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ABSTRACT 

Autocorrelation Analysis of the Seismic Data Recorded on Mars 

by 

Sizhuang Deng 

Mars, unlike Earth, lacks tectonic events since ~4 billion years ago, which 

indicates the understanding of Mars can provide more information about the planet 

formation and early history of the solar system. The InSight (Interior Exploration Using 

Seismic Investigations, Geodesy and Heat Transport) spacecraft landed on Mars on 

November 26, 2018 and installed the seismograph SEIS (Seismic Experiment for Interior 

Structure) to record continuous seismic data for approximately 3 years, providing 

opportunities to investigate this red planet’s interior. Since only one seismic station is 

deployed on Mars, some seismological methods that require dense arrays cannot be used 

for SEIS data analysis. In this thesis, we employed autocorrelation method to analyze the 

continuous ambient noise data recorded by SEIS to recover two types of seismic phases, 

body-wave reflection response and Mars orbiting surface waves (R2). Based on the two-

way traveltimes of several reference 1-D velocity models, the reflection signals can be 

mapped to depth domain to estimate the depths of these seismic boundaries, including 

Moho (crust-mantle boundary), olivine-wadsleyite transition and core-mantle boundary. 

The reference upper mantle velocity model of Mars was updated iteratively by the Monte 

Carlo method to minimize the differences between synthetic and observed R2 waveforms.  
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Chapter 1 is the introduction to show the ideas and summarize the results of this 

thesis.  

 

Chapter 2 is edited, reformatted and reprinted from a paper published on 

Geophysical Research Letters.  

Deng, S., & Levander, A. (2020). Autocorrelation Reflectivity of Mars. Geophysical 

Research Letters, 47(16). https://doi.org/10.1029/2020GL089630 

 

Chapter 3 is based on the manuscript that will be submitted to Geophysical 

Research Letters. 

  

Chapter 4 is edited, reformatted and reprinted from a paper published on 

Geophysical Research Letters.  

Deng, S., & Levander, A. (2022). Autocorrelation R2 on Mars. Geophysical Research 

Letters, 49(17), e2022GL099580. https://doi.org/10.1029/2022GL099580 

 

Chapter 5 is the conclusions to make the final statements about the seismic 

interior structures of Mars discovered in this thesis.  

 

https://doi.org/10.1029/2020GL089630
https://doi.org/10.1029/2022GL099580
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Chapter 1 

Introduction 

There are eight planets in our solar system, which can be divided into two 

categories, terrestrial planets and Jovian planets (Figure 1.1a). Mars, the last terrestrial 

planet away from sun, is the target we want to investigate in this thesis. Mars has very 

thin atmosphere and ice caps in its polar areas (Figure 1.1b). Knowledge of the Martian 

interior informs theories for the formation and dynamic evolution of another terrestrial 

planet, hence providing information on the history of the solar system. The subsurface 

velocity structures of Mars have been investigated by thermodynamic modeling (Panning 

et al., 2017; Yoshizaki & McDonough, 2020) and the joint inversion of multiple 

geophysical datasets (Khan et al., 2018). These velocity models will be utilized for time- 

to-depth conversion of autocorrelation reflectivity series. The Martian dichotomy is 

observed on Mars by gravity inversion (Figure 1.2), where the Moho depth is shallower 

in the northern hemisphere (30-50km) and deeper in the southern hemisphere (70-90km) 

(Zuber, 2000). The InSight (Interior Exploration Using Seismic Investigations, Geodesy 



 
2 

and Heat Transport) spacecraft was landed near the Martian equator at the end of 2018, 

near the boundary between two distinct hemispheres (Figure 1.2). On Earth, subsurface 

structure is discovered by analysis of seismic signals recorded by large seismograph 

arrays deployed worldwide. The InSight lander carried one seismic station, named SEIS 

(Seismic Experiment for Internal Structure), to Mars, providing the opportunity to 

investigate the internal seismic structure of Mars (Figure 1.3). SEIS is equipped with six 

axes covering the seismic periods from 0.02s to 100s, three for long-period very 

broadband (VBB) recordings, and another three for short-period (SP) recordings 

(Lognonné et al., 2019). The seismometer is installed on the Martian surface by a robotic 

arm and protected by a wind and thermal shield (Lognonné et al., 2019). As only one 

station is deployed on Mars to record seismic vibrations, some tomographic and imaging 

methods based on seismic array analysis are not suitable to investigate Mars’ data. In this 

thesis, we applied the autocorrelation method to retrieve two types of seismic phases, 

body-wave reflection signals and Mars orbiting surface wave signals. The body-wave 

reflection signal originated from subsurface interfaces of Mars can inform the depth 

range of these seismic boundaries, including Moho, olivine-wadsleyite transition and 

core-mantle boundary. As for Mars orbiting surface waves, it can be used to improve the 

velocity models of Martian upper mantle.  
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Figure 1.1 – (a) Schema of the solar system. The white arrow marks Mars. (b) A 

picture of Mars (from https://en.wikipedia.org/wiki/Mars) 

 

 

Figure 1.2 – Crustal thickness from gravity inversion (Zuber, 2000). The northern 

hemisphere has relatively thinner crust compared with southern hemisphere. The 

orange triangle marks the location of InSight spacecraft.  

(a) (b) 

https://en.wikipedia.org/wiki/Mars
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Figure 1.3 – A picture of InSight lander (from 

https://mars.nasa.gov/insight/spacecraft/instruments/summary/). It mainly contains 

three projects: (1) SEIS (Seismic Experiment for Internal Structure (2) HP3 (Heat 

Flow and Physical Property Package) (3) RISE (Rotation and Interior Structure 

Experiment). This study analyzed the seismic data collected by SEIS 

 

In Chapter 2, we autocorrelated ambient noise from the available seismic data to 

investigate the subsurface discontinuities of Mars. In the raw seismic data, we observe 

the long-period signals with a period of ~1 Martian sol (~3% longer than an Earth day), 

which are related to the diurnal variation in weather and tides. After the removal of 

instrument response, remaining high-amplitude peaks are likely caused by the daily 

https://mars.nasa.gov/insight/spacecraft/instruments/summary/
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operations of the InSight lander. We preprocessed the raw data and used different 

frequency bands to detect discontinuities at different depths. We identify prominent 

signals in the stacked autocorrelation reflectivity as likely originating from the Martian 

Moho, the olivine-wadsleyite transition in the Martian mantle, and the core-mantle 

boundary. These results are consistent with other observations and measurements.  

However, some analysis suggested that the arrival times of olivine-wadsleyite 

transition and core-mantle boundary coincide with the recurrence time of high-amplitude 

glitches within raw seismic data, leading to the bias interpretation of low-frequency 

autocorrelation results. In Chapter 3, to resolve the contradiction, we detected and 

removed these high-amplitude glitches before further processing of ambient noise data. 

The autocorrelation analysis of deglitched continuous vertical-component waveforms can 

still recover the signals originating from olivine-wadsleyite transition and core-mantle 

boundary, but glitch-only waveforms cannot, which indicated the observed signals from 

low-frequency autocorrelation are from real seismic discontinuities rather than high-

amplitude glitches within raw data. We found a 1-layer transition zone model with 60km 

thick at Martian core-mantle boundary can better fit the observed PcP phase. 

In Chapter 4, we preprocessed the continuous vertical-component seismic data, 

and by autocorrelation retrieved a Rayleigh wave, one class of seismic surface wave, that 

orbits Mars. The Rayleigh wave group velocities between 115 and 200s period were 

extracted from the observed Mars orbiting Rayleigh waves. Synthetic seismograms were 

calculated using current estimates of the velocity structure of Mars for comparisons to the 

observation. The spherically symmetric model was updated with a Monte Carlo 

algorithm, an inversion method that randomly perturbs the velocity model and determines 
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the model that best matches the Mars orbiting surface waves through trial and error. An 

S-wave low-velocity zone is observed to the depth of ~400km beneath the Martian 

surface, consistent with other InSight seismic observations and velocity models measured 

from geophysical modeling and high-pressure laboratory experiments. 
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Chapter 2 

Autocorrelation Reflectivity of Mars 

The seismic structure of the Martian interior can shed light on the formation and 

dynamic evolution of the planet and our solar system. The deployment of the 

seismograph carried by the InSight mission provides a means to study Martian internal 

structure. We used ambient noise autocorrelation to analyze the available vertical 

component seismic data to recover the reflectivity beneath the Insight lander. We identify 

the noise that is approximately periodic with the Martian sol as daily lander operations 

and the diurnal variation in Martian weather and tides. To investigate the seismic 

discontinuities at different depths, the autocorrelograms are filtered and stacked into 

different frequency bands. We observe prominent reflection signals probably 

corresponding to the Martian Moho, the olivine-wadsleyite transition in the mantle, and 

the core-mantle boundary in the stacked autocorrelograms. We estimate the depths of 

these boundaries as ~35km, 1110-1170 km, and 1520-1600 km, consistent with other 

estimates. 
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2.1. Introduction 

The InSight seismograph, SEIS (Seismic Experiment of Internal Structure), gives 

us the ability to investigate the interior structure of another inner planet in the solar 

system (Smrekar et al., 2019). Martian subsurface structures have been studied at 

different scales during past decades by gravity anomaly inversion (Kiefer et al., 1996; 

Neumann et al., 2004; Parro et al., 2017; Zuber, 2000), solar tide detection (Yoder et al., 

2003), high-pressure experiments (Bertka & Fei, 1997; Fei, 2013; Stewart et al., 2007) 

and thermoelastic model calculation and inversion (Khan et al., 2018; Khan & Connolly, 

2008; Rivoldini et al., 2011; Sohl & Spohn, 1997; Zharkov et al., 2009). Mars, with a 

similar interior structure to Earth, can be divided into crust, mantle and core (Smrekar et 

al., 2019). The Viking 2 seismic recordings provided modest information on the interior 

structure of the planet (Anderson et al., 1977) which has led to numerical and theoretical 

estimation of seismic properties prior to the InSight mission (Lognonné et al., 2019; 

Panning et al., 2017). Hundreds of Mars-quakes have been recorded by the SEIS 

instrument (Banerdt et al., 2020; Giardini et al., 2020; Lognonné et al., 2020). Estimates 

of crustal thickness have been made from gravity observations, which among other 

observations suggests a dichotomy between the northern and southern hemispheres 

(Genova et al., 2016; Parro et al., 2017; Zuber, 2001). Evidence that Mars’ core is largely 

liquid has been demonstrated by the large k2 Love number (Rivoldini et al., 2011; Yoder 

et al., 2003), and high-pressure experiments using assumed core properties (Stewart et al., 

2007), while the existence of a solid inner core is still unknown.  
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The autocorrelation 𝐴(𝑡) of a time series 𝑠(𝑡) represents the correlation of the 

signal with a delayed copy as a function of delay time lag, which is defined as  

𝐴(𝑡) =  ∫ 𝑠(𝜏 + 𝑡)𝑠(𝜏)𝑑𝜏
∞

−∞

 

Equation 1 – The equation for autocorrelation calculation 

  Claerbout (1968) showed that the reflectivity series of an acoustic media can be 

recovered by taking the autocorrelation of the normal-incidence transmission response, a 

form of seismic interferometry, that was subsequently extended to elastic media and non-

normal incidence angles by Frasier (1970). Body-wave reflection phases have been 

successfully extracted by crosscorrelating (Clayton, 2020; Feng et al., 2017; Lin & Tsai, 

2013; Tkalčić & Pham, 2018; Zhan et al., 2010) and autocorrelating (Becker & 

Knapmeyer-Endrun, 2018, 2019; Phạm & Tkalčić, 2018; Romero & Schimmel, 2018) the 

seismic wavefield. Most recent studies have focused on the extraction of Moho-reflected 

phases (e.g., PmP and SmS) to determine crustal thickness by autocorrelating and 

stacking the ambient noise record (Gorbatov et al., 2013; Oren & Nowack, 2017; 

Tibuleac & von Seggern, 2012) or teleseismic earthquake data (Delph et al., 2019; Phạm 

& Tkalčić, 2017). Besides the Moho discontinuity, stacked ambient noise 

autocorrelations have been used to study the reflectivity of the lithosphere and 

lithosphere-asthenosphere boundary (LAB) (Kennett, 2015; Kennett & Sippl, 2018). The 

cross-correlation of continuous noise data (Lin et al., 2013) and autocorrelation of 

earthquake coda waves (Wang et al., 2015) have been used to identify core phases.  
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The successful applications of single-station-based autocorrelation to studying 

Earth’s interior show its potential for determining subsurface structures using the single 

seismometer available on Mars. In this work we calculated and stacked the Z-component 

autocorrelograms to determine the depth of subsurface interfaces beneath the SEIS 

station using the continuously recorded ambient noise data. The reflection responses at 

different depths are identified by applying different bandpass filters to the seismic data. 

We depth convert the reflection sequence in time using theoretical models of the 1D 

Martian interior to provide approximate depths to Martian seismic discontinuities.  

 

2.2. Data and Methods 

The InSight ambient noise seismic data were downloaded from IRIS 

(Incorporated Research Institutions for Seismology) data center in BHU-V-W channels. 

The U-V-W are three non-orthogonal directions, where the dip and azimuth information 

can be found in Compaire et al. (2021). The data, sampled at 10 Hz, were collected by 

SEIS from February thru August 2019, where the instruments were protected by the wind 

and thermal shield to reduce noise (Lognonné et al., 2019). Preprocessing included 

removing the instrument response from the raw continuous data followed by bandpass 

filtering from 0.01 to 3.5 Hz. The data were then cut into ~1100 2-hour windows and 

rotated into Z-N-E (Vertical-North-East) components based on the dip and azimuth 

information of U-V-W channels. We removed the mean and trend and tapered each 2-

hour-long window using the Tukey window with cosine fraction of 0.02. Figure 2.1a 

shows the ~3.7-sol long raw Z-component waveform sample, where the low-frequency 
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signals may correspond to the diurnal weather and tidal variation. Figure 2.1b is the Z-

component waveform after the removal of instrument response and filtering from 0.01 to 

3.5Hz. The high-amplitude spikes (Figure 2.1b) are probably generated by lander 

operations during a Martian sol. To suppress these features, we applied a temporal 

balance (Bensen et al., 2007) using a running absolute mean normalization to eliminate 

the effects of non-stationary noise before making the autocorrelograms. The weighting 

function w(t) used to normalize the trace s(t) is defined as  

𝑤(𝑡) =
1

1
2𝑁 + 1

∑ |𝑠(𝜏)|𝑡−𝑁∆𝑡≤𝜏≤𝑡+𝑁∆𝑡

 

Equation 2 - Weighting function for temporal balance. 

where 2N∆t is the parameter to control the length of moving-average windows. In 

this paper, we will calculate the weighting function using 100s moving-average window 

to normalize the seismic data. The Z-component waveform with temporal balance is 

shown in Figure 2.1c, illustrating that the energetic peaks are significantly diminished 

compared with the original trace in Figure 2.1b.  
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13 

Figure 2.1 – (a) The raw Z-component data with instrument response. The data are 

recorded from 4/26/2019 to 4/29/2019 (~3.7 sols). (b) The Z-component data after 

the removal of instrument response and bandpass filter between 0.01 and 3.5Hz. (c) 

The Z-component data at the same period after temporal balance. (d) The Z-

component data at the same period after spectral whitening. 

 

Compared to broadband seismic data on Earth, the InSight data contains much 

more low-frequency energy. A spectral whitening method (Bensen et al., 2007; Oren & 

Nowack, 2017; Phạm & Tkalčić, 2017, 2018) is applied to each two-hour long data 

window to remove the low-frequency bias and boost the high-frequency component 

(Figure 2.1d), where the whitening width is empirically determined as 0.5Hz (Phạm & 

Tkalčić, 2017). The processing for spectral whitening is similar as the temporal balance 

shown above but is applied in frequency domain (Phạm & Tkalčić, 2017). The 

application of spectral whitening will make the reflection phases more pronounced and 

interpretable (Delph et al., 2019; Phạm & Tkalčić, 2017). The autocorrelograms are 

computed and normalized by the maximum amplitude at zero lag for each trace. In order 

to boost the coherent signals of each trace and suppress the noise, a linear phase-weighted 

stacking (PWS) method (Schimmel & Paulssen, 1997) was applied to the sum of 

autocorrelation windows. We chose the linear weight empirically, based on the trade-off 

between the coherency measure and waveform distortion. Lastly, we sum all of the two-

hour autocorrelation windows, producing two autocorrelation estimates, one with and one 

without phase-weighting.  

In order to recover the seismic discontinuities throughout the depths of Mars 

(ranging from 10’s km to > 1000 km), we applied different bandpass filters: overlapping 
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butterworth bandpass filters in the high-frequency range (0.625-3.0Hz) show what we 

interpret to be the Moho discontinuity whereas low-frequency (0.05-0.2Hz) overlapping 

filters show what we interpret to be the mantle olivine-wadsleyite transition and the core-

mantle boundary. We also examined different frequency bands to determine the 

robustness of the observed seismic phases. In order to assess the robustness of the phases 

we identified, we performed bootstrap calculations on the 2-hour ambient noise 

autocorrelograms filtered in both low and high frequency bands. We randomly selected 

several subsets from the whole dataset and repeat the same processing method to 

construct the reflectivity response. We set the size of each subset with respect to the size 

of whole dataset as 0.8, and randomly choose 30 different subsets. After stacking and 

filtering, we converted the resulting autocorrelograms from time to depth using the P-

wave velocity models derived from the joint inversion of multiple geophysical data 

(Khan et al., 2018) and mineralogical simulations (Panning et al., 2017; Yoshizaki & 

McDonough, 2020). 
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Figure 2.2 – (a) The PWS stacked autocorrelograms filtered into different high 

frequency bands. Arrivals at ~11.5s (Phase 1) and at ~21s (Phase 2) are marked as 

black arrows. The arrivals can be interpreted as the Moho reflections PmP and SmS 

(model 1), as PmP and PmP2 (model 2), as PmP, and an upper mantle discontinuity 

(model 3), or as an intracrustal event and PmP (model 4). (b) The P- (blue solid line) 

and S-wave (red solid line) velocity model (LFAK) (solid line) derived from the joint 

inversion of multiple geophysical data (Khan et al., 2018). The dashed lines at 
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~35km represent the crustal thickness beneath the InSight lander derived from 

autocorrelation reflectivity series if models 1), 2) and 3) are assumed. (c) Depth 

conversion of the autocorrelation reflectivity using the P-wave velocity model in (b). 

The yellow shaded area at ~35km represents the interpreted Martian Moho for 

model 1), 2) and 3) or the intracrustal discontinuity for model 4). The gray shaded 

area does not have physical meaning if Phase 2 is interpreted as SmS for model 1) or 

PmP2 for model 2). The gray shaded area at ~68km corresponds to the depth of 

upper mantle discontinuity for model 3) or the Martian Moho for model 4). We 

prefer model 1). 

2.3. Results and Discussion 

2.3.1. Moho Discontinuity  

The high frequency filtered ambient noise data show prominent reflection phases 

at ~11.5 sec (Phase 1) and ~21.0 sec (Phase 2) across several frequency bands in both the 

PWS stack (Figure 2.2a) and the linear stack (Figure 2.3). The signal at ~6s blends into 

the autocorrelation 0-lag side lobes (Figure 2.2a), so we will not interpret this event as a 

reflection phase from Martian interior. Bootstrap calculations suggest the phase 

identification is robust (Figure 2.4). These events can be interpreted a number of different 

ways. 1) The first phase could be PmP, the P-wave Moho reflection and the second the 

SmS phase, the S-wave Moho reflection (Figure 2.2a). SmS can be observed on a vertical 

component, because the recorded noise incidence angles actually form a narrow cone 

around vertical rather than arriving only vertically (Gorbatov et al., 2013; Oren & 

Nowack, 2017; Phạm & Tkalčić, 2017). 2) Phase 1 could be PmP while the second phase 

could be the multiple of the first event, PmP2, since the arrival of the second event is 

close to double the time of Phase 1. 3) Phase 1 could be PmP, with Phase 2 an event from 
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the upper mantle. 4) The first phase might be an intracrustal event analogous to the 

Conrad discontinuity and the second phase the Moho. 

 

 

Figure 2.3 – Same as Figure 2.2a but for linear stacking 
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Figure 2.4 - Bootstrap calculation for the autocorrelograms filtered between 0.625 

and 2.5Hz 
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Using a P-wave crustal velocity model (LFAK) for a gabbroic crust shown in 

Figure 2.2b (Khan et al., 2018), the first three models give a crustal thickness of ~35km 

depth (Figure 2.2c). The crustal thickness of ~35km is 30 km shallower than that in the 

LFAK velocity model (Figure 2.2b). One possible interpretation is that the Moho depth 

(~65km) of LFAK velocity model represents the average of the thin crust of Martian 

northern hemisphere (~30-40 km) and the thick crust (~70-80 km) of the southern 

hemisphere while the autocorrelation reflectivity series in our study measure local crustal 

thickness beneath the InSight lander.  The global Martian crustal thickness map inverted 

from gravity data (Genova et al., 2016; Parro et al., 2017; Zuber, 2000), shows a crustal 

thickness of 30-35 km at the InSight lander site, close to the 35km estimated for the first 

event being PmP. 

Assuming the second event is SmS, the Vp/Vs (Vp: P-wave velocity; Vs: S-wave 

velocity) ratio of the Martian crust is estimated from the S- and P-wave reflection 

traveltimes, namely, 

𝑉𝑝

𝑉𝑠
=

𝑇(𝑆𝑚𝑆)

𝑇(𝑃𝑚𝑃)
≈ 1.83 

Equation 3 - The calculation of Vp/Vs ratio of Martian crust 

which is compatible with the Vp/Vs ratio for basaltic and andesitic rocks (~1.84) 

(Christensen, 1996). Thermal emission spectral analysis of the Martian surface 

(McSween et al., 2003, 2009) and geological observations (Golombek et al., 2020) 

suggests that the Martian crust is andesitic and basaltic. The Vp/Vs ratio we measure is 

consistent with that result. 
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Assuming the second event is from a mantle interface gives a depth of ~68 km, or 

33 km into the mantle. This could represent an intra-lithospheric boundary remnant from 

basalt extraction. The Martian lithosphere has been estimated to be greater than 150 km 

based on elastic modelling (Grott & Breuer, 2010; Schumacher & Breuer, 2006; Thurber 

& Toksöz, 1978), hence the second event is unlikely to represent the Martian lithosphere-

asthenosphere boundary.   

The fourth interpretation gives a crustal thickness of ~68 km, and an intracrustal 

horizon at ~35 km. We would interpret the first event as the boundary between an 

intermediate and mafic crust. 

Given the gravity estimates of crustal thickness and the Vp/Vs ratio being close to 

that expected for a gabbroic crust, we favor the interpretation that the 11.5 s event is PmP 

and the 21s event is SmS. 

 

2.3.2. Olivine-Wadsleyite Transition and Core-Manle Boundary 

We observe two prominent events in the low-frequency band of both the PWS 

(Figure 2.5a) and the linear stack (Figure 2.6) autocorrelograms, the first at ~280s and the 

second at ~375s. These two phases are also clearly observed in bootstrap calculations 

(Figure 2.7), further demonstrating the reliability of the phase identification. That lower 

frequency signals from deep within Mars are observable is not too surprising, as Mars is a 

cold, dry planet, and seismic attenuation is strongly dependent on temperature and on the 

fluid content of rocks. We use four P-wave velocity models (Figure 2.5b) to depth-

convert the stacked autocorrelograms, one is the LFAK model (Khan et al., 2018), three 
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are from theoretical calculation of shear wave velocity for various bulk composition and 

thermal state models (Panning et al., 2017) where we assume a Vp/Vs ratio of 1.82 (Sohl 

& Spohn, 1997), and one is from a theoretical calculation of Vp (Yoshizaki & 

McDonough, 2020).  

 

 

Figure 2.5 - (a) The PWS stacked autocorrelograms filtered into different low 

frequency bands. The arrival times expected of the reflection signals from olivine-
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wadsleyite transition and core-mantle boundary are marked as black arrows. (b) 

The P- (solid line) and S-wave (dashed line) velocity model, LFAK model from the 

joint inversion of multiple geophysical data (Khan et al., 2018), YM model from 

theoretical calculation (Yoshizaki and McDonough, 2020) and three representative 

velocity models from mineralogical simulation (Panning et al., 2017). (c) Depth 

conversion of stacked autocorrelation reflectivity series filtered between 0.05-0.1Hz 

using all P-wave velocity models in (b). The gray shaded area represents the 

interpreted Martian olivine-wadsleyite transition and core-mantle boundary. 

 

 

Figure 2.6 – Same as Figure 2.5a but for linear stacking.  

Figure 2.5c shows the depth conversion of the reflectivity series filtered between 

0.05 and 0.1Hz using the four models shown in Figure 2.5b. We interpret the phase at 

~280s as the reflection from the olivine-wadsleyite transition. Depth conversion using the 

different Martian seismic velocity models put this boundary at depths ranging from 1110 

to 1170km. The depth of the olivine-wadsleyite phase transition on Mars is expected to 

be ~2.8 times greater than the corresponding discontinuity on Earth (~410km), a result of 
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the low gravity and mean density on Mars (gravity: 3.71m/s2; mean density: 3.93g/cm3) 

and lower internal temperatures compared with Earth (gravity: 9.81m/s2; mean density: 

5.51g/cm3). The phase we identify as from the olivine-wadsleyite transition matches the 

results derived from thermodynamic and mineralogical inversion, where the depth of this 

transition is estimated to be at ~1100km (Khan et al., 2018; Khan & Connolly, 2008; 

Verhoeven et al., 2005; Yoshizaki & McDonough, 2020).  
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Figure 2.7 - Bootstrap calculation for the autocorrelograms filtered between 0.05 

and 0.1Hz.  

A second prominent event at ~375 s depth converts to 1520-1600 km (Figure 

2.5c).  A thermal model of the mantle (Khan & Connolly, 2008) predicts the Martian 
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mantle would not reach the temperatures and pressures necessary for the ringwoodite-

perovskite transition, referred to as the 660 discontinuity on Earth. The mineralogical 

model suggests that the theoretical depth of the ringwoodite-perovskite transition would 

occur at ~1900km (Breuer et al., 1996), therefore we interpret the second deep event as 

the body-wave reflection from the Martian core-mantle boundary, PcP (Figure 2.5a). 

Depth conversion with the four velocity models shown in Figure 2.5b, puts the core-

mantle boundary in the depth range 1520-1600 km (Figure 2.5c). Since the average 

radius of Mars is ~3390km, we estimate the core radius to be 1790-1870 km.  

Yoder et al. (2003) estimated the potential Love number k2, which represents the 

solar tidal deformation of Mars, to constrain the Martian core radius to be 1520 to 

1840km. Rivoldini et al. (2011) inverted geodetic data assuming various mineralogic 

models and thermal conditions, giving a core radius between 1700 and 1900km. Khan et 

al. (2018) explored several geophysical observations, such as moment of inertia, mean 

mass and tidal response of Mars, to recover the bulk composition and thermal state, and 

estimated the core radius to be 1730–1840 km. In general, our measurement of depth to 

the core-mantle boundary and the core radius is consistent with the results from other 

types of geophysical data. 

 

2.4. Conclusion 

Using ambient noise autocorrelation of Martian InSight seismic data, we 

constructed the reflectivity series beneath the lander. We observe two prominent events 
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from shallow in the Martian interior and two more prominent events from the deeper 

interior (Figure 2.8). Crustal, and possibly upper mantle, reflections could be observed in 

the high-frequency filtered autocorrelation function. Our preferred interpretation is a 

Martian Moho discontinuity at ~35km, and a Martian crust with Vp/Vs ~1.83, suggesting 

that the Martian crust beneath the lander is mainly basalt or andesite, consistent with the 

analysis of thermal emission spectra (McSween et al., 2003). To recover the deeper 

seismic discontinuities in Mars, we examined low-frequency filtered autocorrelograms 

which show reflection signals at times consistent for the Martian olivine-wadsleyite 

transition and the Martian core-mantle boundary. Using different velocity models 

simulated for various compositional and thermal models (Khan et al., 2018; Panning et 

al., 2017; Yoshizaki & McDonough, 2020), the olivine-wadsleyite transition and core-

mantle boundary of Mars would be at 1110-1170km and 1520-1600km, respectively. 

 

 

 



 
27 

Figure 2.8 - Schema of the Martian interior based on the depth of seismic 

discontinuities from autocorrelation analysis and assumed velocity models. The 

yellow, green and gray regions represent Martian crust, mantle and core 

respectively. The depths of interpreted Moho, olivine-wadsleyite transition and 

core-mantle boundary are indicated. 
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Chapter 3 

Seismic Autocorrelation Analysis of Deep 

Mars  

The InSight mission deployed one seismic station on Mars at the end of 2018 to 

measure the interior structure of another terrestrial planet. Some recent studies correlated 

the InSight ambient noise seismic data with themselves to retrieve the reflection signals 

from subsurface discontinuities. The seismic signals reflected from deep Mars, such as 

the olivine-wadsleyite transition, a pressure-temperature dependent mineral phase change 

in the mantle, and the core-mantle boundary were detected by the low frequency ambient 

noise autocorrelation. However, some analysis suggested that the arrival times of these 

signals coincide with the recurrence time of high-amplitude glitches within raw seismic 

data, leading to an incorrect interpretation of the autocorrelation. To resolve the 

contradiction, we detected and removed these high-amplitude glitches before further 

processing of the ambient noise data. The autocorrelation analysis of deglitched 
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continuous vertical-component waveforms still recovers the signals originating from 

olivine-wadsleyite transition and core-mantle boundary, whereas autocorrelation of 

glitch-only waveforms does not. This suggests that the observed signals on the low-

frequency autocorrelation are from seismic discontinuities rather than a noise artifact. 

The velocity layering near Martian core-mantle boundary is improved to match with the 

observed PcP phase in the autocorrelation of deglitched dataset. 

 

3.1. Introduction 

The spacecraft of the InSight mission landed on Mars at the end of 2018. In early 

2019, it deployed the only seismic station, named SEIS, to record the seismic vibrations 

on Mars (Lognonné et al., 2019). The InSight seismometer successfully detected 951 

Marsquake events by October 2021 (Horleston et al., 2022), providing indications on the 

tectonic activities within Mars (Giardini et al., 2020; Jacob et al., 2022; Sun & Tkalčić, 

2022). The Martian seismic data have been used in research to understand the interior 

structures of the red planet at different scales using autocorrelations (Compaire et al., 

2021; Deng & Levander, 2020, 2022; Schimmel et al., 2021), receiver functions 

(Knapmeyer-Endrun et al., 2021; Lognonné et al., 2020), anisotropy analysis (J. Li et al., 

2022), attenuation modeling (Karakostas et al., 2021) and geophysical inversion (Khan et 

al., 2021; Stähler et al., 2021). 
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Claerbout (1968) showed that the reflectivity response for a coincident surface 

source and receiver in an acoustic medium can be reconstructed by autocorrelation of the 

normal-incident plane wave response due to a source incident from below recorded by a 

surface receiver. This was extended to elastic media and non-normal incidence cases 

(Frasier, 1970). Autocorrelation analysis of single-station seismic recordings (e.g., 

ambient noise, coda waves) has been widely employed to extract body-wave reflection 

phases to reveal the subsurface structures of Earth (Delph et al., 2019; Gorbatov et al., 

2013; Kennett, 2015; Oren & Nowack, 2017; Phạm & Tkalčić, 2018, 2021; Qin et al., 

2020; She et al., 2022; Tibuleac & von Seggern, 2012; Zhou & Zhang, 2021) and Moon 

(Nishitsuji et al., 2016, 2020). Recent autocorrelation analysis on Mars detected a strong 

P-wave reflection phase at ~11 s two-way traveltime (Compaire et al., 2021; Deng & 

Levander, 2020; Schimmel et al., 2021). This ~11 s signal can be interpreted as the 

reflection from a mid-crust discontinuity or Martian Moho at approximately 35 km (Deng 

& Levander, 2020). To examine deeper seismic structure of Mars, Deng and Levander 

(2020) filtered the stacked autocorrelations in the low-frequency 0.05 and 0.1 Hz band, 

and identified signals at ~280 s and ~375 s as P-wave reflections from the Martian 

olivine-wadsleyite transition and core-mantle boundary, respectively. Depth conversion 

using different reference velocity models determined the Martian core radius in the range 

of 1790-1870 km (Deng & Levander, 2020), consistent with the core radius estimation 

from other studies (Khan et al., 2018; Rivoldini et al., 2011; Yoder et al., 2003). 

However, Scholz et al. (2020) identified high-amplitude seismic glitches within raw SEIS 

data which probably originate from stress relaxation within the InSight seismometer, 
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which may contaminate the final results of seismic analysis if not removed (Compaire et 

al., 2021). Barkaoui et al. (2021) analyzed the quasi-periodic recurrence time of these 

seismic glitches and found it coincides with the arrival times of identified phases in low-

frequency autocorrelations in Deng and Levander (2020). Kim et al. (2021) did the 

autocorrelation tests and further suggested that the signals interpreted as olivine-

wadsleyite transition and core-mantle boundary in Deng and Levander (2020) may result 

from the quasi-periodic high-amplitude glitches rather than the real seismic boundaries of 

Martian interior.  

In this work, we designed tests to resolve whether the low-frequency 

autocorrelation signals in Deng and Levander (2020) are real seismic reflection signals or 

result from instrumental noise. The high-amplitude glitches in raw SEIS data were first 

detected to generate three datasets for further analysis: (1) the raw continuous data with 

glitches; (2) the deglitched continuous data after the application of glitch removal 

algorithms; and (3) the data with only detected glitches calculated by the subtraction of 

(2) from (1). We implemented the ambient noise autocorrelation on the vertical-

component recordings of these three datasets to demonstrate the low-frequency 

autocorrelation signals are the reflection response from deep Mars rather than the 

recurrence time of quasi-periodic glitches shown in Barkaoui et al. (2021). The synthetic 

PcP phases for the models in Stähler et al. (2021) were calculated to make comparisons 

with the observed PcP phase in the autocorrelation of deglitched dataset. The velocity 

layering model near Martian core-mantle boundary was derived to minimize the misfit 

between the synthteic and observed PcP phases. 
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3.2. Data and Methods 

The SEIS data were collected with a 10 Hz sampling rate from February to May 

2019, and 20Hz sampling rate from June 2019 to December 2021.  Prior to the 

preprocessing, the open-source package SEISglitch (Scholz et al., 2020) were applied to 

extract and remove the high-amplitude glitches within the raw continuous SEIS 

waveforms to get deglitched and glitch-only data. Figures 3.1a to 3.1c provide a 1-day 

example on January 3rd, 2020 to show the comparisons between original and deglitched 

continuous U-, V- and W-component data. The glitches were mostly detected at night 

time during periods of relatively low temperature (Figure 1d) and windspeed (Figures 1e) 

because of the low wind- and pressure-driven noise level during the nighttime (Scholz et 

al., 2020). Figures A1 and A2 in the appendix designed a test for the parameter selection 

of glitch detection and removal, which suggest the parameter values of SEISglitch will 

have modest impact on the final autocorrelation results. The preprocessing procedures 

included the instrument response removal from the raw, deglitched and glitch-only 

continuous SEIS data with a broad bandpass filter from 0.01 to 3.5 Hz. The data sampled 

at 20Hz were then decimated to 10 Hz. The continuous waveforms were cut into 4-hour-

long segments and rotated into from U-V-W to orthogonal Z-N-E channels (Compaire et 

al., 2021). We removed the mean and trend and applied a taper to each 4-hour raw, 

deglitched and glitch-only data window.  

We used the similar workflow as Bensen et al. (2007) to calculate 

autocorrelations for raw, deglitched and glitch-only data. Temporal balance and spectral 
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whitening were employed to improve the interpretability of the stacked ambient noise 

autocorrelations (Bensen et al., 2007; Oren & Nowack, 2017). Each individual 4-hour 

trace was then filtered between 0.05 and 0.1 Hz. We computed and normalized the 

vertical component autocorrelograms by the maximum amplitude at zero lag time for 

each 4-hour-long trace. We applied both linear stacking (LS) and phase-weighted 

stacking (PWS) (Schimmel & Paulssen, 1997) to stack autocorrelograms. The power of 

PWS, which defines the significance of coherency measure (Schimmel & Paulssen, 

1997), is empirically selected as 2 (Korenaga, 2014; Niu & Chen, 2008; Wookey & 

Helffrich, 2008).  

 

 

Figure 3.1 - (a) Original (blue) and Deglitched (orange) U-component waveforms on 

January 3rd, 2020. (b) Same as (a) but for V-component. (c) Same as (a) but for W-

(a)

(b)

(c)

(d)

(e)
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component. (d) The ground temperature data on January 3rd, 2020. (e) The 

windspeed data on January 3rd, 2020. 

 

3.3. Results and Discussion 

3.3.1. Autocorrelation Results 

Figure 3.2 compares the LS and PWS stacked autocorrelation of raw, deglitched 

and glitch-only datasets. Two prominent signals at ~285 s and ~385 s can be clearly 

observed from the stacked autocorrelation of the deglitched waveform. The arrival times 

of these two signals are consistent with the prominent phases identified as the P-wave 

reflection from the olivine-wadsleyite transition and core-mantle boundary reported 

previously in Deng and Levander (2020). This suggests that these two phases originate 

from the deep seismic discontinuities in Mars rather than being correlation artifacts from 

quasi-periodic glitches in the raw SEIS data suggested in Barkaoui et al. (2021) and Kim 

et al. (2021). The bootstrap calculation also indicates the observation of these two phases 

is robust (Figure A4). The autocorrelation function of glitch-only data does not show a 

prominent response at ~285 s or ~385 s. We take this as indicating the reflection 

responses at ~285 s and ~385 s originate from Martian impedance boundaries. The 

stacked raw data autocorrelation can also detect the signals at ~285 s and ~385 s, but the 

reflection pulses are more complicated than the deglitched waveform because they are 

contaminated by the high-amplitude seismic glitches within the raw data. The PWS 
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stacked autocorrelation of the deglitched ambient noise data (red curve in Figure 3.2b) 

will be used for the comparison with the synthetic results since the observed reflection 

phases are clearer than linear stack. 

 

Figure 3.2 - (a) Linearly stacked (LS) vertical-component autocorrelation filtered 

between 0.05 and 0.1Hz using raw (black), deglitched (red) and glitch-only (blue) 

data. The gray dashed lines mark the reflection phases from olivine-wadsleyite 

transition and core-mantle boundary. (b) Same as (a) but for phase-weighted 

stacking (PWS) (Schimmel & Paulssen, 1997) 

 

3.3.2. Comparison with Synthetic PcP Phases 

We simulated the synthetic PcP phases with Thomson-Haskell matrix method 

(Haskell, 1953; Shearer, 2019) for a set of velocity models (Figure 3.3a) derived from the 

(a)

(b)

PCPPOlivine-WadsleyiteP

POlivine-WadsleyiteP PCP

Linear Stacking

Phase-Weighted Stacking
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probabilistic inversion of seismic traveltimes, Love number k2 and moment of inertia 

(Stähler et al., 2021). The comparison between synthetic and real PcP signals are shown 

in Figure 3.3b, which suggests that the velocity model with 3 standard deviations lower 

than the mean model of Stähler et al. (2021) best matches with the observed PcP phase. 

This observation is consistent with the Mars orbiting surface wave results (Deng & 

Levander, 2022).  

We calculated the two-way traveltimes for mean-3𝜎 model and mapped the 

observed reflection response from olivine-wadsleyite transition to depth (Figure A5). The 

depth of olivine-wadsleyite transtion is estimated at ~1090km (Figure A5). The depth of 

olivine-wadsleyite transition is ~2.7 times deeper than the depth on Earth (~410 km), 

which results from the lower gravity and mean density on Mars in comparison to Earth 

(Mars gravity: 3.71 𝑚/𝑠2, mean density: 3.93 𝑔/𝑐𝑚3; Earth gravity: 9.81 𝑚/𝑠2, mean 

density: 5.51 𝑔/𝑐𝑚3). Our depth estimation of olivine-wadsleyite transition is 

compatible with the results derived from thermodynamical calculations, which suggest 

the olivine-wadsleyite transition is near 1100 km depth on Mars (Verhoeven et al., 2005; 

Yoshizaki & McDonough, 2020). 

 

3.3.3. CMB Transition Zone Modeling to Match with the Observed PcP phase 

The CMB transition zone (TZ) velocity 𝑉𝑇𝑍 =  𝛼𝑉𝑚𝑎𝑛𝑡𝑙𝑒 + (1 − 𝛼)𝑉𝑐𝑜𝑟𝑒, where 

0 ≤ 𝛼 ≤ 1. If 𝛼 = 1, it is the mean-3𝜎 velocity model shown in Figure 3.3a because it 

best fits with the observed PcP phase among Stähler et al. (2021) suite of models (Figure 
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3.3b). We tried to improve the fit between the synthetic and observed PcP phases with 40, 

60, 80, 100 and 120km thick 1-layer transition zones. For 40km thick transition zone 

cases, we made the grid search of CMB transition zone velocity with 𝛼 ranging from 0.05 

to 1 with 0.05 grid size and simulated the synthetic PcP phases by Thomson-Haskell 

matrix (Haskell, 1953) for all transition zone velocities. Then we calculated the 

correlation coefficients between the synthetic and observed PcP phases. The model with 

highest correlation coefficients with be set as the best 40km thick CMB transition zone 

model. The same procedure will be repeated to find the best CMB transition zone models 

with 60, 80, 100 and 120km thickness. Figures A6 to A10 showed the correlation 

coefficients and waveform comparisons with the observed PcP phase for 40, 60, 80, 100 

and 120km thick CMB transition zone models, respectively.  

Figure 3.4a illustrates the best 40, 60, 80, 100 and 120km thick CMB transition 

zone models. Figure 3.4b makes the comparisons between the observed PcP phase and 

synthetic PcP of the velocity models shown in Figure 3.4a. We can see the 60km thick 

transition zone model (green model in Figure 3.4a) at Martian CMB can best fit the 

observed PcP phase (Figure 3.4b). We also tried two 60km thick velocity gradient at 

CMB transition zone and found the correlation coefficients are lower than the best 1-

layer 60km thick transition zone model (Figure 3.5). It indicates the Martian CMB is 

more likely to have a 60km thick 1-layer transition zone rather than a simple sharp 

velocity drop. Since a 60km thick 1-layer transition zone model has already reached a 

high correlation coefficient at 0.99 (Figure 3.4b), it’s not necessary to add more layers or 
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increase the model complexity of CMB transition zone to match with the observed PcP 

phase.  

  

 

Figure 3.3 – (a) Mean velocity model and 3 standard deviations above and below the 

mean model in Stähler et al. (2021). The solid lines are P-wave velocity profiles and 

the dashed lines are S-wave velocity profiles. (b) Comparison between the synthetic 

PcP phases for the velocity models shown in (a) and the observed PcP phase. The lag 

time represents the correlation time shift between the synthetic and observed PcP 

phases, where the positive values represent the observed PcP travels slower than 

synthetic PcP, and vice versa.  

(a) (b)
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Figure 3.4 – (a) The best models for 40, 60, 80, 100 and 120km thick transition 

zones. (b) The comparison between the synthetic PcP phase of the velocity models 

shown in (a) and the observed PcP phase. The correlation coefficients between the 

synthetic and observed PcP are shown on the right side. The blue box marks the 

model with highest correlation coefficient among all models shown in (a).  

(a) (b)
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Figure 3.5 – (a) Four velocity models at CMB transition zone. The red one is the 

velocity that is 3 standard deviations lower than the mean velocity model in Stähler 

et al. (2021). The green one is the best 60km thick 1-layer transition zone model. The 

blue and cyan models are two 60km thick gradient velocity models.  (b) The 

comparison between the synthetic PcP phase of the velocity models shown in (a) and 

the observed PcP phase. The correlation coefficients between the synthetic and 

observed PcP are shown on the right side. The best 60km thick 1-layer transition 

zone model provides the best fit among all models shown in (a).  

3.4. Conclusion 

Kim et al. (2021) and Barkaoui et al. (2021) suggested that the autocorrelation 

signals identified as the reflection response from olivine-wadsleyite transition and core-

mantle boundary (Deng & Levander, 2020) may originate from the quasi-periodic 

glitches rather than real seismic discontinuities. In this study, we applied the 

autocorrelation method on raw, deglitched, and glitch-only vertical-component data to 

(a) (b)
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resolve the contradiction. The prominent signals at ~285 s and ~385 s were extracted 

from the autocorrelation of raw and deglitched waveforms but not from glitch-only data 

(Figure 3.2). This suggests the signals at ~285 s and ~385 s are the reflection response 

from deep Mars rather than the recurrence time of high-amplitude glitches within raw 

SEIS data. We interpreted ~285 s signal as olivine-wadsleyite phase transition and ~385 s 

signal as core-mantle boundary. The synthetic PcP phases were simulated for a set of 

velocity models in Stähler et al. (2021) to compare with the observed PcP in the 

autocorrelation of deglitched dataset (Figure 3.3). We found the Martian velocity is 

slower than the mean model in Stähler et al. (2021) (Figure 3.3b), consistent with Mars 

orbiting surface wave results (Deng & Levander, 2022). The grid search was conducted 

to constrain the 1-layer transition zone velocity models near CMB and improve the fit 

between observed and synthetic PcP phases (Figure 3.4). A 60km 1-layer velocity 

transition zone model at Martian CMB is derived to better match with the observed PcP 

compared with a sharp velocity drop (Figure 3.4b). 
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Chapter 4 

Autocorrelation R2 on Mars 

A purpose of the InSight mission is to reveal the Martian interior structure with 

seismic data. In this work, ambient noise autocorrelation of the continuously recorded 

vertical-component seismic signals has extracted the Rayleigh waves that propagate 

around the Mars for one cycle, R2. The Mars orbiting surface waves are observed at a lag 

time of ~6000s in the stacked autocorrelation series filtered between 0.005 and 0.01Hz. 

Synthetic seismograms from a set of radially concentric velocity models were computed 

to find the best-fitting one as the starting model for a Monte Carlo inversion. The starting 

model was randomly perturbed iteratively to increase the correlation coefficients and 

reduce the absolute time shifts between the synthetic and observed R2. An S-wave low-

velocity layer in the inverted velocity model extends to ~400km depth, consistent with 

Marsquake observations, geophysical inversion and high-pressure experiments. 
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4.1. Introduction 

The InSight (Interior Exploration Using Seismic Investigations, Geodesy and 

Heat Transport) spacecraft landed on Mars on November 26, 2018 and installed the 

seismograph SEIS (Seismic Experiment for Interior Structure) (Lognonné et al., 2019) to 

record continuous seismic data for approximately 3 years, providing opportunities to 

investigate another terrestrial planet’s interior. A variety of research studies have been 

conducted recently to analyze the seismic recordings on Mars to monitor the seismicity 

(Banerdt et al., 2020; Böse et al., 2021; Ceylan et al., 2021; Clinton et al., 2021; Giardini 

et al., 2020; Knapmeyer et al., 2021), understand the ambient noise characteristics 

(Stutzmann et al., 2021; Suemoto et al., 2020) and recover the subsurface structures 

(Compaire et al., 2021; Deng & Levander, 2020; Khan et al., 2021; J. Li et al., 2022; 

Lognonné et al., 2020; Schimmel et al., 2021; Stähler et al., 2021). A prominent 

reflection phase is observed at ~11s in the stacked ambient noise autocorrelations, which 

may correspond to the crust-mantle boundary (Moho) or a mid-crust discontinuity at 

~35km (Compaire et al., 2021; Deng & Levander, 2020; Schimmel et al., 2021) and is 

consistent with the shallow velocity models derived from receiver function analysis 

(Knapmeyer-Endrun et al., 2021; Lognonné et al., 2020; Schimmel et al., 2021). Moving 

to the deeper interior of Mars, the core-reflected phases (e.g. PcP, ScS) are observed from 

the Marsquake recordings (Stähler et al., 2021) and ambient noise autocorrelations (Deng 

& Levander, 2020), where the radius of Martian core is estimated as ~1830km for both 

methods (Deng & Levander, 2020; Stähler et al., 2021). However, some researchers have 

suggested that the observation of PcP phase (Deng & Levander, 2020) may originate 
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from the quasi-periodic seismic glitches in the continuous SEIS data (Barkaoui et al., 

2021; Kim et al., 2021). We comment on this in chapter 3 of this thesis and another 

paper.  

Seismic interferometry has been widely applied to retrieve the empirical Green’s 

functions of surface waves (Berg et al., 2018; Miao et al., 2022; Qiu et al., 2020, 2021; 

Schimmel et al., 2018; Shen et al., 2013; Yao et al., 2006) and body waves (Clayton, 

2020; Feng et al., 2017, 2021; Gorbatov et al., 2013; Kennett, 2015; Oren & Nowack, 

2017; She et al., 2022) from the ambient noise auto- and cross-correlations. Many 

ambient noise surface wave tomography studies on Earth have focused on the 

calculations of the Rayleigh wave phase velocity to invert for the S-wave velocity of 

sedimentary basins (Cai et al., 2022; Hannemann et al., 2014; Pan et al., 2016; Qiu et al., 

2019; Shirzad & Shomali, 2014), the crust and upper mantle (Hongyi Li et al., 2012; Lin 

et al., 2014; Nguyen et al., 2022; Yao et al., 2008; Zhang et al., 2018). Global 

tomography analysis suggested that the long period Rayleigh waves (e.g. >100s) can be 

recovered by cross-correlations of the Earth’s hum (Haned et al., 2016; Nishida et al., 

2009). This was subsequently extended to extract the Earth orbiting Rayleigh waves from 

a single-station-based autocorrelation to constrain the upper mantle velocity models 

(Hang Li et al., 2020; Schimmel et al., 2018; Jun Xie & Ni, 2019).  

The observation of Rayleigh waves traveling around the Earth once, the phase R2, 

using low-frequency autocorrelation of background free oscillations suggests the 

potential for a similar analysis for InSight seismic data (Schimmel et al., 2018), which 

then can be used to constrain Martian upper mantle velocity structure (Jun Xie & Ni, 
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2019). Here we followed the processing procedures in Bensen et al. (2007) to compute 

and stack the vertical-component autocorrelograms of the SEIS ambient noise data, 

which were bandpass filtered from 0.005 to 0.01Hz to retrieve the R2 surface waves. The 

group dispersion curves were extracted by frequency-time analysis (FTAN) (Bensen et 

al., 2007; Levshin et al., 1992). We then compared observed R2 to synthetic R2 

waveforms calculated from a suite of 1-D velocity models developed previously from 

joint inversion of multiple geophysical data types (Stähler et al., 2021). The best fit 

model from the Stähler et al. (2021) suite of models was used as the starting 1D model in 

a Monte Carlo inversion. We iteratively adjusted the Martian upper mantle velocity 

model between 40 and 700km depth to minimize the misfit between synthetic R2 

waveforms and the stacked R2 autocorrelation. 

 

4.2. Data and Methods 

4.2.1. Martian Seismic Data and Glitch Removal 

The InSight broadband continuous seismic data (InSight Mars SEIS Data Service, 

2019) were obtained from IRIS (Incorporated Research Institutions for Seismology) 

website in three non-orthogonal channels (U-V-W). The data were sampled at 10Hz 

between February and May 2019 and at 20Hz between June 2019 and March 2021. The 

raw continuous signals contain the repeated high-amplitude glitches primarily induced by 

the stress relaxation of the seismometer (Scholz et al., 2020), which may contaminate 
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ambient noise autocorrelations (Compaire et al., 2021; Kim et al., 2021). In order to 

mitigate the effects of these high-amplitude spikes, we applied the open-source Python 

package SEISglitch (Scholz et al., 2020) to detect and remove the quasi-periodic glitches 

in the raw SEIS data. Figure 4.1 compares a 1-day record of the original and deglitched 

U-V-W components; the deglitched waveforms are clearly less spiky than the raw 

continuous data. We performed tests to determine that the glitch removal method can 

mitigate the effects of glitches without introducing additional artifacts (Figures 4.2 and 

4.3). The instrument responses were deconvolved from the deglitched continuous 

waveforms, and the data were then bandpass filtered from 0.002 to 3.5Hz. The data with 

20Hz sampling rate were downsampled to 10Hz to make sure all ambient noise data have 

the same sampling rate as 10Hz. We cut the ambient noise data into 584 daily segments 

and then rotated them to the orthogonal vertical, north and east (Z-N-E) components 

according to the azimuthal and dip angles of the oblique U-V-W components (Compaire 

et al., 2021; Suemoto et al., 2020). For each 1-day ambient noise epoch, the mean and 

linear trend were removed, and a 5% cosine tapered window was applied.  
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Figure 4.1 - (a) Glitch detection and removal on BHU-component by the Python 

package SEISglitch (Scholz et al., 2020) on the Martian broadband seismic data 

recorded on July 1st, 2019. (b) Same as (a) but for BHV-component. (c) Same as (a) 

but for BHW-component. 
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Figure 4.2 - (a) One example of white noise. (b) Stack of 584 autocorrelations using 

all white noise data as (a). No clear signals are detected from the stacked 

autocorrelations of white noise. (c) One example of a real glitched record added to 

(a). (d) Stack of 584 autocorrelations using all data with glitches as (c). Some high-

amplitude signals related to the glitches show up. (e) Deglitching applied to the 

waveform in (c). (f) Stack of 584 autocorrelations using all the deglitched data as (e). 

The results are identical to (b) where no clear signals are retrieved. Note that (b), (d) 

and (f) have the same amplitude scales. 

One Example of White Noise Data Stacked Autocorrelation of (a) 

Stacked Autocorrelation of (c) 

Stacked Autocorrelation of (e) Apply deglitch method to (c) 

Apply real glitch to (a) 

(a)

(c) (d)

(f)(e)

(b)
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Figure 4.3 - (a) One example of Synthetic Noise Data, which is generated by the 

convolution of random noise and a synthetic R2 (Dirac function at 6000s). (b) Stack 

of 584 autocorrelations using all synthetic noise data as (a). The peak at 6000s is the 

synthetic R2. (c) One example of a real glitched record added to (a). (d) Stack of 584 

autocorrelations using all synthetic data with glitches as (c). The R2 signal at 6000s 

is not clear. (e) Deglitching applied to the waveform in (c). (f) Stack of 584 

autocorrelations using all deglitched data as (e). The R2 signal at 6000s can be 

clearly retrieved.   

 

4.2.2. Calculating and Stacking Autocorrelations 

Before the calculation of autocorrelograms, we applied temporal balance and 

spectral whitening, implemented with the running-absolute-mean normalization method 

in the time and frequency domains (Bensen et al., 2007) to remove the effects of non-

stationary signals in the daily continuous data. The daily autocorrelograms were 

One Example of Synthetic Noise Data Stacked Autocorrelation of (a)

Stacked Autocorrelation of (c) 

Stacked Autocorrelation of (e) Apply deglitch method to (c) 

Apply real glitch to (a) 

(a)

(c) (d)

(f)(e)

(b)
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computed by inverse Fourier transform of the power spectra of the vertical-component 

ambient noise signals bandpass filtered from 0.005 to 0.01Hz and normalized to the zero-

lag value. The root-mean-square ratio selection (RMSR_S) was used to remove epochs 

with non-stationary phases (Jinyun Xie et al., 2020), resulting in reduction of the dataset 

by 9-15% depending on window parameters chosen (Figure 4.4). The signal window was 

selected as 5600-6400s and the noise window as 4800-5500s. The threshold value G for 

RMSR_S was set as 1.02. After the application of RMSR_S, 508 autocorrelation 

functions from a total of 584, i.e., 87%, were included in the final stack. Figure 4.4 shows 

tests of different signal and noise window selections in RMSR_S and the corresponding 

binary 𝑎𝑘 values. The tests give almost identical results. Finally, the daily 

autocorrelograms were stacked to retrieve R2 surface waves using both linear stacking 

(LS) and time-frequency domain phase-weighted stacking (tf-PWS) (G. Li et al., 2018; 

Schimmel & Gallart, 2007). In this study, we empirically chose the power of tf-PWS as 2 

(Hable et al., 2019; Haned et al., 2016; Schimmel et al., 2011; Yan et al., 2019; Zeng et 

al., 2017), which is a common selection for Earth data analysis. Figure 4.5 shows tests for 

different exponents in the tf-PWS. Figure 4.6 is a synthetic test designed to demonstrate 

the efficiency of tf-PWS to enhance coherent signals. 
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Figure 4.4 - Figures on left show different combinations of signal (pink) and noise 

(yellow) windows selected for the RMSR_S data selection. Figure (a) shows the 

windows used in the analysis presented in the paper (same as Figure 4.7g). The right 

panels show the binary weighting value 𝒂𝒌 of all 584 windows for the results in the 

corresponding left panels (black dots), total number of autocorrelation functions 

used in the final stack for different signal and noise window selections (i.e., the sum 

of 𝒂𝒌), and simple matching coefficients (SMC) values compared with the results in 

(a). The SMC value is the ratio of the identical windows selected resulting from 

different window choices. For example, the SMC of 0.777 between (g) and (h) 

indicated that 77.7% of binary 𝒂𝒌 values for the results in Figures (a) and (b) are 

identical.  Window selections for RMSR_S are: (a) signal 5600-6400s, noise 4800-
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5500s; (b) signal 5600-6400s, noise 6800-7500s; (c) signal 5600-6400s, noise 9200-

10000s; (d) signal 5400-6700s, noise 6800-8000s; (e) signal 5400-6700s, noise 8800-

10000s; (f) signal 5400-6700s, noise 3600-4800s. 

 

Figure 4.5 - (a) Same as Figure 4.7f, where the power of tf-PWS 𝜸 = 𝟎 (linear 

stacking). (b) Same as (a) but for 𝜸 = 𝟏. (c) Same as Figure 4.7h, where the power of 

tf-PWS 𝜸 = 𝟐. (d) Same as (c) but for 𝜸 = 𝟒, which will generate strong waveform 

distortion. 
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Figure 4.6 - (a) The P- and S-wave velocity model that is 3 standard deviations lower 

than the mean velocity derived from the probabilistic inversion (red model in Figure 

4.9a) (Stähler et al., 2021) (b) 30 examples of a total of 600 shifted and noisy Green’s 

functions of the velocity model in (a). (c) Comparison between the tf-PWS stacked 

shifted and noisy Green’s function and the original synthetic Green’s function. The 

correlation time shift and correlation coefficient between the red and black curve 

are shown on the right. The positive time shift means the black curve travels slower 

than the red curve. 

 

4.3. Results and Discussion  

4.3.1. Autocorrelation Results of R2 Surface Waves  

A signal that we interpret as the Mars orbiting Rayleigh wave R2 is prominent at 

~6000s in the vertical-component ambient noise autocorrelations filtered between 0.005 

(a) (b)

(c)

R2

R2
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and 0.01Hz with both linear (Figures 4.7a and 4.7b) and tf-PWS stacking (Figures 4.7c 

and 4.7d). With the application of RMSR_S (Jinyun Xie et al., 2020), the R2 signal is 

more prominent (Figures 4.7e to 4.7h). Bootstrap calculations using a subset of the whole 

dataset further suggest the R2 phase identification is robust (Figure 4.8). In the following, 

we applied FTAN (Bensen et al., 2007; Levshin et al., 1992) to calculate the group 

velocities between 115 and 200s (Figures 4.9b and 4.10) for the stacked waveform using 

both RMSR_S and tf-PWS (Figure 4.7h) and compared these with the synthetic group 

dispersion curves of several Martian 1-D velocity models (Figure 4.9a; Stähler et al., 

2021). Synthetic R2 seismograms were also generated to compare with the observed R2 

waveform in Figure 4.7h (Figure 4.9c). 

 

 

(a) (b)
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(f)

(h)

R2 R2
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Figure 4.7 - (a) Linearly stacked (LS) autocorrelation filtered between 0.005 and 

0.01Hz without the application of root-mean-square ratio selection (RMSR_S). (b) 

The R2 signal of (a) between 4800 and 6800s (blue shaded area in (a)). (c) Same as 

(a) but applying time-frequency domain phase-weighted stacking (tf-PWS). (d) The 

R2 signal of (c) between 4800 and 6800s (blue shaded area in (c)). (e) Same as (a) but 

applying RMSR_S. (f) The R2 signal of (e) between 4800 and 6800s (blue shaded 

area in (e)). (g) Same as (e) but applying tf-PWS. (h) The R2 signal of (g) between 

4800 and 6800s (blue shaded area in (g)). The stacked autocorrelation in (g) and (h) 

show the most prominent R2 signal and is used to compare with the synthetic 

results. After the application of RMSR_S, 508 autocorrelation functions among total 

584 were maintained for the final stack. 

 

Figure 4.8 - (a) Bootstrap calculations for the autocorrelograms filtered between 

0.005 and 0.01Hz without the application of RMSR_S, which followed the same 

processing steps as Figure 4.7d. (b) Bootstrap calculations for the autocorrelograms 
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filtered between 0.005 and 0.01Hz with the application of RMSR_S, which followed 

the same processing steps as Figure 4.7h.  

4.3.2. Comparison with the Synthetic Group Dispersion Curves and 

Seismograms 

We calculated synthetic group velocity dispersion curves for a set of velocity 

models (Figure 4.9a) derived from a probabilistic inversion to fit the tidal Love number 

k2, moment of inertia and seismic traveltimes (Stähler et al., 2021) for comparisons to the 

group velocities (Figure 4.9b) derived from the stacked autocorrelation in Figure 4.7h. 

The FTAN-measured group velocities are compatible with the velocity model 3 standard 

deviations lower than the mean velocity of Stähler et al. (2021) (Figure 4.9b).  

 

Figure 4.9 - (a) Probabilistic inversion of the Martian velocity models in Stähler et 

al. (2021). The velocity models range from 3 standard deviations lower to 3 standard 

(a) (b)

(c)
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deviations higher than the mean velocity. (b) The group dispersion curves for 

different velocity models shown in (a) (solid lines) and the group velocities measured 

by frequency-time analysis (FTAN) of Figure 4.7h (black dots). (c) Synthetic 

seismograms filtered between 0.005 and 0.01Hz for different velocity models shown 

in (a). The lag time is the cross-correlation time shift between the synthetic 

seismograms and the stacked vertical-component autocorrelation shown in Figure 

4.7h. The positive lag time means that the observed R2 phase propagates slower than 

the synthetics and vice versa. 
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Figure 4.10 - Frequency-Time Analysis (FTAN) for the stacked autocorrelation in 

Figure 4.7g. The blue waveforms are the narrow bandpass filtered waveforms near 

the instantaneous periods. The instantaneous periods are listed on the left of each 

narrow bandpass filtered waveform. The orange waveforms are the envelope 

functions of the blue waveforms, which are used to determine group arrival times. 

The red curves mark 1, 2 and 3 times the picked R2 group arrival time. The 

locations of expected R4 and R6 arrivals are also shown.   

The R2 Rayleigh waves can travel along any or all great circle paths on the 

Martian surface and possess travel distances that vary due to the planet’s ellipticity (𝜀 =

0.00589) (Jun Xie & Ni, 2019). Jun Xie and Ni (2019) discussed the effects of ellipticity 

on the group velocity estimation of the Earth orbiting surface waves, concluding that the 

effects are negligible. Accounting for the travel distance variations of R2 surface waves, 

we simulated and then calculated a weighted mean of the synthetic Green’s functions for 

a range of radii between the polar and equatorial radius (3376.2 – 3396.2km) using the 

direct solution method (DSM) software (Geller & Takeuchi, 1995; Kawai et al., 2006; 

Takeuchi et al., 1996). The mean synthetic was almost identical to the synthetic Green’s 

functions using the mean Martian radius (3389.5km) (Figure 4.11). The synthetic Green’s 

functions were then convolved with a source wavelet (Figure 4.12), estimated from the 

second zero-crossing of the side lobes of the autocorrelation near zero-lag (Erhan & 

Nowack, 2020; Yilmaz, 2001), to produce the synthetic R2 seismograms.  
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Figure 4.11 - The red curve is the synthetic Green’s function with the mean radius 

(3389.5km), while the black one is the weighted mean Green’s function of a range of 

radii between polar (3376.2km) and equatorial (3396.2km) radius using the velocity 

model in Figure 4.6a. The correlation time shift and correlation coefficient between 

the red and black curve are shown on the right. The negative time shift means the 

black curve travels faster than the red curve. 

 

Figure 4.12 - (a) The zero-lag of the stacked autocorrelation shown Figure 4.7g. (b) 

Taper function used for the source wavelet estimation. (c) Estimated source wavelet 

obtained by multiplying the waveforms in (a) and (b). 
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We generated synthetic seismograms for the velocity models (Figure 4.9a) for 

comparisons to Figure 4.7h (Figure 4.9c). The time lag indicated on Figure 4.9c is the 

cross-correlation time shift between the observed R2 (Figure 4.7h) and each individual 

synthetic seismogram, where positive values correspond to the travel time delays of the 

observed R2 Rayleigh waves. The time lags are positive for velocity models from 3 

standard deviations above the mean to 2 standard deviations lower than the mean 

velocity, and change sign at 3 standard deviations lower (Figure 4.9c). The waveform 

comparison (Figure 4.9c) also suggests that the upper mantle velocity model of Mars may 

be slightly slower on average than predicted by the mean value of the Stähler et al. (2021) 

model. 

 

4.3.3. Monte Carlo Inversion for the Martian Upper Mantle Velocity 

We employed a Monte Carlo inversion in which we perturbed the velocity in the 

depth range 40 to 700km, suggested by the Rayleigh wave sensitivity kernels (Figure 

4.13), to better constrain the upper mantle seismic structures of Mars. For the starting 

model, we chose the velocity model from Stähler et al. (2021) that produced the best fit to 

the observation (Figure 4.7h): This was the model 3σ lower than the mean velocity 

(Figures 4.9b and 4.9c). For each iteration, we randomly perturbed the starting velocity 

model 10 times and calculated the DSM (Kawai et al., 2006) synthetic seismograms for 

these 10 new velocity models. We next computed the correlation time shifts and 

correlation coefficients between the observed R2 (Figure 4.7h) and the synthetic R2 
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waveforms of these 10 models. The model with smallest absolute correlation time shifts 

and highest correlation coefficients was used for the next iteration. We repeated the same 

procedure for three iterations since the misfit increased upon further perturbation of the 

velocity model.  

Figures 4.14a and 4.14b show the upper mantle P- and S-wave velocity model 

update during each iteration of the Monte Carlo inversion, and the right 4 panels (Figures 

4.14c to 4.14f) illustrate the comparisons between the observed R2 (Figure 4.7h) and the 

synthetic seismograms of the best model in each iteration. Compared to the starting 

model, the final upper mantle velocity model after three iterations (black model in 

Figures 4.14a and 4.14b; Table 1) increases the correlation coefficients and reduces the 

absolute correlation time shifts between the observed and synthetic R2 waveforms by a 

factor of 5 (Figure 4.14f). The model perturbation between the starting and final velocity 

model is shown in Figure 4.15. Figures 4.16 and 4.17 show that our final model can fit 

the body-wave traveltime picks derived using different picking methods (Stähler et al., 

2021).  
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Figure 4.13 - Normalized Rayleigh wave sensitivity kernel of the velocity model in 

Figure 4.6a for periods of 100s (red curve) and 200s (blue curve). The phase and 

group velocity sensitivity kernels are plotted in solid and dashed lines, respectively. 

The gray-shaded area is the depth range that we perturbed during the Monte Carlo 

inversion. 



 
63 

 

 

Figure 4.14 - P- and S-wave velocity models of the Martian upper mantle (40-700 

km) updated during the Monte Carlo inversion are shown in (a) and (b) 

respectively. The red curve is the mean-3𝝈 model in Stähler et al. (2021). 

Comparisons between the synthetic R2 waveforms and real-data autocorrelation 

(Figure 4.7h) filtered between 0.005 and 0.01Hz for the starting velocity model (The 

red model in (a) and (b)) and the velocity models after 1st (The green model in (a) 

and (b)), 2nd (The blue model in (a) and (b)) and 3rd (The black model in (a) and (b)) 

iteration are shown in (c) – (f). The correlation time shifts and correlation 

coefficients between synthetic and observed R2 waveforms are listed at the right side 

of (c) – (f). Positive lag time means that the observed R2 phase propagates slower 

than synthetics and vice versa. 

Starting model

1st iteration

2nd iteration

3rd iteration

(c)

(d)

(e)

(f)

(a)
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Figure 4.15 - (a) P- and S-wave velocity perturbation between the final model (black 

model in Figures 4.14a and 4.14b) and starting model (red model in Figures 4.14a 

and 4.14b) of the Monte Carlo inversion. (b) P- and S-wave velocity perturbation 

percentage between the final model of the Monte Carlo inversion (black model in 

Figures 4.14a and 4.14b) and the mean velocity model in Stähler et al. (2021) (green 

model in Figure 4.9a). At shallower depths (< 40km) there were no perturbations. 

(a) (b)
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Figure 4.16 - (a) The comparison between body-wave traveltime picks (tS – tP on 

left and tScS – tP on right) derived from picking method #1 (Time-domain envelope 

picking) and the synthetic traveltimes of the mean velocity model in Stähler et al. 

(2021) (green model in Figure 4.9a) and the best model to fit R2 after Monte Carlo 

inversion (black model in Figures 4.14a and 4.14b). (b) Same as (a) but the observed 

body-wave traveltime picks are derived from picking method #2 (Joint SH-

correlation and backazimuth analysis). (c) Same as (a) but the observed body-wave 

traveltime picks are derived from picking method #3 (Vespagram analysis). Our R2-

fit model appears acceptable given the uncertainty in the original picks (see Figure 

4.17). 
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Figure 4.17 - (a) the traveltime residuals of the mean velocity in Stähler et al. (2021) 

and R2-fit model compared with the observed traveltime picks derived from picking 

method #1 (Time-domain envelope picking) (b) Same as (a) but compared with the 

observed body-wave traveltime picks derived from picking method #2 (Joint SH-

correlation and backazimuth analysis). (c) Same as (a) but compared with the 

observed body-wave traveltime picks derived from picking method #3 (Vespagram 

analysis). 

The S-wave low-velocity zone (LVZ), extending to ~400km depth, is clearly 

observed on the Monte-Carlo inverted S-wave velocity model (Figure 4.14b), but the S-

wave velocity has been increased compared to the starting model at depths > 200 km and 

is reduced at depths < 200 km (Figure 4.15a). Geophysical modeling indicates that the S-

wave LVZ may reach depths of 400 to 600km (Khan et al., 2021), and has been predicted 
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from laboratory measurement of seismic velocity for several representative Martian upper 

mantle compositions (Xu et al., 2021). The S-wave LVZ is thought to result from the 

steep thermal gradient in the Martian lithosphere arising from the thick conductive mantle 

(Khan et al., 2021). Moreover, a weak S-wave shadow zone is observed in epicentral 

distances range ~40 to 60 degrees, providing independent evidence to support the 

presence of an S-wave LVZ within the Martian lithosphere (Giardini et al., 2020; Khan et 

al., 2021; Knapmeyer-Endrun & Kawamura, 2020). No equivalent LVZ is required in the 

upper mantle P-wave model (Figure 4.14a) as P-wave velocity is much less sensitive to 

temperature (Khan et al., 2021). 

 

Table 1 - P- and S-wave velocity model after three iterations of Monte Carlo method 

(black model in Figures 4.14a and 4.14b). The velocity model uncertainty is not 

available for the depth above 40km because we did not perturb the velocity value in 

this depth range during Monte Carlo inversion. 
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4.4.  Conclusion 

We applied the autocorrelation method to the InSight continuous vertical-

component seismic data to provide the R2 Rayleigh waves that propagate around Mars for 

one cycle. The R2 surface waves are identified at ~6000s in the autocorrelations in the 

frequency band 0.005 to 0.01Hz (Figure 4.7). Comparing synthetic group dispersion 

curves (Figure 4.9b) and seismograms (Figure 4.9c) from a set of Martian velocity 

models in Figure 4.9a, we found that the upper mantle shear velocity structure is slower 

than the mean model derived from the joint inversion of multiple geophysical datasets 

(Stähler et al., 2021). A Monte Carlo inversion was employed to perturb the velocity 

model 3 standard deviations lower than the mean velocity model of Stähler et al. (2021). 

We obtained a model that better fits the observed R2 Rayleigh waves than the starting 

model (Figure 4.14f). The R2 model is different from the mean-3𝜎 model in Stähler et al. 

(2021) with velocities slower at depths < 200 km and faster at depths > 200 km (Figures 

4.14b and 4.15). The S-wave LVZ extends to a depth of ~400km in the Martian upper 

mantle (Figure 4.14b), consistent with the S-body wave shadow zone observed in the 

Marsquake data (Giardini et al., 2020; Khan et al., 2021; Knapmeyer-Endrun & 

Kawamura, 2020), geophysical inversion (Khan et al., 2021) and high-pressure laboratory 

experiments (Xu et al., 2021). 
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Chapter 5 

Conclusion 

In this thesis, the autocorrelation analysis was applied to the continuous ambient 

noise data recorded by InSight seismic station to reconstruct the subsurface structure of 

Mars. In Chapter 2, we showed the autocorrelation reflectivity in different frequency 

bands using the data recorded from February to August 2019. From high frequency 

(0.625-2.5Hz) autocorrelation series, we can observe P-wave and S-wave reflection at 

Moho. The estimated Moho depth is ~35km, which agrees with the results from gravity 

inversion (Zuber, 2000).  The Vp/Vs ratio is ~1.83, suggesting the Martian crust is made 

of basaltic or andesitic rocks. The P-wave reflection responses from olivine-wadsleyite 

transition and core-mantle boundary were recovered from low frequency ambient noise 

autocorrelation. The ringwoodite-perovskite transition is not observed as the temperature 

and pressure condition at Martian core-mantle boundary cannot trigger this phase 

transition. Given several reference velocity models (Khan et al., 2018; Panning et al., 
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2017; Yoshizaki & McDonough, 2020), The depths of olivine-wadsleyite transition and 

core-mantle boundary are put at 1110-1170km and 1520-1600km, respectively.  

However, Kim et al. (2021) and Barkaoui et al. (2021) pointed out that the 

observed signals in Deng and Levander (2020) are from quasi-periodic glitches rather 

than real reflection responses from seismic discontinuities. In Chapter 3, we calculated 

and stacked the autocorrelations using three types of datasets: (1) raw ambient noise data; 

(2) deglitched ambient noise data and (3) glitch-only data. The signals at ~285s and 

~385s can be clearly retrieved from deglitched dataset but cannot be retrieved from 

glitch-only dataset. In raw data autocorrelation, these two signals can also be observed 

but the waveform is complicated as it is contaminated by the high-amplitude glitches. 

The autocorrelation test demonstrated the observation of the reflection response from 

deep Mars (e.g., olivine-wadsleyite transition and core-mantle boundary) was robust. The 

grid search was conducted to constrain the velocity models near CMB and improve the fit 

between observed and synthetic PcP phases (Figure 3.4). A 60km 1-layer velocity 

transition zone near Martian core-mantle boundary is derived to better match with the 

observed PcP compared with a sharp velocity drop (Figure 3.4). 

In Chapter 4, we employed the ambient noise autocorrelation to derive another 

type of seismic wave, the surface wave that travels around the planet for one cycle (R2). 

The synthetic group velocities and R2 waveforms were simulated for the reference 

velocity models in Stähler et al. (2021) to compare with the observed Mars orbiting 

surface wave. We found that the real upper mantle velocity structure of Mars maybe 

slightly slower than the mean model in Stähler et al. (2021). The Monte Carlo inversion 
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was applied to refine the upper mantle structure of Mars (40-700km), where an S-wave 

LVZ is observed in the final velocity model. The S-wave LVZ extends to a depth of 

~400km in the Martian upper mantle (Figure 4.14b), consistent with the S-body wave 

shadow zone observed in the Marsquake data (Giardini et al., 2020; Khan et al., 2021; 

Knapmeyer-Endrun & Kawamura, 2020), geophysical inversion (Khan et al., 2021) and 

high-pressure laboratory experiments (Xu et al., 2021). 
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Appendix A: Supporting Information for Chapter 3 

 

Text A1 - Parameter Test for Glitch Detection and Removal  

We applied the open-source software SEISglitch (Scholz et al., 2020) to detect 

and remove the high-amplitude glitches within the raw InSight (Interior Exploration 

Using Seismic Investigations, Geodesy and Heat Transport) seismic data. The stacked 

autocorrelation of the deglitched waveform can clearly recover the body-wave reflection 

responses from olivine-wadsleyite transition and core-mantle boundary (Figure A2). Here 

we designed a parameter test of the SEISglitch software to demonstrate the robustness of 

the data processing procedures.  

Two SEISglitch parameters, glitch-detection amplitude threshold (hereafter 

referred as “threshold”) and minimum glitch polarization value (hereafter referred as 

“glitch_min_polarization”), were tuned to compare with the autocorrelation results in 

Figure A2. The details of threshold and glitch_min_polarization are shown in Scholz et 

al. (2020) and SEISglitch webpage (https://seisglitch.readthedocs.io/en/latest/index.html). 

When threshold and glitch_min_polarization are small, it represents more lax parameter 

settings and more glitches will be detected, and vice versa. Here we set relatively lower 

threshold and glitch_min_polarization values (Table A1) to detect ~40% - 100% more 

glitches than the results shown in Figure 3.1. Figure A1 illustrates the raw and deglitched 

waveforms with more lax parameter settings. Then we followed the same processing 

steps shown in the main article to calculate each 4-hour autocorrelogram and sum them 
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together with both linear stacking (LS) and phase-weighted stacking (PWS) (Schimmel & 

Paulssen, 1997). Figure A2 compares the LS and PWS stacked autocorrelation of raw, 

deglitched and glitch-only datasets with laxer SEISglitch parameter settings. Two clear 

signals at ~285 s and ~385 s can be observed on the autocorrelation of deglitched 

waveforms but cannot be observed on the autocorrelation of glitch-only waveforms. The 

results shown in Figure A2 are almost identical as Figure 3.2, which suggests the impact 

of SEISglitch parameter selection can be negligible.   

 

 threshold  (𝑚/𝑠3) glitch_min_polarization 

Figure 1 0.25 × 10−9 0.91 

Figure S1 0.1 × 10−9 0.87 

Table A1. Threshold and glitch_min_polarization values used for the glitch 

detection and removal shown in Figures 3.1 and A1 
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Figure A1. (a) Comparison between the original and deglitched BHU-component 

recordings on January 3rd, 2020. Same as Figure 1a but with laxer SEISglitch 

parameter selections (Table A1). (b) Same as (a) but for BHV-component. (c) Same 

as (a) but for BHW-component. 

 

Figure A2. (a) Linearly stacked (LS) vertical-component autocorrelation filtered 

between 0.05 and 0.1Hz using raw (black), deglitched (red) and glitch-only (blue) 

data. Same as Figure 3.2a but with laxer SEISglitch parameter selections (Table 

A1). (b) Same as (a) but for phase-weighted stacking (PWS) (Schimmel & Paulssen, 

1997) 
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Text A2 - Comparison with the stacked autocorrelation using daytime and 

nighttime ambient noise data 

We divided the deglitched data into two subsets, daytime and nighttime 

deglitched ambient noise recordings. In most cases, the nighttime data are quieter than 

the daytime data as the wind-generated noise is strong during daytime (Scholz et al., 

2020). We followed the same autocorrelation method in the main article to process two 

deglitched subsets independently and compared the results (Figure A3). Two prominent 

phases at ~285 and ~385s can be clearly retrieved by both subsets (Figure A3), which 

indicate the robustness of the processing method. 

 

Figure A3. (a) Linearly stacked autocorrelation of the deglitched ambient noise data 

recorded during Martian daytime. (b) Linearly stacked autocorrelation of the 

deglitched ambient noise data recorded during Martian nighttime. Two signals at 

~285s and ~385s, interpreted as the P-wave reflection response from olivine-

Daytime autocorrelation

Nighttime autocorrelation

(a)

(b)

POlivine-WadsleyiteP PCP
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wadsleyite transition and core-mantle boundary, can be clearly retrieved by two 

subsets. 

 

Text A3 – Bootstrap Calculations 

We performed the bootstrap calculations for the autocorrelograms of deglitched 

ambient noise data to determine whether the results are robust or not. We randomly 

selected ~80% of 6190 4-hour autocorrelograms of deglitched waveforms (4950 4-hour 

autocorrolograms) and followed the same data processing procedures as Figure 2b to 

derive autocorrelation reflectivity series. This step will be repeated for 30 times. Figure 

S4 shows the PWS stacked autocorrelations using 30 different subsets, where the 

reflection signals from olivine-wadsleyite transition and core-mantle boundary can be 

clearly retrieved for all subsets. It further proves our autocorrelation processing is not 

biased. 

 

Figure A4. Bootstrap calculations for the autocorrelograms of deglitched ambient 

noise recordings filtered between 0.05 and 0.1 Hz, which followed the same 

processing steps as Figure 2b. Each bootstrap sample takes around 80% of whole 

dataset (4950 4-hour autocorrelograms of deglitched waveforms). The gray dashed 

lines mark the location of interpreted P-wave reflection signals from olivine-

wadsleyite transition and core-mantle boundary 
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Figure A5. (a) The velocity model that is 3 standard deviations lower than the mean 

model of Stähler et al. (2021), which is the best fit model for the observed PcP phase 

among Stähler et al. (2021) suite of models (Figure 3.3b). (b) Depth conversion of the 

autocorrelation of deglitched ambient noise data (Red trace in Figure 3.2b). The 

black dashed lines mark the depth location of interpreted olivine-wadsleyite 

transition and core-mantle boundary. The depth of olivine-wadsleyite transition is 

mapped at ~1090km. 
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Figure A6. (a) Correlation Coefficient between the observed PcP phase (Red curve 

in Figure 3.2b) and synthetic PcP phase for different transition zone velocities 𝑽𝑻𝒁 

of 40km thick CMB transition zone model. (b) The comparison between the 

synthetic PcP phase of the velocity models shown in (a) and the observed PcP phase. 

The correlation coefficients between the synthetic and observed PcP are shown on 

the right side. The blue box marks the model with highest correlation coefficient 

among all models shown in (a). 
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Figure A7. (a) Correlation Coefficient between the observed PcP phase (Red curve 

in Figure 3.2b) and synthetic PcP phase for different transition zone velocities 𝑽𝑻𝒁 

of 60km thick CMB transition zone model. (b) The comparison between the 

synthetic PcP phase of the velocity models shown in (a) and the observed PcP phase. 

The correlation coefficients between the synthetic and observed PcP are shown on 

the right side. The blue box marks the model with highest correlation coefficient 

among all models shown in (a). 
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Figure A8. (a) Correlation Coefficient between the observed PcP phase (Red curve 

in Figure 3.2b) and synthetic PcP phase for different transition zone velocities 𝑽𝑻𝒁 

of 80km thick CMB transition zone model. (b) The comparison between the 

synthetic PcP phase of the velocity models shown in (a) and the observed PcP phase. 

The correlation coefficients between the synthetic and observed PcP are shown on 

the right side. The blue box marks the model with highest correlation coefficient 

among all models shown in (a). 
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Figure A9. (a) Correlation Coefficient between the observed PcP phase (Red curve 

in Figure 3.2b) and synthetic PcP phase for different transition zone velocities 𝑽𝑻𝒁 

of 100km thick CMB transition zone model. (b) The comparison between the 

synthetic PcP phase of the velocity models shown in (a) and the observed PcP phase. 

The correlation coefficients between the synthetic and observed PcP are shown on 

the right side. The blue box marks the model with highest correlation coefficient 

among all models shown in (a). 
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Figure A10. (a) Correlation Coefficient between the observed PcP phase (Red curve 

in Figure 3.2b) and synthetic PcP phase for different transition zone velocities 𝑽𝑻𝒁 

of 120km thick CMB transition zone model. (b) The comparison between the 

synthetic PcP phase of the velocity models shown in (a) and the observed PcP phase. 

The correlation coefficients between the synthetic and observed PcP are shown on 

the right side. The blue box marks the model with highest correlation coefficient 

among all models shown in (a). 
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Data Availability Statement  

The InSight seismic data (InSight Mars SEIS Data Service, 2019) used in this 

thesis are available on IRIS (Incorporated Research Institutions for Seismology) data 

center (https://www.iris.edu/hq/sis/insight). The open-source Python package SEISglitch 

(Scholz et al., 2020) can be installed following the instructions 

(https://seisglitch.readthedocs.io/en/latest/). The temperature data on Mars were 

downloaded from The Geosciences Node of NASA’s Planetary Data System (PDS) 

website (https://pds-geosciences.wustl.edu/insight/urn-nasa-pds-

insight_rad/data_derived/). The windspeed data were acquired from InSight weather 

station page 

(https://atmos.nmsu.edu/data_and_services/atmospheres_data/INSIGHT/insight.html). 

The synthetic group dispersion curves of spherically symmetric velocity models were 

calculated by Computer Programs in Seismology (CPS) (Herrmann, 2013). The direct 

solution method (DSM) software (Kawai et al., 2006) can be accessed at the following 

URL (http://www-solid.eps.s.u-tokyo.ac.jp/~dsm/software/software.htm). Several 

procedures used Obspy (Krischer et al., 2015) to process the seismic data.  
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