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ABSTRACT

Toward Data-centric Automated Machine Learning

by

Kwei-Herng ”Henry” Lai

Machine learning has become increasingly popular and has shown significant suc-

cess in many fields. There are four main processes involved in developing a machine

learning solution: data preparation, model selection, hyper-parameter tuning, and

deployment for feedback collection. While automated machine learning (AutoML)

has been proposed to streamline the middle two processes and deliver e�cient so-

lutions without requiring laborious trial-and-error e↵orts, the framework requires a

well-prepared dataset and a perfectly defined setting, which may limit its capabil-

ity toward more challenging real-world applications. Recent studies suggest that

data preparation is often the key to optimal solutions in many challenging real-world

applications. To bridge the gap between model selection and data preparation, we

propose a complimentary AutoML framework that focuses on data-centric operations,

which perform automated data preparations in di↵erent stages of a machine learning

pipeline. Our framework includes a data-centric model customization framework to

generate sample-specific learning strategies based on the attributes of individual data

samples, a data-centric knowledge acquisition framework to e↵ectively collect expert

knowledge based on data distribution while considering its long-term e↵ects on the

model training procedure, and a model-aware data preparation framework that takes

data distribution and attributes into consideration to further improve the datasets



for challenging problem settings. Our goal is to develop an end-to-end data-centric

AutoML system for real-world applications. To achieve this, we propose developing

an end-to-end AutoML system for anomaly detection on time series data as a proto-

type to promote the proposed framework. With all these e↵orts, our research could

further expand the capability of AutoML toward real-world applications.
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Chapter 1

Introduction

1.1 Motivation and Challenges

Machine learning (ML) has achieved remarkable progress in analyzing various types

of data, such as image data [2], tabular data [3], graph data [4, 5], and time series

data [6]. The fruitful progress further leads to successful applications such as object

recognition [7, 8, 9], recommender systems [10, 11], financial forecasting [12, 13], and

system monitoring [14, 15, 16]. Machine learning solutions induce knowledge from

a given set of data through statistical learning techniques, and subsequently use the

learned knowledge to make inferences for unseen scenarios that never encountered

before.

To develop a machine learning solution, there are mainly four stages: data prepa-

ration, model selection, hyper-parameter tuning, and deployment for feedback collec-

tion [17]. However, this 4-stage procedure is often time-consuming as there exists a

large number of ML models and each model has di↵erent hyper-parameters. Properly

selecting an ML model with a set of properly tuned hyper-parameters for a given task

and dataset requires numerous iterations of trial-and-error e↵orts from ML engineers.

To alleviate the burden of model selection and hyper-parameter tuning, automated

machine learning (AutoML) [18, 19] has been proposed. AutoML is composed of

three steps: generation, observation, and update. It first generates a model based on

certain criteria. Then, the generated models will be trained on the target datasets
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to produce observations. Afterwards, the model architecture and the corresponding

training performance will be adopted to update the model toward the next iteration

of generation. By introducing AutoML, it can enable non-ML domain experts to

leverage the power of ML and improve the productivity of ML engineers.

AutoML is widely acknowledged for its ability to generate models that are compa-

rable to or even better than manually selected models. However, it has strict require-

ments on the quality of the given dataset and the defined problem scope. If the dataset

is flawed or the target problem is too challenging, AutoML may fail to generate a

quality model [20]. Particularly, recent studies [21, 22] and benchmarks [23, 24] show

that complex models will not always lead to performance progress in real-world appli-

cations. In addition, from the top-1 solutions of world-class data challenges [25, 26],

we can also discover that fine-grained data preparation plays a significant role in

developing ML solutions with imperfect datasets towards real-world applications.

To complement the existing AutoML framework, we explore a data-centric Au-

toML approach that focuses on automating the data preparation and feedback collec-

tion and integration stages of building a ML solution. In particular, this thesis aims

at addressing the following challenges in developing data-centric AutoML:

• Model Customization Individual data instances in real-world datasets may

represent complex concepts or entities. Existing AutoML aims to search for a

machine learning solution via a unified learning strategy. However, each data

instance may have entirely di↵erent attributes and, therefore, may require cus-

tomized strategies for modeling its information. In this thesis, we will study how

to leverage the attribute di↵erences between data instances and identify learning

strategies for individual instances accordingly, towards automated sample-wise

model customization.
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• Expertise Exploration Shortage of label information is very common in real-

world applications, and querying human knowledge is a critical solution to ad-

dress this problem. The most e�cient way to query human expertise is to

greedily select instances with the highest prediction probability, but this may

limit the exploration of di↵erent types of instances in the long term. To address

this issue, we study how to consider both data distribution and model behavior

simultaneously for automated knowledge acquisition.

• Knowledge Augmentation In many challenging real-world applications, la-

beled data is often scarce and limited, which makes it di�cult to train a machine

learning model directly. However, there may still be valuable information within

the limited labeled data that can be leveraged to improve the overall quality

of the dataset. To fully exploit the label information, we study on expanding

the knowledge within the limited label information to automatically enhance

the given dataset, making it more suitable for direct machine learning model

training.

• Framework Instantiate In order to demonstrate the viability of the data-

centric AutoML approach, it is essential to implement a practical framework

on highly complex real-world applications. However, given the complexity of

creating ML pipelines, there exists numerous operations for data-centric Au-

toML. Thus, in this thesis, we focus on developing an open-source toolkit as a

practical example for outlier detection in time series data. Moreover, by using

this toolkit, we investigate and analyze the advancements in this field, thereby

showcasing the e↵ectiveness and applicability of our proposed approach.
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1.2 Contributions

To address the challenges in developing data-centric AutoML, this thesis introduces

several approaches for facilitating data-centric AutoML. Concretely, we have made

four major contributions:

• The first contribution is that we propose a meta-policy framework that models

the node attributes for customizing node-wise message passing of graph neural

networks (GNNs). Specifically, we uses a meta-policy to adaptively determine

the number of aggregations for each node based on the node attributes. The

meta-policy is trained with deep reinforcement learning (RL) by exploiting the

feedback from the model. We further introduce parameter sharing and a bu↵er

mechanism to boost the training e�ciency. Experimental results on three real-

world benchmark datasets suggest that our framework outperforms the state-of-

the-art alternatives, showing the promise in data-centric model customization.

• The second contribution is that we propose a novel framework that learns a

meta-policy for query selection. Specifically, our framework leverages deep rein-

forcement learning to train the meta-policy to select the most proper instance to

explicitly optimize the number of discovered anomalies throughout the querying

process. It is easy to deploy since a trained meta-policy can be directly applied

to any new datasets without further tuning. Extensive experiments on 24 bench-

mark datasets demonstrate that our framework outperforms the state-of-the-art

re-ranking strategies and the unsupervised baseline. The conducted empirical

analysis shows the promise of data-centric automated knowledge acquisition.

• The third contribution is that we propose a data augmentation framework to

iteratively generate synthetic samples by mixing up data samples from two dif-
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ferent classes while training a ML model in a supervised fashion. Specifically,

we formulate the iterative data mix-up problem into a Markov decision pro-

cess (MDP), which maps data attributes into an augmentation strategy. To

solve the MDP, we tailor a deep reinforcement learning framework to adapt to

the discrete-continuous decision space for training a data augmentation policy

and design a reward signal that explores the classifier uncertainty and encour-

ages performance improvement regardless of the convergence of the classifier.

The extensive experiments on 7 publicly available benchmark datasets with 3

di↵erent kinds of classifiers show the promise of model-aware data preparation.

• The fourth contribution is that we instantiate the data-centric AutoML on a

challenging real-world application, time series outlier detection, with a highly

modular system that supports easy pipeline construction. The basic build-

ing block of the system is primitive, which is an implementation of a function

with hyperparameters. The system currently supports more than 70 primitives,

including data processing, time series processing, feature analysis, detection al-

gorithms, and a reinforcement module. Additionally, a data-driven searcher is

provided to automatically discover the most suitable pipelines given a dataset.

With the aid of the system, we comprehensively benchmark the advancements

of outlier detection on time series data and show the e↵ectiveness of the system.

Putting them together, our research validate the feasibility of data-centric Au-

toML and could facilitate its research as well as the development in various applica-

tions for our daily life.
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1.3 Thesis Outline

The remainder of the thesis is organized as follows:

• Chapter 2: Background. In this chapter, we introduce the background of

AutoML and the formal definition of the corresponding techniques: Markov

decision process and deep reinforcement learning.

• Chapter 3: Data-centric Automated Model Customization. In this

chapter, we formally define the problem of model customization on graph data

and discuss how to customize training strategies for individual nodes in a graph.

• Chapter 4: Data-centric Automated Knowledge Acquisition. In this

chapter, we identify the problem of greedily acquire human expertise without

considering data distribution and present an adaptive querying strategy for

maximizing long-term benefits.

• Chapter 5: Model-aware Automated Data Preparation. In this chapter,

we study the data augmentation strategies and present an automated data

preparation strategy that considers both data attributes and model status.

• Chapter 6: Data-centric AutoML for Time Series Outlier Detection:

System, Definition, and Benchmark. In this chapter, we present an au-

tomated time series outlier detection system and discuss its applicability on

studying the advancements in the field and the corresponding results.

• Chapter 7: Conclusions and Future Research Opportunities. We con-

clude this thesis by summarizing our contributions and providing outlooks. We

also highlight several research directions to motivate future exploration
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Chapter 2

Background

Automated machine learning (AutoML) [27] has been widely adopted to make ML

accessible to the general public, improve the productivity of ML engineers, and even

create better ML solutions compared to human-designed models. To realize Au-

toML [27] search process, existing methods exploit algorithms such as Bayesian op-

timization [28, 29], evolutionary algorithm [30, 31] and reinforcement learning [32].

However, Bayesian optimization and evolutionary algorithms are stateless approaches

equipped with limited parameters, which are limited to a smaller search space [33].

In data-centric AutoML, as we are searching not only the model hyperparameters but

also learning data-centric operations through traversing feature space or considering

data distribution, reinforcement learning can better serve the role to tackle the prob-

lem. In addition, the temporal di↵erence learning [34] and Bellman equation-formed

reward signal [35] in reinforcement learning can better lead to long-term beneficial

decisions compared to the stateless setting of the two alternatives. To drive the data-

centric AutoML with reinforcement learning, one may need to formulate the problem

into a Markov decision process. Here, we introduce the definition of the Markov

decision process and reinforcement learning.
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2.1 Sequential Decision Modeling with Markov Decision Pro-

cess

Markov Decision Process (MDP) is a mathematical framework to describe sequential

decision making process. Specifically, let M be an MDP, represented by a quintuple

(S,A,PT ,R, �), where S is a finite set of states, A is a finite set of actions, PT :

S ⇥ A ⇥ S ! R+ is the state transition probability function that maps the current

state s, action a and the next state s
0 to a probability, R : S ! R is the immediate

reward function, and � 2 (0, 1) is a discount factor. At each timestep t, the agent

takes action at 2 A based on the current state st 2 S, and observes the next state st+1

as well as a reward signal rt = R(st+1). We aim to search for the optimal decisions so

as to maximize the expected discounted cumulative reward, i.e., we would like find a

policy ⇡ : S ! A to maximize E⇡[
P1

t=0
�
t
rt].

2.2 Deep Reinforcement Learning

Deep reinforcement learning is a family of algorithms that solve the MDP with deep

neural networks. To better adapting to large search space of data-centric AutoML,

we consider model-free deep reinforcement learning, which learns to take the optimal

actions through exploration. One of the pioneering work Deep-Q Learning (DQN) [36]

uses deep neural networks to approximate state-action values Q(s, a) that satisfies

Q(s, a) = Es0 [R(s0) + �max
a0

(Q(s0, a0)], (2.1)

where s
0 is the next state and a

0 is the next action. DQN introduces two techniques

to stabilize the training: (1) a replay bu↵er to reuse past experiences; (2) a separate

target network that is periodically updated. To obtain a policy e⇡, DQN select the

action based on the Q value with epsilon-greedy algorithm.
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Table 2.1 : Notations cover deep reinforcement learning in this thesis proposal.

Notation Definition

S A finite set of state

A A finite set of actions

PT State transition probability function.

st A state in the timestep t.

at An action in the timestep t.

rt Reward in the timestep t.

Q(s, a) Q-function to evaluate the state s and action a.

V (s) Value function to evaluate the state s.

e⇡ An optimal policy function to generate action a for a given state s.

However, as DQN only capable of addressing discrete action space, Deep Deter-

ministic Policy Gradient (DDPG) [37] is introduced to tackle the problem. To perform

a continuous action, instead of performing epsilon-greedy on the Q values, the DDPG

learn an actor network ⇡(st|✓) for obtaining an optimal policy e⇡ by deterministically

mapping a given state st to an action vector at. The ⇡(st|✓) is trained the by maxi-

mizing the approximated cumulative reward that generated by the critic network Q(.)

(i.e., Q-network). Specifically, given N transitions, a projected action ⇡(st|✓) can be

generated as the input of the critic to minimize the following loss function:

L⇡(✓) = �
1

N

NX

i=1

Q(si, ⇡(si|✓)), (2.2)

where the action ⇡(si) is a real number vector.

The above two DRL algorithms are trained in an o✏ine setting, and may be
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ine�cient when the search procedure are required to be performed in online man-

ner. To this end, an e�cient online algorithm, named Proximal Policy Optimiza-

tion (PPO) [38] is proposed to alleviate the problem. Specifically, sine training a Q-

function requires past experience, PPO instead trains a value function V (s) through

direct interacting with the environment. Then, it exploits a generalized advantage

estimator [39] to compute a short-term advantage:

Ât = �t +
T�1+1X

t0=1

(��)t
0
�t+t0 , (2.3)

where �t = rt + �V (st+1) � V (st), T is the total timesteps in an episode, � is the

discount factor, and � is a hyper-parameter to control the bias-variance trade-o↵.

This way, it trains the actor network ⇡ toward an optimal policy e⇡ via a clipped

surrogate objective:

L
CLIP
t (✓) = Êt[min(rt(✓)Ât, clip(rt(✓), 1� ✏, 1 + ✏)Ât)], (2.4)

where rt(✓) =
⇡✓(at|st)

⇡✓old
(at|st) , ⇡✓old is the policy before the update, clip(rt(✓), 1 � ✏, 1 + ✏)

will clip rt(✓) into range [1� ✏, 1 + ✏], and ✏ is a hyper-parameter to control the clip

range. This objective ensures the new policy will not deviate too much from the old

policy and therefore leads to stable policy improvement. To drive the policy training,

a combinatorial loss is derived to simultaneously update the value loss:

Lt(✓) = Êt[L
CLIP
t (✓)� c1L

V F
t (✓) + c2 · entropy(⇡✓(·|st))], (2.5)

where L
V F
t (✓) is a squared-error loss (V✓(st) � V

target
t )2, V target

t is estimated based

on the collected data, entropy(·) is a term to encourage exploration, c1 and c2 are

hyper-parameters.
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Chapter 3

Data-centric Automated Model Customization

3.1 Motivation

To study the possibility of sample-wise learning mechanism customization, we con-

ducted research on graph-structured data since they are pervasive in many real-world

applications, such as anomaly detection [40], molecular structure generation [41], so-

cial network analysis [42] and recommendation systems [43]. In particular, we focus

on the key techniques behind these applications, graph representation learning [44],

which aims at extracting information underlying the graph-structured data into low

dimensional vector representations. Following the great success of convolution neural

networks [45], a lot of momentum has been gained by graph convolution networks

(GCNs) [46, 47] and graph neural networks (GNNs) [48, 49, 50, 51, 52] to model the

local structures and hierarchical patterns of the graph.

To validate the need for model customization, we hypothesized that di↵erent nodes

require di↵erent levels of aggregation iterations to capture the structural information

fully. We conducted node classification on the Cora dataset using a standard GCN

with di↵erent layers to explore this hypothesis. Figure 3.1 illustrates the results of

100 runs of 20 randomly sampled nodes. The figure shows that certain nodes achieve

better classification performance with more GNN layers, indicating the need for model

customization. For instance, node 17 and 20 perform better when aggregating 4

iterations, whereas node 2 requires more iterations of aggregation. While most nodes
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Figure 3.1 : The e↵ect of di↵erent iterations of aggregation in GCN on 20 randomly

sampled nodes of Cora dataset. The X-axis denotes the id of the sampled node, and Y-axis

is the iteration number (layers) in GCN. The color from dark to light represents the ratio

of being predicted correctly with 100 di↵erent runs.

are well-classified in 2 hop aggregation, our observations motivate us to investigate

how to adaptively aggregate di↵erent hops of neighbors for each node to improve the

performance of GNNs.

However, this task is nontrivial due to the following challenges. First, real-world

graphs are usually complex with multiple types of attributes: it is hard to determine

the suitable iterations of aggregation for each node. For example, in a citation network

such as the Cora dataset, each node represents a piece of paper with 1,433 dimensions

of bag-of-words features. It is di�cult to design the aggregation strategy based on

such a sparse and large number of features. Second, even though we can define a

proper aggregation strategy for each node, it remains challenging to train GNNs on

these nodes since we need to feed these nodes into di↵erent numbers of network layers.

Improper management of the sampled nodes will greatly a↵ect the training e�ciency

of the algorithms.

To address the above challenges, in this paper, we propose Policy-GNN, a meta-

policy framework to model the complex aggregation strategy. Motivated by the recent

success of meta-policy learning [53], we formulate the graph representation learning

as a Markov decision process (MDP), which optimizes a meta-policy by exploiting
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the feedback from the model. Specifically, the MDP iteratively samples the number

of hops of the current nodes and the corresponding neighboring nodes with a meta-

policy, and trains GNNs by aggregating the information of the nodes within the

sampled hops. The proposed MDP successfully integrates the sampling procedure and

message passing into a combined learning process. To solve this MDP, we employ

deep reinforcement learning algorithms enhanced by a tailored reward function to

train the meta-policy. In addition, we introduce parameter sharing and a bu↵er

mechanism that enables batch training to boost the training e�ciency.

We demonstrate the e↵ectiveness of our framework by implementing it using the

widely-used deep Q-learning (DQN) algorithm [54] in combination with the graph

convolution network (GCN) architecture. In order to validate the proposed approach,

we conducted extensive experiments on various real-world datasets and compared

our results with several state-of-the-art baseline methods, including model-centric

AutoML solutions and graph neural architecture search methods. Our experimental

results show that our proposed Policy-GNN outperforms these baselines on several

benchmark datasets, demonstrating the e�cacy of our approach in customizing the

learning mechanism of GNNs for improved performance.

3.2 Preliminaries

In this section, we first define the problem of aggregation optimization. Then we

introduce the background of graph neural networks, Markov decision process, and

deep reinforcement learning. Finally, we discuss the related works to the proposed

framework.
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Table 3.1 : Main notations in this section. The top rows are for graph representation

learning; the bottom rows cover deep reinforcement learning.

Notation Definition

V The set of vertices in the graph.

E The set of edges in the graph.

G A graph G with node set V and edge set E.

A The adjacency matrix of graph G.

eA The normalized adjacency matrix of graph G

X The attribute information matrix.

Nk(v) The k-hop neighborhood of the node v.

S A finite set of state

A A finite set of actions

PT State transition probability function.

st A state in the timestep t.

at An action in the timestep t.

rt Reward in the timestep t.

Q(s, a) Value function to evaluate the state s and action a.

e⇡ Policy function to generate action a for a given state s.

b The window size of the baseline in reward function.
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3.2.1 Problem Definition

Let G = (V,E) denote a graph, where V = {v1, v2, v3...vn} is the set of vertices,

E ✓ V ⇥ V is the set of edges and n is the number of vertices in G. Each edge

e = (u, v, w) 2 E consists of a starting node u 2 V , an end node v 2 V and a edge

weight w 2 R+ that indicates the strength of the relation between u and v. We

use the convention of adjacency matrix A 2 Rn⇥n and attribute information matrix

X 2 Rn⇥mto represent G, where each entry Aij 2 R+ is the edge weight between vi

and vj, and each row Xi is a m-dimensional attribute vector for node vi. For each

node v, we define a set of k-hop neighborhood as Nk(v), where each v
0 2 Nk(v) is the

k-order proximity of the node v. Graph representation learning aims at embedding the

graph into low-dimensional vector spaces. Formally, the objective can be expressed

by a mapping function F : v ! Rd, where d is the dimension of the vector. Following

the message passing strategy in GNNs, our goal is to learn the node representation

through aggregating the information from k-hop neighborhood Nk(v). In this way,

the proximity information is preserved in the low dimensional feature vectors and

the learned representations can be used in down downstream tasks such as node

classification. Table 3.1 lists the main notations used in the paper.

Based on the notations defined above, we formulate the problem of aggregation

optimization as follows. Given an arbitrary graph neural network algorithm, our goal

is to jointly learn a meta-policy e⇡ with the graph neural network, where e⇡ maps each

node v 2 V into the number of iterations of aggregation, such that the performance

on downstream task is optimized.
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3.2.2 Learning Graph Representations with Deep Neural Networks

Graph neural networks (GNNs) have gained attention due to their great success on

graph data, similar to convolutional neural networks on image data. Several GNN

models have been proposed, including Graph Convolutional Networks (GCNs) [46],

GraphSAGE [55], and GAT [52]. Inspired by Weisfeiler-Lehman (WL) graph isomor-

phism test [56], the process of learning a GNN involves three steps: (1) initializa-

tion, which involves initializing the feature vectors of each node by the attributes

of the vertices, (2) neighborhood detection, which involves determining the lo-

cal neighborhood for each node to gather further information, and (3) information

aggregation, which involves updating the node feature vectors by aggregating and

compressing feature vectors of the detected neighbors. These steps enable GNNs to

capture the local structures and hierarchical patterns of the graph and learn the node

representations.

To e↵ectively gather the information from neighbors, several feature aggregation

functions (graph convolution) have been proposed. One of the most representative

method is Graph Convolution Network (GCN) [46]. Let eA be the normalized

adjacency matrix where eAuv = AuvP
v Auv

, GCN performs weighted feature aggregation

from the neighborhood:

hk
v = �(

X
u2{v}[N1(v)

eAuvWkh
k�1

u ). (3.1)

where Wk is the trainable parameter in the k-th graph convolution layer, N1(v) is the

one hop neighborhood of the node v, and hu and hv are d dimensional feature vectors.

In this work, we have utilized GCN as the fundamental GNN model. However, our

proposed framework is not restricted to GCN, and other advanced GNN models can

also be incorporated into our framework.
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Figure 3.2 : An illustration of Policy-GNN with meta-policy sampling 1, 2 and 3 itera-

tions of aggregation for di↵erent nodes. The learning procedure follows a Markov Decision

Process. In each timestep, the mata-policy samples the number of layers (action) based on

the attributes of the nodes (state). The next nodes (next state) are obtained by randomly

sampling a node from the k-hop neighbors of the current nodes, where k is the output of the

mata-policy (action). The meta-policy is updated based on the feedback from the GNN.

3.2.3 Related Works

Graph Neural Networks

Neural network model [57] has been studied for years to preserve the information of

a graph into vector space. Based on the graph spectral theory, graph convolutional

networks have been proposed to capture the proximity information of the graph-

structured data [47, 46]. To deal with the large scale real-world data, the spatial-

based GNNs are proposed with a message passing strategy, called graph convolution.

Specifically, the graph convolution learns the node representations by aggregating fea-

tures from its neighbors. With k times of graph convolution, the k-hop neighborhood

information of nodes are encoded into feature vectors. Recently, various strategies

have been proposed to advance the message passing in GNNs, including the ad-

vanced aggregation functions [55], node attention mechanisms [52], graph structure

poolings [58], neighborhood sampling methods [59], graph recurrent networks [60],



18

and multi-channel GNNs [61]. In this work, we explore an orthogonal direction that

learns a meta-policy to customize message passing strategy for each node in the graph.

Graph Neural Architecture Search

Given a specific task, neural architecture search (NAS) aims to discover the optimal

model without laborious neural architecture tuning from the predefined architecture

search space [62, 63, 64, 65, 66]. Following the success of NAS, the concept of au-

tomation has been extended to GNNs architectures[67, 68]. The search space consists

of all the possible variants of GNN architecture. A controller is then designed to ex-

plore the search space to find the optimal model and maximize the performance. The

concept of meta-policy in Policy-GNN is similar to the controller in NAS. Instead

of focusing on searching the space of neural architecture, our meta-policy learns to

sample the best iterations of aggregation for each node, and achieves much better

performance in real-world benchmarks.

Meta-policy Learning

Recent advances in deep reinforcement learning (RL) have shown its wide applicabil-

ity, such as games [69, 70] and neural architecture search [62]. In general, the policy of

deep neural networks is used to extract features from observations and make the cor-

responding decisions. The idea of meta-policy learning [53] is to train a meta-policy

by exploiting the feedback from the model to optimize the performance. The meta-

policy learning has been widely studied to generate and replay experience data [53],

to learn a dual policy for improving the sample e�ciency of the agent [71] and to

maximize the performance by learning reward and discount factor [72]. However,

the successes of these studies are limited in simulated environments, which are far
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from real-world applications. Our work demonstrates the e↵ectiveness of meta-policy

learning in the context of GNNs in real-world scenario.

3.3 Methodology

Our framework is composed of two key components, as depicted in Figure 3.2: the

Meta-Policy module and the GNN module. The goal of the Meta-Policy module

is to learn the correlation between node attributes and the appropriate iterations

of aggregation. Meanwhile, the GNN module utilizes the learned Meta-Policy to

perform graph representation learning.

By combining the two modules, we formulate graph representation learning as a

Markov decision process. Firstly, the Meta-Policy module treats the node attributes

as states, represented as red/yellow/green feature vectors, and maps these states

into actions, which correspond to the number of hops shown in the red/yellow/green

circles. Next, we sample the next state from the k-hop neighbors of each node, where

k is the output of the Meta-Policy. The GNN module, located at the right side of

Figure 3.2, selects a pre-built k-layer GNN architecture, determined by the output

of the meta-policy, to learn the node representations and obtain a reward signal for

updating the Meta-Policy.

In what follows, we elaborate on the details of Policy-GNN. We first describe

how we can train the meta-policy with deep reinforcement learning. Then, we show

how we train GNNs with the meta-policy algorithm. Last, we introduce the bu↵er

mechanism and parameter sharing strategy, which boost the training e�ciency in

real-world application scenarios.
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3.3.1 Aggregation Optimization with Deep Reinforcement Learning

We discuss how the process of learning an optimal aggregation strategy can be nat-

urally formulated as a Markov decision process (MDP). As discussed in Section 2.1,

the key components of an MDP include states, actions and rewards, as well as a tran-

sition probability that maps the current state and action into the next state. With

the above in mind, we now discuss how we define these components in the context of

graph representation learning:

• State (S): The state st 2 S in timestep t is defined as the attribute of the

current node.

• Action (A): The action at 2 A in timestep t specifies the number of hops of

the current node.

• Reward Function(R): We define the reward rt in timestep t as the perfor-

mance improvement on the specific task comparing with the last state.

Based on the definitions above, the proposed aggregation process consists of three

phases: 1) selecting a start node and obtaining its attributes as the current state st,

2) generating an action at from ⇡(st) to specify the number of hops for the current

node, and 3) sampling the next node from at-hop neighborhood and obtaining its

attributes as the next state st+1. Figure 3.3 gives an simple example of how does

MDP work for graph representation learning. Specifically, we formulate the sampling

process of GNN into a MDP. With the specified action k, we sampled the next state

from the k-hop neighborhood.

We propose to employ deep reinforcement learning algorithms to optimize the

above MDP. Since the action space of the aggregation process is a discrete space, i.e.,
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Figure 3.3 : An illustration of node sampling as Markov decision process (MDP). State 1

is the attribute of the solid-pink node in the left figure. We take action K = 1 and randomly

jump to one of 1-hop neighboring nodes (pink-framed). As a result, state 1 transits to state

2, which is the attribute of the solid-pink node in the right figure. We then sample the next

node from 2-hop neighbors by taking action K = 2. The above procedure can be naturally

treated as an MDP.

A 2 N and any arbitrary action a 2 A is always a finite positive integer, we introduce

the deep Q-learning [69, 54] to address the problem.

The key factor in guiding the deep Q-learning is the reward signal. We employ a

baseline in the reward function, defined as

R(st, at) = �(M(st, at)�
Pt�1

i=t�b M(si, ai)

b� 1
), (3.2)

where
Pt�1

i=t�b M(si,ai)

b�1
is the baseline for each timestep t, M is the evaluation metric of

a specific task, b is a hyperparameter to define the window size for the historical per-

formance to be referred for the baseline, � is a hyperparameter to decide the strength

of reward signal and M(st, at) is the performance of the task on the validation set

at timestep t. The idea of employing a baseline function is to encourage the learn-

ing agent to achieve better performance compared with the most recent b timesteps.

In this work, we showcase the learning framework by using the node classifications
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Algorithm 1 Policy-GNN

1: Input: Maximum layer number K, DQN training step S, total training epoch

T , epsilon probability ✏, window size of reward function b.

2: Initialize K GNN layers, Q function, memory bu↵er D, GNN bu↵er B

3: Randomly sample a node, generate a state s0 by attribute of the nodes.

4: for t = 0, 1, 2..., T do

5: With probability ✏ randomly choose an action at,

otherwise obtain at = argmaxaQ(st, a).

6: Store st and at into GNN bu↵er Bat

7: Apply Algorithm 2 with input a and B to train the GNNs.

8: Obtain rt on validation dataset via equation 3.2

9: Sample the next state st+1 from at-hop neighborhood.

10: Store the triplet Tt = (st, at, st+1, rt) into D

11: for step = 1, 2, .., S do

12: Optimize Q function using the data in D via equation 2.1.

13: end for

14: end for

accuracy on the validation set as the evaluation metric.

Based on the above reward function, we train the Q function by optimizing Equa-

tion (2.1). In this way, we can apply epsilon-greedy policy [73] to obtain our policy

function e⇡.
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3.3.2 Graph Representation Learning with Meta-Policy

We discuss the role that meta-policy plays in graph representation learning and how to

learn the node embeddings with Meta-Policy. In the proposed framework, we explic-

itly learn the aggregation strategy through the aforementioned meta-policy learning.

As Figure 3.2 shows, the Meta-Policy maps the node attributes to the number of

hops, and uses the number of hops to construct a specific GNN architecture for each

node. Compared with the recent e↵orts [74, 75] on skip-connection, which implicitly

learns an aggregation strategy for the whole graph, the proposed framework explic-

itly aggregates the information. Furthermore, the Policy-GNN provides the flexibility

to include all of the previous research fruits, including skip-connection, to facilitate

graph representation learning.

To showcase the e↵ectiveness of the framework, we apply the meta-policy on basic

GCN [46], and learn the node representations by equation 3.1. Instead of aggregating

a fixed number of layers for every nodes, our framework aggregates at layers for

each node attribute st at timestep t. The GNN architecture construction can be

represented as the transition equations as follows:

h1

v = �(
X

u12{v}[N1(v)
eau1vW1Xu),

...

hk=at
v = �(

X
uk2{uk�1}[Nk(v)

eaukuk�1
Wkh

k�1

v ),

output = softmax(hat
v ),

where hk
v is the d dimensional feature vector of node v of the k layer, Xu is the

input attribute vector of node u, Wk is the trainable parameters of the k layer,
P

ea

indicates the neighborhood specified by the meta-policy, � is the activation function

of each layer, and k = at is the number of aggregation that decided by e⇡ function in
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Algorithm 2 Training GNN with Bu↵er Mechanism

1: Input: Action a, GNN bu↵er B

2: if Ba is full then

3: for layers = 1, 2, ... a do

4: Stack GNN layers as subsection 3.3.2 mentioned.

5: end for

6: Train the stacked GNNs on the bu↵er of action Ba

7: Clear the bu↵er Ba

8: end if

timestep t. Note that, we can always replace the aggregation function in each layer

as well as the final output layer for di↵erent tasks in our framework.

3.3.3 Accelerating Policy-GNN with Bu↵er Mechanism and Parameter

Sharing

One of the challenging problems to practically develop the proposed framework is

training e�ciency. Since re-constructing GNNs at every timestep is time-consuming,

and the number of parameters may be large if we train multiple GNNs for di↵erent

actions. To address the problems, we introduce the following techniques to improve

training e�ciency.

Parameter Sharing. We reduce the number of training parameters via param-

eter sharing mechanism. Specifically, we first initialize the maximum layer number

(k) of GNN layers in the beginning. Then, in each timestep t, we repeatedly stack

the layers by the initialization order for the action at to perform GNN training. In

this way, if the number of hidden units for each layer is n, we only need to train k⇥n
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parameters, rather than nk(k+1)

2
parameters.

Bu↵er mechanism for graph representation learning. We construct action

bu↵ers for each possible action. In each timestep, after we obtain a batch of nodes’

attributes and a batch of actions, we store them into the action bu↵er and check if

the bu↵er has reached the batch size. If the bu↵er of a specific action is full, then

we construct the GNN with selected layers, and train the GNN with the data in

the bu↵er of the action. After the data has been trained on the GNN, we clear the

data in the bu↵er. Practically, if the batch size is too large, the mechanism will

still take much time. However, compared with the costly GNN construction in every

timestep for training only one instance, the mechanism significantly improves the

training e�ciency ∗.

The detail of the algorithm is provided in algorithm 1 and 2. We first initialize k

GNN layers, the Q function, the GNN bu↵er B and the memory bu↵er D to store the

experiences. Then, we randomly sample a batch of nodes and generate the first state

with the node attributes. We feed the state to Q function and obtain the actions

with ✏ probability to randomly choose the action. Based on the chosen action, we

stack the layers from the initialized GNN layers in order, and train the selected layers

to get the feedback on the validation set. With the feedback on the validation set,

we further obtain the reward signal via equation 3.2 and store the transitions into a

memory bu↵er. In this way, with past experiences in the memory bu↵er, we randomly

sample batches of data from the memory bu↵er and optimize the Q function based

on equation 2.1 for the next iteration.

∗The preliminary result on comparing the training time with/without the mechanisms on Cora

dataset shows that the training e�ciency is significantly improved by 96 times.
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Table 3.2 : Summary of data statistics used in our experiment, including Cora, Citeseer,

and Pubmed [1].

Dataset #Nodes #Features #Classes #Training #Validation #Testing

Cora 2, 708 1, 433 7 140 500 1, 000

Citeseer 3, 327 3, 703 6 120 500 1, 000

Pubmed 19, 717 500 3 60 500 1, 000

3.4 Experiment

In this section, we empirically evaluate the proposed Policy-GNN framework. We

mainly focus on the following research questions:

• How does Policy-GNN compare against the state-of-the-art graph representa-

tion learning algorithms (Section 3.4.4)?

• What does the distribution of the number of layers look like for a trained meta-

policy (Section 3.4.5)?

• Is the search process of Policy-GNN e�cient in terms of the number of iterations

it needs to achieve good performance (Section 3.4.6)?

3.4.1 Datasets

We consider the benchmark datasets [1] that are commonly used for studying node

classification, including the citation graph-structured data of Cora, Citeseer, and

Pubmed. The statistics of these datasets are summarized in Table ??. In these

citation graphs, the nodes and the edges correspond to the published documents

and their citation relations, respectively. The node attribute information is given
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by bag-of-words representation of a document, and each node is associated with a

class label. We follow the standard training/validation/test splits as in previous

studies [52, 76, 68, 67] Specifically, we use 20 nodes per class for training, 500 nodes

for validation, and 1000 nodes for testing. The proposed model and baselines are

all trained and evaluated with the complete graph structure and node features in

the training dataset, without using the node labels in the held-out validation and

testing sets. The model hyperparameters are selected based on the performance on

the validation set. The final classification accuracy is reported on the test set.

3.4.2 Baselines

We compare Policy-GNN with the state-of-the-art graph representation learning al-

gorithms. Specifically, we consider the baselines in the following three categories:

network embedding methods, traditional graph neural networks (Static-GNNs), and

the recently proposed neural architecture search based GNNs (NAS-GNNs). Note

that NAS-GNNs also include a meta-policy that operates upon the GNNs. The

search space of NAS-GGNs focuses on the message passing functions, whereas our

meta-policy searches for the optimal iterations of aggregation. We are interested in

studying whether our search strategy is more e↵ective than NAS.

Network Embedding. Network embedding learns the node representations in

an unsupervised fashion. To capture the proximity information, network embed-

ding utilizes the learning objective of the skip-gram method [77] and introduces var-

ious sampling techniques such as random walk. We consider DeepWalk [78] and

Node2vec [79], which are the most commonly used baselines in network embedding.

Both methods learn node feature vectors via random walk sampling. Compared with

DeepWalk, Node2vec introduces a biased random walking strategy to sample the
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neighborhood for each node in BFS and DFS fashion.

Static-GNNs. GNNs learn the node representations in a supervised fashion,

where neural networks are trained with both feature vectors and the labels in the

training set. There are a huge number of algorithms in the literature. To better un-

derstand the performance of our Policy-GNN, we try to include all the state-of-the-art

methods that we are aware of for comparison. Specifically, we consider the following

baselines which use di↵erent layer structure and batch sampling techniques. Cheby-

shev [47] and GCN [46] perform information aggregation based on the Laplacian

or adjacent matrix of the complete graph. GraphSAGE [80] proposes neighborhood

batch sampling to enable scalable training with max, min and LSTM aggregation

functions. GAT [52] introduces multi-head attention mechanism into aggregation

function, which learns the importance of the neighborhood of each node for informa-

tion aggregation. LGCN [76] automatically selects a fixed number of neighbors for

each node based on value ranking, and transforms graph data into grid-like struc-

tures in 1-D format to extract the proximity information. g-U-Nets [58] proposes

an encoder-decoder structure with gPool layer to adaptively sample nodes to form a

smaller graph, and a gUnpool to restore the original graph from the smaller graph

and use skip-connection for deeper architectures.

NAS-GNN. Recently, neural architecture search has been extensively introduced

to search the optimal GNN architectures within fix iterations of aggregation. Graph-

NAS [67] uses a recurrent neural network to sample the variable-length architecture

strings for GNNs, and applies reinforcement rule to update the controller. AGNN [68]

follows the setting in GraphNAS, and further introduces the constrained parameter

sharing and reinforced conservative controller to explore well-performing GNNs e�-

ciently. The search space of both baselines covers the aggregation functions, activa-
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tion functions, attention functions, and the number of heads for multi-head attention

mechanism.

In addition to the above three categories, we also include a variant of our Policy-

GNN, named Random Policy. Random Policy will randomly make the decisions for

each node without the reinforcement learning update. This baseline can be regarded

as a special case of our framework epsilon probability 1.0.
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3.4.3 Implementation Details

In the experiments, we implement our framework using GCN [46] and DQN [69, 54].

For GCN layers, we apply relu as the activation function for each layer and include

the dropout mechanism between the layers with 0.5 dropout rate. To train the GCN,

we utilize Adam optimizer with a learning rate 0.01 and a weight decay rate 0.0005,

and set the batch size as 128. We use the DQN implementation in [70] and construct

5-layers of MLP with (32, 64, 128, 64, 32) hidden units for Q function. We set the

memory bu↵er size to be 10000 and the training batch size to be 256. For the epsilon

probability of policy function, we set up a linear scheduler with starting probability

1.0 to the end probability 0.1, where the probability linearly decades every 10 training

steps. We follow the setting of GraphNAS and AGNN by training the meta-policy

for 1000 episodes. We save the model that has the best accuracy on the validation

set and report the performance of the model by applying it on the test set.

3.4.4 Performance Comparison on Benchmark Datasets

Table 3.3 presents a summary of the performance of the proposed Policy-GNN and

the considered baselines on the three benchmark datasets. For Policy-GNN, the num-

ber of layers for each node is randomly sampled between 2 and 5. The performance

evaluation is based on classification accuracy on the test data. The experimental

results demonstrate that our Policy-GNN outperforms all the baselines consistently

and significantly across all datasets. Specifically, compared to the second-best algo-

rithm, Policy-GNN achieves 8.9%, 21.5%, and 5.7% improvements in accuracy on

Cora, Citeseer, and Pubmed, respectively. The experimental results also reveal some

interesting observations as follows.

First, the end-to-end learning procedure outperforms a separate pipeline. Specifi-
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cally, compared with the network embedding approaches, all of the GNN approaches,

including our framework, achieve much better performance. It is reasonable since

network embedding approaches are unsupervised with two separate components of

random walk sampling and skip-gram objective, which may be sub-optimal in node

classification tasks.

Second, using di↵erent iterations of aggregation for di↵erent nodes is critical for

boosting the performance of GNNs. Specifically, built on GCN, Policy-GNN is able

to significantly improve the vanilla GCN by 12.8%, 27.6% and 16.6% on the three

datasets, respectively. Policy-GNN also outperforms the other more advanced Static-

GNNs approaches. For example, our Policy-GNN consistently outperforms GCN,

GAT, and GraphSAGE, which use fix number of layers, simply use pure GCN layer.

The result suggests that the meta-policy successfully models the sampling procedure

and message passing under a joint learning framework.

Third, learning to sample di↵erent iterations of aggregation for di↵erent nodes is

more e↵ective than searching the neural architectures. Specifically, with only the basic

GCN layers, our Policy-GNN is able to achieve state-of-the-art results by learning a

proper aggregation strategy. Whereas, GraphNAS and AGNN only achieve marginal

improvement over GCN by searching the neural architectures. The possible reason

is that, NAS methods require manually defined search space with the same number

of layers setting for all nodes. This makes the discovered architecture limited by

the search space, and therefore perform similar to static-GNNs on all three datasets.

Thus, we argue that more research e↵orts should be made on aggregation strategy

since proper iterations of aggregation will significantly boost the performance.

Last but not least, the result of Random Policy demonstrates that reinforcement

learning is a promising way to train the meta-policy in Policy-GNN. Specifically,
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we observe that the performance of Random Policy is significantly lower than Policy-

GNN and most of the baselines. This suggests that the proposed Policy-GNN indeed

learns an e↵ective meta-policy for aggregation.
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Figure 3.4 : The percentage of the nodes that are assigned to di↵erent layers of GCN by

Policy-GNN.

3.4.5 Analysis of the Sampled Layers

To gain a deeper insight into the learned meta-policy, Figure 3.4 presents a visual-

ization of the decision-making process, depicting the percentage of nodes assigned to

di↵erent layers of the GCN. The results reveal that the majority of the nodes neces-

sitate solely two layers of aggregation. Nevertheless, a certain proportion of nodes

requires three or more layers of aggregation. For instance, in CiteSeer, more than

30% of the nodes require three iterations of aggregation, and a smaller subset of 5%

of nodes necessitate four iterations of aggregation. Furthermore, the distributions of

the iteration numbers exhibit diversity across the di↵erent datasets. These findings

once again substantiate the indispensability of adopting a learning-based meta-policy

to model the diverse characteristics of the data.
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Figure 3.5 : Learning curves of 1000 iterations. We plot the accuracy with respect to the

number of iterations on the three datasets. Although Policy-GNN converges slightly slower

than NAS methods, it achieves much higher accuracy later.

3.4.6 Analysis of the Learning Process

The plot in Figure 3.5 showcases the classification accuracy as a function of the

number of iterations for our novel Policy-GNN framework and two existing neural

architecture search baselines. As we scrutinize the results, we discern that Policy-

GNN manifests a marginally slower learning pace than AGNN and GraphNAS in

the initial stages. This may be attributed to the fact that determining the optimal

number of iterations for the nodes is a more intricate task than searching for the

neural architectures. Nevertheless, it is quite evident that Policy-GNN outperforms

the NAS baselines by a considerable margin in the later stages, thereby a�rming the

merit of our aggregation strategy search in enhancing the e�cacy of GNNs.

3.5 Conclusion

The challenge of customizing models on a sample-wise basis is tackled in this study

by introducing Policy-GNN, a meta-policy framework that dynamically learns an
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aggregation policy for sampling varying iterations of aggregations for di↵erent nodes.

The graph representation learning problem is modeled as a Markov decision process,

and deep reinforcement learning with a customized reward function is utilized to train

the meta-policy. The experimental results demonstrate the feasibility and superior

performance of automated model customization.



36

Chapter 4

Data-centric Automated Knowledge Acquisition

4.1 Motivation

Imperfect datasets are a common occurrence in real-world applications, which often

necessitates the need for human expertise in order to learn an e↵ective model. This is

particularly evident in challenging tasks like anomaly detection, where the available

label information is extremely sparse. In most cases, an analyst is presented with a

ranked list of anomalies and is tasked with investigating the top instances to identify

as many true anomalies as possible before exhausting the allotted time budget. In

practice, human expertise can be utilized to improve the anomaly detection process

by allowing the analyst to adjust the decision functions. To this end, we explore a

scenario in which the anomaly detector selects one instance at a time and queries the

analyst for adjustments to the decision functions, thus enabling the incorporation of

human knowledge into the anomaly detection process.

To tackle the problem, some re-ranking strategies have been proposed to approxi-

mate the above sequential decision process by greedily optimizing the immediate per-

formance [81, 82, 83, 84]. This greedy choice may benefit the immediate performance;

however, this approach may not always lead to optimal long-term performance. For

instance, some instances with high uncertainty might provide crucial information to

correct the anomaly patterns [85], which can be lower-ranked and may harm im-

mediate performance. Still, these instances could improve the anomaly detector’s
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performance in the long run, resulting in better anomaly discovery in future itera-

tions. Therefore, automatically querying knowledge from human experts to improve

the underlying model’s long-term performance is a critical problem in data-centric

AutoML that requires further investigation.

However, achieving this goal poses significant challenges. Firstly, quantifying the

long-term performance is not straightforward. While we can predict the immediate

outcome in the current iteration, i.e., the likelihood of an instance being anomalous or

not, we cannot accurately estimate future benefits. Furthermore, balancing long-term

and short-term performance is challenging and varies across di↵erent scenarios. Sec-

ondly, the decision space is typically large, requiring us to examine all instances and

select one for querying, making the selection strategy di�cult to design, especially

in large or high-dimensional data. Lastly, di↵erent datasets have di↵erent data dis-

tributions and decision space sizes, necessitating a simple and transferable selection

strategy that can be applied to di↵erent datasets, further adding to the challenge of

designing the strategy.

Our proposed solution to overcome the aforementioned challenges is called Meta-

AAD (Active Anomaly Detection with Meta-Policy), which is a meta-policy learning

approach to optimize the number of anomalies detected. In this approach, active

anomaly detection is formulated as a Markov decision process, and a deep reinforce-

ment learning technique is used to train the meta-policy to select the best instance

in each iteration. The optimization of the meta-policy is achieved by maximizing

the discounted cumulative reward, which takes into account both short-term and

long-term benefits.
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4.2 Preliminaries

In this section, we firstly discuss the related works to the proposed framework, then

we formulate the problem of active detection with meta-policy. After that, we provide

a naive approach to training the meta-policy with DRL and discuss its limitations.

The main symbols used in this chapter are summarized in Table 4.1.

Table 4.1 : Main Symbols and definitions.

Symbol Definition

n The number of instances.

d The feature dimension of each instance.

l The dimension of transferable features.

X 2 Rn⇥d A dataset with n instances and d features.

G 2 Rn⇥l Transferable features with dimension l.

y 2 Rn The n labels of dataset, where yi 2 {�1, 1}.

ŷ 2 Rn The state vector, where ŷi 2 {�1, 0, 1}.

c 2 Rn The anomaly scores by an unsupervised detector.

S The state space in Markov Decision Process (MDP).

A The action space in MDP.

R The reward function in MDP.

� The discount factor in MDP.
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4.2.1 Related Works

Anomaly detection

Anomaly detection has been extensively studied in the past decades, e.g., density-

based approach [86], distance-based approach [87, 88], and ensembles [89, 90, 91].

Anomaly detection algorithms have also been developed for various types of data,

such as categorical data [92], multi-dimensional data [89], time-series data [93] and

graph data [94]. Most of these algorithms are unsupervised, with strong assumptions

about the anomaly patterns [95]. However, these algorithms may not work well when

the assumptions do not hold. On the contrary, our Meta-AAD rarely relies on the

assumptions. It instead aligns anomaly patterns with human interests by leveraging

human feedback

Semi-supervised anomaly detection

Semi-supervised learning methods [96, 97] have been studied in the context of anomaly

detection. Semi-supervised anomaly detection assumes that a small set of labeled in-

stances can be used to improve the performance [98]. In [99], a small set of anomalous

instances are leveraged to re-weight the anomaly scores with belief propagation. [100]

improves representation learning by using a few anomalous instances. [101] incorpo-

rates label information with support vector data description. AI2 [102] ensembles

unsupervised and supervised anomaly detectors. AutoML methods use a set of la-

beled instances to perform automated algorithm selection and neural architecture

search [66, 103]. More recently, [104] proposes a semi-supervised anomaly detection

approach for deep neural networks. However, these methods are designed for batch

setting, which could be sub-optimal in the active learning.
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Active anomaly detection

Active learning in anomaly detection is much more challenging than traditional ac-

tive learning [105, 106] because of the imbalanced data. Instead of assuming a batch

of labeled data, active anomaly detection interacts with humans and recomputes the

anomaly scores based on the feedback [81, 82, 107, 108]. These methods usually define

an optimization problem based on the human feedback and re-weight the instances at

each iteration. [109] proposes to adaptively adjust the ensemble for active anomaly

detection. [83] proposes to incorporate feedback by leveraging online convex optimiza-

tion to improve e�ciency and simplicity. [110] proposes to use contextual multi-armed

bandit and clustering techniques to identify the anomalies in attributed networks in

an interactive manner. OJRANK [84] re-ranks the instances in each iteration based

on the top-1 feedback. While these prior methods incorporate humans in the loop,

they all adopt a greedy strategy to select the top-1 anomalous instance in each iter-

ation, which fails to model long-term performance. Whereas, our Meta-AAD builds

upon deep reinforcement learning, which inherently models and optimizes long-term

performance. Moreover, the previous methods require complicated optimization to

re-weight the instances in each iteration. On the contrary, the trained meta-policy of

meta-AAD is easy to use since it can be directly applied to di↵erent datasets without

further training or tuning.

4.2.2 Problem Formulation

We address the problem of anomaly detection where a dataset X = x1,x2, ...,xn 2

Rn⇥d is represented by a set of instances. Here, n represents the number of instances,

and d represents the feature dimension. Each instance xi is a d-dimensional vector

xi,1,xi,2, ...xi,d, where Xi,j can be either real-valued or categorical. The ground-truths
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that correspond to the n instances in the dataset are represented by y 2 Rn, where

yi 2 �1, 1. A label of �1 denotes an anomalous instance and a label of 1 denotes

a normal instance. The goal of anomaly detection is to divide the instances into an

anomaly set A = x1,x2, ...,xa and a normality set N = x1,x2, ...,xb, where a and

b are the number of anomalous and normal instances, respectively. Typically, the

anomaly set A constitutes the minority of the data, i.e., a⌧ b.

Conventional unsupervised anomaly detectors typically assign anomaly scores

c 2 Rn to all instances in the set X. This is achieved by learning a mapping

f : X ! c, where lower scores indicate a higher likelihood of the instances being

anomalous. Based on the anomaly scores, an anomaly ranking can be obtained,

where anomalous instances are expected to have higher ranks than normal instances.

However, the ranking is often not entirely accurate, as some higher-ranked instances

could be normal, and some lower-ranked instances could be anomalous. Therefore, in

practice, analyst (human) e↵orts are usually required to investigate the higher-ranked

instances and determine whether they are genuinely anomalous or not.

Using the previous notations and concepts, we present a formal problem statement

for active anomaly detection with meta-policy. We are given a dataset X, and at

each step, a meta-policy selects an instance xi for querying, and a human labels it

as anomalous or normal. The state vector ŷ 2 Rn corresponds to the n instances in

the dataset. Here, ŷi 2 {�1, 0, 1}, where �1 indicates that the instance is selected

for query and is an anomaly, 1 indicates that the instance is selected for query but

is normal, and 0 suggests that the instance has not been queried yet. Initially, all

instances have a state of 0, indicating that they have not been selected for query.

The state of the selected instance will be updated to 1 or �1 after each query step,

based on the human feedback. Our objective is to learn a meta-policy, trained from
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labeled datasets, to decide which instance to query at each step within a budget of

T queries. We aim to maximize the number of true anomalies discovered among

the chosen instances until the budget is exhausted. The meta-policy is defined as a

mapping ⇡ : {X⇥ ŷ}! {1, 2, ..., n}.

Learning meta-policy. Deep reinforcement learning algorithms have shown

promise in various domains [36, 70] The idea of meta-policy learning is to train a

reinforcement learning agent to make decisions with the objective of optimizing the

overall performance of the task. Some recent studies about deep reinforcement learn-

ing have demonstrated the e↵ectiveness of the meta-policy [53, 72, 71]. Some related

studies in graph neural networks [111] and natural language processing [112] also

show the e↵ectiveness of meta-policy learning. In addition to the di↵erence of ob-

jectives, these studies are limited to the same or parallel datasets. Whereas, we

demonstrate that the meta-policy in Meta-AAD can be generally transferred across

various datasets.

4.2.3 Limitations of a Naive Approach

A naive approach to training the meta-policy with deep reinforcement learning could

involve treating the active learning process as a Markov Decision Process (MDP) by

using the state vector and queried instance as the state and action, respectively. In

other words, the state space S would be {X ⇥ ŷ} and the action space A would

be {1, 2, ..., n}. By defining a suitable reward function, it is possible to model the

process as an MDP and train a policy using deep reinforcement learning algorithms

to optimize performance.”

However, the feasibility of this approach is limited due to two factors. Firstly,

the state and action spaces are excessively large. The state dimension and action
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dimension are O(nd) and O(n), respectively, as we need to observe the information of

all n instances and select one of the n instances for query at each iteration. However,

state-of-the-art deep reinforcement learning algorithms often perform poorly on large

state and action spaces [113, 114]. Our preliminary experiments also indicate that

the above naive method fails to train an e↵ective meta-policy. Secondly, even if we

manage to train a meta-policy, transferring it to another dataset becomes di�cult

because the state and action spaces di↵er across datasets. To be practical, a meta-

policy should be transferable. Hence, we cannot directly apply this naive approach

to our problem. In the following sections, we will explore how we can overcome these

issues and achieve stable meta-policy training.
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Figure 4.1 : An overview of Meta-AAD. In training, we shu✏e the data and feed them to

the meta-policy in a streaming manner. The meta-policy is rewarded based on the labels.

The trained meta-policy can then be directly applied to a new unlabeled dataset. In each

iteration, the meta-policy chooses one of the instances and queries an analyst (human).
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4.3 Methodology

In this section, we provide a detailed description of our proposed approach, namely

Active Anomaly Detection with Meta-Policy (Meta-AAD), as shown in Figure 4.1.

First, we explain how we extract transferable features as states to reduce the state and

action spaces (Section 4.3.1). Next, we describe how we stream the data in a shu✏ed

manner during training to further reduce the state and action spaces (Section 4.3.2).

We then train the meta-policy using deep reinforcement learning with labeled datasets

(Section 4.3.3). Finally, we demonstrate that the trained meta-policy can be directly

applied to new, unlabeled datasets for active anomaly detection without the need for

further tuning (Section 4.3.4).

4.3.1 Extracting Transferable Meta-Features

The goal of this subsection is to derive meta-features that are transferable across

di↵erent datasets. To achieve this, we aim to define a mapping g : {X ⇥ ŷ} ! G 2

Rn⇥l, where G has a lower dependence on the dataset, and l is the dimension of the

extracted features.

To make e↵ective decisions about which instance to query, three types of infor-

mation are important. First, the anomaly scores produced by the anomaly detector

can indicate instances that are significantly di↵erent from the majority and assist the

meta-policy in identifying more anomalous instances. Second, the labeled anomalous

instances can be useful in identifying instances that are similar to known anomalies,

and promoting these instances can improve performance. Third, the labeled normal

instances can also provide useful information by discouraging instances that are sim-

ilar to known normal instances and reducing false positives. To incorporate these

intuitions, we extract a set of features empirically, consisting of a total of 6 features.
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• Detector features: Unsupervised anomaly detectors output anomaly scores

denoted as c, which can be obtained using any existing anomaly detection

algorithm.

• Anomaly features: The features that show the connection to the labeled

anomalous instances are obtained using three features. Firstly, the original

features X are standardized, and the minimum and mean Euler distances to

the labeled anomalous instances are computed. Additionally, a binary feature

is introduced to indicate the presence or absence of an anomalous instance in

the k-nearest neighbors.

• Normality features: We adopt a similar approach for extracting normality

features, where we use the minimum and mean Euler distances to the labeled

normal instances.

It is worth noting that our framework provides flexibility in choosing features. For

instance, we could potentially enhance performance by utilizing a combination of

unsupervised anomaly detectors or by incorporating more detailed anomaly and nor-

mality features. However, for the sake of focus, we employ these basic features in all of

our experiments, which yield satisfactory results based on our empirical evaluations.

Further exploration into how to more e↵ectively model transferable information is a

promising avenue for future research aimed at enhancing the meta-policy.

In order to ensure that the feature dimension is consistent across di↵erent datasets,

we map the original features to the transferable features described above, resulting

in a feature dimension of l. However, the resulting features cannot be directly used

for training, as each dataset may have a di↵erent number of instances n. In the next

subsection, we will address this issue.
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4.3.2 Learning from Data Streams

The transferable features G 2 Rn⇥g and action space A = 1, 2, ..., n obtained in the

previous section are too large for a learning algorithm to handle e�ciently. Further-

more, the sizes of these spaces are proportional to the size of the dataset, which

renders it impossible to transfer the meta-policy.

To facilitate the training of a transferable meta-policy, we propose working with

data streams instead. Specifically, given the transferable features of the training data

Gtrain and its corresponding labels ytrain, we randomly shu✏e them in each episode

to obtain a perturbation, denoted as Gtrain0
and ytrain0

. Instead of providing all the

data to the meta-policy, we feed it with one instance at a time. In the streaming

scenario, the Markov Decision Process (MDP) state, action, and reward are defined

as follows.

• State S:The transferable features corresponding to the currently observed in-

stance can be denoted as Gtrain0

i 2 Rl, where i represents the index of the

instance.

• Action A: The available actions are binary, with 1 indicating that the current

instance should be selected and 0 indicating that the current instance should

be ignored.

• Reward R: When the meta-policy selects an instance, we assign a reward of

1 if the instance is actually anomalous, and a slightly negative reward of �0.1

if the instance is normal. If the meta-policy decides to ignore an instance, we

assign a reward of 0. The reward function plays a crucial role in defining the

intended behavior.
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The MDP presented above outlines an active learning approach in a streaming setting.

Essentially, the meta-policy is incentivized to select action 1 when the queried instance

is anomalous and action 0 when the queried instance is normal. This helps the meta-

policy learn to identify more anomalies within a given budget. We should note that the

meta-policy trained in a streaming setting may not perform optimally when applied

to a batch setting, as the two MDPs have distinct objectives. Nonetheless, we have

found that in practice, the benefits of the streaming setting outweigh this concern. By

reducing the state and action spaces, the streaming approach enables the successful

training of a transferable meta-policy.

4.3.3 Training Meta-Policy with Deep Reinforcement Learning

The MDP described in Section 4.3.2 can be trained with a variety of deep reinforce-

ment learning (DRL) algorithms. In this study, we implement the Proximal Policy

Optimization (PPO) algorithm [38]. However, more sophisticated algorithms such as

those discussed in [115] can be investigated in future.

The parametric policy ⇡✓(a|s) represents the meta-policy, where s is an l dimen-

sional feature, a 2 {0, 1},
P

a2{0,1} ⇡(a|s) = 1, and ✓ denotes the network parameters.

The aim is to maximize the discounted cumulative reward E⇡[
P1

t=0
�
t
rt]. To achieve

this, we utilize the Proximal Policy Optimization (PPO) algorithm, which belongs to

the category of actor-critic algorithms. Here, the critic estimates the state values and

the actor represents the policy.

The training procedure of the meta-policy is summarized in Algorithm 3. We

assume the availability of several labeled datasets. In each episode, we randomly

choose a dataset, shu✏e the instances and traverse the dataset from the beginning in

a streaming manner.
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Algorithm 3 Training meta-policy with PPO

1: Input: A set of features {Xi}Ni=1
and the corresponding labels {yi}Ni=1

,

rollout steps T

2: Output: The trained meta-policy

3: Initialize meta-policy ⇡✓, ✓old  ✓

4: for iteration = 1, 2, ... until convergence do

5: if iteration = 1 or episode is over then

6: Randomly sample {X0
,y0} from {Xi}Ni=1

, {yi}Ni=1

7: end if

8: Run ⇡✓old with {X0
,y0} based on the MDP defined in Section 4.3.1 for T

timesteps.

9: Compute advantages Â1, ..., Ât based on Equation (2.3)

10: Update ✓ based on Equation (2.5)

11: ✓old  ✓

12: end for

13: return ⇡✓

4.3.4 Application of Meta-Policy

After training the meta-policy, it can be directly applied to any new unlabeled

datasets without further tuning. However, there are some major di↵erences between

the application and the training phases. Instead of feeding one feature at a time,

we give all the features to the meta-policy to compute the probabilities for all the

instances. When applying the meta-policy to an unlabeled dataset X 2 Rn⇥d, we

first extract the transferable features G 2 Rn⇥l from X and the current state vector

ŷ 2 Rn. Next, we compute the action probabilities ⇡✓(a = 1|Gi), 8i 2 {1, 2, ..., n},
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Algorithm 4 Application of trained meta-policy

1: Input: Unlabeled dataset X 2 Rn⇥d, trained meta-policy ⇡✓

2: Output:The detected anomalies

3: Initialize state vector ŷ = {0}ni=1
, anomalous list A = {}

4: for iteration = 1, 2, ... until budget is used up do

5: Obtain transferable features G 2 Rn⇥l from {X, ŷ}

6: Compute ⇡(a = 1|s) based on G as p 2 Rn

7: Query the instance with the highest probability

8: if the instance is anomalous then

9: Put the instance into A

10: end if

11: Update ŷ based on human feedback

12: end for

13: return A

and obtain the probability vector p 2 Rn. We then choose the instance with the

highest probability for query, i.e., argmaxi pi. Intuitively, the instance that is very

likely to be selected in the streaming setting is also very likely to be chosen in this

batch setting. The above procedure is summarized in Algorithm 4.

It is worth mentioning that ⇡✓(a = 1|Gi) di↵ers fundamentally from the adjusted

anomaly scores used in previous methods [82, 81, 83, 84]. In those methods, anoma-

lous scores are adjusted to promote anomalous instances to the top, with the pri-

mary goal of maximizing immediate performance by making the top-1 instance more

likely to be anomalous. In contrast, the probability of the meta-policy has a signifi-

cantly di↵erent function. The probability is learned with the objective of maximizing
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discounted cumulative reward, which combines immediate and long-term rewards.

Therefore, the probabilities and the top-1 selection strategy inherently incorporate

long-term performance considerations.

4.4 Experiment

In this section, we conduct extensive experiments to evaluate Meta-AAD. We mainly

focus on the following research questions.

• RQ1: How does the meta-policy select the query and how will the decision of

the meta-policy evolve in di↵erent stages (Section 4.4.2)?

• RQ2: How does Meta-AAD compare with the state-of-the-art alternatives and

unsupervised baseline (Section 4.4.3)?

• RQ3: How will Meta-AAD perform if using di↵erent features, the number of

labeled datasets and reward functions (Section 4.4.4)?

• RQ4: Howmany computational resources are needed to train a meta-policy (Sec-

tion 4.4.5)?

• RQ5: How does Meta-Policy balance long-term and short-term reward (Sec-

tion 4.4.5)?

4.4.1 Experimental Settings

Datasets and evaluation metric. To demonstrate the generality of Meta-AAD,

we select 24 datasets with various sizes, feature dimensions and anomaly ratios from

ODDS∗. Table ?? summarizes the statistics of the datasets. We also use a toy dataset

∗
http://odds.cs.stonybrook.edu/
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from [82] for better visualization. For the evaluation metric, we use anomaly discovery

curve [110], which plots the number of discovered anomalies with respect to the

number of queries. A perfect result is a line with a slope 1, i.e., all the queries are

anomalous. The worst case is a line with a slope 0, i.e., all the queries are normal.

Following [83], we set the maximum budget to be 100 for all the datasets.

Baselines. We compare Meta-AAD with the state-of-the-art methods as well as

an unsupervised baseline as follows.

• AAD. Active Anomaly Detection [82] is a state-of-the-art method based on

node re-weighting.

• FIF. Feedback-Guided Isolation Forest [83] is a recently proposed active anomaly

detector via online optimization.

• SSDO. Semi-Supervised Detection of Outliers [116] is a recent semi-supervised

point-wise anomaly detector. We are interested in studying how semi-supervised

methods will perform in the active learning setting since they are also designed

to leverage label information.

• Unsupervised. We also include Isolation Forest (IF) [89] as an unsupervised

baseline.

While our Meta-AAD can be generally applied to any unsupervised anomaly detectors

or an ensemble of detectors, for a fair comparison, we follow the previous work [82, 83]

and use Isolation Forest (IF) [89] with the same hyper-parameters as in [82, 83]. For

SSDO and the unsupervised baseline, we select the top-1 anomalous instance in each

iteration.
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Table 4.2 : Statistics of the datasets.

Dataset Points Dim. Anomalies Anomaly%

Annthyroid 7200 6 534 7.4

Arrhythmia 452 274 66 15.0

Breastw 683 9 239 35.0

Cardio 1831 21 176 9.6

Glass 214 9 9 4.2

Ionosphere 351 33 126 36.0

Letter 1600 32 100 6.3

Lympho 148 18 6 4.1

Mammography 11183 6 260 2.3

Mnist 7603 100 700 9.2

Musk 3062 166 97 3.2

Optdigits 5216 64 150 3.0

Pendigits 6870 16 156 2.3

Pima 768 8 268 35

Satellite 6435 36 2036 32.0

Satimage-2 5803 36 71 1.2

Shuttle 49097 9 3511 7.0

Speech 3686 400 61 1.7

Thyroid 3772 6 93 2.5

Vertebral 240 6 30 12.5

Vowels 1456 12 50 3.4

Wbc 278 30 21 5.6

Wine 129 13 10 7.7

Yeast 1364 8 64 4.7
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Implementation details. For training the meta-policy, we use the PPO imple-

mentation in OpenAI baselines†. Following the default settings, we set rollout steps

T = 128, entropy coe�cient c2 = 0.01, learning rate to be 2.5⇥ 10�4, value function

coe�cient c1 = 0.5, � = 0.95, clip range ✏ = 0.2. Recall that � is hyper-parameters

to balance long-term and short-term rewards. We empirically set � = 0.6. We train

the meta-policy with the top 12 datasets (in alphabetical order) and apply it to the

bottom 12 datasets in Table ??. We do it reversely to evaluate the top 12 datasets.

The meta-policy is trained with 2 ⇥ 105 timesteps with the same hyper-parameters

across all the datasets. The episode length is set to 2, 000. For the base detector

of Isolation Forest, we use the implementation in sklearn‡ with the default hyper-

parameters setting. We use the original implementations of FIF§, AAD¶ and SSDO�

by their authors. For FIF, we try both linear and log-likelihood losses, and report

the best result. For SSDO, we find it beneficial to use Isolation Forest for the query

at the beginning and then switch to SSDO when we have hit at least one anomaly.

We report the results with this strategy since we observe that it outperforms ran-

domly selecting instances at the beginning. All the experiments are run 5 times. The

average results and standard errors are reported.

4.4.2 A Case Study on the Toy Data

To investigate RQ1, we examine the development of Meta-AAD’s decision-making

process on a toy dataset [82] in Figure 4.2. The toy dataset comprises two-dimensional

†
https://github.com/hill-a/stable-baselines

‡
https://scikit-learn.org/

§
https://github.com/siddiqmd/FeedbackIsolationForest

¶
https://github.com/shubhomoydas/ad_examples

�https://github.com/Vincent-Vercruyssen/anomatools
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Figure 4.2 : Evolution of the decision of Meta-AAD on toy data. Data in blue area are

more likely to be presented to the analyst. In (a), the meta-policy prefers the instances that

are far away from the majority, which is similar to an unsupervised anomaly detector. In

(b) and (c), with more queries, the decision pattern evolves. The probability decreases in

the regions around the normal instances (yellow). The probability increases for the regions

around anomalies (red).

features, and we utilize the pre-trained meta-policy on the top 12 datasets in Table ??.

We plot the output of action 1 in the meta-policy, which is the probability of selection

for the query. It is worth noting that the probability is akin to the anomaly score

but is based on a distinct objective. We anticipate that the top instances should have

excellent immediate performance, i.e., be highly likely to be anomalous, while benefit

performance in the long term.

In the initial stage, the meta-policy prioritizes selecting instances that are distant

from the majority, similar to how unsupervised anomaly detectors operate. It is

assumed that the meta-policy has learned to give more importance to detector features

when no labeled samples are available. As more queries are made, the decision-making

process changes. On one hand, the likelihood of selecting instances close to normal
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instances (yellow instance on the bottom left corner) decreases. On the other hand,

the probability of selecting instances around anomalies (red triangles on the right-

hand side) increases. This change in pattern is in line with previous active anomaly

detectors, such as those described in [82, 83]. Instead of adjusting anomaly scores,

the meta-policy is optimized to maximize the discounted cumulative reward, which

is more e↵ective in modeling long-term performance compared to earlier methods.

4.4.3 Performance on Benchmark Datasets

To answer RQ2, we compare Meta-AAD against the baselines in the 24 real-world

datasets. The anomaly discovery curves are illustrated in Figure 4.3. To better

understand the performance, we rank the discovered anomalies of the four algorithms

under 20, 40, 60, 80 and 100 queries, report the average rankings, and highlight the

improvement of Meta-AAD over the second-best method in Table 4.3. We make the

following observations.

To begin with, we note that all of the active anomaly detectors exhibit signifi-

cantly improved performance over the unsupervised baseline and the semi-supervised

method. Specifically, in 19 out of the 24 datasets, Meta-AAD, FIF, and AAD have

been found to discover more anomalies while using the same number of queries,

whereas they perform similarly in the remaining datasets. This is expected since

the presence of labeled instances can provide informative cues that facilitate the

identification of anomalies. We observe that SSDO, on the other hand, marginally

outperforms the unsupervised baseline but falls far behind the active methods. A

possible reason for this could be that SSDO is optimized for a di↵erent objective and,

as a result, is sub-optimal in the active learning setting.

The second observation is that Meta-AAD consistently outperforms other state-of-
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Meta-AAD AAD SSDOFIF Unsuper v i sed

(a) Annthyroid (b) Arrhythmia (c) Breastw (d) Cardio (e) Glass (f) Ionosphere

(g) Letter (h) Lympho (i) Mammo. (j) Mnist (k) Musk (l) Optdigits

(m) Pendigits (n) Pima (o) Satellite (p) Satimage-2 (q) Shuttle (r) Speech

(s) Thyroid (t) Vertebral (u) Vowels (v) Wbc (w) Wine (x) Yeast

Figure 4.3 : Performance comparison of Meta-AAD against the state-of-the-art alterna-

tives and unsupervised baseline.
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the-art methods across all datasets. In most cases, Meta-AAD improves the anomaly

detection performance compared to the baselines. For instance, Meta-AAD achieves

over 25% improvement on Letter and Speech and more than 10% on Arrhythmia,

Ionosphere, and Pima when compared with the best-performing alternative. More-

over, Meta-AAD either surpasses or achieves comparable results to other methods in

the remaining datasets. The simplicity of using Meta-AAD is also noteworthy since

it does not require any fine-tuning on target datasets. Thus, it is readily applicable

in practical scenarios. Overall, the outcomes of the study substantiate the e�cacy of

training a meta-policy for active anomaly detection.

The third observation is that the Meta-Policy appears to be more e↵ective in the

long run. As shown in Table 4.3, the average ranking of Meta-AAD increases as

more queries are made. Specifically, with 20 queries, the average ranking of Meta-

AAD is 2.062, which is only slightly better than FIF. However, with 100 queries, the

average ranking of Meta-AAD improves to 1.375. This suggests that Meta-AAD is

better at modeling long-term rewards. It is possible that deep reinforcement learning

inherently balances short-term and long-term performance, which is beneficial for

anomaly detection in the long run.

4.4.4 Ablation Studies

In order to gain a deeper understanding of the factors contributing to our system’s

performance, we addressRQ3 through ablation studies focused on Annthyroid, Mam-

mography, and Satimage-2, as depicted in Figure 4.4. Our analysis proceeds in three

stages.

Firstly, we explore the impact of using di↵erent features by examining the con-

tribution of the three types of features (detector, anomaly, and normality) to the
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Table 4.3 : Average rankings of the number of discovered anomalies under di↵erent queries

across 24 benchmarks, and the improvement of Meta-AAD over the second best state-of-the-

art method. The improvement improves with more queries. Meta-AAD delivers stronger

performance in long-term. N denotes the cases where Meta-AAD is significantly better than

the baseline w.r.t. the Wilcoxon signed rank test (p < 0.01).

Method 20 40 60 80 100

unsupervised [89] 4.188N 4.146N 4.167N 4.333N 4.375N

SSDO [116] 3.312N 3.396N 3.500N 3.625N 3.438N

AAD [82] 3.229N 3.208N 3.271N 3.167N 3.104N

FIF [83] 2.208 2.333 2.312 2.396N 2.708N

Meta-AAD 2.062 1.917 1.750 1.479 1.375

Improvement 0.146 0.416 0.562 0.917 1.333
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(a) Annthyroid (b) Mammography (c) Satimage-2

Figure 4.4 : Ablation study of Meta-AAD. We show the learning curves on Annthyroid,

Mammography, Satimage-2 by dropping di↵erent features (top row), using di↵erent number

of training datasets (mid row), and using di↵erent negative rewards for a missed query.
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overall performance. The top section of Figure 4.4 displays the results of removing

each feature type. Our findings indicate that all three types of features are essential

for optimal performance, with the use of all three resulting in the best performance.

This implies that the three types of features complement each other in training a

high-quality meta-policy.

Secondly, we investigate the impact of varying the number of training datasets on

the performance. By randomly dropping datasets and training the meta-policy on

the resulting subset, we assess the performance when trained on 6 and 1 datasets,

respectively (middle section of Figure 4.4). Our results reveal that while using more

training datasets generally leads to greater robustness, we can still achieve a strong

meta-policy even with just one dataset. Thus, our proposed features are transferable,

and our training strategy is e↵ective.

Finally, we examine how varying the rewards influences performance. Our rewards

consist of a positive reward for discovering anomalies, a negative reward for selecting

normal instances, and a neutral reward for not querying. We vary the negative

rewards while keeping other rewards fixed (bottom section of Figure 4.4). Our findings

suggest that the choice of rewards should depend on the context. For instance, a larger

negative reward may be preferable when examining a di�cult instance, whereas a

smaller negative reward may su�ce for easier instances. We observe that excessively

large negative rewards can harm performance, with a small negative reward of �0.1

yielding optimal performance across the datasets.

In summary, our ablation studies indicate that the default choices of features

and rewards deliver strong performance across di↵erent datasets, even with limited

training data. Therefore, we conclude that Meta-AAD could be a versatile framework

applicable to various scenarios.
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Per for m ance w i th  100 quer ies

Figure 4.5 : The average discovered anomalies across all the datasets given 100 queries

with respect to the number of training steps (left) and di↵erent � values (right).

4.4.5 Analysis of the Meta-Policy

To further analyze our proposed method, we investigate two more research questions,

namely RQ4 and RQ5. In RQ4, we aim to determine the training e�ciency of our

meta-policy by examining the convergence rate. To achieve this, we plot the average

performance with 100 queries across the 24 datasets with respect to the number of

training steps of the meta-policy in the left-hand side of Figure 4.5. Our results

show that the policy converges very fast, indicating that the training of the meta-

policy is computationally e�cient. In fact, we note that in a personal computer,

it usually takes less than 30 seconds to train 20,000 steps with one process, which

further reinforces the e�ciency of our proposed method.

Moving on to RQ5, we investigate the impact of a hyper-parameter � on the

performance of our method. � is used to balance short-term and long-term perfor-

mance in the reinforcement learning process. We show the average performance with

100 queries using di↵erent � in the right-hand side of Figure 4.5. We observe that
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giving too much preference for long-term or short-term rewards will both harm the

performance. Therefore, we suggest that � should be specified based on the specific

needs of the application, i.e., whether we care more about long-term or short-term

performance. In the conducted experiments, we set � = 0.6 across all the datasets, as

it was found to strike a good balance between short-term and long-term performance.

4.5 Conclusion

This study aims to address the challenge of automated expert knowledge acquisi-

tion by introducing Meta-AAD, a framework that incorporates human feedback into

anomaly detection. The meta-policy in Meta-AAD is trained using deep reinforce-

ment learning techniques to optimize performance in the long term. To evaluate

the e↵ectiveness of our approach, we test our framework on 24 di↵erent benchmark

datasets. The results of our empirical analysis demonstrate that Meta-AAD performs

better than existing state-of-the-art alternatives. We also conduct an extensive ex-

amination of our framework and observe that a single configuration can perform well

across di↵erent datasets. Additionally, we find that Meta-AAD is capable of balanc-

ing long-term and short-term rewards, indicating its potential as a general framework

for active anomaly detection.
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Chapter 5

Model-aware Automated Data Preparation

5.1 Motivation

In many challenging real-world applications such as anomaly detection, label infor-

mation is usually sparse, but not totally missing. Nevertheless, due to the sparsity of

label information, unsupervised algorithms are often adopted to learn data patterns

in industrial applications [117, 118]. However, unsupervised approaches rely on strong

assumptions of data distribution and, therefore, may lead to a high false-positive rate

when encountering unseen patterns [119]. To exploit the limited labels, label-informed

learning methods [98, 120, 121, 122, 123, 124, 98] are proposed to exploit extra in-

formation from labels with tailored loss or scoring functions [120, 121, 122, 123, 124].

Still, the improvement may be limited without improving data quality. As such,

a recent benchmark [23] finds that directly applying a supervised algorithm, such

as XGBoost [125], can achieve comparable or even better performance than label-

informed methods. To this end, extending the label information could be another

promising direction toward challenging applications and scenarios.

Synthetic minority oversampling is one of the most popular solution for expanding

label information. However, this may lead to noises due to the diverse distribution

of real-world minorities. As shown in the left side of Figure 5.1, if we perform syn-

thetic oversampling based on the anomalous account A and B, it is likely to create a

synthetic account C labeled as anomalous but with moderate number of transactions
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Figure 5.1 : Comparison between synthetic oversampling (left) and mix-up (right).

and transaction amount. As a result, account C interleaves with the normal accounts,

which may degrade anomaly detection performance. In parallel, data mix-up [126]

techniques in the image domain [127] have achieved great success in augmenting

the training data by mixing up data samples from two di↵erent classes such that

fine-grained supervisory signals of label di↵erences between the two classes can be

captured. The right of Figure 5.1 shows how mix-ups can help. A pair of normal and

anomalous accounts with a properly chosen mix-up strategy can generate not only

synthetic anomalies but also synthetic normalities to shape the boundary of anoma-

lous and normal accounts. Thus, our objective is to extend the capacity of AutoML

to automatically prepare data, especially in scenarios where the availability of labeled

information is restricted and diverse.

However, it is challenging to develop a mix-up framework for the following rea-

sons. First, it is challenging to identify the source samples for the mix-up. Randomly

choosing two data samples for mix-up is likely to create noises due to the extreme

imbalance between anomalies and normalities. The noisy samples can harm the classi-

fication performance. Additionally, even if we apply some strategies (e.g., only mixing

up between anomalies), it is still likely to create noises due to the diverse distribution
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of anomalies. Second, even if we are able to get a proper pair of source samples, how

to mix up remains to be a non-trivial problem. Randomly selecting a mix-up ratio

may end up creating noises. We argue that the mix-up ratio needs to be tailored for

the source samples. For example, if we select a pair of source samples with a normal

sample in the center of normal instances and an anomaly that is surrounded by nor-

mal samples, a mix-up ratio that weighs more on anomaly samples should be selected.

Conversely, for a pair of source samples with a normal sample that is deviated from

most normalities and an anomaly that is nearby other anomalies, a mix-up ratio that

weighs more on the normal sample may lead to a more informative synthetic sample.

Third, even if we have a strategy to mix up data samples, simultaneously consider-

ing the underlying classifier and traversing the feature space to search for the most

informative spot for synthetic sample generation is still challenging. For example,

how can we know if the created sample can further benefit the formation of a model

decision boundary? Likewise, if we are able to find a sweet spot for model training,

how to guide the synthetic data generation process remains a challenging problem.

To tackle the challenges above, we propose MixAnN, a universal data mixer that is

capable of incorporating di↵erent classifiers to exploit and explore potentially benefi-

cial information from label information for supervised anomaly detection. Specifically,

we propose an iterative mix-up process which traverses the feature space to create

synthetic samples. Then, we formulate the iterative mix up into a Markov decision

process (MDP) and design a reward function that provides model uncertainty and

performance improvement to guide the policy learning procedure regardless of the

convergence of the classifier. Finally, to solve the MDP, we tailor a deep actor-critical

framework to learn for a discrete-continuous action space.
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5.2 Preliminary

In this section, we firstly discuss the related work of our propsed framework. Then,

we formally formulate our problem.

5.2.1 Related Works

Label-informed Anomaly Detection

Weakly/semi-supervised anomaly detection [128, 123, 121, 98, 120] are two main

strategies to tackle the problem when either normal or anomaly samples are labeled.

To leverage the large number of labeled normal samples, SAnDCat [128] selects top-

K representative samples from the dataset as a reference to evaluate anomaly scores

based on a model learned from pair-wise distances between labeled normal instances.

On the other hand, to exploit a limited number of labeled anomalies, DevNet [123]

enforces the anomaly scores of individual data instances to fit a one-sided Gaussian

distribution for leveraging prior knowledge of labeled normal samples and anomalies.

PRO [121] introduces a two-stream ordinal-regression network to learn the pairwise

relations between two data samples, which is assumption-free on the probability dis-

tribution of the anomaly scores.

Recently, several endeavors [98, 120] further generalize the label-informed anomaly

detection problem into semi-supervised classification setting [96, 129, 130] that limited

numbers of both normal and anomaly samples are accessible. The main underlying

assumptions are that similar points are likely to be of the same class and therefore

densely clustered in low-dimensional feature space. XGBOD [98] extracts feature

representation based on the anomaly score of multiple unsupervised anomaly detec-

tors for training a supervised gradient boosting tree classifier. DeepSAD [120] points
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out that the semi-supervision assumptions only work for normal samples and fur-

ther develops a one-class classification framework to cluster labeled normal samples

while maximizing the distance between the labeled anomalies and the cluster in the

high-dimensional space. However, weakly/semi-supervised learning methods focus on

modeling the given label information without considering the relations between two

labeled instances. Therefore, it is infeasible to generalize the label information when

anomaly behaviors are diverse. By considering correlations between labeled samples

and generating beneficial training data correspondingly, we are able to generalize the

label information for training arbitrary classifiers.

Synthetic Oversampling for Imbalanced Classification

Data augmentation has been extensively studied for a wide range of data types [131,

132, 133] to enlarge training data size and generalize model decision boundaries for

improving performance and robustness. Approaches to solving the imbalanced classi-

fication problem can be categorized into two types: algorithm-wise and data-wise.

Algorithm-wise approaches directly tailor the loss function of classification mod-

els [134, 135, 136] to better fit the data distribution. However, modifying the loss

function only facilitates the fitting of label information and may su↵er from general-

izing label information when the behavior between minority classes varies dramati-

cally. Data-wise approaches generate new samples into the minority class [137, 138]

or remove existing samples from majority classes. Synthetic Minority Oversampling

(SMOTE) [137] generates new minority samples by linearly combining a minority sam-

ple with its k-nearest minority instances with a manually selected neighborhood size

and the number of synthetic instances. A series of advancements on SMOTE [139] fur-

ther introduce density estimation [138, 140], data distribution-aware sampling [141],
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and automated machine learning [142] to tackle the class imbalance problem without

manual selection of neighborhood size and the number of synthetic instances.

Mix-up

Recently, instead of conducting synthetic data sampling on a single class, Mixup [143]

achieves a significant improvement in the image domain by synthesizing data points

through linearly combining two random samples from di↵erent classes with a given

combination ratio and creating soft labels for training the neural networks. As Mixup

assumes that all the classes are uniformly distributed for image classification, it does

not apply when the class distribution is skewed. To tackle this limitation, Mix-

Boost [144] introduces a skewed probability distribution to sample the ratio for lin-

early combining two heterogeneous samples. However, the imbalanced classification

problem assumes that minority samples are clustered within the feature space, which

may not be true when the minorities are anomalies. To this end, our work considers

the attributes of a pair of normal and anomalous samples for jointly identifying the

best k-nearest neighborhood and combination ratios. Then, we generate the synthetic

samples with the combination ratios and identify the next pair of samples within the

k-nearest neighborhood. This way, our framework is capable of exploiting the label

information while exploring the diversely distributed anomalies.

5.2.2 Problem Statement

Following the setting of semi-supervised anomaly detection [123, 98, 120], a training

dataset of supervised anomaly detection X train = {x1, x2, . . . , xn+m} is composed of a

labeled normalities N = {x1, x2,

. . . , xn} and a set of labeled anomalies A = {xn+1, xn+2, . . . , xn+m}, where n � m.
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The goal of supervised anomaly detection is to learn a classifier � : X ! R which

evaluates the probability of individual data points as anomalies in the given dataset

X via exploiting the prior knowledge of labeled normalities N and anomalies A, so

that
P

i2A �(xi) is maximized while
P

j2N �(xj) is minimized with the constraints of

�(xi) > 0.5 and �(xj)  0.5.

To better generalize the knowledge from the label information, we formally de-

fine the problem of strategic data augmentation as follows. Given a dataset X train =

{N ,A} where X train 2 R(n+m)⇥d, with a supervised classifier �, we target on aug-

menting the X train with a synthetic dataset X syn according to the �, where the syn-

thetic dataset Xsyn 2 Rl⇥d is generated via mixing up samples from N with samples

from A. Specifically, our objective is to properly sample pairs of data instances

from N and A with the corresponding mix-up ratio ↵ to create synthetic instances

x
syn 2 X syn, such that the performance of � can be maximized by being trained on

X̂ train = {X train [ X syn}.

5.3 Methodology

Figure 5.3 depicts an overview of our framework. We establish our framework by

forming a classifier-driven Markov decision process with a data mixer that learns

to generate synthetic samples for supervised anomaly detection. In this section, we

elaborate on the details of the Markov decision process, including the reward signal

for iterative data mix-up and a tailored sequential decision problem solver. Then, we

provide algorithm and implementation details.
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Figure 5.2 : An illustration of the iterative mix-up process. The background colors

indicate the model decision boundary. The attributes of the source samples (purple circled)

are considered to specify the composition ratio ↵ for oversampling the synthetic sample

(black points) with corresponding labels (outer circle of black points) n times. In the

meantime, a k-nearest neighborhood is identified for randomly sampling the next pair of

source samples. Finally, the process iterates to the next round with the new pair of source

samples.
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5.3.1 Iterative Mix-up Process

To generalize label information from two di↵erent classes, Mixup [143] performs syn-

thetic data generation over two samples from di↵erent classes, which has been ex-

tensively studied to augment image and textual data. The core idea of Mixup is to

linearly combine two samples as follows:

xsyn = ↵ ⇤ x0 + (1� ↵) ⇤ x1, (5.1)

where x0 and x1 are the two selected source samples and ↵ 2 [0.0, 1.0] controls the

composition of xsyn. Although existing works [143, 144] generate a soft label of xsyn in

the same fashion for the imbalance classification problem, the diverse behaviors of the

anomalies lead to similar labels with high granularity on diverse synthetic samples,

which may prompt the model to over-fit on noisy synthetic labels. To this end,

instead of generating soft labels, we synthesize hard labels for xsyn with a threshold

⌘ as follows:

ysyn =

8
>><

>>:

y0, ↵ � ⌘,

y1, otherwise,

(5.2)

where 0.5  ⌘  1.0. Due to the diverse behavior of anomalies, arbitrarily mixing

up two random source samples from the X train may lead to noisy samples. To tackle

this problem, we seek to identify a meaningful pair of samples for synthesizing new

samples. As normal samples are often concentrated in the latent space [120], inspired

by the BorderlineSMOTE [141] that shows that borderline samples are more infor-

mative, we propose to traverse the feature space of Xtrain with the guidance of the

decision boundary of the model � for synthetic oversampling. Specifically, given a pair

of arbitrary source samples, we consider the attributes of the two samples to iden-

tify corresponding ↵ and number of oversampling for generating a set of xsyn 2 X syn.
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Meanwhile, an optimal range for uniformly sampling the next pair of source samples is

identified according to the model impact for iterating to the next round of the mix-up

process. The intuition behind uniform sampling is to consider the relationship be-

tween the attributes of the source samples and their entire neighborhood information

instead of focusing on a certain sample in the neighborhood. Figure 5.2 illustrates an

example of the iterative mix-up process. Based on the attributes of source samples x0

and x1, we first specify the composition ratio ↵ = 4 and the number of oversampling

n = 1 for creating synthetic sample xsyn. Then, a k-nearest neighborhood is identified

for sampling the next pair of source samples x2 and x3 for the next round of mix-up.

The proposed iterative mix-up process has several desirable properties. First, it

can make personalized decisions. For example, we can generate more samples for

some instances and fewer for other instances. Second, it can incorporate various

information to guide the mix-up process. For instance, data attributes and model

impact can be considered and serve as guidance for generating samples. Third, by

simultaneously considering the model impact with the feature distribution, we directly

generate information that is missing in the original dataset but beneficial for model

training.

5.3.2 Formulating Iterative Mix-up as Markov Decision Process

The iterative mix-up process can be formulated as a Markov decision process with a

quintuple (S,A, T ,R, �), where S is a finite set of states, A is a finite set of actions,

T : S ⇥ A ! S is the state transition function that maps the current state s,

action a to the next state s
0, R : S ⇥A! R is the immediate reward function that

reflects the quality of action a for the state s, and � is a decade factor to gradually

consider the future transitions. Figure 5.3 illustrates the Markov decision process of
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Figure 5.3 : An illustration of our framework. In each step, a pair of a normal sample

and an anomaly is input to the data mixer. The corresponding action (i.e., neighborhood

size k, composition ratio ↵, number of oversampling n, and termination probability ✏) is

then generated to create synthetic samples. After that, the synthetic samples are adopted

to train the classifier and yield the reward signals (performance improvement �M(�t) and

model confidence C(�t|.)) for updating the data mixer.

the framework. To sample-wise tailor the mix-up strategy, we target learning a data

mixer that maps the attributes of source data samples into an augmentation strategy

for creating synthetic samples while exploring model decision boundaries. The MDP

can be defined as follows:

• State Space (S): At each timestamp t, state st 2 S is defined as st =

(xt
0
, x

t
1
), where st 2 R2m is a concatenation of two m-dimensional feature

vectors of the two source samples. Therefore, the state space is defined as

S = {(xt
0
, x

t
1
)|xt

0
, x

t
1
2 X train}.

• Action Space (A): At each timestamp t, the action at 2 A where at =

(k,↵, n, ✏) is a vector composed of the size of neighborhood k, composition ratio

↵, number of oversampling n and the termination probability of the iterative
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mix-up process ✏. Therefore, the action space is defined as a discrete-continuous

space A = {(kt,↵t, nt, ✏t)|kt, nt, ✏t 2 N,↵t 2 R+}.

• Transition Function (T ): Given a state st = (xt
0
, x

t
1
) and an action at =

(k,↵, n, ✏), the transition function firstly adopts ↵ with Eq. 5.1 and Eq. 5.2 to

oversample xsyn for n times. Then, the resulting synthetic samples Xsyn will

be adopted for training the classifier and lead to a classifier �t in timestamp t.

Finally, the transition function shifts to the next state st+1 = (xt+1

0
, x

t+1

1
) where

the x
t+1

0
is randomly sampled from the k-nearest neighborhood of the xsyn and

the x
t+1

1
is identified as the nearest data point with a di↵erent label from x

t+1

0
.

• Reward Function (R): The reward signal rt for each timestamp t is designed

to encourage performance improvement while exploring the decision boundaries

of the classifier �. Therefore, the reward function is defined as:

R(st, at) = � ⇤�M(�t) ⇤ C(�t|st, at),

where � is a hyperparameter to define the strength of the reward signal, M is

an evaluation metric, and �M(�t) measures the performance improvement of

�t. The C(�t|st, at) evaluates the model confidence to encourage exploring the

decision space of �t. This way, the reward signal drives the data mixer to explore

the classifier while achieving maximum improvement with the newly synthesized

data samples. The implementation details are provided in section 5.3.4.

5.3.3 Solving Markov Decision Process with Deterministic Actor-Critic

To solve the MDP above, we define a parameterized policy ⇡✓ as the data mixer to

maximize the reward signal of the MDP where the ultimate goal is to learn an optimal

policy ⇡
⇤
✓ that maximize the cumulative reward E⇡[

P1
t=0

�
t
rt]. However, the action
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space of the iterative mix-up process is a discrete-continuous vector, and the reward

signals generated from an under-fitted �t may be in-stable. To this end, we employ

the deep deterministic policy gradient (DDPG) [37], an actor-critic framework that

equips with two separate networks: actor and critic. The critic network Q(st, at|✓2)

approximates the reward signal for a state-action pair from the MDP, while the actor

network ⇡(st|✓1) aims to learn the policy for a given state st based on the critic net-

work. We note that an advanced actor-critic framework such as soft actor-critic [115]

could be adopted to learn the ⇡
⇤
✓ , which will be our future exploration.

To perform a continuous action, DDPG learns an actor network ⇡(st|✓1) that

deterministically maps a given state st to an action vector at and trains the network

by maximizing the approximated cumulative reward that generated by the critic

network Q(.|✓2). Specifically, given N transitions, a projected action ⇡(st|✓1) can be

generated as the input of the critic to minimize the following loss function:

L⇡(✓1) = �
1

N

NX

i=1

Q(si, ⇡(si)|✓2), (5.3)

where the action ⇡(si) is a 4-dimensional real number vector. To fully leverage the

expressive power of the deep neural network during the training while outputting a

discrete-continuous vector for the MDP, we transform the continuous action vector

⇡(si) with a sigmoid function and yield the action vector at = w � �(⇡(si|✓1)) where

w specifies the value constraints of individual entries. For instance, if the maximum

for the k and n are 10 and 5, then w = [10, 1, 5, 1] since ↵ and ✏ are expected to be

ranging from 0 to 1. The outcome for the k and n are rounded to the nearest integer.

To tackle the in-stable reward signal issue, DDPG approximates the reward signal

with the critic network Q(.|✓2) and trains the networks in an o↵-policy fashion. It

introduces a replay bu↵er to store historical and randomly sampled transitions to

minimize the temporal correlation between two transitions for learning across a set of
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uncorrelated transitions. Specifically, the critic network Q(.|✓2) maps a state-action

pair into a real value yt via minimizing the following loss function:

LQ(✓2) = [Q(st, at)� bt]
2 (5.4)

Here, bt = R(st, at) + �Q(st+1, ⇡(st+1|✓1)|✓2) is a signal derived from the Bellman

equation [114] which considers the recursive relation between the current reward and

the future approximated reward signals for maximizing cumulative reward where

⇡(st+1|✓1) is an action specified by the actor network and the � is the decade factor.

5.3.4 Algorithm Details

Algorithm 5 illustrates the training procedure. We design two components to form the

reward signal: improvement stimulation �M(�t) and model exploration P (�t|st, at).

To learn an optimal policy for the target tasks, existing solutions [124, 145, 146]

directly adopt the performance on a validation dataset as a reward signal. However, as

the convergence of the underlying classifier is not guaranteed, directly learning a policy

with the performance on a validation set may lead to noisy reward signals. As a result,

rather than using the current model’s performance �t, we design an improvement

stimulation to pursue the maximum model improvement on the validation set with a

baseline performance:

�M(�t) = M(�t(X val), yval)�
Pt�1

i=t�m M(�i(X val), yval)

m� 1
, (5.5)

where
Pt�1

i=t�m M(�i(X val
),yval)

m�1
is a baseline performance for the timestamp t, and m

controls the sample size for the baseline.

In addition, as we aim at creating synthetic samples by mixing normal samples

and anomalies while iteratively training the classifier �, it is critical to explore model
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decision boundaries to create beneficial samples and prevent generating noisy samples.

Inspired by the confidence quantification [147] for anomaly detectors, we develop a

model exploration signal to quantify the instance-wise prediction uncertainty as fol-

lows:

C(�t|st, at) =
1

k

kX

i=0

P (yi = 0|xi,�t)P (yi = 1|xi,�t), (5.6)

where xi is the k-nearest neighbor of the synthesized sample in timestamp t because

k is the size of the nearest neighborhood specified by at. The intuition behind this is

to encourage the data mixer to explore the uncertain area in the feature space.

5.4 Experiment

Our experiments aim to answer the following research questions:

• RQ1: How does the proposed framework compare against the existing data

augmentation methods? (Section 4.2)

• RQ2: How does the proposed framework compare against the existing label-

informed anomaly detection methods? (Section 4.3)

• RQ3: How does each component contribute to the performance of the proposed

framework? (Section 4.4)

• RQ4: How do the key hyperparameters a↵ect the model performance? (Section

4.5)

• RQ5: How does the learned strategy of the proposed framework compare with

the existing approaches? (Section 4.6)
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5.4.1 Experiment Settings

We conduct horizontal analysis to compare the proposed framework with data aug-

mentation methods on three di↵erent classifiers. We also conduct a vertical analysis

that compares the proposed framework with label-informed anomaly detectors. The

details of the experimental settings are provided as follows:

# Samples # Features % Anomaly Domain

Japanese Vowels 1,456 12 3.43% Utterance

Annthyroid 7,200 22 7.42% Clinical Record

Mammography 11,183 6 2.32% Medical Image

Satellite 6,435 36 31.63% Remote Sensing

SMTP 95,156 41 0.03% Server Log

CIFAR-10 5,263 512 5.00% General

FashionMNIST 6,315 512 5.00% Fashion

Table 5.1 : Dataset statistics.

Datasets: Table 5.1 summarizes the statistics of the datasets. We adopt 5 benchmark

datasets from di↵erent domains:

• Japanese Vowels contains utterances of /ae/that were recorded from nine

speakers with 12 LPC cepstrum coe�cients. The goal is to identify the outlier

speaker.

• Annthyroid is a set of clinical records that record 21 physical attributes of over

7200 patients. The goal is to identify the patients that are potentially su↵ering

from hypothyroidism.
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• Mammography is composed of 6 features extracted from the images, including

shape, margin, density, etc. The goal is to identify malignant cases that could

potentially lead to breast cancer.

• Satellite contains the remote sensing data of 6,435 regions, where each region

is segmented into a 3x3 square neighborhood region and is monitored by 4

di↵erent light wavelengths captured from the satellite images of the Earth. The

goal is to identify regions with abnormal soil status.

• SMTP has 95,156 server connections with 41 connection attributes including

duration, src byte, dst byte, and so on. The task is to identify malicious attacks

from the connection log.

• CIFAR-10 and FashionMNIST are the benchmark datasets. We follow

the setting of previous works [23, 120] to set one of the classes as normal and

downsample the rest classes to 5% of the total instances as anomalies. We

report the average performance of airplane and automobile for CIFAR-10; and

the average performance of t-shirt/top and trouser for FashionMNIST.

All of the dataset are public available in OpenML ∗[148] and ADBench †. We fol-

low the widely adopted setting [120, 123, 23] with the pre-processing proposed by

ODDS [149] and ADBench [23] to process the data.

Horizontal Baselines: We conduct a horizontal comparison between the proposed

methods and the following representative data augmentation methods on 3 di↵erent

classifiers (i.e., KNN, XGBoost, MLP): Random is a basic baseline which generates

synthetic anomalies by randomly averaging two existing anomalies. SMOTE [137]

∗
https://www.openml.org/

†
https://https://github.com/Minqi824/ADBench
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linearly combines existing anomalies with their K-nearest anomalies through ran-

domly sampled combination ratios. BorderlineSMOTE [141] identifies a border-

line between anomalies and normal samples with the K-nearest neighborhood of each

anomaly. Then, SMOTE is performed on the anomalies in the borderline area.

SVMSMOTE [150] introduces a support vector classifier to identify a borderline

between anomalies and normal samples and perform SMOTE on anomalies near to

the borderline. ADASYN [138] calculates the number of synthetic samples gener-

ated from individual anomalies using the estimated local distribution and then per-

forms SMOTE on them. AutoSMOTE [142] performs SMOTE by exploiting deep

reinforcement learning to automatically select the anomalies and the corresponding

oversampling strategies. MixBoost [144] uses a randomly sampled combination ratio

to mix anomalies and normals. The number of oversamples for individual anomalies

is weightily sampled based on the entropy of the underlying classifier.

Vertical Baselines: We perform a vertical comparison between the proposed method

and label-informed detection algorithms to study the e↵ectiveness of synthetic over-

sampling. XGBOD [98] exploits the anomalous scores of individual data points

generated from multiple unsupervised algorithms as the input feature for the under-

lying XGBoost classifier. DeepSAD [120] develops a semi-supervised loss function

that classifies the known normal samples and unlabeled samples into a unified cluster

and deviates the known anomalies from the cluster. DevNet [123] uses label infor-

mation with a prior probability to enforce significant deviations in anomaly scores

from the majority of normal samples.

Evaluation Protocol: We adopt macro-averaged precision, recall, and F1-score,

which compute the scores separately for each class and average them. The intuition

behind this is to equalize the importance of anomaly detection and normal sample
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classification since the minimum false alarms are also a critical evaluation criterion.

We use 80% data for training and 20% for testing, where 20% of the training data is

further split into a validation set for our framework to generate reward signals or for

baseline methods to perform model tuning. We run the experiments with 5 random

seeds and report the average performance on the testing set.

Implementation Details: For the horizontal analysis, we use a KNN classifier

with k = 10, an XGBoost classifier with the linear kernel, and the Adam optimizer

with ReLU activation function for a 128-64 multi-layer perceptron classifier. For

the vertical analysis, we adopt XGBOD ‡ and public available implementations of

DevNet § and DeepSAD ¶. Since the output of Dev and DeepSAD are anomaly

scores, we search for the thresholds for the two methods from {0.5x, 1.0x, 1.5x, 2.0x}

of the anomaly ratio to perform classification and report the best result. For our own

method, we select the maximum neighborhood size K from {5, 10, 15, 20, 25}, and set

⌘ = 0.3, the reward coe�cient � = 10.0, the window size for baseline m = 25 and

adopt the macro-averaged F1-score for the reward signal �M.

5.4.2 Horizontal Analysis

To answer RQ1, we compare the MixAnN to cutting-edge synthetic oversampling

methods for anomaly detection. Table 5.2 tabulates the macro-averaged precision,

recall, and F1-score of each data augmentation method across 3 di↵erent classifiers.

We also report the performances without data augmentation on the original classifiers

to show insights into how di↵erent classifiers impact the performances. In general,

the proposed MixAnN is able to outperform all of the baseline oversampling methods

‡
https://github.com/yzhao062/pyod

§
https://github.com/GuansongPang/deviation-network

¶
https://github.com/lukasruff/Deep-SAD-PyTorch
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and achieve at least 7.6% and at most 33.3% improvements on the F1-score. Based

on Table 5.2, we make the following observations.

First, by comparing the baseline augmentation methods with the classifiers with-

out data augmentation, we observe that the performance of the baseline augmenta-

tion methods is generally inferior to the classifier trained without data augmentation.

Specifically, the average F1-scores of the baseline augmentation methods are consis-

tently lower than the vanilla classifiers on the five datasets. The only exception is the

Mixboost with KNN classifier, which is due to its decent performance on the SMTP

dataset. Our further investigation into this phenomenon suggests that randomly mix-

ing up normal samples with anomalies can create beneficial synthetic normal samples

that concrete the decision boundary when anomalies are extremely sparse. This sup-

ports our claim that the existing data augmentation methods are not capable of

handling the diverse behavior of anomalies and may lead to noisy synthetic samples.

But generalizing label anomaly information by mixing normal samples with anomalies

could alleviate the problem.

Second, by comparing the MixAnN with the vanilla classifier without data aug-

mentation, we observe that the MixAnN consistently outperforms all vanilla classi-

fiers. On the five datasets, the MixAnN improves the F1-score of KNN, XGBoost, and

MLP classifiers by 9.6%, 14.2%, and 11.5%, respectively. This phenomenon suggests

that the MixAnN is able to adaptively create synthetic samples for di↵erent classi-

fiers toward performance improvements. In addition, we also observe that the KNN

classifier has the maximum improvement, which suggests that the nearest-neighbor

exploration of our transition function favors the classifier with similar attributes. An-

other interesting observation is that the more complex the models, the fewer the

improvements. A possible explanation is that complex models tend to be overconfi-
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dent in the prediction [151], which may lead to noisy prediction uncertainty reward

and mislead the learning procedure of the augmentation strategy. We will study this

issue in the future.

Third, by comparing the MixAnN with all other data augmentation methods,

we observe that the MixAnN outperforms all baselines with the three classifiers on

Macro-F1 scores. Specifically, the MixAnN averagely outperforms the F1-score of

the second-best augmentation method with KNN, XGBoost, and MLP classifiers

on the seven datasets by 4.9%, 10.1% and 7.4%, respectively. Because Mixboost

is similar to MixAnN with a random mixture policy, it implies that the proposed

framework can learn tailored mix-up policies for di↵erent classifiers and data samples.

We can also observe that, although the MixAnN is not always superior to all other

baselines on precision and recall, the F1-scores are always the best. This phenomenon

suggests that MixAnN is able to balance the trade-o↵ between precision and recall,

and therefore leads to superior F1-scores in all settings. The main reason behind this

is that we adopt the Macro-F1 to form a reward signal. One may also tailor their

own metrics (e.g., precision, recall, or tailored metrics) to obtain an anomaly detector

that meets their requirements.

Fourth, by taking a detailed comparison between the MixAnN with SVMSMOTE

and BorderlineSMOTE, we observe that the F1-score of the MixAnN is superior to

the two baselines by at least 14.9%, 14.2% and 14.5% with the three classifiers re-

spectively. This phenomenon suggests that the instance-wise prediction uncertainty

in the reward function is a better approach to generating tailored beneficial synthetic

samples for di↵erent classifiers. The rationale behind this is that the two baselines

identify the class boundary in the label space and the hyperspace of the SVM, where

the MixAnN identifies the boundary that is directly defined by the underlying classi-
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fier. By encouraging the policy to generate samples on the boundary defined by the

classifier, it is more likely to create beneficial information that cannot be observed

from the original feature space or the hyperspace of another classifier.
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Algorithm 5 Training Procedure

1: Input: Input data Xtrain, maximum neighborhood size K, number of training episode

E, DDPG training step S, reward coe�cient �, window size for baseline reward m.

2: Initialize classifier �, actor network ⇡, critic network Q, memory bu↵er B, ✏ = 0.

3: Split partial Xtrain to form Xval and train � on Xtrain.

4: Pre-compute K-nearest neighborhood for Xtrain.

5: Randomly sample a pair of source samples to form the initial state s0 = (x0, x1).

6: for e = 0, 1, 2..., E do

7: t 0.

8: while ✏ < 0.5 do

9: Get the action at = ⇡(st) from actor network.

10: Get ↵, n from at and adopt Eq. 5.1, Eq. 5.2 to generate xsyn.

11: Update � with xsyn and get k from at.

12: Obtain k-nearest neighborhood of xsyn.

13: Form the reward rt = ��M(.)C(.) with Xval and the k-nearest neighborhood of

xsyn.

14: Randomly choose next pair of source samples (xt+1

0
, xt+1

1
) from the k-nearest neigh-

borhood of xsyn

15: Form the next state st+1 = (xt+1

0
, xt+1

1
) and get ✏ from at.

16: Store the triplet Tt = (st, at, st+1, rt) into B.

17: t t+ 1.

18: for step = 1, 2, .., S do

19: Use data in B to update DDPG with Eq. 5.3 and Eq. 5.4.

20: end for

21: end while

22: end for
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5.4.3 Vertical Analysis

In order to answer RQ2, we compare the MixAnN to the most advanced label-

informed anomaly detection algorithms and baseline augmentation methods. Ta-

ble 5.3 presents the macro-averaged precision, recall, and F1-score of each method on

the 5 datasets. ”Best baseline” refers to the horizontal baseline with the best F1-score

on individual datasets. We make the following two observations.

First, data augmentation methods generally outperform label-informed anomaly

detectors. Comparing the best data augmentation baseline to the three label-informed

approaches, the best data augmentation baseline outperforms the best label-informed

algorithm by 6.2%. This suggests that data augmentation may be more e↵ective in

generalizing label information when incorporated with proper strategy. Additionally,

the proposed MixAnN with a properly learned strategy achieves superior performance,

which further validates the suggestion above.

Second, label-informed methods achieve better precision and lower recall. By

comparing Table 5.3 with Table 5.2, we can observe that the average precision of

label-informed approaches is generally superior to data augmentation methods on

all three classifiers, whereas the average recall is generally inferior to those baselines.

One possible explanation is that label-informed approaches can only exploit the labels

themselves, while data augmentation methods are capable of exploring potentially

beneficial information from the limited label information. This suggests that label-

informed approaches tend to over-fit existing labels, which may be sub-optimal.

5.4.4 Ablation Study

To answerRQ3, we conducted an ablation study on the Japanese Vowels dataset with

the KNN classifier. As the reward signal is the most critical guidance toward optimal
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Ablations Precision Recall F1-score

Random reward 0.85 0.60 0.66

w/o Improvement Stimulation (Eq. 5.5) 0.98 0.64 0.71

w/o Model Exploration (Eq. 5.6) 0.98 0.71 0.79

Full MixAnN 0.99 0.93 0.96

Table 5.4 : Macro-averaged scores of MixAnN with the KNN classifier and the ablations

on Japanese Vowels.

augmentation strategies, we ablate the reward function to study the contribution

of individual components. Note that a random reward generates a reward signal

with a random floating number from 0 to 1, which potentially leads to a random

augmentation strategy. From Table 5.4, we can make the following observations.

First, the proposed MDP is solvable, and the tailored RL agent is capable of

learning an optimal strategy. By comparing the random reward baseline with the

MixAnN, we observe that there are significant improvements in all three metrics.

Both the two ablations on Eq. 5.5 and 5.6 are significantly better than the random

reward baseline, which suggests that the tailored RL agent is capable of addressing

the MDP toward an optimal augmentation strategy.

Second, the two components in the proposed reward signal play significant roles

in an optimal augmentation strategy. Specifically, both components are capable of

increasing the exploitation of the label information and therefore lead to significant

improvements in precision. On one hand, as the classifier may su↵er from under-fitting

during the training procedure, learning the augmentation strategy without Eq. 5.5

may lead to a significant performance drop. On the other hand, without considering

the model impact via Eq. 5.6, it is less possible to identify potentially beneficial
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information for the underlying classifier and therefore leads to a lower recall.

4

Synthetic AnomaliesSynthetic NormaliesTrue Normalies True Anomalies

MLP XGBoost KNN

Figure 5.4 : Hyperparameter study on Vowels.

5.4.5 Hyper-parameter Study

To answer the RQ4, we study the two key hyperparameters (i.e., maximum neigh-

borhood size K and the threshold ⌘) on the vowels dataset with the three classifiers.

Based on the results shown in Figure 5.4, we make the following observations.

For the size of the neighborhood K, simpler classifiers may require collecting a

larger amount of neighborhood information to extend the supervisory information

of the source samples. For a complex model such as a multi-layer perceptron, we

may need to carefully select the size to prevent over-smoothing when collecting too

much neighborhood information [152] for the classifier. As for the threshold ⌘, we

observe that a lower threshold for creating synthetic anomalies generally leads to

better performance. One possible explanation is that a lower ⌘ prompts the data

mixer to create more synthetic anomalies, which is therefore beneficial to the extreme

imbalance setting of anomaly detection.
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5.4.6 Case Study

To answer the RQ5, we apply MixAnN and the baselines to a publicly available 2-

dimensional toy dataset �. We split 60% of the data for training, 20% of the data for

validation, and 20% for testing and use Macro-F1 as the performance metric. Fig-

ure 5.5 illustrates the generated synthetic samples and the decision boundary obtained

by training a KNN classifier on the over-sampled data. We observe that classical

SMOTE-based algorithms and Mixboost tend to generate some noisy samples that

interleave with the majorities between the anomalies from two di↵erent sides, which

degrades the performance. AutoSMOTE is capable of generating synthetic samples

that are less noisy; however, due to the true anomaly in the center, several synthetic

anomalies are generated to extend the left upper decision boundary, resulting in the

misclassification of true normalities. In contrast, MixAnN is capable of generating

both synthetic normalities and anomalies with zero noises, so it achieves a better

Macro-F1 score, which demonstrates the e↵ectiveness of mixing up normalities and

anomalies with the guidance of a learning-based agent.

�
https://github.com/shubhomoydas/ad_examples/tree/master/ad_examples/datasets/

anomaly/toy2/fullsamples
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Figure 5.5 : Visualization of the generated synthetic samples and the decision boundary

of DecisionTree on a toy data using AutoSMOTE and other over-sampling techniques.

5.5 Conclusion

This study aims to address the challenge of automated data preparation by intro-

ducing MixAnN, a framework that expands limited label information with consid-

ering underlying model performances. Specifically, we propose an iterative mix-up

approach to generalize label information and formulate the iterative mix-up into a
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Markov decision process. To guide the policy learning procedure, we create a reward

function that explores the classifier’s decision boundary and generates synthetic sam-

ples to maximize performance gain, and tailor a deep actor-critic framework to tackle

the Markov decision process. We evaluate MixAnN in comparison to state-of-the-

art label-informed anomaly detection algorithms and data augmentation approaches

and demonstrate the superiority of MixAnN with extensive experimentation. The

result suggests the validity of automated data preparation and its the capability of

expanding AutoML toward challenging applications and scenarios.
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Chapter 6

Benchmark Time Series Outlier Detection with
Data-centric AutoML System

6.1 Motivation

In the previous chapters, we have addressed three critical challenges toward data-

centric AutoML. As the aforementioned research fruits validate the feasibility of the

data-centric AutoML, it is necessary to develop a practical instance for broader appli-

cations to further promote our idea to the general public and provide useful toolkits to

better serve the humankind. Especially, detecting outliers from time series data has

broad applications in various domains, such as manufacturers [153], edge devices [154]

and HVAC systems [155, 156, 157].

Many algorithms have been proposed for time series outlier detection, includ-

ing prediction-based models such as auto-regression [158] and recurrent neural net-

works [159], majority modeling approaches such as isolation forest [89] and autoen-

coder [160], and discords analysis methods such as subsequence clustering [161] and

matrix profile [162]. Despite these e↵orts of advancing algorithm design, very few

studies have investigated how we should benchmark the existing algorithms. Espe-

cially, given the complex nature of real-world time series outliers, the requirement

of data preparation di↵ers across algorithms, which makes it challenging to build up

a benchmark platform for understanding the existing e↵orts and therefore leads to

illusion of progress in the field [163].
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In addition, while machine learning models have shown promise in time series out-

lier detection, the performances are still mainly depend on the entire machine learning

pipeline and building an e↵ective time series outlier detection pipeline heavily relies on

human expertise. Due to the unique data characteristics of di↵erent application sce-

narios, one often needs expensive laboring trials to implement and identify the most

suitable processing modules, detection algorithms, and hyperparameters for a specific

task, which significantly impedes the real-world application and the developments of

time series outlier detection.

To bridge this gap, we aim to save human e↵orts in building e↵ective pipelines for

time series outlier detection through data-centric AutoML and provide a transparent

and extendable anomaly detection system with exhaustive functionalities, including

data I/O, data processing, feature analysis, and detection algorithms, as well as an

easy-to-use graphic user interface to allow human-AI interaction. With the aid of

data-centric AutoML, a fair benchmark of existing e↵orts may be realize due to the

adaptive data preparation pipeline for individual algorithms.

However, it is non trivial to develop a practical instance as a benchmark platform

due to the following reasons. First, there exists various methods to prepare time

series data for a detection algorithm, how to properly categorize them toward modu-

larization and implementation may be challenging. Second, given numerous existing

e↵orts for time series outlier detection, how to categorize the e↵orts toward di↵erent

application scenarios and provide implementations of representative ones may be dif-

ficult. Third, given the complexity of building a ML pipeline for time series outlier

detection, searching an optimal solution could be infeasible.

We present an automated Time series Outlier Detection System called TODS.

It is designed under D3M infrastructure [164], i.e., data-driven model discovery via
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automated machine learning. It currently supports more than 70 primitives for data

processing, time series processing, feature analysis, outlier detection, and incorporat-

ing human knowledge. It can be applied to various application scenarios, including

point-wise, pattern-wise and system-wise detection. The goal of TODS is providing

an end-to-end solution for real-world time series outlier detection. Furthermore, with

the support of TODS, we conduct extensive experiments on the synthetic and the

real-world datasets to benchmark 9 representivie algorithms, including prediction-

based models, majority modeling approaches, and discords analysis methods. We

surprisingly observe that some classical algorithms could outperform many recent

deep learning approaches for all types of outliers. With the hope that these insights

could motivate future works, we have open-sourced all the datasets, the pre-processing

and synthetic scripts, and the algorithm implementation in TODS [165].

6.2 Preliminary

In this section, we introduce the problem definition of time series outlier detection.

Then, we briefly discuss related works for time series outlier detection.

6.2.1 Problem Definition

LetX = (v0, v1 · · · , vt) be a fully observed multivariate time series data. Let Y 2 Nt+1

be the label of X indicating whether individual time point vt is an anomaly or not.

Time series anomaly detection aims at recognizing if a time point v̂t is anomalous or

not. A scoring function F : x̂t ! R evaluates the degree of anomalous of individual

instances based on the input data x̂t; the higher the score, the more anomalous the

time point t is.
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6.2.2 Related Works

Existing time series outlier detection algorithms can be categorized into three types

based on their working mechanisms: prediction deviation, majority modeling and

discords analysis.

Prediction Deviation identifies the outliers by measuring the gaps between the

predicted values and the original data. The assumption behind this type of algo-

rithms is that the given data is reconstructable through regression analysis; if an

individual instance is not regressable, then it is very likely to be an outlier. Autore-

gression (AR) [158] assume that each individual instance is linearly correlated to its

past few instances. Gradient boosting regression (GBRT) [166] handles time series

data in windowed-fashion and perform regression based on segmented subsequences.

Derived from autoregression, recurrent neural networks with long short term memory

units (LSTM-RNN) [159] is adopted to model the nonlinear temporal correlations

between data instances.

Majority Modeling assumes that normal data instances are compact in hy-

perspace [167, 168]. It aims at identifying the decision boundary between outliers

and normalities through modeling the regular data distribution. One-class SVM

(OCSVM) [169, 170, 171] maximizes the margin between origin and the normalities

and define the decision boundary as the hyper-plane that determines the margin. Iso-

lation forest (IForest) [89, 172] builds an ensemble of binary trees to isolate the data

points and defines the decision boundary as the closeness of an individual instance to

the root. Autoencoder (AE) [160] maps the data points into low dimensional latent

space, reconstructs the data points from the latent space representations, and defines

the decision criteria by assuming the reconstruction error of outliers are significantly

larger than normalies. Generative adversarial nerwork (GAN) [173] performs min-
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max optimization with a generator and a discriminator, where discriminator aims at

modeling the normalities and generator targets on generating outliers that can be

identified as normalities by discriminator. The decision criterion is defined as the

discriminator loss on individual instances.

Discords Analysis measures the similarity [174] between subsequences and aims

at identifying discords as outliers. Specifically, sequential data will be segmented into

subsequences by a sliding window. Then, di↵erent distance computation will be

performed to evaluate the discordance of each subsequence. Discords analysis is usu-

ally adopted to identify pattern-wise outliers. Subsequence clustering [161] leverages

unsupervised algorithms such as OCSVM [171] and IForest [172] with segmented sub-

sequences to detect pattern-wise outliers. Matrix profile (MP) [162, 175] constructs

distance profiles by computing minimum distances of each subsequence to the rest of

subsequences, then identifies anomalous subsequence based on the distance profile.
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6.3 TODS: An Automated Time Series Outlier Detection

System

TODS is an end-to-end Time-series Outlier Detection System. In TODS, we have

mainly six modules: Data preprocessor, time-series processor, feature analyzer, a

detection module, reinforcement module, and human-AI interface. Figure 6.2 illus-

trates the overall workflow and structural design of TODS. Specifically, each module

consists of several primitive sets where each one is composed of various functions.

This package aims to provide an end-to-end machine learning system for outlier de-

tection tasks on time series data, and the target audience of this package is general

software engineers with limited machine learning/data mining expertise. We define

three scenarios that can include all of the outlier detection scenarios in our daily life:

point-wise detection, pattern-wise detection, and system-wise detection.

• Point-wise detection aims at detecting the anomalous time point within the

data by defining the anomalies as time points.

• Pattern-wise detection aims to identify odd patterns in the data by specify-

ing the anomalies on subsequences.

• System-wise detection aims to find anomalous systems by defining a set of

time series data as an anomaly.

In this section, we first illustrate the functionality of each module that composes

TODS. Then, we introduce the provided application programming interfaces (APIs).

Finally, we elaborate on the implementation of pipeline search procedure.
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6.3.1 Modules Overviews

An overview of TODS is shown in Figure 6.2. The basic building block in TODS

is primitive, which is an implementation of a function with some hyperparameters

(e.g., Auto-Encoder algorithm). A pipeline is defined as a Directed Acyclic Graph

(DAG), where each step represents a primitive. Typically, creating a ML pipeline

for detecting anomalies includes four primitive steps: data processing, time series

processing, feature analysis, and detection algorithms. We follow the primitive steps

to develop following modules:

• Data Processing: The data processing module plays a crucial role in working

with raw data stored in tabular format. It serves various general data processing

purposes such as data loading, validation, conversion, standardization, encod-

ing, and imputation. The primary objective of this module is to preprocess

the input time series data based on its original tabular format. By doing so, it

enables the data to be more manageable and usable for further analysis.

• Time-series Processing: The purpose of the time-series processing module is

to handle time-series data by treating it as a continuous signal. This module is

specifically designed to perform various time-series-specific pre-processing tasks,

such as seasonality-trend decomposition, variable normalization, and distribu-

tion/domain transformation. Its objective is to prepare the time-series data for

feature analysis by transforming it into a format that amplifies the temporal

pattern and unifies the variable discrepancies.

• Feature Analysis: The objective of the feature analysis module is to extract

significant features from three aspects of time series data: the temporal do-

main [176] (such as statistical features), the frequency domain [177] (such as
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a saliency map), and the latent feature space [178, 179, 180] (such as matrix

factorization). Since each data point in the time series data contains limited

information, the output of this module is an augmented time series with not

only the information from the original data but also extended signals derived

from it. In other words, the feature analysis module aims to enrich the time

series data with meaningful features that can be used for detecting outliers.

• Detection Algorithms: The detection algorithm module performs outlier de-

tection on the input data for three major application scenarios: point-wise,

pattern-wise and system-wise outlier detection. Algorithms for point-wise de-

tection identify outliers by comparing individual time points with the remaining

time points. Examples of such algorithms include isolation-forest [89] and local

outlier factors [86]. Algorithms for pattern-wise detection identify outliers by

recognizing local patterns, which are described as sub-sequences that deviate

from the general pattern of the majority of subsequences in the time series.

Some examples including subsequence clustering [161], matrix profile [162] and

generative adversarial neural networks [181]. Since there exists very limited

research and development for system detection scenario, we implement several

ensemble methods [182] to consider detection results from point- and pattern-

wise algorithms on individual time series to address the problem.

• Reinforcement Module: This module aims at exploiting human knowledge

to reinforce the detection performance. The key idea is to enable human ex-

perts to insert the domain knowledge for improving the detection results from

ML models as unsupervised ML models may su↵er from distribution shift and

therefore leads to false alarms [119].
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Module Number Example Primitives

Data Processing 7 TimestampValidation, TimeIntervalTransform, DuplicationValidation

Time-series Processing 9 SeasonalityDecomposition, MovingAverageTransform, HoltSmoothing

Feature Analysis 30 AutoCorrelation, NonNegativeMatrixFactorization, StatisticalGMean

Detection Algorithms 23 LSTM-RNN, IForest, AutoEncoder, LocalOutlierFactor

Reinforcement 1 RuleBasedFilter

Total 70 -

Table 6.1 : The number of primitives implemented in each module of TODS with example

algorithms in each module.

The primitives developed in each module are shown in Table 6.1. Various pipelines

can be constructed based on these primitives in di↵erent application scenarios. More

comprehensive list of algorithms can be found on the GitHub repository released

under Apache 2.0 license at https://github.com/datamllab/tods.

6.4 Automated Pipeline Searching

Beyond manual pipeline construction, TODS provides data-driven searchers to au-

tomatically find good pipelines for a given task. To perform pipeline search, users

are required to provide a search space to specify candidate primitives of each module

and the corresponding range of hyper-parameters. The, given a time budget and

evaluation criteria, two kind of searchers can be employed for the pipeline searching:

random searcher and hierarchical searcher.

• Random Searcher: The random searcher simplifies the search space by flat-

tening the search space for each module. It then selects a primitive and a corre-
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Figure 6.2 : The illustration of hierachical search

sponding set of hyper-parameters from each module through uniform sampling

to generate a pool of candidate pipelines. Finally, the best pipeline discovered

within the allotted time frame is returned as the final outcome.

• Hierarchical Searcher: A search procedure can be conducted using a hierar-

chical searcher that divides the search space into primitive and hyper-parameter

levels. The process involves an evolutionary search algorithm [183] and has two

stages. In the first stage, the searcher uses default hyper-parameters to perform

a primitive-level search and identify a pool of candidate pipelines. The top-

k pipelines are then selected and paired with corresponding hyper-parameter
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ranges for further optimization. Depending on the time budget allocated, the

search can prioritize exploration to identify more pipeline structures or exploita-

tion to optimize existing pipeline structures.

To facilitate pipeline search, TODS also provides a data preparation pipeline for data

splitting, such as k-fold splitting, and a scoring pipeline to evaluate the performance

based on a given metric, such as F1 score or customized score. The data-driven

searcher takes a dataset as input to automatically discover a detection pipeline that

can achieve the best performance on a given dataset. Then the discovered pipeline

can be outputted for real-world deployment.

import pandas as pd

from tods import generate_dataset , load_pipeline ,

from tods import evaluate_pipeline

from tods.utils import build_pipeline

# Read data and generate dataset and problem

data_path = ’../../ datasets/example.csv’

df = pd.read_csv(data_path)

dataset = generate_dataset(df , target_index=target_index)

target_index = 6 # what column is the target

metric = "AUC"

# define pipeline structure

pipeline = {

’data_processing ’:[

(’time_interval_transform ’, {’time_interval ’: 5T})

],

’timeseries_processing ’:[

(’standard_scaler ’, {’with_mean ’:True})

],

’feature_analysis ’:[

(’statistical_maximum ’, {’window_size ’:3}),

(’statistical_minimum ’, {’window_size ’:15})

],

’detection_algorithm ’:[

(’pyod_ae ’, {’hidden_neurons ’:[32,16,8,16,32]})

],

}

# Executing Pipeline

pipeline = build_pipeline(config)

pipeline_result = evaluate_pipeline(dataset , pipeline , metric)

Code Listing 6.1: Pipeline interface for pipeline creation and execution
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6.5 Application Development Interface

To enable users from diverse background to engage, we develop three application

development interfaces (APIs):
import pandas as pd

from tods import generate_dataset , generate_problem

from tods.searcher import RaySearcher

# Read data and generate dataset and problem

data_path = ’../../ datasets/example.csv’

df = pd.read_csv(data_path)

dataset = generate_dataset(df , target_index=target_index)

target_index = 6 # what column is the target

time_limit = 300 # How many seconds for search process

# initialize the searcher

searcher = RaySearcher(dataframe=df, target_index=target_index ,

dataset=dataset , metric=’F1_MACRO ’, budget=

time_limit)

# define search space

search_space = {

"timeseries_processing": {

"time_series_seasonality_trend_decomposition": {

"use_semantic_types": [1, 0]

},

"moving_average_transform":{

"window_size":[5, 30],

"norm":["l1", "l2", "max"],

}},

"feature_analysis": {

"statistical_h_mean": {

"window_size": [10, 20]

},

"statistical_maximum": {

"window_size": [10, 20]

}},

"detection_algorithm": {

"pyod_ae": {

"dropout_rate": [0.1, 0.2]

},

"pyod_loda": {

"n_bins": [10, 20]

}}

}

# Start searching

search_result = searcher.search(search_space=search_space)

Code Listing 6.2: Pipeline interface for AutoML search

• Pipeline programming interface enables users to create pipelines using only

a few lines of code. These pipelines can be described in JSON format and
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shared with colleagues, and then executed using the D3M engine. The interface

has been created specifically for the purpose of scaling up the execution of ma-

chine learning pipelines. With this interface, users can simultaneously configure

multiple modules, thereby enabling them to build machine learning solutions.

Additionally, an AutoML is also supported with this interface. Code Listing

6.1 shows the example code snippets of creating and executing a pipeline; and

Code Listing 6.1 shows the example code snippets of customizing search space

for AutoML search.

import numpy as np

from tods.sk_interface.detection_algorithm import DeepLogSKI

from sklearn.metrics import precision_recall_curve

from sklearn.metrics import accuracy_score

#prepare the data

data = np.loadtxt("./ benchmark1_10000_19280_19360.txt")

# first 10000 data points are training data

X_train = np.expand_dims(data[:10000], axis=1)

# second 10000 data points are testing data

X_test = np.expand_dims(data[10000:20000], axis=1)

# creating labels

y_true = np.zeros(10000).astype(np.int32)

y_true[9280:9360] = 1

y_true = np.expand_dims(y_test , axis=1)

transformer = DeepLogSKI ()

transformer.fit(X_train)

y_pred = transformer.predict(X_test)

y_score = transformer.predict_score(X_test)

precision , recall , thresholds = precision_recall_curve(y_true ,

y_pred)

f1_scores = 2*recall*precision/(recall+precision)

print(’Accuracy Score: ’, accuracy_score(y_true , y_pred))

print(’Best threshold: ’, thresholds[np.argmax(f1_scores)])

print(’Best F1 -Score: ’, np.max(f1_scores))

Code Listing 6.3: Primitive interface for incorporating with third party package

• Primitive programming interface follows the API design of scikit-learn with

fit and produce functions for each primitive. This enables users to make use of

the individual primitives within TODS and to easily combine them with other
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Figure 6.3 : An illustration of the GUI. Users can easily build and evaluate a pipeline

with drag-and-drop.

third-party packages for detailed experimentation and other data types. An

illustration of the primitive programming interface of TODS can be seen in

Code Listing 6.3.

• Graphical User Interface (GUI) is to provide a development environment

for users who may not be familiar with coding. This interface is based on

Orange [184] and is designed to enable users to build pipelines using a visual

approach. The GUI provides users with access to various primitives, which

are organized into tabs and represented by icons with text descriptions. Users

can select the primitives they need, drag them onto the canvas, and connect

them using lines. By double-clicking on the icon, users can easily configure



108

the hyperparameters for each primitive, as illustrated in the example shown in

Figure 6.3. TODS, the system underlying the GUI, automatically generates the

pipeline language based on the structure created in the interface. The resulting

pipeline is then sent to the backend for time series outlier detection.

6.6 Benchmark Time Series Outlier Detection with TODS

In this section, we introduce 35 synthetic datasets based on our previously proposed

criterion [24] and identify four real-world multivariate sequential data which cover

both point- and pattern-wise outliers. We benchmark 9 representative algorithms

implemented in TODS [165] on these datasets. In what follows, we first describe the

details of the synthetic datasets and the real-world datasets, and then elaborate on

the included algorithms. Finally, we present the benchmark results and analysis.
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6.6.1 Descriptions of the Datasets

We conduct benchmark experiments in unsupervised setting. Each of the algorithm

is trained and tested on the same dataset. The outliers are identified based on the

outlierness score generated by individual algorithms with a given contamination ratio.

The benchmark experiments are conducted on both synthetic and real-world datasets

as follows:

Synthetic Datasets

The goal of synthetic datasets is to examine the ability of algorithms to identify 5

type of proposed outliers. We generate 35 synthetic datasets with 20 univariate and

15 multivariate datasets to examine the existing algorithms in detail. Specifically, we

adopt sinusoidal wave as the base shapelet to generate 20 univariate sequential data

with di↵erent ratio of outliers, where each dataset only include one kind of outlier.

Then, we also generate 15 multivariate sequential data which combine di↵erent kinds

of outliers into single dataset. The parameters for generating univariate datasets are

provided in Table 6.2. We generate the dataset based on our developed synthetic

data generator. Specifically, we generate 20 univariate datasets, where each dataset

includes only one type of outlier with di↵erent outlier ratio. The outlier ratio is

defined as labeled timepoint
total . For multivariate, we generate 15 five-dimensional data with

1 to 5 types of outlier in each dimension. We opensource our synthetic dataset in the

”benchmark” branch of TODS ∗, where the README.md file gives more details on

the datasets.

∗
https://github.com/datamllab/tods/tree/benchmark
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Attributes

Dataset
#(Timestamps) #(Dimensions) Outlier Ratio

Credit Card 284,807 29 0.173%

Web Attack 170,231 79 1.281%

Water Quality 138,521 10 1.246%

Space Weather 120,000 39 23.8%

Table 6.3 : Details of real-world datasets.

Real-world Datasets

We identify four public available real-world datasets from four di↵erent application

scenario with two event-driven application and two time-based application: credit

card fraud detection, IoT for drinking water monitoring, server attack monitoring

and extreme space weather detection. Compared to existing multivariate benchmark

datasets such as SMD, SMAP, MSL, which only have point outliers, our datasets

involve wide range types of outliers.

• Credit Card † is collected by openML which contains transactions made by

credit cards in September 2013 by European cardholders. The fraudular trans-

actions are labeled as outliers. In our repository, we name the processed data

as ”creditcard”.

• CICIDS ‡ is collected by Canadian Institute for Cybersecurity in 2017. We

adopt the ”Thursday-WorkingHours-Morning-WebAttacks” file in 2017 datasets

†
https://www.openml.org/d/1597

‡
https://www.unb.ca/cic/datasets/ids-2017.html
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which contains 3 kinds of intrusion attack: XSS, SQL injection and brute force

attack. We drop all of the row and columns with NaN and label all kinds of at-

tack as outliers. In our repository, we name the processed data as ”web attack”.

• GECCO § is collected by SPOTSeven Lab ¶ for hosting a data challenge � in

2018. We binarized all of the binary columns with 1 and 0. In our repository,

we name the processed data as ”water quality”.

• SWAN-SF ∗∗ is collected by Harvard Dataverse. We adopt the labeled ver-

sion from the demo of an open sourced multivariate time series preprocessing

toolkit ††which can be directly downloaded from bitbucket ‡‡. We merge all of

labeled csv file as a multivariate time series data. Then, we drop all columns

and rows with NaN values, binarize all binary columns and label all of the flares

as outliers. In our repository, we name the processed data as ”swan sf”.

6.6.2 Algorithms, Hyper-parameter Space and Benchmark Method

We include 8 representative algorithms including prediction deviation, majority mod-

eling and discord analysis algorithms. We adopt the implementations from open-

sourced outlier detection library: TODS. Specifically, the benchmark algorithms in-

cluding GAN, Autoencoder, IForest and OCSVM, subsequence segmentation (with

IForest and OCSVM), LSTM-RNN, autoregression and matrix profile. For synthetic

§
https://bit.ly/3fOeRvI

¶
https://www.spotseven.de

�
https://www.spotseven.de/gecco/gecco-challenge/gecco-challenge-2018/

∗∗
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/EBCFKM

††
https://github.com/AzimAhmadzadeh/mvtsdata_toolkit/blob/master/demo.ipynb

‡‡
https://bitbucket.org/gsudmlab/mvtsdata_toolkit/downloads/petdataset_01.zip
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datasets, we align the contamination ratio for all of the algorithms with the outlier ra-

tio. For real-world datasets, we search the contamination ratios from {0.01, 0.05, 0.1,

0.15, 0.2, 0.25} for all of the algorithms and report the best one. For each algorithm,

we firstly perform pipeline structure search to identify best ML pipeline structure,

then we adopt the following hyper-parameter space to search for the best results:

• AR: We set step=1 and search the window size within {3, 5, 10} for all of the

datasets and report the best result.

• GBRT: We set step=1 and search the window size within {3, 5, 10} for all of

the datasets and report the best result.

• LSTM-RNN: For LSTM-RNN, we search the number of hidden layer within

{2, 5, 10, 20, 32} and number of hidden units within {32, 64, 128, 256}. We

train the model for 20 epochs with batch size as 32 and search dropout ratio in

{0.1, 0.2, 0.3}. Finally, we report the best detection result for each dataset.

• IForest For IForest, we search nestimators in {100, 300, 500, 700, 900} and

use default for the rest.

• OCSVM We only set the max iter = 1000 to prevent from infinity iteration.

We search kernel in {linear, poly, rbf, Sigmoid}, ⌫ in {0.1, 0.3, 0.5, 0.7, 0.9}

and use the default for the rest.

• Autoencoder: We search the autoencoder with the candidate neural architec-

tures given by {(32,16,32), (16,8,16), (32,16,8,16,32), (64,32,16,32,64), (128,64,32,

64,128), (256,64,32,64,256)}, where the first and last element in each tuple in-

dicate the number of units in the input and output layers, respectively, and

other elements indicate that of hidden layers. The autoencoder is trained for 20
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epochs with batch size as 32 and the activation function is searched in {Sigmoid,

ReLU, Linear} with dropout rate in {0.1, 0.2, 0.3}.

• GAN: We adopt the MO-GAAL from TODS which is initially implemented in

PyOD, and we search the hyperparameter k in {1,2,3,4,. . . , 20} and the training

epochs within {20, 30, 50}. Since it fails to identify any outliers in real-world

datasets, we only report this algorithm on synthetic datasets.

• Matrix Profile: We search the window size within {3, 5, 10}, and report

the best result with window size as 10. Besides, we only report the results for

synthetic datasets because MP cannot complete the training procedure within

1000 CPU hours for all of the real-world datasets.

• Subsequence Clustering: We search the window size within {3,5,10} to and

the aforementioned hyper-parameter space of OCSVM and IForest to establish

subsequence clustering baselines: NOCSVM and NIForest.

6.6.3 Results and Analysis

We report the F1 score on the datasets with di↵erent outlier ratios or the numbers

of involved outlier types in Figure 6.5 and tabulate the results of real-world datasets

in Table 6.4.

Synthetic Datasets.

Figure 6.5 summarizes the benchmark result on 35 synthetic datasets with F1 score.

Specifically Figure 6.5a to 6.5e concludes the F1 score with respect to outlier ratio on

20 univariate sequential data and figure 6.5f shows the average F1 score with respect
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to number of involved outlier type on 15 multivariate synthetic datasets. We make

the following observations.

First, classical algorithms generally outperform deep learning based methods on

all of the synthetic datasets. Specifically, AR outperforms all other algorithms in

detecting contextual and shapelet outliers; OCSVM and IForest outperform the rests

in global outliers and multiple outliers on multivariate setting; and discord analysis

algorithms perform the best in seasonal and trend outlier tasks.

Second, detecting contextual outliers is challenging for most of the algorithms.

Among all of the algorithms, only AR is able to achieve good performance. A possible

reason is AR adopts contextual points to perform self regression and modeling the

normalies in the context window, which benefits detecting contextual outlier.

Third, prediction-based algorithms which are designed to detect point-wise out-

liers are also applicable to some of the pattern-wise outliers. For example, AR out-

performs all of other algorithms when detecting shapelet outlier. The reason behind

this is that we adopt square sine as the anomalous shapelet to increase the di�culty.

However, since the seasonality and trend of shapelet outliers remain identical to nor-

malies, the right angle part of the synthetic outlier will be deemed as contextual

outliers by AR and therefore yield an superior performance.

[h]

Fourth, local z-normalization adopted by MP may damage the performance for

identifying trend outliers with di↵erent directions on zero-centered sequence when the

window size is not properly set. As shown in Figure 6.4, with the window size that

smaller than the range of outlier, the value range of the trend outlier will be similar

to normal subsequences after applying the local z-normalization on the two trend

outliers. Moreover, the original trend shift of the two outliers are transferred to their
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Figure 6.4 : Before (upper) and after (lower) applying local z-normalization.

neighboring points, which make it hard for MP to identify the true trend outlier.

Lastly, deep learning methods such as RNN and GAN can only handle limited

type of outliers. In the Figure 6.5f, the average F1 score of GAN and RNN tend

to decrease when more types of outliers are involved. This suggests that the two

algorithms might have limited performance on real-world datasets with numerous

kinds of outliers or mixed type of outliers.
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Figure 6.5 : Summary of benchmark results on univariate (a-e) and multivariate (f)

synthetic datasets. NIForest and NOCSVM are the subsequence clustering with the two

algorithms. Figure a-e report the F1 score with respect to di↵erent ratio of outliers within

the dataset and figure f report the F1 score with di↵erent number of outlier types within

the data. We report only prediction deviation and majority modeling-based algorithms for

the point outliers.
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Real-world Datasets.

Table 6.4 tabulates the best result for each algorithm on the real-world datasets. In

the real-world experiments, we search the contamination ratio for all of the algorithms

in {0.01, 0.05, 0.1, 0.15, 0.2, 0.25} and select the best precision, recall and F1-score

to report for each dataset. Since GAN cannot identify any outliers from all of the

four real-world datasets, we exclude the algorithm in the benchmark result. Based

on the Table 6.4 we can make two observations as follows.

First, classical algorithms generally outperform deep learning methods. Except

for the web attack dataset, all of other datasets are dominated by AR, IForest and

OCSVM. Although this is reflected in the synthetic benchmark, it is surprising that

GAN cannot identify any of the outliers within the four datasets. A possible expla-

nation is that the outliers in real-world datasets are very complex with very di↵erent

patterns, which is aligned with the result in multivariate synthetic benchmark in Fig-

ure 6.5f that GAN may not be able to detect outliers from dataset with numerous

kinds of outliers.

Second, subsequence clustering algorithms are not robust to real-world data when

combined with OCSVM. As shown in the table NOCSVM has the worst performance

among all of the datasets with a huge gap to other algorithms. This is because the

OCSVM assumes that all of the normal subsequences can be mapped into the same

cluster in hyperspace, which may be not true in real-world datasets. Specifically, we

observe that OCSVM with subsequence segmentation costs more than ten times of

training time compared with vanilla OCSVM. This suggests that it is very challenging

to find a hyperspace to cluster all normal subsequences into one class and therefore

the training iteration will never stop if no maximum is set.
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6.7 Conclusion

In this work, we develop an instance of data-centric automated machine learning

system, TODS, for detecting outliers in time series.

The clear context definitions in the point- and pattern-wise behaviors make the

proposed taxonomy ideal for synthesizing outliers. Based on the taxonomy, we present

a general synthetic criterion with 35 corresponding synthetic datasets and identify

4 multivariate real-world datasets from di↵erent domains. We then benchmark 9

algorithms using these datasets and empirically show that classical algorithms are

generally and surprisingly be superior in both synthetic and real-world datasets. We

hope this insight gleaned from our benchmark experiments could motivate future

algorithm design. To facilitate the reproducibility and fast experimental pipeline in

time series outlier detection, we have made all the datasets, scripts, and algorithm

implementations publicly available, and we will actively maintain this project. In the

future, we will enrich our benchmark with more datasets and polish the definition of

outliers with more delicate synthetic criteria. We will also benchmark more state-of-

the-art algorithms and leverage this platform to design more e↵ective algorithms to

tackle di↵erent types of outliers.
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Chapter 7

Conclusions and Future Research Directions

AutoML has been shown to be an tools that makes ML accessible to the general pub-

lic and improve the productivity of machine learning engineers. However, as recent

studies show the bottleneck of the AutoML and the recent data challenges suggest

the critical role of the data preparation, we propose a data-centric AutoML frame-

work to compliment the shortcoming of existing model-centric AutoML framework.

Our research focuses on bringing sample-wise model customization, data prepara-

tion and knowledge acquisition into the AutoML. The contribution of this research is

two folded. First, we show the feasibility of the data-centric AutoML by introduced

fundamental algorithms and strategies for tackle the challenges of automated model

customization, knowledge acquisition and data preparation. Second, we show the ca-

pability of data-centric AutoML by adopting the proposed framework into real-world

problems such as semi-supervised learning and outlier detection which are equipped

with challenging settings, sparse label information. Third, we instantiate an instance

of data-centric AutoML system to tackle challenging time series outlier detection

problem and further benchmark the existing algorithm with data-centric AutoML

and identify the illusion of progress in this research area. Putting all these together,

our research could help build more powerful AutoML systems, facilitating their de-

ployment in our daily life to better serve human beings.

Despite the e↵orts we have put into this thesis, there is still room for improve-

ment.With the demonstrated success of data-centric AutoML in real-world situations,
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there is potential for further exploration of its applicability to various scenarios. For

future work, we are interested in the follwing directions:

• Human-centric machine learning. AutoML aims to make machine learning

accessible to individuals who lack comprehensive knowledge of the field, thus

emphasizing the importance of enabling human interaction with ML solutions.

To achieve human-centric machine learning, two significant challenges must be

addressed: automated exploration and exploitation of domain expertise, and

the development of explainable AutoML and ML solutions. Addressing the is-

sue of automated domain expertise exploration and exploitation can enhance

the resulting solution by better mining the domain knowledge from humans.

While active learning methods can explore domain expertise by generating good

queries for users, there is no current e↵ort to evaluate the queried knowledge and

develop specific ways to exploit it to maximize model performance. For explain-

able AutoML, although there exists various explanation methods for individual

models [185, 186], there exists very limited studies for explaining AutoML en-

gine. As AutoML can be complex, enabling users to trust and understand the

models is particularly important for AutoML to participate in high-stakes ap-

plications such as financial and medical analysis. Additionally, understanding

the decision-making mechanism of models allows humans to provide critical

feedback, which can further improve ML models and AutoML procedures.

• E�cient data-centric policies. Data-centric AutoML may su↵er from large-

scale datasets due to the large search space and complex data-centric operations.

It is particularly important to address the problem for broader applications.

One intuitive way is to directly work on system-wise improvement (e.g., better
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memory usage). Apart from that, we may also alleviate the problem from algo-

rithm perspective by developing transferable data-centric policy. Given the fact

that there exists limited number of data-centric operations and datasets from

similar domains may equip with similar attribute, developing pretrain strategy

for generating a transferable data-centric policy toward di↵erent applications

and datasets could be a promising direction.

• Unified benchmark criteria. In many challenging real-world applications,

it is often very di�cult to evaluate the validity of existing solutions due to the

complexity of the problem and the resulting datasets. Therefore, it is partic-

ularly critical to conduct benchmarks to study existing algorithms. However,

given the di↵erent assumptions of individual algorithms, the data preparation

process may vary a lot, and a unified preprocessed input for all algorithms may

lead to biased benchmark results. To address this issue, data-centric AutoML

could be a possible approach to identify the most suitable input for individual

algorithms and generate the results within a given computational budget. For-

mally define the problem and develop an benchmark criteria upon data-centric

AutoML may be a promising directions toward e↵ective comparison between

ML algorithms.
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