
Special Issue in Honor of Professor Peter Schmidt, 
2023, Empirical Economics. Volume 64, Issue 6, 

3121-3165. 

Public Subsidies and Innovation: A Doubly Robust Machine 

Learning Approach Leveraging Deep Neural Networks 

Kerda Varaku* Robin Sickles† 

Abstract 

Economic growth is crucial to improve standards of living, prosperity and welfare. R&D and 

knowledge spillovers can offset the diminishing returns to physical capital (machines and labor) 

and drive long-run growth. Market imperfections can bring R&D below the socially desired level 

thus, many governments intervene to increase the stock of knowledge, and knowledge spillovers, 

via subsidies for R&D. We use European frm-level data to explore the effects of public subsidies 

on frms’ R&D input and output. Average treatment effects are estimated controlling for both ob-

servable and unobserved heterogeneity. Possible endogeneity in subsidy assignment is addressed 

and the local instrumental variable (LIV) curve is identifed via double machine learning meth-

ods. Results indicate that public subsidies increase both R&D intensity and output with more 

pronounced effects on the R&D intensity of high technology and knowledge intensive frms. The 

effects of public support remain positive and signifcant even after accounting for treatment en-

dogeneity. 

JEL Classifcation: H25, C14, C45, C54, C55 

Keywords: Double Machine Learning, Public Subsidies, Innovation, Non-parametric Estimation, 

Deep Neural Networks 

1 Introduction 

Peter Schmidt has made a number of contributions that speak to the methods and approaches that we 

undertake in this paper. The effectiveness of government subsidies in expanding the production pos-

sibilities of companies and ultimately the countries in which they reside speaks in general to the issue 

of effciency and productivity. Peter is one of the iconic contributors to the literature on effciency and 

productivity (Aigner et al. (1977)). Nonparametric approaches to addressing unobservables in panel 
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settings such as ours have characterized Peter’s work on factor models (Ahn et al. (2013)). Interest-

ingly, in a direct question posed to Peter in a recent Econometric Theory Interview (Sickles (2022)) 

on his view of the relevance of big data and machine learning techniques in assessing causal effects, 

which is the contribution of our paper, Peter’s perspective is rather measured. He says: 

“I think it’s important to distinguish Big Data from Big Model. With respect to Big Data, more data 

can’t hurt. With respect to Big Model, remember that you can have big models with little data – you 

just put in lots of terms...” 

He goes on to say: 

“...I am not a fan of the sparsity assumption and I don’t necessarily understand why it’s better 

to let the data tell us that there are six variables with non-zero coeffcients than to try to pick them 

out ourselves. It seems to me if you want to let the computer make these choices what we need is 

something akin to the short memory assumption in time series – that even if there was an infnite set 

of variables, the sum of their coeffcients is fnite...” 

Needless to say, the sparsity assumption is used in our work, the data does in fact tell us what 

variables have non-zero coeffcients, and we do not use “something akin” to the short memory as-

sumption in time series. That said, our contribution is motivated by the many contributions that 

Peter has made over his storied career and, we trust, he will fnd our paper worthy of this special 

issue. 

The focus of this study is to evaluate the treatment effects of public subsidies on R&D intensity and 

R&D output. Innovation plays an important role in sustaining economic growth (Aghion and Howitt 

(1990), Audretsch (1995)), thus many countries invest a considerable amount of public funds in their 

attempts to stimulate innovative activity. This paper studies the effectiveness of such investments. 

Innovation is the main factor that drives sustainable long-run economic growth. It is responsible 

for productivity growth such that the same or lower amounts of input can generate a greater amount 

of output. With higher productivity, workers enjoy higher wages and producers enjoy higher profts, 

thus allowing them to invest even more and employ even more workers. In addition to productivity 

growth, innovation leads to new and more effcient ways to deal with the main problems in society, 

usually by the means of new technology. The new technology benefts society in different ways, for 

example in fghting and treating illnesses, reducing poverty, and increasing educational accessibility, 

all of which improve the overall well-being and standards of living. 

The relation between innovation and growth has been studied extensively, starting with Neoclas-

sical (Solow (1956)) and Endogenous (Romer (1990)) growth theory. These theories, and the ones that 

followed, emphasize the importance of technological advancement for long-run growth and have 

motivated many governments to devote considerable funds to stimulate research and development 

(hereafter R&D) and innovation. The motivation behind the vast amount of funds invested in inno-

vation lies behind the fact that frms invest less than socially desirable. First, the uncertain nature of 
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R&D projects and their costs discourages companies. Second, given that knowledge is non-exclusive 

and non-rival, innovation from one frm has positive externalities and positive spillovers to other 

frms (see for e.g Nelson (1959); Arrow (1962)). Firms are thus discouraged to innovate since they are 

not able to appropriate all the returns from innovation. Moreover, many projects could be benef-

cial for the whole society but unproftable for the frm, again leading to an R&D below the socially 

optimal level. To correct such market failures, governments intervene with the intention of reduc-

ing frms’ costs and increasing incentives for private R&D using tools such as tax credits, deductions, 

grants, subsidised loans, loan guarantees etc. 

While there is a consensus that increasing innovation activity has a positive impact on economic 

competitiveness and growth (see Aghion and Howitt (1990) and Audretsch (1995)), when it comes to 

government intervention, there are still disagreements between economists and policymakers about 

the desirability of subsidizing private R&D activities as the empirical evidence still remains mixed. Di-

rect interventions might distort the entrepreneurs’ incentives. All frms have incentives to apply for 

a subsidy given that the cost of applying is relatively low and thus frms who could afford to conduct 

R&D by private means could also apply and be granted a subsidy. In this case, frms might simply 

substitute private investment for public funds. Stiglitz (1988) provides an overview of the literature 

related to the incentives created by such programs that can distort the government intended bene-

fts. Even if public subsidies do increase innovation activities and intensity, an important question is 

whether or not this translates to an increase in innovation output. 

Such questions call for an empirical evaluation that can determine the effects of the public sub-

sidies on private R&D investment and output. On one hand, previous studies have concluded that 

subsidized frms invest more in R&D activities compared with other frms in the US (see Audretsch 

et al. (2002); Lach (2002) and Görg and Strobl (2007)). Other studies such as Heshmati et al. (2005) 

fnd that government subsidies have a positive effect only on research expenditures of small frms. 

On the other hand, Wallsten (2000) fnds out that public R&D fnancing completely crowds out US 

private frms’ R&D inputs using instrumental variables to account for endogeneity. Crowding out 

is also found in the study of Marino et al. (2016) for French frms or David et al. (2000). Crowding 

out private R&D inputs implies that without the public support, frms could have had the same or 

higher amount of R&D input, thus negatively infuencing welfare and growth in the long-run. While 

the heterogeneity of these results could come as a result of particular sample characteristics, it also 

signals problems such as misspecifcation bias and/or endogeneity which are common in these non-

experimental settings and need to be accounted for. 

In this paper, a fully data-driven empirical evaluation is presented in order to answer the ques-

tion: What is the effect of public subsidies on frms’ R&D intensity and R&D output? The motivation 

behind the empirical method utilized in this paper is that most of the methods used in the literature 

could be misspecifed, thus yielding inaccurate results and incorrect conclusions. Instead of mak-
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ing parametric assumptions when modeling the nuisance parameters (i.e., the outcome (R&D input 

or output) and treatment (subsidy) assignment mechanism), non-parametric methods are used to 

learn them from the data. Double robust estimation is used to obtain treatment effect estimators p
that achieve n convergence rate even when the nuisance functions these estimators are based on 

are estimated non-parametrically at slower rates. In addition to misspecifcation, we also tackle the 

existence of unobserved characteristics of frms, such as management expertise and competence, 

that affect innovation and drive the nonrandom subsidy assignment, in a semi-parametric approach 

using instrumental variables. 

2 Literature and Motivation 

The literature evaluating the effects of public support on frms’ R&D input and output is vast. Most of 

the empirical papers related to this literature make strong assumptions and/or impose restrictions on 

the functional form of the model (outcome or treatment models). The most commonly used methods 

in the literature are parametric methods such as ordinary least squares (OLS) and non-parametric 

methods such as matching methods (see for e.g. Hamberg (1966); Carmichael (1981); Lach (2002); 

Lichtenberg (1987, 1988); Wallsten (2000); Toivanen and Niininen (2000)). 

Parametric models are a convenient estimation method because the parameters of interest and 

their asymptotic properties are relatively easy to derive, but of course, if misspecifed, they could lead 

to severe bias. Non-parametric methods such as matching methods are appealing as they do not 

require any functional form assumptions, but can be problematic with multiple covariates as it be-

comes increasingly diffcult to fnd matches due to the curse of dimensionality and, at the same time, 

there exists the risk of matching on irrelevant features, which may distort results. In addition, this 

method not only ignores potential unobservable effects but it also relies on the existence of common 

support (Heckman et al. (1996, 1998)). 

The curse of dimensionality can be solved by propensity score matching (see Rosenbaum and 

Rubin (1983)), which summarizes the information from the covariates that infuences treatment by 

the propensity score. Propensity score matching is commonly used to estimate the average effects of 

government funding on innovation such as in Czarnitzki and Fier (2001); Fier (2002), and Czarnitzki 

and Fier (2002). These studies have concluded that complete crowding out of private R&D efforts 

through public subsidies should be rejected. They match on the propensity scores p(x), a function 

of the covariates x estimated via probit. If this function is misspecifed, the sample of matched sub-

jects and thus the distribution of observed baseline covariates will not be similar between treated and 

untreated subjects conditional on the propensity score. Such matching has also been shown to in-

creases imbalance, ineffciency, model dependence, research discretion, and statistical bias (see King 

and Nielsen (2019); Austin (2007); Austin et al. (2007)). 
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Complete crowding out has been found by Wallsten (2000) using data from the Small Business In-

novation Research (SBIR) program in the USA. However, the assumed linearity of the outcome equa-

tion in their IV approach could lead to a potential misspecifcation bias. Hussinger (2008) studies the 

German manufacturing sector using a semi-parametric approach but he again assumes a parametric 

linear model for the outcome equation. The treatment equation is estimated semi-parametrically, 

nevertheless, the parametric components are still sensitive to specifcation errors. While they fnd 

positive treatment effects of public subsidies on innovation, the magnitude changes signifcantly de-

pending on the method with which the selection equation is estimated. 

If one instead assumes that either the treatment equation or the outcome equation is correctly 

specifed (but not necessarily both), then double robust methods can be used. These methods com-

bine outcome and treatment modeling and were derived originally to improve the effciency of the p
inverse probability weight estimators (see Robins et al. (1995)). Double robust estimators are n 

consistent as long as one of the models is correctly specifed. Nevertheless, in the more likely case in 

which both models are misspecifed, the performance of double robust estimators can be poor (see 

Kang et al. (2007)). 

Machine learning techniques can mitigate such misspecifcation biases by learning both the out-

come and treatment model from the data, and can also eliminate the need for covariate selection as 

they can handle high dimensional data. Even with relatively small datasets, machine learning tools 

may be incorporated as a way to offer better functional approximations rather than assuming partic-

ular parametric functional forms (see Breiman et al. (2001)). 

Machine learning methods are typically designed for prediction and direct use of these meth-p
ods for causal inference may generate biased estimators, which also converge slower than n (Mul-

lainathan and Spiess (2017)). Most of the machine learning estimators rely on regularization which 

allows for a trade-off between variance and bias. With regularization, one intentionally imposes some p
bias in order to decrease variance, but this bias converges slower than n. In addition, most ma-

chine learning methods have unknown asymptotic properties. The recent literature has developed 

statistical models and methods that aim to remove such bias and be able to make causal inference 

using a variety of machine learning methods in a semi-parametric setting (for e.g., Wager and Athey 

(2018); Chernozhukov et al. (2018)). The empirical methods of this paper rely on the theoretical re-

sults of Chernozhukov et al. (2018) and Kennedy et al. (2019). Chernozhukov et al. (2018) prove that p
treatment effects estimators derived from infuence functions and cross ftting, are unbiased and n 

consistent, even though they are based on nuisance parameters which converge at a slower rate. The 

nuisance parameters can be estimated using different machine learning methods such as boosting, 

random forests, neural networks, deep neural networks, etc. This work allows for identifcation of 

many treatment effect parameters such as average treatment effects (ATE), average treatment of the 

treated (ATT), local average treatment effects (LATE) and from the results of Kennedy et al. (2019), 

5 



also marginal treatment effects or the local instrumental variable (LIV) curve. 

In this paper, we estimate the outcome, treatment and instrument mechanism with a neural net-

work and a deep neural network. The use of neural networks is motivated by the Universal approxi-

mation theorem, proved by Cybenko (1989) and generalized by various authors in the 1990s. The the-

orem states that a neural network can approximate any function to any degree of accuracy, provided 

that some mild conditions hold. Deep neural networks are shallow neural networks composed of 

more than one hidden layer and they have been shown to perform at least as well as neural networks, 

especially when dealing with highly nonlinear functions. Deep learning is one of the methods that 

has gained in popularity due to its state of the art performance when dealing with high-level abstrac-

tions in the data. It is being massively used in such disparate ares as medicine, fnance, and quantum 

chemistry (see for e.g., Gulshan et al. (2016); Heaton et al. (2017); Gilmer et al. (2017); Varaku (2020)) 

and displays distinct advantages over competing methods (see Krizhevsky et al. (2012); Simonyan 

and Zisserman (2014); Hinton et al. (2012); Wang and Yeung (2013)). Deep neural networks also have 

been shown (experimentally) to outperform other methods in terms of causal inference (e.g., Westre-

ich et al. (2010); Johansson et al. (2016); Shalit et al. (2017); Hartford et al. (2017)). We are unaware of 

previous studies that have applied double/debiased machine methods using deep neural networks. 

Chernozhukov et al. (2018) give theoretical conditions related to the rate of convergence of the non-

parametric method which need to hold, and Farrell et al. (2018) show that such rates are achieved for 

a class of deep neural networks with a rectifed linear unit activation function. To our knowledge ours 

is the frst application of these methods related to public subsidies and innovation and to take a fully 

data-driven approach to measure the effects of government subsidies on innovation. 

3 The Neoclassical and Endogenous Growth Model 

This section briefy discusses the theoretical reasons and motivations behind government interven-

tions in R&D as well as gives an overview of the R&D subsidy programs in Europe. 

The shortcomings of neoclassical growth theory (Solow (1956)), wherein long-run growth is de-

termined by exogenous factors, are overcome by endogenous growth theory (Arrow (1971); Romer 

(1990); Aghion and Howitt (1990)). Here the economic growth is determined by endogenous forces, 

specifcally by investment decisions made by proft-maximizing agents. Similar to the tenants of the 

neoclassical growth model, endogenous growth theory states that technological change lies at the 

heart of economic growth. However, it is not exogenous. It is determined by factors such as invest-

ment in human capital, knowledge and R&D expenditure (for example Romer (1987), Romer (1990) 

and Lucas (1998)). Investing in R&D involves uncertainty and thereby risks as to whether the R&D 

will generate innovative output. At the same time, given that innovation is a key element in gen-

erating economic growth, the social return to R&D investment is higher than the private one (see 
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Helpman (2009)). Nevertheless, not being able to appropriate all the returns to innovation (because 

of spillovers) and because of the risks and uncertainty related to R&D investment, frms underinvest 

in R&D. 

An implication of endogenous growth theory is that policies that promote innovation also pro-

mote growth. In 2000, the Lisbon Strategy was drafted which indicated several growth strategies to 

make the EU “the most competitive and dynamic knowledge-based economy in the world, capable of 

sustainable economic growth with more and better jobs and greater social cohesion”. The main area 

for priory action was set to be “investing more in knowledge and innovation”. The European Council 

set a target of 3% of GDP to be invested in R&D, where at least 2/3 would come by private means. The 

same target was passed along in the Europe 2020 strategy, the latest growth strategy in EU, which en-

courages cooperation between research teams across countries and disciplines. Framework Program 

Horizon 2020, one of the instruments of Europe 2020, has a fund of more than EUR 80 billion available 

to R&D and around EUR 100 billion is expected to be available for the next Framework Program. 

Grounded on the theoretical justifcations above, these policies attempt to stimulate perpetual 

growth, increase welfare and raise prosperity by increasing the public funding for R&D and promoting 

cooperation and innovation. A summary of the recent role of R&D subsidies and expenditures in 

Europe is provided in the supplement A to this manuscript. It is a history that sets the stage for the 

empirical study of such an extensive program undertaken over the last decades. 

4 Data 

Our data come from the Community Innovation Survey (CIS) and contains EU science and technol-

ogy statistics. The CIS is conducted for all European countries, including Norway and Iceland, and 

is carried out every two years. The harmonized questionnaire offers frm-level data beginning in 

1991. Survey response is voluntary and thus the countries participating in different survey years may 

change.1 

The CIS collects information on new and signifcantly improved products or processes of frms 

in the manufacturing or service industry. Even though not all frms are innovators, the CIS survey 

requests that all questions be completed by both enterprises with innovative activities and those 

without such activities. Newly constructed microdata is available after approximately two and a half 

years after the survey is conducted and each survey covers data related to innovation during the last 

three years. We use data on three waives of the surveys: CIS2010 (covers the period from 2008-2010), 

CIS2012 (covers the period from 2010-2012) and CIS2014 (covers the period from 2012-2014). The mi-

crodata is a proprietary dataset of Eurostat, available as scientifc-use fles (SUF), which are partially 

1Given that it is impossible to construct a balanced panel dataset without losing a large number of frms, in this paper 
we use a pooled regression approach. 
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anonymized, and as secure-use fles (SC) are only accessible in the Safe Centre at Eurostat’s premises 

in Luxembourg. We use the partially anonymized dataset for 16 European countries2. 

The R&D subsidy variable is divided into 3 main categories: subsidies from local or regional au-

thorities, subsidies from the central government (including central government agencies or min-

istries), and subsidies from the EU. For this last category frms must identify whether they partici-

pated in the Framework Program for Research and Technical Development. Since many frms receive 

more than one treatment it is not possible to identify the unique treatment effect of each of those 

sources of subsidies without reducing the sample to very few frms that received only one type of 

support. Nevertheless, this dataset gives us an advantage compared to many other studies that ex-

amine the effects of one particular program, but are unable to control for the effects of other different 

programs in which the frm may have participated. With our data, we can identify frms that received 

no form of support from any public scheme or program. Thus, the treatment we are examining is 

whether or not the frm received any type of subsidy. The subsidies include fnancial support via tax 

credits or deductions, grants, subsidized loans, and loan guarantees. 

We investigate the effects of government funding on (1) R&D intensity and (2) R&D output. R&D 

intensity is measured as total R&D spending over turnover, where turnover is based on its value at 

the end of the survey reference period. R&D spending includes expenditures on intramural R&D, 

expenditures on extramural R&D, and expenditures incurred in the acquisition of machinery, external 

knowledge, or other activities related to R&D. With this ratio we form the frst outcome variable Y ∈ 

IR+ . Only the total R&D expenditure is available from the CIS survey (public plus private spending) 

and thus the portion of private R&D spending is not observable. With this information we can only 

test the total crowding out hypothesis, i.e., whether the frm would have had the same total R&D 

intensity even in the absence of the public support. A strict interpretation of full crowding out would 

suggest the existence of a one-for-one substitution of public for private money. The partial crowding 

out hypothesis, wherein total R&D intensity increases after public support but private effort falls, 

cannot be tested with our data. 

While many studies in this literature use the number of patents as a proxy for R&D or innovative 

output, we use an alternative defnition of innovative output for the following reasons. First, not all 

innovation output can be patented. Second, patenting an innovative output could be undesirable. 

If the benefts from applying/obtaining a patent are less than the costs, a frm would choose not to 

disclose its innovation, and thus not patent it. As also argued by Griliches (1998), the frm will only 

choose to apply for a patent if the economic value of the patent right exceeds the cost of patenting. 

In addition, frms located in different countries can differ in their propensity to patent depending on 

the effectiveness of institutions to guarantee property rights protection. For these reasons we use an 

2Data availability as scientifc-use fles (SUF) and as secure-use fles in the Safe Centre (SC) in Luxembourg are reported 
for each country in Section B of the supplementary material for the last three waives of the survey. 
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alternative proxy for R&D output based on the Oecd (2005) manual, where innovation is defned as 

“the implementation of a new or signifcantly improved product (good or service), or process, a new 

marketing method, or a new organizational method in business practices, workplace organization or 

external relations”. Given that the subsidies are not usually granted for organizational and marketing 

innovation, we only use the implementation of new or signifcantly improved products or processes 

to account for innovation. As explained in Grifell-Tatjé et al. (2018) it is important to include both 

product and process innovation since during the life-cycle of technological change it is often the case 

that an increase in effciency occurs after a period during which the frm focuses on process innova-

tion followed by a period of product innovation. In addition, we also include attempted innovation, 

i.e., projects which are either abandoned or which are ongoing. With this defnition of innovation, the 

outcome variable Y is 1 if frms innovate or 0 otherwise. We view this as a more complete measure of 

innovation and one that is comparable measure both through time and across countries. 

The independent variables we considered that can potentially affect both treatment D and out-

come Y are not preselected. However, variables that are themselves affected by the treatment D are 

not included as this would cause endogeneity (see Wooldridge (2010)). The ability to control for a 

large number of frm characteristics allows us to minimize selection bias, which is more likely to 

be present using traditional methods with fewer covariates. We control for frm size, employment 

growth, the education level of employees, the frm’s geographical location and the industry in which 

they compete, among other variables. Firm size is an important feature that affects both innovation 

and also the probability that the frm will be assigned a subsidy. It has been shown that R&D intensity 

often rises disproportionately with frm size (see for e.g., Levin et al. (1985); Acs and Audretsch (2003)) 

since small frms may face higher costs of capital and are more likely to be cash-constrained. In addi-

tion, larger frms are more likely to receive public subsidies (see Hussinger (2008); Czarnitzki and Fier 

(2002); Almus and Czarnitzki (2003)). We use employment in the last calendar year of the reference 

period as an indicator of frm size. Firms belong to one of the following groups: (1) frms with less 

than 50 employees, (2) frms with 50 − 249 employees and (3) frms with more than 250 employees. 

Each of the groups is referred to as small, medium and large respectively. 

The dataset provides different NACE codes for the industry the frm belongs to. This is important 

to control for since it is a proxy for different technological potentials and appropriability conditions 

(see Klette et al. (2000)) in different industries. In addition, a categorical variable that is equal to 1 

if the frm is part of an enterprise group3 and 0 otherwise is included. Public agencies may prefer to 

subsidize frms that are part of a group since they have a higher chance of internalizing and benefting 

from the spillovers of their parent companies. Categorical variables for the location of the head offce 

are also included. The location is categorized as (1) the same as the country of operation, (2) located 

in another EU, EFTA (European Free Trade Association) or candidate country and (3) located in the 

3For example, a multinational company or a holding company. 
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rest of the world. Firms with a parent group located in national territory can have better network 

linkages and are more informed about national subsidy schemes. As a result they are more likely to 

apply for them and thus the propensity to receive a national subsidy can be higher. This is also shown 

for many European frms empirically by Czarnitzki and Fier (2002); Busom (2000); Hussinger (2008) 

who conclude that affliates of foreign frms are less likely to get public subsidies. 

As for the missing responses, for categorical variables, we create dummy variables that are 

inputed into the neural network. Missing responses could contain useful information that should 

not be disregarded and given our ability to handle many covariates, this method is not only feasible 

but also preferable in terms of making use of all relevant information in the dataset. For continuous 

variables, we drop the missing observations. 

4.1 Summary statistics 

In this dataset 11% of the frms have received some type of government funding during the years 

2008 - 2014, and 33% of all frms have generated some innovation output (see defnition above). A 

noticeable difference can be seen between the funded versus non funded frms in terms of innovation 

output (Table 3). 26% of non funded frms have innovated, while more than 94% of funded frms have 

innovated. This might suggest that those frms that are funded are more likely to innovate, as the 

direct comparisons across groups suggest a substantial difference in mean output. Nevertheless, it 

also could be the case that the government selects exactly those frms that are more likely to innovate 

to begin with. Thus in the absence of funding, those frms would still be more likely to innovate 

compared with other frms. 

In addition, the average expenditure on R&D as a percentage of turnover is around 8% (Table 2). 

For frms that are not funded, the average is 2.4% while for those that are funded it is 15%. The main 

question that this paper tries to answer is whether these observed differences can be attributed to the 

public subsidy. As mentioned before, such a direct comparison might be misleading because of the 

non-randomness of government funding and thus this problem requires a causal analysis. 

Mean Std. Min. Max 
Funding 0.1129 0.3165 0 1 

R&D intensity 0.0834 0.2991 0 4.988 
Innovation output 0.3388 0.4733 0 1 

Table 1: R&D intensity and output summary statistics for CIS 2010-CIS 2014 
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Funding 
R&D Intensity 

Count Mean Std. Min. Max 
0 
1 

130381 
28944 

0.0241 0.1521 0 
0.1535 0.4010 0 

4.9817 
4.9885 

Table 2: R&D intensity summary statistics by funding group for CIS 2010-CIS 2014. 

Funding 
Innovation output 

Count Mean Std. Min. Max 
0 
1 

241298 
30721 

0.2612 0.4393 0 
0.9486 0.2206 0 

1 
1 

Table 3: Innovation summary statistics by funding group for CIS 2010-CIS 2014. 

Most of the sample is composed of small frms (less than 50 employees) followed by medium frms 

(50−250 employees) and large frms (more than 250 employees). The small frms constitute of 60% of 

the sample, medium-sized frms constitute around 30% of the sample and the large ones constitute 

10% of the sample with 164797, 78770 and 28452 frms respectively in each group (see Figure 1). 

Figure 1: Number of frms by size. Small frms are defned as frms with less than 50 employees, 
medium frms are defned as those frms with 50 − 250 employees, and large frms are defned as 
those frms with more than 250 employees. 

The subsidies are assigned mostly to small and medium frms with 14766 and 10482 subsidies to 

small and medium frms out of 30721 total subsidized frms (this corresponds to 48% and 34% of total 

given subsidies). Only 5473 subsidies (18% of total assigned subsidies) are assigned for large frms, 

but this is natural given the small number of large frms in the sample. Looking at the portion of the 
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frms receiving subsidies by group, it can be see that a higher portion of large frms receives subsidies, 

followed by medium and then small frms. 19% of the large frms, 13% of medium frms and 9% of 

small frms in the sample were subsidized (see Figure 2). This could indicate that public agencies fa-

vor larger enterprises compared to small ones even though it is the small enterprises that could lack 

access to credit and a well-established market, thus needing more incentives through public sup-

port. Nevertheless, it also could be that instead of focusing on the size, the subsidies are focused on 

particular areas and technologies that can generate higher benefts and have a larger impact on the 

economy and the society such as, for example, research and development in defense, health or other 

technological or knowledge-intensive frms. Moreover, the gap between private and social returns 

is higher for these particular areas. Indeed, when looking at Figure 3 more than 16% of high-tech 

and knowledge-intensive frms receive subsidies compared to only 7% of the other frms. This could 

signal a preference for high-tech and knowledge-intensive industries such as pharmaceutical, manu-

facturers of computers, aircrafts and electronics, chemicals and drugs, or educational, scientifc and 

health services4. It is indeed these frms that spend more in R&D and generate the majority of the 

patents, thus contributing more to the long-run growth. 

Figure 2: Proportion of frms receiving subsidies by frm’s size. 

4For details about technology-based and knowledge-based classifcation of industries see Section C in the supplemen-
tary material. 
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Figure 3: Proportion of frms receiving subsidies frm’s type. 

5 Empirical Method 

This section describes the empirical method for estimating the treatment effects of government fund-

ing on R&D intensity and output. 

Suppose that we are interested in estimating the AT E , i.e., how the expected value of the outcome 

Y (R&D intensity or output) would have changed if all the units had taken the treatment (D = 1, all 

frms receive public funding) versus if none of the units takes the treatment (D = 0, no frm is funded). 

In practice, we can only observe each unit either as treated or as a control. Thus the parameter of 

interest is formulated in terms of a counterfactual, i.e., what would the outcome have been, had the 

treated (control) unit been in the control (treated) group. 

Y denotes the observed outcome while Y1 and Y0 denote the counterfactual outcomes, i.e, the 

outcome had the unit been treated and the outcome had the unit not been treated respectively. The 

AT E is defned as E [Y1 − Y0], the expected effect of being treated for a randomly drawn frm from 

the population. While AT E is of interest if the policy-makers are considering a full economy shift 

from a baseline into an alternative state (an intervention that could be universally expanded) or if the 

subsidy assignment is random, another treatment effect could be of more interest, the AT T . The AT T 

is defned as E [Y1 −Y0|D = 1] and it is the mean effect for frms that received the subsidy. This is more 

relevant if the policy-makers are questioning or considering the elimination of a program already 

in place and it shows the average gain from the program for a treated frm randomly drawn from 

the treated population. Simply comparing the frms who are subsidized versus those who are not is 

misleading because E [Y1 −Y0] ̸= E [Y |D = 1]−E [Y |D = 0], unless D is randomly assigned across frms 
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(see Wooldridge (2010); Angrist and Pischke (2008)). The randomness of D is a very strong assumption 

since either the decision to apply for a subsidy, nor the probability of receiving it, is independent of 

frm’s characteristics. A common way to address this strong assumption is to condition on covariates 

X that determine Y1 and Y0 and to assume that the treatment is random only after controlling for 

these covariates. In other words, we assume (Y1,Y0) ⊥⊥ D|X , which is the well-known conditional 

independence assumption. In addition, it is assumed that for a set of covariates X , we observe both 

the control and treated frms and can construct a propensity score that satisfes 0 < P (D = 1|X ) < 1, 

referred to as the overlap assumption. While it is plausible to believe that the gains from the subsidy 

Y1 − Y0 are correlated with the subsidy assignment, it is possible that after conditioning on a wide 

range of observables X this correlation disappears. Then we can write the AT E as: θAT E (X ) = E [Y1 − 

Y0|X ] and the unconditional effect θAT E = E [g (X ,1)− g (X ,0)] = µ1 − µ0 where the conditional means 

are defned as follows: 

E [Y |X ,D] = g (X ,D), 

for some unknown function g (·) or 

Y = g (X ,D)+U , E [U |X ,D] = 0. 

The propensity score equation on the other hand can be written as: 

D = m(X )+V E [V |X ] = 0. 

The conditional expectations are unknown, but in general, some parametric functional form is speci-

fed and then the parameters are learned (for example by minimizing mean squared errors) to obtain 

µ̂1 and µ̂0 . Then 

θ̂AT E = µ̂1 − µ̂0, 

is consistent only under correct specifcation of the outcome equation. Alternatively, the inverse 

propensity score weighting allows the estimation of AT E and AT T assuming the propensity score 

model m(X ) is correctly specifed. With this assumption, 

ˆ 1 Xn (D − m̂(Xi ))YiAT E θ = 
n i m̂(Xi )(1 − m̂(Xi )) 

and 
n 

θ̂AT T 1 X (D − m̂(Xi ))Yi = 
n i p̂(1− m̂(Xi )) P 

with p̂ = 1 n 
n i Di . 

If we assume that either the outcome model or the propensity score model is correctly specifed, 
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we can combine these two estimators, and use double robust regression methods. The advantage of 

the doubly robust regression is that it relies on the consistency of either the outcome equation or the 

propensity score, but not necessarily both. This method gives some robustness to model specifca-

tion. 

The doubly robust method is based on augmented probability weight estimators. These estima-

tors are shown to be doubly robust, a notion frst introduced by Scharfstein et al. (1999). Double 

robust estimators were also studied by Lipsitz et al. (1999); Robins (2000); Lunceford and Davidian 

(2004); Neugebauer and van der Laan (2005); Bang and Robins (2005); Robins and Rotnitzky (2001) 

and Van der Laan et al. (2003). Assuming an asymptotically linear estimator, its difference with the 
1 ntrue parameter, (θ̂ − θ0), can be expressed as 

P 
=1 φ(Wi ) + ω, where Wi is the data for observation n i 

i , the frst term is the empirical average of the infuence function φ(·) and the last term is an error p p
term converging to 0 with a rate n, i.e., oP (1/ n). The infuence functions for a specifc model lie 

in the orthogonal complement of the nuisance tangent space and the effcient infuence function is 

the infuence function with smallest variance. With the availability of an effcient infuence function, 

one can construct double robust estimators and these estimators are also semi-parametric effcient. 

In the next sections we discuss such infuence functions for estimating AT E , AT T and MT E . 

5.1 Double robustness under exogeneity - ATE and ATT of public subsidies on R&D in-

tensity and R&D output 

In this section the public subsidies’ effects on R&D intensity and R&D output are evaluated using 

a double robust machine learning approach under the assumption of unconfoundedness, i.e., the 

assumption that after controlling for frm’s characteristics, the subsidy assignment can be treated as 

random. Our basic framework from the last section is: 

Y = g (X ,D)+U , E [U |X ,D] = 0, 

D = m(X )+V , E [V |X ] = 0. 

Suppose that we are interested in the average treatment effect θAT E = E [g (X ,1) − g (X ,0)]. Double 

robust methods provide consistent estimators if either the outcome or the treatment equation is cor-

rectly specifed. Using the infuence function for AT E (as in Chernozhukov et al. (2018)), the score 

that allows the identifcation of θAT E is: 

AT E (W ;θ,η) 
D(Y − g (X ,1)) (1− D)(Y − g (X ,0)) 

ψ = g (X ,1)− g (X ,0) + − − θ (1) 
m(X ) (1− m(X )) 
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where η = (g (·),m(·)) are the nuisance functions and the parameter θAT E is obtained by solving 

E [ψAT E (W ;θ,η)] = 0. Let Pn denote the empirical measure so that empirical averages can be 
−1 n θAT E written as Pn{Wi } = n 

P 
i f (Wi ). Then, the estimator ˆ can be found as the solution to 

Pn{ψAT E (W ;θ, η̂)} = 0, where the nuisance functions η̂ are estimated non-parametrically in the frst 

step. In a similar manner one can obtain the θAT T = E [g (X ,1) − g (X ,0)|D = 1], with a score written 

as: 
AT T (W ;θ,η) 

D(Y − g (X ,0)) m(X )(1− D)(Y − g (X ,0)) Dθ 
ψ = − − (2) 

p p(1− m(X )) p 

where p = Pn(D) (see for e.g. Van der Laan et al. (2003); Chernozhukov et al. (2018)). 

Nevertheless the identifcation of these two effects relies on the exogeneity assumption. Presence 

of endogeneity violates one of the main assumptions for the identifcation of AT E and AT T and the 

parameters obtain from the scores above would not converge to the true coeffcient values, thus they 

would be inconsistent for AT E and AT T . These effects would then refer to the average predictive 

effect (APE) and average predictive effect for the exposed (APE X ) respectively. Without exogeneity, 

AT E and AT T can not be identifed, nevertheless other quantities of interest are identifable, as 

discussed in the next section. 

5.2 Double robustness under endogeneity - LATE and LIV curve 

In this section, violations of the unconfoudedness assumptions are considered. It is possible that 

governments select frms that are more likely to generate innovation output to begin with, based 

on unobserved characteristics that can not be controlled for. This is also called “selection on unob-

servables", i.e., when unobserved characteristics of frms that affect innovation drive the nonrandom 

subsidy assignment. It is possible that public agencies select frms with a more competent and ex-

perienced management. Management characteristics are important determinants of the probability 

to generate R&D output (Bloom et al. (2009); Nallari and Bayraktar (2010); Ali et al. (2017)), but this 

information is not observed in our dataset and thus the conditional treatments are no longer ran-

domly assigned. With endogeneity present, the AT E and AT T can not be identifed without further 

restrictions. To address this issue an instrumental variable (hereafter IV) method is proposed and a 

double robust machine learning approach is used to estimate the parameters of interest. 

If there exist IVs satisfying the assumptions of Angrist and Imbens (1995) and Frölich (2007), then 

it is possible to identify average effects for subpopulations that are induced by the instrument to 

change the value of the endogenous regressor D . This subpopulation is referred to as the compliers, 

and the average treatment effect that can be identifed is known as the local average treatment effect 

(L AT E) (if the IVs are discrete) or marginal treatment effect (MT E) (when the IVs are continuous) 

(see Heckman and Vytlacil (2005)). The instruments Z must satisfy the following assumptions and 
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regularity conditions: 

• D = D Z and Y = Y D with probability 1 - This means that the potential treatments and poten-

tial outcomes are uniquely determined by the instrument and by the treatment. There is no 

interference by other units and no difference depending on how the instrument or treatment is 

administered. 

• (z, x) ∈ sup(Z , X ) if x ∈ sup(X ) - The instrument should not be deterministic and each frm has 

a positive probability to get each level of Z , regardless of its covariates. 

• (Y Z ,D Z ) ⊥⊥ Z |X - After controlling for X , Z is as good as random and is unrelated to the po-

tential outcomes and treatment. 

• Y zd = Y d - This assumption implies that Z should only affect the outcome Y through the treat-

ment and not directly. 

• Z is monotone with respect to the treatment - For a binary treatment and a binary IV, Z , this 

means that D1 ≥ D0 with probability 1 for all units. Units that are characterized by D1 = D0 = 0 

are called never takers. In contrast, units for which D1 = D0 = 1 are called always takers. Lastly, 

the compliers are units for which D0 = 0 and D1 = 1. For a continuous IV, this can be extended 

to the assumption that if Z ′ > Z , then D Z ′ ≥ D Z with probability 1 for all units. This means that 

increasing the instrumental variable, either encourages treatment or it does not affect it at all for 

all frms. This also divides the population into never takers, always takers and compliers, where 

the compliers at z are now defned as units for which Dz = 1 and Dz−ϵ = 0 for any ϵ > 0. This 

can also be written in terms of an unobserved latent threshold T : D Z = 1{Z ≥ T } (see Vytlacil 

(2002)). Units with higher thresholds T , are less likely to receive the treatment compared to 

units with lower values of T . 

• There are at least some units that would take the treatment for a level of Z = 1 (for the L AT E) 

and Z ≥ T (for MT E). 

With the availability of such IVs we can identify L AT E in case of a discrete IV, i.e., the average 

treatment effect of those frms that would have D = 1 if Z is 1 and D = 0 if Z is 0 , or average MT E 

in case of a continuous IV, i.e., the average effects of treatment on frms for which D = 1 when the 

instrument Z passes some threshold, otherwise D = 0 . 

For a binary instrumental variable let 

Y = µ(X , Z )+U , E [U |X , Z ] = 0, 

D = m(X , Z )+V , E [V |X , Z ] = 0, 
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Z = p(X )+ ζ, E [ζ|X ] = 0. 

The parameter of interest can be written as: 

E [µ(X ,1)]− E [µ(X ,0)] 
θL AT E = 

E [m(X ,1)]− E [m(X ,0)] 
. 

Note that this defnition of θL AT E departs from what is typically used in the literature thus, the typ-

ical causal interpretation of the estimand (i.e., weighted average of heterogeneous treatment effect) 

would not immediately apply here. The double robust score for such estimator is given by: 

ψL AT E (W ;θ,η) 
Z (Y − µ(X ,1)) (1− Z )(Y − µ(X ,0)) =µ(X ,1)− µ(X ,0)+ − 

p(X ) 1 − p(X )µ ¶
Z (D − m(X ,1)) (1− Z )(D − m(X ,0)) − m(X ,1)− m(X ,0)+ − × θ. (3) 

p(X ) 1− p(X ) 

θL AT E Using this score, ˆ can be estimated by solving Pn[ψL AT E (W ;θ, η̂)] = 0, where the nuisance 

functions η̂ is estimated non-parametrically in the frst step (see Chernozhukov et al. (2018)). 

For a continuous instrumental variable, it is possible to identify the local instrumental variable effect 

curve (LIV) or the effects of a treatment on the a frm that is at the margin of entering treatment at a 

particular level of the IV, also known as marginal treatment effects MT E . This is the average treatment 

effects of the frms for which D = 1 when the instrument Z passes some threshold T , otherwise when 

the threshold is below T , D = 0. Formally we can defne the LIV curve as: 

LIV (t , v)θ = E [Y1 − Y0|T = t ,V = v]. 

In other words, this is the effect among those units with some arbitrary baseline covariate subset V = 

v that are taking the treatment when the instrument passes the threshold T = t , but do not take the 

treatment for lower values of T . In addition to the assumptions above, we need to further assume that 

T is continuously distributed and that θLIV (t , v) is continuous in t . Then, the LIV curve is identifed 

for any t ∈ T by: 
∂ 

LIV (t , v) ∂z E [E(Y |X , Z = z)|V = v] 
θ = |z=t . (4) 

∂ E [E(D|X , Z = Z ]|V = v)∂z 

If the LIV curve can be modeled parametrically as θLIV (t , v ;γ) for parameters γ ∈ Rq , then the 

weighted least squares projection can be written as: 

£ ¢2LIV (T,V )− θLIV (T,V ;γ)γ0 = argminE ω(T,V )(θ ], (5) 
γ∈Rq 
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where the weight ω(t , v) is a user specifed function, usually set based on the instrument density (for 

example ω(t , v) = p(Z = T, v) or ω(t , v) = ω(t ) = p(Z = t )). While one can estimate the θLIV (t , v) non-

parametrically using equation (5) based on equation (4), robust estimation, which also models the in-

strument mechanism, is preferred for the following reasons: (1) consistency is achieved whenever the 

instrument equation or the treatment/outcome equation is correctly specifed but not necessarily all 

three, (2) convergence rates are fast enough, even though the nuisance parameters on which they are 

based and estimated non-parametrically (e.g., with machine learning methods), convergence slowly. 

The double robust estimation is based on the effcient infuence function for the LIV curve, derived 

in Kennedy et al. (2019): Z © ª 
ϕ(W ;γ,η) = g1(t ,V ;γ)E(D|X , Z = t )− g2(t ,V ;γ)E(Y |X , Z = t ) d t 

T ( ) ( )
D − E(D|X , Z ) Y − E(Y |X , Z )+ g1(Z ,V ;γ) − g2(Z ,V ;γ) ,

E(Z |X ) E(Z |X ) 
(6) 

where ½ ¾ 
∂ ∂ 

∂γ∗ 
θLIV (t , v ;γ ∗ )|γ∗ =γω(t , v)θLIV (t , v ;γ)g1(z, v ;γ) = 

∂t ½ ¾ 

|t=z (7) 

∂ 
g2(z, v ;γ) = 

∂t 

∂ 

∂γ ∗ 
θLIV (t , v ;γ ∗ )|γ∗ =γω(t , v) |t=z . (8) 

Closed form solutions are available when assuming that the LIV curve is projected into a constant, 

i.e., θLIV = γ , or when it is projected into a linear space, i.e., θLIV = h(t , v)γ for a known mapping 

h : T × supp(v) = Rq (see Kennedy et al. (2019)). Nevertheless, when estimation of the LIV curve is 

carried out non-parametrically, closed form solutions are not available. We must rely on optimization 

methods and the procedure described in section 5.3 to obtain the estimates of the LIV curve. This is 

advantageous because the shape of the LIV curve is not restricted as it is for usual parametric models5 

and it also allows for nonmonotone shapes. 

We utilize a continuous IV satisfying the previous assumptions, the logarithm of total general 

government revenue. This variable is directly correlated to the public subsidy since, in general, the 

latter constitutes a fxed portion of total government revenues. When revenues are high it is more 

likely that this portion will expand, and when revenues are low it is more likely that this portion will 

experience a budget cut. Thus, the variable is expected to be strongly correlated to the subsidies. In 

addition, it is not expected to be related to the unobserved characteristics that affect the R&D output, 

such as the management characteristics mentioned earlier and thus is expected to be a valid IV. Data 

on total government revenue is taken from Eurostat. 

5In fully parametric models it is assumed that the errors follow a normal distribution and the LIV curve shape is deter-
mined by simply the inverse of the standard normal distribution multiplied by a constant. 
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Figure 4: Gaussian kernel estimate of the marginal density p(z = t ) of the instrument Z . This is also 
the weight function ω(t ) used in equation 6. 

For the marginal density of Z , which is also used as the weight function w(t ), we utilize a kernel 

density estimator based on a Gaussian kernel. While it is possible to use a uniform weight that assigns 

mass equally across the support, in practice this could lead to poor effciency. Kennedy et al. (2019) 

fnd that weights based on the instrument density work well, thus we use the estimated marginal den-

sity of the instrument as weight. Bandwidth selection is quite important in fnding a suitable density. 

A very narrow bandwidth will result in over-ftting (high variance) and a very wide one will result in 

under-ftting (high bias). Thus, the optimal bandwidth is found using 3-fold cross validation6. The 

plot of the density is in Figure 4. The validity of the instrument is tested with an F-statistics which 

should exceed 10 as a rule of thumb. 

5.3 Double Machine Learning 

The estimators discussed in Section 5.1 are consistent as long as the outcome or the treatment 

mechanism is correctly specifed. The estimator in Section 5.2 is consistent whenever either the 

treatment/outcome mechanism or the IV mechanism is correctly specifed. The famous quote 

from George E. P. Box concerning misspecifed but useful econometric models notwithstanding (see 

Kang et al. (2007)) a modeling approach that relies on fexible non-parametric methods such as 

data-driven machine learning methods to estimate these functions rather than making unrealistic 

functional form assumptions has much appeal. The procedure we use is referred to as “Double 

6The 3-fold cross validation is used as an alternative to the leave one out cross-validation since the latter is more com-
putationally expensive. 
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Machine Learning” (see Chernozhukov et al. (2018)) and the estimators based on such procedure 

can attain faster rates of convergence than the nuisance estimators they depend on, different from 

the plug-in estimators that have slow convergence rates. Such procedures also offer uniformly valid 

confdence intervals. Moreover, if the nuisance functions are learned with any machine learning 

method, under mild conditions and as long as these methods converge each at a rate of at least 
−1/4 p

n , the double robust scores in equation (1), (2), (3), or the estimator from (4) give n consistent 

estimators. 

Sample splitting is another crucial factor in obtaining desirable asymptotic properties of the treat-

ment parameter of interest. Chernozhukov et al. (2018) suggest that the estimation of the parameter 

of interest should be obtained using a separate partition of the data that is not used in the learning of 

the nuisance parameters. The procedure follows these 5 steps: 

1. Construct the equal length K - fold random partition ( I1, . . . , IK ) of the sample W = (X , Z ,Y ). 

Defne I c = W \ Ik , where I j ∩ Ik = ∅ for j ̸= k and ∪k Ik = W .k 

2. For each partition Ik ,k ∈ {1, . . . ,K }, use the complement Ik
c to learn the nuisance parameter η. 

For L candidate models, train η̂k,l for l ∈ L with I c and pick the one with the smallest meank 

squared error loss MSE(·) on the Ik : l̂ = argminl∈L MSE(Ik ). Then use η̂k = η̂k,l̂  for the second 

step. 

3. For each partition Ik ,k ∈ {1, . . . ,K }, construct the estimator θ̂k by solving 

X |Ik |−1 ψ(w ;θk , η̂k ) = 0, 
w∈Ik 

where |Ik | is the cardinality of set Ik and ψ is any score in (1), (2), (3). 

4. Aggregate the estimators to get the estimated AT E , AT T and L AT E for each score in Equation 

(1), (2), (3) respectively: 
K1 X

ˆ ˆθ = θk . K k=1 

5. For the estimation of the LIV curve, to select from the candidate models θLIV , . . . ,θLIV trained 1,k R,k 

with I c , compute the following loss in the Ik :k Z n o 
LIV LIV LIV L(Ik ;θ , η̂k ) = f1(t ,V ;θ )E(Y |X , Z = t )− f2(t ,V ;θ )E(D|X , Z = t ) d t r,k r,k r,k 

T ( ) ( )
Y − E(Y |X , Z ) D − E(D|X , Z )LIV LIV + f1(Z ,V ;θ ) − f2(Z ,V ;θ ) ,r,k r,kE(Z |X ) E(Z |X ) 
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where T is the support of t and f1 and f2 are defned as follows: 

∂ © ª LIV LIV f1(z, v,θ ) = 2 ω(t , v)θ (t , v) |t=zr ∂t r 

∂ © ª 
f2(z, v,θLIV ) = ω(t , v)θLIV (t , v)2 |t=z .r ∂t r 

θLIV Select the model ˆ 
r,k with the smallest loss for each k. Next, pick the model that has the lowest 

average loss across K : Z ¡ LIV ¢ 
r̂  = argminEK L w ; θ̂ 

r,K , η̂K dPK (w). 
r ∈R 

This gives the LIV function θ̂LIV (·). Then, learn the weights γ using optimization methods to P P 
solve k w∈Ik 

ϕ(w ;γ, η̂k ) = 0 for ϕ(·) given in Equation (6). 

The AT E ,AT T and L AT E estimators from such procedure obey σ−1pn(θ̂ − θ) → N (0,1), with the 

variance given by 

σ2 = E [ψ2(W ;θ,η)]. (9) 

The estimated variance is evaluated by replacing θ with each θ̂ found from the scores and taking 

the empirical equivalent of (9). Moreover, the confdence intervals can be calculated as usual by p
[θ̂ ± Φ−1(1− α/2)σ̂/ n]. 

To make the results more robust to sample splitting, the above procedure is repeated S times, 

preferably with S ≥ 100. After obtaining {θ̂ s}S
s=1, we report the medi an{θ̂ 

s}S
s=1, since it is more ro-

bust to outliers compared to the mean and a conservative adjusted standard error to incorporate the 

variation introduced by sample splitting: 

½q ¾S 
medi an θmedi an)2σ̂ = medi an σ̂2 + (θ̂ 

s − ˆ .s 
s=1 

The standard errors for the LIV curve are computed with bootstrapping. The advantages of machine 

learning methods and in particular NNs and DNNs, compared to some of the usual non-parametric 

methods broadly used in econometrics are discussed in depth in Section D of the supplementary 

material along with statistical details of how they are specifed and implemented. 

6 Results 

In this section we report results obtained from the double machine learning method. We frst discuss 

results for the treatment effects of public subsidies on R&D intensity. We then report results for 

the treatment effects on R&D output based on the exogeneity assumption and on endogenous 

treatments. Our reported fndings the LIV curve are for the average frm in the sample. 
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6.1 Effects of public subsidies on R&D intensity 

There are two important effects of interest to analyze: the existence of total crowding out and the 

existence of partial crowding out effects. Total crowding out means that the frm would have had the 

same or lower total R&D expenditure had it fnanced the R&D privately. This means that the efforts 

fnanced with private funding would exceed the efforts induced by public funding, thus making the 

subsidy undesirable. With partial crowding out total expenditures after subsidies increase but the 

private portion of the subsidies is lower than the private expenditure had it not received the subsidies. 

What we observe in the dataset is only the total expenditure (private plus the subsidy) and thus while 

we can test for total crowding out we can not test for partial crowding out as we do not observed the 

private expenditures of frms. 

Network Architecture Learning Rate 
Reg. 

Const. 
ATE 
(in %) 

ATT 
(in %) 

Panel A: All frms 
Outcome {64} [0.01, 0.001, 1e-04] 0 6.99*** 8.51*** 

(0.4613) (0.4955) 

Prop. score {64} [0.001, 1e-04, 1e-05] 0 

Outcome {64,64} [0.001, 1e-04, 1e-05] 0.0001 6.72*** 8.43*** 
(0.3768) (0.3899) 

Prop. score {64,64} [0.001, 1e-04, 1e-05] 0.001 

Panel B: High-tech and knowledge-intensive frms 

Outcome {128} [0.05, 0.005, 5e-04] 0 10.47*** 11.74*** 
(0.7968) (0.9241) 

Prop. score {64} [0.001, 1e-04, 1e-05] 0 

Outcome {256,256} [0.01, 0.001, 1e-04] 0 10.08*** 10.81*** 
(0.9809) (1.2560) 

Prop. score {64,64} [0.001, 1e-04, 1e-05] 0 

Table 4: ATE and ATT of public subsidies on R&D intensity for all frms (Panel A) and high-tech and knowledge-intensive 
frms (Panel B) in CIS 20010-CIS2014. The results are obtained using a 2-fold random partition (K = 2) and 100 different 
sample splits (S = 100) with point estimates calculated with the median. The frst block in each panel shows the results 
from a shallow neural network with a Relu activation function and the second block shows the results from a deep neural 
network with two layers and Relu activation function. The adjusted standard errors are reported in parenthesis. 
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To test the total crowding out hypothesis the expected outcome of frms receiving the funding has 

to be compared with the counterfactual outcome had they not received the funding, i.e., E [Y1 − Y0] 

or E [Y1 − Y0|D = 1]. Table 4, Panel A, shows that on average, funding induces a 6.99% (signifcant at 

the 1% level) increase in frm expenditures in R&D relative to turnover, and higher R&D intensities. 

While AT E is of interest if policy-makers are considering a full economy shift from a baseline into an 

alternative state (an intervention that could be universally expanded), or if the subsidy assignment 

is random, another treatment effect could be of more interest, the AT T . The AT T is more relevant 

if the policy-makers are questioning or considering the elimination of a program already in place 

and it shows the average gain from the program for a treated frm randomly drawn from the treated 

population. The AT T coeffcients are shown in the last column of Table 4 and indicate that, among 

frms that receive funding, the difference in R&D intensity resulting from the subsidy assignment 

is around 8.5% (signifcant at 1% level). Thus, the hypothesis of full crowding out effects between 

public and private innovation funds can be ruled out. Similar results but smaller in magnitude are 

also found for the German service sector, with a difference of 5.7% (Czarnitzki and Fier (2002)) or for 

Eastern Germany with a difference of 3.9% Almus and Czarnitzki (2003). 

Table 4, Panel B, shows that for frms in the high-tech or knowledge-intensive industries7 that 

receive public support the expenditure as a percentage of turnover is about 10% higher than the frms 

that do not receive the support. The AT T is also positive with a coeffcient of about 11%. Both, the 

AT E and AT T are signifcant at 1% signifcance level. Full crowding out also can be ruled out for 

high-tech and knowledge-intensive frms. 

Next, as a robustness check, we report results based on random forests to learn the nuisance pa-

rameters. We use random forests as opposed to gradient boosting methods since with the latter there 

is a higher risk of overftting and poor performance out of sample (see Hastie et al. (2009)).The results 

are similar to those obtained with a neural network and a deep neural network and are positive and 

signifcant, for both the sample of all frms and the subsample of high-tech and knowledge-intensive 

frms (see Table 5). Decision trees and Lasso give higher coeffcients, as shown in Table 6 and Table 

7. Lasso also gives higher adjusted standard errors compared to other methods, possibly due to the 

higher out of sample prediction error from a linear model. The mean squared error also is higher with 

a Lasso model, as shown in Table 12, while the neural network provides the lowest means squared er-

ror for both the outcome and treatment model. 

7See Section C of the supplementary material for a classifcation of industries based on technology and knowledge in-
tensity. 
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Random Forests ATE 
(in %) 

ATT 
(in %) 

Sample of all frms 
7.56*** 
(0.804) 

9.32*** 
(1.3948) 

Subsample of high-tech and 
knowledge-intensive frms 

11.10*** 
(1.4484) 

11.32*** 
(1.6448) 

Table 5: ATE and ATT of public subsidies on R&D intensity for all frms (frst row) and high-tech and knowledge-intensive 
frms (second row) in CIS 20010-CIS2014. The nuisance functions are learned with a random forest composed of 1000 
trees. The results are obtained using a 2-fold random partition (K = 2) and 100 different sample splits (S = 100) with point 
estimates calculated with the median. The adjusted standard errors are reported in parenthesis. 

Decision Trees ATE 
(in %) 

ATT 
(in %) 

Sample of all frms 
7.815*** 
(0.9965) 

9.961*** 
(1.743) 

Subsample of high-tech and 11.088*** 13.12*** 
knowledge-intensive frms (1.556) (1.8981) 

Table 6: ATE and ATT of public subsidies on R&D intensity for all frms (frst row) and high-tech and knowledge-intensive 
frms (second row) in CIS 20010-CIS2014. The nuisance functions are learned with decision trees. The results are obtained 
using a 2-fold random partition (K = 2) and 100 different sample splits (S = 100) with point estimates calculated with the 
median. The adjusted standard errors are reported in parenthesis. 

Lasso ATE 
(in %) 

ATT 
(in %) 

Sample of all frms 
11.86*** 
(1.9161) 

12.515*** 
(2.044) 

Subsample of high-tech and 13.09*** 14.94*** 
knowledge-intensive frms (2.128) (2.1852) 

Table 7: ATE and ATT of public subsidies on R&D intensity for all frms (frst row) and high-tech and knowledge-intensive 
frms (second row) in CIS 20010-CIS2014. The results are obtained using a 2-fold random partition (K = 2) and 100 different 
sample splits (S = 100) with point estimates calculated with the median. The adjusted standard errors are reported in 
parenthesis. 

6.2 Effects of public subsidies on R&D output under exogeneity 

In this section the treatment effects of public subsidies on innovation output are reported under the 

exogeneity assumption. Panel A of Table 8 shows that the likelihood of innovation increases by 0.49 

if the frm is subsidized. For the subgroup of high-tech and knowledge-intensive frms this effect is 

slightly smaller, with a coeffcient of approximately 0.47 (see Panel B of Table 8). In all cases, the esti-
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mator of AT E is signifcant at the 1% signifcance level. The AT T on the other hand is much smaller 

but still signifcant, with a coeffcient of 0.28 for all frms and approximately 0.24 for the high-tech 

and knowledge-intensive frms. These results suggest that public subsidies lead to a higher propen-

sity to generate innovation output. These results are similar, but less in magnitude compared to what 

is usually found in the literature, for example Bronzini and Piselli (2016)8 who fnd a coeffcient of 

around 0.7. They fnd an even higher coeffcient (1.114) for small frms and an insignifcant effect for 

large frms. 

Network Architecture Learning Rate 
Reg. 

Const. 
ATE ATT 

Panel A: All frms 

Outcome {256} [0.01, 0.001, 1e-04] 0 0.491*** 0.283*** 
(0.0029) (0.0031) 

Prop. score {64} [0.001, 1e-04, 1e-05] 0 

Outcome {64,64} [0.01,0.001,1e-04] 0 0.495*** 0.288*** 
(0.0050) (0.0059) 

Prop. score {64,64} [0.01,0.001,1e-04] 0 

Panel B: High-tech and knowledge-intensive frms 

Outcome {64} [0.01, 0.001, 1e-04] 0 0.462*** 0.251*** 
(0.0039) (0.0043) 

Prop. score {64} [0.001, 1e-04, 1e-05] 0 

Outcome {256,256} [0.01,0.001,1e-04] 0 0.471*** 0.237*** 
(0.0024) (0.0036) 

Prop. score {256,256} [0.05,0.005,5e-04] 0 

Table 8: ATE and ATT of public subsidies on R&D output for all frms (Panel A) and high-tech and knowledge-intensive 
frms (Panel B) in CIS 2008-CIS2014. The results are obtained using a 2-fold random partition (K = 2) and 100 different 
sample splits (S = 100) with point estimates calculated with the median. The frst block of each panel shows the results 
from a shallow neural network with a Relu activation function and the second block shows the results from a deep neural 
network with two layers and Relu activation function. The adjusted standard errors are reported in parenthesis. 

As a robustness check, random forests are used as an alternative to neural networks and deep 

neural networks to learn the nuisance parameters. The results are shown in Table 9. The coeffcients 

are all signifcant at the 1% signifcance level and they are quite similar to those obtained with the 

8They analyze the effects of subsidies on innovation for the Italian frms in the Emilia-Romagna region via a regression 
discontinuity design and use as a proxy for innovation whether or not the frm has applied for at least one patent. 
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neural and deep neural network. Also, the results obtained with decision trees and with Lasso do not 

differ signifcantly, though Lasso appears to overestimate the treatment effects and its standard errors 

are larger. Looking at Table 12, neural networks give the lowest mean squared error out of sample and 

thus estimates from a neural network are more reliable based on this metric 

Random Forests ATE ATT 

Sample of all frms 
0.496*** 
(0.0048) 

0.271*** 
(0.0056) 

Subsample of high-tech and 0.445*** 0.251*** 
knowledge-intensive frms (0.0039) (0.0053) 

Table 9: ATE and ATT of public subsidies on R&D output for all frms (frst row) and high-tech and knowledge-intensive 
frms (second row) in CIS 20010-CIS2014. The nuisance functions are learned with a random forest composed of 1000 
trees. The results are obtained using a 2-fold random partition (K = 2) and 100 different sample splits (S = 100) with point 
estimates calculated with the median. The adjusted standard errors are reported in parenthesis. 

Decision Trees ATE ATT 

Sample of all frms 
0.502*** 
(0.0041) 

0.293*** 
(0.0048) 

Subsample of high-tech and 0.483*** 0.254*** 
knowledge-intensive frms (0.0032) (0.0046) 

Table 10: ATE and ATT of public subsidies on R&D output for all frms (frst row) and high-tech and knowledge-intensive 
frms (second row) in CIS 20010-CIS2014. The nuisance functions are learned with decision trees. The results are obtained 
using a 2-fold random partition (K = 2) and 100 different sample splits (S = 100) with point estimates calculated with the 
median. The adjusted standard errors are reported in parenthesis. 

Lasso ATE ATT 

Sample of all frms 
0.510*** 
(0.0049) 

0.301*** 
(0.0058) 

Subsample of high-tech and 0.514*** 0.271*** 
knowledge-intensive frms (0.0067) (0.0069) 

Table 11: ATE and ATT of public subsidies on R&D output for all frms (frst row) and high-tech and knowledge-intensive 
frms (second row) in CIS 20010-CIS2014. The nuisance functions are learned with Lasso. The results are obtained using a 
2-fold random partition (K = 2) and 100 different sample splits (S = 100) with point estimates calculated with the median. 
The adjusted standard errors are reported in parenthesis. 
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Model 
Neural 

Network 
Random 

Forest 
Regression 

Tree 
Lasso 

R&D 
Intensity 

R&D Output 
Propensity 

Score 

0.0009 

0.0650 

0.0698 

0.0011 

0.0831 

0.0932 

0.0013 

0.0894 

0.1160 

0.0022 

0.1322 

0.1247 

Table 12: Mean squared error of R&D intensity, R&D output and propensity score between different 
machine learning methods in the test set (out of sample). 

6.3 Does the funding source matter? 

We next report the average treatment effects for different types of public support: (0) no public sup-

port received, (1) received public support only from local and regional authorities, (2) received public 

support only from the central government and (3) received public support only from the EU. Results 

are in Figure 13. 

ATE 
R&D 

Intensity 
R&D 

Output 

YLOC − Y0 

YGMT − Y0 

YEU − Y0 

YEU − YLOC 

YEU − YGMT 

YGMT − YLOC 

5.79*** 
(1.131) 
6.97*** 
(1.277) 
7.26*** 
(1.352) 
1.62* 

(0.921) 
0.94 

(0.893) 
0.60 

(0.638) 

0.41*** 
(0.020) 
0.38*** 
(0.015) 
0.47*** 
(0.022) 

0.03 
(0.002) 

0.07 
(0.005) 
-0.05 

(0.004) 

Table 13: Average treatment effects from a multiple treatment framework. YLOC denotes the potential 
outcome when receiving support from local regional authorities, YGMT denotes the potential out-
come when receiving support from central government, YEU denotes the potential outcome when 
receiving support from the EU, and Y0 denotes the potential outcome when no support is received. 
The standard errors are shown in parenthesis. 

These results suggests that there are no signifcant differences in the potential outcome (R&D 

intensity and output) from different sources of the funds. The difference between EU funds and local 

28 



funds is only signifcant at 10% signifcance level for R&D intensity. This is probably due to the fact 

that EU subsidies are much higher than the local subsidies. The ATE on R&D intensity from receiving 

any subsidy versus not receiving any subsidy at all is around 6 − 7%, while the ATE on R&D output is 

around 0.4. 

6.4 Effects of public subsidies on R&D output under endogeneity 

We next discuss the MTE estimation results9 when we allow for endogeneity in the output model10. 

We obtain treatment effects for the marginal frm, i.e., the frm that is at the margin of receiving a sub-

sidy for a particular level of the instrument. The MTE or LIV curve for an average frm is shown in Fig-

ure 5 and indicates that subsidies are more effective for frms with low levels of resistance, i.e., those 

frms that switch to the treatment for very low values of the instrument. The maximum treatment 

effect is achieved at the lowest resistance level and it amounts to around 0.2. This is lower than any 

of the treatment effects found under exogeneity, but it is still signifcant. For more resistant frms, the 

effects decrease and slowly converge to zero. On average, across levels of resistance, these effects are 

approximately 0.04 . While lower than the coeffcients found under exogeneity, these effects are still 

non negligible and suggest that public support causes a 15% increase in the probability of generating 

innovative output. Thus, even when accounting for endogeneity, we observe positive and signifcant 

effects of public support on R&D output. This suggests that in addition to higher innovation intensity, 

public subsidies also translate into higher innovation output. 

9The MTE estimation is used as an alternative and more informative way of exploiting the continuous instrument. But 
it is possible to use LATE instead by dichotomizing the continuous instrument. 

10We focus on the endogeneity in the output model motivated by Bloom et al. (2009); Nallari and Bayraktar (2010); Ali 
et al. (2017) and others. This literature shows evidence that management characteristics are important determinants of 
the probability to generate R&D output. Given that this information is not observed in our dataset it is possible that the 
conditional treatments are no longer randomly assigned and causing endogeneity in our output model. Endogeneity in the 
input model is not considered in this paper. 
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Figure 5: Local IV/MTE curve for an average frm. 

7 Conclusions 

The literature on the effects of public subsidies on innovation is broad, yet there is very limited work 

on exploiting fully data-driven models. While many research studies on this topic acknowledge se-

lection into treatment, many assume that after controlling for the observed frm’s characteristics, the 

assignment of the subsidy is random. Our paper introduces another empirical tool for examining the 

effects of public subsidies on innovation–a fully data-driven model–and accounts for the endogeneity 

of subsidy assignments. In addition, we use a more representative sample of more than 272,000 ob-

servations from European frms, with information about frms’ activities over the period 2008− 2014. 

Using the double machine learning semiparametric approach and assuming that unconfounded-

ness holds, we fnd that there exists a signifcant and positive effect of public subsides on both inno-

vation input and innovation output as suggested by the AT E and AT T . These results rule out total 

crowding out effects, even though data limitations prevent us from making inferences about partial 

crowding out effects. Treatment effects of subsidies on high-tech frms’ investments are higher com-

pared to the effects on the whole sample. Our results suggest that a high-tech frm with, for example, 

EUR 100,000 of turnover would spend EUR 11,000 less, had it not received a subsidy11. This increase 

in R&D input and output is important because it induces learning by doing, and the production of 

new goods and services creates more effective ways to use existing resources and elements that have 

been shown to translate into an increase in productivity (see for e.g. Griliches (1979); Harhoff (1998); 

11These numbers are based on the estimation results using (deep) neural networks since the out of sample (test set) mean 
squared errors were lower compared to the other estimation methods. Nevertheless, all methods give comparable results. 
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Ortega-Argilés et al. (2011); Grifell-Tatjé et al. (2018)), thus also increasing per capita income and 

overall welfare based on this measure. 

Even though we observe higher differences between high-tech and knowledge-intensive frms in 

R&D intensity, the treatment effects on high-tech frms’s R&D output do not seem to be very different 

from the treatment effects on the sample of all frms. The higher increase in innovation intensity 

for high-tech frms does not seem to be followed by a higher increase in R&D output. This suggests 

that the subsidy increases the R&D output through different channels, not only through the effect it 

has on R&D intensity. Nevertheless, public funding increases the propensity to generate innovative 

output by around 0.5 on average, and the propensity for the treated frms by 0.28. This means that a 

subsidized frm with 50% chance of innovating would have had less than a 25% chance of innovating 

without the subsidy. 

It is also found that there are marginal differences in potential outcomes from receiving one type 

of support versus the other. There exist a 1.6% difference between the potential R&D intensity for 

support from the EU and the potential R&D intensity from receiving local support. This is potentially 

due to the fact that the amount of funding and grants from the EU are higher compared to the local 

ones. However, the source of the support had no effect on R&D output. 

The results for the effects of public support on R&D output obtained under exogeneity are still 

robust, though smaller, when we account for treatment endogeneity. The treatment effects for the 

marginal frm are positive and signifcant for low resistance frms12, and they slowly converge to 

zero for higher resistance frms. On average, for these marginal frms, the magnitude is small, but 

non-trivial. This has important policy implications, as it suggests that public support in addition to 

increasing innovation intensity signifcantly impacts innovation output. Thus, the vast amount of 

funding injected in the economy delivers the intended outcomes: it increases R&D efforts and R&D 

output, which in turn drive long-run growth, improvements in standards of livings, prosperity and 

welfare. 

12Low resistance refers to frms that are very likely to be assigned the treatment even when the instrument values are 
very low (government revenue in this case). These are frms that are considered to be more “deserving”/“in need” of the 
treatment compared to frms that would get the treatment only in cases when the instrument value is very large (a larger 
government revenue). The latter frms would be considered “high resistance”. 
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