical, as it can achieve speedups
without leveraging specialized libraries for sparse computation. Existing pruning criterion include the norm
of weights [148, 162], feature reconstruction error [110, 170, 252, 257], or even gradient-based sensitivity
measures [17, 232, 273]. While most pruning methodologies perform backward elimination of neurons within
the network [71, 72, 162, 163, 257], some recent research has focused on forward selection structured pruning
strategies [251, 252, 273]. We adopt greedy forward selection within this work, as it has been previously
shown to yield superior performance in comparison to greedy backward elimination.

Frank-Wolfe Algorithm. Our analysis resembles that of the Frank-Wolfe algorithm [70, 129], a widely-used
technique for constrained, convex optimization. Recent work has shown that training deep networks with
Frank-Wolfe can be made feasible in certain cases despite the non-convex nature of neural network training [12,
196]. Instead of training networks from scratch with Frank-Wolfe, however, we use a Frank-Wolfe-style
approach to greedily select neurons from a pre-trained model. Such a formulation casts structured pruning as
convex optimization over a marginal polytope, which can be analyzed similarly to Frank-Wolfe [251, 252] and
loosely approximates networks trained with standard, gradient-based techniques [251]. Several distributed
variants of the Frank-Wolfe algorithm have been analyzed theoretically [117, 230, 246], though our analysis
most closely resembles that of [19]. Alternative methods of analysis for greedy selection algorithms could
also be constructed with the use of sub-modular optimization techniques [185].

Training Analysis. Much work has been done to analyze the convergence properties of neural networks
trained with gradient-based techniques [32, 96, 127, 267]. Such convergence rates were originally explored
for wide, two-layer neural networks using mean-field analysis techniques [176, 219]. Similar techniques
were later used to extend such analysis to deeper models [168, 247]. Generally, recent work on neural
network training analysis has led to novel analysis techniques [96, 127], extensions to alternate optimization
methodologies [128, 191], and even generalizations to different architectural components [85, 152, 267]. By
adopting and extending such analysis, we aim to bridge the gap between the theoretical understanding of
neural network training and LTH.

3.6 Experiments

In this section, we empirically validate our theoretical results from Section 3.4, which predict that larger
datasets require more pre-training for subnetworks obtained via greedy forward selection to perform well.
Pruning via greedy forward selection has already been empirically analyzed in previous work. Therefore, we
differentiate our experiments by providing an in-depth analysis of the scaling properties of greedy forward
selection with respect to the size and complexity of the underlying dataset. In particular, we produce synthetic
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Figure 4: Pruned, two-layer models on MNIST. Sub-plots depict different dense network sizes, while the
x and y axis depict the number of pre-training iterations and the sub-dataset size, respectively. Models are
pruned to 200 hidden neurons every 1K iterations to measure subnetwork performance. Color represents
training accuracy, and the red line depicts the point at which subnetworks surpass the performance of the best
pruned model on the full dataset for different sub-dataset sizes.

“sub-datasets” of different sizes and measure the amount of pre-training required to discover a high-performing
subnetwork on each.

We perform analysis with two-layer networks on MNIST [52] and with deep CNNs (i.e., ResNet34 [106]
and MobileNetV2 [207]) on CIFAR10 and ImageNet [51, 144]. We find that i) high-performing subnetworks
can be consistently discovered without incurring the full pre-training cost, and ii) the amount of pre-training
required for a subnetwork to perform well increases with the size and complexity of the underlying dataset in
practice. All experiments are run on an internal cluster with two Nvidia RTX 3090 GPUs using the public
implementation of greedy forward selection [250]. On large-scale experiments (i.e., those performed on
ImageNet), we improve pruning efficiency by parallelizing the greedy forward selection process across two
GPUs according to Algorithm 3.

3.6.1 Distributed Greedy Forward Selection

As outlined in Section 3.4, the centralized and distributed variants of greedy forward selection achieve identical
convergence rates with respect to the number of pruning iterations. Despite its impressive empirical results,
one of the major drawbacks of greedy forward selection is that it is slow and computationally expensive
compared to heuristic techniques. Distributed greedy forward selection mitigates this problem by parallelizing
the pruning process across multiple compute nodes with minimal communication overhead.

To practically examine the acceleration provided by distributed greedy forward selection, we prune a
ResNet34 architecture [106] on the ImageNet dataset and measure the pruning time for each layer with
different greedy forward selection variants. In particular, we select four blocks from the ResNet34 architecture
with different spatial and channel dimensions. The time taken to prune each of these blocks is shown in Figure
5.

Distributed greedy forward selection (using either two or four GPUs) significantly accelerates the pruning
process for nearly all blocks within the ResNet. Notably, no speedup is observed for the second block because
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Figure 5: Pruning time for centralized and distributed greedy forward selection applied to different blocks of
a ResNet34 architecture on ImageNet.

earlier ResNet layers have fewer channels to be considered by greedy forward selection. As the channel
dimension increases in later layers, distributed greedy forward selection yields a significant speedup in the
pruning process. Given that the convergence guarantees of distributed greedy forward selection are identical
to those of the centralized variant, we adopt the distributed algorithm to improve efficiency in the majority of
our large-scale pruning experiments.

3.6.2 Two-Layer Networks

We perform structured pruning experiments with two-layer networks on MNIST [52] by pruning hidden
neurons via greedy forward selection. To match the single output neuron setup described in Section 3.2,
we binarize MNIST labels by considering all labels less than five as zero and vice versa. Our model
architecture matches the description in Section 3.2 with a few minor differences. Namely, we adopt a ReLU
hidden activation and apply a sigmoid output transformation to enable training with binary cross entropy
loss. Experiments are conducted with several different hidden dimensions (i.e., N ∈ {5K, 10K, 20K}).
Hyperparameters are tuned using a hold out validation set; see Appendix B.3.1 for more details.

To study how dataset size impacts subnetwork performance, we construct sub-datasets of sizes 1K to 50K
(i.e., in increments of 5K) from the original MNIST dataset by uniformly sampling examples from the 10
original classes. The two-layer network is pre-trained for 8K iterations in total and pruned every 1K iterations
to a size of 200 hidden nodes; see Appendix B.3.1 for a precise, algorithmic description of the two-layer
network pruning process. After pruning, the accuracy of the pruned model over the entire training dataset is
recorded (i.e., no fine-tuning is performed), allowing the impact of dataset size and pre-training length on
subnetwork performance to be observed. See Figure 4 for these results, which are averaged across three trials.
Discussion. The performance of pruned subnetworks in Figure 4 matches the theoretical analysis provided
in Section 3.4 for all different sizes of two-layer networks. Namely, as the dataset size increases, so does
the amount of pre-training required to produce a high-performing subnetwork. To see this, one can track the
trajectory of the red line, which traces the point at which the accuracy of the best performing subnetwork
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Model Dataset Size Pruned Accuracy Dense Accuracy
20K It. 40K It. 60K It. 80K It.

MobileNetV2
10K 82.32 86.18 86.11 86.09 83.13
30K 80.19 87.79 88.38 88.67 87.62
50K 86.71 88.33 91.79 91.77 91.44

ResNet34
10K 75.29 85.47 85.56 85.01 85.23
30K 84.06 91.59 92.31 92.15 92.14
50K 89.79 91.34 94.28 94.23 94.18

Table 5: CIFAR10 test accuracy for subnetworks derived from dense networks with varying pre-training
amounts (i.e., number of training iterations listed in top row) and sub-dataset sizes.

for the full dataset is surpassed at each sub-dataset size. This trajectory clearly illustrates that pre-training
requirements for high-performing subnetworks increase with the size of the dataset. Furthermore, this increase
in the amount of required pre-training is seemingly logarithmic, as the trajectory typically plateaus at larger
dataset sizes.

Interestingly, despite the use of a small-scale dataset, high-performing subnetworks are never discovered
at initialization, revealing that some minimal amount of pre-training is often required to obtain a good
subnetwork via greedy forward selection. Previous work claims that high-performing subnetworks may exist
at initialization in theory. In contrast, our empirical analysis shows that this is not the case even in simple
experimental settings.

3.6.3 Deep Networks

We perform structured pruning experiments (i.e., channel-based pruning) using ResNet34 [106] and Mo-
bileNetV2 [207] architectures on CIFAR10 and ImageNet [51, 144]. We adopt the same generalization of
greedy forward selection to pruning deep networks as described in [251] and use ϵ to denote our stopping
criterion; see Appendix B.3.2 for a complete algorithmic description. We follow the three-stage methodology—
pre-training, pruning, and fine-tuning—and modify both the size of the underlying dataset and the amount of
pre-training prior to pruning to examine their impact on subnetwork performance. Standard data augmentation
and splits are adopted for both datasets.

CIFAR10. Three CIFAR10 sub-datasets of size 10K, 30K, and 50K (i.e., full dataset) are created using
uniform sampling across classes. Pre-training is conducted for 80K iterations using SGD with momentum
and a cosine learning rate decay schedule starting at 0.1. We use a batch size of 128 and weight decay of
5 · 10−4.10 The dense model is independently pruned every 20K iterations, and subnetworks are fine-tuned for
2500 iterations with an intial learning rate of 0.01 prior to being evaluated. We adopt ϵ = 0.02 and ϵ = 0.05

for MobileNet-V2 and ResNet34, respecitvely, yielding subnetworks with a 40% decrease in FLOPS and 20%
decrease in model parameters in comparison to the dense model.11

10Our pre-training settings are adopted from a popular repository for the CIFAR10 dataset [160].
11These settings are derived using a grid search over values of ϵ and the learning rate with performance measured over a hold-out

validation set; see Appendix B.3.2.
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Model FLOP (Param) Pruned Accuracy Dense Accuracy
Ratio 50 Epoch 100 Epoch 150 Epoch

MobileNetV2
60% (80%) 70.05 71.14 71.53

71.70
40% (65%) 69.23 70.36 71.10

ResNet34
60% (80%) 71.68 72.56 72.65

73.20
40% (65%) 69.87 71.44 71.33

Table 6: Test accuracy on ImageNet of subnetworks with different FLOP levels derived from dense models
with varying amounts of pre-training (i.e., training epochs listed in top row). We report the FLOP/parameter
ratio after pruning with respect to the FLOPS/parameters of the dense model.

The results of these experiments are presented in Table 5. The amount of training required to discover
a high-performing subnetwork consistently increases with the size of the dataset. For example, with Mo-
bileNetV2, a winning ticket is discovered on the 10K and 30K sub-datasets in only 40K iterations, while
for the 50K sub-dataset a winning ticket is not discovered until 60K iterations of pre-training have been
completed. Furthermore, subnetwork performance often surpasses the performance of the fully-trained dense
network without completing the full pre-training procedure.

ImageNet. We perform experiments on the ILSVRC2012, 1000-class dataset [51] to determine how pre-
training requirements change for subnetworks pruned to different FLOP levels.12 We adopt the same
experimental and hyperparameter settings as [251]. Models are pre-trained for 150 epochs using SGD with
momentum and cosine learning rate decay with an initial value of 0.1. We use a batch size of 128 and weight
decay of 5 · 10−4. The dense network is independently pruned every 50 epochs, and the subnetwork is
fine-tuned for 80 epochs using a cosine learning rates schedule with an initial value of 0.01 before being
evaluated. We first prune models with ϵ = 0.02 and ϵ = 0.05 for MobileNetV2 and ResNet34, respectively,
yielding subnetworks with a 40% reduction in FLOPS and 20% reduction in parameters in comparison to the
dense model. Pruning is also performed with a larger ϵ value (i.e., ϵ = 0.05 and ϵ = 0.08 for MobileNetV2
and ResNet34, respectively) to yield subnetworks with a 60% reduction in FLOPS and 35% reduction in
model parameters in comparison to the dense model.

The results are reported in Table 6. Although the dense network is pre-trained for 150 epochs, subnetwork
test accuracy reaches a plateau after only 100 epochs of pre-training in all cases. Furthermore, subnetworks
with only 50 epochs of pre-training still perform well in many cases. E.g., the 60% FLOPS ResNet34
subnetwork with 50 epochs of pre-training achieves a testing accuracy within 1% of the pruned model derived
from the fully pre-trained network. Thus, high-performing subnetworks can be discovered with minimal
pre-training even on large-scale datasets like ImageNet.

Discussion. These results demonstrate that the number of dense network pre-training iterations needed to
reach a plateau in subnetwork performance i) consistently increases with the size of the dataset and ii) is
consistent across different architectures given the same dataset. Discovering a high-performing subnetwork on
the ImageNet dataset takes roughly 500K pre-training iterations (i.e., 100 epochs). In comparison, discovering

12We do not experiment with different sub-dataset sizes on ImageNet due to limited computational resources.

28



a subnetwork that performs well on the MNIST and CIFAR10 datasets takes roughly 8K and 60K iterations,
respectively. Thus, the amount of required pre-training iterations increases based on the size of dataset even
across significantly different scales and domains. This indicates that dependence of pre-training requirements
on dataset size may be an underlying property of discovering high-performing subnetworks no matter the
experimental setting.

Per Theorem 2, the size of the dense network will not impact the number of pre-training iterations required
for a subnetwork to perform well. This is observed to be true within our experiments; e.g., MobileNet
and ResNet34 reach plateaus in subnetwork performance at similar points in pre-training for CIFAR10 and
ImageNet in Tables 5 and 6. However, the actual loss of the subnetwork, as in Lemma 1, has a dependence on
several constants that may impact subnetwork performance despite having no aymptotic impact on Theorem 2.
E.g., a wider network could increase the width of the polytope DMN

or initial loss ℓ(u1), leading to a looser
upper bound on subnetwork loss. Thus, different sizes of dense networks, despite both reaching a plateau
in subnetwork performance at the same point during pre-training, may yield subnetworks with different
performance levels.

Interestingly, we observe that dense network size does impact subnetwork performance. In Figure 4,
subnetwork performance varies based on dense network width, and subnetworks derived from narrower
dense networks seem to achieve better performance. Similarly, in Tables 5 and 6, subnetworks derived
from MobileNetV2 tend to achieve higher relative performance with respect to the dense model. Thus,
subnetworks derived from smaller dense networks seem to achieve better relative performance in comparison
to those derived from larger dense networks, suggesting that pruning via greedy forward selection may
demonstrate different qualities in comparison to more traditional approaches (e.g., iterative magnitude-based
pruning [163]). Despite this observation, however, the amount of pre-training epochs required for the
emergence of the best-performing subnetwork is still consistent across architectures and dependent on dataset
size.

3.7 Conclusion

In this work, we theoretically analyze the impact of dense network pre-training on the performance of a
pruned subnetwork obtained via a centralized or distributed variant of greedy forward selection. By expressing
pruned network loss with respect to the number of SGD iterations performed on its associated dense network,
we discover a threshold in the number of pre-training iterations beyond which a pruned subnetwork achieves
good training loss. Furthermore, we show that this threshold is logarithmically dependent upon the size
of the dataset, which offers intuition into the early-bird ticket phenomenon and the difficulty of replicating
pruning experiments at scale. We empirically verify our theoretical findings over several datasets (i.e., MNIST,
CIFAR10, and ImageNet) with numerous network architectures (i.e., two-layer networks, MobileNetV2, and
ResNet34), showing that the amount of pre-training required to discover a winning ticket is consistently
dependent on the size of the underlying dataset. Several open problems remain, such as extending our analysis
beyond two-layer networks, deriving generalization bounds for subnetworks pruned with greedy forward
selection, or even using our theoretical results to discover new heuristic methods for identifying early-bird
tickets in practice.
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4 i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

We propose a novel, structured pruning algorithm for neural networks—the iterative, Sparse Structured
Pruning algorithm, dubbed as i-SpaSP. Inspired by ideas from sparse signal recovery, i-SpaSP operates by
iteratively identifying a larger set of important parameter groups (e.g., filters or neurons) within a network
that contribute most to the residual between pruned and dense network output, then thresholding these groups
based on a smaller, pre-defined pruning ratio. For both two-layer and multi-layer network architectures
with ReLU activations, we show the error induced by pruning with i-SpaSP decays polynomially, where
the degree of this polynomial becomes arbitrarily large based on the sparsity of the dense network’s hidden
representations. In our experiments, i-SpaSP is evaluated across a variety of datasets (i.e., MNIST, ImageNet,
and XNLI) and architectures (i.e., feed forward networks, ResNet34, MobileNetV2, and BERT), where it
is shown to discover high-performing sub-networks and improve upon the pruning efficiency of provable
baseline methodologies by several orders of magnitude. Put simply, i-SpaSP is easy to implement with
automatic differentiation, achieves strong empirical results, comes with theoretical convergence guarantees,
and is efficient, thus distinguishing itself as one of the few computationally efficient, practical, and provable
pruning algorithms.

4.1 Introduction

Neural network pruning has garnered significant recent interest [71, 148, 163], as obtaining high-performing
sub-networks from larger, dense networks enables a reduction in the computational and memory overhead
of neural network applications [94, 95]. Many popular pruning techniques are based upon empirical heuris-
tics that work well in practice [72, 110, 170]. Generally, these methodologies introduce some notion of
“importance” for network parameters (or groups of parameters) and eliminate parameters with negligible
importance.

The empirical success of pruning methodologies inspired the development of pruning algorithms with
theoretical guarantees [16, 17, 156, 181, 200]. Among such work, greedy forward selection (GFS) [251, 252]—
inspired by the Frank-Wolfe algorithm [70]—differentiated itself as a methodology that performs well in
practice and provides theoretical guarantees. However, GFS is inefficient in comparison to popular pruning
heuristics.

Our Proposal. We leverage greedy selection [139, 184] to develop a structured pruning algorithm that
is provable, practical, and efficient. This algorithm, called iterative, Sparse Structured Pruning (i-SpaSP),
iteratively estimates the most important parameter groups13 within each network layer, then thresholds this set
of parameter groups based on a pre-defined pruning ratio—a similar procedure to the CoSAMP algorithm
for sparse signal recovery [184]. Theoretically, we show for two and multi-layer networks that i) the output
residual between pruned and dense networks decays polynomially with respect to the size of the pruned
network and ii) the order of this polynomial increases as the dense network’s hidden representations become
more sparse.14 In experiments, we show that i-SpaSP is capable of discovering high-performing sub-networks

13“Parameter groups” refers to the minimum structure used for pruning (e.g., neurons or filters).
14To the best of the authors’ knowledge, we are the first to provide theoretical analysis showing that the quality of pruning depends

upon the sparsity of representations within the dense network.
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across numerous different models (i.e., two-layer networks, ResNet34, MobileNetV2, and BERT) and datasets
(i.e., MNIST, ImageNet, and XNLI). i-SpaSP is simple to implement and significantly improves upon the
runtime of GFS variants.

4.2 Preliminaries

Notation. Vectors and scalars are denoted with lower-case letters. Matrices and certain constants are denoted
with upper-case letters. Sets are denoted with upper-case, calligraphic letters (e.g., G) with set complements
Gc. We denote [n] = {0, 1, . . . , n}. For x ∈ RN , ∥x∥p is the ℓp vector norm. xs is the s largest-valued
components of x, where |x| ≥ s. supp(x) returns the support of x. For index set G, x|G is the vector with
non-zeros at the indices in G. For X ∈ Rm×n, ∥X∥F and X⊤ represent the Frobenius norm and transpose
of X . The i-th row and j-th column of X are given by Xi,: and X:,j , respectively. rsupp(X) returns the
row support of X (i.e., indices of non-zero rows). For index set G, XG,: and X:,G represent row and column
sub-matrices, respectively, that contain rows or columns with indices in G. µ(X) : Rm×n −→ Rm sums over
columns of a matrix (i.e., µ(X) =

∑
iX:,i), while vec(X) : Rm×n −→ Rmn stacks columns of a matrix.

X ∈ Rm×n is p-row-compressible with magnitude R ∈ R≥0 if |µ(X)|(i) ≤ R

i
1
p
, ∀i ∈ [m], where | · |(i)

denotes the i-th sorted vector component (in magnitude). Lower p values indicate a nearly row-sparse matrix
and vice versa.

Network Architecture. Our analysis primarily considers two-layer, feed forward networks15:

f(X,W) = W (1) · σ(W (0) ·X) (16)

The network’s input, hidden, and output dimensions are given by din, dhid, and dout. X ∈ Rdin×B stores
the full input dataset with B examples. W (0) ∈ Rdhid×din and W (1) ∈ Rdout×dhid denote the network’s
weight matrices. σ(·) denotes the ReLU activation function and H = σ(W 0 ·X) stores the network hidden
representations across the dataset. We also extend our analysis to multi-layer networks with similar structure;
see the Appendix for more details.

4.3 Related Work

Pruning. Neural network pruning strategies can be roughly separated into structured [93, 148, 162, 251, 252]
and unstructured [65, 66, 71, 94] variants. Structured pruning, as considered in this work, prunes parameter
groups instead of individual weights, allowing speedups to be achieved without sparse computation [148].
Empirical heuristics for structured pruning include removing parameter groups with low ℓ1 norm [148, 162],
measuring the gradient-based sensitivity of parameter groups [17, 232, 273], preserving network output [110,
170, 257], and more [44, 123, 179, 223]. Pruning typically follows a three-step process of pre-training,
pruning, and fine-tuning [148, 163], where pre-training is typically the most expensive component [41, 254].

Provable Pruning. Empirical pruning research inspired the development of theoretical foundations for
network pruning, including sensitivity-based analysis [17, 156], coreset methodologies [16, 181], random

15Though (16) has no bias, a bias term could be implicitly added as an extra element within the input and weight matrices.
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network pruning analysis [173, 190, 195, 200], and generalization analysis [265]. GFS—analyzed for two-
layer [251] and multi-layer [252] networks—was one of the first pruning methodologies to provide both
strong empirical performance and theoretical guarantees.

Greedy Selection. Greedy selection efficiently discovers approximate solutions to combinatorial optimization
problems [70]. Many algorithms and frameworks for greedy selection exist; e.g., Frank-Wolfe [70], sub-
modular optimization [185], CoSAMP [184], and iterative hard thresholding [139]. Frank-Wolfe has been
used within GFS and to train deep neural networks [12, 196], thus forming a connection between greedy
selection and deep learning. Furthering this connection, we leverage CoSAMP [184] to formulate our proposed
methodology.

4.4 Methodology

i-SpaSP is formulated for two-layer networks in Algorithm 4, where the pruned model size s and total
iterations T are fixed. S stores active neurons in the pruned model, which is refined over iterations.

Algorithm 4: i-SpaSP for Two-Layer Networks

Parameters: T , s; S := ∅; t := 0

# compute hidden representation
H = σ(W (0) ·X)

h = µ(H)

# compute dense network output
U = W (1) ·H
V = U

while t < T do
t = t+ 1

# Step I: Estimating Importance
Y = (W (1))⊤ · V
y = µ(Y )

Ω = supp(y2s)

# Step II: Merging and Pruning
Ω⋆ = Ω ∪ S
b = h|Ω⋆

S = supp(bs)

# Step III: Computing New Residual
V = U −W

(1)
:,S ·HS,:

end
# return pruned model with neurons in S
return {W (0)

S,: ,W
(1)
:,S }

Why does this work? Each iteration of i-SpaSP follows a three-step procedure in Algorithm 4:
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Step I: Compute neuron “importance” Y given the current residual matrix V .

Step II: Identify s neurons within the combined set of important and active neurons (i.e., Ω ∪ S) with the
largest-valued hidden representations.

Step III: Update V with respect to the new pruned model estimate.

We now provide intuition regarding the purpose of each individual step within i-SpaSP.

Estimating Importance. Yij is the importance of hidden neuron i with respect to dataset example j. We can
characterize the discrepancy between pruned and dense network output U ′ and U as:

L(U,U ′) =
1

2
∥W (1) ·H − U ′∥2F . (17)

Considering U ′ fixed, ∇HL(U,U ′) = (W (1))⊤ · V . As such, if Yij is a large, positive (negative) value,
decreasing (increasing) Hij will decrease the value of L locally. Then, because H is non-negative and cannot
be modified via pruning, one can realize that the best methodology of minimizing (17) is including neurons
with large, positive importance values within S , as in Algorithm 4.

Merging and Pruning. The 2s most-important neurons—based on µ(Y ) components—are selected and
merged with S , allowing a larger set of neurons (i.e., more than s) to be explored. From here, s neurons with
the largest-valued components in µ(H) are sub-selected from this combined set to form the next pruned model
estimate. Because hidden representation values are not considered in importance estimation, performing
this two-step merging and pruning process ensures neurons within S have both large hidden activation and
importance values, which together indicate a meaningful impact on network output.

Computing the New Residual. The next pruned model estimate is used to re-compute V , which can be
intuitively seen as updating U ′ in (17). As such, importance in Algorithm 4 is based on the current pruned
and dense network residual and (17) is minimized over successive iterations.

4.4.1 Implementation

H.requires_grad := True

with torch.no_grad():

prune_out := prune_layer(HS,:)

dense_out := dense_layer(H)

obj := sum
(
1
2(dense_out− prune_out)2

)
obj.backward()

importance := sum(H.grad,dim = 0)

return importance

Figure 6: i-SpaSP importance computation via automatic differentiation.
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Figure 7: Runtime of pruning ResNet34 blocks with i-SpaSP and GFS variants to 20% (i.e., plain) or 40%
(i.e., dotted) of filters.

Automatic Differentiation. Because Y = ∇HL(U,U ′), importance within i-SpaSP can be computed
efficiently using automatic differentiation [1, 193]; see Figure 6 for a PyTorch-style example. Automatic
differentiation simplifies importance estimation and allows it to be run on a GPU, making the implementation
efficient and parallelizable. Because the remainder of the pruning process only leverages basic sorting and set
operations, the overall implementation of i-SpaSP is both simple and efficient.

Other Architectures. The code in Figure 6 can be easily generalized to more complex network modules
(i.e., beyond feed-forward layers) using automatic differentiation. Notably, convolutional filters or attention
heads can be pruned using the importance estimation from Figure 6 if sum(·) is performed over both batch
and spatial dimensions. Furthermore, i-SpaSP can be used to prune multi-layer networks by greedily pruning
each layer of the network from beginning to end.

Large-Scale Datasets. Algorithm 4 assumes the entire dataset is stored within X . For large-scale experiments,
such an approach is not tractable. As such, we redefine X within experiments to contain a subset or mini-
batch of data from the full dataset, allowing the pruning process to be performing in an approximate—but
computationally tractable—manner. To improve the quality of this approximation, a new mini-batch is
sampled during each i-SpaSP iteration, but the size of such mini-batches becomes a hyperparameter of the
pruning process.16

4.4.2 Computational Complexity and Runtime Comparisons

Denote the complexity of matrix-matrix multiplication as ξ. The complexity of pruning a network layer with
T iterations of i-SpaSP is O(Tξ + Tdhid log(dhid)). GFS has a complexity of O(sξdhid), as it adds a single
neuron to the (initially empty) network layer at each iteration by exhaustively searching for the neuron that

16Both GFS [251] and multi-layer GFS [252] adopt a similar mini-batch approach during pruning.
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minimizes training loss. Though later GFS variants achieve complexity of O(sξ) [252], i-SpaSP is more
efficient in practice because the forward pass (i.e. O(ξ)) dominates the pruning procedure and T ≪ s (e.g.,
T = 20 in Section 4.6).

As a practical runtime comparison, we adopt a ResNet34 model [106] and measure wall-clock pruning
time17 with i-SpaSP and GFS. We use the public implementation of GFS [250] and test both stochastic and
vanilla variants18. i-SpaSP uses settings from Section 4.6, and selected ResNet blocks are pruned to ratios
of 20% or 40% of original filters; see Figure 7. i-SpaSP significantly improves upon the runtime of GFS
variants; e.g., i-SpaSP prunes Block 15 in roughly 10 seconds, while GFS takes over 1000 seconds in the best
case. Furthermore, unlike GFS, the runtime of i-SpaSP is not sensitive to the size of the pruned network (i.e.,
wall-clock time is similar for ratios of 20% and 40%), though i-SpaSP does prune later network layers faster
than earlier layers.

4.5 Theoretical Results

Proofs are deferred to the Appendix. The dense network is pruned from dhid to s neurons via i-SpaSP. We
assume that W (1) satisfies the restricted isometry property (RIP) [28]:

Assumption 2 (Restricted Isometry Property (RIP) [28]). Denote the r-th restricted isometry constant as
δr and assume δr ≤ 0.1 for r = 4s.19 Then, W (1) satisfies the RIP with constant δr if (1 − δr)∥x∥22 ≤
∥W (1) · x∥22 ≤ (1 + δr)∥x∥22 for all ∥x∥0 ≤ r.

No assumption is made upon W (0). We hypothesize that Assumption 2 is mild due to properties like semi
or quarter-circle laws that bound the eigenvalues symmetric, random matrices within some range [63], but
we leave the formal verification of this assumption as future work. We define H = σ(W (0) ·X) ∈ Rdhid×B ,
which can be theoretically reformulated as H = Z + E for s-row-sparse Z and arbitrary E. From here, we
can show the following about the residual between pruned and dense network hidden representations after t
iterations of Algorithm 4.

Lemma 3. If Assumption 2 holds, the pruned approximation to H after t iterations of Algorithm 4, HSt,:, is
s-row-sparse and satisfies the following inequality:

∥µ(H −HSt,:)∥2 ≤ (0.444)t∥µ(H)∥2 +
(
14 +

7√
s

)
∥µ(E)∥1

Going further, Lemma 3 can be used to bound the residual between pruned and dense network output.

Theorem 3. Let U = W (1) ·H and U ′ = W
(1)
:,St
·HSt,: denote pruned and dense network output, respectively.

Vt = U − U ′ stores the residual between pruned and dense network output over the entire dataset. If
17We prune the 2nd (64 channels) and 15th (512 channels) convolutional blocks. We choose blocks in different network regions to

view the impact of channel and spatial dimension on pruning efficiency.
18Vanilla GFS exhaustively searches neurons within each iteration, while the stochastic variant randomly selects 50 neurons to

search per iteration.
19This is a numerical assumption adopted from [184], which holds for Gaussian matrices of size Rm×n when m ≥ O

(
r log(n

r
)
)
.
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Assumption 2 holds, we have the following at iteration t of Algorithm 4:

∥Vt∥F ≤ ∥W (1)∥F ·
(
(0.444)t∥µ(H)∥2 +

(
14 +

7√
s

)
∥µ(E)∥1

)
Because ∥µ(H)∥2 decays linearly in Theorem 3, ∥µ(E)∥1 dominates the above expression for large t. By

assuming H is row-compressible, we can derive a bound on ∥µ(E)∥1.

Lemma 4. Assume H is p-row-compressible with magnitude R, where H = Z +E for s-row-sparse Z and

arbitrary E. Then, ∥µ(E)∥1 ≤ R · s
1− 1

p

1
p
−1

.

Lemma 4 can then be combined with Theorem 3 to bound the error due to pruning via i-SpaSP.

Theorem 4. Assume Algorithm 4 is run for a sufficiently large number of iterations t. If Assumption 2 holds
and H is p-row-compressible with factor R, the output residual between the dense network and the pruned
network discovered via i-SpaSP can be bounded as follows:

∥Vt∥F ≤ O
(
s

1
2
− 1

p p(2
√
s+ 1)

1− p

)
.

Proof. This follows directly from substituting Lemma 4 into Theorem 3, assuming t is large enough such that
(0.444)t∥W (1)∥F ∥µ(H)∥2 ≈ 0, and factoring out constants in the resulting expression.

Theorem 4 indicates that the quality of the pruned network is dependent upon s and p. Intuitively, one
would expect that lower values of p (implying sparser H) would make pruning easier, as neurons corresponding
to zero rows in H could be eliminated without consequence. This trend is observed exactly within Theorem
4; e.g., for p =

{
3
4 ,

1
2 ,

1
4

}
we have ∥Vt∥F ≤ {O(s−

1
3 ),O(s−1),O(s−3)}, respectively. To the best of the

authors’ knowledge, our work is the first to theoretically characterize pruning error with respect to sparsity
properties of network hidden representations. This bound can also be extended to similarly-structured (see
Appendix), multi-layer networks:

Theorem 5. Consider an L-hidden-layer network with weight matrices {W (0), . . . ,W (L)} and hidden
representations {H(1), . . . H(L)}. The hidden representations of each layer are assumed to have dimension d

for simplicity. We define H(ℓ) = σ(W (ℓ) ·H(ℓ−1)), where H(1) = σ(W (0) ·X) and H(L) = W (L) ·H(L−1).
We assume all weight matrices other than W (0) obey Assumption 2 and all hidden representations other than
H(L) are p-row-compressible. i-SpaSP is applied greedily to prune each network layer, in layer order, from d

to s hidden neurons. Given sufficient iterations t, the residual between pruned and dense multi-layer network
output behaves as:

∥V (L)
t ∥F ≤ O

 L∑
i=1

(
14 +

7√
s

)L−i+1
∥W (L)∥F

L−i∏
j=1

∥vec(W (j))∥1

(d
L−i
2 s

1− 1
p

1
p − 1

) (18)

Pruning error in (18) is summed over each network layer. Considering layer i, the green factor is inherited
from Theorem 3 with an added exponent due to a recursion over network layers after i. Similarly, the blue
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Figure 8: i-SpaSP pruning experiments for two-layer networks of different sizes and p ratios.

factor accounts for propagation of error through weight matrices after layer i, revealing that green and blue
factors account for propagation of error through network layers. The red portion of (18), which captures the
convergence properties of multi-layer pruning, comes from Lemma 4, where an extra factor d

L−i
2 arises as an

artifact of the proof.20 Because d is fixed multiple of s determined by the pruning ratio, this factor disappears
when p is small, leading the expression to converge. For example, if p = 1

4 , the red expression in (18) behaves
asymptotically as {O(s−2.5),O(s−2),O(s−1.5), . . . } for layers at the end of the network moving backwards.

4.6 Experiments

Within this section, we provide empirical analysis of i-SpaSP. We first present synthetic results using two-layer
neural networks to numerically verify Theorem 4. Then, we perform experiments with two-layer networks
on MNIST [52], convolutional neural networks (CNNs) on ImageNet (ILSVRC2012), and multi-lingual
BERT (mBERT) [53] on the cross-lingual NLI corpus (XNLI) [46]. For all experiments, we adopt best
practices from previous work [162] to determine pruning ratios within the dense network, often performing
less pruning on sensitive layers; see the Appendix for details. As baselines, we adopt both greedy selection
methodologies [251, 252] and several common, heuristic methods. We find that, in addition to improving
upon the pruning efficiency of GFS (i.e., see Section 4.4.2 for runtime comparisons on ResNet pruning
experiments), i-SpaSP performs comparably to baselines in all cases, demonstrating that it is both performant
and efficient.

4.6.1 Synthetic Experiments

To numerically verify Theorem 4, we construct synthetic H matrices with different row-compressibility ratios
p, denoted asH = {H(i)}Ki=1. For each p ∈ {0.3, 0.5, 0.7, 0.9}, we randomly generate three unique entries

20This artifact arises because ℓ1 norms must be replaced with ℓ2 norms in certain areas to form a recursion over network layers.
This artifact can likely be removed by leveraging sparse matrix analysis for expander graphs [13], but we leave this as future work to
simplify the analysis.

37



250 500 750 1000

50

60

70

80

90

100

250 500 750 1000

97.50

97.75

98.00

98.25

T
es

t
A

cc
ur

ac
y

Pruned Layer Size

Before Fine-Tuning After Fine-Tuning

Dense i-SpaSP GFS Top-K

Figure 9: Performance of networks pruned with different greedy algorithms on MNIST before (left) and after
(right) fine-tuning.

withinH (i.e., K = 12) and present average performance across them all. We prune a randomly-initialized
W (1) from size dhid × dout to sizes s× dout for s ∈ [dhid]. (i.e., each setting of s is a separate experiment)
using T = 20.21. We test dhid ∈ {100, 200}, and the same W (1) matrix is used for experiments with equal
hidden dimension; see the Appendix for more details.

Results are displayed in Figure 8, where ∥V ∥2F is shown to decay polynomially with respect to the
number of neurons within the pruned network s. Furthermore, as predicted by Theorem 4, the decay rate of
∥V ∥2F increases as p decreases, revealing that higher levels of sparsity within the dense network’s hidden
representations improve pruning performance and speed with respect to s. This trend holds for all hidden
dimensions that were considered.

4.6.2 Two-Layer Networks

We perform pruning experiments with two-layer networks on MNIST [52]. All MNIST images are flattened
and no data augmentation is used. The dense network has 10× 103 hidden neurons and is pre-trained before
pruning. We prune the dense network using i-SpaSP, GFS, and Top-K, which we use as a naive greedy
selection baseline.22 After pruning, the network is fine-tuned using stochastic gradient descent (SGD) with
momentum. Performance is reported as an average across three separate trails; see the Appendix for more
details.

As shown in Figure 9-right, i-SpaSP outperforms other pruning methodologies after fine-tuning in all
experimental settings. Networks obtained with GFS perform well without fine-tuning (i.e., Figure 9-left)
because neurons are selected to minimize loss during the pruning process. Because i-SpaSP selects neurons
based upon the importance criteria described in Section 4.4, the pruning process does not directly minimize

21We find that the active set of neurons selected by i-SpaSP becomes stable (i.e., few neurons are modified) after 20 iterations or
less in all synthetic experiments.

22Top-k selects k neurons with the largest-magnitude hidden representations in a mini-batch of data. It is a naive baseline for
greedy selection that is not used in previous work to the best of our knowledge.
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Pruning Method Top-1 Acc. FLOPS

R
es

N
et

34

Full Model [106] 73.4 3.68G

Filter Pruning [162] 72.1 2.79G
Rethinking Pruning [163] 72.0 2.79G

More is Less [55] 73.0 2.75G
i-SpaSP 73.5 2.69G

GFS [251] 73.5 2.64G
Multi-Layer GFS [252] 73.5 2.20G

SFP [107] 71.8 2.17G
FPGM [108] 72.5 2.16G

i-SpaSP 72.5 2.13G
GFS [251] 72.9 2.07G

Multi-Layer GFS [252] 73.3 1.90G

M
ob

ile
N

et
V

2

Full Model [207] 72.0 314M

i-SpaSP 71.6 260M
GFS [251] 71.9 258M

Multi-Layer GFS [252] 72.2 245M
i-SpaSP 71.3 242M

LEGR [44] 71.4 224M
Uniform 70.0 220M

AMC [109] 70.8 220M
i-SpaSP 70.7 220M

GFS [251] 71.6 220M
Multi-Layer GFS [252] 71.7 218M

Meta Pruning [161] 71.2 217M

Table 7: Test accuracy of ResNet34 and MobileNetV2 models pruned to different FLOP levels with various
pruning algorithms on ImageNet.

training loss, thus leading to poorer performance prior to fine-tuning (i.e., Top-K exhibits similar behavior).
Nonetheless, i-SpaSP, in addition to improving upon the pruning efficiency of GFS, discovers a set of neurons
that more closely recovers dense network output, as revealed by its superior performance after fine-tuning.

4.6.3 Deep Convolutional Networks

We perform structured filter pruning of ResNet34 [106] and MobileNetV2 [207] with i-SpaSP on ImageNet
(ILSVRC 2012). Beginning with public, pre-trained models [193], we use i-SpaSP to prune chosen convo-
lutional blocks within each network, then fine-tune the pruned model using SGD with momentum. After
pruning each block, we perform a small amount of fine-tuning; see the Appendix for more details. Numerous
heuristic and greedy selection-based algorithms are adopted as baselines; see Table 7.

ResNet34. We prune ResNet34 to 2.69 and 2.13 GFlops with i-SpaSP. As shown in Table 7, i-SpaSP yields
comparable performance to GFS variants at similar FLOP levels; e.g., i-SpaSP matches 75.5% test accuracy of
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Method Pruning Ratio Top-1 Acc.

Full Model - 71.02

Uniform
25% 62.73
40% 66.43

[177]
25% 62.97
40% 67.31

i-SpaSP
25% 63.70
40% 68.11

Table 8: Test accuracy of mBERT models pruned and fine-tuned on the XNLI dataset.

GFS with the 2.69 GFlop model and performs within 1% of GFS variants for the 2.13 GFlop model. However,
the multi-layer variant of GFS [252] does discover sub-networks with fewer FLOPS and similar performance
in both cases. i-SpaSP improves upon or matches the performance of all heuristic methods at similar FLOP
levels.

MobileNetV2. We prune MobileNetV2 to 260, 242, and 220 MFlops with i-SpaSP. In all cases, sub-networks
discovered with i-SpaSP achieve performance within 1% of those obtained via both GFS variants and heuristic
methods. Although MobileNetV2 performance is relatively lower in comparison to ResNet34, i-SpaSP is still
capable of pruning the more difficult network to various different FLOP levels and performs comparably to
baselines in all cases.

Discussion. Within Table 7, the performance of i-SpaSP is never more than 1% below that of a similar-FLOP
model obtained with a baseline pruning methodology, including both greedy selection and heuristic-based
methods. As such, similar to GFS, i-SpaSP can be seen as a theoretically-grounded pruning methodology that
is practically useful, even in large-scale experiments. Such pruning methodologies that are both theoretically
and practically relevant are few. In comparison to GFS variants, i-SpaSP significantly improves pruning
efficiency; see Section 4.4.2. Thus, i-SpaSP can be seen as a viable alternative to GFS—both theoretically
and practically—that may be preferable when runtime is a major concern.

4.6.4 Transformer Networks

We perform structured pruning of attention heads using the mBERT model [53] on the XNLI dataset [46],
which contains textual entailment annotations across 15 different languages. We begin with a pre-trained
mBERT model and fine-tune it on XNLI prior to pruning. Then, structured pruning is performed on the
attention heads of each layer using i-SpaSP, uniform pruning (i.e., randomly removing a fixed ratio of attention
heads), and a sensitivity-based masking approach [177] (i.e., a state-of-the-art heuristic approach for structured
attention head pruning for transformers). After pruning models to a fixed ratio of 25% or 40% of original
attention heads, we fine-tune the pruned networks and record their performance on the XNLI test set; see the
Appendix for further details.

As shown in Table 8, models pruned with i-SpaSP outperform those pruned to the same ratio with either
uniform or heuristic pruning methods in all cases. The ability of i-SpaSP to effectively prune transformers
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demonstrates that the methodology can be applied to the structured pruning of numerous different architectures
without significant implementation changes (i.e., using the automatic differentiation approach described in
Section 4.4.1). Furthermore, i-SpaSP even outperforms a state-of-the-art heuristic approach for the structured
pruning of transformer attention heads, thus again highlighting the strong empirical performance of i-SpaSP
in comparison to heuristic pruning methods that lack theoretical guarantees.

4.7 Conclusion

We propose i-SpaSP, a pruning methodology for neural networks inspired by sparse signal recovery. Our
methodology comes with theoretical guarantees that indicate, for both two and multi-layer networks, the
quality of a pruned network decays polynomially with respect to its size. We connect this theoretical analysis
to properties of the dense network, showing that pruning performance improves as the dense network’s hidden
representations become more sparse. Practically, i-SpaSP performs comparably to numerous baseline pruning
methodologies in large-scale experiments and drastically improves upon the computationally efficiency of
the most common provable pruning methodologies. As such, i-SpaSP is a practical, provable, and efficient
algorithm that we hope will enable a better understanding of neural network pruning both in theory and
practice. In future work, we wish to extend i-SpaSP to cover cases in which network pruning and training are
combined into a single process, such as utilizing regularization-based approaches to induce sparsity during
pre-training or updating network weights to improve sub-network performance as pruning occurs.

5 Cold Start Streaming Learning for Deep Networks

The ability to dynamically adapt neural networks to newly-available data without performance deterioration
would revolutionize deep learning applications. Streaming learning (i.e., learning from one data example at
a time) has the potential to enable such real-time adaptation, but current approaches i) freeze a majority of
network parameters during streaming and ii) are dependent upon offline, base initialization procedures over
large subsets of data, which damages performance and limits applicability. To mitigate these shortcomings,
we propose Cold Start Streaming Learning (CSSL), a simple, end-to-end approach for streaming learning
with deep networks that uses a combination of replay and data augmentation to avoid catastrophic forgetting.

Because CSSL updates all model parameters during streaming, the algorithm is capable of beginning
streaming from a random initialization, making base initialization optional. Going further, the algorithm’s
simplicity allows theoretical convergence guarantees to be derived using analysis of the Neural Tangent
Random Feature (NTRF). In experiments, we find that CSSL outperforms existing baselines for streaming
learning in experiments on CIFAR100, ImageNet, and Core50 datasets. Additionally, we propose a novel
multi-task streaming learning setting and show that CSSL performs favorably in this domain. Put simply,
CSSL performs well and demonstrates that the complicated, multi-step training pipelines adopted by most
streaming methodologies can be replaced with a simple, end-to-end learning approach without sacrificing
performance.
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5.1 Introduction

Many autonomous applications would benefit from real-time, dynamic adaption of models to new data. As
such, online learning23 has become a popular topic in deep learning; e.g., continual [165, 263], lifelong [6, 33],
incremental [30, 202], and streaming [102, 103] learning. However, the (potentially) non-i.i.d. nature of
incoming data causes catastrophic forgetting [143, 175], thus complicating the learning process.

Batch-incremental learning [30, 202], where batches of data—typically sampled from disjoint sets of
classes or tasks within a dataset—become available to the model sequentially, is a widely-studied form of
online learning. Within this setup, however, one must wait for a sizeable batch of data24 to accumulate before
the model is updated with an expensive, offline training procedure over new data, thus introducing latency
that prevents real-time model updates.

To avoid such latency, we adopt the streaming learning setting where i) each data example is seen once
and ii) the dataset is learned in a single pass [102]. Streaming learning performs brief, online updates (i.e.,
one or a few forward/backward passes) for each new data example, forcing learning of new data to occur in
real-time. Additionally, streaming learning techniques can be adapted to cope with batches of data instead
of single examples [237], while batch-incremental learning techniques tend to deteriorate drastically given
smaller batch sizes [103]. As such, the streaming learning setting, which has recently been explored for
applications with deep neural networks [102, 103, 104], is generic and has the potential to enable low-cost
updates of deep networks to incoming data.

Current streaming methodologies for deep neural networks learn in two-phases: base initialization and
streaming. During base initialization, network parameters (and other modules, if needed) are pre-trained
over a subset of data. Then, a majority of network parameters are frozen (i.e., not updated) throughout the
learning process. During streaming, most approaches maintain a replay buffer—though other techniques
exist [104]—to avoid catastrophic forgetting by allowing prior data to be sampled and included in each online
update.

The current, multi-stage streaming learning pipeline suffers a few notable drawbacks. Namely, the
learning process is dependent upon a latency-inducing, offline pre-training procedure and a majority of
network parameters are not updated during the streaming process. As a result, the underlying network i)

has reduced representational capacity, ii) cannot adapt a large portion of its parameters to new data, and
iii) is dependent upon high-quality pre-training (during base initialization) to perform well. Given these
considerations, one may begin to wonder whether a simpler streaming procedure could be derived to realize
the goal of adapting deep networks to new data in real time.

Our Proposal. Inspired by the simplicity of offline training, we propose a novel method for streaming learning
with deep networks, called Cold Start Streaming Learning (CSSL), that updates all network parameters in
an end-to-end fashion throughout the learning process. Because no parameters are fixed by CSSL, base
initialization and pre-training procedures are optional—streaming can begin from a completely random
initialization (hence, “cold start” streaming learning). By leveraging a basic replay mechanism coupled with

23We use “online learning” to generically describe methodologies that perform training in a sequential manner.
24These “batches” are large (e.g., a 100-class subset of ImageNet with >100,000 data examples [202]) and using smaller batches

damages performance [22, 103].
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sophisticated data augmentation techniques, CSSL outperforms existing streaming techniques in a variety of
domains. A summary of our contributions is as follows:

• We propose CSSL, a simple streaming methodology that combines replay buffers with sophisticated data
augmentation, and provide extensive comparison to existing techniques on common class-incremental
streaming problems. We show that CSSL often outperforms baseline methodologies by a large margin.

• We leverage techniques related to neural tangent random feature (NTRF) analysis [29] to prove a
theoretical bound on the generalization loss of CSSL over streaming iterations.

• We propose a multi-task streaming learning benchmark, where multiple, disjoint classification datasets
are presented to the model sequentially and in a streaming fashion. We show that CSSL enables
significant performance improvements over baseline methodologies in this new domain.

• We extensively analyze models trained via CSSL, showing that resulting models i) achieve impressive
streaming performance even when beginning from a random initialization (i.e., a cold start); ii) are
robust to the compression of examples in the replay buffer for reduced memory overhead; and iii)

provide highly-calibrated confidence scores due to our proposed data augmentation policy.

5.2 Related Work

Online Learning. Numerous experimental setups have been considered for online learning, but they all
share two properties: i) the sequential nature of the training process and ii) performance deterioration
due to catastrophic forgetting when incoming data is non-i.i.d. [137, 175]. Replay mechanisms, which
maintain a buffer of previously-observed data (or a generative model to produce such data [201, 211]) to
include in online updates, are highly-effective at preventing catastrophic forgetting at scale [34, 57, 103],
leading us to base our proposed methodology upon replay. Similarly, knowledge distillation [114] can
prevent performance deterioration by stabilizing feature representations throughout the online learning
process [119, 245], even while training the network end-to-end (e.g., end-to-end incremental learning [30] and
iCarl [202]). Though distillation and replay are widely-used, numerous other approaches to online learning
also exist (e.g., architectural modification [58, 206], regularization [54, 153], and dual memory [20, 136]).

Streaming Learning. Streaming, which we study in this work, performs a single pass over the dataset,
observing each sample once [102]. Having recently become popular in deep learning, streaming learning [2,
80, 103, 104] trains the model in two-phases: base initialization and streaming. Base initialization uses a
subset of data to pre-train the model and initialize relevant network modules. Then, the streaming phase
learns the dataset in a single-pass with a majority of network parameters fixed. Within this training paradigm,
replay-based techniques perform well at scale [103], though other approaches may also be effective [104].

Data Augmentation. The success of the proposed methodology is enabled by our data augmentation policy.
Though data augmentation for computer vision is well-studied [212], we focus upon interpolation methods and
learned augmentation policies. Interpolation methods (e.g., Mixup [125, 240, 264] and CutMix [259]) take
stochastically-weighted combinations of images and label pairs during training, which provides regularization
benefits. Learned augmentation policies (e.g., AutoAugment [48, 98, 157] and RandAugment [49]), on the
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other hand, consider a wide scope of augmentation techniques and adopt a data-centric approach to learn an
optimal augmentation policy (i.e., using reinforcement learning or gradient-based techniques).

Confidence Calibration. Beyond the core methodology of CSSL, we extensively explore the confidence
calibration properties of resulting models. Put simply, confidence calibration is the ability of a model to
accurately predict the probability of its own correctness—poor predictions should be made with low confidence
and vice versa. Numerous methodologies have been proposed for producing calibrated models, including
post-hoc softmax temperature scaling [90], ensemble-based techniques [146], Mixup [225, 264], Monte-Carlo
dropout, and uncertainty estimates in Bayesian networks [78, 183]. Confidence calibration has also been
applied to problems including domain shift and out-of-distribution detection due to its ability to filter incorrect,
or low confidence predictions [111, 112].

Multi-task learning. Our work is the first to consider multi-task streaming learning, though multi-task
learning has been previously explored for both offline and batch-incremental settings. [118] studies the
sequential learning of several datasets via knowledge distillation and replay, and several other works study the
related problem of domain shift [77, 131], where two datasets are learned in a sequential fashion. For the
offline setting, multi-task learning has been explored extensively, leading to a variety of successful learning
methodologies for computer vision [167], natural language processing [222], multi-modal learning [187, 241],
and more. The scope of work in offline multi-task learning is too broad to provide a comprehensive summary
here, though numerous surveys on the topic are available [205, 242].

5.3 Methodology

The proposed streaming methodology, formulated in Algorithm 5, begins either from pre-trained parameters or
a random-initialization (Initialize in Algorithm 5) and utilizes a replay bufferR to prevent catastrophic
forgetting. At each iteration, CSSL receives a new data example xt, yt := Dt, combines this data with random
samples from the replay buffer, performs a stochastic gradient descent (SGD) update with the combined data,
and stores the new example within the buffer for later replay. Within this section, we will first provide relevant
preliminaries and definitions, then each component of CSSL will be detailed and contrasted with prior work.

5.3.1 Preliminaries

Problem Setting. Following prior work [103], we consider the problem of streaming for image classification.25

In most cases, we perform class-incremental streaming experiments, in which examples from each distinct
semantic class within the dataset are presented to the learner sequentially. However, experiments are also
performed using other data orderings; see Section 5.6.2. Within our theoretical analysis only, we consider a
binary classification problem that maps vector inputs to binary labels; see Section 5.5 for further details. Such
a problem setup is inspired by prior work [9, 29].
Streaming Learning Definition. Streaming learning considers an incoming data stream D = {(xt, yt)}nt=1

26

(i.e., t denotes temporal ordering) and adopts the following rule set during training:
25Streaming learning has been considered in the object detection domain [2], but we consider this application beyond the scope of

our work.
26E.g., xt ∈ R3×H×W (RGB image) and yt ∈ Z≥0 (class label) for computer vision applications.
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Algorithm 5: Cold Start Streaming Learning

Parameters: W model parameters, D data stream,R replay buffer, C maximum replay buffer size,
B number of replay samples per iteration

# Initialize model parameters randomly or via pre-training (if possible)
W := Initialize()
R := ∅
for t = 1, . . . , |D| do

# Sample data from the replay buffer to combine with new data from D
xnew, ynew := Dt

Xreplay, Yreplay := ReplaySample(R, B)
X , Y := {xnew} ∪ Xreplay, {ynew} ∪ Yreplay

# Update all model parameters over augmented new and replayed data
StreamingUpdate(W, Augment(X , Y))
# Compress and Store the new data example for replay
ReplayStore(R, (Compress(xnew), ynew))

# Evict data from the replay buffer to maintain capacity
if |R| > C then

ReplayEvict(R)
end

end

1. Each unique data example appears once in D.

2. The order of data within D is arbitrary and possibly non-iid.

3. Model evaluation may occur at any time t.

Notably, these requirements make no assumptions about model state prior to the commencement of the
streaming process. Previous methodologies perform offline, base initialization procedures before streaming
begins, while CSSL may either begin streaming from randomly-initialized or pre-trained parameters. As
such, CSSL is capable of performing streaming even without first observing examples from D, while other
methodologies are reliant upon data-dependent base initialization.

Evaluation Metric. In most experiments, performance is measured using Ωall [102], defined as Ωall =
1
T

∑T
t=1

αt
αoffline,t

, where αt is streaming performance at testing event t, αoffline,t is offline performance at testing
event t, and T is the number of total testing events. Ωall captures aggregate streaming performance (relative to
offline training) throughout streaming. A higher score indicates better performance.

As an example, consider a class-incremental streaming setup with two testing events: one after 1⁄2 of the
classes have been observed and one at the end of streaming. The streaming learner is evaluated at each testing
event, yielding accuracy α1 and α2. Two models are trained offline over 1⁄2 of the classes and the full dataset,
respectively, then evaluated to yield αoffline,1 and αoffline,2. From here, Ωall is given by 1

2

(
α1

αoffline,1
+ α2

αoffline,2

)
.
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Figure 10: Illustration of CSSL following the notation of Algorithm 5.

5.3.2 Cold Start Streaming Learning

Replay Buffer. As the learner progresses through the data stream, full images and their associated labels
are stored (ReplayStore) within a fixed-size replay buffer R. The replay buffer R has a fixed capacity
C. Data can be freely added toR if |R| < C, but eviction must occur (ReplayEvict in Algorithm 5) to
make space for new examples when the buffer is at capacity. One of the simplest eviction policies—which
is adopted in prior work [103]—is to i) identify the class containing the most examples in the replay buffer
and ii) remove a random example from this class. This policy, which we adopt in CSSL, is computationally
efficient and performs similarly to more sophisticated techniques; see Appendix D.2.3.

Data Compression. Data is compressed (Compress in Algorithm 5) before addition toR. By freezing a
majority of network layers during streaming, previous methods can leverage learned quantization modules
and pre-trained feature representations to drastically reduce the size of replay data [103, 104]. For CSSL,
full images, which induce a larger memory overhead, are stored inR and no network parameters are fixed,
meaning that Compress cannot rely on pre-trained, fixed network layers.

We explore several, data-independent Compress operations, such as resizing images, quantizing the inte-
ger representations of image pixels, and storing images on disk with JPEG compression; see Appendix D.2.2.
Such compression methodologies significantly reduce memory overhead without impacting performance.
Because storing the replay buffer on disk is not always possible (e.g., edge devices may lack disk-based
storage), we present this as a supplemental approach and always present additional results without JPEG
compression.

Due to storing full images in the replay buffer, the proposed methodology has more memory overhead
relative to prior techniques, making it less appropriate for memory-limited scenarios. However, many
streaming applications (e.g., e-commerce recommendation systems, pre-labeling for data annotation, etc.)
store and update models on cloud servers, making memory efficiency less of a concern. We recommend CSSL
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No. Base
Top-1 Ωall Top-5 ΩallInit.Classes

10 0.478 0.651
50 0.727 0.848
100 0.835 0.856

Table 9: Ωall of REMIND on ImageNet with different amounts of base initialization data.

for such scenarios, as it outperforms prior methods given sufficient memory for replay.

Model Updates. For each new example withinD, CSSL updates learner parameters Θ (StreamingUpdate
in Algorithm 5) using the new example and N replay buffer samples obtained via ReplaySample. Similar
to prior work, ReplaySample uniformly samples data from R—alternative sampling strategies provide
little benefit at scale [5, 7, 103]; see Appendix D.2.4. StreamingUpdate is implemented as a simple SGD
update of all network parameters over new and replayed data.

Streaming updates pass the mixture of new and replayed data through a data augmentation pipeline
(Augment in Algorithm 5). Though prior work uses simple augmentations [30, 103, 228], we explore data
interpolation [259, 264] and learned augmentation policies [48]. In particular, CSSL combines random crops
and flips, Mixup, Cutmix, and Autoaugment into a single, sequential augmentation policy27; see Appendix
D.2.1 for further details. Curating a high quality data augmentation pipeline is the key CSSL’s impressive
performance.

Our Methodology. In summary, CSSL, illustrated in Figure 10, initializes the network either randomly or
with pre-trained parameters (Initialize). Then, for each new data example, N examples are sampled
uniformly from the replay buffer (ReplaySample), combined with the new data, passed through a data
augmentation pipeline (Augment), and then used to perform a training iteration (StreamingUpdate).
Each new data example is added to the replay buffer (ReplayStore), and an example may be randomly
removed from the replay buffer via random, uniform selection (ReplayEvict) if the capacity C is exceeded.

5.4 Why is this useful?

The proposed methodology has two major benefits:

• Full Plasticity (i.e., no fixed parameters)

• Pre-Training is Optional

Such benefits are unique to CSSL; see Appendix D.3. However, one may question the validity of these
“benefits”—do they provide any tangible value?

Full Plasticity. CSSL updates all model parameters throughout the streaming process.28 Some incremental
learning methodologies train networks end-to-end [30, 119, 245], but these approaches either i) cannot be

27Mixup and Cutmix are not performed simultaneously. Our policy randomly chooses between Mixup or Cutmix for each data
example with equal probability.

28Training the network end-to-end within CSSL does make model inference and updates more computationally expensive, which
adds latency to streaming updates; see Appendix D.2.7 for further analysis.
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Figure 11: Test acccuracy of ResNet18 models that are pre-trained on ImageNet and fine-tuned on CI-
FAR10/100 with different ratios of frozen parameters.

applied or ii) perform poorly when adapted to the streaming domain [103]; see Appendix D.2.6. Fixing
network parameters is detrimental to the learning process. To show this, we pre-train a ResNet18 on ImageNet
and fix different ratios of network parameters during fine-tuning on CIFAR10/100, finding that final accuracy
deteriorates monotonically with respect to the ratio of frozen parameters; see Figure 11. Even given high-
quality pre-training, fixing network parameters i) limits representational capacity and ii) prevents network
representations from being adapted to new data, making end-to-end training a more favorable approach.

Pre-Training is Optional. Prior streaming methods perform base initialization (i.e., fitting of network
parameters and other modules over a subset of data) prior to streaming. Not only does base initialization
introduce an expensive, offline training procedure, but it makes model performance dependent upon the
availability of sufficient (possibly unlabeled [80]) pre-training data prior to streaming. Streaming performance
degrades with less base initialization data; see Table 9. Thus, if little (or worse, no) data is available when
streaming begins, such methods are doomed to poor performance.

CSSL has no dependency upon pre-training because the network is trained end-to-end during streaming.
Thus, the CSSL training pipeline is quite simple—just initialize, then train. Such simplicity makes CSSL
easy to implement and deploy in practice. We emphasize that CSSL can begin streaming from a pre-trained
set of model parameters, which often leads to better performance. The benefit of CSSL, however, is that such
a pre-training step is completely optional and network parameters are still updated during streaming.

Implications and Potential Applications. The proposed methodology yields improvements in performance,
simplicity, and applicability relative to prior work. Fixing no network parameters enables better performance
by increasing network representational capacity and adaptability, while the ability to stream from a cold start
simplifies the streaming pipeline and makes streaming applicable to scenarios that lack sufficient data for base
initialization.

Consider, for example, pre-labeling for data annotation, where a streaming learner works with a human
annotator to improve labeling efficiency. In this case, the annotated dataset may be built from scratch, meaning
that no data is yet available when streaming begins. Similarly, cold-start scenarios for recommendation or
classification systems often lack prior data from which to learn. Though pre-trained models may sometimes
be downloaded online, this is not possible for domains that align poorly with public models and datasets (e.g.,
medical imaging). While prior approaches fail in these scenarios due to a dependence upon high-quality base
initialization, CSSL can simply begin streaming from a random initialization and still perform well.
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5.5 Theoretical Results

CSSL’s simple training pipeline enables the algorithm to be analyzed theoretically. To do this, we extend
analysis of the neural tangent random feature (NTRF) [29] to encompass multi-layer networks trained via
streaming to perform binary classification using a replay mechanism and data augmentation. The analytical
setup is similar to Algorithm 5 with a few minor differences. We begin by providing relevant notation and
definitions, then present the main theoretical result.

5.5.1 Preliminaries and Definitions

Notation. We denote scalars and vectors with lower case letters, distinguished by context, and matrices with
upper case letters. We define [l] = {1, 2, . . . , l} and ∥v∥p = (

∑d
i=1 |vi|p)

1
p for v = (v1, v2, . . . , vd)

⊤ ∈ Rd

and 1 ≤ p < ∞. We also define ∥v∥∞ = maxi |vi|. For matrix A ∈ Rm×n, we use ∥A∥0 to denote the
number of non-zero entries in A. We use i ∼ N to denote a random sample i from distribution N , and
N (µ, σ) to denote the normal distribution with mean µ and standard deviation σ. 1{·} is the indicator function.
We then define ∥A∥F =

√∑
i,j A

2
i,j and ∥A∥p = max∥v∥p=1 ∥Av∥p for p ≥ 1 and v ∈ Rn. For two matrices

A,B ∈ Rm×n, we have ⟨A,B⟩ = Tr(A⊤B). For vector v ∈ Rd, diag(v) ∈ Rd×d is a diagonal matrix with
the entries of v on the diagonal. We also define the asymptotic notations O(·) and Ω(·) as follows. If an and
bn are two sequences, an = O(bn) if lim supn→∞ |anbn | <∞ and an = Ω(bn) if lim supn→∞ |anbn | > 0.

Network Formulation. We consider fully forward neural networks with width m, depth L, input dimension d,
and an output dimension of one. The weight matrices of the network are W1 ∈ Rm×d, Wℓ ∈ Rm×m for ℓ =
2, . . . , L− 1, and WL ∈ R1×m.29 We denote W = {W1, . . . ,WL} and define ⟨W,W′⟩ =∑L

i=1⟨Wi,W
′
i ⟩

when W,W′ are two sets containing corresponding weight matrices with equal dimension. All of such sets
with corresponding weight matrices of the same dimension form the setW . Then, a forward pass with weights
W = {W1, . . . ,WL} ∈ W for input x ∈ Rd is given by:

fW(x) =
√
m ·WLσ(WL−1σ(WL−2 . . . σ(W1(x)) . . . )), (19)

where σ(·) is the ReLU activation function. Following [29], the first and last weight matrices are not updated
during training.

Objective Function. For data stream D = {(xt, yt)}nt=1, we define LD(W) ≜ E(x,y)∼DL(x,y,ξ)(W),
where L(x,y,ξ)(W) = ℓ[y · fW(x + ξ)] is the loss over (x, y) ∈ D with arbitrary perturbation vector ξ—
representing data augmentation—and ℓ(z) = log(1 + e−z) is the cross-entropy loss. We use the notation
L(t,ξ)(·) = L(xt,yt,ξ)(·) for convenience, and denote the 0-1 generalization error over the entire data stream D
as L0−1

D (W) ≜ E(x,y)∼D[1{y · fW(x+ ξ) < 0}] with arbitrary perturbation vector ξ.

CSSL Formulation. Following Algorithm 5, our analysis considers a random initialization (Initialize)
29Assuming the widths of each hidden layer are the same is a commonly-used simplification. See [9, 29] for papers that have

adopted the same assumption.
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of model parameters W(0) = {W (0)
1 , . . . ,W

(0)
L } as shown below:

W
(0)
j ∼ N

(
0,

2

m

)
, ∀ j ∈ [L− 1],

W
(0)
L ∼ N

(
0,

1

m

)
.

(20)

A bufferR of size C is used to maintain data for replay. All incoming data is added toR (ReplayStore),
and an entry is randomly (uniformly) evicted fromR (ReplayEvict) if |R| > C.

Each online update takes B uniform samples from R (ReplaySample), forming a set St of replay
examples at iteration t. The t-th update of model parameters W (StreamingUpdate) over new and
replayed data is given by the following expression:

W(t+1) = W(t) − η

∇W(t)L(xt,yt,ξt)(W
(t)) +

∑
(xrep,yrep)∈St

∇W(t)L(xrep,yrep,ξrep)(W
(t))

 , (21)

where η is the learning rate, ξt is an arbitrary perturbation vector for the t-th data stream example, and ξrep is
an arbitrary perturbation vector that is separately generated for each individual replay example. Our theoretical
analysis does not consider the compression of replay examples (Compress(x) = x).

Data Augmentation. The t-th example in the data stream (xt, yt) ∈ D is augmented (Augment) using
the perturbation vector ξt; i.e., the network always observes an augmented version of the data, given by
(xt + ξt, yt). No assumptions are made about vectors ξt, though our final rate depends on their magnitude.
Similarly, all replay samples are augmented via ξrep, such that the network observes (xrep + ξrep, yrep) for each
(xrep, yrep) ∈ St. All replay samples have unique perturbation vectors ξrep, but we use ξrep to denote all replay
perturbation vectors for simplicity. We denote the set of all perturbation vectors used for new and replayed
data throughout streaming as X and define Ξ = sup

ξ∈X
∥ξ∥22.

Neural Tangent Random Feature. For W ∈ W , we define the ω-neighborhood as follows:

B(W, ω) ≜ {W′ ∈ W : ∥W ′
l −Wl∥F ≤ ω, ∀l ∈ [L]}.

Given a set of all-zero weight matrices 0 ∈ W and randomly initialized (according to (20)) W(0), the Neural
Tangent Random Feature (NTRF) [29] is then defined as the following function set

F(W(0), R) = {f(·) = fW(0)(·) + ⟨∇WfW(0)(·),W⟩ : W ∈ B(0, R)},

where R > 0 controls the size of the NTRF. We use the following shorthand to denote the first order Taylor
approximation of network output, given weights W,W′ ∈ W and input x ∈ Rd:

FW,W′(x) ≜ fW(x) + ⟨∇WfW(x),W′ −W⟩.
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Using this shorthand, the NTRF can be alternatively formulated as:

F(W(0), R) = {f(·) = FW(0),W′(·) : W′ −W(0) ∈ B(0, R)}.

5.5.2 Convergence Guarantees

Here, we present the main result of our theoretical analysis for CSSL—an upper bound on the zero-one
generalization error of networks trained via Algorithm 5, as described in Section 5.5.1. Proofs are deferred to
Appendix D.5, but we provide a sketch in this section. Our analysis adopts the following set of assumptions.

Assumption 3. For all data (xt, yt) ∈ D, we assume ∥xt∥2 = 1. Given two data examples (xi, yi), (xj , yj) ∈
D, we assume ∥xi − xj∥2 ≥ λ.

The conditions in Assumption 3 are widely-used in analysis of overparameterized neural network gener-
alization [9, 29, 151, 191, 275]. The unit norm assumption on the data is adopted for simplicity but can be
relaxed to c1 ≤ ∥xi∥ ≤ c2 for all (xi, yi) ∈ D and absolute constants c1, c2 > 0. Given these assumptions,
we derive the following:

Theorem 6. Assume Assumption 3 holds, ω ≤ O
(
L−6 log−3(m)

)
, and m ≥ O

(
nB
√
1 + ΞL6 log3(m)

)
.

Then, defining Ŵ as a uniformly-random sample from iterates {W(0), . . . ,W(n)} obtained via Algorithm 5
with η = O

(
m− 3

2

)
and B replay samples chosen at every iteration from buffer R, we have the following

with probability at least 1− δ:

E
[
L0−1
D

(
Ŵ
)]
≤ inf

f∈F(W(0),R/m)

(
4

n

n∑
t=1

ℓ(yt · f(xt + ξt))

)
+

√
2 log(1δ )

n
+O

(
(1 + Ξ)

3
4B

1
2n+R2

L2 log
3
2 (m)

)

where ξt is an arbitrary perturbation vector representing data augmentation applied at streaming iteration t,
R > 0 is a constant controlling the size of the NTRF function class, and δ ∈ [0, 1).

Discussion. Theorem 6 provides an upper bound on the 0-1 generalization error over D for a network trained
via Algorithm 5. This bound has three components. The first component—shaded in red—captures the
0-1 error achieved by the best function within the NTRF F(W(0),R/m). Intuitively, this term captures the
“classifiability” of the data—it has a large value when no function in the ω-neighborhood of W(0) can fit the
data well and vice versa. Given fixed m, however, this term can be made arbitrarily small by increasing R to
enlarge the NTRF and, in turn, increase the size of the function space considered in the infimum.

The second term—shaded in green—is a probabilistic term that arises after invoking an online-to-batch
conversion argument [31] to relate training error to 0-1 generalization error. This term contains log(1/δ) in the
numerator and n in the denominator. Smaller values of δ will make the bound looser but allow it to hold with
higher probability. On the other hand, larger values of n make this term arbitrarily small, meaning that the
bound can be improved by observing more data.

The final term—shaded in blue—considers all other additive terms that arise from technical portions of
the proof. This asymptotic expression grows with Ξ, R, B, and n. However, the term L2 log

3
2 (m) occurs in
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Method
Base Init. Ratio of

Uses Replay
Required Params Frozen

ExStream [102] ✓ 95% ✓
DeepSLDA [104] ✓ 95% ✗

REMIND [103] ✓ 75% ✓
CSSL ✗ 0% ✓

Table 10: A basic outline of properties for each of the considered streaming algorithms.

the denominator, revealing that this final term will shrink as the model is made wider and deeper.30 Thus,
Theorem 6, as a whole, shows that the network generalizes well given sufficiently large m, L, and n—meaning
that the network is sufficiently overparameterized and enough data has been observed.

Sketch. The proof of Theorem 6—provided in Appendix D.5—proceeds as follows:

• We first show that the average 0-1 loss of iterates {W(0), . . . ,W(n)} obtained during streaming can be
upper bounded with a constant multiple of the average cross-entropy loss of the same iterates.

• Invoking Lemma 10, we convert this average loss of iterates {W(0), . . . ,W(n)} to an average loss of
weights within the set W⋆ ∈ B(W(0),R/m), where R > 0.

• Using an online-to-batch conversion argument (see Proposition 1 in [31]), we lower bound average 0-1
loss with expected 0-1 loss over D with probability 1− δ.

• From here, we leverage Lemma 12 to relate average loss of W⋆ over streaming iterations to the NTRF,
taking an infimum over all functions f ∈ F(W(0),R/m) to yield the final bound.

5.6 Experiments

Following prior work, we use ResNet18 to perform class-incremental streaming experiments on CIFAR100
and ImageNet [51, 144], experiments with various different data orderings on Core50 [164], and experiments
using a novel, multi-task streaming learning setting. As baselines, we adopt the widely-used streaming
algorithms ExStream [102], Deep SLDA [104], and REMIND [103]; see Table 10 for details. Because
REMIND freezes most network layers after base initialization, we also study a REMIND variant (“Remind +
Extra Params”) with added, trainable layers such that the number of trainable parameters is equal to CSSL.31

All experiments split the dataset(s) into several batches and data ordering is fixed between comparable
experiments. Evaluation occurs after each batch and baselines use the first batch for base initialization—the
first batch is seen both during base initialization and streaming. CSSL performs no base initialization, but may
begin the streaming process with pre-trained parameters—such experiments are identified accordingly. We

30Observe that n appears in the denominator of the green term and the numerator of the blue term of Theorem 6. However,
because the model is assumed to be overparameterized (i.e., m ≫ n), the blue term is still negligible even given values of n that are
sufficiently large to make the green term small.

31This modified version of REMIND has the same number of trainable parameters as a normal ResNet18 model and is included as
a baseline to ensure the benefit of CSSL is not simply due to the presence of more trainable parameters within the underlying network.
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Figure 12: Streaming performance on CIFAR100 using different replay buffer capacities.

first present class-incremental streaming experiments, followed by the analysis of different data orderings and
multi-task streaming. The section concludes with supplemental analysis that considers training other network
architectures and studies behavioral properties of networks trained via CSSL.

5.6.1 Class-Incremental Learning

We perform class-incremental streaming learning experiments using a ResNet18 architecture on CIFAR100
and ImageNet. The results of these experiments are summarized below, and a discussion of the results follows.

CIFAR100. The dataset is divided into batches containing 20 classes and results are averaged over three
different data orderings. Experiments are conducted using replay buffer memory capacities ranging from
30Mb (i.e., 10K CIFAR100 images) to 150Mb. These capacities are not relevant to Deep SLDA or REMIND,
as Deep SLDA does not use a replay buffer and REMIND can store the full dataset using < 30Mb of memory.
CSSL compresses replay examples by quantizing pixels to 6 bits and resizing images to 66% of their original
area. In some cases, CSSL is initialized with parameters that are pre-trained over the first 20 classes of
CIFAR100; see Appendix D.1.1 for details. The results of these experiments are illustrated in Figure 12.

ImageNet. The dataset is divided into batches of 100 classes. Following [103], we perform experiments
with replay buffer memory capacities of 1.5Gb and 8Gb. For reference, 1.5Gb and 8Gb experiments with
(without) JPEG compression store 100,000 (10,000) and 500,000 (50,000) images for replay, respectively,
given standard pre-processing. Such capacities are not relevant to Deep SLDA.

Several CSSL variants are tested that i) optionally pre-train over the base initialization set and ii) may
store the replay buffer on disk. For in-memory replay, data is compressed by quantizing each pixel to four bits
and resizing images to 75% of their original area. No quantization or resizing is employed when the replay
buffer is stored on disk; see Appendix D.1.1 for details. ImageNet results are provided in Table 11.

Discussion. CSSL far outperforms baselines on CIFAR100. Even at the lowest buffer capacity with a random
parameter initialization, our methodology exceeds the performance of REMIND by 3.6% absolute Ωall given
an equal number of trainable parameters, revealing that i) the performance improvement of CSSL is not solely
due to having more trainable parameters and ii) the proposed approach is capable of achieving impressive
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Method
Replay Buffer Size

1.5Gb 8Gb

ExStream 0.569 0.594
Deep SLDA 0.752 0.752
REMIND 0.855 0.856
REMIND + Extra Params 0.869 0.873
CSSL 0.740 0.873
CSSL + Pre-Train 0.750 0.903

CSSL + JPEG 0.899 0.951
CSSL + Pre-Train + JPEG 0.909 0.964

Table 11: Top-5 Ωall on ImageNet with 1.5Gb and 8Gb buffer capacities. Methods that store the replay buffer
on main memory and disk are separated by a horizontal line.

performance even with limited memory overhead. When a pre-trained parameter initialization is used, the
performance improvement of CSSL is even more pronounced, reaching an absolute Ωall of 0.974 that nearly
matches offline performance. For comparison, REMIND achieves Ωall of 0.790 with an equal number of
trainable parameters and unlimited replay capacity.

On ImageNet, the proposed methodology without JPEG compression performs comparably to Deep SLDA
at a memory capacity of 1.5Gb. Performance improves significantly—and surpasses baseline performance—as
the replay buffer grows. For example, CSSL without JPEG compression matches or exceeds the performance
of all baselines given a replay buffer capacity of 8Gb, and performance continues to improve when a pre-
trained parameter initialization is used and as more images are retained for replay. In fact, using pre-trained
parameters and 8Gb of memory on disk for replay, the proposed methodology can achieve a Top-5 Ωall of
0.964, nearly matching offline training performance.

What’s possible with more memory? REMIND is capable of storing the replay buffer with limited memory
overhead and is the highest-performing method under strict memory limitations; e.g., REMIND achieves the
best performance given a 1.5Gb buffer capacity on ImageNet assuming no access to disk storage. Despite the
applicability of streaming learning to edge-device scenarios [102, 105], many streaming applications exist
that do not induce strict memory requirements due to ease of access to high-end hardware on the cloud. Thus,
one may begin to wonder whether better performance is possible when memory constraints upon the replay
buffer are relaxed.

As outlined in Table 11, REMIND achieves an Ωall of 0.856 (0.873 with equal trainable parameters
to CSSL) when the entire dataset is stored for replay. Such performance is > 9% absolute Ωall below the
best-performing CSSL experiment (i.e., 8Gb capacity with JPEG storage and pre-training), which, despite
increased memory overhead relative to REMIND, does not store the whole dataset in the replay buffer.
The proposed approach continues improving as the replay buffer becomes larger, reaching a Top-5 Ωall of
0.975 given unlimited replay capacity and a pre-trained parameter initialization. Although REMIND may be
preferable in memory-constrained scenarios, the proposed approach continues improving as more memory is
allocated for replay, reaching performance levels much closer to that of offline training.
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Method
Top-1 Ωall without Pre-Training Top-1 Ωall with Pre-Training

ID CID I CI ID CID I CI

ExStream 0.719 0.635 0.734 0.627 0.959 0.936 0.954 0.935
Deep SLDA 0.721 0.660 0.730 0.626 0.971 0.952 0.962 0.957
REMIND 0.719 0.628 0.741 0.600 0.985 0.971 0.986 0.973
REMIND + Extra Params 0.636 0.586 0.693 0.594 0.994 0.961 0.996 0.966
CSSL (100Mb Buffer) 1.106 0.977 1.071 0.990 0.963 0.979 0.962 0.976
CSSL (200 Mb Buffer) 1.107 1.005 1.104 0.995 0.968 0.981 0.977 0.976
CSSL (300 Mb Buffer) 1.153 1.009 1.112 1.024 0.976 0.986 0.974 0.979

Table 12: Core50 streaming performance for different data orderings, averaged across ten permutations.

5.6.2 Different Data Orderings

We perform streaming experiments on the Core50 dataset using i.i.d. (ID), class i.i.d. (CID), instance (I),
and class-instance (CI) orderings [164]. For each ordering, ten different permutations are generated, and
performance is reported as an average across permutations. The dataset is split into batches of 1200 samples.
Experiments are conducted with replay buffer memory capacities of 100Mb (i.e., 2,000 images from Core50,
or 1/3 of the full dataset), 200Mb, and 300Mb. These memory capacities only apply to CSSL, while baselines
are given unlimited replay capacity. The proposed methodology compresses images using 4-bit integer
quantization and resizing to 75% of original area; see Appendix D.1.2 for details.

Experiments are performed both with and without ImageNet pre-trained weights, allowing performance
to be observed in scenarios without a high-quality parameter initialization. In experiments without ImageNet
pre-training, baseline methodologies perform base initialization over the first 1200 dataset examples, while
CSSL begins streaming from a random initialization. When ImageNet pre-training is used, CSSL begins the
streaming process with these ImageNet pre-trained parameters, while baseline methodologies perform base
initialization beginning from the pre-trained weights. CSSL observes no data from the target domain prior to
the commencement of streaming. Core50 results are provided in Table 12.

Discussion. Without ImageNet pre-training, our methodology surpasses baseline performance at all memory
capacities and often exceeds offline training performance. In this case, Ωall > 1 indicates that models trained
via CSSL outperform offline-trained models during evaluation. This result is likely possible due to the use
of simple augmentations (i.e., random crops and flips) for training offline models used to compute Ωall;
see Appendix D.1.2. Nonetheless, these findings highlight the broad applicability of CSSL. The proposed
approach flourishes in this setting because it i) has no dependence upon base initialization and ii) is capable of
learning all model parameters via streaming. In contrast, baseline methodologies struggle with the low-quality
base initialization provided by only 1200 data examples.

When initialized with pre-trained weights, baseline methodologies perform much better, though the
proposed methodology still matches or exceeds this performance. We emphasize that such pre-trained
parameter initializations are not always possible; see Section 5.4. In numerous practical scenarios (e.g.,
surgical video, medical imaging, satellite or drone imaging, etc.), well-aligned, annotated public datasets
may not exist. The proposed methodology performs well with or without pre-training due to its end-to-end
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approach to streaming learning and even surpasses offline training performance when beginning streaming
from a cold start.

5.6.3 Multi-Task Streaming Learning

The Setting. In addition to our proposal of CSSL, we propose and explore a new, multi-task streaming
learning domain. Although similar setups have been explored for batch incremental learning [118], no
work has attempted multi-task learning in a streaming fashion, where multiple datasets with disjoint output
spaces are learned sequentially, one example at a time. Such a setting is particularly interesting because the
introduction of new datasets causes large shifts in properties of the data stream. In such scenarios, the learner
must adapt to significant changes in incoming data, making the multi-task streaming learning domain an
interesting test case for CSSL.

We consider multi-task streaming learning over several image classification datasets. In particular, we
perform multi-task streaming learning over the CUB-200 [229], Oxford Flowers [188], MIT Scenes [197], and
FGVC-Aircrafts datasets [172]. The datasets are learned in that order and are introduced to the data stream
one example at a time in a class-incremental fashion; see Appendix D.1.3 for further details. Though the
ordering of datasets is never changed, the ordering of data within each dataset may be changed. Comparable
experiments use the same ordering of data. To handle the disjoint output spaces of each dataset, models for
both the proposed methodology and baselines are modified to have a separate output layer for each dataset.

Methodology. For simplicity, all methodologies are given unlimited replay capacity for multi-task streaming
learning experiments. Baseline methodologies perform base initialization over the first half of the MIT indoor
dataset, optionally beginning with ImageNet pre-trained parameters. CSSL begins the streaming process with
either random or ImageNet pre-trained parameters, such that no data from the target domain is observed prior
to the commencement of streaming. All tests are performed over three distinct permutations of the data, and
performance is averaged across permutations.

During streaming learning, each update performs i) an update with replayed and new data for the dataset
currently being learned and ii) a separate, full update with replayed data for each of the datasets that have been
learned previously. We find that such a strategy for multi-task replay performs better than other strategies, such
as performing a single update that encompasses all datasets; see Appendix D.2.5. Deep SLDA and ExStream
do not adopt this replay strategy, as only the final classification layers of the model are updated during
streaming. Thus, multi-task streaming learning is identical to performing separate streaming experiments on
each dataset. Performance in terms of Top-1 test accuracy is recorded separately over each dataset at the end
of the streaming process, as shown in Table 13.32

Discussion As shown in Table 13, CSSL, both with and without pre-triaining, far outperforms all baseline
methodologies on nearly all datasets in the multi-task streaming domain. For example, when ImageNet
pre-training is used, CSSL outperforms REMIND by 10% absolute test accuracy (or more) on CUB-200,
Oxford Flowers, and FGVC-Aircrafts datasets. When no ImageNet pre-training is used, the performance

32We choose to avoid reporting performance in terms of Ωall and only report performance at the end of streaming to match the
evaluation strategy of [118] and make results less difficult to interpret.
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ImageNet
Method

Top-1 Accuracy
Pre-Training MIT Scenes CUB-200 Flowers FGVC

✓

Offline 71.42 ± 0.60 73.70 ± 0.01 91.98 ± 0.02 76.05 ± 0.17

ExStream 58.96 ± 0.70 26.04 ± 0.46 69.16 ± 0.27 33.33 ± 0.56
Deep SLDA 60.05 ± 0.35 29.85 ± 0.04 72.56 ± 0.13 34.16 ± 0.20
REMIND 54.23 ± 0.58 46.27 ± 1.01 78.06 ± 1.47 36.56 ± 3.24
CSSL 54.30 ± 1.95 59.94 ± 0.97 88.36 ± 0.98 45.29 ± 2.11

✗

Offline 51.60 ± 0.56 46.95 ± 0.25 83.10 ± 0.57 60.12 ± 0.44

ExStream 31.84 ± 0.34 9.37 ± 0.08 40.31 ± 0.15 16.58 ± 0.20
Deep SLDA 35.05 ± 0.19 11.30 ± 0.10 44.04 ± 0.09 16.89 ± 0.06
REMIND 28.56 ± 0.71 17.97 ± 0.41 43.97 ± 1.29 16.53 ± 0.68
CSSL 42.49 ± 0.73 40.08 ± 0.45 78.70 ± 0.45 25.98 ± 2.30

Table 13: Top-1 test accuracy of models trained with different methodologies for multi-task streaming
learning.

improvement is even more drastic. In particular, CSSL provides a 22% and 35% absolute boost in Top-1
accuracy on the CUB-200 and Oxford Flowers datasets, respectively.

Interestingly, CSSL achieves lower performance than ExStream and Deep SLDA on the MIT Scenes
dataset when ImageNet pre-training is used. The impressive performance of these baselines on MIT Scenes
is caused by the fact that i) ExStream and Deep SLDA only update the model’s classification layer during
streaming and ii) the fixed feature extractor being used is pre-trained on ImageNet and fine-tuned on over
half of the MIT Scenes dataset. Thus, ExStream and Deep SLDA perform well on this dataset only because
their feature extractor has been extensively pre-trained and exposed to a large portion of the dataset during
base initialization. When ImageNet pre-training is not included, the fixed feature extractor is of lower quality,
leading ExStream and Deep SLDA to be outperformed by CSSL even on the MIT Scenes dataset.

Adapting the model’s representations to new datasets is pivotal to achieving competitive performance in
the multi-task streaming learning domain. Baseline methodologies—due to the fixing of parameters after base
initialization—cannot adapt a majority of the model’s parameters, leading their representations to be biased
towards data observed during base initialization. Such a dilemma emphasizes the importance of developing
streaming algorithms, such as CSSL, that learn end-to-end. By using CSSL for multi-task streaming learning,
model representations are not fixed based on a subset of data that does not reflect future, incoming datasets,
and model performance can benefit from the positive inductive transfer that occurs by updating all model
parameters over multiple tasks or datasets simultaneously.

5.6.4 Supplemental Experiments and Analysis

We now present supplemental results that explore the properties of models trained with CSSL, as well as other
model architectures.

Confidence Calibration Analysis. Confidence calibration characterizes the ability of a model to provide an
accurate probability of correctness along with any of its predictions. In many cases, model softmax scores are
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Dataset Method Average ECE

CIFAR100

ExStream 0.301 ± 0.008
Deep SLDA 0.296 ± 0.012
REMIND 0.023 ± 0.000
CSSL + Pre-Train (30Mb Buffer) 0.031 ± 0.005
CSSL + Pre-Train (150Mb Buffer) 0.023 ± 0.003
CSSL + Pre-Train + No Aug. (150Mb Buffer) 0.161 ± 0.031

CSSL (30Mb Buffer) 0.040 ± 0.001
CSSL (150Mb Buffer) 0.036 ± 0.002
CSSL + No Aug. (150Mb Buffer) 0.149 ± 0.015

ImageNet
REMIND 0.021 ± 0.005
CSSL 0.043 ± 0.003
CSSL + No Aug. 0.266 ± 0.009

Table 14: Average ECE of models trained via diferent streaming methodologies on class incremental
streaming experiments with CIFAR100 and ImageNet datasets.
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Figure 13: ECE of models trained via REMIND and CSSL on an i.i.d. ordering of CIFAR100.

erroneously interpreted as valid confidence estimates, though it is widely-known that deep networks make
incorrect or poor predictions with high confidence [90].

Ideally, deep models should be highly-calibrated, as such a property would allow incorrect model
predictions to be identified and discarded. For streaming learning, confidence calibration is especially useful,
as one must decide during the streaming process whether the model’s predictions should start to be relied
upon. If the underlying model is highly-calibrated throughout streaming, this problem solves itself—just use
predictions that are made with high-confidence, indicating a high probability of correctness.

Previous work indicates that using Mixup encourage good calibration properties [225], indicating that
models obtained from CSSL and REMIND—both of which use some form of Mixup—should be highly-
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Figure 14: CIFAR100 class-incremental streaming performance measured after each new class is learned.

calibrated. In this section, we measure confidence calibration, in terms of average expected calibration error
(ECE) across testing events, of models during class-incremental streaming experiments on CIFAR100 and
ImageNet with different streaming methodologies; see Appendix D.1.4 for further details.

As shown in Table 14, CSSL and REMIND both aid model calibration. Interestingly, the confidence
calibration of CSSL degrades significantly if only random crops and flips are used for augmentation (i.e.,
“CSSL + No Aug.”), highlighting the positive impact of a proper data augmentation policy on calibration.
Using an i.i.d. data ordering, we measure calibration more frequently throughout the streaming process in
Figure 13 and find that CSSL is highly-calibrated throughout streaming when beginning from a random
initialization and improves upon the calibration of REMIND when beginning from pre-trained parameters.

Performance Impact of a Cold Start. To better understand how model performance evolves throughout the
streaming process, we perform class-incremental learning experiments on CIFAR100 and measure model
accuracy after every new class that is introduced during streaming; see Appendix D.1.5 for more details.

As shown in Figure 14, baseline methodologies begin with a high accuracy but sharply decline in
performance when the model encounters data not included in base initialization and continue to slowly
degrade in performance throughout the remainder of the learning process. In contrast, randomly-initialized
CSSL begins with relatively poor performance that improves gradually as more data is observed, eventually
reaching a stable plateau in performance that surpasses all baseline methodologies. When beginning streaming
from a pre-trained parameter initialization, this initial period of poor performance is eliminated, and the model
still reaches a relatively stable plateau of higher performance.

Baseline methodologies perform well initially because of the data that was observed during base initial-
ization, which is made evident by the sharp drop in baseline performance upon encountering new data; see
Figure 14. Notably, CSSL does not experience this drop in accuracy even when beginning from pre-trained
parameters, revealing that end-to-end training mitigates bias towards data used for base initialization. Further-
more, the ability of CSSL find a stable plateau in performance reveals that streaming learners need not always
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Model Top-5 Ωall

ResNet101 0.872
MobileNetV2 0.904
DenseNet121 0.898
Wide ResNet50-2 0.880

Table 15: Class-incremental streaming performance with CSSL and various model architectures.

decay in performance as the data stream moves further away from data seen during base initialization. With
CSSL, model representations can be adapted to changes in data over time to facilitate stable performance.

Different Network Architectures. Because CSSL trains the underlying network in an end-to-end fashion and
is not dependent upon base initialization, its implementation is simple and agnostic to the particular choice of
model architecture (i.e., substituting different architectures requires no implementation changes). Because a
majority of prior work only studies ResNet architectures [102, 103], we use the proposed methodology to
study the behavior of ResNet101 [106], MobileNetV2 [207], DenseNet121 [121], and Wide ResNet50-2 [260]
architectures in class-incremental streaming experiments on ImageNet; see Appendix D.1.6 for further details.
The replay buffer is stored on disk using JPEG compression with a memory capacity of 1.5Gb. The results of
these experiments, recorded in terms of Top-5 Ωall, are provided in Table 15, where it can be seen that CSSL
achieves competitive performance with each of the different model architectures.

5.7 Conclusion

We present CSSL, a new approach to streaming learning with deep neural networks that trains the network
end-to-end and uses a combination of replay mechanisms with sophisticated data augmentation to prevent
catastrophic forgetting. Because the underlying network is learned end-to-end with CSSL, no base initialization
is required prior to streaming, yielding a single-stage learning approach that is both simple and performant.
In experiments, CSSL is found to surpass baseline performance—and even match or exceed offline training
performance—on numerous established experimental setups, as well as on a multi-task streaming learning
setup proposed in this work. We hope that CSSL inspires further developments in deep streaming learning by
demonstrating the surprising effectiveness of simple learning techniques.

6 Better Schedules for Low Precision Training of Deep Neural Networks

Low precision training can significantly reduce the computational overhead of training deep neural networks
(DNNs). Though many such techniques exist, cyclic precision training (CPT), which dynamically adjusts
precision throughout training according to a cyclic schedule, achieves particularly impressive improvements
in training efficiency, while actually improving DNN performance. Existing CPT implementations take
common learning rate schedules (e.g., cyclical cosine schedules) and use them for low precision training
without adequate comparisons to alternative scheduling options. We define a diverse suite of CPT schedules
and analyze their performance across a variety of DNN training regimes, some of which are unexplored
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in the low precision training literature (e.g., node classification with graph neural networks). From these
experiments, we discover alternative CPT schedules that offer further improvements in training efficiency and
model performance, as well as derive a set of best practices for choosing CPT schedules. Going further, we
find that a correlation exists between model performance and training cost, and that changing the underlying
CPT schedule can control the tradeoff between these two variables. To explain the direct correlation between
model performance and training cost, we draw a connection between quantized training and critical learning
periods, suggesting that aggressive quantization is a form of learning impairment that can permanently damage
model performance.

6.1 Introduction

DNNs have revolutionized the performance of autonomous systems. Yet, such gains come at a steep cost—
DNN training is computationally burdensome and becoming more so, as the community tends towards
larger-scale experiments [27]. Though many approaches exist for reducing DNN overhead [88, 148], low
precision training has gained recent popularity due to its ability to improve training efficiency with minimal
performance impact [75, 76].

Quantized training approaches use lower precision representations for DNN activations, gradients, and
weights during training; see Figure 15. Then, the forward and backward pass can be expedited via (faster)
low precision arithmetic, which recent generations of hardware are beginning to support [178]. Though
implementing quantized training is more nuanced in complex architectures (e.g., batch normalization modules
require special treatment [15]), the basic approach remains the same—DNN activations, weights, and gradients
are replaced with lower-precision representations during training to reduce the cost of each forward and
backward pass.

Early approaches to quantized training adopted a static approach that maintained the same, low level
of precision throughout training [15, 249, 270]. Although this work was successful in revealing that DNN
training is robust to substantial reductions in precision, later work achieved further efficiency gains by
dynamically adapting precision along the training trajectory [75, 76]. Such work i) sets minimum (qmin) and
maximum (qmax) bounds for precision, and ii) varies the precision between these bounds according to some
(possibly cyclical) schedule throughout training. Interestingly, experiments using cyclic precision training
(CPT) [75] demonstrated that precision plays a role similar to that of the learning rate in DNN training.

Because state-of-the-art results with DNNs are often achieved using curated hyperparameter schedules [53,
106, 214], different scheduling options for common hyperparameters (e.g., learning rate and momentum)
have been explored extensively [37, 38]. Despite known similarities between precision and the learning rate,
however, no such study has been performed for low precision training—existing approaches to CPT simply
adopt common learning rate strategies (i.e., a cyclical cosine schedule [75]) without adequate comparison to
alternatives. As such, best practices for dynamically varying DNN precision along the training trajectory
remain largely unknown.

Our Proposal. To close this gap, we provide an extensive empirical study of different CPT variants. First,
we rigorously define the space of potential CPT schedules by deconstructing such schedules via a three-step
process of i) choosing a profile, ii) choosing the number of cycles, and iii) choosing whether cycles are
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Figure 15: A depiction of quantized forward/backward pass within a single DNN layer.

repeated and/or have a “triangular” form. Using this decomposition, we define a suite of ten CPT schedules—
including the originally-proposed cyclical cosine schedule [75]—that are analyzed across a variety of domains,
including image classification and object detection with convolutional neural networks (CNNs), language
modeling with long short-term memory (LSTM) networks [115], entailment classification with pre-trained
transformers [53], and graph node classification with graph convolutional networks (GCNs) [141]. As a
byproduct of this analysis, to the best of the authors’ knowledge, we are the first to study quantized training
strategies for GCNs.

Going beyond prior work, we discover new CPT variants that further improve DNN training efficiency
and performance relative to prior schedules, revealing that exploring a wider variety of schedules for CPT is
beneficial. More generally, we observe across all experiments that model performance tends to be correlated
with the amount of compute used for training, revealing that manipulating the CPT schedule is a simple
tool for controlling the tradeoff between model performance and training efficiency. Aiming to explain this
relationship, we draw a connection between quantized training and critical learning periods, finding that
prolonged training at low precision can impair the training process and cause a permanent performance
degradation. Finally, we leverage these empirical observations to provide best practices for choosing the
correct CPT schedule in different practical scenarios.

6.2 Related Work

Neural Network Quantization. Several works leverage DNN quantization to construct high-performing,

efficient DNNs [25, 64, 192, 233, 248]. [126] studies quantization-aware training strategies to facilitate
post-training DNN quantization, [132] adopts learnable approaches for DNN quantization, and [233] applies
adaptive precision to different DNN components (e.g., layers or filters) during inference. Binary and ternary
DNNs have also been studied [47, 147]. For GCNs, a few works have studied post-training quantization [69,
224], but quantized training of GCNs has not been considered.

Quantized Training. Several works, as in [15, 91, 178, 235], pioneer low precision DNN training, finding
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Figure 16: An illustration of profiles and schedules for CPT over T total training iterations. Function profiles
are depicted in the upper-left subplot, while the lower-left subplot illustrates the CR schedule with different
numbers of cycles n. Remaining subplots depict all possible CPT schedules explored in this work—both with
and without rounding to the nearest integer—for n = 2 cycles.

that quantized training at a static, low level yields significant time and energy savings. Later work explores
adaptive precision throughout training [75, 76]. Such methods can be applied on top of static quantization
schemes and are found to yield gains in efficiency and model performance, by dynamically lowering precision
below that of static techniques during training.

Critical Learning Periods. Critical learning periods within deep neural networks describe the early training
epochs, during which the network is most sensitive to learning impairments. Early work on critical learning
periods found that neural networks trained over blurry images for a sufficient number of epochs could never
recover the accuracy of a network trained normally [3]. Subsequent work studied different forms of training
impairments, such as improper regularization and non-i.i.d. data [11, 86]. Work on critical learning periods
reveals that learning deficits during an initial, sensitive phase of training yield a permanent degradation in
performance, no matter the amount of training performed after removing the deficit.

Hyperparameter Schedules. Most state-of-the-art results on deep learning benchmarks use curated hyperpa-
rameter schedules [106, 213]. Scheduling is commonly used for hyperparameters like the learning rate [166],
but the general concept is widely-applied within deep learning. For example, scheduling approaches have
been proposed for mini-batch sizes [244], image spatial resolution [68], the amount of regularization [215],
and more. Best practices for hyperparameter scheduling have been established through extensive empirical
analysis; e.g., for the learning rate [37, 213], momentum [38], and even batch size and weight decay [214].
Our work aims to provide empirical analysis that establishes such best practices for low precision training.

6.3 Precision Schedules for Quantized Training

Our goal in exploring different CPT schedules is to i) better understand the impact of such schedules on DNN
performance, and ii) study new schedules that offer different levels of reductions in DNN training cost. We
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aim to make our analysis comprehensive by considering a wide variety of schedules. We will now provide a
brief overview of CPT and explain how the suite of CPT schedules used in this work is derived.

6.3.1 How does CPT work?

Quantize in Figure 15 converts data into a lower precision representation, before it is used in the forward
or backward pass. We refer to this lower level of precision as the “target” precision. CPT operates by simply
varying this target precision such that each training iteration t has a different target precision qt. More
specifically, CPT varies target precision within the range [qmin, qmax], according to some schedule during
training. We define this schedule as a function S(·) : N≥0 → Q, where Q is the set of real-valued numbers in
the range [qmin, qmax]. The precision used at iteration t of training, which is always rounded to the nearest
integer, is given by qt = round(S(t)) ∈ [qmin, qmax].

qmax is selected to match the precision of static, low precision training, ensuring that CPT saves costs
by adjusting DNN precision below this static level. qmin must be discovered via a precision range test (see
Section 3.3 in [75]), as DNN training cannot progress when precision is too low. To stabilize training, cyclic
precision is only applied to the forward pass (i.e., activation and weights quantization in Figure 15), while the
backward pass (i.e., gradient quantization in Figure 15) fixes precision at qmax throughout training.

6.3.2 Constructing a CPT Schedule

Constructing a low precision training schedule can be decomposed into three steps:33

1. Selecting a Profile

2. Setting the Number of Cycles

3. Selecting Repeated or Triangular Cycles

The remainder of this section explains this decomposition and how it is used to derive the suite of CPT
schedules explored in this work.

Step One: Selecting a Profile. Any CPT schedule must have an underlying function (“profile”) according
to which precision is varied. We consider four function profiles—cosine, linear, exponential, and reverse
exponential (REX) [37]; see top left subplot of Figure 16. We only consider growth profiles (i.e., functions
that increase precision from qmin to qmax), because DNN training must end with higher precision to facilitate
convergence [75]. This set of functions characterizes a range of different quantization behaviors that reduce
computational cost to varying degrees.

Step Two: Setting the Number of Cycles. Beyond choosing a profile, each schedule may perform a certain
number of cycles, which we denote as n, according to this profile during training. Different choices for n are
depicted in the bottom left subplot of Figure 16. In our experiments, we find that n = 8 performs consistently
well.

33Related work [37] considers a sampling rate for each profile, which controls the frequency of hyperparameter updates. This
sampling rate is less pertinent to precision schedules because precision is always rounded to the nearest integer, which makes updates
less frequent.
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Step Three: Selecting Repeated or Triangular Cycles. The proposed profiles can be used to produce many
different schedules. Each cycle may repeatedly increase precision from qmin to qmax; see “repeated” subplots
in Figure 16. In contrast, a schedule can be made “triangular” by reflecting the profile within every other
cycle [75, 213, 214]; see top right and bottom repeated subplots in Figure 16. Assuming n is even and that all
schedules end with a precision of qmax to facilitate model convergence, we can construct triangular schedules
by reflecting all odd-numbered cycles, leading adjacent cycles to vary precision in opposite directions; see
LT and CT subplots of Figure 16. REX and Exponential function profiles can be reflected either vertically
or horizontally34, producing two different triangular schedule variants; see the RTV, RTH, ETV and ETH
subplots within Figure 16.

Suite of CPT Schedules. The full set of CPT schedules we consider is composed of all repeated and triangular
variants of the linear, cosine, REX, and exponential function profiles. Notably, this set includes the original
cyclical cosine schedule proposed for CPT (CR in Figure 16) [75]. Both repeated and triangular schedules can
be repeated for any (even) number of cycles, though we set n = 8 in most experiments. The training efficiency
of each schedule, relative to the others, does not change (assuming all schedules use the same setting of qmin

and qmax for comparable experiments). With this in mind, we organize our suite of CPT schedules into three
groups, which we refer to as Small, Medium, and Large based upon their provided reductions in training cost.

• Group I (Large): RR, RTH

• Group II (Medium): LR, LT, CR, CT, RTV, ETV

• Group III (Small): ER, ETH

To ease readability, we will use these groups to refer to different CPT schedules throughout the remainder of
the text.

6.4 Experiments

We perform experiments across a variety of domains, including image recognition (i.e., image classification
and object detection), node classification, and language understanding (i.e., language modeling and entailment
classification). Results are evaluated based upon model performance and the computational cost of training.
For each experimental domain, we first provide details about the setup, then present and analyze results. The
section concludes with an empirically-derived set of practical suggestions for selecting a CPT schedule.

6.4.1 Preliminaries

We set qmax ∈ {6, 8} and n = 8. qmin is derived for each model-dataset pair using a precision range test. Our
baseline, inspired by SBM [15]35, maintains a static precision of qmax throughout training. To quantify the
computational cost of training, we report the effective number of bit operations [270], which is proportional
to the total number of bit operations during training. This quantity can be computed as:

BitOps = FLOPa×b · (Bita/32) · (Bitb/32)

34Cosine and linear function profiles are symmetric, which causes horizontal and vertical reflections to be identical.
35Prior work [75] shows that SBM outperforms other static techniques for quantized training.
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Figure 17: Results of CPT experiments on CIFAR-10/100 and ImageNet. Colors represent profiles, while
shapes distinguish repeated or triangular schedules. Experiments are run with qmax ∈ {6, 8}, distinguished by
a dark outline around a shape. Future figures adopt the same scheme of colors and shapes.

for a dot product between a and b with precisions Bita and Bitb, respectively, and total number of floating
point operations FLOPa×b.

Implementation. All image recognition experiments are implemented using PyTorch and TorchVision [193].
We implement GCN training using the Deep Graph Library [234], which provides a message passing
framework for the communication of data within a graph, and PyTorch. For language modeling experiments,
we base our implementation upon publicly available repositories for both language modeling and entailment
classification [239, 261]. Experiments are run using a single Nvidia 3090 GPU. Because current generations
of GPUs do not support arbitrary precision levels [178], we adopt the approach of prior work [75, 76] and
simulate low precision training with different bit widths by clipping activation and gradient information
beyond the current precision level qt at every iteration of training.

6.4.2 Image Recognition

We evaluate the proposed CPT schedules on both image classification and object detection tasks. We train
ResNet-74, ResNet-152, and MobileNet-V2 architectures on the CIFAR-10/100 datasets [106, 207], following
the settings of [238]. Additionally, we adopt the settings of [106] and perform experiments with ResNet-18
and ResNet-34 architectures on ImageNet. Object detection experiments are performed on the PascalVOC
dataset [67] and adopt a RetinaNet architecture [159] with an ImageNet pre-trained ResNet-18 backbone [106].
Performance is reported in terms of test accuracy and mean average precision (mAP) for image classification
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and object detection experiments, respectively. For all experiments, we report performance as an average
across three separate trials and all hyperparameters are tuned using a hold-out validation set.

CIFAR-10/100. We adopt the settings of [238] for training. All models are trained for a total of 64K iterations
with a batch size of 128 using standard crop and flip data augmentations. We use a SGDM optimizer with
momentum of 0.9. Training begins with a learning rate of 0.1, and the learning rate is decayed by 10× after
50% and 75% of training iterations. Weight decay is set to 1× 10−4, and we use qmin = 3 (i.e., discovered
using a precision range test) and qmax ∈ {6, 8}. All CPT variants are tested with n = 8.

Results of experiments with CPT on CIFAR-10 and CIFAR-100 are shown in Figure 17. Despite using
less training compute, CPT variants tend to outperform static baselines in nearly all cases. This finding aligns
with prior work [75] but goes further by demonstrating that the benefit of CPT is not specific to any particular
precision schedule. Compared to CPT with the originally-proposed CR schedule, our large schedules achieve
further reductions in training compute, but slightly degrade accuracy. Small and medium schedules tend to
both reduce training cost and improve accuracy.

Across all experiments, we see that a correlation exists between model performance and training compute,
irrespective of model depth or architecture. This interesting finding reveals that the choice of CPT schedule
is a mechanism that controls the trade off between model performance and training compute. Compared to
most hyperparameter settings (e.g., the learning rate) that only impact model performance, the choice of CPT
schedule is quite nuanced due to its joint impact on training efficiency and performance.

ImageNet. We consider the ILSVRC2012 version of ImageNet with 1K total classes. The settings of [106]
are used: Models are trained for a total of 90 epochs with a batch size of 256 using standard crop and flip data
augmentations. We use a SGDM optimizer with momentum of 0.9. An initial learning rate of 0.1 is adopted,
and this learning rate is decayed by a factor of 10× after 50% and 75% of total epochs. Weight decay is set to
1× 10−5, and we use qmin = 4 and qmax ∈ {6, 8}. All CPT variants are tested with n = 8.

As shown in Figure 17, CPT schedules that significantly reduce training compute cause a noticeable
performance deterioration relative to static baselines on ImageNet. For example, large schedules cause a
0.5 − 1.5% drop in accuracy relative to static baselines across different architectures and settings of qmax.
With the larger ResNet-34 architecture, we see that more aggressive quantization is especially detrimental
to performance; e.g., setting qmax = 6 significantly deteriorates performance in both CPT and baseline
experiments.

Though we still observe a correlation between performance and training compute, larger-scale image
classification experiments seem to be more sensitive to the level of training quantization—aggressive quan-
tization noticeably deteriorates model performance. By adopting our small schedules that quantize more
conservatively, however, we exceed baseline performance at a reduced training cost. In comparison, medium
schedules—including the originally-proposed CR schedule—perform similarly to or worse than baseline
models.

Pascal VOC. We consider the Pascal VOC 2012 dataset for both training and testing [67]. Prior to training
on Pascal VOC, the ResNet backbone of each RetinaNet model is pre-trained on the ILSVRC2012 dataset.
Models are trained for 120 total epochs with a batch size of 4 on Pascal VOC. We do not perform any data
augmentation, though images are normalized and resized before being passed as input. We adopt an Adam
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Figure 18: Results of CPT experiments on PascaVOC. The same coloring scheme is adopted from Figure 17.

optimizer [140] for training with a fixed learning rate of 1× 10−5 throughout training. The model is trained
using a focal loss that matches the settings of [159]. We use qmin = 5, qmax ∈ {6, 8}, and n = 8.

The results of CPT experiments on PascalVOC are shown in Figure 18. Here, we see that setting qmax = 6

yields a clear performance deterioration in both baseline and CPT experiments, indicating that training on
PascalVOC is sensitive to quantization. When qmax = 8, however, all CPT variants either match or exceed the
performance of static baselinesm while reducing the cost of training. For example, the best medium schedule
(ETV) yeilds an absolute improvement of 1.02 mAP with a 25% reduction in training cost. The performance
of all CPT schedules is roughly comparable when qmax = 8.

6.4.3 Node Classification

Graph node classification experiments are conducted with CPT on OGBN-Ariv and OGBN-Products
datasets [120]. On OGBN-Arxiv, we use a regular GCN architecture [141] and consider the full graph
during each training iteration. Experiments on OGBN-Products use a GraphSAGE architecture [92] with
random neighbor sampling. Given that we are the first to explore low precision training within this domain,
we first define low precision training with respect to the GCN architecture and identify the unique aspects of
training GCNs with CPT.

Low Precision GCN Training. Consider a graph G comprised of e edges and n nodes with d-dimensional
features X ∈ Rn×d. The output Y ∈ Rn×dL of a GCN is given by Y = ΨG(X;Θ), where ΨG is a GCN
architecture with L layers and (trainable) parameters Θ. Given H0 = X, we have Y = ΨG(X;Θ) = HL,
with ℓ-th layer GCN representations

Hℓ = σ(ĀHℓ−1Θℓ−1). (22)

where σ(·) is an element-wise activation function (e.g., ReLU), Ā is the degree-normalized adjacency matrix
of G with added self-loops, and the trainable parameters Θ = {Θℓ}L−1

ℓ=0 have dimensions Θℓ ∈ Rdℓ×dℓ+1

with d0 = d and dL = d′. The GCN architecture is similar to a feed-forward neural network with an added
node feature aggregation step, characterized by the left-multiplication of node features by Ā in (22), at each
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Figure 19: Validation accuracy of GCN and GraphSAGE models trained on OGBN-Arxiv and OGBN-
Products using Q-Agg or FP-Agg and qmax = qt = 8.

layer.
To apply quantized training GCNs, we must determine whether this aggregation step can be performed

in low precision. We compare two strategies—FP-Agg and Q-Agg. Q-Agg indicates that the aggregation
process is quantized—either according to a CPT schedule or a fixed precision level—within the GCN’s
forward pass. In contrast, FP-Agg always performs aggregation in full precision, no matter the precision
level used in the rest of the network.

Node classification details. Before we present our findings, let us first provide the details of our experiments.
For the OGBN-Arxiv dataset, we adopt a normal GCN model [141] with three layers and a hidden dimension
of 512. Training on OGBN-Arxiv proceeds for 1000 epochs using an Adam optimizer [140]. The learning
rate begins at an initial value of 10−3 and decays by a factor of 10× over the course of training using cosine
annealing. All CPT scheduling variants described in Section 6.3.2 are tested using n = 8. We set qmin = 3

(i.e., discovered using a precision range test [75]) and consider qmax ∈ {6, 8}.
For the OGBN-Products dataset, we use a two-layer GraphSAGE [92] model with a hidden dimension of

512. To make training computationally tractable over this large graph, we adopt random neighbor sampling
with a neighborhood size of 32. We find that validation accuracy plateaus beyond a neighborhood of this
size. Training proceeds for 80 epochs using an Adam optimizer [140]. The learning rate begins at an initial
value of 3× 10−4 and decays by a factor of 10× over the course of training using cosine annealing. Again,
we test all CPT scheduling variants with n = 8, qmin = 3 (i.e., discovered using a precision range test), and
qmax ∈ {6, 8}.

Is aggregation robust to low precision? We perform experiments on OGBN-Arxiv and OGBN-Products
to compare FP-Agg and Q-Agg strategies; see Figure 19. For these experiments, both strategies adopt a
precision level of qt = qmax = 8 throughout the training process.

On OGBN-Arxiv, utilizing the Q-Agg strategy yields a slight, but consistent, degradation in performance.
The GCN trained using FP-Agg achieves a 0.5% absolute improvement in accuracy compared to a GCN
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Figure 20: GCN and GraphSAGE test accuracy on OGBN-Arxiv and OGBN-Products. The coloring scheme
is adopted from Figure 17.

trained with Q-Agg. This difference in performance is less pronounced on OGBN-products—FP-Agg and
Q-Agg strategies train GraphSAGE models to similar accuracy.36

The aggregation process is a negligible portion of the GCN’s forward pass. However, performing
aggregation in low precision could greatly benefit communication efficiency in model-parallel training
scenarios that pipeline the GCN’s forward pass across multiple compute sites [231]. Though we do not
consider this case in our work, we analyze both FP-Agg and Q-Agg strategies within the remainder of
experiments due to this potential benefit of Q-Agg and its similar level of performance relative to FP-Agg.

OGBN-Arxiv. Results for the GCN model trained with different CPT schedules on OGBN-Arxiv are depicted
in Figure 20. Similarly to experiments on image recognition, we observe a clear relationship between GCN
test accuracy and the amount of compute used during training—schedules that perform aggressive quantization
tend to be slightly outperformed by those quantizing more modestly. For example, for both FP-Agg and
Q-Agg, models trained with CPT using large schedules reach an accuracy 1.0-1.5% below that of baseline
models.

On the other hand, GCN’s trained with medium schedules tend to match baseline performance in most
cases, while models trained with small schedules outperform baselines in all cases. Node classification seems
to be a complex task that is potentially sensitive to quantized training. However, by using alternative CPT

36The lesser impact of Q-Agg on OGBN-Products is due to the use of neighborhood sampling. The aggregation process computes
a sum over all neighboring features, which can generate large, numerically unstable components unless the sum is truncated to a
smaller, fixed number of neighboring features.
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Figure 21: LSTM and mBERT results on Penn Treebank and the XNLI corpus, respectively. The coloring
scheme is adopted from Figure 17.

schedules (i.e., medium or small schedules), we can achieve significant reductions in training compute, while
actually improving the performance of the underlying model for both FP-Agg and Q-Agg CPT variants.

OGBN-Products Compared to experiments on OGBN-Arxiv, GraphSAGE training on OGBN-Products
seems to be less sensitive to quantization; see Figure 20. Nearly all CPT schedules considered yield models
that achieve better performance than the baseline models. For example, using both FP-Agg and Q-Agg,
large schedules reduce the amount of training compute by > 2×, while achieving a 0.3% to 0.5% absolute
improvement in test accuracy relative to baselines. This improvement in test accuracy is standard across nearly
all CPT schedules tested on OGBN-Products, indicating that this setting is relatively robust to low precision
training. Significant reductions in training cost can be achieved—without damaging model performance—by
using aggressive (large) quantization schedules with CPT.

6.4.4 Language Understanding

We perform language modeling experiments with CPT using LSTM networks on the Penn Treebank dataset.
In these experiments, a one-layer LSTM model [115] is used to perform word-level language modeling
following the settings of [261], and we evaluate performance in terms of perplexity. Additionally, we fine-tune
a pre-trained, multilingual BERT (mBERT) [53] model (i.e., based on BERT-base-cased) with CPT on the
Cross-lingual NLI (XNLI) corpus [46], where performance is measured in terms of test accuracy. In both
settings, we report performance as an average across three trials and tune hyperparameters using grid search
over a hold-out validation set. All results are illustrated within Figure 21.

Penn Treebank. Experiments follow the setup of [261]. We use a one-layer LSTM [115] model with a
hidden dimension of 800. Dropout regularization with p = 0.5 is applied to the final output layer of the
LSTM. Models are trained for 40 total epochs using a batch size of 20. All training occurs over sequences
of length 35 that have been sampled from the Penn Treebank dataset. Training begins with a learning rate
of 20, and the learning rate is divided by five each time the validation accuracy does not improve between
epochs. Throughout training we clip gradients with a maximum norm of 0.25. For CPT, we adopt qmin = 5,
qmax ∈ {6, 8}, and n = 2.
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As shown in Figure 21, the language modeling setting is sensitive to quantization, as revealed by the clear
degradation in model performance when qmax = 6. Similarly to experiments with PascalVOC in Section
6.4.2, however, all CPT variants perform well when qmax = 8. More specifically, we can reduce training cost
from > 9 GBitOps to 5.5 GBitOps, while improving model perplexity by leveraging large CPT schedules. In
comparison, the original CR schedule matches baseline perplexity at a cost of 7 GBitOps, again showing that
CPT performance can be improved by exploring alternative schedules within our proposed suite.

XNLI. Experiments follow the settings of a fine-tuning example scripts within the HuggingFace transformers
code repository [124, 239]. We use the BERT-base-cased-multilingual pre-trained model. Fine-tuning
progresses for 2 total epochs with a batch size of 64 and a sequence length of 128. The initial learning rate
is chosen from the set {5 × 10−6, 1 × 10−5, 5 × 10−5} and is derived separately for each baseline model
and CPT scheduling variant using a hold-out validation set. The learning rate is decayed linearly by 10×
throughout fine-tuning. For CPT, we use qmin = 5, qmax ∈ {6, 8}, and n = 2. Notable, we adopt a smaller
value of n here because training on proceeds for 2 epochs, and we found that n ∈ {1, 2} perform similarly.

In experiments with mBERT in Figure 21, we again see deteriorated performance when qmax = 6. When
qmax = 8, we see a clear correlation between training compute and test accuracy. For example, large schedules,
which require the fewest number of effective bit operations, perform significantly worse than other scheduling
variants, while medium schedules tend to match baseline performance at a 25% reduction in compute costs.
Most interestingly, large schedules (e.g., ETH) improve upon baseline performance by as much as 2% in
absolute test accuracy and still reduce the total cost of training.

6.4.5 Best Practices for CPT

Practitioners will often be faced with choosing a single CPT schedule for training their model. There is no
one CPT schedule that is “best” for every domain. Though the choice of CPT schedule is dependent upon
several factors, we can provide the following insight for choosing the most appropriate schedule for a given
application.

• Minimizing training cost: small schedules yield the largest efficiency gains (but may degrade model
performance).

• Maximizing model performance: large schedules consistently match or exceed baseline accuracy,
even in large-scale experiments.

• Finding a balance: medium schedules consistently reduce training cost while maintaining reasonable
performance.

Such recommendations are reflective of the empirical correlation we observe between model performance and
training cost in the majority of domains. In most cases, as expected, more aggressive quantization during
training will come at the cost of slightly reduced model performance.
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6.5 Connection to Critical Learning Periods

To better understand why we observe a direct relationship between model performance and total cost of training,
we draw a connection between low precision training and critical learning periods in deep networks [3]. In
particular, we show via experiments across multiple domains that low precision training is a form of training
impairment that can cause permanent damage to network performance if applied too aggressively during the
early, critical phase of learning.

6.5.1 Is low precision training a learning impairment?

We consider three settings—image classification with ResNet-74 on CIFAR-10, image classification with
ResNet-18 on ImageNet, and node classification with GCNs on OGBN-Arxiv. All hyperparameter settings
match those outlined in Sections 6.4.2 and 6.4.3.37 Two types of experiments are performed:

• Train with low precision for R epochs or iterations at the beginning of training (qt = qmin) for t < R),
then use high precision for the remainder of training (qt = qmax for t > R).

• Train with low precision (qt = qmin) during a span of training iterations and adopt a high precision level
(qt = qmax) outside of this span (i.e., “probing”).

The goal of these experiments is to determine i) if low precision training impairs a neural network’s learning
process and ii) whether this deficit or impairment is specific to the early, critical phase of learning.

Node Classification. Critical learning experiments with node classification on OGBN-Arxiv match the
hyperparameter and architecture settings described above. In the first group of experiments, we begin by
training GCNs with low precision for R epochs (qt = qmin = 3 for t < R), where several different values of
R ∈ {0, 100, 200, . . . , 1000} are tested. After this initial period of low precision training, the GCN is further
trained using higher precision (qt = qmax = 8) for 1000 epochs (i.e., the normal training duration).

In the second group of experiments, we train the GCN for 2000 total epochs. During training, we
perform low precision training (qt = qmin = 3) for a total of 500 epochs. These 500 epochs of low precision
training are placed at different points in the training process. In particular, we consider the following low
precision training windows: [0, 500], [100, 600], [200, 700], [300, 800], [400, 900].38 Low precision training
is performed in these windows, and normal precision (qt = qmax = 8) is adopted outside of the windows. We
test each window with a separate experiment.

The results of critical learning period experiments with OGBN-Arxiv are displayed in Figure 22. As shown
in the leftmost subplot, the model’s test accuracy deteriorates smoothly as the value of R increases, indicating
that adopting low precision for a sufficient duration of time at the beginning of training can permanently
damage model performance. The most significant deterioration in GCN test accuracy occurs when lower
precision is maintained throughout the early training epochs, during which model accuracy improves the most

37The manner in which learning rate decay is performed could impact the final result of critical learning period experiments [3].
We test multiple learning rate decay strategies and find that they perform similarly. As such, we adopt a simple schedule that decays
the learning rate normally throughout training.

38Here, each number represents an epoch. The window [100, 600] means that low precision training was performed between
epochs 100 and 600.
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Figure 22: Test accuracy of GCNs trained on OGBN-Arxiv with different forms of learning impairments.
(left-blue) Final accuracy of GCNs that are trained using qt = 3 for R epochs, then trained normally with
qt = 8 for 1000 epochs. (left-green) Per-epoch test accuracy of a GCN trained normally with qt = 8. (right)
Final test accuracy of GCNs trained for a total 1000 epochs using qt = 8, where a 500 epoch window using a
lower precision of qt = 3 is placed at different points within the training process.

(i.e., see the green curve in the left subplot of Figure 22). If this deficit is removed quickly, model performance
does not deteriorate as drastically.

In probing experiments, shown in the right subplot of Figure 22, we see that applying window of low
precision training yields the most noticeable accuracy deterioration at the beginning of the training process.
Such a finding reveals that the performance deterioration associated with sufficiently-long periods of low
precision training seems to be specific to the early, critical period of training. Such a finding provides insight
as to why CPT deteriorates model performance when aggressive quantization schedules are adopted.

Image Classification. We perform similar critical learning period analysis in the image classification domain;
see Table 16. On CIFAR-10, we again observe that test accuracy deteriorates smoothly as R increases,
reaching a plateau around R = 128K. When a deficit window of 128K iterations is probed throughout the
training process (i.e., bottom CIFAR-10 subsection in Table 16), we see that the impact of low precision
training is most pronounced during the early training iterations. Due to computational expense, experiments
on ImageNet only consider learning deficits applied at the beginning of training. Nonetheless, we again see
that the test accuracy of models trained on ImageNet deteriorates as the value of R is increased. Even in
large-scale experiments, network performance is sensitive to low precision training during the early part of
training.

Discussion. Low precision training is a form of learning impairment that can cause permanent performance
deterioration if applied during the early phase of learning. Such behavior is reminiscent of using improper
regularization during training, which permanently impairs network performance if applied during early
epochs [86]. Though training precision is known to impact the training process similarly to the learning
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Setting Deficit Window Test Accuracy

ResNet-74 on CIFAR-10

None 92.23 ± 0.09
[0, 16K] 92.03 ± 0.06
[0, 32K] 92.01 ± 0.05
[0, 64K] 92.04 ± 0.05
[0, 128K] 91.64 ± 0.05
[0, 256K] 91.25 ± 0.03

[16K, 144K] 92.08 ± 0.20
[32K, 160K] 92.16 ± 0.09
[64K, 192K] 92.12 ± 0.04

ResNet-18 on ImageNet
None 67.44 ± 0.12
[0, 25] 66.93 ± 0.06
[0, 100] 66.65 ± 0.10

Table 16: Test accuracy of ResNets trained on CIFAR-10 and ImageNet with a low precision training deficit
applied during different windows of time. Deficit windows are listed in terms of training iterations for
CIFAR-10 and in terms of epochs for ImageNet.

rate [75], it can also be viewed as a form of regularization, which explains the correlation that is observed
between training compute and model performance in Section 6.4. Although CPT can regularize the training
process and improve model performance, schedules that apply quantization too aggressively during the critical
period will experience a degradation in performance. As can be seen in Figure 22 and Table 16, this problem
can be solved by simply delaying the use of low precision until later during the training process.

6.6 Conclusion

We perform an empirical analysis of different dynamic precision schedules for quantized training with DNNs.
We find for low precision training techniques that a correlation exists between the amount of compute used
during training and the model’s performance, making the selection of a CPT schedule a simple tool for
balancing performance and efficiency in DNN training. To explain this correlation, we draw a connection
between low precision training and critical learning periods, finding that low precision training can permanently
deteriorate model performance if applied during early epochs of training. We hope our findings will be helpful
in furthering the adoption of quantized training techniques.

7 Closing Remarks

Despite the contributions of this work, adoption of deep learning-based technology is in its infancy. As
emerging technologies continue to evolve, the most impactful techniques will continue to be those that
focus upon performance, cost, and simplicity. We see this, for example, with the rising popularity of large
language models [27], which leverage a simple, text-to-text interface for accurately solving a variety of
different problems with a single model. Initially, such models were incredibly expensive to train, making them
inaccessible to most practitioners [45, 217]. However, access was quickly democratized [226], such that large
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language models could be successfully trained and analyzed even within academic labs that lack industry-scale
compute resources [42, 82]. Such accessibility has only further catalyzed the popularity and usage of large
language models, making them one of the most widely-recognized deep learning-based technologies to date.
Similarly, as existing and future topics in deep learning research continue to develop, including our own
contributions, we argue that those ideas that provide simple, efficient, and accurate solutions to practical
problems will have the most lasting impact.

As mentioned at the outset of this document, our research aims to make deep learning-based technology
more practically useful. By focusing on modifications to the training process and the model itself, we have
provided several proposals that tangibly improve the performance, cost, and complexity of deep learning. In
Section 2, we propose a distributed training methodology for GCNs that can significantly accelerate large-scale
experiments with modest compute resources. Through our exploration of provable pruning techniques in
Sections 3 and 4, we enable state-of-the-art performance to be achieved with smaller DNNs and propose
methods that significantly reduce the computational expense of DNN pruning. Our proposal of CSSL in
Section 5 provides an intuitive and performant technique for adapting DNNs to incoming streams of data
that is easy to implement, deploy, and analyze theoretically. Finally, the precision schedules analyzed in
Section 6 show that simple hyperparameter scheduling techniques can improve DNN training efficiency and
performance.
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A GIST: Distributed Training for Large-Scale Graph Convolutional Net-
works

A.1 Experimental Details

A.1.1 Datasets

The details of the datasets utilized within GIST experiments in Section 2.4 are provided in Table 17. Cora,
Citeseer, PubMed and OGBN-Arxiv are considered “small-scale” datasets and are utilized within experiments
in Section 2.4.1. Reddit and Amazon2M are considered “large-scale” datasets and are utilized within
experiments in Section 2.4.2.

Dataset n # Edges # Labels d

Cora 2 708 5 429 7 1,433
CiteSeer 3 312 4 723 6 3,703
Pubmed 19 717 44 338 3 500
OGBN-Arxiv 169 343 1.2M 40 128
Reddit 232 965 11.6 M 41 602
Amazon2M 2.5 M 61.8 M 47 100

Table 17: Details of relevant datasets.

A.1.2 Implementation Details

We provide an implementation of GIST in PyTorch [193] using the NCCL distributed communication package
for training GCN [141], GraphSAGE [92] and GAT [227] architectures. Our implementation is centralized,
meaning that a single process serves as a central parameter server. From this central process, the weights of the
global model are maintained and partitioned to different worker processes (including itself) for independent
training. Experiments are conducted with 8 NVIDIA Tesla V100-PCIE-32G GPUs, a 56-core Intel(R)
Xeon(R) CPU E5-2680 v4 @ 2.40GHz, and 256 GB of RAM.

A.1.3 Small-Scale Experiments

Small-scale experiments in Section 2.4.1 are performed using Cora, Citeseer, Pubmed, and OGBN-Arxiv
datasets [120, 208]. GIST experiments are performed with two, four, and eight sub-GCNs in all cases. We
find that the performance of models trained with GIST is relatively robust to the number of local iterations ζ,
but test accuracy decreases slightly as ζ increases; see Figure 24. Based on the results in Figure 24, we adopt
ζ = 20 for Cora, Citeseer, and Pubmed, as well as ζ = 100 for OGBN-Arxiv.

Experiments are run for 400 epochs with a step learning rate schedule (i.e., 10× decay at 50% and 75%
of total epochs). A vanilla GCN model, as described in [141], is used. The model is trained in a full-batch
manner using the Adam optimizer [140]. No node sampling techniques are employed because the graph is
small enough to fit into memory. All reported results are averaged across five trials with different random
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Figure 23: Test accuracy for different sizes (i.e., varying depth and width) of GCN models trained with
standard, single-GPU methodology on small-scale datasets. We adopt three-layer, 256-dimensional GCN
models as our baseline architecture.
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Figure 24: Test accuracy of GCN models trained on small-scale datasets with GIST using different numbers
of local iterations and sub-GCNs.

seeds. For all models, d0 and dL are respectively given by the number of features and output classes in the
dataset. The size of all hidden layers is the same, but may vary across experiments.

We first train baseline GCN models of different depths and hidden dimensions using a single GPU to
determine the best model depth and hidden dimension to be used in small-scale experiments. The results are
shown in Figure 23. Deeper models do not yield performance improvements for small-scale datasets, but test
accuracy improves as the model becomes wider. Based upon the results in Figure 23, we adopt a three-layer
GCN with a hidden dimension of d1= d2=256 as the underlying model used in small-scale experiments.
Though two-layer models seem to perform best, we use a three-layer model within Section 2.4.1 to enable
more flexibility in examining the partitioning strategy of GIST.

A.1.4 Large-Scale Experiments

Reddit Dataset. For experiments on Reddit, we train 256-dimensional GraphSAGE and GAT models using
both GIST and standard, single-GPU methodology. During training, the graph is partitioned into 15 000

sub-graphs. Training would be impossible without such partitioning because the graph is too large to fit into
memory. The setting for the number of sub-graphs is the optimal setting proposed in previous work [43].
Models trained using GIST and standard, single-GPU methodologies are compared in terms of F1 score and
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training time.
All tests are run for 80 epochs with no weight decay, using the Adam optimizer [140]. We find that

ζ = 500 achieves consistently high performance for models trained with GIST on Reddit. We adopt a batch
size of 10 sub-graphs throughout the training process, which is the optimal setting proposed in previous work
[43].

Amazon2M Dataset. For experiments on Amazon2M, we train two to four layer GraphSAGE models with
hidden dimensions of 400 and 4 096 using both GIST and standard, single-GPU methodology. We follow the
experimental settings of [43]. The training graph is partitioned into 15 000 sub-graphs and a batch size of 10
sub-graphs is used. We find that using ζ = 5 000 performs consistently well. Models are trained for 400 total
epochs with the Adam optimizer [140] and no weight decay.

A.1.5 Training Ultra-Wide GCNs

All settings for ultra-wide GCN experiments in Section 2.4.3 are adopted from the experimental settings
of Section 2.4.2; see Appendix A.1.4 for further details. For di > 4 096 evaluation must be performed on
graph partitions (not the full graph) to avoid memory overflow. As such, the graph is partitioned into 5 000

sub-graphs during testing and F1 score is measured over each partition and averaged. All experiments are
performed using a GraphSAGE model, and the hidden dimension of the underlying model is changed between
different experiments.

A.1.6 GIST with Layer Sampling

Experiments in Section 2.4.4 adopt the same experimental settings as Section 2.4.2 for the Reddit dataset; see
Appendix A.1.4 for further details. Within these experiments, we combine GIST with LADIES [276], a recent
layer sampling approach for efficient GCN training. LADIES is used instead of graph partitioning. Any node
sampling approach can be adopted—some sampling approach is just needed to avoid memory overflow.

We train 256-dimensional GCN models with either two or three layers. We utilize a vanilla GCN model
within this section (as opposed to GraphSAGE or GAT) to simplify the implementation of GIST with LADIES,
which creates a disparity in F1 score between the results in Section 2.4.4 and Section 2.4.2. Experiments
in Section 2.4.4 compare the performance of the same models trained either with GIST or using standard,
single-GPU methodology. In this case, the single-GPU model is just a GCN trained with LADIES.

A.2 GIST vs. Other Distributed Training Methods

Although GIST has been shown to provide benefits in terms of GCN performance and training efficiency
in comparison to standard, single-GPU training, other choices for the distributed training of GCNs exist.
Within this section, we compare GIST to other natural choices for distributed training, revealing that GCN
models trained with GIST achieve favorable performance in comparison to those trained with other common
distributed training techniques.
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# Machines Method F1 Score Training Time

2 Local SGD 96.37 137.17s
GIST 96.40 108.67s

4 Local SGD 95.00 127.63s
GIST 96.16 116.56s

8 Local SGD 93.40 129.58s
GIST 95.46 123.83s

Table 18: Performance of GraphSAGE models trained using local SGD and GIST on Reddit. We adopt
settings described in Section 2.4.2, but use 100 local iterations for both GIST and local SGD.

A.2.1 Local SGD

A simple version of local SGD [158] can be implemented for distributed training of GCNs by training the
full model on each separate worker for a certain number of local iterations and intermittently averaging local
updates. In comparison to such a methodology, GIST has better computational and communication efficiency
because i) it communicates only a small fraction of model parameters to each machine and ii) locally training
narrow sub-GCNs is faster than locally training the full model. We perform a direct comparison between
local SGD and GIST on the Reddit dataset using a two-layer, 256-dimensional GraphSAGE model; see Table
18. As can be seen, GCN models trained with GIST have lower wall-clock training time and achieve better
performance than those trained with local SGD in all cases.

# Machines Method F1 Score Inference Time

2 Ensemble 96.31 3.59s
GIST 96.40 1.81s

4 Ensemble 96.10 6.38s
GIST 96.16 1.81s

8 Ensemble 95.28 11.95s
GIST 95.46 1.81s

Table 19: Performance of GraphSAGE models trained both with GIST and as ensembles of shallow sub-GCNs
on Reddit.

A.2.2 Sub-GCN Ensembles

As previously mentioned, increasing the number of local iterations (i.e., ζ in Algorithm 1) decreases com-
munication requirements given a fixed amount of training. When taken to the extreme (i.e., ζ → ∞), one
could minimize communication requirements by never aggregating sub-GCN parameters, thus forming an
ensemble of independently-trained sub-GCNs. We compare GIST to such a methodology39 in Table 19
using a two-layer, 256-dimensional GraphSAGE model on the Reddit dataset. Though training ensembles

39For each sub-GCN, we measure validation accuracy throughout training and add the highest-performing model into the ensemble.
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of sub-GCNs minimizes communication, Table 19 reveals that i) models trained with GIST achieve better
performance and ii) inference time for sub-GCN ensembles becomes burdensome as the number of sub-GCNs
is increased.

A.3 Supplementary Information

All code for this project is publicly-available via github at the following link: https://github.com/
wolfecameron/GIST

B How much pre-training is enough to discover a good subnetwork?

B.1 Proofs

B.1.1 Convergence Analysis

We consider the following update rule for greedy forward selection, as described in Algorithm 2.

(Select new neuron): qk = argmin
q∈Vert(Mn)

ℓ
(
1
k · (zk−1 + q)

)
(23)

(Add neuron to subnetwork): zk = zk−1 + qk (24)

(Uniform average of neuron outputs): uk =
1

k
· zk. (25)

Prior to presenting the proofs of the main theoretical results, we introduce several relevant technical lemmas.

Lemma 5. Consider uk,uk−1 ∈ MN , representing adjacent iterates of (23)-(25) at step k. Additionally,
consider an arbitrary update q ∈ Vert(MN ), such that zk = zk−1+q and uk = 1

kzk. Then, we can derive
the following expression for the difference between adjacent iterates of (23)-(25):

uk − uk−1 =
1

k
(q− uk−1)

Lemma 6. Because the objective ℓ(·), defined over the spaceMN , is both quadratic and convex, the following
expressions hold for any s ∈MN :

ℓ(s) ≥ ℓ(uk−1) + ⟨∇ℓ(uk−1), s− uk−1⟩
ℓ(s) ≤ ℓ(uk−1) + ⟨∇ℓ(uk−1), s− uk−1⟩+ ∥s− uk−1∥22
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Observation 1. From Lemma 6, we can derive the following inequality.

LN ≥ L⋆N = min
s∈MN

ℓ(s)

≥ min
s∈MN

{ℓ(uk−1) + ⟨∇ℓ(uk−1), s− uk−1⟩}

= ℓ(uk−1) + ⟨∇ℓ(uk−1), sk − uk−1⟩ .

Lemma 7. Assume there exists a sequence of values {zk}k≥0 such that z0 = 0 and

|zk+1|2 ≤ |zk|2 − 2β|zk|+ C, ∀k ≥ 0

where C and β are positive constants. Then, it must be the case that |zk| ≤ max
(√

C, C2 ,
C
2β

)
for k > 0.

Proof. We use an inductive argument to prove the above claim. For the base case of z0 = 0, the claim is
trivially true because |z0| = 0 ≤ max

(√
C, C2 ,

C
2β

)
. For the inductive case, we define f(x) = x2−2βx+C.

It should be noted that f(·) is a 1-dimensional convex function. Therefore, given some closed interval [a, b]
within the domain of f , the maximum value of f over this interval must be achieved on one of the end points.
This fact simplifies to the following expression, where a and b are two values within the domain of f such
that a ≤ b.

max
x∈[a,b]

f(x) = max{f(a), f(b)}

From here, we begin the inductive step, for which we consider two cases.

Case 1: Assume that |zk| ≤ C
2β . Then, the following expression for |zk+1| can be derived.

|zk+1|2 ≤ f(|zk|) ≤ max
z

{
f(z) : z ∈

[
0, C

2β

]}
= max

{
f(0), f

(
C
2β

)}
= max

{
C,

C2

4β2

}
≤
[
max

(√
C,

C

2
,
C

2β

)]2

Case 2: Assume that |zk| ≥ C
2β . Then, the following expression can be derived.

|zk+1|2 ≤ |zk|2 − 2β|zk|+ C
i)

≤ |zk|2 ≤
[
max

(√
C,

C

2
,
C

2β

)]2
where i) holds because 2β|zk| ≥ C. In both cases, it is shown that |zk+1| ≤ max

(√
C, C2 ,

2
2β

)
. Therefore,

the lemma is shown to be true by induction.

Observation 2. We commonly refer to the value of LN , representing the quadratic loss of the two-layer
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network over the full dataset. The value of LN can be expressed as follows.

LN = ℓ

 1

N

∑
v∈Vert(MN )

v

 =
1

2m
∥f(X,Θ)−Y∥22

The expression above is derived by simply applying the definitions associated with ℓ(·) that are provided in
Section 3.2.

B.1.2 Proof of Lemma 1

We now present the proof of Lemma 1.

Proof. We define L⋆N = min
s∈MN

ℓ(s). Additionally, we define sk as follows.

sk = argmin
s∈MN

{⟨∇ℓ(uk−1), s− uk−1⟩} = argmin
s∈Vert(MN )

{⟨∇ℓ(uk−1), s− uk−1⟩} .

The second equality holds because a linear objective is being optimized on a convex polytopeMN . Thus, the
solution to this optimization is known to be achieved on some vertex v ∈ Vert(MN ). Recall, as stated in
Section 3.2, that DMN

denotes the diameter of the marginal polytopeMN .
We assume the existence of some global two-layer neural network with N hidden neurons from which the

pruned network is derived. It should be noted that the N neurons of this global network are used to define the
vertices v ∈ Vert(MN ) as described in Section 3.2. As a result, the loss of this global network, which we
denote as LN , is the loss achieved by a uniform average over the N vertices ofMN (i.e., see (3)). In other
words, the loss of the global network at the time of pruning is given by the expression below; see Observation
2.

LN = ℓ

 1

N

∑
v∈Vert(MN )

v


It is trivially known that LN ≥ L⋆N . Intuitively, the value of LN has an implicit dependence on the

amount of training underwent by the global network. However, we make no assumptions regarding the global
network’s training (i.e., LN can be arbitrarily large for the purposes of this analysis). Using Observation 1, as
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well as Lemmas 5 and 6, we derive the following expression for the loss of iterates obtained with (25).

ℓ(uk)
i)
= min

q∈Vert(MN )
ℓ

(
1

k
(zk−1 + q)

)
ii)

≤ ℓ

(
1

k
(zk−1 + sk)

)
iii)

≤ ℓ(uk−1) +

〈
∇ℓ(uk−1),

1

k
(zk−1 + sk)− uk−1

〉
+

∥∥∥∥1k (zk−1 + sk)− uk−1

∥∥∥∥2
2

iv)
= ℓ(uk−1) +

〈
∇ℓ(uk−1),

1

k
(sk − uk−1)

〉
+

∥∥∥∥1k (sk − uk−1)

∥∥∥∥2
2

v)

≤ ℓ(uk−1) +

〈
∇ℓ(uk−1),

1

k
(sk − uk−1)

〉
+

1

k2
· D2

MN

= ℓ(uk−1) +
1

k
⟨∇ℓ(uk−1), sk − uk−1⟩+

1

k2
· D2

MN

vi)

≤
(
1− 1

k

)
ℓ(uk−1) +

1

k
· L⋆N +

1

k2
· D2

MN

vii)

≤
(
1− 1

k

)
ℓ(uk−1) +

1

k
· LN +

1

k2
· D2

MN

where i) is due to (23)-(25), ii) is because sk ∈ Vert(MN ), iii) is from Lemma 6, iv) is from Lemma
5 since it holds 1

kzk−1 − uk−1 = − 1
kuk−1 ⇒ uk−1 = 1

k−1zk−1, v) is from the definition of DMN
, and

vi− vii) are due to Observation 1. We can then rearrange terms to yield the following recursive expression.

ℓ(uk) ≤
(
1− 1

k

)
ℓ(uk−1) +

1

k
LN +

1

k2
D2

MN
⇒

ℓ(uk)− LN −
1

k
· D2

MN
≤
(
1− 1

k

)
·
(
ℓ(uk−1)− LN −

1

k
· D2

MN

)
By unrolling the recursion in this expression over k iterations, we get the following:

ℓ(uk)− LN −
1

k
· D2

MN
≤

k∏
i=2

(
1− 1

i

)
·
(
ℓ(u1)− LN −

1

2
· D2

MN

)
⇒

ℓ(uk)− LN −
1

k
· D2

MN
≤ 1

k
·
(
ℓ(u1)− LN −

1

2
· D2

MN

)
By rearranging terms, we arrive at the following expression

ℓ(uk) ≤
1

k
·
(
ℓ(u1)− LN +

1

2
D2

MN

)
+ LN ≤ O

(
1

k

)
+ LN (26)
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From here, we expand this expression as follows, yielding the final expression from Lemma 1.

ℓ(uk) ≤
1

k

(
ℓ(u1)− LN +

1

2
D2

MN

)
+ LN

=
1

k

(
ℓ(u1) +

1

2
D2

MN

)
+

k − 1

k
LN

=
1

k
ℓ(u1) +

1

2k
D2

MN
+

k − 1

k
LN

B.1.3 Proof of Lemma 2

Proof. The proof of Lemma 2 will proceed in two parts. First, we will shows that the iterates derived via
Algorithm 3 satisfy Lemma 1. Then, we will derive a bound on the total communication cost across iterations
of Algorithm 3.

Convergence Guarantee. Each compute node vi ∈ V maintains an active set of neurons derived from the
pruning process with Algorithm 3. We will denote this set of active neurons, which is maintained globally, as
S . During each iteration k of Algorithm 3, we compute q(i)k = argmin

q∈Vert(M(i)
N )

ℓ( 1k (zk−1+q)). Notably,
this selection process considers the global objective function ℓ(·), which is identical to objective used for
forward selection in Algorithm 2.

We can compute the value of the global objective function ℓ(·) locally for each vi ∈ V by only considering
the information present on vi. To see this, we note that each compute node stores i) a global copy of zk−1,
ii) an identical copy of the data and ii) the weights associated with neurons A(i). As such, we can compute
any q ∈ Vert(M(i)

N ) as [σ(x(1),θj) . . . σ(x(m),θj)]/
√
m for j ∈ A(i). Then, we can sum this result with

the local copy of zk−1 to compute the global objective function ℓ(·) on compute node vi. It should be noted
that if we have instead of copy of active neuron weights stored on each compute node, then we could easily
similarly reconstruct the vector zk−1 from these weights.

Step I in Algorithm 3 computes a local solution to the global objective ℓ(·) over the neuronsA(i) available
on compute node vi. This local solution q

(i)
k is then used to compute the local estimate z

(i)
k . From here, Step

II compares the best objective values obtained locally on each compute node vi for all i ∈ [V ] and identifies
the node that achieves the best local result. Assuming without loss of generality that the best objective value
is achieved on node i, the vector z(i)k is then broadcast as the next global value of zk.

Given that Steps I and II are performed with respect to the global objective loss ℓ(·) and considering that⋃V
j=1A(j) = [N ], each iteration of Algorithm 3 greedily selects the globally best neuron to be included in the

active set. As such, the iterates of Algorithm 3 satisfy Lemma 1, yielding an identical convergence rate—in
terms of the number of total iterations—between Algorithms 2 and 3.

Communication Guarantee. Currently, Algorithm 3 assumes that we store a global copy of zk on each
compute node vi for i ∈ [V ]. However, the vector zk ∈ Rm is quite large in the big data regime, which can
lead to increased communication and memory overhead. Alternatively, we could store the weights of neurons
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in the active set {θj : j ∈ S}. From these weights we could easily perform the following reconstruction.

zk =
1√
m

∑
j∈S

[σ(x(1),θj), σ(x
(2),θj), . . . , σ(x

(m), θj)]

Thus, Algorithm 3 could be modified by broadcasting the neuron weights associated with the greedily selected
neuron at each iteration, while still satisfying Lemma 1.

With this in mind, iteration k ≥ 0 of Algorithm 3 requires that each node vj ∈ V broadcast a constant
number of real values, which yields a communication complexity of O (V B) per iteration. Additionally, node
vik must broadcast the selected neuron’s weights of size d+ 1, which yields a communication complexity of
O(Bd). As mentioned above, Algorithm 3 will terminate after k = O(1ϵ ) iterations according to Lemma 1,
which yields a total communication complexity of O ((Bd+ V B)/ϵ).

B.1.4 Proof of a Faster Rate

Similar to [251], we can obtain a faster O( 1
k2
) rate under assumption 1 and the assumption that B(y, γ) ∈

MN .

Lemma 8. Assume that Assumption 1 holds and B(y, γ) ∈MN . Then, the following bound is achieved for
two-layer neural networks of width N after k iterations of greedy forward selection:

ℓ(uk) = O
(

1

k2min(1, γ)

)
, where γ is a positive constant.

Proof. We define wk = k(y − uk). Also recall that ℓ(z) = 1
2∥z − y∥22. Furthermore, we define sk+1 as

follows.

sk+1 = argmin
s∈MN

∇ℓ(uk)
⊤(s− uk)

= argmin
s∈MN

⟨∇ℓ(uk), s− uk⟩

i)
= argmin

s∈MN

⟨uk − y, s− uk⟩

= argmin
s∈MN

⟨−wk, s− uk⟩

= argmin
s∈MN

⟨wk,uk − s⟩

= argmin
s∈MN

{⟨wk,uk⟩+ ⟨wk,−s⟩}

= argmin
s∈MN

⟨wk,−s⟩

= argmin
s∈MN

⟨wk,y − s⟩
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where i) follows from (7). Notice that sk minimizes a linear objective (i.e., the dot product with wk)
over the domain of the marginal polytopeMN . As a result, the optimum is achieved on a vertex of the
marginal polytope, implying that sk ∈ Vert(MN ) for all k > 0. We assume that B(y, γ) ∈ MN . Under
this assumption, it is known that s⋆ = y + γ wk

∥wk∥2 ∈MN , which allows the following to be derived.

⟨wk,y − sk+1⟩ = min
s∈MN

⟨wk,y − s⟩

≤ ⟨wk,y − s⋆⟩
= −γ∥wk∥2 (27)

From (25), the following expressions for uk and qk can be derived.

uk =
1

k
· zk =

1

k
· [(k − 1)uk−1 + qk] (28)

qk = argmin
q∈Vert(MN )

ℓ

(
1

k
[zk−1 + q]

)
= argmin

q∈Vert(MN )

∥∥∥∥1k [(k − 1)uk−1 + q]− y

∥∥∥∥2
2

(29)

Combining all of this together, the following expression can be derived for ∥wk∥22, where DMN
is the

diameter ofMN :

∥wk∥22 = ∥k(y − uk)∥22 = ∥k(uk − y)∥22
i)
= min

q∈MN

∥k( 1k [(k − 1)uk−1 + q]− y)∥22

= min
q∈MN

∥(k − 1)uk−1 + q− ky∥22

= min
q∈MN

∥ − (k − 1)y + (k − 1)uk−1 + q− y∥22

= min
q∈MN

∥ −wk−1 − y + q∥22

= min
q∈MN

∥wk−1 + y − q∥22
ii)

≤ ∥wk−1 + y − sk∥22
= ∥wk−1∥22 + 2⟨wk−1,y − sk⟩+ ∥y − sk∥22
≤ ∥wk−1∥22 + 2⟨wk−1,y − sk⟩+D2

MN

iii)

≤ ∥wk−1∥22 − 2γ∥wk−1∥2 +D2
MN

where i) follows from (28) and (29), ii) follows from the fact that sk ∈ MN , and iii) follows from (27).
Therefore, from this analysis, the following recursive expression for the value of ∥wk∥2 is derived:

∥wk∥22 ≤ ∥wk−1∥22 − 2γ∥wk−1∥2 +D2
MN

(30)
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Then, by invoking Lemma 7, we derive the following inequality.

∥wk∥22 ≤ max

{
DMn ,

D2
MN

2
,
D2

MN

2γ

}

= O
(

1

min(1, γ)

)
With this in mind, the following expression can then be derived for the loss ℓ(uk) achieved by (23)-(25) after
k iterations.

ℓ(uk) =
1

2
∥uk − y∥22 =

∥wk∥22
2k2

= O
(

1

k2min(1, γ)2

)
This yields the desired expression, thus completing the proof.

B.1.5 Training Analysis

Prior to analyzing the amount of training needed for a good pruning loss, several supplemental theorems and
lemmas exist that must be introduced. From [191], we utilize theorems regarding the convergence rates of
two-layer neural networks trained with GD and SGD. We begin with the theorem for the convergence of GD
in Theorem 7, then provide the associated convergence rate for SGD within Theorem 8. Both Theorems 7 and
8 are simply restated from [191] for convenience purposes.

Theorem 7. [191]. Assume there exists a two-layer neural network and associated dataset as described in
Section 3.2. Denote N as the number of hidden neurons in the two-layer neural network, m as the number
of unique examples in the dataset, and d as the input dimension of examples in the dataset. Assume without
loss of generality that the input data within the dataset is normalized so that ∥x(i)∥2 = 1 for all i ∈ [m].
A moderate amount of overparameterization within the two-layer network is assumed, given by Nd > m2.
Furthermore, it is assumed that m > d and that the first and second derivatives of the network’s activation
function are bounded (i.e., |σ′

+(·)| ≤ δ and |σ′′
+(·)| ≤ δ for some δ ∈ R). Given these assumptions, the

following bound is achieved with a high probability by training the neural network with gradient descent.

∥f(X,Θt)−Y∥2 ≤
(
1− c

d

m

)t

· ∥f(X,Θ0)−Y∥2 (31)

In (31), c ∈ R, Θt = {θ1,t, . . . ,θN,t} represents the network weights at iteration t of gradient descent,
f(·, ·) ∈ Rm represents the network output over the full dataset X ∈ Rm×d, and Y = [y(1), . . . , y(m)]T

represents a vector of all dataset labels. Θ0 is assumed to be randomly sampled from a normal distribution
(i.e., Θ0 ∼ N (0, 1)).

Theorem 8. [191]. Here, all assumptions of Theorem 7 are adopted, but we assume the two-layer neural
network is trained with SGD instead of GD. For SGD, parameter updates are performed over a sequence of
randomly-sampled examples within the training dataset (i.e., the true gradient is not computed for each update).
Given the assumptions, there exists some event E with probability P [E] ≥ max

(
κ, 1− c1

(
c2
√

m
d

) 1
Nd

)
,
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where c1, c2, κ ∈ R, 0 ≤ c1 ≤ 4
3 , and 0 < κ ≤ 1. Given the event E, with high probability the following

bound is achieved for training a two-layer neural network with SGD.

E
[
∥f(X,Θt)−Y∥221E

]
≤
(
1− c

d

m2

)t

· ∥f(X,Θ0)−Y∥22 (32)

In (32), c ∈ R, Θt represent the network weights at iteration t of SGD, 1E is the indicator function for
event E, f(·, ·) represents the output of the two layer neural network over the entire dataset X ∈ Rm×d, and
Y ∈ Rm represents a vector of all labels in the dataset.

It should be noted that the overparameterization assumptions within Theorems 7 and 8 are very mild,
which leads us to adopt this analysis within our work. Namely, we only require that the number of examples
in the dataset exceeds the input dimension and the number of parameters within the first neural network layer
exceeds the squared size of the dataset. In comparison, previous work lower bounds the number of hidden
neurons in the two-layer neural network (i.e., more restrictive than the number of parameters in the first layer)
with higher-order polynomials of m to achieve similar convergence guarantees [8, 60, 151].

In comparing the convergence rates of Theorems 7 and 8, one can notice that these linear convergence
rates are very similar. The extra factor of m within the denominator of Theorem 8 is intuitively due to the fact
that m updates are performed in a single pass through the dataset for SGD, while GD uses the full dataset at
every parameter update. Such alignment between the convergence guarantees for GD and SGD allows our
analysis to be similar for both algorithms.

B.1.6 Proof of Theorem 1

We now provide the proof for Theorem 1.

Proof. From Theorem 8, we have a bound for E
[
∥f(X,Θt)−Y∥221E

]
, where ∥f(X,Θt)−Y∥22 represents

the loss over the entire dataset after t iterations of SGD (i.e., without the factor of 1
2 ). Two sources of

stochasticity exist within the expectation expression E
[
∥f(X,Θt)−Y∥221E

]
: i) randomness over the event

E and ii) randomness over the t-th iteration of SGD given the first t− 1 iterations. The probability of event E
is independent of the randomness over SGD iterations, which allows the following expression to be derived.

E
[
∥f(X,Θt)−Y∥221E

] i)
= E

[
∥f(X,Θt)−Y∥22

]
· E [1E ]

ii)

≥ max

(
κ, 1− c1

(
c2

√
m

d

) 1
Nd

)
E
[
∥f(X,Θt)−Y∥22

]
where i) holds from the independence of expectations and ii) is derived from the probability expression for
event E in Theorem 8. Notably, the expectation within the above expression now has only a single source of
stochasticity—the randomness over SGD iterations. Combining the above expression with (32) from Theorem
8 yields the following, where two possible cases exist.
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Case 1: max
(
κ, 1− c1(c2

√
m
d )
)
= 1− c1(c2

√
m
d )(

1− c1

(
c2

√
m

d

) 1
Nd

)
E
[
∥f(X,Θt)−Y∥22

]
≤
(
1− c

d

m2

)t

∥f(X,Θ0)−Y∥22 ⇒

E
[
∥f(X,Θt)−Y∥22

]
≤
(
1− c1

(
c2

√
m

d

) 1
Nd

)−1(
1− c

d

m2

)t

∥f(X,Θ0)−Y∥22 (33)

Case 2: max
(
κ, 1− c1(c2

√
m
d )
)
= κ

κ · E
[
∥f(X,Θt)−Y∥22

]
≤
(
1− c

d

m2

)t

∥f(X,Θ0)−Y∥22 ⇒

E
[
∥f(X,Θt)−Y∥22

]
≤ κ−1

(
1− c

d

m2

)t

∥f(X,Θ0)−Y∥22 (34)

From here, we use Observation 2 to derive the following, where the expectation is with respect to
randomness over SGD iterations (i.e., we assume the global two-layer network of width N is trained with
SGD).

E[LN ] = E
[

1

2m
∥f(X,Θt)−Y∥22

]
i)
=

1

2m
E
[
∥f(X,Θt)−Y∥22

]
Here, the equality in i) holds true because 1

2m is a constant value given a fixed dataset. Now, notice
that this expectation expression E

[
∥f(X,Θt)−Y∥22

]
is identical to the expectation within (33)-(34) (i.e.,

both expectations are with respect to randomness over SGD iterations). Thus, the above expression can be
combined with (33) and (34) to yield the following.

E[LN ] ≤ 1

2m

[
max

(
κ,

(
1− c1

(
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∥f(X,Θ0)−Y∥22 (35)

Then, we can substitute (35) into Lemma 1 to derive the final result, where expectations are with respect to

randomness over SGD iterations. We also defineL0 = ∥f(X,Θ0)−Y∥22 and ζ =
[
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B.1.7 Proof of Theorem 2

We now provide the proof for Theorem 2.

Proof. We begin with (36) from the proof of Theorem 1.

E[ℓ(uk)] ≤
1

k
E[ℓ(u1)] +

1

2k
E[D2

MN
] +

(k − 1)ζ

2mk

(
1− c

d

m2

)t

L0

It can be seen that all terms on the right-hand-side of the equation above will decay to zero as k increases
aside from the rightmost term. The rightmost term of (36) will remain fixed as k increases due to its factor of
k − 1 in the numerator.

Within (36), there are two parameters that can be modified by the practitioner: N (i.e., ζ depends on N )
and t. All other factors within the expressions are constants based on the dataset that cannot be modified.
N only appears in the 1 − c1

(
c2
√

m
d

) 1
Nd factor of ζ, thus revealing that the value of N cannot be naively

increased within (36) to remove the factor of k − 1.
To determine how t can be modified to achieve a better pruning rate, we notice that a setting of(

1− c d
m2

)t
= O

(
1
k

)
would cancel the factor of k − 1 in (36). With this in mind, we observe the fol-

lowing.

(
1− c

d

m2

)t

= O

(
1

k

)
⇒

t · log
(
1− c

d

m2

)
= O(− log(k))⇒

t =
O(− log(k))

log(1− c d
m2 )
⇒

t ≈ O

(
− log(k)

log(1− c d
m2 )

)
(37)

If the amount of training in (37) is satisfied, the factor of k − 1 in the rightmost term in Eq. (36) will be
canceled, causing the expected pruning loss to decay to zero as k increases. Based on Theorem 8, it must be
the case that (1− c d

m2 ) ∈ [0, 1] in order for SGD to converge. As a result, lim
t→∞

(1− c d
m2 )

t = 0, causing the
rightmost term in (36) to approach zero as t → ∞. In other words, the value of t can increase beyond the
bound in (37) without damaging the loss of the pruned network, as the rightmost term in (36) will simply
become zero. This observation that t can increase beyond the value in (37) yields the final expression for the
number of SGD iterations required to achieve the desired O( 1k ) pruning rate.

t ⪆ O

(
− log(k)

log(1− c d
m2 )

)
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B.1.8 Supplemental Result and Proof with GD

In addition to the proof of Theorem 2, we provide a similar result for neural networks trained with GD to
further support our analysis of the amount of training required to achieve good loss via pruning.

Theorem 9. Assume a two-layer neural network of width N was trained for t iterations with gradient descent
over a dataset of size m. Furthermore, assume that Nd > m2 and m > d, where d represents the input
dimension of data in D. When the network is pruned via (23)-(25), it will achieve a loss L′ ∝ O( 1k ) if the
number of gradient descent iterations t satisfies the following condition.

t ⪆ O

(
− log(k)

log
(
1− c d

m

)) (38)

Otherwise, the loss of the pruned network will not improve during successive iterations of (23)-(25).

Proof. Beginning with Lemma 1, we can use Theorem 7 to arrive at the following expression. Here, we
define L0 = ∥f(X,Θ0)−Y∥22 and define LN as described in Observation 2.
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d
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)2t · L0 (39)

where i) is due to Observation 2 and ii) is from Theorem 7. From this expression, one can realize that an
O( 1k ) rate is only achieved if the factor of k − 1 within the rightmost term of (39) is removed. This factor, if
not counteracted, will cause the upper bound for ℓ(uk) to remain constant, as the right hand expression of (39)
would be dominated by the value of L0. However, this poor upper bound can be avoided by manipulating the
(1− c d

m)2t term to eliminate the factor of k − 1. For this to happen, it must be true that (1− c d
m)2t ≈ O( 1k ),

which allows the following asymptotic expression for t to be derived.(
1− c

d

m

)2t

= O(
1

k
)⇒

2t · log
(
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d

m

)
= O(− log(k))⇒

t =
O(− log(k))

2 · log
(
1− c d

m

) ⇒
t ≈ O

(
− log k

log
(
1− c d

m

)) (40)

If the amount of training in (40) is satisfied, it allows the factor of k − 1 in the rightmost term of 39 to be
canceled. It is trivially true that lim

t→∞
(1− c d

m)2t = 0 because (1− c d
m) ∈ [0, 1] if gradient descent converges;

see Theorem 7. As a result, the rightmost term in (39) also approaches zero as t increases, allowing the O( 1k )

pruning rate to be achieved. This observation that t can be increased beyond the value in (40) without issues
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m MNIST CIFAR10

1000 1 4
2000 1 7
3000 1 6
4000 2 9
5000 2 10

Table 20: Results of empirically analyzing whether y ∈ MN . For each of the possible datasets and sizes,
we report the number of training epochs required before the assumption was satisfied for the best possible
learning rate setting.

leads to the final expression from Theorem 9.

t ⪆ O

(
− log(k)

log
(
1− c d

m

))

B.2 Empirical Analysis of y ∈MN

To achieve the faster rate provided in Lemma 8, we make the assumption that B(y, γ) ∈MN . If it is assumed
that γ > 0, this assumption is slightly stronger than y ∈MN , as it implies y cannot lie on the perimeter of
MN . However, this assumption roughly requires that y ∈MN . Although previous work has attempted to
analyze this assumption theoretically [251], it is not immediately clear whether this assumption is reasonable
in practice.

We perform experiments using two-layer neural networks trained on different image classification datasets
to determine if this assumption is satisfied in practice. Namely, we train a two-layer neural network on
uniformly downsampled (i.e., equal number of examples taken from each class) versions of the MNIST and
CIFAR10 datasets and test the y ∈MN condition following every epoch (i.e., see Section B.2.2 for details).
We record the first epoch of training after which y ∈MN is true and report the results in Table 20. As can be
seen, the assumption is never satisfied at initialization and tends to require more training for larger datasets.

B.2.1 Models and Datasets

All tests were performed with a two-layer neural network as defined in Section 3.2. This model contains
a single output neuron, N hidden neurons, and uses a smooth activation function (i.e., we use the sigmoid
activation). For each test, we ensure the overparameterization requirements presented in Theorem 2 (i.e.,
Nd > m2 and m > d, where N is the number of hidden neurons, d is the input dimension, and m is the
size of the dataset) are satisfied. For simplicity, the network is trained without any data augmentation, batch
normalization, or dropout.

Experiments are performed using the MNIST and CIFAR10 datasets. These datasets are reduced in size
in order to make overparameterization assumptions within the two-layer neural network easier to satisfy. In
particular, we perform tests with 1000, 2000, 3000, 4000, and 5000 dataset examples for each of the separate
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m N

1000 1300
2000 6000
3000 12000
4000 21000
5000 32000

Table 21: Displays the hidden dimension of the two-layer neural network used to test the y ∈MN assumption
for different dataset sizes. Hidden dimensions are the same between tests with MNIST and CIFAR10.

datasets, where each dataset size is constructed by randomly sampling an equal number of data examples form
each of the ten possible classes. Additionally, CIFAR10 images are downsampled from a spatial resolution of
32× 32 to a spatial resolution of 18× 18 using bilinear interpolation to further ease overparameterization
requirements. Dataset examples were flattened to produce a single input vector for each image, which can be
passed as input to the two-layer neural network.

The number of hidden neurons utilized for tests with different dataset sizes m are shown in Table 21, where
the selected value of N is (roughly) the smallest round value to satisfy overparameterization assumptions.
The hidden dimension of the two-layer network was kept constant between datasets because the CIFAR10
images were downsampled such that the input dimension is relatively similar to MNIST. To improve training
stability, we add a sigmoid activation function to the output neuron of the two-layer network and train the
network with binary cross entropy loss. The addition of this output activation function slightly complicates
the empirical determination of whether y ∈MN , which is further described in Section B.2.2. Despite slightly
deviating from the setup in Section 3.2, this modification greatly improves training stability and is more
realistic (i.e., classification datasets are not regularly trained with ℓ2 regression loss as described in Section
3.2). The network is trained using stochastic gradient descent.40 We adopt a batch size of one to match the
stochastic gradient descent setting exactly and do not use any weight decay.

B.2.2 Determining Convex Hull Membership

As mentioned in Section 3.2, we define y =
[
y(1), y(2), . . . , y(m)

]
/
√
m as a vector containing all labels in our

dataset (i.e., in this case, a vector of binary labels). Furthermore, we define ϕi,j = σ(x(j),θi) as the output of
neuron i for example j in the dataset. These values can be concatenated as Φi = [ϕi,1, ϕi,2, . . . , ϕi,m] /

√
m,

forming a vector of output activations for each neuron over the entire dataset. Then, we define MN =

Conv {Φi : i ∈ [N ]}. It should be noted that the activation vectors Φi are obtained from the N neurons of a
two-layer neural network that has been trained for any number of iterations T . For the experiments in this
section, the vectors Φi are computed after each epoch of training to determine whether y ∈ MN , and we
report the number for the first epoch in which this membership is satisfied.

The convex hull membership problem can be formulated as a linear program, and we utilize this formula-
tion to empirically determine when y ∈MN . In particular, we consider the following linear program.

40Experiments are repeated with multiple learning rates and the best results are reported.
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min c⊤α (41)

s.t. Aα = y

Zα = 1

α ≥ 0

where c ∈ RN is an arbitrary cost vector, A = (Φ1 . . .ΦN ) ∈ Rm×N , and Z = (1 . . . 1) ∈ R1×N , and α

is the simplex being optimized within the linear program. If a viable solution to the linear program in (41)
can be found, then it is known that y ∈MN . Therefore, we empirically solve for the vectors y and (Φi)

N
i=1

using the two-layer neural network after each epoch and use the linprog package in SciPy to determine
whether (41) is solvable, thus allowing us to determine when y ∈MN

In our actual implementation, we slightly modify the linear program in (41) to account for the fact that our
two-layer neural network is trained with a sigmoid activation on the output neuron. Namely, one can observe
that for targets of one, the neural network output can be considered correct if the output value is greater than
zero and vice versa. We formulate the following linear program to better reflect this correct classification
behavior:

min c⊤α (42)

s.t. Aα < 0

Bα > 0

Zα = 1

α ≥ 0

where A ∈ R
m
2
×N is a matrix of feature column vectors corresponding to a label of zero, B ∈ R

m
2
×N is a

matrix of feature column vectors corresponding to a label of one, and other variables are defined as in (41). In
words, (42) is solvable whenever a simplex can be found to re-weight neuron outputs such that the correct
classification is produced for all examples in the dataset. The formulation in (42) better determines whether
y ∈MN given the modification of our two-layer neural network to solve a binary classification problem.
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Figure 25: The performance of two-layer networks with different hidden dimensions over the entire, binarized
MNIST dataset that have been pruned to various different hidden dimensions.

B.3 Experimental Details

B.3.1 Two-layer Network Experiments

Algorithm 6: Greedy Forward Selection for Two-Layer Network
N := hidden size; P := pruned size; D := training dataset
Θ := weights; Θ⋆ = ∅
i = 0

while i < P do
j = 0

best_idx = −1
L⋆ =∞
X ′,y′ ∼ D
while j < N do
Lj = 1

2

(
f(Θ⋆∪j)(X′)− y′)2

if Lj < L⋆ then
L⋆ = Lj
best_idx = j

end
j = j + 1

end
Θ⋆ = Θ⋆ ∪ best_idx
i = i+ 1

end
returnΘ⋆

We first provide a clear algorithmic description of the pruning algorithm used within all two-layer network
experiments. This algorithm closely reflects the update rule provided in (10). However, instead of measuring
loss over the full dataset to perform greedy forward selection, we perform selection with respect to the loss
over a single mini-batch to improve the efficiency of the pruning algorithm. We use f(Θ,X ′) to denote the
output of a two-layer network network with parameters Θ over the mini-batch X ′ and fS(Θ,X ′) to denote
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Figure 26: Validation accuracy of two-layer networks on binarized versions of MNIST as described in
the Two-layer Network Experiments Section in the main text. Different subplots display results for several
different learning rates for models trained with different settings of m and N (i.e., dataset size and number of
hidden neurons, respectively). Shaded regions represent standard deviations of results, recorded across three
separate trials.

the same output only considering the neuron indices included within the set S. Notice that a single neuron
can be selected more than once during pruning.

We now present in-depth details regarding the hyperparameters that were selected for the two-layer
network experiments in the main text. To tune hyperparameters, we perform a random 80-20 split to generate
a validation set. Experiments are repeated three times for each hyperparameter setting, and hyperparameters
that yield the best average validation performance are selected.

Models are trained using SGD with momentum of 0.9 and no weight decay. Perturbing weight decay
and momentum hyperparameters does not meaningfully impact performance, leading us to maintain this
setting in all experiments with two-layer networks. We also use a batch size of 128, which was the largest size
that could fit in the memory of our GPU. To determine the optimal learning rate and number of pre-training
iterations, we adopt the same setup as described in the Two-layer Network Experiments section in the main
text and train two-layer networks of various sizes with numerous different learning rates. These experiments
are then replicated across several different sub-dataset sizes. The results of these experiments are shown in
Figure 26. From these results, it can be seen that the optimal learning rate does not change with the size of the
dataset, but it does depend on the size of the network. Namely, for two-layer networks with 5K or 10K hidden
neurons the optimal learning rate is 1e-5, while for two-layer networks with 20K hidden neurons the optimal
learning rate is 1e-6. It can also be seen in Figure 26 that models converge in roughly 8000 training iterations
for all experimental settings, which leads us to adopt this amount of pre-training in the main experiments.
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To determine the optimal pruned model size, we first fully pre-train two-layer networks of different hidden
sizes (i.e., N ∈ {5K, 10K, 20K}) over the full, binarized MNIST dataset. Then, these models are pruned to
different hidden neuron sizes between 1 and 500. At each possible hidden dimension for the pruned model, we
measure the performance of the pruned model over the entire training dataset. The results of this experiment
are depicted in Figure 25. As can be seen, the accuracy of the pruned models plateaus at a hidden dimension
of 200 (roughly). As a result, we adopt a size of 200 neurons as our pruned model size within all two-layer
network experiments.

B.3.2 CNN Experiments

Algorithm 7: Greedy Forward Selection for Deep CNN
C := hidden sizes; ϵ := stopping criterion; D := training dataset
Θ := weights; L := # Layers; Θ⋆

ℓ = ∅ ∀ℓ ∈ [L]

ℓ = 0

while ℓ < L do
while convergence criterion is not met do

j = 0

best_idx = −1
L⋆ =∞
X ′,y′ ∼ D
while j < Cℓ do

Θ′ = Θ⋆ ∪Θℓ: ∪ (Θ⋆
ℓ ∪ j)

Lℓ,j = 1
2 (fΘ′(X′)− y′)2

if Lℓ,j < L⋆ then
L⋆ = Lℓ,j
best_idx = j

end
j = j + 1

end
Θ⋆

ℓ = Θ⋆
ℓ ∪ best_idx

end
ℓ = ℓ+ 1

end
returnΘ⋆

We begin with an in-depth algorithmic description of the greedy forward selection algorithm that was used for

structured, channel-based pruning of multi-layer CNN architectures. This algorithm is identical to the greedy
forward selection algorithm adopted in [251]. In this algorithm, we denote the weights of the deep network
as as Θ, and reference the weights within layer ℓ of the network as Θℓ. Similarly, we use Θℓ: to denote the
weights of all layers following layer ℓ and Θ:ℓ to denote the weights of all layers up to and including layer ℓ.
C denotes a list of hidden sizes within the network, where Cℓ denotes the number of channels within layer ℓ
of the CNN. Again, we use f(Θ,X ′) to denote the output of a two-layer network with parameters Θ over
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Figure 27: Subnetwork validation accuracy on the CIFAR10 dataset for different settings of ϵ and initial
learning rate for fine-tuning. All models are pre-trained identically for 200 epochs. Fine-tuning is performed
for 80 epochs, and we report validation accuracy for each subnetwork at the end of fine-tuning.

the mini-batch X ′ and fS(Θ,X ′) to denote the same output only considering the channel indices included
within the set S.

Now, we present more details regarding the hyperparameters that were utilized within large-scale experi-
ments. For ImageNet experiments, we adopt the settings of [251].41 For CIFAR10, however, we tune both the
setting of ϵ and the initial learning rate for fine-tuning using a grid search for both MobileNetV2 and ResNet34
architectures. This grid search is performed using a validation set on CIFAR10, constructed using a random
80-20 split on the training dataset. Optimal hyperparameters are selected based on their performance on the
validation set. The results of this grid search are shown in Figure 27. As can be seen, for MobileNetV2, the
best results are achieved using a setting of ϵ = 0.02, which results in a subnetwork with 60% of the FLOPS
of the dense model. Furthermore, an initial learning rate of 0.01 yields consistent subnetwork performance for
MobileNetV2. For ResNet34, a setting of ϵ = 0.05 yields the best results and yields a subnetwork with 60%
of the FLOPS of the dense model. Again, an initial learning rate of 0.01 for fine-tuning yields the best results
for ResNet34. For the rest of the hyperparameters used within CIFAR10 experiments (i.e., those used during
pre-training), we adopt the settings of a widely-used, open-source repository that achieves good performance
on CIFAR10 [160].

C i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

C.1 Experimental Details

C.1.1 Synthetic Experiments

Here, we present the details for generating the synthetic data used for pruning experiments with i-SpaSP on
two-layer neural networks presented in Section 4.6.1. It should be noted that the synthetic data generated
within this set of experiments does not correspond to the input data matrix X ∈ Rdin×B described in Section
4.2. Rather, the synthetic data that is generated {H(i)}Ki=1 corresponds to the hidden representation of a

41We adopt the same experimental settings, but decrease the number of fine-tuning epochs from 150 to 80 because we find that
testing accuracy reaches a plateau well-before 150 epochs.
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Figure 28: Performance of two-layer networks with different hyperparameter settings on the MNIST
validation set. From left to right, subplots depict different hidden dimensions, pre-training epochs, and
learning rates. For each of the plots, the best setting with respect to other hyperparameters is displayed.

two-layer neural network, constructed as H(i) = σ(W (0) ·X) for some input X . Within these experiments,
we generate hidden representations instead of raw input because the row-compressibility ratio p considered
within Theorem 4 is with respect to the neural network’s hidden representations (i.e., not with respect to the
input).

Consider the i-th synthetic hidden representation matrix H(i) ∈ Rdhid×B , and assume this matrix has a
desired row-compressibility ratio p. For all experiments, we set B (i.e., the size of the dataset) to be 100.
Recall that all entries within H(i) must be non-negative due to the ReLU activation present within (16). For
each row j ∈ [dhid] of the matrix, the synthetic hidden representation is generated by i) computing the upper
bound on the sum of the values within this j-th row as R

i
1
p

and ii) randomly sampling B non-negative values

that, when summed together, do not exceed the upper bound.42 Here, R is a scalar constant as described in
Section 4.2, which we set to R = 1. After this process has been completed for each row, the rows of H(i) are
randomly shuffled so as to avoid rows being in sorted, magnitude order.

Within the experiments presented in Section 4.6.1, we generate three random matrices, following the
process described above, for each combination of dhid and p. Then, the average pruning results across each of
these three matrices is reported for each experimental setting. Experiments were also replicated with different
settings of R, but the results observed were quite similar. Further, the W (1) matrix used within the synthetic
experiments of Section 4.6.1 was generated using standard Kaiming initialization [106], which is supported in
deep learning packages like PyTorch [193].

C.1.2 Two-Layer Networks

Within this section, we provide all relevant experimental details for pruning experiments with two-layer
networks presented in Section 4.6.2.

Baseline Network. We begin by describing the baseline two-layer network that was used within pruning
42In practice, this is implemented by keeping a running sum and continually sampling numbers randomly within a range that does

not exceed the upper bound.
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experiments on MNIST, as well as relevant details for pre-training the network prior to pruning. The network
used within experiments in Section C.1.2 exactly matches the formulation in (16), and MNIST images are
flattened—forming a 784-dimensional input vector—prior to being passed as input to the network. The
network is first pre-trained on the MNIST dataset such that it has fully converged before being used in pruning
experiments. During pre-training, we optimize the network with stochastic gradient descent (SGD) using a
batch size of 128 and employ a learning rate step schedule that decays the learning rate 10× after completing
50% and 75% of total epochs. For all network and pre-training hyperparameters, we identify optimal settings
by dividing the MNIST training set randomly (i.e., a random, 80-20 split) into training and validation sets.
Then, performance is measured over the validation set using three separate trials and averaged to identify
proper hyperparameter settings.

We find that weight decay and momentum settings do not significantly impact network performance. Thus,
we use no weight decay during pre-training and set momentum to 0.9. The results of other hyperparameter
tuning experiments are provided in Figure 28. We test different hidden dimensions of the two-layer network
dhid ∈ {1× 103, 5× 103, 10 × 103}, finding that validation performance reaches a plateau when dhid =

10×103. We also test numerous possible learning rates η ∈ {1×10−5, 1×10−4, 1×10−3} and pre-training
epochs. Within these experiments, it is determined that a learning rate of η = 1× 10−3 with 200 epochs of
pre-training acheives the best performance on the validation set; as shown in the right and middle subplots of
Figure 28. Thus, the dense networks used for experiments within Section 4.6.2 has a hidden dimension of
10× 103 and is pre-trained for 200 epochs using a learning rate of 1× 10−3 prior to pruning being performed.

Network Pruning. The two-layer network described above is pruned using several greedy selection strategies,
including i-SpaSP, GFS, and Top-K. Each of these pruning strategies selects a subset of neurons within the
dense network’s hidden layer based on a mini-batch of data from the training set. Within all experiments, we
adopt a batch size of 512 for pruning.

For i-SpaSP, the pruning procedure follows the exact steps outlined in Algorithm 4. Within each iteration
of Algorithm 4, a new mini-batch of data is sampled to compute neuron importance. We use a fixed number
of iterations as the stopping criterion for i-SpaSP. In particular, we terminate the algorithm and return the
pruned model after 20 iterations, as the active set of neurons is consistently stable at this point.

An in-depth description of GFS is provided in [251]. For two-layer networks, GFS is implemented by, at
each iteration, sampling a new mini-batch of data and finding the neuron that, when included in the (initially
empty) active set, yields the largest decrease in loss over the mini-batch. This process is repeated until the
desired size of the pruned network has been reached—i.e., each iteration adds a single neuron to the pruned
network and the size of the pruned network is used as a stopping criterion. Top-K is a naive, baseline method
for greedy selection, which operates by computing hidden representations across the mini-batch and selecting
the k neurons with the largest-magnitude hidden activations (i.e., based on summing hidden representation
magnitudes across the mini-batch). Top-K performs the entire pruning process in one step using a single
mini-batch.
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C.1.3 Deep Convolutional Networks

Within this section, we provide relevant details to the large-scale CNN experiments on ImageNet (ILSVRC2012)
presented in Section 4.6.3.

Pruning Deep Networks. As described in Section 4.4.1, i-SpaSP is extended to deep networks by greedily
pruning each layer of the network from beginning to end. We prune filters within each block of the network
independently, where a block either consists of two 3× 3 convolution operations separated by batch normal-
ization and ReLU (i.e., BasicBlock for ResNet34) or a depth-wise, separable convolution with a linear
bottleneck (i.e., InvertedResidualBlock for MobileNetV2). We maintain the input and output channel
resolution of each block—choosing instead to reduce each block’s intermediate channel dimension—by
performing pruning as follows:

• BasicBlock: We obtain the output of the first convolution (i.e., after batch normalization and ReLU)
and perform pruning based on the forward pass of the second convolution, thus eliminating filters from
the output of the first convolution and, in turn, the input of the second convolution.

• InvertedResidualBlock: We obtain the output of the first 1×1 point-wise and 3×3 depth-wise
convolutions (i.e., after normalization and ReLU) and prune the filters of this representation based on
the forward pass of the last 1× 1 point-wise linear convolution, thus removing filters from the output of
the first point-wise convolution and, in turn, within the depth-wise convolution operation.

Thus, each convolutional block is separated into two components. Input data is passed through the first
component to generate a hidden representation, then i-SpaSP performs pruning using forward and backward
passes of the second component as in Algorithm 4. Intuitively, one can view the two components of each
block as the two neural network layers in (16). Due to implementation with automatic differentiation, pruning
convolutional layers is nearly identical to pruning two-layer network as described in Section 4.4.1, the only
difference being the need to sum over both batch and spatial dimensions in computing importance.

Pruning Ratios. As mentioned within Section 4.6.3, some blocks within each network are more sensitive
to pruning than others. Thus, pruning all layers to a uniform ratio typically does not perform well. Within
ResNet34, four groups of convolutional blocks exist, where each group contains a sequence of convolutional
blocks with the same channel dimension. Following the recommendations of [162], we avoid pruning the
fourth group of convolutional blocks, any strided blocks, or the last block in any group. The 2.69 GFlop
model in Table 7 uses a uniform ratio of 40% for all three groups (i.e., 60% of filters are eliminated from
each block). For the 2.13 GFlop model, the first group is pruned to a ratio of 20%, while the second and third
groups are pruned to a ratio of 30%.

Within MobileNetV2, we simply avoid pruning network blocks that are either strided or have different
input and output channel dimensions, leaving the following blocks to be pruned: 3, 5, 6, 8, 9, 10, 12, 13, 15,
16. We find that blocks 3, 5, 8, 15, and 16 are especially sensitive to pruning (i.e., pruning these layers causes
noticeable performance degradation), so we avoid aggressive pruning upon these blocks. The 260 MFlop
model is generated by pruning only blocks 6, 9, 10, 12, and 13 to a ratio of 40%. For the 242 MFlop and 220
MFlop models, we prune sensitive (i.e., blocks 3, 4, 8, 15, and 16) and not sensitive (i.e., blocks 6, 9, 10, 12,
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and 13) blocks with ratios of 40%/80% and 30%/70%, respectively. For the 220 MFlop model, we also prune
blocks 2, 11, and 17 to a ratio of 90% to further decrease the FLOP count.

Pruning Hyperparameters. Pruning of each layer is performed with a batch of 1280 data examples for both
ResNet34 and MobileNetV2 architectures. This batch of data can be separated into multiple mini-batches
(e.g., of size 256) during pruning. Such an approach allows the computation of i-SpaSP to be performed on
a GPU (i.e., all of the data examaples cannot simultaneously fit within memory of a typical GPU), but this
modification does not change the runtime of behavior of i-SpaSP. Furthermore, 20 total i-SpaSP iterations are
performed in pruning each layer. We find that adding more data or pruning iterations beyond these settings
does not provide any benefit to i-SpaSP performance.

Fine-tuning Details. For fine-tuning, we perform 90 epochs of fine-tuning using SGD with momentum and
employ a cosine learning rate decay schedule over the entire fine-tuning process beginning with a learning
rate of 0.01. For fine-tuning between the pruning of layers (i.e., a small amount of fine-tuning is performed
after each layer is pruned), we simply adopt the same fine-tuning setup with a fixed learning rate of 0.01 and
fine-tuning continues for one epoch. Our learning rate setup for fine-tuning matches that of [251, 252], but
we choose to perform fewer epochs of fine-tuning, as we find network performance does not improve much
after 90 epochs. In all cases, we adopt standard augmentation procedures for the ImageNet dataset during
fine-tuning (i.e., normalizing the data and performing random crops and flips).

C.1.4 Transformer Networks

Within this section, we provide all relevant experimental details for pruning experiments with two-layer
networks presenting in Section 4.6.4.

Baseline Network. We begin by describing the baseline network used within the structured attention head
pruning experiments. The network architecture used in all experiments is the multi-lingual BERT (mBERT)
model [53]. More specifically, we adopt the BERT-base-cased variant of the architecture, which is pre-trained
on a corpus of over 100 different languages. Beginning with this pre-trained network architecture, we fine-tune
the BERT model on the XNLI dataset for two epochs with the AdamW optimizer and a learning rate of
5× 10−5 that is decayed linearly throughout the training process. After the fine-tuning process, this model
achieves an accuracy of 71.02% on the XNLI test set.

Network Pruning. For all pruning experiments, we adopt a structured pruning approach that selectively
removes entire attention heads from network layers. We adopt two different pruning ratios: 25% and 40%.43

These ratios correspond to three and five attention heads (i.e., each layer of mBERT originally has 12 attention
heads) being retained within each layer of the network.

We compare the performance of i-SpaSP to a uniform pruning approach (i.e., randomly select attention
heads to prune within each layer) and a sensitivity-based, global pruning approach that was previously
proposed for structured pruning of attention heads [177]. For i-SpaSP and uniform pruning, one layer is
pruned at a time, starting from the first layer of the network and ending at the final layer. For the sensitivity-
based pruning technique, the pruning process is global and all layers are pruned simultaneously. After pruning

43Here, the pruning ratio refers to the number of attention heads remaining after pruning. For example, a 12-head layer pruned at a
ratio of 25% would have three remaining heads after pruning completes.
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has been completed, networks are fine-tuned for 0.5 epochs using the AdamW optimizer with a learning rate
of 5× 10−5 that is decayed linearly throughout the fine-tuning process. For i-SpaSP and the sensitivity-based
pruning approach, we adopt the same setting as previous experiments (i.e., see Section 4.6.3) and utilize a
subset of 1280 training data examples for pruning. Additionally, i-SpaSP performs 20 total iterations for the
pruning of each layer, which again reflects the settings used within previous experiments.

C.2 Main Proofs

C.2.1 Gradient of L(·, ·)

Consider the objective function given in (17):

L(U,U ′) =
1

2
∥U − U ′∥2F

=
1

2
∥W (1)H − U ′∥2F

We now show that, considering U ′ as a constant matrix,∇HL(U,U ′) = (W (1))⊤ · V .

Proof. Here, we consider U ′, the output of the pruned network, to be a constant matrix. To begin, consider
the derivative of L with respect to a single element of the matrix H , given by the row index k and column
index z.

∇Hkz

1

2
∥U − U ′∥2F = ∇Hkz

1

2

∑
ij

(Uij − U ′
ij)

2

= ∇Hkz

∑
ij

1

2
(Uij − U ′

ij)
2

i
=
∑
ij

(Uij − U ′
ij)
(
∇Hkz

(Uij − U ′
ij)
)

ii
=
∑
ij

(Uij − U ′
ij) (∇Hkz

Uij)

=
∑
ij

(Uij − U ′
ij)
(
∇Hkz

W
(1)
i,: H:,j

)
iii
=
∑
i

(Uiz − U ′
iz)(W

(1)
ik )

=
(
W

(1)
:,k

)⊤
·
(
U:,z − U ′

:,z

)
where i holds due to the chain rule, ii holds because entries of U ′ are considered constant, and iii holds by
eliminating all elements from the sum where ∇Hkz

W
(1)
i,: H:,j = 0. From here, we can now aggregate all the
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derivatives∇Hkz
L(U,U ′) into a single Jacobian matrix as follows to arrive at the desired expression.

∇HL(U,U ′) =
(
W (1)

)⊤
·
(
W (1)H − U ′

)
=
(
W (1)

)⊤
· V

C.2.2 Properties of µ(·)

Prior to providing any proofs of our theoretical results, we show a few properties of the function µ(·) defined
over matrices that will become useful in deriving later results. Given A ∈ Rm×n, µ(A) : Rm×n −→ Rm and
is defined as follows:

µ(A) =
n∑

i=1

A:,i

In words, µ(A) sums all columns within an arbitrary matrix A to produce a single column vector. We
now provide a few useful properties of µ(·).

Lemma 9. Consider two arbitrary matrices A ∈ Rm×n and B ∈ Rn×p. The following properties of µ(·)
must be true.

µ(A ·B) = A · µ(B)

µ(A+B) = µ(A) + µ(B)

Proof. Given the matrices A ∈ Rm×n and B ∈ Rn×p, we can arrive at the first property as follows:

µ(A ·B) =

p∑
i=1

(A ·B):,i =

p∑
i=1

A ·B:,i = A ·
(

p∑
i=1

B:,i

)
= A · µ(B)

Furthermore, the second property can be shown as follows:

µ(A+B) =

p∑
i=1

(A+B):,i =

p∑
i=1

A:,i +B:,i =

p∑
i=1

A:,i +

p∑
j=1

B:,j = µ(A) + µ(B)

C.2.3 Proof of Lemma 3

Here, we provide a proof for Lemma 3 from Section 4.5.

Proof. Consider an arbitrary iteration of Algorithm 4. We define the active neurons within the pruned network
entering this iteration as S. The notation S ′ will be used to refer to the active neurons in the pruned model
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after the completion of the iteration. Similarly, we will use the ·′ notation to refer to other constructions after
the iteration completes (e.g., V becomes V ′, R becomes R′, etc.)

We begin by defining and expanding the definitions of the matrices U , V , R, and Y considering the
substitution of H = Z + E;

U = W (1)H = W (1)(Z + E),

V = U −W (1)HS,: = W (1)(Z + E)−W (1)(Z + E)S,:,

R = Z − ZS,:,

Y = (W (1))TV.

Now, observe the following about Y .

Y = (W (1))⊤ · V

= (W (1))⊤
(
W (1)(Z + E)−W (1)(Z + E)S,:

)
= (W (1))⊤

(
W (1)Z +W (1)E −W (1)(ZS,:)−W (1)(ES,:)

)
= (W (1))⊤

(
W (1)(Z − ZS,:) +W (1)(E − ES,:)

)
= (W (1))⊤

(
W (1)(Z − ZS,:) +W (1)Ê

)
= (W (1))⊤W (1)(Z − ZS,:) + (W (1))⊤W (1)Ê,

where we denote Ê = E − ES,:. It should be noted that Ê is simply the matrix E with all the i-th rows set to
zero where i ∈ S . Invoking Lemma 9 in combination with the above expression, we can show the following.

µ(Y ) = (W (1))⊤W (1)µ(Z − ZS,:) + (W (1))⊤W (1)µ(Ê)

= (W (1))⊤W (1)
(
µ(R) + µ(Ê)

)
.

Based on the definition of H = Z + E, R must be s-row-sparse. This is because Z is s-row-sparse and
R = Z − ZS,:. Thus, the number of non-zero rows within R must be less than or equal to s (i.e., the rows
that are not subtracted out of Z by ZS,:). Denote ∆ = rsupp(R), where |∆| ≤ s. From the definition of Ω in
Algorithm 4, we have the following properties of Y :

∥µ(Y )|∆∥2 ≤ ∥µ(Y )|Ω∥2
i)

=⇒ ∥µ(Y )|∆\Ω∥2 ≤ ∥µ(Y )|Ω\∆∥2

where i) follows by removing indices within Ω∩∆. From here, we can upper bound the value of ∥µ(Y )|Ω\∆∥2
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as follows.

∥µ(Y )|Ω\∆∥2 =
∥∥∥((W (1))⊤W (1)µ(R)

)
|Ω\∆ +

(
(W (1))⊤W (1)µ(Ê)

)
|Ω\∆

∥∥∥
2

=
∥∥∥(W (1)

:,Ω\∆)
⊤W (1)µ(R) + (W

(1)
:,Ω\∆)

⊤W (1)µ(Ê)
∥∥∥
2

i)

≤
∥∥∥(W (1)

:,Ω\∆)
⊤W (1)µ(R)

∥∥∥
2
+
∥∥∥(W (1)

:,Ω\∆)
⊤W (1)µ(Ê)

∥∥∥
2

ii)

≤ δ3s∥µ(R)∥2 +
∥∥∥(W (1)

:,Ω\∆)
⊤W (1)µ(Ê)

∥∥∥
2

iii)

≤ δ3s∥µ(R)∥2 +
√

1 + δ2s∥W (1)µ(Ê)∥2
iv)

≤ δ3s∥µ(R)∥2 + (1 + δ2s)∥µ(Ê)∥2 +
1 + δ2s√

2s
∥µ(Ê)∥1

where i) follows from the triangle inequality, ii) holds from Corrolary 3.3 on RIP properties of W (1) in [184]
because |Ω∪∆| ≤ 3s, iii) holds from Proposition 3.1 on RIP properties of W (1) in [184] because |Ω\∆| ≤ 2s,
and iv) holds from Proposition 3.5 on RIP properties of W (1) in [184]. Now, we can also lower bound the
value of ∥µ(Y )|∆\Ω∥2 as follows:

∥µ(Y )|∆\Ω∥2 =
∥∥∥((W (1))⊤W (1)µ(R)

)
|∆\Ω +

(
(W (1))⊤W (1)µ(Ê)

)
|∆\Ω

∥∥∥
2

=
∥∥∥(W (1)

:,∆\Ω)
⊤W (1)µ(R) + (W

(1)
:,∆\Ω)

⊤W (1)µ(Ê)
∥∥∥
2

=
∥∥∥(W (1)

:,∆\Ω)
⊤W (1)µ(R)|∆\Ω + (W

(1)
:,∆\Ω)

⊤W (1)µ(R)|Ω + (W
(1)
:,∆\Ω)

⊤W (1)µ(Ê)
∥∥∥
2

i)

≥
∥∥∥(W (1)

:,∆\Ω)
⊤W (1)µ(R)|∆\Ω

∥∥∥
2
−
∥∥∥(W (1)

:,∆\Ω)
⊤W (1)µ(R)|Ω

∥∥∥
2
−
∥∥∥(W (1)

:,∆\Ω)
⊤W (1)µ(Ê)

∥∥∥
2

ii)

≥ (1− δs)∥µ(R)|∆\Ω∥2 −
∥∥∥(W (1)

:,∆\Ω)
⊤W (1)µ(R)|Ω

∥∥∥
2
−
∥∥∥(W (1)

:,∆\Ω)
⊤W (1)µ(Ê)

∥∥∥
2

iii
≥ (1− δs)∥µ(R)|∆\Ω∥2 − δs∥µ(R)|Ω∥2 −

√
1 + δs∥W (1)µ(Ê)∥2

iv)

≥ (1− δs)∥µ(R)|∆\Ω∥2 − δs∥µ(R)∥2 − (1 + δ2s)∥µ(Ê)∥2 +
1 + δ2s√

2s
∥µ(Ê)∥1

where i) follows from the triangle inequality. ii) follows from Proposition 3.1 in [184] and iii) follows from
Corollary 3.3 and Proposition 3.1 in [184] because |∆\Ω| ≤ s. Finally, iv) follows from Proposition 3.5
within [184]. By noting that µ(R)|∆\Ω = µ(R)|Ωc and combining the lower and upper bounds above, we
derive the following:

∥µ(R)|Ωc∥2 ≤
(δs + δ3s)∥µ(R)∥2 + 2

(
(1 + δ2s)∥µ(Ê)∥2 + 1+δ2s√

2s
∥µ(Ê)∥1

)
1− δs

(43)
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From here, we can show the following:

∥µ(R)|Ωc∥2
i)

≥ ∥µ(R)|Ω⋆c∥2
= ∥µ(Z − ZS,:)|Ω⋆c∥2
= ∥(µ(Z)− µ(Z)|S)|Ω⋆c∥2
ii)
= ∥µ(Z)|Ω⋆c∥2
= ∥µ(H − E)|Ω⋆c∥2
= ∥µ(H)|Ω⋆c − µ(E)|Ω⋆c∥2
iii)

≥ ∥µ(H)|Ω⋆c∥2 − ∥µ(E)|Ω⋆c∥2

(44)

where i) follows from the fact that Ω ⊆ Ω⋆, ii) follows from the fact that S ⊂ Ω⋆, and iii) follows from the
triangle inequality. Then, as a final step, we make the following observation, where we leverage notation from
Algorithm 4:

∥µ(H)− µ(H)|S′∥2 = ∥µ(H)− bs∥2
= ∥(µ(H)− b) + (b− bs)∥2
i)

≤ ∥µ(H)− b∥2 + ∥b− bs∥2
ii)

≤ 2∥µ(H)− b∥2
= 2∥µ(H)− µ(H)|Ω⋆∥2

(45)

where i) follow from the triangle inequality and ii) follows from the fact that bs is the best s-sparse approxi-
mation to b (i.e., µ(H) is a worse s-sparse approximation with respect to the ℓ2 norm). Now, noticing that
∥µ(H)− µ(H)|Ω⋆∥2 = ∥µ(H)|Ω⋆c∥2, we can aggregate all of this information as follows:

∥µ(H)− µ(H)|S′∥2 − 2∥µ(Ê)∥2
i)

≤ ∥µ(H)− µ(H)|S′∥2 − 2∥µ(E)|Ω⋆c∥2
ii)

≤ 2 (∥µ(H)− µ(H)|Ω⋆∥2 − ∥µ(E)|Ω⋆c∥2)
= 2 (∥µ(H)|Ω⋆c∥2 − ∥µ(E)|Ω⋆c∥2)
iii)

≤ 2∥µ(R)|Ωc∥2
iv)

≤
2(δs + δ3s)∥µ(R)∥2 + 4

(
(1 + δ2s)∥µ(Ê)∥2 + 1+δ2s√

2s
∥µ(Ê)∥1

)
1− δs

where i) holds because S ⊂ Ω⋆, ii) holds from (45), iii) holds from (44), and iv) hold from (43). By simply
moving the ∥µ(Ê)∥2 term to the other side of the inequality, we get the following:

∥µ(H)− µ(H)|S′∥2 ≤
2(δs + δ3s)∥µ(R)∥2 + (6 + 4δ2s − 2δs)∥µ(Ê)∥2 + 4(1+δ2s)√

2s
∥µ(Ê)∥1

1− δs
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From here, we recover µ(H)− µ(H)|S from µ(R) as follows:

∥µ(R)∥2 = ∥µ(Z − Z|S)∥2
= ∥µ(H − E − (H − E)|S)∥2
= ∥µ(H −H|S)− µ(E − E|S)∥2
i)

≤ ∥µ(H −H|S)∥2 + ∥µ(E − E|S)∥2
≤ ∥µ(H)− µ(H)|S∥2 + ∥µ(Ê)∥2

where i) holds from the triangle inequality. Combining this with the final inequality derived above, we
arrive at the following recursion for error between pruned and dense model hidden layers over iterations of
Algorithm 4:

∥µ(H)− µ(H)|S′∥2 ≤
2(δs+δ3s)∥µ(H)−µ(H)|S∥2+(6+2δ3s+4δ2s)∥µ(Ê)∥2+ 4(1+δ2s)√

2s
∥µ(Ê)∥1

1−δs

We now adopt an identical numerical assumption as [184] and assume that W (1) has restricted isometry
constant δ4s ≤ 0.1. Then, noting that δs, δ2s, δ3s ≤ δ4s ≤ 0.1 per Corollary 3.4 in [184], we substitute the
restricted isometry constants into the above recursion to yield the following expression:

∥µ(H)− µ(H)|S′∥2 ≤ 0.444∥µ(H)− µ(H)|S∥2 + 7.333∥µ(Ê)∥2 +
4.888√

2s
∥µ(Ê)∥1

= 0.444∥µ(H)− µ(H)|S∥2 + 7.333∥µ(Ê)∥2 +
3.456√

s
∥µ(Ê)∥1

If we invoke Lemma 9, unroll the above recursion over t iterations of Algorithm 4, notice it is always true that
∥Ê∥2 ≤ ∥E∥2 and ∥Ê∥1 ≤ ∥E∥1, and draw upon the property of ℓ1 and ℓ2 vector norms that ∥ · ∥2 ≤ ∥ · ∥1
we arrive at the desired result:

∥µ(H −HSt,:)∥2 = ∥µ(H)− µ(H)|St∥2

≤ (0.444)t∥µ(H)− µ(H)|S0∥2 + 14∥µ(E)∥2 +
7√
s
∥µ(E)∥1

≤ (0.444)t∥µ(H)∥2 +
(
14 +

7√
s

)
∥µ(E)∥1

C.2.4 Proof of Theorem 3

Here, we provide a proof of Theorem 3 from Section 4.5.

Proof. Consider an arbitrary iteration t of Algorithm 4 with a set of active neurons within the pruned model
denoted by St. The matrix Vt contains the residual between the dense and pruned model output over the entire
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dataset, as formalized below:

Vt = U − (W (1) ·HSt,:)

= (W (1) ·H)− (W (1) ·HSt,:)

= W (1) · (H −HSt,:)

Consider the squared Frobenius norm of the matrix Vt. We can show the following:

∥Vt∥2F = ∥W (1) · (H −HSt,:)∥2F

=

dout∑
i=1

B∑
j=1

(
dhid∑
z=1

W
(1)
iz (H −HSt,:)zj

)2

=

dout∑
i=1

B∑
j=1

(
W

(1)
i,: · (H −HSt,:):,j

)2
=

dout∑
i=1

B∑
j=1

(
|W (1)

i,: · (H −HSt,:):,j |
)2

i)

≤
dout∑
i=1

B∑
j=1

(
∥W (1)

i,: ∥2 · ∥(H −HSt,:):,j∥2
)2

=

dout∑
i=1

B∑
j=1

∥W (1)
i,: ∥22 · ∥(H −HSt,:):,j∥22

=

dout∑
i=1

B∑
j=1

(
dhid∑
k=1

(W
(1)
ik )2

)(
dhid∑
z=1

(H −HSt,:)
2
zj

)

=

(
dout∑
i=1

dhid∑
k=1

(W
(1)
ik )2

) B∑
j=1

dhid∑
z=1

(H −HSt,:)
2
zj


= ∥W (1)∥2F

dhid∑
z=1

B∑
j=1

(H −HSt , :)
2
zj


ii)

≤ ∥W (1)∥2F

(
dhid∑
z=1

µ(H −HSt,:)
2
z

)
= ∥W (1)∥2F · ∥µ(H −HSt,:)∥22

where i) follows from the Cauchy-Schwarz inequality and ii) follows from the fact that all entries of H−HSt,:

are non-negative. From here, we simply invoke Lemma 3 to arrive at the desired result.
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∥Vt∥F ≤ ∥W (1)∥F · ∥µ(H −HSt,:)∥2

≤ ∥W (1)∥F ·
(
(0.444)t∥µ(H)∥2 +

(
14 +

7√
s

)
∥µ(E)∥1

)

C.2.5 Proof of Lemma 4

Here, we provide the proof for Lemma 4 from Section 4.5.

Proof. Assume that we choose the s-row-sparse Z matrix within H = Z + E as follows

Z = HD,:, where D = argmin
D⊂[dhid]

∥µ(H)− µ(H)|D∥

The norm used within the above expression is arbitrary, as we simply care to select indices D such that
µ(H)|D contains the largest-magnitude components of µ(H). Such a property will be true for any ℓp norm
selection within the above equation, as they all ensure µ(H)|D is the best possible s-sparse approximation of
µ(H). From here, we have that E = H −HD, which yields the following:

∥µ(E)∥1 = ∥µ(H −HD)∥1
i)
= ∥µ(H)− µ(H)|D∥1
ii)

≤ R · s
1− 1

p

1
p − 1

where i) holds from Lemma 9 and ii) is a bound on the ℓ1 norm of the best-possible s-sparse approximation
of a p-compressible vector; see Section 2.6 in [184].

C.2.6 Proof of Theorem 5

Here, we generalize our theoretical results beyond single-hidden-layer networks to arbitrary depth networks.
For this section, we define the forward pass in a L-hidden-layer network via the following recursion:

H(ℓ) = σ(W (ℓ−1) ·H(ℓ−1))

where σ denotes the nonlinear ReLU activation applied at each layer and we have weight matricesW =

{W (0),W (1), . . . ,W (L)} and hidden representationsH = {H(0), H(1), . . . ,H(L)} for each of the L layers
within the network. Here, H(L) denotes the network output and H(0) = σ(W (0) ·X). It should be noted
that no ReLU activation is applied at the final network output (i.e., H(L) = W (L) ·H(L−1)). We denote the
pre-activation values each hidden representation as U (ℓ) = W (ℓ) ·H(ℓ−1).
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Proof. We denote the active set of neurons after t iterations at each layer ℓ as S(ℓ)t . The dense network output
is given by U (L) = H(L), and we compute the residual between pruned and dense networks at layer ℓ as
V

(ℓ)
t = U (ℓ) −W

(ℓ)

:,S(ℓ)
t

·H(ℓ−1)

S(ℓ)
t ,:

. We further denote U
(ℓ)′

t = W
(ℓ)

:,S(ℓ)
t

·H(ℓ−1)

S(ℓ)
t ,:

as shorthand for intermediate,

pre-activation outputs of the pruned network. For simplicity, we assume all hidden layers of the multi-layer
network have the same number of hidden neurons d and are pruned to a size s, such that s≪ d. Consider the
final output representation of an L-hidden-layer network H(L). We will now bound ∥V (L)

t ∥F , revealing that a
recursion can be derived over the layers of the network to upper bound the norm of the final layer’s residual
between pruned and dense networks.

Following previous proofs, we decompose the hidden representation at each layer prior to the output
layer as H(ℓ) = Z(ℓ) + E(ℓ) + ∆(ℓ), where Z(ℓ) is an s-row-sparse matrix and E(ℓ) and ∆(ℓ) are both
arbitrary-valued matrices. E(ℓ) denotes the same arbitrarily-valued matrix from the previous H = Z + E

formulation and ∆(ℓ) captures all error introduced by pruning layers prior to ℓ within the network. E(ℓ)

and ∆(L) can also be combined into a single matrix as Ξ(ℓ) = E(ℓ) +∆(ℓ). Now, we consider the value of
∥V (L)

t ∥F :

∥V (L)
t ∥F i

= ∥W (L)∥F ·
(
(0.444)t∥µ(H(L−1))∥2 +

(
14 +

7√
s

)
∥µ(Ξ(L−1))∥1

)
= ∥W (L)∥F ·

(
(0.444)t∥µ(H(L−1))∥2 +

(
14 +

7√
s

)
∥µ(E(L−1)) + µ(∆(L−1))∥1

)
ii
≤ ∥W (L)∥F ·

(
(0.444)t∥µ(H(L−1))∥2 +

(
14 +

7√
s

)(
∥µ(E(L−1))∥1 + ∥µ(∆(L−1))∥1

))
iii≈ ∥W (L)∥F ·

(
14 +

7√
s

)(
∥µ(E(L−1))∥1 + ∥µ(∆(L−1))∥1

)
(46)

where i holds from Theorem 3, ii holds from the triangle inequality, and iii holds by eliminating all terms
that approach zero with enough pruning iterations t. Now, notice that ∥µ(∆(L−1))∥1 characterizes the error
induced by pruning within the previous layer of the network, following the ReLU activation. Thus, our
expression for the error induced by pruning on network output is now expressed with respect to the pruning
error of the previous layer, revealing that a recursion can be derived for pruning error over the entire multi-layer
network. We now expand the expression for ∥µ(∆(ℓ))∥1 (i.e., we use arbitrary layer ℓ to enable a recursion
over layers to be derived).
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∥µ(∆(ℓ))∥1
i)
= ∥µ(σ(U (ℓ))− σ(U

(ℓ)′

t ))∥1
ii)

≤ ∥µ(σ(U (ℓ) − U
(ℓ)′

t ))∥1
= ∥µ(σ(V (ℓ)

t ))∥1

=

∥∥∥∥µ(σ(W (ℓ) ·
(
H(ℓ−1) −H

(ℓ−1)

S(ℓ−1)
t ,:

)))∥∥∥∥
1

iii)
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B∑
j=1

∣∣∣∣∣
(

d∑
z=1

W
(ℓ)
iz

(
H(ℓ−1) −H

(ℓ−1)

S(ℓ−1)
t ,:

)
zj
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d∑
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B∑
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(
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(ℓ−1)

S(ℓ−1)
t ,:

)
:,j
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iv)
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B∑
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∥W (ℓ)
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(
H(ℓ−1) −H

(ℓ−1)

S(ℓ−1)
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)
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=
∥∥∥vec(W (ℓ))

∥∥∥
1
·
∥∥∥∥µ(H(ℓ−1) −H

(ℓ−1)

S(ℓ−1)
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1

v)

≤
√
d
∥∥∥vec(W (ℓ))

∥∥∥
1
·
∥∥∥∥µ(H(ℓ−1) −H

(ℓ−1)

S(ℓ−1)
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)∥∥∥∥
2

vi)

≤
√
d
∥∥∥vec(W (ℓ))

∥∥∥
1

(
(0.444)t∥µ(H(ℓ−1))∥2 + (14 +

7√
s
)∥µ(Ξ(ℓ−1))∥1

)
vii)

≤
√
d
∥∥∥vec(W (ℓ))

∥∥∥
1

(
(0.444)t∥µ(H(ℓ−1))∥2 + (14 +

7√
s
)
(
∥µ(E(ℓ−1)∥1 + ∥µ(∆(ℓ−1)∥1
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≈
√
d
∥∥∥vec(W (ℓ))

∥∥∥
1
(14 +

7√
s
)
(
∥µ(E(ℓ−1)∥1 + ∥µ(∆(ℓ−1)∥1

)
where i) holds because ∆(ℓ) simply characterizes the difference between pruned and dense network hidden
representations, ii) holds due to properties of the ReLU function, iii) hold by expanding the expression
as a sum and replacing the ReLU operation with absolute value, iv) holds due to the Cauchy Schwarz
inequality, v) holds due to properties of ℓ1 norms, vi) holds due to Lemma 3, and vii) holds due to the
triangle inequality. As can be seen within the above expression, the value of ∥µ(∆(ℓ))∥1 can be expressed
with respect to ∥µ(∆(ℓ−1))∥1. Now, by beginning with (46) and unrolling the equation above over all L layers
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of the network, we obtain the following

∥V (L)
t ∥F ≤ O

 L∑
i=1

d
L−i
2

(
14 +

7√
s

)L−i+1 ∥∥∥µ(E(i))
∥∥∥
1

∥W (L)∥F
L−i∏
j=1

∥vec(W (j))∥1


Now, assume that H(ℓ) is p(ℓ)-row-compressible with factor R(ℓ) for ℓ ∈ [L−1]. Then, defining p = maxi p

(i)

and R = maxiR
(i), we invoke Lemma 4 to arrive at the desired result

∥V (L)
t ∥F ≤ O

 L∑
i=1

(
14 +

7√
s

)L−i+1
∥W (L)∥F

L−i∏
j=1

∥vec(W (j))∥1

(d
L−i
2 s

1− 1
p

1
p − 1

)
where R is factored out because it has no asymptotic impact on the expression.

C.3 Supplementary Information

All code for this project is publicly-available via github at the following link: https://github.com/
wolfecameron/i-SpaSP

D Cold Start Streaming Learning for Deep Networks

D.1 Experimental Details

D.1.1 Class-Incremental Learning

Here, we provide all details for the class-incremental streaming learning experiments presented in Section
5.6.1. For both CIFAR100 and ImageNet, the ordering of data (i.e., both by class and by example) is fixed for
all methodologies, such that data is always encountered in the same order.

Offline Training Details. For CIFAR100, Top-1 Ωall is computed using an offline-trained ResNet18 model
that achieves a Top-1 accuracy of 78.61%. This model is trained using standard data augmentation for
CIFAR100 (i.e., random crops and flips) using the SGD optimizer with momentum of 0.9 and an initial
learning rate of 0.1. The learning rate is decayed throughout training using a cosine learning rate decay
schedule over 200 total epochs. A weight decay of 5×10−4 is used. These offline training settings are adopted
from a widely-used repository for achieving state-of-the-art performance on CIFAR10 and CIFAR100 [160].

Similarly, Top-5 Ωall on ImageNet is computed using an offline-trained ResNet18 model that achieves
a Top-5 accuracy of 89.09%. This pre-trained model is made publicly available via torchvision [193] and
matches the offline normalization model used to evaluate class-incremental streaming learning on ImageNet
in previous work [103].

Data Details. On CIFAR100, the dataset is divided into batches of 20 classes, where the first 20 classes are
reserved for base initialization. Similarly, ImageNet is divided into batches of 100 classes, and the first 100
classes are used for base initialization. Evaluation occurs after each batch of data in the streaming process,
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and all testing events are aggregated within the Ωall score. For all baselines, standard test augmentations for
both CIFAR100 and ImageNet are adopted. Namely, because the feature extractors of ExStream, Deep SLDA,
and REMIND are fixed, we perform appropriate resizing, center cropping, and normalization (i.e., following
standard test settings of CIFAR100 and ImageNet) prior to passing each image into the fixed feature extractor.
REMIND also leverages random resized crops and manifold Mixup [228] on the feature representations stored
within the replay buffer throughout streaming. The proposed methodology leverages the data augmentation
policy described in Section 5.3, and images are cropped and normalized following standard practice prior to
augmentation.

Baseline Details. For ExStream, Deep SLDA, and REMIND, we utilize official, public implementations
within all experiments [99, 100, 101]. ExStream is optimized using Adam with a learning rate of 2×10−3 and
no weight decay, as in the official implementation. For CIFAR100, we modify the number of class exemplars
(i.e., 10K, 20K, . . . , 50K exemplars) to study ExStream’s behavior with different replay buffer sizes. For
ImageNet, we follow the settings of [103] and train ExStream using 20 and 100 exemplars per class for buffer
capacities of 1,5Gb and 8Gb, respectively. REMIND uses the SGD with momentum optimizer with a learning
rate that decays from 0.1 to 0.001 from the beginning to the end of each class. Momentum is set to 0.9 and
weight decay to 1 × 10−5. REMIND samples 100 and 50 replay samples during each online update for
CIFAR100 and ImageNet, respectively. For Deep SLDA, we adopt the variant that does not fix the covariance
matrix during the streaming process for all experiments. For REMIND, we perform experiments with a
version that exactly matches the settings of the original papers, as well as with a version that adds two extra
layers to the trainable portion of the ResNet18 model such that the number of trainable parameters between
REMIND and CSSL is identical. All other experimental settings for each of the baseline methodologies
exactly match the settings within each of the respective papers and/or public implementations [99, 100, 101].

All baseline methodologies perform base initialization over the first batch of data within the dataset. This
base initialization includes 50 epochs of tine-tuning, followed by the initialization of any algorithm-specific
modules to be used during the streaming process (e.g., the PQ module for REMIND). For fine-tuning, we
adopt the same hyperparameter settings used for training the offline baseline models. After base initialization,
streaming begins at the first class within the base initialization batch, meaning that data used within base
initialization is re-visited during streaming. For ExStream and Deep SLDA, models are initialized with
pre-trained ImageNet weights during base initialization on CIFAR100 experiments to enable more comparable
experimental results on the smaller dataset.

CSSL Details. The proposed methodology is trained with a SGD optimizer with momentum of 0.9 and a
learning rate that decays linearly from 0.1 to 0.001 from the first to last example of each class (i.e., the same
learning rate decay strategy as [103] is adopted). We use weight decay of 1 × 10−5. 100 replay samples
are used within each online update for both CIFAR100 and ImageNet. We utilize the augmentation strategy
described in Section 5.3 in all experiments. For Mixup and Cutmix, we utilize α values of 0.1 and 0.8,
respectively. For AutoAugment, we adopt the CIFAR and ImageNet learned augmentation policies for each of
the respective datasets. See Appendix D.2.1 for details regarding the derivation of the optimal augmentation
policy and associated hyperparameters. For experiments that begin with a pre-trained parameter setting,
we use identical training settings as used in base initialization for baseline methodologies to train model
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parameters over the first 20 classes of CIFAR100 or 100 classes of ImageNet, then use the resulting model
parameters to initialize CSSL for streaming.

D.1.2 Different Data Orderings

Here, we overview the experimental details of the experiments performed using the Core50 dataset [164] in
Section 5.6.2.

Data Orderings. Experiments are performed using four different data orderings: i.i.d. (ID), class i.i.d. (CID),
instance (I), and class-instance (CI). Such data orderings are described in detail in [164], but we also provide
a brief description of each ordering scheme below:

• i.i.d.: batches contain a uniformly random selection of images from the dataset.

• class i.i.d.: batches contain all images from two classes (i.e., out of ten total classes) in the
dataset.

• instance: batches contain all images, in temporal order, corresponding to 80 unique object instances
within the dataset.

• class-instance: batches contain images, in temporal order, corresponding to two classes in the
dataset.

For each of the four possible ordering, ten unique data permutations are generated. Then, all experiments
are repeated over each of these permutations, and performance is recorded for each ordering scheme as an
average over all possible permutations.

Offline Training Details. Top-1 Ωall on Core50 is computed using an offline-trained ResNet18 model that
achieves a Top-1 accuracy of 43.91%. This model is trained for 40 epochs from a random initialization using
SGD with momentum of 0.9 and an initial learning rate of 0.01. We use a weight decay of 1× 10−4 and decay
the learning rate by 10× at epochs 15 and 30 during training. The settings of training our offline model for
Core50 exactly match those provided in [103], aside from not initializing the model with pre-trained ImageNet
weights. We attempted to improve the performance of the offline model by utilizing a greater number of
epochs and modifying hyperparameter settings, but such tuning resulted in only negligible performance
improvements.

Data Details. We sample the Core50 dataset at 1 frame per second, resulting in 600 and 225 training and
testing images for each class [102]. The Core50 dataset has 10 total classes, resulting in 6000 total training
images and 2250 total testing images. We adopt the same bounding box crops and splits from [164]. The
dataset is split into batches of 1200 examples, where the content of each batch is determined by the ordering
scheme and particular data permutation chosen for a particular experiment. Comparable experiments utilize
both the same ordering scheme and the same permutation, where 10 unique permutations exist for each
ordering scheme. The first batch is utilized for base initialization, and evaluation occurs after each batch to
compute the final Ωall score. To match the settings of [103], we do not utilize data augmentation within any of
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Dataset Classes Training Examples Testing Examples

CUB-200 200 5994 5794
Oxford Flowers 102 2040 6149

MIT Scenes 67 5360 1340
FGVC-Aircrafts 100 6667 3333

Table 22: Details of datasets used for multi-task streaming learning experiments.

the baseline methodologies (i.e., adding data augmentation was shown to degrade performance on Core50).
The proposed methodology utilizes the same data augmentation policy that is described in Section 5.3.

Baseline Details. Again, we utilize official, public implementations of ExStream, Deep SLDA, and RE-
MIND [102, 103, 104]. ExStream is optimized using Adam with a learning rate of 2× 10−3 and no weight
decay, and the memory buffer is allowed to store the full dataset (i.e., this can be done with < 100Mb of
memory). REMIND is trained using SGD with momentum of 0.9 and a fixed learning rate of 0.01. A weight
decay of 1 × 10−4 is used and 20 samples are taken during each online update, which matches settings
of [103]. For Deep SLDA, we again adopt the variant that does not fix the covariance matrix during the
streaming process. All other experimental settings match the hyperparameters provided in the respective
papers and/or public implementations [99, 100, 101]. No data augmentation is used during baseline streaming
experiments, as outline in [103].

The first batch of data is used for base initialization within all streaming baseline methodologies. During
base initialization, the fine-tuning procedure again adopts the same hyperparameters as the offline training
procedure described above. After the network has been fine-tuned over base intialization data, all algorithm-
specific modules are initialized using the same data, and streaming begins from the first class of the base
initialization step. We do not utilize pre-trained ImageNet weights to initialize baseline model parameters
within Core50 experiments, as we are attempting to accurately assess model performance in low-resource
scenarios on Core50 experiments.

CSSL Details. The proposed methodology is trained with SGD with momentum of 0.9 and a fixed learning
rate of 0.01. We use a weight decay of 1 × 10−4. 100 replay samples are observed during each online
update, and we adopt the data augmentation policy described in Section 5.3. For AutoAugment, we utilize
the ImageNet augmentation policy, and α values of 0.1 and 0.8 are again adopted for Mixup and CutMix,
respectively.

The proposed methodology is tested with replay buffer capacities of 100, 200, and 300Mb. For the 200Mb
experiment, image pixels are quantized to four bits, while for the 100Mb experiment we both quantize pixels
and resize images to 75% of their original area. The 300Mb experiment performs no quantization or resizing,
as the full dataset can be stored as raw images with memory overhead slightly below 300Mb.

D.1.3 Multi-Task Streaming Learning

Here, we overview the details of the multi-task streaming learning experiments in Section 5.6.3.

Datasets. We perform multi-task streaming learning with the CUB-200 [229], Oxford Flowers [188], MIT
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Scenes [197], and FGVC-Aircrafts datasets [172]. The details of each of these datasets are provided in Table
22. Following the settings of [118], the datasets are learned in the following order: MIT Scenes, CUB-200,
Oxford Flowers, then FGVC-Aircrafts.

Offline Training Details. The offline trained models for multi-task streaming experiments are trained
separately for each of the datasets listed in Table 22. For each dataset, offline models are trained for 50 total
epochs with cosine learning rate decay. Initial learning rates of 0.1, 0.01, and 0.001 are tested and results of
the best-performing model are reported in Section 5.6.3. We also test baseline models with step learning rate
schedules but find that cosine learning rate decay tends to produce models with better performance.

Data Details. For multi-task streaming learning performance, testing is performed after each dataset has been
observed. We choose to not perform more regular evaluation (e.g., after subsets of each individual dataset
have completed streaming) to make performance simple to interpret. All results are reported in terms of Top-1
accuracy computed separately on each dataset at the end of the streaming process. During streaming, each
dataset is observed one example at a time in a class-incremental order. Three separate class-incremental data
permutations are generated, and results are averaged across these three different permutations. The order of
the datasets—presented above—is kept fixed in the three different permutations, as we only shuffle class and
example orderings.

Because the feature extractors of ExStream, Deep SLDA, and REMIND are fixed, we perform appropriate
resizing, center cropping, and normalization prior to passing each image into the fixed feature extractor.
REMIND also leverages random resized crops and manifold mixup [228] on the feature representations stored
within the replay buffer throughout streaming. The proposed methodology leverages the data augmentation
policy described in Section 5.3, and images are cropped and normalized following standard practice prior
to augmentation. Baselines utilize standard training and testing augmentations as used on ImageNet, which
matches the settings of [118].

Baseline Details. Again, official, public implementations of baseline methodologies with the ResNet18
architecture are used in all experiments. For baseline methodologies, base initialization is performed over
50% of the MIT scenes dataset (i.e., the first dataset to be observed during streaming), encompassing 34 of
the 67 total classes. All baseline methodologies are allowed unlimited memory capacity for replay. ExStream
is optimized using Adam with a learning rate of 2× 10−3 and no weight decay. REMIND uses the stochastic
gradient descent (SGD) optimizer with a learning rate that decays from 0.1 to 0.001 from the beginning to the
end of each class. Momentum is set to 0.9 and weight decay to 1× 10−5. REMIND samples 50 examples
from the replay buffer for each online update. Furthermore, we modify REMIND’s replay strategy to sample
a batch of replayed data from each of the seen tasks when performing each online update. Such a change is
necessary to not forget previous tasks when learning each new dataset, and we do not enforce any memory
capacity on the replay buffer (i.e., all data can be kept for replay). For Deep SLDA, we adopt the variant that
does not fix the covariance matrix during the streaming process for all experiments.

All baseline methodologies perform base initialization over the first 34 classes of the MIT scenes
dataset. This base initialization includes 50 epochs of tine-tuning, followed by the initialization of any
algorithm-specific modules to be used during the streaming process (e.g., the PQ module for REMIND). For
fine-tuning, we adopt the same hyperparameter settings used for training the offline baseline models. After
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base initialization, streaming begins at the first class within the base initialization batch, meaning that data
used within base initialization is re-visited during streaming. For each of the baseline methodologies, we
perform experiments both with and without pre-training on ImageNet. Experiments with pre-training simply
initialize the underlying ResNet18 architecture with ImageNet pre-trained weights prior to performing base
initialization.

CSSL Details. The proposed methodology is trained with an SGD optimizer with momentum of 0.9 and a
learning rate that decays linearly from 0.1 to 0.001 from the beginning to the end of each class. Weight decay
of 1× 10−5 is used. For all datasets, 100 replay samples are taken at each online update, and we modify the
replay strategy to sample a batch of replayed data from each of the seen tasks when performing an online
update. The augmentation strategy described in 5.3 is used in all experiments. Mixup and Cutmix use α

values of 0.1 and 0.8, respectively, and AutoAugment adopts the Imagenet learned augmentation policy. See
Appendix D.2.1 for details regarding the derivation of the optimal augmentation strategy. For all experiments,
CSSL is fine-tuned on the first 34 classes of the MIT scenes dataset with identical hyperparameters as are
used for base initialization with other methodologies. Some experiments utilize ImageNet pre-training and
are identified as such.

D.1.4 Confidence Calibration Analysis

Here, we present experimental details for the confidence calibration analysis performed in Section 5.6.4.

Expected Calibration Error. Confidence calibration is measured in terms of expected calibration error
(ECE). Assume that the i-th example within the testing set is associated with a true label, a model prediction,
and a confidence value. Additionally, assume N total examples exist within the test set. Given Nbin bins, ECE
groups data into uniformly-spaced bins based on confidence values. For example, if Nbin = 2, all predictions
are separated into two groups, one group within confidence values in the range [0.0, 0.5) and another with
confidence values in the range [0.5, 1.0].

Denote the i-th bin as bini. Once model predictions are separated into such bins, ECE computes the
average accuracy and confidence of predictions within each bin. Then, using ai and ci to denote the accuracy
and average confidence within the i-th bin, ECE can be computed as shown in the equation below.

ECE =

Nbin∑
i=1

|bini|
N
· |ai − ci|

For all experiments within Section 5.6.4, we follow the settings of [90] and set Nbin = 15. Performance is
sometimes reported in terms of average ECE. In such cases, average ECE is computed by measuring ECE
separately at each testing event during the streaming process, then taking a uniform average of ECE values
across all testing events.

CIFAR100 Experiments. For the CIFAR100 experiments reported in Table 14, we perform class-incremental
streaming using the same data ordering described in Appendix D.1.1. CSSL experiments use two different
memory capacities: 30Mb (10K CIFAR100 images) and 150Mb (full CIFAR100 dataset). The version of
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Model Top-5 Acc.

ResNet101 93.54%
MobileNetV2 90.29%
DenseNet121 91.98%
Wide ResNet50-2 94.09%

Table 23: Top-5 accuracies achieved by offline models of different architectures on ImageNet.

CSSL denoted as “No Aug.” replaces the CSSL augmentation strategy outlined in Section 5.3 with a simple
augmentation policy that performs only random crops and flips. Furthermore, the pre-trained variant of CSSL
simply initializes model parameters with pre-trained ImageNet weights at the beginning of the streaming
process. All other experimental settings are identical to that of the class incremental learning experiments
outlined in Appendix D.1.1.

For the streaming experiment depicted in Figure 13, we perform streaming with an i.i.d. ordering of
the CIFAR100 dataset. Because the data ordering is i.i.d., all testing events perform evaluation over the
entire CIFAR100 testing dataset. For CSSL, a memory capacity of 150Mb is used for the replay buffer. All
experiments with CSSL utilize the augmentation strategy described in Section 5.3, except for the “No Aug.”
experiment that utilizes only random crops and flips for data augmentation. REMIND is allowed to store
the full dataset for replay. All other experimental settings match those of the class-incremental learning
experiments for CIFAR100 described in Appendix D.1.1.

ImageNet. For the confidence calibration experiments on ImageNet presented in Table 14, we utilize a
class-incremental data ordering for streaming. For CSSL, we use a 1.5Gb replay buffer capacity and store all
images with JPEG compression on disk. For the “No Aug.” variant of CSSL, we again use random crops and
flips for data augmentation instead of the augmentation strategy described in Section 5.3. All other settings for
these experiments are identical to those of the class incremental learning experiments on ImageNet described
in Appendix D.1.1.

D.1.5 Performance Impact of a Cold Start

The experiments in Section 5.6.4 utilize the same experimental setup for CIFAR100 as described in Section
5.6.1 and Appendix D.1.1. All results are recorded in terms of Top-1 Ωall using the same offline normalization
model from 5.6.1 that achieves a Top-1 accuracy of 78.61%. The only difference between the two experimental
setups is that model accuracy is recorded after every new class is observed during the streaming process,
whereas experiments in Section 5.6.1 only record model accuracy after every 20-class batch. Within Section
5.6.4, both the proposed methodology and all baselines are allowed to retain the full dataset within the
replay buffer. The proposed methodology does not perform and quantization or resizing on the images. All
hyperparameter settings are the same as Appendix D.1.1 for all methodologies.
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D.1.6 Different Network Architectures

The experiments with different network architectures in Section 5.6.4 follow the same settings as the class-
incremental streaming experiments on ImageNet provided in Section 5.6.4; see Appendix D.1.1 for further
details. However, the ResNet18 architecture used in previous experiments is substituted for several different
model architectures. The experimental results presented in Section 5.6.4 store the replay buffer on disk using
JPEG compression, and a replay buffer capacity of 1.5Gb is adopted. All results are reported in terms of
Top-5 Ωall, and the offline models used for normalization (i.e., pre-trained models taken from the torchvision
package [193]) achieve Top-5 accuracies listed in Table 23

D.1.7 Closing the Performance Gap with Offline Learning

Here, we present the details of experiments performed in Appendix D.2.6. Separate comparison are performed
between incremental learning methodologies (i.e., iCarl and E2EIL) and streaming learning methodologies
(i.e., REMIND) for class-incremental learning on the CIFAR100 dataset. In all cases, we use a ResNet18
model, but the architecture is slightly modified to yield best-possible performance on the CIFAR100 dataset,
as demonstrated in [160]. Within these experiments, a class-specific ordering of the CIFAR100 dataset is
induced that is used to ensure all experiments receive data in the same order. In all cases, the first 20 classes
of CIFAR100 are used for base initialization.

For REMIND, we use the public implementation, but adapt it to utilize the modified ResNet18 architecture
and perform training over CIFAR100. The learning rate is decayed from 0.1 to 0.001 for each class during
streaming (i.e., we perform tests with different learning rates and fine that 0.1 still performs best), and we
leverage random crops and manifold mixup within REMIND’s feature representations. We allow all dataset
examples to be stored within the replay buffer, due to the memory-efficiency of REMIND’s memory indexing
approach. Settings for PQ are kept identical to ImageNet experiments. We find that weight decay of 5× 10−4

yields the best performance when evaluated using grid search over a validation set.
For iCarl and E2EIL, we adopt the official, public implementations of both approaches. Because the

CIFAR100 dataset is small, we allow both iCarl and E2EIL store the full dataset within the replay buffer (i.e.,
we do not enforce a fixed buffer size) during the online learning process. To tune hyperparameters in the
streaming setting, we perform a grid search over a validation set of CIFAR100 to obtain the optimal settings.
We train iCarl and E2EIL in the typical, incremental fashion so that the impact of class imbalance can be
observed. Within the incremental learning process, we use 20-class subsets of CIFAR100 as each sequential
batch during the learning process. From here, we adopt identical hyperparameter settings as the original
publication to replicate the original experimental settings.

D.2 Further Experimental Results

D.2.1 Data Augmentation Policies

We test all combinations of the Mixup, Cutmix, AutoAugment, and RandAugment data augmentation
strategies to arrive at the final, optimal augmentation policy used within the proposed methodology for
CSSL. All experiments perform random crops and flips in addition to other augmentation strategies. The
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MU CM AA RA Top-1 Ωall

0.689 ± 0.001
✓ 0.807 ± 0.012

✓ 0.863 ± 0.020
✓ ✓ 0.877 ± 0.004

✓ 0.822 ± 0.037
✓ ✓ 0.886 ± 0.018

✓ ✓ 0.852 ± 0.019
✓ ✓ ✓ 0.886 ± 0.002
✓ ✓ 0.856 ± 0.025

✓ ✓ 0.857 ± 0.008
✓ ✓ ✓ 0.875 ± 0.005

Table 24: Performance of the proposed methodology for CSSL with numerous augmentation policies that
combine Mixup (MU), CutMix (CM), AutoAugment (AA), and RandAugment (RA) for class-incremental
streaming experiments on CIFAR100. All tests use random clops and flips, and ✓ indicates the use of a
particular augmentation technique.

comparison of different data augmentation policies is performed with class-incremental learning experiments
on CIFAR100. These experiments adopt identical experimental settings as CIFAR100 experiments in Section
5.6.1; see Appendix D.1.1 for further details.

For these experiments, the entire dataset is allowed to be stored in the replay buffer, and the replay buffer
is kept in main memory without the use of any compression schemes (i.e., no integer quantization or resizing).
All reported results represent average performance recorded over three independent trials. For Mixup and
Cutmix, we perform experiments using all combinations of α values in the set {0.1, 0.4, 0.8, 1.0, 1.2}. We
leverage the CIFAR100 AutoAugment policy, and experiments are performed with RandAugment using 1-2
augmentations and all magnitudes in the set {4, 9, 14}. All combinations of considered data augmentation
methodologies are tested, and results with best-performing hyperparameters are presented. These results
inform the data augmentation policy that is adopted within the proposed methodology for CSSL used in later
experiments.

The results of these experiments, reported in terms of Top-1 Ωall, are provided in Table 24, where it can
be seen that the best results are achieved by combining Mixup, Cutmix, and AutoAugment techniques into
a single augmentation policy. Interestingly, this augmentation policy provides a nearly 20% improvement
in absolute Ωall compared to a simple crop and flip augmentation strategy, thus demonstrating the massive
impact of proper data augmentation on streaming performance.

D.2.2 Memory Efficient Replay.

The proposed methodology for CSSL compresses replay examples using integer quantization (i.e., on the
uint8 pixels of each image) and image resizing. Within this section, we analyze the performance impact
of this strategy in class-incremental streaming experiments on CIFAR100 using the same experimental
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Quant. Resize Ratio Top-1 Ωall

8 bit 100% 0.810 ± 0.009
6 bit 100% 0.822 ± 0.014
4 bit 100% 0.813 ± 0.025
8 bit 66% 0.819 ± 0.001
8 bit 50% 0.764 ± 0.029
6 bit 66% 0.826 ± 0.002
4 bit 66% 0.715 ± 0.038

Table 25: Performance of the proposed methodology on class-incremental streaming experiments with
CIFAR100, where different levels of quantization and resizing are used when adding examples into the replay
buffer.

Eviction Strategy Top-1 Ωall

Mixup [264] 0.746 ± 0.019
CutMix [259] 0.778 ± 0.014
SamplePairing [125] 0.735 ± 0.023

Table 26: Performance of CSSL when various interpolation strategies are used to combine replay examples
instead of evicting them.

setup as outlined in Section 5.6.1. All combinations of quantizing uint8 pixels to six or four bits44 and
resizing images to 66% or 50% of their original area are tested. For each possible augmentation strategy, the
corresponding experiment stores the maximum number of images within the replay buffer without exceeding
30Mb of storage. Three separate trails are performed for each possible compression strategy, and average
results across the three trials are reported. These results inform the optimal strategy of reducing memory
overhead for the replay mechanism used within the proposed methodology for CSSL.

Adopting a fixed buffer capacity of 30Mb, we explore different levels of quantization and resizing within
the replay buffer.45 The results are reported in terms of Top-1 Ωall in Table 25, where it can be seen that the
best performance is achieved by quantizing pixel values to 6 bits and resizing images to 66% of their original
area (i.e., the exact strategy adopted for CIFAR100 experiments in Section 5.6.1).

Interestingly, the proposed methodology is robust to high levels of quantization; e.g., using 4 bit quanti-
zation slightly exceeds the performance of storing full images for replay. Similar behavior is observed on
ImageNet, where 4-bit quantization is found to outperform 6-bit quantization given a fixed buffer capacity.
Moreover, resizing images beyond 66% of their original area noticeably degrades performance; e.g., 50%
resizing without quantization yields noticeably degraded performance in Table 25. For datasets with higher-
resolution images, we observe that performance is even more sensitive to the resizing ratio, leading us to
adopt a ratio of 75% within ImageNet and Core50 experiments in Sections 5.6.1 and 5.6.2.

44The integer quantization procedure is simulated by integer dividing each pixel value by 28−b, where b is the number of bits
present in the quantized pixel values, then re-scaling the result into the range [0, 256).

45When images are compressed, more images are added into the replay buffer to reach the 30Mb capacity.
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Buffer Capacity Random Reservoir

30Mb 0.810 ± 0.019 0.709 ± 0.099
60Mb 0.855 ± 0.011 0.764 ± 0.010
90Mb 0.889 ± 0.024 0.795 ± 0.004
120Mb 0.874 ± 0.009 0.830 ± 0.001

Table 27: Comparison of different strategies for maintaining the replay buffer for class-incremental CSSL
experiments on CIFAR100.

D.2.3 Consolidating Replay Examples

In addition to the approaches for memory efficient replay described in Section 5.3, we attempt to use data
interpolation methods to consolidate examples within the replay buffer. In particular, when a replay example
is about to be evicted from the replay before, interpolation is performed between two replay examples, thus
consolidating two entries in the replay buffer into one. Such an approach avoids evicting examples within
the replay buffer without increasing memory overhead. In particular, we perform experiments with Mixup,
CutMix, and SamplePairing interpolation strategies46 for class-incremental learning on the CIFAR100 dataset,
adopting the same experimental setting as described in Section 5.6.1. We use a fixed replay buffer capacity
of 30Mb and report results of these experiments in terms of Top-1 Ωall within Table 26. As can be seen,
these eviction strategies are outperformed by the quantization and resizing strategies utilized in Section 5.6.4.
We also consider setting a fixed number of times a certain example can be interpolated, such that a replay
examples is evicted after it has been interpolated more than two or three times, but such an approach still does
not meaningfully improve performance and introduces an extra hyperparameter.

D.2.4 Alternative Sampling Approaches

The methodology described in Section 5.3 assumes that, when a new example is added into an already-full
replay buffer, an example must be removed via ReplayEvict in Algorithm 5. Within the experiments
in Section 5.6, a random eviction procedure is adopted as described in Section 5.3. However, such random
maintenance of the replay buffer is not the only option. Namely, different approaches such as herding
selection [30, 119, 202] or reservoir sampling [5, 34] could be adopted instead to add and remove elements
from the replay buffer in a more sophisticated manner.

Although herding selection is a popular method in incremental learning literature [30, 119, 202] for
determining which examples within each incremental batch should be added into the replay buffer, it is not
a viable approach given the restrictions of CSSL. Namely, herding selection requires that, for each class, a
mean feature vector should be computed across all available data. Then, a representative subset of exemplars
is selected within that class, such that the mean feature vector of that subset closely matches the overall mean
feature vector. Such an approach is easily adoptable within incremental learning, as one can compute mean
feature vectors and relevant exemplars for the disjoint classes that appear within each incremental batch.

46The α values used for Mixup and Cutmix are tuned by searching over the set {0.1, 0.4, 0.8, 1.0, 1.2} using a hold-out validation
set, and we present the results of the best-performing α for each method. By definition, Sample Pairing always takes an average
between two images (i.e., there are no hyperparameters to tune).
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Full Split Sep Sum
Top-1 Accuracy Average Top-1

MIT Scenes CUB-200 Flowers FGVC Accuracy

✓ ✓ 56.11 60.79 88.08 45.22 62.55
✓ ✓ 53.13 57.232 84.50 36.78 57.91

✓ ✓ 54.40 62.12 84.39 49.09 62.50
✓ ✓ 54.48 60.32 86.57 43.05 61.11

Table 28: Multi-task streaming learning performance of CSSL with different replay strategies.

Further, herding selection can be modified to the streaming setting (i.e., based on a greedy approach) if fixed
feature representations are available for each input image throughout the streaming process. However, within
CSSL, the entire network is updated during streaming, meaning that the feature respresentations of data
change over time, making the application of herding selection difficult.

Despite the difficulty of adopting herding selection within CSSL, we compare the performance of our
random eviction policy with reservoir sampling with class-incremental learning experiments on the CIFAR100
dataset, where we adopt the same setup as described in Section 5.6.1. Reservoir sampling adds items into
the replay buffer until the buffer is full. Assuming the capacity of the replay buffer is C examples, once
the k-th example is received (i.e., k > C), we sample a random integer i in the set {0, 1, . . . , k − 1}. If
i ∈ {0, 1, . . . , k − 1}, then the i-th example in the replay buffer is replaced with the k-th example (i.e., the
new data). Otherwise, the k-th example is discarded. The performance of reservoir sampling in comparison to
the random eviction strategy described in Section 5.3 is provided in Table 27, where we measure performance
across multiple different buffer capacities (i.e., 150Mb is full capacity for CIFAR100). As can be seen, the
more sophisticated reservoir sampling approach is outperformed by the random eviction strategy outlined in
Section 5.3.

D.2.5 Different Strategies for Multi-Task Streaming Learning

Within Section 5.6.3, we generalize the replay strategy of CSSL and REMIND to the multi-task streaming
learning domain. In this domain, each model has multiple classification layers and replay buffers (i.e., one for
each dataset).47 Thus, the previously-used strategy for replay—sampling a fixed number of replay samples to
be included with each new data example during an online update—is no longer valid, as one must incorporate
replay examples from previous tasks to avoid catastrophic forgetting.

The main strategies that were explored for multi-task replay were differentiated by i) whether each task
is updated with B replay examples or if B total replay examples are split between each task (i.e., Full or
Split) and ii) whether each task performs a separate update or if gradients are summed over all tasks to
perform a single update (i.e., Sep or Sum). Considering these options forms four different strategies for
multi-task replay. Using a fixed replay size of B = 100 and adopting the experimental settings explained in
Appendix D.1.3 for multi-task streaming learning, these different strategies for multi-task streaming learning
are explored for CSSL in Table 28. Models are initialized with ImageNet pre-trained parameters, but we do

47The separate replay buffers for each dataset could be considered as one replay buffer that encompasses all datasets and the
resulting algorithm and discussion would be the same.
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Figure 29: Top-1 test accuracy for ResNet18 trained on CIFAR100 with both online and offline approaches.
Accuracy is measured over “seen” classes at different points during online learning.

not perform any fine-tuning on the MIT Indoor dataset prior to streaming.
As can be seen in Table D.2.5, the best performing strategy utilizes the full replay size for each task

during the online update and performs a separate model update for each task. A strategy of using the full
replay size for each task but performing a single update that sums the gradients of each task together performs
similarly. However, this strategy is slightly worse than performing a separate update for each task. Thus,
within Section 5.6.3, we adopt the strategy of, at each online update, sampling B replay examples—or B − 1

replay examples for the current task, plus the new example—for each of the tasks that have been seen so
far and performing a separate model update for each task. The added computation of performing a separate
update for each task is minimal relative to performing a single update across all tasks.

D.2.6 Closing the Performance Gap with Offline Learning

We claim that streaming learning methodologies have the potential for drastically-improved performance, but
cannot be derived via simple modifications to existing techniques. To substantiate this claim, we perform class-
incremental learning experiments on CIFAR100 [144] with two batch-incremental methods—iCarl [202] and
End-to-End Incremental Learning (E2EIL) [30]—and a state-of-the-art streaming approach—REMIND [103];
see Appendix D.1.7 for details. Performance is measured using Ωall [102] and displayed in Figure 29.

As can be seen, a performance gap exists between online and offline-trained models; e.g., in Figure 29, the
final Top-1 accuracy of REMIND is > 20% below that of offline training. To be of use to most practitioners,
this performance gap between online and offline training must be reduced—no viable, real-time alternatives
to offline training yet exist. Considering possible sources of such a performance gap, one may look to the
freezing of network layers within existing approaches to online learning. Such an approach is shown to
significantly degrade network performance in Section 5.4. Thus, an approach with the potential to perform
more comparably to offline training likely should not freeze large portions of network parameters.

Interestingly, many incremental learning approaches exist that perform end-to-end training [30, 119, 245].
Thus, one may wonder whether a high-quality streaming approach—one that comes closer to matching
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Figure 30: Confusion matrices (excluding base initialization data) for incremental and streaming learning
models after class-incremental CIFAR100 training. Incremental learning techniques (iCarl and E2EIL) are
biased towards recently-observed classes (see the many incorrect predictions for classes 80-100 in the two
leftmost plots). In contrast, incorrect predictions for REMIND are concentrated on the last class observed
during streaming (see the line of incorrect predictions at the bottom of third plot). This bias starts getting
corrected when 100 replay samples—instead of 50—are used during each online update (see the rightmost
plot).

Method
PQ Encoding Forward Pass Backward Pass Parameter Update

Time Time Time Time

CSSL - 3.67 ± 0.45 5.41 ± 0.97 1.53 ± 0.06
REMIND 23.37 ± 1.13 2.65 ± 0.02 1.62 ± 0.03 0.52 ± 0.01
REMIND + Extra Params 23.37 ± 1.13 2.95 ± 0.12 1.84 ± 0.09 0.69 ± 0.04

Table 29: Timing metrics (in milliseconds) for performing model inference and updates with different
streaming methodologies on ImageNet.

offline learning performance—could be developed by simple modifications to such techniques. Unfortunately,
these techniques, which employ replay, bias correction, and knowledge distillation to prevent catastrophic
forgetting, are known to perform poorly in the streaming domain [103]. To understand why this is the case, it
should be noted that knowledge distillation is known to provide minimal added benefit when combined with
replay mechanisms [20, 21]. Furthermore, we find that correcting bias in the network’s classification layer
is unnecessary for streaming learning. Though batch-incremental techniques are biased towards recently-
observed classes, REMIND is only biased towards a single class (i.e., the last streamed class), which is easily
corrected by increasing the number of replay samples observed during each online update; see Figure 30 and
Appendix D.1.7 for experimental details.48

Such observations reveal that findings relevant to batch-incremental learning may not translate to the
streaming setting. Additionally, a better streaming methodology cannot be derived by simply adopting and
modifying established techniques for batch incremental learning. To close the performance gap with offline
learning, streaming techniques likely need to avoid freezing network parameters and leverage more effective
forms of replay, as other techniques like knowledge distillation and bias correction provide minimal benefit.

48Many incremental learning works have been proposed to correct such bias towards recently-observed classes [119, 245]. We
emphasize that our focus here is not to compare streaming learning to the most recent approaches for incremental learning, but rather
to demonstrate that bias towards recent classes is not a consideration for the streaming domain that we consider.
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D.2.7 Computational Impact of Full Plasticity

Given that CSSL makes all model parameters trainable, one may wonder about the impact of such an approach
on the computational complexity of performing updates and inferences with the underlying model throughout
streaming. To better understand the complexity impact of full plasticity, we measure the time taken to i)

perform a forward pass, ii) perform a backward pass, and iii) update model parameters with CSSL over
several streaming iterations. For comparison, we perform the same test with REMIND, which freezes a
majority of the underlying network’s early layers.

These timing tests use a ResNet18 model and are performed on the ImageNet dataset using the same
procedure described in Appendix D.1.1. At each iteration, 100 replay examples are sampled for both CSSL
and REMIND. For REMIND, we also perform supplemental test in which the underlying model has added
layers to make the number of trainable parameters equal to that of CSSL. In all cases, we measure timing
across five streaming iterations and report the average time; see Table 29.

CSSL has a more expensive forward pass, backward pass, and parameter update in comparison to
REMIND, due to the fact that all network layers are updated by CSSL. However, REMIND encodes the output
of the network’s frozen feature extractor with a product quantization (PQ) [130] module, which is quite slow
in comparison to the other operations. As such, when data is passed through the REMIND model—aside from
replay examples for which the model’s encoded hidden representations can be cached—it must be passed
through the frozen portion of the network, encoded via PQ, then passed through the remaining, trainable
layers, making the total inference time of REMIND an order of magnitude slower than that of CSSL.

D.3 Adapting Baselines to CSSL.

CSSL is capable of randomly initializing the full network—and all network modules—immediately prior
to the commencement of streaming; see Section 5.3. The baseline methodologies used within Section
5.6.1 (i.e., ExStream, Deep SLDA, and REMIND), however, all utilize pre-trained networks within their
respective streaming algorithms. In particular, ExStream [102] and Deep SLDA [104] train only the final,
fully-connected layer of the neural network, while REMIND trains the last few convolutional layers and the
final fully-connected layer during streaming—all other network layers are fixed either by using pre-trained
network parameters or performing offline training over a subset of data during base initialization.

To be capable of starting streaming from a random initialization, baseline methodologies would either
have to i) allow nearly all (or a majority of) network layers to remain random throughout streaming or ii)
be adapted to train the network end-to-end. Forcing network layers to remain random throughout streaming
catastrophically degrades performance, and adapting such methodologies to perform end-to-end training is
highly non-trivial, as a majority of techniques within each methodology would break down (e.g., compressing
the feature representations with PQ, clustering feature vectors, computing feature covariance, etc.). As such,
we simply compare CSSL to baseline approaches in their original form, without forcing baselines to conform
a cold-start setting (i.e., baselines do not satisfy rule four from Section 5.3).
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D.4 Technical Results

Within this section, we outline the technical theoretical results (i.e., Lemmas and Corollaries) that are
established in the process of proving Theorem 6. Again, full proofs of each result are deferred to Section D.5.

Lemma 10. Assume Assumption 3 holds and ω ≤ O
(
L−6 log−3(m)

)
. Consider iterates W(0), . . . ,W(n) ∈

B(W(0), ω) obtained via Algorithm 5 with B replay examples taken from buffer R per iteration with
η = O(m− 3

2 ). Given sufficient overparamterization characterized by

m ≥ O
(
nB
√
1 + ΞL6 log3(m)

)
We have

n∑
t=1

L(t,ξt)(W
(i)) ≤

n∑
t=1

L(t,ξt)(W
⋆) +O

(
LR2m− 1

2

)
+O

(
nm− 1

2BL(1 + Ξ)
)

for W⋆ ∈ B(W(0),R/m) with R > 0 and probability at least 1−O(nBL)e
−Ω

(
mω

2
3L

)
.

Lemma 11. Given Assumption 3 and taking ω ≤ O
(
L−6 log−3(m)

)
, we have that

W(0), . . . ,W(n) ∈ B(W(0), ω)

over n successive iterations of Algorithm 5 with B replay samples taken from bufferR per iteration, arbitrary
perturbation vectors applied to both new and replayed data, η = O(m− 3

2 ), and sufficient overparameteriza-
tion given by

m ≥ O
(
nB
√
1 + ΞL6 log3(m)

)
with probability at least 1−O(nLB)e

−Ω
(
mω

2
3L

)
.

Lemma 12. Assume Assumption 3 holds and ω ≤ O
(
L−6 log−3(m)

)
. Then, when W,W′ ∈ B(W(0), ω),

we have ∣∣fW′(xt + ξ)− fW(xt + ξ)−
〈
∇WfW(xt + ξ),W′ −W

〉∣∣
≤ O

(√
m
(
1 + ∥ξ∥22

)
ω

4
3L3 log(m)

)

for arbitrary perturbation vector ξ49 and all t ∈ [n] with probability at least 1−O(nL)e−Ω
(
mω

2
3L

)
.

49Here, we do not assign a subscript ξt to the perturbation vector intentionally. This is because the perturbation vector used for this
result is arbitrary. Namely, different perturbation vectors can be used for any t ∈ [n] and both when the data is encountered newly
or sampled for replay. The result holds for any perturbation vector chosen for each of these scenarios, where the final bound then
depends on the factor ∥ξ∥22.
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Corollary 1. Assume Assumption 3 holds and ω ≤ O
(
L−6 log−3(m)

)
, then when W,W′ ∈ B(W(0), ω),

we can extend Lemma 12 to show

L(t,ξ)(W
′)− L(t,ξ)(W) ≥

L∑
l=1

⟨∇Wl
L(t,ξ)(W),W ′

l −Wl⟩ − O
(√

m(1 + ∥ξ∥22)ω
4
3L3 log(m)

)

for all t ∈ [n] and arbitrary perturbation vector ξ with probability at least 1−O(nL)e−Ω
(
mω

2
3L

)
.

Lemma 13. Assume Assumption 3 holds and ω ≤ O
(
L− 9

2 log−3(m)
)

. Then, for W ∈ B(W(0), ω) we have

∥g(t,l,ξ) − g
(0)
(t,l,ξ)∥2, ∥h(t,l,ξ) − h

(0)
(t,l,ξ)∥2 ≤ O

(
ωL

5
2

√
(1 + ∥ξ∥22) log(m)

)

for all t ∈ [n], l ∈ [L−1], and arbitrary perturbation vector ξ with probability at least 1−O(nL)e−Ω
(
mω

2
3L

)
.

Lemma 14. Assume Assumption 3 holds and ω ≤ O
(
L−6 log−3(m)

)
. Then, with probability at least

1−O(nL)e−Ω
(
mω

2
3L

)
we have for all l such that l ∈ [L− 1] and t ∈ [n]∥∥∥∥∥W ′

L

L−1∏
r=l

(
D′

(t,r,ξ) +D′′
(t,r)

)
W ′

r −WL

L−1∏
r=l

D(t,r,ξ)Wr
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2

≤ O
(
ω

1
3L2

√
log(m)

)

where W,W′ ∈ B(W(0), ω), D′′
i,r ∈ [−1, 1]m×m is any random diagonal matrix with at most O

(
mω

2
3L
)

non-zero entries, and ξ is an arbitrary perturbation vector.

Lemma 15. Given Assumption 3, randomly initialized weights W(0), and arbitrary perturbation vector ξ we
have ∥∥∥h(0)(t,j,ξ)

∥∥∥2
2
∈
[
1− ∥ξ∥22, 1 + ∥ξ∥22

]
with probability at least 1−O (nL) e−Ω(m/L) for all t ∈ [n] and j ∈ [L− 1].

Corollary 2. Given Assumption 3 and assuming ω ≤ O(L− 9
2 log−3(m)), we have for W ∈ B(W(0), ω) and

arbitrary perturbation vector ξ

∥h(t,j,ξ)∥2 ≤ O
(√

1 + ∥ξ∥22
(
ωL

5
2

√
log(m) + 1

))

for all t ∈ [n] and j ∈ [L− 1] with probability at least 1−O(nL)e−Ω
(
mω

2
3L

)
.
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Lemma 16. Given Assumption 3 and ω ≤ O
(
L−6 log−3(m)

)
, the following can be shown when W ∈

B(W(0), ω) for arbitrary perturbation vector ξ

∥∇Wl
fW(xt + ξ)∥F ,

∥∥∇Wl
L(t,ξ)(W)

∥∥
F
≤ O

(√
m(1 + ∥ξ∥22)

)

for all t ∈ [n] and l ∈ [L− 1] with probability at least 1−O(nL)e−Ω
(
mω

2
3L

)
.

D.5 Proofs

Within this section, we provide full proofs for all theoretical results derived within this work. We begin with
an overview of further notation used within the analysis.

Notation. For some arbitrary set of weight matrices W = {W1, . . . ,WL}, we define h(t,0,ξ) = xt + ξ

and h(t,l,ξ) = σ(Wlh(t,l−1,ξ)) for l ∈ [L − 1] and arbitrary perturbation vector ξ. Similarly, we define
g(t,0,ξ) = xt + ξ and g(t,l,ξ) = Wlh(t,l−1,ξ) for l ∈ [L − 1]. For the weight matrices at initialization
W(0) = {W (0)

1 , . . .W
(0)
L }, we would similarly define such vectors with the notation h

(0)
(t,l,ξ) and g

(0)
(t,l,ξ)

(or h′(t,l,ξ), g
′
(t,l,ξ) for weight matrices W′ and so on). We also define D(t,l,ξ) = diag(1{(Wlh(t,l,ξ))1 >

0}, . . . ,1{(Wlh(t,l,ξ))m > 0}) for all t ∈ [n] and l ∈ [L− 1].

D.5.1 Proof of Theorem 6

Proof. For t ∈ [n] and associated perturbation vectors ξt for t ∈ [n], let L0−1
(t,ξt)

(W(t)) = 1 {yt · fW(t)(xt + ξt) < 0},
where L0−1

(t,ξt)
(W(t)) ≤ 4L(t,ξt)(W

(t)) due to properties of the cross entropy loss function (i.e., 1{z ≤ 0} ≤
4ℓ(z)). With this in mind, when m > O

(
nB
√
1 + ΞL6 log3(m)

)
and ω ≤ O

(
L−6 log−3(m)

)
, we can

invoke Lemma 10 to yield

1

n

n∑
t=1

L0−1
(t,ξt)

(W(t)) ≤ 4

n

n∑
t=1

L(t,ξt)(W
⋆) +O

(
LR2

nm
1
2

)
+O

(
m− 1

2BL(1 + Ξ)
)

with probability at least 1−O(nBL)e
−Ω

(
mω

2
3L

)
. Then, because the model is trained in a streaming fashion as

described in Section 5.5.1, the t-th new data example is seen for the first time only at iteration t within the data
stream. Thus, we have that weights W(t) only depend on data examples (x1, y1), . . . , (xt−1, yt−1). In other
words, W(t) is independent of the t-th new data example (xt, yt). Thus, we can invoke an online-to-batch
conversion argument (see Proposition 1 in [31]) to yield

1

n

n∑
t=1

L0−1
D (W(t)) ≤ 1

n

n∑
t=1

L0−1
(t,ξt)

(W(t)) +

√
2 log(1/δ)

n
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with probability at least 1− δ for δ ∈ (0, 1]. From here, we define Ŵ as a random entry chosen uniformly
from the set {W(0), . . . ,W(n)}. Thus, we have the following by definition

1

n

n∑
t=1

L0−1
D (W(t)) = E

[
L0−1
D (Ŵ)

]
Then, the following can be derived by combining the above expressions

E
[
L0−1
D (Ŵ)

]
≤ 4

n

n∑
t=1

L(t,ξt)(W
⋆) +O

(
LR2

nm
1
2

)

+O
(
m− 1

2BL(1 + Ξ)
)
+

√
2 log(1δ )

n

(47)

with probability at least 1− δ −O(nBL)e
−Ω

(
mω

2
3L

)
for all W⋆ ∈ B(W(0),R/m). Now, we can compare

the neural network function fW⋆ with FW(0),W⋆ as follows

L(t,ξt)(W
⋆)

(i)

≤ ℓ(yt · FW(0),W⋆(xt + ξt)) +O
(√

m (1 + Ξ)ω
4
3L3 log(m)

)
where (i) holds from the 1-Lipschitz continuity of ℓ(·) and Lemma 12 with probability at least 1 −
O(nL)e−Ω

(
mω

2
3L

)
. Then, we can plug this inequality into (47) to yield

E
[
L0−1
D (Ŵ)

]
≤ 4

n

n∑
t=1

ℓ[yt · FW(0),W⋆(xt + ξt)] +O
(√

m (1 + Ξ)ω
4
3L3 log(m)

)

+O
(
LR2

nm
1
2

)
+O

(
m− 1

2BL(1 + Ξ)
)
+

√
2 log(1δ )

n

Then, by taking an infimum over all W⋆ ∈ B(W(0),R/m), we get the following

E
[
L0−1
D

(
Ŵ
)]
≤ inf

f∈F(W(0),R/m)

(
4

n

n∑
t=1

ℓ(yt · f(xt + ξt))

)

+O
(√

m (1 + Ξ)ω
4
3L3 log(m)

)
+O

(
LR2

nm
1
2

)
+O

(
m− 1

2BL(1 + Ξ)
)
+

√
2 log(1/δ)

n
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From here, by noting that ω ≤ O
(
L−6 log−3(m)

)
and m ≥ O

(
nB
√
1 + ΞL6 log3(m)

)
, the expression can

be simplified as follows

E
[
L0−1
D

(
Ŵ
)]
≤ inf

f∈F(W(0),R/m)

(
4

n

n∑
t=1

ℓ(yt · f(xt + ξt))

)
+

√
2 log(1/δ)

n

+O
(
(1 + Ξ)

3
4

√
nB

L2 log
3
2 (m)

+
R2

n
3
2B

1
2 (1 + Ξ)

1
4L2 log

3
2 (m)

+
B

1
2 (1 + Ξ)

3
4

n
1
2L2 log

3
2 (m)

) (48)

We then analyze the asymptotic portion of the expression above—highlighted in red—as follows.

O
(
(1 + Ξ)

3
4

√
nB

L2 log
3
2 (m)

+
R2

n
3
2B

1
2 (1 + Ξ)

1
4L2 log

3
2 (m)

+
B

1
2 (1 + Ξ)

3
4

n
1
2L2 log

3
2 (m)

)

= O
(

(1 + Ξ)B(n2 + 1) +R2

L2 log
3
2 (m)nB

1
2 (1 + Ξ)

1
4

)

= O
(
(1 + Ξ)

3
4B

1
2n

L2 log
3
2 (m)

)
+O

(
R2

L2 log
3
2 (m)nB

1
2 (1 + Ξ)

1
4

)
(i)

≤ O
(
(1 + Ξ)

3
4B

1
2n+R2

L2 log
3
2 (m)

)

where (i) holds due to the fact that nB
1
2 (1 + Ξ)

1
4 > 1. Then, by substituting this simplified asymptotic

expression, we have

E
[
L0−1
D

(
Ŵ
)]
≤ inf

f∈F(W(0),R/m)

(
4

n

n∑
t=1

ℓ(yt · f(xt + ξt)

)
+

√
2 log(1/δ)

n
+O

(
(1 + Ξ)

3
4B

1
2n+R2

L2 log
3
2 (m)

)

where the asymptotic portion of the expression can be made arbitrarily small by increasing the value of m.

Realizing that this result holds with probability 1 − δ − O(nBL)e
−Ω

(
mω

2
3L

)
≈ 1 − δ as the value of m

increases yields the desired result.

D.5.2 Proof of Lemma 10

Proof. We assume W(0) is initialized as described in Section 5.5.1, then updated according to Algorithm
5 with B replay samples taken from buffer R at each iteration and distinct, arbitrary data perturbation
vectors—representing data augmentation—applied to both new and replayed data throughout streaming. For
R > 0, we have W⋆ ∈ B(W(0),R/m), where W⋆ ∈ B(W(0), ω) whenever m ≥ O(L6 log3(m)) (i.e., R
is a constant that does not appear in the asymptotic bound), which is looser than the overparameterization
requirement within Lemma 11. Similarly, by Lemma 11, we have W(0), . . . ,W(n) ∈ B(W(0), ω) with

probability at least 1−O(nLB)e
−Ω

(
mω

2
3L

)
whenever m ≥ O

(
nB
√
1 + ΞL6 log3(m)

)
and η = O(m− 3

2 ).
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Thus, for W(t),W⋆ ∈ B(W(0), ω), by Corollary 1 we have with probability at least 1−O(nL)e−Ω
(
mω

2
3L

)
that

L(t,ξt)(W
(t))− L(t,ξt)(W

⋆) ≤
〈
∇W(t)L(t,ξt)(W

(t)),W(t) −W⋆
〉

+O
(√

m(1 + Ξ)ω
4
3L3 log(m)

)
=

L∑
l=1

〈
∇

W
(t)
l

L(t,ξt)(W
(t)),W

(t)
l −W ⋆

l

〉
+O

(√
m(1 + Ξ)ω

4
3L3 log(m)

)
(49)

We can focus on bounding the red term within the expression above as follows
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∇

W
(t)
l

L(t,ξt)(W
(t)),W

(t)
l −W ⋆

l

〉
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1
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l −W ⋆
l

∥∥∥2
F
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+O (ηBLm(1 + Ξ))

where i follows from (21), ii holds from the identity that 2⟨A,B⟩ ≤ ∥A∥2F + ∥B∥2F − ∥A− B∥2F , and iii

holds due to the lower triangle inequality, and iv holds due to the upper triangle inequality and Lemma 16

with probability at least 1−O(nBL)e
−Ω

(
mω

2
3L

)
by taking union bound across all data, replay examples,
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and network layers. Plugging this bound into (49), we get

L(t,ξt)(W
(t))− L(t,ξt)(W

⋆) ≤
L∑
l=1

1

2η

(∥∥∥W (t)
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)
+O
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4
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Then, telescoping this expression over t ∈ [n] yields
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⋆) +
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3L3 log(m)
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4
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L(t,ξt)(W
⋆) +O

(
LR2m− 1
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+O

(
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2BL(1 + Ξ)
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where i follows from the fact that W⋆ ∈ B(W(0),R/m) and ii holds for sufficiently small ω with η =
κ

m
3
2

, where κ is a small, positive constant. Thus, the desired result holds with probability at least 1 −

O(nBL)e
−Ω

(
mω

2
3L

)
with overparameterization given by the expression below.

m ≥ O
(
nB
√
1 + ΞL6 log3(m)

)

D.5.3 Proof of Lemma 11

Proof. We assume W(0) is initialized as described in Section 5.5.1 and updated according to Algorithm 5
with B replay examples sampled uniformly from the replay bufferR at each update and arbitrary perturbation
vectors—representing data augmentation—applied separately to both new and replayed data throughout
streaming. We take ω = C1L

−6 log−3(m) such that C1 is a small enough constant to satisfy assumptions on
ω in Lemma 16. From here, we can show that W(0), . . . ,W(n) ∈ B(W(0), ω) through induction.

Base Case. The base case W(0) ∈ B(W(0), ω) holds trivially.

Inductive Case. Assume that W(t) ∈ B(W(0), ω). By Lemma 16, we have

∥∥∇Wl
L(t,ξt)(W)

∥∥
F
≤ O

(√
m(1 + ∥ξt∥22)

)
(50)

with probability at least 1− e
−Ω

(
mω

2
3L

)
. Denoting the indices of data elements within our replay buffer as
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R, we can then show the following over iterations of Algorithm 5.∥∥∥W (t+1)
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∥∥∥
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iv
≤ O
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ηnB

(√
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where i and iii hold due to the upper triangle inequality, ii holds from (21), and iv holds due to (50) and the
definition of Ξ. Thus, for ω = C1L

−6 log−3(m), if we set η = κ

m
3
2

we have

∥∥∥W (t+1)
l −W

(0)
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F
≤ O

(
ηnB

√
m (1 + Ξ)

)
=

κnB
√
1 + Ξ√
m

i
≤ ω

for some small enough absolute constant κ and m ≥ O
(
nB
√
1 + ΞL6 log3(m)

)
. Thus, the inductive step is

complete and we have W(0), . . . ,W(n) ∈ B(W(0), ω) with probability at least 1−O(nLB)e
−Ω

(
mω

2
3L

)
by

taking a union bound over all data examples, replay examples, and network layers.

D.5.4 Proof of Lemma 12

Proof. We consider some fixed t ∈ [n] with perturbation vector ξ and two weight matrices W,W′ ∈
B(W(0), ω), where W(0) is initialized as described in Section 5.3.1. It should be noted that ξ is an arbitrary
perturbation vector that can be different for any t ∈ [n]. We omit the subscript ξt to emphasize that the result
can hold with different perturbations for any t ∈ [n] and both when data is encountered newly or used for
replay. In particular, the result only depends on the value of ∥ξ∥22, thus allowing arbitrary settings of ξ to
be used for new or replayed data. From the formulation of the forward pass in (19), it can be shown that
fW′(xt + ξ) =

√
m ·W ′

Lh
′
(t,L−1,ξ) and fW(xt + ξ) =

√
m ·WLh(t,L−1,ξ). These identities allow us to

derive the following via direct calculation

fW′(xt + ξ)− FW,W′(xt + ξ)

= −√m ·
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+
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m ·W ′

L

(
h′(t,L−1,ξ) − h(t,L−1,ξ)

) (51)
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Then, from Claim in 11.2 in [9], it is known that, for all t ∈ [n], h(t,L−1,ξ) − h′(t,L−1,ξ) (i.e., the red term
within the above expression) can be re-written as

h(t,L−1,ξ) − h′(t,L−1,ξ) =
L−1∑
l=1
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where D
′′

(t,l) ∈ Rm×m for l ∈ [L − 1] is any random diagonal matrix with at most O
(
mω

2
3L
)

non-zero
entries in the range [−1, 1]. With this in mind, we can then rewrite (51) as follows.

fW′(xt + ξ)− FW,W′(xt + ξ)

=
√
m ·

L−1∑
l=1

W ′
L

(
L−1∏
r=l+1

(
D′

(t,r,ξ) +D
′′

(t,r)

)
W ′

r

)(
D′

(t,l,ξ) +D
′′

(t,l)

) (
Wl −W ′

l

)
h(t,l−1,ξ)

−√m ·
L−1∑
l=1

WL

(
L−1∏
r=l+1

D(t,r,ξ)Wr

)
D(t,l,ξ)

(
W ′

l −Wl

)
h(t,l−1,ξ)

Now, given that ω ≤ O
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, we can unroll this expression to arrive at the final result as follows∣∣fW′(xt + ξ)− FW,W′(xt + ξ)
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where i holds due to triangle inequality, ii holds due to Lemma 14 with probability at least 1−O(nL)e−Ω
(
mω

2
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)
,

iii holds due to Corollary 2 with probability at least 1−O(nL)e−Ω
(
mω

2
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)
, iv holds due to the definition of
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the ω neighborhood, and v holds for sufficiently small ω.

D.5.5 Proof of Corollary 1

Proof. Consider some fixed t ∈ [n] and arbitrary perturbation vector ξ, where we again omit the subscript ξt to
emphasize that the result holds with different perturbations for any t ∈ [n] and both when data is encountered
newly or sampled for replay. We consider W,W′ ∈ B(W(0), ω), where W(0) is initialized as described
within Section 5.5.1. Recall that we utilize a standard cross-entropy loss function ℓ(z) = log(1 + e−z).
We denote the derivative of this function as ℓ′(z), where ℓ′(z) = d

dz log(1 + e−z) = −1
ez+1 . For W,W′ ∈

B(W(0), ω), we can derive the following

L(t,ξ)(W
′)− L(t,ξ)(W) = ℓ (ytfW′(xt + ξ))− ℓ (ytfW(xt + ξ))

i
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where i holds due to the convexity of ℓ(·). From here, we have
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(
fW′(xt + ξ)− fW(xt + ξ)

−
〈
∇WfW(xt + ξ),W′ −W

〉 )
≥ ℓ′ (ytfW(xt + ξ)) · yt ·

〈
∇WfW(xt + ξ),W′ −W

〉
−
∣∣∣ℓ′ (ytfW(xt + ξ)) · yt ·

(
fW′(xt + ξ)− fW(xt + ξ)

−
〈
∇WfW(xt + ξ),W′ −W

〉 )∣∣∣
=

L∑
l=1

⟨∇Wl
L(t,ξ)(W),W ′

l −Wl⟩ −
∣∣∣ℓ′ (ytfW(xt + ξ)) · yt

·
(
fW′(xt + ξ)− fW(xt + ξ)−

〈
∇WfW(xt + ξ),W′ −W

〉 )∣∣∣
Then, by noticing that |ℓ′(ytfW(xt + ξ)) · yt)| ≤ 1 and invoking Lemma 12, we can derive the following

with probability at least 1−O(nL)e−Ω
(
mω

2
3L

)

L(t,ξ)(W
′)− L(t,ξ)(W) ≥

L∑
l=1

⟨∇Wl
L(t,ξ)(W),W ′

l −Wl⟩ − O
(√

m(1 + ∥ξ∥22)ω
4
3L3 log(m)

)

whenever ω ≤ O
(
L−6 log−3(m)

)
.
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D.5.6 Proof of Lemma 13

Proof. Consider some t ∈ [n] and arbitrary perturbation vector ξ, where we omit the subscript ξt to emphasize
that the result holds with different perturbations for any t ∈ [n] and both when data is newly encountered or
sampled for replay. Consider random weight matrices W(0) initialized as in Section 5.5.1, and W such that
W ∈ B(W(0), ω).

From Lemma 15, we have with probability at least 1 − O (nL) e−Ω(m/L) that ∥h(0)(t,j,ξ)∥22, ∥g
(0)
(t,j,ξ)∥22 ∈[

1− ∥ξ∥22, 1 + ∥ξ∥22
]
. Furthermore, if m ≥ Ω(nL log(nL)), we have that for all i ∈ [n] and all 1 ≤ a ≤ b ≤

L ∥∥∥∥∥
b∏

l=a

W
(0)
l D

(0)
(t,l−1,ξ)

∥∥∥∥∥
2

≤ O(
√
L) (52)

with probability at least 1− e−Ω(m/L) by Lemma 7.3 in [9].50 Now, we can prove the desired result with an
induction argument over layers of the network.

Base Case. ∥g(t,0,ξ) − g
(0)
(t,0,ξ)∥2 = ∥xt + ξ − (xt + ξ)∥2 = 0, so the base case trivially holds. The same is

true for ∥h(t,0,ξ) − h
(0)
(t,0,ξ)∥2.

Inductive Case. Assume the inductive hypothesis holds for l − 1. We can derive the following

g(t,l,ξ) − g
(0)
(t,l,ξ) =

(
W

(0)
l +Wl −W

(0)
l

)(
D

(0)
(t,l−1,ξ) +D(t,l−1,ξ) −D

(0)
(t,l−1,ξ)

)(
g
(0)
(t,l−1,ξ) + g(t,l−1,ξ) − g

(0)
(t,l−1,ξ)

)
−W

(0)
l D

(0)
(t,l−1,ξ)g

(0)
(t,l−1,ξ)

=
(
Wl −W

(0)
l

)(
D

(0)
(t,l−1,ξ) +D(t,l−1,ξ) −D

(0)
(t,l−1,ξ)

)(
g
(0)
(t,l−1,ξ) + g(t,l−1,ξ) − g

(0)
(t,l−1,ξ)

)
+W

(0)
l

(
D(t,l−1,ξ) −D

(0)
(t,l−1,ξ)

)(
g
(0)
(t,l−1,ξ) + g(t,l−1,ξ) − g

(0)
(t,l−1,ξ)

)
+W

(0)
l D

(0)
(t,l−1,ξ)

(
g(t,l−1,ξ) − g

(0)
(t,l−1,ξ)

)
From here, we can telescope over the g(t,l,ξ) − g

(0)
(t,l,ξ) terms to obtain the expression below, where distinct

terms of interest are highlighted with separate colors

g(t,l,ξ) − g
(0)
(t,l,ξ) =

l∑
a=1

(
a+1∏
b=l

W
(0)
b D

(0)
(t,b−1,ξ)

)(
(
Wa −W (0)

a

)(
D

(0)
(t,a−1,ξ) +D(t,a−1,ξ) −D

(0)
(t,a−1,ξ)

)(
g
(0)
(t,a−1,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

)
+W (0)

a

(
D(t,a−1,ξ) −D

(0)
(t,a−1,ξ)

)(
g
(0)
(t,a−1,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

))
(53)

Now, we focus on a single summation element of the green term in (53) and provide an upper bound on the

50(52) has one extra factor of D(0)

(t,l−1,ξ) within the expression in comparison to Lemma 7.3 in [9], but this does not impact the

norm of the overall expression because
∥∥∥D(0)

l−1

∥∥∥
2
≤ 1.
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norm of this expression.∥∥∥∥∥
(

a+1∏
b=l

W
(0)
b D

(0)
(t,b−1,ξ)

)(
Wa −W (0)

a

)(
D

(0)
(t,a−1,ξ) +D(t,a−1,ξ) −D

(0)
(t,a−1,ξ)

)
(
g
(0)
(t,a−1,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

)∥∥∥∥∥
2

≤
∥∥∥∥∥
a+1∏
b=l

W
(0)
b D

(0)
(t,b−1,ξ)

∥∥∥∥∥
2

·
∥∥∥Wa −W (0)

a

∥∥∥
2
·
∥∥D(t,a−1,ξ)

∥∥
2
·
∥∥∥g(0)(t,a−1,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

∥∥∥
2

i
≤ O

(√
L
)
·
∥∥∥Wa −W (0)

a

∥∥∥
2
·
∥∥D(t,a−1,ξ)

∥∥
2
·
∥∥∥g(0)(t,a−1,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

∥∥∥
2

ii
≤ O

(√
Lω
)
·
∥∥D(t,a−1,ξ)

∥∥
2
·
∥∥∥g(0)(t,a−1,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

∥∥∥
2

iii
≤ O

(√
Lω
)
·
∥∥∥g(0)(t,a−1,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

∥∥∥
2

iv
≤ O

(√
Lω
) [
∥g(0)(t,a−1,ξ)∥2 + ∥g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)∥2

]
v
≤ O

(√
Lω
)[√

1 + ∥ξ∥22 +O
(
ωL

5
2

√
(1 + ∥ξ∥22) log(m)

)]
where i holds due to (52), ii holds because W ∈ B(W(0), ω), iii holds because ∥Di,a−1∥2 ≤ 1 by construc-
tion, iv holds by upper triangle inequality, and v holds by Lemma 15 and the inductive hypothesis.

Now that we have bounded the green term, we can focus on a single summation element of the red term
in (53). First, we make the following definition

ζ ≜
(
D(t,a−1,ξ) −D

(0)
(t,a−1,ξ)

)(
g
(0)
(t,a−1,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

)
=
(
D(t,a−1,ξ) −D

(0)
(t,a−1,ξ)

)(
W

(0)
a−1h

(0)
(t,a−2,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

)
Then, by Claim 8.3 and Corollary 8.4 in [9], we have that with probability at least 1− e−Ω(mω

2
3L)

∥∥∥∥1c ζ
∥∥∥∥
0

≤ O
(
mω

2
3L
)

and
∥∥∥∥1c ζ

∥∥∥∥
2

≤ O
(
ωL

3
2

)
(54)

where c = ∥h(0)(t,a−2,ξ)∥2 ∈ [
√

1− ∥ξ∥22,
√
1 + ∥ξ∥22]. Additionally, we define

γ ≜

(
a+1∏
b=l

W
(0)
b D(t,b−1,ξ)

)
·W (0)

a ·
[(

D(t,a−1,ξ) −D
(0)
(t,a−1,ξ)

)(
g
(0)
(t,a−1,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

)]
= c

(
a+1∏
b=l

W
(0)
b D(t,b−1,ξ)

)
·W (0)

a ·
[
1

c
ζ

]
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By invoking Claim 8.5 from [9], we can reformulate γ as

γ =

(
c

∥∥∥∥1c ζ
∥∥∥∥
2

)
(γ1 + γ2)

where with probability at least 1− e−Ω(mω
2
3L log(m)) the γ1 and γ2 terms can be bounded as

∥γ1∥2 ≤ O
(
L

1
2ω

1
3 log(m)

)
and ∥γ2∥∞ ≤ O

(√
log(m)

m

)
(55)

Combining all of this together, we get

∥g(t,l,ξ) − g
(0)
(t,l,ξ)∥2 =

∥∥∥∥∥
l∑(
O
(√

Lω
)[√

1 + ∥ξ∥22 +O
(
ωL

5
2

√
(1 + ∥ξ∥22) log(m)

)]

+

(
c

∥∥∥∥1c ζ
∥∥∥∥
2

)
(γ1 + γ2)

)∥∥∥∥∥
2

=

∥∥∥∥∥L
(
O
(√

Lω
)[√

1 + ∥ξ∥22 +O
(
ωL

5
2

√
(1 + ∥ξ∥22) log(m)

)]

+

(
c

∥∥∥∥1c ζ
∥∥∥∥
2

)
(γ1 + γ2)

)∥∥∥∥∥
2

i
≤ O

(
L

3
2ω
)[√

1 + ∥ξ∥22 +O
(
ωL

5
2

√
(1 + ∥ξ∥22) log(m)

)]
+ L

(
c

∥∥∥∥1c ζ
∥∥∥∥
2

)
∥γ1 + γ2∥2

ii
≤ O

(
L

3
2ω
)[√

1 + ∥ξ∥22 +O
(
ωL

5
2

√
(1 + ∥ξ∥22) log(m)

)]
+

(√
1 + ∥ξ∥22 O

(
ωL

5
2

))
∥γ1 + γ2∥2

iii
≤ O

(
L

3
2ω
)[√

1 + ∥ξ∥22 +O
(
ωL

5
2

√
(1 + ∥ξ∥22) log(m)

)]
+

(√
1 + ∥ξ∥22 O

(
ωL

5
2

))
(∥γ1∥2 + ∥γ2∥2)

iv
≤ O

(
L

3
2ω
)[√

1 + ∥ξ∥22 +O
(
ωL

5
2

√
(1 + ∥ξ∥22) log(m)

)]
+

(√
1 + ∥ξ∥22 O

(
ωL

5
2

))(
O
(
L

1
2ω

1
3 log(m)

)
+O

(√
log(m)

))
= O

(
L

3
2ω
√

1 + ∥ξ∥22
)
+O

(
ω2L4

√
(1 + ∥ξ∥22) log(m)

)
O
(
ω

4
3L3

√
1 + ∥ξ∥22 log(m)

)
+O

(
ωL

5
2

√
(1 + ∥ξ∥22) log(m)

)
where i holds by the upper triangle inequality and properties of norms, ii holds by Lemma 15 and (54), iii
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holds by triangle inequality, and iv holds by (55) and invoking the upper bound ∥γ2∥2 ≤
√
m∥γ2∥∞. Then,

when ω is sufficiently small, we get

∥g(t,l,ξ) − g
(0)
(t,l,ξ)∥2 ≤ O

(
L

3
2ω
√
1 + ∥ξ∥22 + ωL

5
2

√
1 + ∥ξ∥22

√
log(m)

)
≤ O

(
ωL

5
2

√(
1 + ∥ξ∥22

)
log(m)

)
(56)

thus completing the inductive portion of the proof for ∥g(t,l,ξ)− g
(0)
(t,l,ξ)∥2. Then, to finish the inductive portion

of the proof for ∥h(t,l,ξ) − h
(0)
(t,l,ξ)∥2, we note that∥∥∥h(t,l,ξ) − h

(0)
(t,l,ξ)

∥∥∥
2
= ∥D(t,l,ξ)

(
g(t,l,ξ) − g

(0)
(t,l,ξ)

)
+
(
D(t,l,ξ) −D

(0)
(t,l,ξ)

)
g(t,l,ξ)∥2

i
≤ ∥D(t,l,ξ)∥2 ·

∥∥∥g(t,l,ξ) − g
(0)
(t,l,ξ)

∥∥∥
2
+
∥∥∥D(t,l,ξ) −D

(0)
(t,l,ξ)

∥∥∥
2
· ∥g(t,l,ξ)∥2

ii
≤ 1 · O

(
ωL

5
2

√
1 + ∥ξ∥22

√
log(m)

)
+ 1 ·

(
ωL

3
2

√
1 + ∥ξ∥22

)
≤ O

(
ωL

5
2

√
1 + ∥ξ∥22

√
log(m)

)
where i holds from the upper triangle inequality and properties of the spectral norm and ii holds from (54)
and (56). Thus, we have completed the inductive case for ∥h(t,l,ξ) − h

(0)
(t,l,ξ)∥2. From here, a union bound can

be taken over all t ∈ [n] and l ∈ [L− 1] to yield the desired result with probability 1−O(nL)e−Ω(m/L) −
O(nL)e−Ω

(
mω

2
3L

)
+ O(nL)e−Ω

(
mω

2
3L log(m)

)
= 1 − O(nL)e−Ω

(
mω

2
3L

)
, where the last equality again

holds when ω is sufficiently small.

D.5.7 Proof of Lemma 14

Proof. We consider some fixed t ∈ [n] and arbitrary perturbation vector ξ, where we omit the subscript ξt
to emphasize that the result holds with different perturbations for any t ∈ [n] and both when data is newly
encountered or sampled for replay. We define random diagonal matrices D

′′

(t,1), . . . , D
′′

(t,L−1) as any diagonal

matrix with at most O
(
mω

2
3L
)

entries in the range ∈ [−1, 1]. Consider two sets of model parameters

W,W′ ∈ B(W(0), ω), where W(0) is initialized as described in Section 5.5.1. From (54), we know that∥∥∥∥∥∥ 1

∥h(0)(t,l−1,ξ)∥2

(
D(t,l,ξ) −D

(0)
(t,l,ξ)

)
g(t,l,ξ)

∥∥∥∥∥∥
0

≤ O
(
mω

2
3L
)

with probability at least 1− e
−Ω

(
mω

2
3L

)
. This bound holds for both W and W′. Then, noticing that right

multiplication by g(t,l,ξ) and division by a constant factor cannot increase the number of non-zero entries
within the matrix D(t,l,ξ) −D

(0)
(t,l,ξ) (i.e., recall that this matrix is diagonal), we have∥∥∥D(t,l,ξ) −D

(0)
(t,l,ξ)

∥∥∥
0
≤ O

(
mω

2
3L
)

(57)
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From here, we can apply the upper triangle inequality to yield∥∥∥D(t,l,ξ) −D′
(t,l,ξ)

∥∥∥
0
=
∥∥∥(D(t,l,ξ) −D

(0)
(t,l,ξ)

)
−
(
D′

(t,l,ξ) −D
(0)
(t,l,ξ)

)∥∥∥
0

i
≤
∥∥∥D(t,l,ξ) −D

(0)
(t,l,ξ)

∥∥∥
0
+
∥∥∥D′

(t,l,ξ) −D
(0)
(t,l,ξ)

∥∥∥
0

ii
= O

(
mω

2
3L
)

where i holds by the upper triangle inequality and ii is due to (57). From here, we apply a union bound over
all t ∈ [n] and l ∈ [L− 1] to yield ∥∥∥D(t,l,ξ) −D′

(t,l,ξ)

∥∥∥
0
≤ O

(
mω

2
3L
)

(58)

for all t ∈ [n] and l ∈ [L− 1] with probability at least 1−O(nL)e−Ω
(
mω

2
3L

)
. (58) can also be extended to

show the following properties with identical probability∥∥∥D(t,l,ξ) +D
′′

(t,l) −D
(0)
(t,l,ξ)

∥∥∥
0
≤ O

(
mω

2
3L
)

∥∥∥D′
(t,l,ξ) +D

′′

(t,l) −D
(0)
(t,l,ξ)

∥∥∥
0
≤ O

(
mω

2
3L
) (59)

which holds due to the number of non-zero entries assumed to be within each random diagonal matrix D
′′

(t,l)

by construction. From here, we first note that with probability at least 1− e
−Ω

(
mω

2
3L log(m)

)
we have∥∥∥∥∥

L−1∏
r=l

(
D(t,l,ξ) −D

′′

(t,l)

)
Wl

∥∥∥∥∥
2

≤ O
(√

L
)

(60)
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due to Lemma 8.6 in [9]. Then, we consider bounding the following expression∥∥∥∥∥W ′
L

L−1∏
r=l

(
D′

(t,r,ξ) +D′′
(t,r)

)
W ′

r −WL

L−1∏
r=l

D(t,r,ξ)Wr

∥∥∥∥∥
2

=

∥∥∥∥∥(W ′
L +W

(0)
L −W

(0)
L

) L−1∏
r=l

(
D′

(t,r,ξ) +D
′′

(t,r)

)
W ′

r

−
(
WL −W

(0)
L +W

(0)
L

) L−1∏
r=l

D(t,r,ξ)Wr

∥∥∥∥∥
2

=

∥∥∥∥∥(W ′
L −W

(0)
L

) L−1∏
r=l

(
D′

(t,r,ξ) +D
′′

(t,r)

)
W ′

r +W
(0)
L

L−1∏
r=l

(
D′

(t,r,ξ) +D′′
(t,r)

)
W ′

r

−
(
WL −W

(0)
L

) L−1∏
r=l

D(t,r,ξ)Wr −W
(0)
L

L−1∏
r=l

D(t,r,ξ)Wr

∥∥∥∥∥
2

i
≤
∥∥∥∥∥(W ′

L −W
(0)
L

) L−1∏
r=l

(
D′

(t,r,ξ) +D
′′

(t,r)

)
W ′

r

∥∥∥∥∥
2

+

∥∥∥∥∥(WL −W
(0)
L

) L−1∏
r=l

D(t,r,ξ)Wr

∥∥∥∥∥
2

+

∥∥∥∥∥W (0)
L

L−1∏
r=l

(
D′

(t,r,ξ) +D′′
(t,r)

)
W ′

r −W
(0)
L

L−1∏
r=l

D(t,r,ξ)Wr

∥∥∥∥∥
2

ii
≤ O

(√
Lω
)
+

∥∥∥∥∥W (0)
L

L−1∏
r=l

(
D′

(t,r,ξ) +D′′
(t,r)

)
W ′

r −W
(0)
L

L−1∏
r=l

D(t,r,ξ)Wr

∥∥∥∥∥
2

= O
(√

Lω
)
+

∥∥∥∥∥W (0)
L

L−1∏
r=l

(
D′

(t,r,ξ) +D′′
(t,r)

)
W ′

r −W
(0)
L

L−1∏
r=l

D(t,r,ξ)Wr

±W
(0)
L

L−1∏
r=l

D
(0)
(t,r,ξ)W

(0)
r

∥∥∥∥∥
2

iii
≤ O

(√
Lω
)
+

∥∥∥∥∥W (0)
L

L−1∏
r=l

(
D′

(t,r,ξ) +D′′
(t,r)

)
W ′

r −W
(0)
L

L−1∏
r=l

D
(0)
(t,r,ξ)W

(0)
r

∥∥∥∥∥
2

+

∥∥∥∥∥W (0)
L

L−1∏
r=l

D(t,r,ξ)Wr −W
(0)
L

L−1∏
r=l

D
(0)
(t,r,ξ)W

(0)
r

∥∥∥∥∥
2

iv
≤ O

(√
Lω
)
+O

(
ω

1
3L2

√
log(m)

)
v
≤ O

(
ω

1
3L2

√
log(m)

)
where i and iii hold due to the upper triangle inequality, ii holds due to (60), iv holds by Lemma 8.7 in [9] with

probability at least 1− e
−Ω

(
mω

2
3L log(m)

)
, and v holds for ω ≤ O

(
L−6 log−3(m)

)
. Then, the desired result

follows with probability at least 1−O(nL)e−Ω
(
mω

2
3L

)
−O(nL)e−Ω

(
mω

2
3L log(m)

)
= 1−O(nL)e−Ω

(
mω

2
3L

)
by taking a union bound across all t ∈ [n] and l ∈ [L− 1].
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D.5.8 Proof of Lemma 15

Proof. Consider some fixed t ∈ [n], j ∈ [L − 1], and arbitrary perturbation vector ξ, where we omit the
subscript ξt to emphasize that the result holds with different perturbations for any t ∈ [n] and both when data
is newly encountered or sampled for replay. Assume the neural network weights at initialization W(0) follow

the initialization scheme describe in Section 5.5.1. For l ∈ [L], we can define ∆(0)
l ≜

∥h(0)
(t,l,ξ)

∥22
∥h(0)

(t,l−1,ξ)
∥22

. Applying a

logarithm (with arbitrary base a > 1) to this definition, we have

log

(∥∥∥h(0)(t,j,ξ)

∥∥∥2
2

)
= log(∥xt + ξ∥22) +

j∑
l=0

log
(
∆

(0)
l

)
Given some ϵ ∈ (0, 1], we can invoke Fact 7.2 and the proof of Lemma 7.1 from [9] to show that∣∣∣∣∣

j∑
l=0

log
(
∆

(0)
l

)∣∣∣∣∣ ≤ ϵ

with probability at least 1−O(e−Ω(ϵ2m/L)). Thus, we have

log(∥xt + ξ∥22)− ϵ ≤ log

(∥∥∥h(0)(t,j,ξ)

∥∥∥2
2

)
≤ log(∥xt + ξ∥22) + ϵ (61)

We first expand the upper bound to derive a bound on ∥h(0)(t,j,ξ)∥22. We begin by exponentiating both sides of
the inequality in (61) to obtain the following∥∥∥h(0)(t,j,ξ)

∥∥∥2
2
≤ alog(∥xt+ξ∥22)+ϵ

= (∥xt + ξ∥22) · aϵ
i
≤ (∥xt∥22 + ∥ξ∥22) · aϵ
ii
≤ (∥xt∥22 + ∥ξ∥22) · a
iii
= (1 + ∥ξ∥22) · a

where i follows from the upper triangle inequality, ii is implied by the fact that a > 1 and ϵ ∈ (0, 1], and
iii follows from the unit norm assumption on input data. From here, we note that the base a chosen for the
logarithm is arbitrary, and that any base greater than one can be chosen. With this in mind, we note that
lima→1+(1 + ∥ξ∥22) · a = 1 + ∥ξ∥22, which yields the upper bound ∥h(0)(t,j,ξ)∥22 ≤ 1 + ∥ξ∥22.

We can similarly derive a lower bound on ∥h(0)(t,j,ξ)∥22 as follows, where we begin by exponentiating both
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sides of (61)

∥h(0)(t,j,ξ)∥
2
2 ≥ alog(∥xt+ξ∥22)−ϵ

= (∥xt + ξ∥22) · a−ϵ

i
≥
(∣∣∥xt∥22 − ∥ξ∥22∣∣) · a−ϵ

ii
≥ (1− ∥ξ∥22) · a−ϵ

iii
≥ (1− ∥ξ∥22) ·

1

a

where i follows from the lower triangle inequality, ii follows from the norm assumption on the data, and iii

follows from the fact that ϵ ∈ (0, 1] and a > 1. Noting that the base a chosen for the logarithm is arbitrary,
we have lima→1+(1− ∥ξ∥22) · 1a = 1− ∥ξ∥22.

By invoking both the upper and lower bounds derived above, we end up with ∥h(0)(t,j,ξ)∥22 ∈
[
1− ∥ξ∥22, 1 + ∥ξ∥22

]
with probability at least 1 − O

(
e−Ω(m/L)

)
due to the fact that ϵ ∈ (0, 1]. From here, we can take a union

bound over all all t ∈ [n] and j ∈ [L− 1] to yield the final result with probability 1−O (nL) e−Ω(m/L).

D.5.9 Proof of Corollary 2

Proof. Consider some fixed t ∈ [n], j ∈ [L − 1], and arbitrary perturbation vector ξ, where we omit the
subscript ξt to emphasize that the result holds with different perturbations for any t ∈ [n] and both when data
is newly encountered or sampled for replay. Assume the neural network weights at initialization W(0) follow
the initialization scheme described in Section 5.5.1. From here, we take W ∈ B(W(0), ω). If we then assume
ω ≤ O

(
L− 9

2 log−3(m)
)

, then we have from Lemma 13 that

∥∥∥h(t,j,ξ) − h
(0)
(t,j,ξ)

∥∥∥
2
≤ O

(
ωL

5
2

√
(1 + ∥ξ∥22) log(m)

)
(62)

with probability at least 1− e
−Ω

(
mω

2
3L

)
. Similarly, from Lemma 15, we have the following∥∥∥h(0)(t,j,ξ)

∥∥∥
2
≤
√

1 + ∥ξ∥22

with probability at least 1− e−Ω(m/L). Then, we can use these expressions to derive a bound on ∥h(t,j,ξ)∥2 as
follows ∥∥∥h(t,j,ξ) − h

(0)
(t,j,ξ)

∥∥∥
2

i
≥
∣∣∣∥h(t,j,ξ)∥2 − ∥∥∥h(0)(t,j,ξ)

∥∥∥
2

∣∣∣
ii
≥
∣∣∣∣∥h(t,j,ξ)∥2 −√1 + ∥ξ∥22

∣∣∣∣
≥ ∥h(t,j,ξ)∥2 −

√
1 + ∥ξ∥22
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where i follows from the lower triangle inequality and ii follows from Lemma 15. Then, combining the
expression above with (62), we derive

∥h(t,j,ξ)∥2 ≤ O
(
ωL

5
2

√
(1 + ∥ξ∥22) log(m)

)
+
√
1 + ∥ξ∥22

= O
(√

1 + ∥ξ∥22
(
ωL

5
2

√
log(m) + 1

))
Then, by taking a union bound over all t ∈ [n] and j ∈ [L− 1], we have the desired result with probability at

least 1−O(nL)e−Ω
(
mω

2
3L

)
.

D.5.10 Proof of Lemma 16

Proof. Consider some fixed t ∈ [n], l ∈ [L − 1], and arbitrary perturbation vector ξ, where we omit the
subscript ξt to emphasize that the result holds with different perturbations for any t ∈ [n] and both when data
is newly encountered or sampled for replay. Given W ∈ B(W(0), ω) with W(0) initialized as described in
Section 5.5.1, we have

∥∇WL
fW(xt + ξ)∥2

i
=
∥∥√m · h(t,L−1,ξ)

∥∥
2

ii
≤ O

(√
m(1 + ∥ξ∥22)

(
ωL

5
2

√
log(m) + 1

))
where i holds because∇WL

fW(xt + ξ) =
√
m · h⊤(t,L−1,ξ) and ii holds due to Corollary 2 with probability at

least 1− e
−Ω

(
mω

2
3L

)
. For layers l ∈ [L− 1], we have

∇Wl
fW(xt + ξ) =

√
m ·

(
h(t,l−1,ξ)WL

(
L−1∏
r=l+1

D(t,r,ξ)Wr

)
D(t,l,ξ)

)⊤

which allows us to show

∥∇Wl
fW(xt + ξ)∥F =

√
m ·

∥∥∥∥∥h(t,l−1,ξ)WL

(
L−1∏
r=l+1

D(t,r,ξ)Wr

)
D(t,l,ξ)

∥∥∥∥∥
F

i
=
√
m · ∥h(t,l−1,ξ)∥2 ·

∥∥∥∥∥WL

(
L−1∏
r=l+1

D(t,r,ξ)Wr

)∥∥∥∥∥
2

ii
≤ O

(√
m(1 + ∥ξ∥22)

(
ωL

5
2

√
log(m) + 1

))
·
∥∥∥∥∥WL

(
L−1∏
r=l+1

D(t,r,ξ)Wr

)∥∥∥∥∥
2

(63)

where i holds due to properties of norms and ii holds due to Corollary 2 with probability at least 1 −
e
−Ω

(
mω

2
3L

)
. Now, we must bound the red term within the expression above to complete the proof
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∥∥∥∥∥WL

(
L−1∏
r=l+1

D(t,r,ξ)Wr

)∥∥∥∥∥
2

i
≤
∥∥∥∥∥WL

(
L−1∏
r=l+1

(
D(t,r,ξ) +D

′′

(t,r)

)
Wr

)∥∥∥∥∥
2

=

∥∥∥∥∥WL

(
L−1∏
r=l+1

(
D(t,r,ξ) +D

′′

(t,r)

)
Wr

)

±W
(0)
L

L−1∏
r=l+1

D
(0)
(t,r,ξ)W

(0)
r

∥∥∥∥∥
2

ii
≤
∥∥∥∥∥WL

(
L−1∏
r=l+1

(
D(t,r,ξ) +D

′′

(t,r)

)
Wr

)

−W
(0)
L

L−1∏
r=l+1

D
(0)
(t,r,ξ)W

(0)
r

∥∥∥∥∥
2

+

∥∥∥∥∥W (0)
L

L−1∏
r=l+1

D
(0)
(t,r,ξ)W

(0)
r

∥∥∥∥∥
2

iii
≤ O

(
ω

1
3L2

√
log(m)

)
+O(1)

= O (1)

(64)

where i holds for some random diagonal matrix D
′′

(t,l) ∈ [−1, 1]m×m with at most O
(
mω

2
3L
)

non-zero

entries and ii is due to the upper triangle inequality. iii holds due to Lemma 14 when ω ≤ O
(
L−6 log−3(m)

)
and Lemma 7.4 in [9] with probabilities at least 1− e

−Ω
(
mω

2
3L

)
and 1− e−Ω(m/L), respectively. Thus, we

have from (63) and (64)

∥∇Wl
fW(xt + ξ)∥F ≤ O

(√
m(1 + ∥ξ∥22)

(
ωL

5
2

√
log(m) + 1

))
≤ O

(√
m(1 + ∥ξ∥22)

)
where the final inequality holds given sufficiently small ω. Then, a union bound can be taken over all
t ∈ [n] and l ∈ [L − 1] to yield the desired bound on ∥∇Wl

fW(xt + ξ)∥F with probability at least

1−O(nL)e−Ω(m/L) −O(nL)e−Ω
(
mω

2
3L

)
= 1−O(nL)e−Ω

(
mω

2
3L

)
. From here, we translate this result to

a bound on ∥∇Wl
L(t,ξ)(W)∥F as follows∥∥∇Wl

L(t,ξ)(W)
∥∥
F
=
∥∥ℓ′ (yt · fW(xt + ξ)) · yt · ∇Wl

fW(xt + ξ)
∥∥
F

=
∣∣ℓ′ (yt · fW(xt + ξ)) · yt

∣∣ · ∥∇Wl
fW(xt + ξ)∥F

≤ O
(√

m(1 + ∥ξ∥22)
)
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where the final inequality is derived by noticing that |ℓ′ (yt · fW(xt + ξ)) · yt| ≤ 1 and invoking the bound
on ∥∇Wl

fW(xt + ξ)∥F derived above. Thus, we have arrived at the desired result.

E Better Schedules for Low Precision Training of Deep Neural Networks

E.1 Supplementary Information

All code for this project is publicly-available via github at the following link: https://github.com/
wolfecameron/BetterPrecisionSchedules
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