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Chapter 1 

Preface1 

This book develops the ideas behind and properties of wavelets and shows how they can be used as analytical 
tools for signal processing, numerical analysis, and mathematical modeling. We try to present this in a way 
that is accessible to the engineer, scientist, and applied mathematician both as a theoretical approach and 
as a potentially practical method to solve problems. Although the roots of this subject go back some time, 
the modern interest and development have a history of only a few decades. 

The early work was in the 1980's by Morlet, Grossmann, Meyer, Mallat, and others, but it was the paper 
by Ingrid Daubechies [102] in 1988 that caught the attention of the larger applied mathematics communities 
in signal processing, statistics, and numerical analysis. Much of the early work took place in France [97], 
[376] and the USA [102], [451], [116], [445]. As in many new disciplines, the ˝rst work was closely tied to a 
particular application or traditional theoretical framework. Now we are seeing the theory abstracted from 
application and developed on its own and seeing it related to other parallel ideas. Our own background and 
interests in signal processing certainly in˛uence the presentation of this book. 

The goal of most modern wavelet research is to create a set of basis functions (or general expansion 
functions) and transforms that will give an informative, e°cient, and useful description of a function or 
signal and allow more e˙ective and e°cient processing. If the signal is represented as a function of time, 
wavelets provide e°cient localization in both time and frequency or scale. Another central idea is that of 
multiresolution where the decomposition of a signal is in terms of the resolution of detail. 

For the Fourier series, sinusoids are chosen as basis functions, then the properties of the resulting expan-
sion are examined. For wavelet analysis, one poses the desired properties and then derives the resulting basis 
functions. An important property of the wavelet basis is providing a multiresolution analysis. For several 
reasons, it is often desired to have the basis functions orthonormal. Given these goals, you will see aspects 
of correlation techniques, Fourier transforms, short-time Fourier transforms, discrete Fourier transforms, 
Wigner distributions, ˝lter banks, subband coding, and other signal expansion and processing methods in 
the results. 

Wavelet-based analysis is an exciting new problem-solving tool for the mathematician, scientist, and 
engineer. It ˝ts naturally with the digital computer with its basis functions de˝ned by summations not 
integrals or derivatives. Unlike most traditional expansion systems, the basis functions of the wavelet analysis 
are not solutions of di˙erential equations. In some areas, it is the ˝rst truly new tool we have had in many 
years. Indeed, use of wavelets and wavelet transforms requires a new point of view and a new method of 
interpreting representations that we are still learning how to exploit. 

Work by Donoho, Johnstone, Coifman, and others have added theoretical reasons for why wavelet analysis 
is so versatile and powerful, and have given generalizations that are still being worked on. They have shown 
that wavelet systems have some inherent generic advantages and are near optimal for a wide class of problems 
[141]. They also show that adaptive means can create special wavelet systems for particular signals and classes 
of signals. 

1This content is available online at <http://cnx.org/content/m45097/1.15/>. 
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2 CHAPTER 1. PREFACE 

The multiresolution decomposition seems to separate components of a signal in a way that is superior to 
most other methods for analysis, processing, or compression. Because of the ability of the discrete wavelet 
transform to decompose a signal at di˙erent independent scales and to do it in a very ˛exible way, Burke calls 
wavelets �The Mathematical Microscope" [48], [268]. Because of this powerful and ˛exible decomposition, 
linear and nonlinear processing of signals in the wavelet transform domain o˙ers new methods for signal 
detection, ˝ltering, and compression [141], [149], [138], [458], [566], [233]. It also can be used as the basis for 
robust numerical algorithms. 

You will also see an interesting connection and equivalence to ˝lter bank theory from digital signal 
processing [524], [12]. Indeed, some of the results obtained with ˝lter banks are the same as with discrete-
time wavelets, and this has been developed in the signal processing community by Vetterli, Vaidyanathan, 
Smith and Barnwell, and others. Filter banks, as well as most algorithms for calculating wavelet transforms, 
are part of a still more general area of multirate and time-varying systems. 

The presentation here will be as a tutorial or primer for people who know little or nothing about wavelets 
but do have a technical background. It assumes a knowledge of Fourier series and transforms and of linear 
algebra and matrix theory. It also assumes a background equivalent to a B.S. degree in engineering, science, 
or applied mathematics. Some knowledge of signal processing is helpful but not essential. We develop the 
ideas in terms of one-dimensional signals [445] modeled as real or perhaps complex functions of time, but 
the ideas and methods have also proven e˙ective in image representation and processing [472], [336] dealing 
with two, three, or even four or more dimensions. Vector spaces have proved to be a natural setting for 
developing both the theory and applications of wavelets. Some background in that area is helpful but can 
be picked up as needed [55]. The study and understanding of wavelets is greatly assisted by using some sort 
of wavelet software system to work out examples and run experiments. Matlab

TM programs are included 
at the end of this book and on our web site (noted at the end of the preface). Several other systems are 
mentioned in Chapter: Wavelet-Based Signal Processing and Applications (Chapter 11). 

There are several di˙erent approaches that one could take in presenting wavelet theory. We have chosen 
to start with the representation of a signal or function of continuous time in a series expansion, much as a 
Fourier series is used in a Fourier analysis. From this series representation, we can move to the expansion of a 
function of a discrete variable (e.g., samples of a signal) and the theory of ˝lter banks to e°ciently calculate 
and interpret the expansion coe°cients. This would be analogous to the discrete Fourier transform (DFT) 
and its e°cient implementation, the fast Fourier transform (FFT). We can also go from the series expansion 
to an integral transform called the continuous wavelet transform, which is analogous to the Fourier transform 
or Fourier integral. We feel starting with the series expansion gives the greatest insight and provides ease in 
seeing both the similarities and di˙erences with Fourier analysis. 

This book is organized into sections and chapters, each somewhat self-contained. The earlier chapters 
give a fairly complete development of the discrete wavelet transform (DWT) as a series expansion of signals 
in terms of wavelets and scaling functions. The later chapters are short descriptions of generalizations of the 
DWT and of applications. They give references to other works, and serve as a sort of annotated bibliography. 
Because we intend this book as an introduction to wavelets which already have an extensive literature, we 
have included a rather long bibliography. However, it will soon be incomplete because of the large number 
of papers that are currently being published. Nevertheless, a guide to the other literature is essential to our 
goal of an introduction. 

A good sketch of the philosophy of wavelet analysis and the history of its development can be found in a 
book published by the National Academy of Science in the chapter by Barbara Burke [48]. She has written 
an excellent expanded version in [268], which should be read by anyone interested in wavelets. Daubechies 
gives a brief history of the early research in [127]. 

Many of the results and relationships presented in this book are in the form of theorems and proofs or 
derivations. A real e˙ort has been made to ensure the correctness of the statements of theorems but the 
proofs are often only outlines of derivations intended to give insight into the result rather than to be a formal 
proof. Indeed, many of the derivations are put in the Appendix in order not to clutter the presentation. 
We hope this style will help the reader gain insight into this very interesting but sometimes obscure new 
mathematical signal processing tool. 
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We use a notation that is a mixture of that used in the signal processing literature and that in the 
mathematical literature. We hope this will make the ideas and results more accessible, but some uniformity 
and cleanness is lost. 

The authors acknowledge AFOSR, ARPA, NSF, Nortel, Inc., Texas Instruments, Inc. and Aware, Inc. 
for their support of this work. We speci˝cally thank H. L. Resniko˙, who ˝rst introduced us to wavelets 
and who proved remarkably accurate in predicting their power and success. We also thank W. M. Lawton, 
R. O. Wells, Jr., R. G. Baraniuk, J. E. Odegard, I. W. Selesnick, M. Lang, J. Tian, and members of the 
Rice Computational Mathematics Laboratory for many of the ideas and results presented in this book. The 
˝rst named author would like to thank the Max˝eld and Oshman families for their generous support. The 
students in EE-531 and EE-696 at Rice University provided valuable feedback as did Bruce Francis, Strela 
Vasily, Hans Schüssler, Peter Ste˙en, Gary Sitton, Jim Lewis, Yves Angel, Curt Michel, J. H. Husoy, Kjersti 
Engan, Ken Castleman, Je˙ Trinkle, Katherine Jones, and other colleagues at Rice and elsewhere. 

We also particularly want to thank Tom Robbins and his colleagues at Prentice Hall for their support 
and help. Their reviewers added signi˝cantly to the book. 

We would appreciate learning of any errors or misleading statements that any readers discover. Indeed, 
any suggestions for improvement of the book would be most welcome. Send suggestions or comments via 
email to csb@rice.edu. Software, articles, errata for this book, and other information on the wavelet research 
at Rice can be found on the world-wide-web URL: http://dsp.rice.edu/ with links to other sites where wavelet 
research is being done. 

C. Sidney Burrus, Ramesh A. Gopinath, and Haitao Guo 
Houston, Texas; Yorktown Heights, New York; and Cuppertino, California 

1.1 Instructions to the Reader 

Although this book in arranged in a somewhat progressive order, starting with basic ideas and de˝nitions, 
moving to a rather complete discussion of the basic wavelet system, and then on to generalizations, one should 
skip around when reading or studying from it. Depending on the background of the reader, he or she should 
skim over most of the book ˝rst, then go back and study parts in detail. The Introduction at the beginning 
and the Summary at the end should be continually consulted to gain or keep a perspective; similarly for 
the Table of Contents and Index. The Matlab programs in the Appendix or the Wavelet Toolbox from 
Mathworks or other wavelet software should be used for continual experimentation. The list of references 
should be used to ˝nd proofs or detail not included here or to pursue research topics or applications. The 
theory and application of wavelets are still developing and in a state of rapid growth. We hope this book 
will help open the door to this fascinating new subject. 

1.2 OpenStax-Connexions Edition 

We thank Pearson, Inc. for permission (given in 2012) to put this content (originally published in 
1998 with Prentice Hall) into the OpenStax Cnx system online under the Creative Commons attribu-
tion only (cc-by) copyright license. We also thank Daniel Williamson at OpenStax for his contributions. 
This edition has some minor errors corrected and some more recent references added. In particular, 
Stéphane Mallat latest book, a Wavelet Tour of Signal Processing [354] also available in OpenStax at 
https://legacy.cnx.org/content/col10711/latest/ and Kova£evi¢, Goyal, and Vetterli's new book, Fourier 
and Wavelet Signal Processing [298] online at http://www.fourierandwavelets.org/ A valuable collection of 
basic papers has been published [250] and a book on Frames [64]. 

If one starts with Louis Scharf's book, A First Course in Electrical and Computer Engineering , which 
is in OpenStax at https://legacy.cnx.org/content/col10685/latest/ followed by Richard Baraniuk's book, 
Signals and Systems, at https://legacy.cnx.org/content/col10064/latest/ and Martin Vetterli et al book, 
Foundations of Signal Processing at http://www.fourierandwavelets.org/ one has an excellent set of signal 
processing resources, all online. 

http://www.fourierandwavelets.org
https://legacy.cnx.org/content/col10064/latest
https://legacy.cnx.org/content/col10685/latest
http://www.fourierandwavelets.org
https://legacy.cnx.org/content/col10711/latest
http://dsp.rice.edu
mailto:csb@rice.edu
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Chapter 2 

Introduction to Wavelets1 

This chapter will provide an overview of the topics to be developed in the book. Its purpose is to present 
the ideas, goals, and outline of properties for an understanding of and ability to use wavelets and wavelet 
transforms. The details and more careful de˝nitions are given later in the book. 

A wave is usually de˝ned as an oscillating function of time or space, such as a sinusoid. Fourier analysis is 
wave analysis. It expands signals or functions in terms of sinusoids (or, equivalently, complex exponentials) 
which has proven to be extremely valuable in mathematics, science, and engineering, especially for periodic, 
time-invariant, or stationary phenomena. A wavelet is a �small wave", which has its energy concentrated in 
time to give a tool for the analysis of transient, nonstationary, or time-varying phenomena. It still has the 
oscillating wave-like characteristic but also has the ability to allow simultaneous time and frequency analysis 
with a ˛exible mathematical foundation. This is illustrated in Figure 2.1 with the wave (sinusoid) oscillating 
with equal amplitude over −∞ ≤ t ≤ ∞ and, therefore, having in˝nite energy and with the wavelet in 
Figure 2.2 having its ˝nite energy concentrated around a point in time. 

Figure 2.1: A Wave and a Wavelet: A Sine Wave 

1This content is available online at <http://cnx.org/content/m45096/1.5/>. 
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6 CHAPTER 2. INTRODUCTION TO WAVELETS 

Figure 2.2: A Wave and a Wavelet: Daubechies' Wavelet ψD20 

We will take wavelets and use them in a series expansion of signals or functions much the same way a 
Fourier series uses the wave or sinusoid to represent a signal or function. The signals are functions of a 
continuous variable, which often represents time or distance. From this series expansion, we will develop 
a discrete-time version similar to the discrete Fourier transform where the signal is represented by a string 
of numbers where the numbers may be samples of a signal, samples of another string of numbers, or inner 
products of a signal with some expansion set. Finally, we will brie˛y describe the continuous wavelet 
transform where both the signal and the transform are functions of continuous variables. This is analogous 
to the Fourier transform. 

2.1 Wavelets and Wavelet Expansion Systems 

Before delving into the details of wavelets and their properties, we need to get some idea of their general 
characteristics and what we are going to do with them [504]. 

2.1.1 What is a Wavelet Expansion or a Wavelet Transform? 

A signal or function f (t) can often be better analyzed, described, or processed if expressed as a linear 
decomposition by X 

f (t) = a` ψ` (t) (2.1) 
` 

where ` is an integer index for the ˝nite or in˝nite sum, a` are the real-valued expansion coe°cients, and 
ψ` (t) are a set of real-valued functions of t called the expansion set. If the expansion (2.1) is unique, the set 
is called a basis for the class of functions that can be so expressed. If the basis is orthonormal, meaning Z 

< ψk (t) , ψ` (t) > = ψk (t) ψ` (t) dt = 0 k 6= `, (2.2) 

then the coe°cients can be calculated by the inner product Z 
ak = < f (t) , ψk (t) > = f (t) ψk (t) dt. (2.3) 

One can see that substituting (2.1) into (2.3) and using (2.2) gives the single ak coe°cient. If the basis 
˜set is not orthogonal, then a dual basis set ψk (t) exists such that using (2.3) with the dual basis gives the 

desired coe°cients. This will be developed in Chapter: A multiresolution formulation of Wavelet Systems 
(Chapter 3). 
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For a Fourier series, the orthogonal basis functions ψk (t) are sin (kω0t) and cos (kω0t) with frequencies 
of kω0. For a Taylor's series, the nonorthogonal basis functions are simple monomials tk , and for many other 
expansions they are various polynomials. There are expansions that use splines and even fractals. 

For the wavelet expansion, a two-parameter system is constructed such that (2.1) becomes XX 
f (t) = aj,k ψj,k (t) (2.4) 

k j 

where both j and k are integer indices and the ψj,k (t) are the wavelet expansion functions that usually 
form an orthogonal basis. 

The set of expansion coe°cients aj,k are called the discrete wavelet transform (DWT) of f (t) and (2.4) 
is the inverse transform. 

2.1.2 What is a Wavelet System? 

The wavelet expansion set is not unique. There are many di˙erent wavelets systems that can be used 
e˙ectively, but all seem to have the following three general characteristics [504]. 

1. A wavelet system is a set of building blocks to construct or represent a signal or function. It is a 
two-dimensional expansion set (usually a basis) for some class of one- (or higher) dimensional signals. 
In other words, if the wavelet set is given by ψj,k (t) for indices of j, k = 1, 2, · · ·, a linear expansionP P 
would be f (t) = j aj,k ψj,k (t) for some set of coe°cients aj,k.k 

2. The wavelet expansion gives a time-frequency localization of the signal. This means most of the energy 
of the signal is well represented by a few expansion coe°cients, aj,k. 

3. The calculation of the coe°cients from the signal can be done e°ciently. It turns out that many 
wavelet transforms (the set of expansion coe°cients) can be calculated with O (N) operations. This 
means the number of ˛oating-point multiplications and additions increase linearly with the length of 
the signal. More general wavelet transforms require O (Nlog (N)) operations, the same as for the fast 
Fourier transform (FFT) [53]. 

Virtually all wavelet systems have these very general characteristics. Where the Fourier series maps a one-
dimensional function of a continuous variable into a one-dimensional sequence of coe°cients, the wavelet 
expansion maps it into a two-dimensional array of coe°cients. We will see that it is this two-dimensional 
representation that allows localizing the signal in both time and frequency. A Fourier series expansion 
localizes in frequency in that if a Fourier series expansion of a signal has only one large coe°cient, then the 
signal is essentially a single sinusoid at the frequency determined by the index of the coe°cient. The simple 
time-domain representation of the signal itself gives the localization in time. If the signal is a simple pulse, 
the location of that pulse is the localization in time. A wavelet representation will give the location in both 
time and frequency simultaneously. Indeed, a wavelet representation is much like a musical score where the 
location of the notes tells when the tones occur and what their frequencies are. 

2.1.3 More Speci˝c Characteristics of Wavelet Systems 

There are three additional characteristics [504], [117] that are more speci˝c to wavelet expansions. 

1. All so-called ˝rst-generation wavelet systems are generated from a single scaling function or wavelet by 
simple scaling and translation. The two-dimensional parameterization is achieved from the function 
(sometimes called the generating wavelet or mother wavelet) ψ (t) by � � 

2j/2 ψ 2jψj,k (t) = t − k j, k ∈ Z (2.5) 

where Z is the set of all integers and the factor 2j/2 maintains a constant norm independent of scale 
j. This parameterization of the time or space location by k and the frequency or scale (actually the 
logarithm of scale) by j turns out to be extraordinarily e˙ective. 
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2. Almost all useful wavelet systems also satisfy the multiresolution conditions. This means that if a set 
of signals can be represented by a weighted sum of ϕ (t − k), then a larger set (including the original) 
can be represented by a weighted sum of ϕ (2t − k). In other words, if the basic expansion signals are 
made half as wide and translated in steps half as wide, they will represent a larger class of signals 
exactly or give a better approximation of any signal. 

3. The lower resolution coe°cients can be calculated from the higher resolution coe°cients by a tree-
structured algorithm called a ˝lter bank. This allows a very e°cient calculation of the expansion 
coe°cients (also known as the discrete wavelet transform) and relates wavelet transforms to an older 
area in digital signal processing. 

The operations of translation and scaling seem to be basic to many practical signals and signal-generating 
processes, and their use is one of the reasons that wavelets are e°cient expansion functions. Figure 2.3 is a 
pictorial representation of the translation and scaling of a single mother wavelet described in (2.5). As the 
index k changes, the location of the wavelet moves along the horizontal axis. This allows the expansion to 
explicitly represent the location of events in time or space. As the index j changes, the shape of the wavelet 
changes in scale. This allows a representation of detail or resolution. Note that as the scale becomes ˝ner (j 
larger), the steps in time become smaller. It is both the narrower wavelet and the smaller steps that allow 
representation of greater detail or higher resolution. For clarity, only every fourth term in the translation 
(k = 1, 5, 9, 13, · · ·) is shown, otherwise, the ˝gure is a clutter. What is not illustrated here but is important 
is that the shape of the basic mother wavelet can also be changed. That is done during the design of the 
wavelet system and allows one set to well-represent a particular class of signals. 

For the Fourier series and transform and for most signal expansion systems, the expansion functions 
(bases) are chosen, then the properties of the resulting transform are derived and 

Figure 2.3: Translation (every fourth k) and Scaling of a Wavelet ψD4 

analyzed. For the wavelet system, the desired properties or characteristics are mathematically required, 
then the resulting basis functions are derived. Because these constraints do not use all the degrees of 
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freedom, other properties can be required to customize the wavelet system for a particular application. Once 
you decide on a Fourier series, the sinusoidal basis functions are completely set. That is not true for the 
wavelet. There are an in˝nity of very di˙erent wavelets that all satisfy the above properties. Indeed, the 
understanding and design of the wavelets is an important topic of this book. 

Wavelet analysis is well-suited to transient signals. Fourier analysis is appropriate for periodic signals or 
for signals whose statistical characteristics do not change with time. It is the localizing property of wavelets 
that allow a wavelet expansion of a transient event to be modeled with a small number of coe°cients. This 
turns out to be very useful in applications. 

2.1.4 Haar Scaling Functions and Wavelets 

The multiresolution formulation needs two closely related basic functions. In addition to the wavelet ψ (t) 
that has been discussed (but not actually de˝ned yet), we will need another basic function called the scaling 
function ϕ (t). The reasons for needing this function and the details of the relations will be developed in the 
next chapter, but here we will simply use it in the wavelet expansion. 

The simplest possible orthogonal wavelet system is generated from the Haar scaling function and wavelet. 
These are shown in Figure 2.4. Using a combination of these scaling functions and wavelets allows a large 
class of signals to be represented by 

∞ ∞ ∞X X X � � 
f (t) = ck φ (t − k) + dj,k ψ 2j t − k . (2.6) 

k=−∞ k=−∞ j=0 

Haar [242] showed this result in 1910, and we now know that wavelets are a generalization of his work. An 
example of a Haar system and expansion is given at the end of Chapter: A multiresolution formulation of 
Wavelet Systems (Chapter 3). 

2.1.5 What do Wavelets Look Like? 

All Fourier basis functions look alike. A high-frequency sine wave looks like a compressed low-frequency sine 
wave. A cosine wave is a sine wave translated by 90o or π/2 radians. It takes a 

Figure 2.4: Haar Scaling Function and Wavelet 

large number of Fourier components to represent a discontinuity or a sharp corner. In contrast, there are 
many di˙erent wavelets and some have sharp corners themselves. 

To appreciate the special character of wavelets you should recognize that it was not until the late 1980's 
that some of the most useful basic wavelets were ever seen. Figure 2.5 illustrates four di˙erent scaling 
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functions, each being zero outside of 0 < t < 6 and each generating an orthogonal wavelet basis for all square 
integrable functions. This ˝gure is also shown on the cover to this book. 

Several more scaling functions and their associated wavelets are illustrated in later chapters, and the 
Haar wavelet is shown in Figure 2.4 and in detail at the end of Chapter: A multiresolution formulation of 
Wavelet Systems (Chapter 3). 

Figure 2.5: Example Scaling Functions (See Section: Further Properties of the Scaling Function and 
Wavelet (Section 6.8: Further Properties of the Scaling Function and Wavelet) for the meaning of α and 
β) 

2.1.6 Why is Wavelet Analysis E˙ective? 

Wavelet expansions and wavelet transforms have proven to be very e°cient and e˙ective in analyzing a very 
wide class of signals and phenomena. Why is this true? What are the properties that give this e˙ectiveness? 

1. The size of the wavelet expansion coe°cients aj,k in (2.4) or dj,k in (2.6) drop o˙ rapidly with j and k 
for a large class of signals. This property is called being an unconditional basis and it is why wavelets 
are so e˙ective in signal and image compression, denoising, and detection. Donoho [142], [161] showed 
that wavelets are near optimal for a wide class of signals for compression, denoising, and detection. 

2. The wavelet expansion allows a more accurate local description and separation of signal characteristics. 
A Fourier coe°cient represents a component that lasts for all time and, therefore, temporary events 
must be described by a phase characteristic that allows cancellation or reinforcement over large time 
periods. A wavelet expansion coe°cient represents a component that is itself local and is easier to 
interpret. The wavelet expansion may allow a separation of components of a signal whose Fourier 
description overlap in both time and frequency. 

3. Wavelets are adjustable and adaptable. Because there is not just one wavelet, they can be designed 
to ˝t individual applications. They are ideal for adaptive systems that adjust themselves to suit the 
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signal. 
4. The generation of wavelets and the calculation of the discrete wavelet transform is well matched to the 

digital computer. We will later see that the de˝ning equation for a wavelet uses no calculus. There are 
no derivatives or integrals, just multiplications and additions�operations that are basic to a digital 
computer. 

While some of these details may not be clear at this point, they should point to the issues that are important 
to both theory and application and give reasons for the detailed development that follows in this and other 
books. 

2.2 The Discrete Wavelet Transform 

This two-variable set of basis functions is used in a way similar to the short-time Fourier transform, the Gabor 
transform, or the Wigner distribution for time-frequency analysis [81], [84], [264]. Our goal is to generate a 
set of expansion functions such that any signal in L2 (R) (the space of square integrable functions) can be 
represented by the series X � � 

f (t) = 2jaj,k 2
j/2 ψ t − k (2.7) 

j,k 

or, using (2.5), as X 
f (t) = aj,k ψj,k (t) (2.8) 

j,k 

where the two-dimensional set of coe°cients aj,k is called the discrete wavelet transform (DWT) of f (t). 
A more speci˝c form indicating how the aj,k's are calculated can be written using inner products as X 

f (t) = < ψj,k (t) , f (t) > ψj,k (t) (2.9) 
j,k 

if the ψj,k (t) form an orthonormal basis2 for the space of signals of interest [117]. The inner product is 
usually de˝ned as Z 

< x (t) , y (t) > = x ∗ (t) y (t) dt. (2.10) 

The goal of most expansions of a function or signal is to have the coe°cients of the expansion aj,k give 
more useful information about the signal than is directly obvious from the signal itself. A second goal is 
to have most of the coe°cients be zero or very small. This is what is called a sparse representation and 
is extremely important in applications for statistical estimation and detection, data compression, nonlinear 
noise reduction, and fast algorithms. 

Although this expansion is called the discrete wavelet transform (DWT), it probably should be called a 
wavelet series since it is a series expansion which maps a function of a continuous variable into a sequence 
of coe°cients much the same way the Fourier series does. However, that is not the convention. 

This wavelet series expansion is in terms of two indices, the time translation k and the scaling index j. 
For the Fourier series, there are only two possible values of k, zero and π/2, which give the sine terms and 
the cosine terms. The values j give the frequency harmonics. In other words, the Fourier series is also a 
two-dimensional expansion, but that is not seen in the exponential form and generally not noticed in the 
trigonometric form. 

2Bases and tight frames are de˝ned in Chapter: Bases, Orthogonal Bases, Biorthogonal Bases, Frames, Right Frames, and 
unconditional Bases. (Chapter 5) 
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The DWT of a signal is somewhat di°cult to illustrate because it is a function of two variables or indices, 
but we will show the DWT of a simple pulse in Figure 2.6 to illustrate the localization of the transform. 
Other displays will be developed in the next chapter. 

√ 
Figure 2.6: Discrete Wavelet Transform of a Pulse, using ψD6 with a Gain of 2 for Each Higher Scale. 

2.3 The Discrete-Time and Continuous Wavelet Transforms 

If the signal is itself a sequence of numbers, perhaps samples of some function of a continuous variable 
or perhaps a set of inner products, the expansion of that signal is called a discrete-time wavelet transform 
(DTWT). It maps a sequence of numbers into a sequence of numbers much the same way the discrete Fourier 
transform (DFT) does. It does not, however, require the signal to be ˝nite in duration or periodic as the 
DFT does. To be consistent with Fourier terminology, it probably should be called the discrete-time wavelet 
series, but this is not the convention. If the discrete-time signal is ˝nite in length, the transform can be 
represented by a ˝nite matrix. This formulation of a series expansion of a discrete-time signal is what ˝lter 
bank methods accomplish [525], [549] and is developed in Chapter: Filter Banks and Transmultiplexers 
(Chapter 9) of this book. 

If the signal is a function of a continuous variable and a transform that is a function of two continuous 
variables is desired, the continuous wavelet transform (CWT) can be de˝ned by Z � � 

t − a 
F (a, b) = f (t) w dt (2.11)

b 

with an inverse transform of Z Z � � 
t − a 

f (t) = F (a, b) w da db (2.12)
b 

where w (t) is the basic wavelet and a, b ∈ R are real continuous variables. Admissibility conditions for the 
wavelet w (t) to support this invertible transform is discussed by Daubechies [117], Heil and Walnut [247], 
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and others and is brie˛y developed in Section: Discrete Multiresolution Analysis, the Discrete-Time Wavelet 
(Section 8.8: Discrete Multiresolution Analysis, the Discrete-Time Wavelet Transform, and the Continuous 
Wavelet Transform) of this book. It is analogous to the Fourier transform or Fourier integral. 

2.4 Exercises and Experiments 

As the ideas about wavelets and wavelet transforms are developed in this book, it will be very helpful to 
experiment using the Matlab programs in the appendix of this book or in the Matlab Toolbox [385]. An 
e˙ort has been made to use the same notation in the programs in Appendix C as is used in the formulas in 
the book so that going over the programs can help in understanding the theory and vice versa. 

2.5 This Chapter 

This chapter has tried to set the stage for a careful introduction to both the theory and use of wavelets and 
wavelet transforms. We have presented the most basic characteristics of wavelets and tried to give a feeling 
of how and why they work in order to motivate and give direction and structure to the following material. 

The next chapter will present the idea of multiresolution, out of which will develop the scaling function 
as well as the wavelet. This is followed by a discussion of how to calculate the wavelet expansion coe°cients 
using ˝lter banks from digital signal processing. Next, a more detailed development of the theory and 
properties of scaling functions, wavelets, and wavelet transforms is given followed by a chapter on the design 
of wavelet systems. Chapter: Filter Banks and Transmultiplexers (Chapter 9) gives a detailed development 
of wavelet theory in terms of ˝lter banks. 

The earlier part of the book carefully develops the basic wavelet system and the later part develops 
several important generalizations, but in a less detailed form. 
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Chapter 3 

A multiresolution formulation of Wavelet 

Systems1 

Both the mathematics and the practical interpretations of wavelets seem to be best served by using the 
concept of resolution [380], [338], [343], [118] to de˝ne the e˙ects of changing scale. To do this, we will start 
with a scaling function φ (t) rather than directly with the wavelet ψ (t). After the scaling function is de˝ned 
from the concept of resolution, the wavelet functions will be derived from it. This chapter will give a rather 
intuitive development of these ideas, which will be followed by more rigorous arguments in Chapter: The 
Scaling Function and Scaling Coe°cients, Wavelet and Wavelet Coe°cients (Chapter 6). 

This multiresolution formulation is obviously designed to represent signals where a single event is de-
composed into ˝ner and ˝ner detail, but it turns out also to be valuable in representing signals where a 
time-frequency or time-scale description is desired even if no concept of resolution is needed. However, there 
are other cases where multiresolution is not appropriate, such as for the short-time Fourier transform or 
Gabor transform or for local sine or cosine bases or lapped orthogonal transforms, which are all discussed 
brie˛y later in this book. 

3.1 Signal Spaces 

In order to talk about the collection of functions or signals that can be represented by a sum of scaling 
functions and/or wavelets, we need some ideas and terminology from functional analysis. If these concepts 
are not familiar to you or the information in this section is not su°cient, you may want to skip ahead and 
read Chapter: The Scaling Function and Scaling Coe°cients, Wavelet and Wavelet Coe°cients (Chapter 6) 
or [532]. 

A function space is a linear vector space (˝nite or in˝nite dimensional) where the vectors are functions, 
the scalars are real numbers (sometime complex numbers), and scalar multiplication and vector addition are 
similar to that done in (2.1). The inner product is a scalar a obtained from two vectors, f (t) and g (t), by 
an integral. It is denoted Z 

a = < f (t) , g (t) > = f ∗ (t) g (t) dt (3.1) 

with the range of integration depending on the signal class being considered. This inner product de˝nes a 
norm or �length" of a vector which is denoted and de˝ned by p

k f k = | < f, f > | (3.2) 

1This content is available online at <http://cnx.org/content/m45081/1.4/>. 
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which is a simple generalization of the geometric operations and de˝nitions in three-dimensional Euclidean 
space. Two signals (vectors) with non-zero norms are called orthogonal if their inner product is zero. For 
example, with the Fourier series, we see that sin (t) is orthogonal to sin (2t). 

A space that is particularly important in signal processing is called L2 (R). This is the space of all 
functions f (t) with a well de˝ned integral of the square of the modulus of the function. The �L" signi˝es a 
Lebesque integral, the �2" denotes the integral of the square of the modulus of the function, and R states 
that the independent variable of integration t is a number over the whole real line. For a function g (t) to 
be a member of that space is denoted: g ∈ L2 (R) or simply g ∈ L2 . 

Although most of the de˝nitions and derivations are in terms of signals that are in L2 , many of the 
results hold for larger classes of signals. For example, polynomials are not in L2 but can be expanded over 
any ˝nite domain by most wavelet systems. 

In order to develop the wavelet expansion described in (2.5), we will need the idea of an expansion 
set or a basis set. If we start with the vector space of signals, S, then if any f (t) ∈ S can be expressedP 
as f (t) = kak φk (t), the set of functions φk (t) are called an expansion set for the space S. If the 
representation is unique, the set is a basis. Alternatively, one could start with the expansion set or basisP 
set and de˝ne the space S as the set of all functions that can be expressed by f (t) = kak φk (t). This 
is called the span of the basis set. In several cases, the signal spaces that we will need are actually the 
closure of the space spanned by the basis set. That means the space contains not only all signals that can 
be expressed by a linear combination of the basis functions, but also the signals which are the limit of these 
in˝nite expansions. The closure of a space is usually denoted by an over-line. 

3.2 The Scaling Function 

In order to use the idea of multiresolution, we will start by de˝ning the scaling function and then de˝ne 
the wavelet in terms of it. As described for the wavelet in the previous chapter, we de˝ne a set of scaling 
functions in terms of integer translates of the basic scaling function by 

φk (t) = φ (t − k) k ∈ Z φ ∈ L2 . (3.3) 

The subspace of L2 (R) spanned by these functions is de˝ned as 

V0 = Spank{φk (t)} (3.4) 

for all integers k from minus in˝nity to in˝nity. The over-bar denotes closure. This means that X 
f (t) = ak φk (t) for any f (t) ∈ V0. (3.5) 

k 

One can generally increase the size of the subspace spanned by changing the time scale of the scaling 
functions. A two-dimensional family of functions is generated from the basic scaling function by scaling and 
translation by � � 

2j/2 φ 2jφj,k (t) = t − k (3.6) 

whose span over k is 

Vj = Spank{φk (2j t)} = Spank{φj,k (t)} (3.7) 

for all integers k ∈ Z. This means that if f (t) ∈ Vj , then it can be expressed as X � � 
f (t) = ak φ 2j t + k . (3.8) 

k 

For j > 0, the span can be larger since φj,k (t) is narrower and is translated in smaller steps. It, therefore, 
can represent ˝ner detail. For j < 0, φj,k (t) is wider and is translated in larger steps. So these wider scaling 
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functions can represent only coarse information, and the space they span is smaller. Another way to think 
about the e˙ects of a change of scale is in terms of resolution. If one talks about photographic or optical 
resolution, then this idea of scale is the same as resolving power. 

3.2.1 Multiresolution Analysis 

In order to agree with our intuitive ideas of scale or resolution, we formulate the basic requirement of 
multiresolution analysis (MRA) [343] by requiring a nesting of the spanned spaces as 

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2 (3.9) 

or 

Vj ⊂ Vj+1 for all j ∈ Z (3.10) 

with 

V−∞ = {0}, V∞ = L2 . (3.11) 

The space that contains high resolution signals will contain those of lower resolution also. 
Because of the de˝nition of Vj , the spaces have to satisfy a natural scaling condition 

f (t) ∈ Vj ⇔ f (2t) ∈ Vj+1 (3.12) 

which insures elements in a space are simply scaled versions of the elements in the next space. The 
relationship of the spanned spaces is illustrated in Figure 3.1.� � 

The nesting of the spans of φ 2j t − k , denoted by Vj and shown in (3.9) and (3.12) and graphically 
illustrated in Figure 3.1, is achieved by requiring that φ (t) ∈ V1, which means that if φ (t) is in V0, it is also 
in V1, the space spanned by φ (2t). This means φ (t) can be expressed in terms of a weighted sum of shifted 
φ (2t) as X √ 

φ (t) = h (n) 2 φ (2t − n) , n ∈ Z (3.13) 
n 

Figure 3.1: Nested Vector Spaces Spanned by the Scaling Functions 
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where the coe°cients h (n) are a sequence of real or perhaps complex numbers called the scaling function √ 
coe°cients (or the scaling ˝lter or the scaling vector) and the 2 maintains the norm of the scaling function 
with the scale of two. 

This recursive equation is fundamental to the theory of the scaling functions and is, in some ways, 
analogous to a di˙erential equation with coe°cients h (n) and solution φ (t) that may or may not exist or be 
unique. The equation is referred to by di˙erent names to describe di˙erent interpretations or points of view. 
It is called the re˝nement equation, the multiresolution analysis (MRA) equation, or the dilation equation. 

The Haar scaling function is the simple unit-width, unit-height pulse function φ (t) shown in Figure 3.2, 
and it is obvious that φ (2t) can be used to construct φ (t) by 

φ (t) = φ (2t) + φ (2t − 1) (3.14) 
√ √ 

which means (3.13) is satis˝ed for coe°cients h (0) = 1/ 2, h (1) = 1/ 2. 
The triangle scaling function (also a ˝rst order spline) in Figure 3.2 satis˝es (3.13) for h (0) = 

√1 , h (1) = √1 , h (2) = √1 , and the Daubechies scaling function shown in the ˝rst part of 
2 2 2 2 2 

(a) (b) 

Figure 3.2: Haar and Triangle Scaling Functions 

Figure: Daubechies Scaling Functions satis˝es (3.13) for h = {0.483, 0.8365, 0.2241, −0.1294} as do all 
scaling functions for their corresponding scaling coe°cients. Indeed, the design of wavelet systems is the 
choosing of the coe°cients h (n) and that is developed later. 

3.3 The Wavelet Functions 

The important features of a signal can better be described or parameterized, not by using φj,k (t) and 
increasing j to increase the size of the subspace spanned by the scaling functions, but by de˝ning a slightly 
di˙erent set of functions ψj,k (t) that span the di˙erences between the spaces spanned by the various scales 
of the scaling function. These functions are the wavelets discussed in the introduction of this book. 

There are several advantages to requiring that the scaling functions and wavelets be orthogonal. Orthog-
onal basis functions allow simple calculation of expansion coe°cients and have a Parseval's theorem that 
allows a partitioning of the signal energy in the wavelet transform domain. The orthogonal complement of 
Vj in Vj+1 is de˝ned as Wj . This means that all members of Vj are orthogonal to all members of Wj . We 
require Z 

< φj,k (t) , ψj,` (t) > = φj,k (t) ψj,` (t) dt = 0 (3.15) 

for all appropriate j, k, ̀  ∈ Z. 
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The relationship of the various subspaces can be seen from the following expressions. From (3.9) we see 
that we may start at any Vj , say at j = 0, and write 

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2 . (3.16) 

We now de˝ne the wavelet spanned subspace W0 such that 

V1 = V0 ⊕ W0 (3.17) 

which extends to 

V2 = V0 ⊕ W0 ⊕ W1. (3.18) 

In general this gives 

L2 = V0 ⊕ W0 ⊕ W1 ⊕ · · · (3.19) 

when V0 is the initial space spanned by the scaling function ϕ (t − k). Figure 3.3 pictorially shows the 
nesting of the scaling function spaces Vj for di˙erent scales j and how the wavelet spaces are the disjoint 
di˙erences (except for the zero element) or, the orthogonal complements. 

The scale of the initial space is arbitrary and could be chosen at a higher resolution of, say, j = 10 to 
give 

L2 = V10 ⊕ W10 ⊕ W11 ⊕ · · · (3.20) 

or at a lower resolution such as j = −5 to give 

L2 = V−5 ⊕ W−5 ⊕ W−4 ⊕ · · · (3.21) 

Figure 3.3: Scaling Function and Wavelet Vector Spaces 

or at even j = −∞ where (3.19) becomes 

L2 = · · · ⊕ W−2 ⊕ W−1 ⊕ W0 ⊕ W1 ⊕ W2 ⊕ · · · (3.22) 

eliminating the scaling space altogether and allowing an expansion of the form in (2.9). 
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Another way to describe the relation of V0 to the wavelet spaces is noting 

W−∞ ⊕ · · · ⊕ W−1 = V0 (3.23) 

which again shows that the scale of the scaling space can be chosen arbitrarily. In practice, it is usually 
chosen to represent the coarsest detail of interest in a signal. 

Since these wavelets reside in the space spanned by the next narrower scaling function, W0 ⊂ V1, they 
can be represented by a weighted sum of shifted scaling function φ (2t) de˝ned in (3.13) by X √ 

ψ (t) = h1 (n) 2 φ (2t − n) , n ∈ Z (3.24) 
n 

for some set of coe°cients h1 (n). From the requirement that the wavelets span the �di˙erence" or orthogonal 
complement spaces, and the orthogonality of integer translates of the wavelet (or scaling function), it is shown 
in the Appendix in (13.49) that the wavelet coe°cients (modulo translations by integer multiples of two) 
are required by orthogonality to be related to the scaling function coe°cients by 

n
h1 (n) = (−1) h (1 − n) . (3.25) 

One example for a ˝nite even length-N h (n) could be 

n
h1 (n) = (−1) h (N − 1 − n) . (3.26) 

The function generated by (3.24) gives the prototype or mother wavelet ψ (t) for a class of expansion 
functions of the form � � 

ψj,k (t) = 2
j/2 ψ 2j t − k (3.27) 

where 2j is the scaling of t (j is the log2 of the scale), 2
−j k is the translation in t, and 2j/2 maintains the 

(perhaps unity) L2 norm of the wavelet at di˙erent scales. 
The Haar and triangle wavelets that are associated with the scaling functions in Figure 3.2 are shown √ √ 

in Figure 3.4. For the Haar wavelet, the coe°cients in (3.24) are h1 (0) = 1/ 2, h1 (1) = −1/ 2 which 
satisfy (3.25). The Daubechies wavelets associated with the scaling functions in Figure: Daubechies Scaling 
Functions are shown in Figure: Daubechies Wavelets with corresponding coe°cients given later in the book 
in Table: Scaling Function and Wavelet Coe°cients plus their Discrete Moments for Daubechies-8 (Table 
7.1) and Table: Daubechies Scaling Function and Wavelet Coe°cients plus their Moments (Table 7.2). 

(a) (b) 

Figure 3.4: (a) Haar (same as ψD2) (b) Triangle (same as ψS1) 
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We have now constructed a set of functions φk (t) and ψj,k (t) that could span all of L2 (R). According 
to (3.19), any function g (t) ∈ L2 (R) could be written 

∞ ∞ ∞X X X 
g (t) = c (k) φk (t) + d (j, k) ψj,k (t) (3.28) 

k=−∞ j=0 k=−∞ 

as a series expansion in terms of the scaling function and wavelets. 
In this expansion, the ˝rst summation in (3.28) gives a function that is a low resolution or coarse 

approximation of g (t). For each increasing index j in the second summation, a higher or ˝ner resolution 
function is added, which adds increasing detail. This is somewhat analogous to a Fourier series where the 
higher frequency terms contain the detail of the signal. 

Later in this book, we will develop the property of having these expansion functions form an orthonormal 
basis or a tight frame, which allows the coe°cients to be calculated by inner products as Z 

c (k) = c0 (k) = < g (t) , φk (t) > = g (t) φk (t) dt (3.29) 

and Z 
dj (k) = d (j, k) = < g (t) , ψj,k (t) > = g (t) ψj,k (t) dt. (3.30) 

The coe°cient d (j, k) is sometimes written as dj (k) to emphasize the di˙erence between the time translation 
index k and the scale parameter j. The coe°cient c (k) is also sometimes written as cj (k) or c (j, k) if a 
more general �starting scale" other than j = 0 for the lower limit on the sum in (3.28) is used. 

It is important at this point to recognize the relationship of the scaling function part of the expansion 
(3.28) to the wavelet part of the expansion. From the representation of the nested spaces in (3.19) we see 
that the scaling function can be de˝ned at any scale j. (3.28) uses j = 0 to denote the family of scaling 
functions. 

You may want to examine the Haar system example at the end of this chapter just now to see these 
features illustrated. 

3.4 The Discrete Wavelet Transform 

Since 

L2 = Vj0 ⊕ Wj0 ⊕ Wj0+1 ⊕ · · · (3.31) 

using (3.6) and (3.27), a more general statement of the expansion (3.28) can be given by 

∞X � � XX � � 
dj (k) 2

j/2 ψg (t) = cj0 (k) 2
j0/2 φ 2j0 t − k + 2j t − k (3.32) 

k k j=j0 

or 

∞X XX 
g (t) = cj0 (k) φj0,k (t) + dj (k) ψj,k (t) (3.33) 

k k j=j0 

where j0 could be zero as in (3.19) and (3.28), it could be ten as in (3.20), or it could be negative in˝nity as 
in (2.9) and (3.22) where no scaling functions are used. The choice of j0 sets the coarsest scale whose space 
is spanned by φj0,k (t). The rest of L

2 (R) is spanned by the wavelets which provide the high resolution 
details of the signal. In practice where one is given only the samples of a signal, not the signal itself, there 
is a highest resolution when the ˝nest scale is the sample level. 
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The coe°cients in this wavelet expansion are called the discrete wavelet transform (DWT) of the signal 
g (t). If certain conditions described later are satis˝ed, these wavelet coe°cients completely describe the 
original signal and can be used in a way similar to Fourier series coe°cients for analysis, description, ap-
proximation, and ˝ltering. If the wavelet system is orthogonal, these coe°cients can be calculated by inner 
products Z 

cj (k) =< g (t) , φj,k (t) >= g (t) φj,k (t) dt (3.34) 

and Z 
dj (k) = < g (t) , ψj,k (t) >= g (t) ψj,k (t) dt. (3.35) 

If the scaling function is well-behaved, then at a high scale, the scaling is similar to a Dirac delta function 
and the inner product simply samples the function. In other words, at high enough resolution, samples of 
the signal are very close to the scaling coe°cients. More is said about this later. It has been shown [143] 
that wavelet systems form an unconditional basis for a large class of signals. That is discussed in Chapter: 
The Scaling Function and Scaling Coe°cients, Wavelet and Wavelet Coe°cients (Chapter 6) but means that 
even for the worst case signal in the class, the wavelet expansion coe°cients drop o˙ rapidly as j and k 
increase. This is why the DWT is e°cient for signal and image compression. 

The DWT is similar to a Fourier series but, in many ways, is much more ˛exible and informative. It 
can be made periodic like a Fourier series to represent periodic signals e°ciently. However, unlike a Fourier 
series, it can be used directly on non-periodic transient signals with excellent results. An example of the 
DWT of a pulse was illustrated in Figure: Two-Stage Two-Band Analysis Tree (Figure 4.3). Other examples 
are illustrated just after the next section. 

3.5 A Parseval's Theorem 

If the scaling functions and wavelets form an orthonormal basis2 , there is a Parseval's theorem that relates 
the energy of the signal g (t) to the energy in each of the components and their wavelet coe°cients. That is 
one reason why orthonormality is important. 

For the general wavelet expansion of (3.28) or (3.33), Parseval's theorem is Z ∞ ∞ ∞2 X X X 
2 2|g (t) | dt = |c (l) | + |dj (k) | (3.36) 

l=−∞ j=0 k=−∞ 

with the energy in the expansion domain partitioned in time by k and in scale by j. Indeed, it is this 
partitioning of the time-scale parameter plane that describes the DWT. If the expansion system is a tight 
frame, there is a constant multiplier in (3.36) caused by the redundancy. 

Daubechies [103], [118] showed that it is possible for the scaling function and the wavelets to have compact 
support (i.e., be nonzero only over a ˝nite region) and to be orthonormal. This makes possible the time 
localization that we desire. We now have a framework for describing signals that has features of short-time 
Fourier analysis and of Gabor-based analysis but using a new variable, scale. For the short-time Fourier 
transform, orthogonality and good time-frequency resolution are incompatible according to the Balian-Low-
Coifman-Semmes theorem [111], [470]. More precisely, if the short-time Fourier transform is orthogonal, 
either the time or the frequency resolution is poor and the trade-o˙ is in˛exible. This is not the case for the 
wavelet transform. Also, note that there is a variety of scaling functions and wavelets that can be obtained 
by choosing di˙erent coe°cients h (n) in (3.13). 

2or a tight frame de˝ned in Chapter: Bases, Orthogonal Bases, Biorthogonal Bases, Frames, Right Frames, and unconditional 
Bases (Chapter 5) 
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Donoho [143] has noted that wavelets are an unconditional basis for a very wide class of signals. This 
means wavelet expansions of signals have coe°cients that drop o˙ rapidly and therefore the signal can be 
e°ciently represented by a small number of them. 

We have ˝rst developed the basic ideas of the discrete wavelet system using a scaling multiplier of 2 in 
the de˝ning (3.13). This is called a two-band wavelet system because of the two channels or bands in the 
related ˝lter banks discussed in Chapter: Filter Banks and the Discrete Wavelet Transform (Chapter 4) 
and Chapter: Filter Banks and Transmultiplexers (Chapter 9). It is also possible to de˝ne a more generalP √ 
discrete waveletsystem using φ (t) = n h (n) M φ (Mt − n) where M is an integer [483]. This is discussed 
in Section: Multiplicity-M (M-Band) Scaling Functions and Wavelets (Section 8.2: Multiplicity-M (M-Band) 
Scaling Functions and Wavelets). The details of numerically calculating the DWT are discussed in Chapter: 
Calculation of the Discrete Wavelet Transform (Chapter 10) where special forms for periodic signals are 
used. 

3.6 Display of the Discrete Wavelet Transform and the Wavelet Ex-
pansion 

It is important to have an informative way of displaying or visualizing the wavelet expansion and transform. 
This is complicated in that the DWT is a real-valued function of two integer indices and, therefore, needs 
a two-dimensional display or plot. This problem is somewhat analogous to plotting the Fourier transform, 
which is a complex-valued function. 

There seem to be ˝ve displays that show the various characteristics of the DWT well: 

1. The most basic time-domain description of a signal is the signal itself (or, for most cases, samples of 
the signal) but it gives no frequency or scale information. A very interesting property of the DWT 
(and one di˙erent from the Fourier series) is for a high starting scale j0 in (3.33), samples of the signal 
are the DWT at that scale. This is an extreme case, but it shows the ˛exibility of the DWT and will 
be explained later. 

2. The most basic wavelet-domain description is a three-dimensional plot of the expansion coe°cients or 
DWT values c (k) and dj (k) over the j, k plane. This is di°cult to do on a two-dimensional page or 
display screen, but we show a form of that in Figure 3.5 and Figure 3.8. 

3. A very informative picture of the e˙ects of scale can be shown by generating time functions fj (t) at 
each scale by summing (3.28) over k so that X 

f (t) = fj0 + fj (t) (3.37) 
j 

where X 
fj0 = c (k) φ (t − k) (3.38) 

k 

fj (t) = 
X � � 

dj (k) 2
j/2 ψ 2j t − k . (3.39) 

k 

This illustrates the components of the signal at each scale and is shown in and . 
4. Another illustration that shows the time localization of the wavelet expansion is obtained by generating 

time functions fk (t) at each translation by summing (3.28) over k so that X 
f (t) = fk (t) (3.40) 

k 

where X � � 
dj (k) 2

j/2 ψ 2jfk (t) = c (k) ϕ (t − k) + t − k . (3.41) 
j 

This illustrates the components of the signal at each integer translation. 
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5. There is another rather di˙erent display based on a partitioning of the time-scale plane as if the time 
translation index and scale index were continuous variables. This display is called �tiling the time-
frequency plane." Because it is a di˙erent type of display and is developed and illustrated in Chapter: 
Calculation of the Discrete Wavelet Transform (Chapter 10), it will not be illustrated here. 

Experimentation with these displays can be very informative in terms of the properties and capabilities of 
the wavelet transform, the e˙ects of particular wavelet systems, and the way a wavelet expansion displays 
the various attributes or characteristics of a signal. 

3.7 Examples of Wavelet Expansions 

In this section, we will try to show the way a wavelet expansion decomposes a signal and what the compo-
nents look like at di˙erent scales. These expansions use what is called a length-8 Daubechies basic wavelet 
(developed in Chapter: Regularity, Moments, and Wavelet System Design (Chapter 7)), but that is not the 
main point here. The local nature of the wavelet decomposition is the topic of this section. 

These examples are rather standard ones, some taken from David Donoho's papers and web page. The 
˝rst is a decomposition of a piecewise linear function to show how edges and constants are handled. A charac-
teristic of Daubechies systems is that low order polynomials are completely contained in the scaling function 
spaces Vj and need no wavelets. This means that when a section of a signal is a section of a polynomial 
(such as a straight line), there are no wavelet expansion coe°cients dj (k), but when the calculation of the 
expansion coe°cients overlaps an edge, there is a wavelet component. This is illustrated well in Figure 3.6 
where the high resolution scales gives a very accurate location of the edges and this spreads out over k at the 
lower scales. This gives a hint of how the DWT could be used for edge detection and how the large number 
of small or zero expansion coe°cients could be used for compression. 

√ 
Figure 3.5: Discrete Wavelet Transform of the Houston Skyline, using ψD8 ' with a Gain of 2 for Each 
Higher Scale 

Figure 3.6 shows the approximations of the skyline signal in the various scaling function spaces Vj . This 
illustrates just how the approximations progress, giving more and more resolution at higher scales. The fact 
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that the higher scales give more detail is similar to Fourier methods, but the localization is new. Figure 3.7 
illustrates the individual wavelet decomposition by showing the components of the signal that exist in the 
wavelet spaces Wj at di˙erent scales j. This shows the same expansion as Figure 3.6, but with the wavelet 
components given separately rather than being cumulatively added to the scaling function. Notice how the 
large objects show up at the lower resolution. Groups of buildings and individual buildings are resolved 
according to their width. The edges, however, are located at the higher resolutions and are located very 
accurately. 
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0Figure 3.6: Projection of the Houston Skyline Signal onto V Spaces using Φ 
D8 
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0Figure 3.7: Projection of the Houston Skyline Signal onto W Spaces using ψ 
D8 
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The second example uses a chirp or doppler signal to illustrate how a time-varying frequency is described 
by the scale decomposition. Figure 3.8 gives the coe°cients of the DWT directly as a function of j and k. 
Notice how the location in k tracks the frequencies in the signal in a way the Fourier transform cannot. Fig-
ure 3.9 and Figure 3.10 show the scaling function approximations and the wavelet decomposition of this 
chirp signal. Again, notice in this type of display how the �location" of the frequencies are shown. 

√ 
Figure 3.8: Discrete Wavelet Transform of a Doppler, using ψD8 ' with a gain of 2 for each higher 
scale. 

3.8 An Example of the Haar Wavelet System 

In this section, we can illustrate our mathematical discussion with a more complete example. In 1910, Haar 
[243] showed that certain square wave functions could be translated and scaled to create a basis set that 
spans L2 . This is illustrated in Figure 3.11. Years later, it was seen that Haar's system is a particular 
wavelet system. 

If we choose our scaling function to have compact support over 0 ≤ t ≤ 1, then a solution to (3.13) is 
a scaling function that is a simple rectangle function Haar showed that as j → ∞, Vj → L2 . We have an 
approximation made up of step functions approaching any square integrable function. 

1 if 0 < t < 1 
φ (t) = { (3.42) 

0 otherwise 
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√ 
with only two nonzero coe°cients h (0) = h (1) = 1/ 2 and (3.24) and (3.25) require the wavelet to be 

1 for 0 < t < 0.5 

ψ (t) = { -1 for 0.5 < t < 1 (3.43) 

0 otherwise 

√ √ 
with only two nonzero coe°cients h1 (0) = 1/ 2 and h1 (1) = −1/ 2. 
V0 is the space spanned by φ (t − k) which is the space of piecewise constant functions over integers, a 

rather limited space, but nontrivial. The next higher resolution space V1 is spanned by φ (2t − k) which 
allows a somewhat more interesting class of signals which does include V0. As we consider higher values � � 
of scale j, the space Vj spanned by φ 2j t − k becomes better able to approximate arbitrary functions or 
signals by ˝ner and ˝ner piecewise constant functions. 
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0Figure 3.9: Projection of the Doppler Signal onto V Spaces using Φ 
D8 
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0Figure 3.10: Projection of the Doppler Signal onto W Spaces using ψ 
D8 
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The Haar functions are illustrated in Figure 3.11 where the ˝rst column contains the simple constant basis 
function that spans V0, the second column contains the unit pulse of width one half and the one translate 
necessary to span V1. The third column contains four translations of a pulse of width one fourth and the 
fourth contains eight translations of a pulse of width one eighth. This shows clearly how increasing the scale 
allows greater and greater detail to be realized. However, using only the scaling function does not allow the 
decomposition described in the introduction. For that we need the wavelet. Rather than use the scaling 
functions φ (8t − k) in V3, we will use the orthogonal decomposition 

V3 = V2 ⊕ W2 (3.44) 

which is the same as 

Span{φ (8t − k)} = Span{φ (4t − k)} ⊕ Span{ψ (4t − k)} (3.45) 
k k k 

which means there are two sets of orthogonal basis functions that span V3, one in terms of j = 3 scaling 
functions, and the other in terms of half as many coarser j = 2 scaling functions plus the details contained 
in the j = 2 wavelets. This is illustrated in Figure 3.12. 

Figure 3.11: Haar Scaling Functions and Wavelets that Span Vj 

The V2 can be further decomposed into 

which is the same as 

V2 = V1 ⊕ W1 (3.46) 

Span{φ (4t − k)}
k 

= Span{φ (2t − k)} ⊕ Span{ψ (2t − k)}
k k 

(3.47) 
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Figure 3.12: Haar Scaling Functions and Wavelets Decomposition of V3 

and this is illustrated in Figure 3.14. This gives V1 also to be decomposed as 

V1 = V0 ⊕ W0 (3.48) 

which is shown in Figure 3.13. By continuing to decompose the space spanned by the scaling function 
until the space is one constant, the complete decomposition of V3 is obtained. This is symbolically shown in 
Figure 3.16. 

Figure 3.13: Haar Scaling Functions and Wavelets Decomposition of V1 
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Finally we look at an approximation to a smooth function constructed from the basis elements in V3 = 
V0 ⊕W0 ⊕W1 ⊕W2. Because the Haar functions form an orthogonal basis in each subspace, they can produce 
an optimal least squared error approximation to the smooth function. One can easily imagine the e˙ects of 
adding a higher resolution �layer" of functions to W3 giving an approximation residing in V4. Notice that 
these functions satisfy all of the conditions that we have considered for scaling functions and wavelets. The 
basic wavelet is indeed an oscillating function which, in fact, has an average of zero and which will produce 
˝ner and ˝ner detail as it is scaled and translated. 

The multiresolution character of the scaling function and wavelet system is easily seen from Figure 3.12 
where a signal residing in V3 can be expressed in terms of a sum of eight shifted scaling functions at scale j = 3 
or a sum of four shifted scaling functions and four shifted wavelets at a scale of j = 2. In the second case, 
the sum of four scaling functions gives a low resolution approximation to the signal with the four wavelets 
giving the higher resolution �detail". The four shifted scaling functions could be further decomposed into 
coarser scaling functions and wavelets as illustrated in Figure 3.14 and still further decomposed as shown in 
Figure 3.13. 

Figure 3.15 shows the Haar approximations of a test function in various resolutions. The signal is an 
example of a mixture of a pure sine wave which would have a perfectly localized Fourier domain representation 
and a two discontinuities which are completely localized in time domain. The component at the coarsest 
scale is simply the average of the signal. As we include more and more wavelet scales, the approximation 
becomes close to the original signal. 

This chapter has skipped over some details in an attempt to communicate the general idea of the method. 
The conditions that can or must be satis˝ed and the resulting properties, together with examples, are 
discussed in the following chapters and/or in the references. 

Figure 3.14: Haar Scaling Functions and Wavelets Decomposition of V2 
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Figure 3.15: Haar Function Approximation in Vj 
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Figure 3.16: Haar Scaling Functions and Wavelets Decomposition of V3 



Chapter 4 

Filter Banks and the Discrete Wavelet 

Transform1 

In many applications, one never has to deal directly with the scaling functions or wavelets. Only the 
coe°cients h (n) and h1 (n) in the de˝ning equations (3.13) and (3.24) and c (k) and dj (k) in the expansions 
(3.28), (3.29), and (3.30) need be considered, and they can be viewed as digital ˝lters and digital signals 
respectively [191], [526]. While it is possible to develop most of the results of wavelet theory using only ˝lter 
banks, we feel that both the signal expansion point of view and the ˝lter bank point of view are necessary 
for a real understanding of this new tool. 

4.1 Analysis � From Fine Scale to Coarse Scale 

In order to work directly with the wavelet transform coe°cients, we will derive the relationship between 
the expansion coe°cients at a lower scale level in terms of those at a higher scale. Starting with the basic 
recursion equation from (3.13) X √ 

φ (t) = h (n) 2 φ (2t − n) (4.1) 
n 

and assuming a unique solution exists, we scale and translate the time variable to give � � X √ � � � � X √ � � 
2j+12j 2jφ t − k = h (n) 2 φ 2 t − k − n = h (n) 2 φ t − 2k − n (4.2) 

n n 

which, after changing variables m = 2k + n, becomes � � X √ � � 
2j+1φ 2j t − k = h (m − 2k) 2 φ t − m . (4.3) 

m 

If we denote Vj as � � 
2j 

k 
Vj = Span{2j/2 φ t − k } (4.4) 

then X � � 
cj+1 (k) 2

(j+1)/2 φ 2j+1f (t) ∈ Vj+1 ⇒ f (t) = t − k (4.5) 
k 

1This content is available online at <http://cnx.org/content/m45094/1.4/>. 
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is expressible at a scale of j + 1 with scaling functions only and no wavelets. At one scale lower resolution, 
wavelets are necessary for the �detail" not available at a scale of j. We have X � � X � � 

cj (k) 2
j/2 φ 2j dj (k) 2

j/2 ψ 2jf (t) = t − k + t − k (4.6) 
k k 

where the 2j/2 terms maintain the unity norm of the basis functions at various scales. If φj,k (t) and ψj,k (t) 
are orthonormal or a tight frame, the j level scaling coe°cients are found by taking the inner product Z � � 

f (t) 2j/2 φcj (k) =< f (t) , φj,k (t) >= 2j t − k dt (4.7) 

which, by using (4.3) and interchanging the sum and integral, can be written as ZX � � 
f (t) 2(j+1)/2 φ 2j+1 cj (k) = h (m − 2k) t − m dt (4.8) 

m 

but the integral is the inner product with the scaling function at a scale of j + 1 giving X 
cj (k) = h (m − 2k) cj+1 (m) . (4.9) 

m 

The corresponding relationship for the wavelet coe°cients is X 
dj (k) = h1 (m − 2k) cj+1 (m) . (4.10) 

m 

4.1.1 Filtering and Down-Sampling or Decimating 

In the discipline of digital signal processing, the �˝ltering" of a sequence of numbers (the input signal) is 
achieved by convolving the sequence with another set of numbers called the ˝lter coe°cients, taps, weights, 
or impulse response. This makes intuitive sense if you think of a moving average with the coe°cients being 
the weights. For an input sequence x (n) and ˝lter coe°cients h (n), the output sequence y (n) is given by 

N −1X 
y (n) = h (k) x (n − k) (4.11) 

k=0 

There is a large literature on digital ˝lters and how to design them [414], [411]. If the number of ˝lter 
coe°cients N is ˝nite, the ˝lter is called a Finite Impulse Response (FIR) ˝lter. If the number is in˝nite, it 
is called an In˝nite Impulse (IIR) ˝lter. The design problem is the choice of the h (n) to obtain some desired 
e˙ect, often to remove noise or separate signals [411], [414]. 

Figure 4.1: The Down Sampler of Decimator 

In multirate digital ˝lters, there is an assumed relation between the integer index n in the signal x (n) 
and time. Often the sequence of numbers are simply evenly spaced samples of a function of time. Two basic 
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operations in multirate ˝lters are the down-sampler and the up-sampler. The down-sampler (sometimes 
simply called a sampler or a decimator) takes a signal x (n) as an input and produces an output of y (n) = 
x (2n). This is symbolically shown in Figure 4.1. In some cases, the down-sampling is by a factor other than 
two and in some cases, the output is the odd index terms y (n) = x (2n + 1), but this will be explicitly stated 
if it is important. 

In down-sampling, there is clearly the possibility of losing information since half of the data is discarded. 
The e˙ect in the frequency domain (Fourier transform) is called aliasing which states that the result of this 
loss of information is a mixing up of frequency components [414], [411]. Only if the original signal is band-
limited (half of the Fourier coe°cients are zero) is there no loss of information caused by down-sampling. 

We talk about digital ˝ltering and down-sampling because that is exactly what (4.9) and (4.10) do. 
These equations show that the scaling and wavelet coe°cients at di˙erent levels of scale can be obtained 
by convolving the expansion coe°cients at scale j by the time-reversed recursion coe°cients h (−n) and 
h1 (−n) then down-sampling or decimating (taking every other term, the even terms) to give the expansion 
coe°cients at the next level of j − 1. In other words, the scale-j coe°cients are �˝ltered" by two FIR digital 
˝lters with coe°cients h (−n) and h1 (−n) after which down-sampling gives the next coarser scaling and 
wavelet coe°cients. These structures implement Mallat's algorithm [339], [344] and have been developed 
in the engineering literature on ˝lter banks, quadrature mirror ˝lters (QMF), conjugate ˝lters, and perfect 
reconstruction ˝lter banks [473], [476], [542], [547], [544], [520], [526] and are expanded somewhat in Chapter: 
Filter Banks and Transmultiplexers (Chapter 9) of this book. Mallat, Daubechies, and others showed 
the relation of wavelet coe°cient calculation and ˝lter banks. The implementation of (4.9) and (4.10) is 
illustrated in Figure 4.2 where the down-pointing arrows denote a decimation or down-sampling by two and 
the other boxes denote FIR ˝ltering or a convolution by h (−n) or h1 (−n). To ease notation, we use both 
h (n) and h0 (n) to denote the scaling function coe°cients for the dilation equation (3.13). 

Figure 4.2: Two-Band Analysis Bank 
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Figure 4.3: Two-Stage Two-Band Analysis Tree 

As we will see in Chapter: The Scaling Function and Scaling Coe°cients, Wavelet and Wavelet Coe°-
cients (Chapter 6), the FIR ˝lter implemented by h (−n) is a lowpass ˝lter, and the one implemented by 
h1 (−n) is a highpass ˝lter. Note the average number of data points out of this system is the same as the 
number in. The number is doubled by having two ˝lters; then it is halved by the decimation back to the 
original number. This means there is the possibility that no information has been lost and it will be possible 
to completely recover the original signal. As we shall see, that is indeed the case. The aliasing occurring 
in the upper bank can be �undone" or cancelled by using the signal from the lower bank. This is the idea 
behind perfect reconstruction in ˝lter bank theory [526], [174]. 

This splitting, ˝ltering, and decimation can be repeated on the scaling coe°cients to give the two-scale 
structure in Figure 4.3. Repeating this on the scaling coe°cients is called iterating the ˝lter bank. Iterating 
the ˝lter bank again gives us the three-scale structure in Figure 4.4. 

The frequency response of a digital ˝lter is the discrete-time Fourier transform of its impulse response 
(coe°cients) h (n). That is given by 

∞X 
iωn H (ω) = h (n) e . (4.12) 

n=−∞ 

The magnitude of this complex-valued function gives the ratio of the output to the input of the ˝lter for a 
sampled sinusoid at a frequency of ω in radians per seconds. The angle of H (ω) is the phase shift between 
the output and input. 

The ˝rst stage of two banks divides the spectrum of cj+1 (k) into a lowpass and highpass band, resulting 
in the scaling coe°cients and wavelet coe°cients at lower scale cj (k) and dj (k). The second stage then 
divides that lowpass band into another lower lowpass band and a bandpass band. The ˝rst stage divides 
the spectrum into two equal parts. The second stage divides the lower half into quarters and so on. This 
results in a logarithmic set of bandwidths as illustrated in Figure 4.5. These are called �constant-Q" ˝lters 
in ˝lter bank language because the ratio of the band width to the center frequency of the band is constant. 
It is also interesting to note that a musical scale de˝nes octaves in a similar way and that the ear responds 
to frequencies in a similar logarithmic fashion. 

For any practical signal that is bandlimited, there will be an upper scale j = J , above which the wavelet 
coe°cients, dj (k), are negligibly small [206]. By starting with a high resolution description of a signal in 
terms of the scaling coe°cients cJ , the analysis tree calculates the DWT 

down to as low a resolution, j = j0, as desired by having J − j0 stages. So, for f (t) ∈ VJ , using (3.8) we 
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have P 
f (t) = k cJ (k) φJ,k (t)P P 

= k cJ−1 (k) φJ−1,k (t) + dJ−1 (k) ψJ−1,k (t)P P k (4.13)PJ−1
f (t) = k cJ−2 (k) φJ−2,k (t) + k j=J−2 dj (k) ψj,k (t)P P PJ−1
f (t) = (k) φj0,k (t) + dj (k) ψj,k (t)k cj0 k j=j0 

which is a ˝nite scale version of (3.33). We will discuss the choice of j0 and J further in Chapter: Calculation 
of the Discrete Wavelet Transform (Chapter 10). 

Figure 4.4: Three-Stage Two-Band Analysis Tree 

Figure 4.5: Frequency Bands for the Analysis Tree 

4.2 Synthesis � From Coarse Scale to Fine Scale 

As one would expect, a reconstruction of the original ˝ne scale coe°cients of the signal can be made from 
a combination of the scaling function and wavelet coe°cients at a coarse resolution. This is derived by 
considering a signal in the j + 1 scaling function space f (t) ∈ Vj+1. This function can be written in terms 
of the scaling function as X � � 

cj+1 (k) 2
(j+1)/2 φ 2j+1f (t) = t − k (4.14) 

k 
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or in terms of the next scale (which also requires wavelets) as X � � X � � 
cj (k) 2

j/2 φ dj (k) 2
j/2 ψf (t) = 2j t − k + 2j t − k . (4.15) 

k k 

Substituting (4.1) and into (4.15) gives 

P P 
h (n) 2(j+1)/2 φ (2j+1t − 2k − n)f (t) = cj (k) + (4.16)P P k n 

h1 (n) 2
(j+1)/2 φ (2j+1t − 2k − n) .k dj (k) n � � 

2j+1Because all of these functions are orthonormal, multiplying (4.14) and (4.16) by φ t − k ' and 
integrating evaluates the coe°cient as X X 

cj+1 (k) = cj (m) h (k − 2m) + dj (m) h1 (k − 2m) . (4.17) 
m m 

4.2.1 Filtering and Up-Sampling or Stretching 

For synthesis in the ˝lter bank we have a sequence of ˝rst up-sampling or stretching, then ˝ltering. This 
means that the input to the ˝lter has zeros inserted between each of the original terms. In other words, 

y (2n) = x (n) and y (2n + 1) = 0 (4.18) 

where the input signal is stretched to twice its original length and zeros are inserted. Clearly this up-sampling 
or stretching could be done with factors other than two, and the two equation above could have the x (n) 
and 0 reversed. It is also clear that up-sampling does not lose any information. If you ˝rst up-sample then 
down-sample, you are back where you started. However, if you ˝rst down-sample then up-sample, you are 
not generally back where you started. 

Our reason for discussing ˝ltering and up-sampling here is that is exactly what the synthesis operation 
(4.17) does. This equation is evaluated by up-sampling the j scale coe°cient sequence cj (k), which means 
double its length by inserting zeros between each term, then convolving it with the scaling coe°cients 
h (n). The same is done to the j level wavelet coe°cient sequence and the results are added to give the 
j + 1 level scaling function coe°cients. This structure is illustrated in Figure 4.6 where g0 (n) = h (n) and 
g1 (n) = h1 (n). This combining process can be continued to any level by combining the appropriate scale 
wavelet coe°cients. The resulting two-scale tree is shown in Figure 4.7. 

Figure 4.6: Two-Band Synthesis Bank 
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Figure 4.7: Two-Stage Two-Band Synthesis Tree 

4.3 Input Coe°cients 

One might wonder how the input set of scaling coe°cients cj+1 are obtained from the signal to use in the 
systems of Figure 4.2 and Figure 4.3. For high enough scale, the scaling functions act as �delta functions" 
with the inner product to calculate the high scale coe°cients as simply a sampling of f (t)[204], [406]. If the 
samples of f (t) are above the Nyquist rate, they are good approximations to the scaling coe°cients at that 
scale, meaning no wavelet coe°cients are necessary at that scale. This approximation is particularly good 
if moments of the scaling function are zero or small. These ideas are further explained in Section: Approxi-
mation of Scaling Coe°cients by Samples of the Signal (Section 7.8: Approximation of Scaling Coe°cients 
by Samples of the Signal) and Chapter: Calculation of the Discrete Wavelet Transform (Chapter 10). 

An alternative approach is to �pre˝lter" the signal samples to make them a better approximation to the 
expansion coe°cients. This is discussed in [490]. 

This set of analysis and synthesis operations is known as Mallat's algorithm [339], [344]. The analysis 
˝lter bank e°ciently calculates the DWT using banks of digital ˝lters and down-samplers, and the synthesis 
˝lter bank calculates the inverse DWT to reconstruct the signal from the transform. Although presented 
here as a method of calculating the DWT, the ˝lter bank description also gives insight into the transform 
itself and suggests modi˝cations and generalizations that would be di°cult to see directly from the wavelet 
expansion point of view. Filter banks will be used more extensively in the remainder of this book. A more 
general development of ˝lter banks is presented in Section: Multiplicity-M (M-Band) Scaling Functions and 
Wavelets (Section 8.2: Multiplicity-M (M-Band) Scaling Functions and Wavelets). 

Although a pure wavelet expansion is possible as indicated in (2.7) and (3.22), properties of the wavelet 
are best developed and understood through the scaling function. This is certainly true if the scaling function 
has compact support because then the wavelet is composed of a ˝nite sum of scaling functions given in 
(3.24). 

In a practical situation where the wavelet expansion or transform is being used as a computational tool 
in signal processing or numerical analysis, the expansion can be made ˝nite. If the basis functions have 
˝nite support, only a ˝nite number of additions over k are necessary. If the scaling function is included as 
indicated in (3.28) or (4.6), the lower limit on the summation over j is ˝nite. If the signal is essentially 
bandlimited, there is a scale above which there is little or no energy and the upper limit can be made ˝nite. 
That is described in Chapter: Calculation of the Discrete Wavelet Transform (Chapter 10). 

4.4 Lattices and Lifting 

An alternative to using the basic two-band tree-structured ˝lter bank is a lattice-structured ˝lter bank. 
Because of the relationship between the scaling ˝lter h (n) and the wavelet ˝lter h1 (n) given in (3.25), some 
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of the calculation can be done together with a signi˝cant savings in arithmetic. This is developed in Chapter: 
Calculation of the Discrete Wavelet Transform (Chapter 10) [526]. 

Still another approach to the calculation of discrete wavelet transforms and to the calculations of the 
scaling functions and wavelets themselves is called �lifting." [278],[273] Although it is related to several other 
schemes [364], [366], [170], [290], this idea was ˝rst explained by Wim Sweldens as a time-domain construc-
tion based on interpolation [500]. Lifting does not use Fourier methods and can be applied to more general 
problems (e.g., nonuniform sampling) than the approach in this chapter. It was ˝rst applied to the biorthog-
onal system [502] and then extended to orthogonal systems [132]. The application of lifting to biorthogonal 
is introduced in Section: Biorthogonal Wavelet Systems (Section 8.4: Biorthogonal Wavelet Systems) later 
in this book. Implementations based on lifting also achieve the same improvement in arithmetic e°ciency 
as the lattice structure do. 

4.5 Di˙erent Points of View 

4.5.1 Multiresolution versus Time-Frequency Analysis 

The development of wavelet decomposition and the DWT has thus far been in terms of multiresolution where 
the higher scale wavelet components are considered the �detail" on a lower scale signal or image. This is 
indeed a powerful point of view and an accurate model for many signals and images, but there are other cases 
where the components of a composite signal at di˙erent scales and/or time are independent or, at least, not 
details of each other. If you think of a musical score as a wavelet decomposition, the higher frequency notes 
are not details on a lower frequency note; they are independent notes. This second point of view is more one 
of the time-frequency or time-scale analysis methods [82], [85], [265], [3], [1] and may be better developed 
with wavelet packets (see Section: Wavelet Packets (Section 8.3: Wavelet Packets)), M-band wavelets (see 
Section: Multiplicity-M (M-band) Scaling Functions and Wavelets (Section 8.2: Multiplicity-M (M-Band) 
Scaling Functions and Wavelets)), or a redundant representation (see Section: Overcomplete Representations, 
Frames, Redundant Transforms, and Adaptive Bases (Section 8.6: Overcomplete Representations, Frames, 
Redundant Transforms, and Adaptive Bases)), but would still be implemented by some sort of ˝lter bank. 

4.5.2 Periodic versus Nonperiodic Discrete Wavelet Transforms 

Unlike the Fourier series, the DWT can be formulated as a periodic or a nonperiodic transform. Up until 
now, we have considered a nonperiodic series expansion (3.33) over −∞ < t < ∞ with the calculations made 
by the ˝lter banks being an on-going string of coe°cients at each of the scales. If the input to the ˝lter 
bank has a certain rate, the output at the next lower scale will be two sequences, one of scaling function 
coe°cients cj−1,k−1 and one of wavelet coe°cients dj−1,k−1, each, after down-sampling, being at half the 
rate of the input. At the next lower scale, the same process is done on the scaling coe°cients to give a 
total output of three strings, one at half rate and two at quarter rate. In other words, the calculation of the 
wavelet transform coe°cients is a multirate ˝lter bank producing sequences of coe°cients at di˙erent rates 
but with the average number at any stage being the same. This approach can be applied to any signal, ˝nite 
or in˝nite in length, periodic or nonperiodic. Note that while the average output rate is the same as the 
average input rate, the number of output coe°cients is greater than the number of input coe°cients because 
the length of the output of convolution is greater than the length of the input. 

An alternative formulation that can be applied to ˝nite duration signals or periodic signals (much as the 
Fourier series) is to make all of the ˝lter bank ˝lters cyclic or periodic convolution which is de˝ned by 

N−1X 
y (n) = h (`) x (n − `) , (4.19) 

`=0 

for n, ̀  = 0, 1, · · · , N − 1 and all indices and arguments are evaluated modulo N . For a length N input at 
scale j = J , we have after one stage two length N/2 sequences, after two stages, one length N/2 and two 
length N/4 sequences, and so on. If N = 2J , this can be repeated J times with the last stage being length 
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one; one scaling function coe°cient and one wavelet coe°cient. An example of how the periodic DWT of a 
length 8 can be seen Figure 4.8. 

cj (k) dj (k) dj+1(k) dj+1(k + 1) dj+2(k) dj+2(k + 1) dj+2(k + 2) dj+2(k + 3) 

Figure 4.8: The length-8 DWT vector 

The details of this periodic approach are developed in Chapter: Calculation of the Discrete Wavelet 
Transform (Chapter 10) showing the aliasing that takes place in this system because of the cyclic convolution 
(4.19). This formulation is particularly clean because there are the same number of terms in the transform as 
in the signal. It can be represented by a square matrix with a simple inverse that has interesting structure. 
It can be e°ciently calculated by an FFT although that is not needed for most applications. 

For most of the theoretical developments or for conceptual purposes, there is little di˙erence in these two 
formulations. However, for actual calculations and in applications, you should make sure you know which 
one you want or which one your software package calculates. As for the Fourier case, you can use the periodic 
form to calculate the nonperiodic transform by padding the signal with zeros but that wastes some of the 
e°ciency that the periodic formulation was set up to provide. 

4.5.3 The Discrete Wavelet Transform versus the Discrete-Time Wavelet Trans-
form 

Two more points of view concern looking at the signal processing methods in this book as based on an 
expansion of a signal or on multirate digital ˝ltering. One can look at Mallat's algorithm either as a way 
of calculating expansion coe°cients at various scales or as a ˝lter bank for processing discrete-time signals. 
The ˝rst is analogous to use of the Fourier series (FS) where a continuous function is transformed into a 
discrete sequence of coe°cients. The second is analogous to the discrete Fourier transform (DFT) where a 
discrete function is transformed into a discrete function. Indeed, the DFT (through the FFT) is often used to 
calculate the Fourier series coe°cients, but care must be taken to avoid or minimize aliasing. The di˙erence 
in these views comes partly from the background of the various researchers (i.e., whether they are �wavelet 
people" or �˝lter bank people"). However, there are subtle di˙erences between using the series expansion of 
the signal (using the discrete wavelet transform (DWT)) and using a multirate digital ˝lter bank on samples 
of the signal (using the discrete-time wavelet transform (DTWT)). Generally, using both views gives more 
insight into a problem than either achieves alone. The series expansion is the main approach of this book 
but ˝lter banks and the DTWT are also developed in Section: Discrete Multiresolution Analysis and the 
Discrete-Time wavelet Transform (Section 8.8: Discrete Multiresolution Analysis, the Discrete-Time Wavelet 
Transform, and the Continuous Wavelet Transform) and Chapter: Filter Banks and Transmultiplexers . 

4.5.4 Numerical Complexity of the Discrete Wavelet Transform 

Analysis of the number of mathematical operations (˛oating-point multiplications and additions) shows that 
calculating the DTWT of a length-N sequence of numbers using Mallat's algorithm with ˝lter banks requires 
O (N) operations. In other words, the number of operations is linear with the length of the signal. What is 
more, the constant of linearity is relatively small. This is in contrast to the FFT algorithm for calculating � � 
the DFT where the complexity is O (N log (N)) or calculating a DFT directly requires O N2 operations. 
It is often said that the FFT algorithm is based on a �divide and conquer" scheme, but that is misleading. 
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The process is better described as a �organize and share" scheme. The e°ciency (in fact, optimal e°ciency) 
is based on organizing the calculations so that redundant operations can be shared. The cascaded ˝ltering 
(convolution) and down-sampling of Mallat's algorithm do the same thing. 

One should not make too much of this di˙erence between the complexity of the FFT and DTWT. It comes 
from the DTWT having a logarithmic division of frequency bands and the FFT having a uniform division. 
This logarithmic scale is appropriate for many signals but if a uniform division is used for the wavelet system 
such as is done for wavelet packets (see Section: Wavelet Packets (Section 8.3: Wavelet Packets)) or the 
redundant DWT (see Section: Overcomplete Representations, Frames, Redundant Transforms, and Adaptive 
Bases (Section 8.6: Overcomplete Representations, Frames, Redundant Transforms, and Adaptive Bases)), 
the complexity of the wavelet system becomes O (N log (N)). 

If you are interested in more details of the discrete wavelet transform and the discrete-time wavelet 
transform, relations between them, methods of calculating them, further properties of them, or examples, see 
Section: Discrete Multiresolution Analysis, the Discrete-Time Wavelet (Section 8.8: Discrete Multiresolution 
Analysis, the Discrete-Time Wavelet Transform, and the Continuous Wavelet Transform) and Chapter: 
Calculation of the Discrete Wavelet Transform. 



Chapter 5 

Bases, Orthogonal Bases, Biorthogonal 

Bases, Frames, Tight Frames, and 

unconditional Bases1 

Most people with technical backgrounds are familiar with the ideas of expansion vectors or basis vectors 
and of orthogonality; however, the related concepts of biorthogonality or of frames and tight frames are less 
familiar but also important. In the study of wavelet systems, we ˝nd that frames and tight frames are needed 
and should be understood, at least at a super˝cial level. One can ˝nd details in [65], [587], [119], [112], [248]. 
Another perhaps unfamiliar concept is that of an unconditional basis used by Donoho, Daubechies, and 
others [144], [373], [119] to explain why wavelets are good for signal compression, detection, and denoising 
[227], [225]. In this chapter, we will very brie˛y de˝ne and discuss these ideas. At this point, you may want 
to skip these sections and perhaps refer to them later when they are speci˝cally needed. 

5.1 Bases, Orthogonal Bases, and Biorthogonal Bases 

A set of vectors or functions fk (t)spans a vector space F (or F is the Span of the set) if any element of that 
space can be expressed as a linear combination of members of that set, meaning: Given the ˝nite or in˝nite 
set of functions fk (t), we de˝ne Spank{fk} = F as the vector space with all elements of the space of the 
form X 

g (t) = ak fk (t) (5.1) 
k 

with k ∈ Z and t, a ∈ R. An inner product is usually de˝ned for this space and is denoted < f (t) , g (t) >.√ 
A norm is de˝ned and is denoted by k f k= < f, f >. 

We say that the set fk (t) is a basis set or a basis for a given space F if the set of {ak} in (5.1) are unique 
for any particular g (t) ∈ F . The set is called an orthogonal basis if < fk (t) , f` (t) >= 0 for all k 6= `. If we 
are in three dimensional Euclidean space, orthogonal basis vectors are coordinate vectors that are at right 
(90o ) angles to each other. We say the set is an orthonormal basis if < fk (t) , f` (t) >= δ (k − `) i.e. if, in 
addition to being orthogonal, the basis vectors are normalized to unity norm: k fk (t) k= 1 for all k. 

From these de˝nitions it is clear that if we have an orthonormal basis, we can express any element in the 
vector space, g (t) ∈ F , written as (5.1) by X 

g (t) = < g (t) , fk (t) > fk (t) (5.2) 
k 

1This content is available online at <http://cnx.org/content/m45090/1.4/>. 
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since by taking the inner product of fk (t) with both sides of (5.1), we get 

ak =< g (t) , fk (t) > (5.3) 

where this inner product of the signal g (t) with the basis vector fk (t) �picks out" the corresponding 
coe°cient ak. This expansion formulation or representation is extremely valuable. It expresses (5.2) as an 
identity operator in the sense that the inner product operates on g (t) to produce a set of coe°cients that, 
when used to linearly combine the basis vectors, gives back the original signal g (t). It is the foundation of 
Parseval's theorem which says the norm or energy can be partitioned in terms of the expansion coe°cients 
ak. It is why the interpretation, storage, transmission, approximation, compression, and manipulation of the 
coe°cients can be very useful. Indeed, (5.2) is the form of all Fourier type methods. 

Although the advantages of an orthonormal basis are clear, there are cases where the basis system dictated 
by the problem is not and cannot (or should not) be made orthogonal. For these cases, one can still have the 
expression of (5.1) and one similar to (5.2) by using a dual basis setf̃  

k (t) whose elements are not orthogonal 
to each other, but to the corresponding element of the expansion set 

< f` (t) , f̃  
k (t) > = δ (` − k) (5.4) 

Because this type of �orthogonality" requires two sets of vectors, the expansion set and the dual set, the 
system is called biorthogonal. Using (5.4) with the expansion in (5.1) gives X 

g (t) = < g (t) , f̃  
k (t) > fk (t) (5.5) 

k 

Although a biorthogonal system is more complicated in that it requires, not only the original expansion set, 
but the ˝nding, calculating, and storage of a dual set of vectors, it is very general and allows a larger class 
of expansions. There may, however, be greater numerical problems with a biorthogonal system if some of 
the basis vectors are strongly correlated. 

The calculation of the expansion coe°cients using an inner product in (5.3) is called the analysis part of 
the complete process, and the calculation of the signal from the coe°cients and expansion vectors in (5.1) 
is called the synthesis part. 

In ˝nite dimensions, analysis and synthesis operations are simply matrix�vector multiplications. If the 
expansion vectors in (5.1) are a basis, the synthesis matrix has these basis vectors as columns and the matrix 
is square and non singular. If the matrix is orthogonal, its rows and columns are orthogonal, its inverse is its 
transpose, and the identity operator is simply the matrix multiplied by its transpose. If it is not orthogonal, 
then the identity is the matrix multiplied by its inverse and the dual basis consists of the rows of the inverse. 
If the matrix is singular, then its columns are not independent and, therefore, do not form a basis. 

5.1.1 Matrix Examples 

PUsing a four dimensional space with matrices to illustrate the ideas of this chapter, the synthesis formula 
g (t) = kak fk (t) becomes ⎡ ⎢⎢⎢⎢⎢⎣ 

g (0) 

g (1) 

g (2) 

⎤ ⎥⎥⎥⎥⎥⎦ = a0 

⎡ ⎢⎢⎢⎢⎢⎣ 
f0 (0) 

f0 (1) 

f0 (2) 

⎤ ⎥⎥⎥⎥⎥⎦ + a1 

⎡ ⎢⎢⎢⎢⎢⎣ 
f1 (0) 

f1 (1) 

f1 (2) 

⎤ ⎥⎥⎥⎥⎥⎦ + a2 

⎡ ⎢⎢⎢⎢⎢⎣ 
f2 (0) 

f2 (1) 

f2 (2) 

⎤ ⎥⎥⎥⎥⎥⎦ + a3 

⎡ ⎢⎢⎢⎢⎢⎣ 
f3 (0) 

f3 (1) 

f3 (2) 

⎤ ⎥⎥⎥⎥⎥⎦ (5.6) 

g (3) f0 (3) f1 (3) f2 (3) f3 (3) 
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which can be compactly written in matrix form as ⎡ ⎢⎢⎢⎢⎢⎣ 
g (0) 

g (1) 

g (2) 

⎤ ⎥⎥⎥⎥⎥⎦ = 

⎡ ⎢⎢⎢⎢⎢⎣ 
f0 (0) f1 (0) f2 (0) f3 (0) 

f0 (1) f1 (1) f2 (1) f3 (1) 

f0 (2) f1 (2) f2 (2) f3 (2) 

⎡ ⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎦ 
a0 

a1 

a2 

⎤ ⎥⎥⎥⎥⎥⎦ (5.7) 

g (3) f0 (3) f1 (3) f2 (3) f3 (3) a3 

The synthesis or expansion (5.1) or (5.7) becomes 

g = F a, (5.8) 

with the left-hand column vector g being the signal vector, the matrix F formed with the basis vectors fk 

as columns, and the right-hand vector a containing the four expansion coe°cients, ak. 
The equation for calculating the kth expansion coe°cient in (5.6) is 

ak =< g (t) , f̃  
k (t) >= f̃k 

T g (5.9) 

which can be written in vector form as ⎡ ⎢⎢⎢⎢⎢⎣ 
a0 

a1 

a2 

⎤ ⎥⎥⎥⎥⎥⎦ = 

⎡ ⎢⎢⎢⎢⎢⎣ 
f̃  
0 (0) f̃  

0 (1) f̃  
0 (2) f̃  

0 (3) 

f̃  
1 (0) f̃  

1 (1) f̃  
1 (2) f̃  

1 (3) 

f̃  
2 (0) f̃  

2 (1) f̃  
2 (2) f̃  

2 (3) 

⎡ ⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎦ 
g (0) 

g (1) 

g (2) 

⎤ ⎥⎥⎥⎥⎥⎦ (5.10) 

a3 f̃  
3 (0) f̃  

3 (1) f̃  
3 (2) f̃  

3 (3) g (3) 

where each ak is an inner product of the k
th row of F̃T with g and analysis or coe°cient (5.3) or (5.10) 

becomes 

F̃T a = g (5.11) 

which together are (5.2) or 

g = F F̃ T g. (5.12) 

Therefore, 

F̃ T F−1 = (5.13) 

is how the dual basis in (5.4) is found. 
If the columns of F are orthogonal and normalized, then 

F FT = I. (5.14) 

This means the basis and dual basis are the same, and (5.12) and (5.13) become 

g = F FT g (5.15) 

and 

F̃T = FT (5.16) 

which are both simpler and more numerically stable than (5.13). 
The discrete Fourier transform (DFT) is an interesting example of a ˝nite dimensional Fourier transform 

with orthogonal basis vectors where matrix and vector techniques can be informative as to the DFT's 
characteristics and properties. That can be found developed in several signal processing books. 
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5.1.2 Fourier Series Example 

The Fourier Series is an excellent example of an in˝nite dimensional composition (synthesis) and decompo-
sition (analysis). The expansion formula for an even function g (t) over 0 < x < 2π is X 

g (t) = ak cos (kt) (5.17) 
k 

where the basis vectors (functions) are 

fk (t) = cos (kt) (5.18) 

and the expansion coe°cients are obtained as Z π2 
ak =< g (t) , fk (t) >= g (t) cos (kt) dx. (5.19)

π 0 

The basis vector set is easily seen to be orthonormal by verifying 

< f` (t) , fk (t) >= δ (k − `) . (5.20) 

These basis functions span an in˝nite dimensional vector space and the convergence of (5.17) must be 
examined. Indeed, it is the robustness of that convergence that is discussed in this section under the topic 
of unconditional bases. 

5.1.3 Sinc Expansion Example 

Another example of an in˝nite dimensional orthogonal basis is Shannon's sampling expansion [362]. If f (t) 
is band limited, then � �X πsin t − πk Tf (t) = f (Tk) (5.21)π t − πk Tk 

for a sampling interval T < π if the spectrum of f (t) is zero for |ω| > W . In this case the basis functionsW 
are the sinc functions with coe°cients which are simply samples of the original function. This means the 
inner product of a sinc basis function with a bandlimited function will give a sample of that function. It is 
easy to see that the sinc basis functions are orthogonal by taking the inner product of two sinc functions 
which will sample one of them at the points of value one or zero. 

5.2 Frames and Tight Frames 

While the conditions for a set of functions being an orthonormal basis are su°cient for the representation 
in (5.2) and the requirement of the set being a basis is su°cient for (5.5), they are not necessary. To be a 
basis requires uniqueness of the coe°cients. In other words it requires that the set be independent, meaning 
no element can be written as a linear combination of the others. 

If the set of functions or vectors is dependent and yet does allow the expansion described in (5.5), then 
the set is called a frame [65]. Thus, a frame is a spanning set. The term frame comes from a de˝nition that 
requires ˝nite limits on an inequality bound [119], [587] of inner products. 

If we want the coe°cients in an expansion of a signal to represent the signal well, these coe°cients should 
have certain properties. They are stated best in terms of energy and energy bounds. For an orthogonal basis, 
this takes the form of Parseval's theorem. To be a frame in a signal space, an expansion set ϕk (t) must 
satisfy X 

A k g k2 ≤ | < φk, g > |2 ≤ Bk g k2 
(5.22) 

k 
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for some 0 < A and B < ∞ and for all signals g (t) in the space. Dividing (5.22) by k g k2 
shows that A 

and B are bounds on the normalized energy of the inner products. They �frame" the normalized coe°cient 
energy. If 

A = B (5.23) 

then the expansion set is called a tight frame. This case gives X 
2 2

A k g k = | < φk, g > | (5.24) 
k 

which is a generalized Parseval's theorem for tight frames. If A = B = 1, the tight frame becomes an 
orthogonal basis. From this, it can be shown that for a tight frame [119] X 

g (t) = A−1 < φk (t) , g (t) > φk (t) (5.25) 
k 

which is the same as the expansion using an orthonormal basis except for the A−1 term which is a measure 
of the redundancy in the expansion set. 

If an expansion set is a non tight frame, there is no strict Parseval's theorem and the energy in the 
transform domain cannot be exactly partitioned. However, the closer A and B are, the better an approximate 
partitioning can be done. If A = B, we have a tight frame and the partitioning can be done exactly with 
(5.24). Daubechies [119] shows that the tighter the frame bounds in (5.22) are, the better the analysis and 
synthesis system is conditioned. In other words, if A is near or zero and/or B is very large compared to A, 
there will be numerical problems in the analysis�synthesis calculations. 

Frames are an over-complete version of a basis set, and tight frames are an over-complete version of an 
orthogonal basis set. If one is using a frame that is neither a basis nor a tight frame, a dual frame set can 
be speci˝ed so that analysis and synthesis can be done as for a non-orthogonal basis. If a tight frame is 
being used, the mathematics is very similar to using an orthogonal basis. The Fourier type system in (5.25) 
is essentially the same as (5.2), and (5.24) is essentially a Parseval's theorem. 

The use of frames and tight frames rather than bases and orthogonal bases means a certain amount of 
redundancy exists. In some cases, redundancy is desirable in giving a robustness to the representation so that 
errors or faults are less destructive. In other cases, redundancy is an ine°ciency and, therefore, undesirable. 
The concept of a frame originates with Du°n and Schae˙er [167] and is discussed in [587], [112], [119]. In 
˝nite dimensions, vectors can always be removed from a frame to get a basis, but in in˝nite dimensions, that 
is not always possible. 

An example of a frame in ˝nite dimensions is a matrix with more columns than rows but with independent 
rows. An example of a tight frame is a similar matrix with orthogonal rows. An example of a tight frame in 
in˝nite dimensions would be an over-sampled Shannon expansion. It is informative to examine this example. 

5.2.1 Matrix Examples 

An example of a frame of four expansion vectors fk in a three-dimensional space would be 

⎤ ⎥⎥⎦ 
⎡ ⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎦ (5.26) 

⎡ ⎢⎢⎣ 
g (0) 

g (1) 

⎤ ⎥⎥⎦ = 

⎡ ⎢⎢⎣ 
f0 (0) f1 (0) f2 (0) f3 (0) 

f0 (1) f1 (1) f2 (1) f3 (1) 

a0 

a1 

a2 
g (2) f0 (2) f1 (2) f2 (2) f3 (2) 

a3 
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which corresponds to the basis shown in the square matrix in (5.7). The corresponding analysis equation is ⎡ ⎢⎢⎢⎢⎢⎣ 
a0 

a1 

a2 

⎤ ⎥⎥⎥⎥⎥⎦ = 

⎡ ⎢⎢⎢⎢⎢⎣ 
f̃  
0 (0) f̃  

0 (1) f̃  
0 (2) 

f̃  
1 (0) f̃  

1 (1) f̃  
1 (2) 

f̃  
2 (0) f̃  

2 (1) f̃  
2 (2) 

⎡ ⎢⎢⎣ 
⎤ ⎥⎥⎥⎥⎥⎦ 

⎤ ⎥⎥⎦ . (5.27) 

g (0) 

g (1) 

g (2) 
a3 f̃  

3 (0) f̃  
3 (1) f̃  

3 (2) 

which corresponds to (5.10). One can calculate a set of dual frame vectors by temporarily appending an 
arbitrary independent row to (5.26), making the matrix square, then using the ˝rst three columns of the 
inverse as the dual frame vectors. This clearly illustrates the dual frame is not unique. Daubechies [119] 
shows how to calculate an �economical" unique dual frame. 

The tight frame system occurs in wavelet in˝nite expansions as well as other ˝nite and in˝nite dimensional 
systems. A numerical example of a frame which is a normalized tight frame with four vectors in three 
dimensions is 

⎤ ⎥⎥⎦ 
⎡ ⎢⎢⎢⎢⎢⎣ 
a0 

a1 

a2 

⎤ ⎥⎥⎥⎥⎥⎦ (5.28) 

⎡ ⎢⎢⎣ 
g (0) 

g (1) 

⎤ ⎥⎥⎦ 
⎡ ⎢⎢⎣ 
1 1 −1 −1 
1 −1 1 −1 

1 1 
= 
A 
√ 
3 

g (2) 1 1 1 1 
a3 

which includes the redundancy factor from (5.25). Note the rows are orthogonal and the columns are 
normalized, which gives ⎡ ⎢⎢⎢⎢⎢⎣ 

1 1 1 

1 −1 1 

−1 1 1 

⎤ ⎥⎥⎥⎥⎥⎦ = 
4 
3 

⎡ ⎢⎢⎣ 
⎡ ⎢⎢⎣ 

⎤ ⎥⎥⎦ 
⎤ ⎥⎥⎦ = 

1 1 −1 −1 
1 −1 1 −1 

1 0 0 

0 1 0F FT = 
1 √ 

1 √ 
4 
I (5.29)

33 3 
1 1 1 1 0 0 1 

−1 −1 1 
or 

g = 
1 
A 

F FT g (5.30) 

which is the matrix form of (5.25). The factor of A = 4/3 is the measure of redundancy in this tight frame 
using four expansion vectors in a three-dimensional space. 

The identity for the expansion coe°cients is 

a =
1 
FTF a (5.31)

A 
which for the numerical example gives ⎡ ⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎦ 
⎤ ⎥⎥⎦ = 

⎡ ⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎦ . (5.32) 

⎡ ⎢⎢⎣ 
−1/31 1 1 1 1/3 1/3 

1 1 −1 −1 
1 −1 1 −1 

−1 1 −1/31 1/3 1 1/3 
FT F = 

1 √ 
1 √ 

3 3−1 1/3 −1/31 1 1 1/3 
1 1 1 1 

−1 −1 1 −1/3 1/3 1/3 1 

Although this is not a general identity operator, it is an identity operator over the three-dimensional subspace 
that a is in and it illustrates the unity norm of the rows of FT and columns of F. 

If the redundancy measure A in (5.25) and (5.29) is one, the matrices must be square and the system 
has an orthonormal basis. 
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Frames are over-complete versions of non-orthogonal bases and tight frames are over-complete versions 
of orthonormal bases. Tight frames are important in wavelet analysis because the restrictions on the scaling 
function coe°cients discussed in Chapter: The Scaling Function and Scaling Coe°cients, Wavelet and 
Wavelet Coe°cients guarantee not that the wavelets will be a basis, but a tight frame. In practice, however, 
they are usually a basis. 

5.2.2 Sinc Expansion as a Tight Frame Example 

An example of an in˝nite-dimensional tight frame is the generalized Shannon's sampling expansion for the 
over-sampled case [362]. If a function is over-sampled but the sinc functions remains consistent with the 
upper spectral limit W , the sampling theorem becomes XT W sin ((t − Tn) W ) 

g (t) = g (Tn) (5.33)
π (t − Tn) W 

n 

or using R as the amount of over-sampling 

π 
RW = , for R ≥ 1 (5.34)

T 
we have � � 

1 X sin π (t − Tn)RT g (t) = g (Tn) (5.35)πR (t − Tn)RT n 

where the sinc functions are no longer orthogonal now. In fact, they are no longer a basis as they are not 
independent. They are, however, a tight frame and, therefore, act as though they were an orthogonal basis 
but now there is a �redundancy" factor R as a multiplier in the formula. 

Notice that as R is increased from unity, (5.35) starts as (5.21) where each sample occurs where the 
sinc function is one or zero but becomes an expansion with the shifts still being t = Tn, however, the sinc 
functions become wider so that the samples are no longer at the zeros. If the signal is over-sampled, either 
the expression (5.21) or (5.35) could be used. They both are over-sampled but (5.21) allows the spectrum 
of the signal to increase up to the limit without distortion while (5.35) does not. The generalized sampling 
theorem (5.35) has a built-in ˝ltering action which may be an advantage or it may not. 

The application of frames and tight frames to what is called a redundant discrete wavelet transform 
(RDWT) is discussed later in Section: Overcomplete Representations, Frames, Redundant Transforms, and 
Adaptive Bases (Section 8.6: Overcomplete Representations, Frames, Redundant Transforms, and Adaptive 
Bases) and their use in Section: Nonlinear Filtering or Denoising with the DWT (Section 11.3: Nonlinear 
Filtering or Denoising with the DWT). They are also needed for certain adaptive descriptions discussed at 
the end of Section: Overcomplete Representations, Frames, Redundant Transforms, and Adaptive Bases 
(Section 8.6: Overcomplete Representations, Frames, Redundant Transforms, and Adaptive Bases) where 
an independent subset of the expansion vectors in the frame are chosen according to some criterion to give 
an optimal basis. 

5.3 Conditional and Unconditional Bases 

A powerful point of view used by Donoho [144] gives an explanation of which basis systems are best for a 
particular class of signals and why the wavelet system is good for a wide variety of signal classes. 

Donoho de˝nes an unconditional basis as follows. If we have a function class F with a norm de˝ned andP 
denoted || · ||F and a basis set fk such that every function g ∈ F has a unique representation g = kak fk 

with equality de˝ned as a limit using the norm, we consider the in˝nite expansion X 
g (t) = mk ak fk (t) . (5.36) 

k 
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If for all g ∈ F , the in˝nite sum converges for all |mk| ≤ 1, the basis is called an unconditional basis. 
This is very similar to unconditional or absolute convergence of a numerical series [144], [587], [373]. If the 
convergence depends on mk = 1 for some g (t), the basis is called a conditional basis. 

An unconditional basis means all subsequences converge and all sequences of subsequences converge. 
It means convergence does not depend on the order of the terms in the summation or on the sign of the 
coe°cients. This implies a very robust basis where the coe°cients drop o˙ rapidly for all members of the 
function class. That is indeed the case for wavelets which are unconditional bases for a very wide set of 
function classes [119], [381], [219]. 

Unconditional bases have a special property that makes them near-optimal for signal processing in several 
situations. This property has to do with the geometry of the space of expansion coe°cients of a class of 
functions in an unconditional basis. This is described in [144]. 

The fundamental idea of bases or frames is representing a continuous function by a sequence of expansion 
coe°cients. We have seen that the Parseval's theorem relates the L2 norm of the function to the `2 norm 
of coe°cients for orthogonal bases and tight frames (5.24). Di˙erent function spaces are characterized by 
di˙erent norms on the continuous function. If we have an unconditional basis for the function space, the 
norm of the function in the space not only can be related to some norm of the coe°cients in the basis 
expansion, but the absolute values of the coe°cients have the su°cient information to establish the relation. 
So there is no condition on the sign or phase information of the expansion coe°cients if we only care about 
the norm of the function, thus unconditional. 

For this tutorial discussion, it is su°cient to know that there are theoretical reasons why wavelets are 
an excellent expansion system for a wide set of signal processing problems. Being an unconditional basis 
also sets the stage for e°cient and e˙ective nonlinear processing of the wavelet transform of a signal for 
compression, denoising, and detection which are discussed in Chapter: The Scaling Function and Scaling 
Coe°cients, Wavelet and Wavelet Coe°cients. 



Chapter 6 

The Scaling Function and Scaling 

Coe°cients, Wavelet and Wavelet 

Coe°cients1 

We will now look more closely at the basic scaling function and wavelet to see when they exist and what 
their properties are [135], [340], [315], [319], [318], [324], [120]. Using the same approach that is used in the 
theory of di˙erential equations, we will examine the properties of φ (t) by considering the equation of which 
it is a solution. The basic recursion (3.13) that comes from the multiresolution formulation is X √ 

φ (t) = h (n) 2 φ (2t − n) (6.1) 
n 

with h (n) being the scaling coe°cients and φ (t) being the scaling function which satis˝es this equation 
which is sometimes called the re˝nement equation, the dilation equation, or the multiresolution analysis 
equation (MRA). 

In order to state the properties accurately, some care has to be taken in specifying just what classes of 
functions are being considered or are allowed. We will attempt to walk a ˝ne line to present enough detail 
to be correct but not so much as to obscure the main ideas and results. A few of these ideas were presented 
in Section: Signal Spaces (Section 3.1: Signal Spaces) and a few more will be given in the next section. A 
more complete discussion can be found in [533], in the introductions to [550], [571], [5], or in any book on 
function analysis. 

6.1 Tools and De˝nitions 

6.1.1 Signal Classes 

There are three classes of signals that we will be using. The most basic is called L2 (R) which contains all 
functions which have a ˝nite, well-de˝ned integral of the square: f ∈ L2 ⇒ 

R 
|f (t) |2 

dt = E < ∞. This 
class is important because it is a generalization of normal Euclidean geometry and because it gives a simple 
representation of the energy in a signal. 

The next most basic class is L1 (R), which requires a ˝nite integral of the absolute value of the function:R 
f ∈ L1 ⇒ |f (t) | dt = K < ∞. This class is important because one may interchange in˝nite sum-
mations and integrations with these functions although not necessarily with L2 functions. These classes ofR p
function spaces can be generalized to those with |f (t) | dt = K < ∞ and designated Lp. 

1This content is available online at <http://cnx.org/content/m45100/1.4/>. 
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A more general class of signals than any Lp space contains what are called distributions. These are 
generalized functions which are not de˝ned by their having �values" but by the value of an �inner product" 
with a normal function. An example of a distribution would be the Dirac delta function δ (t) where it isR 
de˝ned by the property: f (T ) = f (t) δ (t − T ) dt. 

Another detail to keep in mind is that the integrals used in these de˝nitions are Lebesque integrals which 
are somewhat more general than the basic Riemann integral. The value of a Lebesque integral is not a˙ected 
by values of the function over any countable set of values of its argument (or, more generally, a set of measure 
zero). A function de˝ned as one on the rationals and zero on the irrationals would have a zero Lebesque 
integral. As a result of this, properties derived using measure theory and Lebesque integrals are sometime 
said to be true �almost everywhere," meaning they may not be true over a set of measure zero. 

Many of these ideas of function spaces, distributions, Lebesque measure, etc. came out of the early study 
of Fourier series and transforms. It is interesting that they are also important in the theory of wavelets. As 
with Fourier theory, one can often ignore the signal space classes and can use distributions as if they were 
functions, but there are some cases where these ideas are crucial. For an introductory reading of this book 
or of the literature, one can usually skip over the signal space designation or assume Riemann integrals. 
However, when a contradiction or paradox seems to arise, its resolution will probably require these details. 

6.1.2 Fourier Transforms 

We will need the Fourier transform of φ (t) which, if it exists, is de˝ned to be Φ Z ∞ 
−iωt dtΦ (ω) = φ (t) e (6.2) 

−∞ 

and the discrete-time Fourier transform (DTFT) [412] of h (n) de˝ned to be 

∞X 
H (ω) = h (n) e −iωn (6.3) 

n=−∞ 
√ 

where i = −1 and n is an integer (n ∈ Z). If convolution with h (n) is viewed as a digital ˝lter, as de˝ned 
in Section: Analysis - From Fine Scale to Coarse Scale (Section 4.1: Analysis � From Fine Scale to Coarse 
Scale), then the DTFT of h (n) is the ˝lter's frequency response, [412], [415] which is 2π periodic. 

If Φ (ω) exists, the de˝ning recursive equation (6.1) becomes 

1 
Φ (ω) = √ H (ω/2) Φ (ω/2) (6.4)

2 

which after iteration becomes 

∞ � �Y 1 ω 
Φ (ω) = {√ H }Φ (0) . (6.5)

2k2 
k=1 P √ 

if n h (n) = 2 and Φ (0) is well de˝ned. This may be a distribution or it may be a smooth function 
depending on H (ω) and, therefore, h (n)[533], [120]. This makes sense only if Φ (0) is well de˝ned. Although 
(6.1) and (6.5) are equivalent term-by-term, the requirement of Φ (0) being well de˝ned and the nature of 
the limits in the appropriate function spaces may make one preferable over the other. Notice how the zeros 
of H (ω) determine the zeros of Φ (ω). 

6.1.3 Re˝nement and Transition Matrices 

There are two matrices that are particularly important to determining the properties of wavelet systems. 
The ˝rst is the re˝nement matrixM , which is obtained from the basic recursion equation (6.1) by evaluating 
φ (t) at integers [384], [129], [130], [493], [488]. This looks like a convolution matrix with the even (or odd) 
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rows removed. Two particular submatrices that are used later in Section 6.10 (Calculating the Basic Scaling 
Function and Wavelet) to evaluate φ (t) on the dyadic rationals are illustrated for N = 6 by 

√ 
2 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

h0 0 0 0 0 0 

h2 h1 h0 0 0 0 

h4 h3 h2 h1 h0 0 

0 h5 h4 h3 h2 h1 

0 0 0 h5 h4 h3 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

φ0 

φ1 

φ2 

φ3 

φ4 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
= 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

φ0 

φ1 

φ2 

φ3 

φ4 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
(6.6) 

0 0 0 0 0 h5 φ5 φ5 

which we write in matrix form as 

M0 φ = φ (6.7) 

with M0 being the 6 × 6 matrix of the h (n) and φ being 6 × 1 vectors of integer samples of φ (t). In other 
words, the vector φ with entries φ (k) is the eigenvector of M0 for an eigenvalue of unity. 

The second submatrix is a shifted version illustrated by 

√ 
2 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

h1 h0 0 0 0 0 

h3 h2 h1 h0 0 0 

h5 h4 h3 h2 h1 h0 

0 0 h5 h4 h3 h2 

0 0 0 0 h5 h4 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

φ0 

φ1 

φ2 

φ3 

φ4 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
= 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

φ1/2 

φ3/2 

φ5/2 

φ7/2 

φ9/2 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
(6.8) 

0 0 0 0 0 0 φ5 φ11/2 

with the matrix being denoted M1. The general re˝nement matrix M is the in˝nite matrix of which M0 

and M1 are partitions. If the matrix H is the convolution matrix for h (n), we can denote the M matrix by 
[↓ 2] H to indicate the down-sampled convolution matrix H. Clearly, for φ (t) to be de˝ned on the dyadic 
rationals, M0 must have a unity eigenvalue. 

A third, less obvious but perhaps more important, matrix is called the transition matrixT and it is built 
up from the autocorrelation matrix of h (n). The transition matrix is constructed by 

T = [↓ 2] HHT . (6.9) 

This matrix (sometimes called the Lawton matrix) was used by Lawton (who originally called it the Wavelet-
Galerkin matrix) [318] to derive necessary and su°cient conditions for an orthogonal wavelet basis. As we 
will see later in this chapter, its eigenvalues are also important in determining the properties of φ (t) and the 
associated wavelet system. 

6.2 Necessary Conditions R 
Theorem 1 If φ (t) ∈ L1 is a solution to the basic recursion equation (6.1) and if φ (t) dt 6= 0 , then X √ 

h (n) = 2. (6.10) 
n 

The proof of this theorem requires only an interchange in the order of a summation and integration (allowed 
in L1) but no assumption of orthogonality of the basis functions or any other properties of φ (t) other 
than a nonzero integral. The proof of this theorem and several of the others stated here are contained in 
Appendix A. 
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This theorem shows that, unlike linear constant coe°cient di˙erential equations, not just any set of 
coe°cients will support a solution. The coe°cients must satisfy the linear equation (6.10). This is the 
weakest condition on the h (n). R 

Theorem 2 If φ (t) is an L1 solution to the basic recursion equation (6.1) with φ (t) dt = 1, and X X 
φ (t − `) = φ (`) = 1 (6.11) 

` ` 

with Φ (π + 2πk) 6= 0 for some k, then X X 
h (2n) = h (2n + 1) (6.12) 

n n 

where (6.11) may have to be a distributional sum. Conversely, if (6.12) is satis˝ed, then (6.11) is true. 
Equation (6.12) is called the fundamental condition, and it is weaker than requiring orthogonality but 

stronger than (6.10). It is simply a result of requiring the equations resulting from evaluating (6.1) on the 
integers be consistent. Equation (6.11) is called a partitioning of unity (or the Strang condition or the 
Shoenberg condition). 

A similar theorem by Cavaretta, Dahman and Micchelli [56] and by Jia [280] states that if φ ∈ Lp andP P 
the integer translates of φ (t) form a Riesz basis for the space they span, then n h (2n) = n h (2n + 1). 

Theorem 3 If φ (t) is an L2 ∩ L1 solution to (6.1) and if integer translates of φ (t) are orthogonal as 
de˝ned by 

Z 
E if k = 0 

φ (t) φ (t − k) dt = E δ (k) = { (6.13) 
0 otherwise, 

then 

X 1 if k = 0 
h (n) h (n − 2k) = δ (k) = { (6.14) 

n 0 otherwise, 

Notice that this does not depend on a particular normalization of φ (t).√ 
If φ (t) is normalized by dividing by the square root of its energy E, then integer translates of φ (t) are 

orthonormal de˝ned by 

Z 
1 if k = 0 

φ (t) φ (t − k) dt = δ (k) = { (6.15) 
0 otherwise, 

This theorem shows that in order for the solutions of (6.1) to be orthogonal under integer translation, 
it is necessary that the coe°cients of the recursive equation be orthogonal themselves after decimating or 
downsampling by two. If φ (t) and/or h (n) are complex functions, complex conjugation must be used in 
(6.13), (6.14), and (6.15). 

Coe°cients h (n) that satisfy (6.14) are called a quadrature mirror ˝lter (QMF) or conjugate mirror ˝lter 
(CMF), and the condition (6.14) is called the quadratic condition for obvious reasons. 

Corollary 1 Under the assumptions of Theorem p. 58, the norm of h (n) is automatically unity. X 
|h (n) |2 

= 1 (6.16) 
n 

√ 
Not only must the sum of h (n) equal 2, but for orthogonality of the solution, the sum of the squares of 
h (n) must be one, both independent of any normalization of φ (t). This unity normalization of h (n) is the√ 
result of the 2 term in (6.1). 
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Corollary 2 Under the assumptions of Theorem p. 58, X X 1 
h (2n) = h (2n + 1) = √ 

2 
(6.17) 

n n 
√ 

This result is derived in the Appendix by showing that not only must the sum of h (n) equal 2, but√ 
for orthogonality of the solution, the individual sums of the even and odd terms in h (n) must be 1/ 2, 
independent of any normalization of φ (t). Although stated here as necessary for orthogonality, the results 
hold under weaker non-orthogonal conditions as is stated in Theorem p. 58. 

Theorem 4 If φ (t) has compact support on 0 ≤ t ≤ N − 1 and if φ (t − k) are linearly independent, 
then h (n) also has compact support over 0 ≤ n ≤ N − 1: 

h (n) = 0 for n < 0 and n > N − 1 (6.18) 

Thus N is the length of the h (n) sequence. 
If the translates are not independent (or some equivalent restriction), one can have h (n) with in˝nite 

support while φ (t) has ˝nite support [449]. 
These theorems state that if φ (t) has compact support and is orthogonal over integer translates, N 

2 
bilinear or quadratic equations (6.14) must be satis˝ed in addition to the one linear equation (6.10). The 
support or length of h (n) is N , which must be an even number. The number of degrees of freedom in 
choosing these N coe°cients is then N 

2 − 1. This freedom will be used in the design of a wavelet system 
developed in Chapter: Regularity, Moments, and Wavelet System Design and elsewhere. 

6.3 Frequency Domain Necessary Conditions 

We turn next to frequency domain versions of the necessary conditions for the existence of φ (t). Some care 
must be taken in specifying the space of functions that the Fourier transform operates on and the space that 
the transform resides in. We do not go into those details in this book but the reader can consult [533]. 

Theorem 5 If φ (t) is a L1 solution of the basic recursion equation (6.1), then the following equivalent 
conditions must be true: X √ 

h (n) = H (0) = 2 (6.19) 
n 

This follows directly from (6.3) and states that the basic existence requirement (6.10) is equivalent to√ 
requiring that the FIR ˝lter's frequency response at DC (ω = 0) be 2. 

Theorem 6 For h (n) ∈ `1 , then X X 
h (2n) = h (2n + 1) if and only if H (π) = 0 (6.20) 

n n 

which says the frequency response of the FIR ˝lter with impulse response h (n) is zero at the so-called 
Nyquist frequency (ω = π). This follows from (6.4) and (8.7), and supports the fact that h (n) is a lowpass 
digital ˝lter. This is also equivalent to the M and T matrices having a unity eigenvalue. 

Theorem 7 If φ (t) is a solution to (6.1) in L2 ∩ L1 and Φ (ω) is a solution of (6.4) such that Φ (0) 6= 0, 
then Z X 

2
φ (t) φ (t − k) dt = δ (k) if and only if |Φ (ω + 2π`) | = 1 (6.21) 

` 

This is a frequency domain equivalent to the time domain de˝nition of orthogonality of the scaling function 
[340], [345], [120]. It allows applying the orthonormal conditions to frequency domain arguments. It also 
gives insight into just what time domain orthogonality requires in the frequency domain. 
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Theorem 8 For any h (n) ∈ `1 , X 
2 2

h (n) h (n − 2k) = δ (k) if and only if |H (ω) | + |H (ω + π) | = 2 (6.22) 
n 

This theorem [315], [245], [120] gives equivalent time and frequency domain conditions on the scaling 
coe°cients and states that the orthogonality requirement (6.14) is equivalent to the FIR ˝lter with h (n) 
as coe°cients being what is called a Quadrature Mirror Filter (QMF) [474]. Note that (6.22), (6.19), and 
(6.20) require |H (π/2) | = 1 and that the ˝lter is a �half band" ˝lter. 

6.4 Su°cient Conditions 

The above are necessary conditions for φ (t) to exist and the following are su°cient. There are many forms 
these could and do take but we present the following as examples and give references for more detail [135], 
[340], [315], [319], [318], [324], [120], [323], [322], [321].P √ 

Theorem 9 If n h (n) = 2 and h (n) has ˝nite support or decays fast enough so thatP �|h (n) | (1 + |n|) < ∞ for some � > 0, then a unique (within a scalar multiple) φ (t) (perhaps a dis-
tribution) exists that satis˝es (6.1) and whose distributional Fourier transform satis˝es (6.5). 

This [135], [315], [314] can be obtained in the frequency domain by considering the convergence of (6.5). 
It has recently been obtained using a much more powerful approach in the time domain by Lawton [321]. 

Because this theorem uses the weakest possible condition, the results are weak. The scaling functionP √ 
obtained from only requiring n h (n) = 2 may be so poorly behaved as to be impossible to calculate or 
use. The worst cases will not support a multiresolution analysis or provide a useful expansion system. P P √ 

Theorem 10 If h (2n) = h (2n + 1) = 1/ 2 and h (n) has ˝nite support or decays fast enough soP n
� 

n 
that |h (n) | (1 + |n|) < ∞ for some � > 0, then a φ (t) (perhaps a distribution) that satis˝es (6.1) exists, 
is unique, and is well-de˝ned on the dyadic rationals. In addition, the distributional sum X 

φ (t − k) = 1 (6.23) 
k 

holds. 
This condition, called the fundamental condition [493], [323], gives a slightly tighter result than Theo-

rem p. 60. While the scaling function still may be a distribution not in L1 or L2 , it is better behaved than 
required by Theorem p. 60 in being de˝ned on the dense set of dyadic rationals. This theorem is equivalent 
to requiring H (π) = 0 which from the product formula (6.5) gives a better behaved Φ (ω). It also guarantees 
a unity eigenvalue for M and T but not that other eigenvalues do not exist with magnitudes larger than 
one. 

The next several theorems use the transition matrix T de˝ned in (6.9) which is a down-sampled auto-
correlation matrix. 

Theorem 11 If the transition matrix T has eigenvalues on or in the unit circle of the complex plane and 
if any on the unit circle are multiple, they have a complete set of eigenvectors, then φ (t) ∈ L2 . 

If T has unity magnitude eigenvalues, the successive approximation algorithm (cascade algorithm) (6.71) 
converges weakly to φ (t) ∈ L2[314]. 

Theorem 12 If the transition matrix T has a simple unity eigenvalue with all other eigenvalues having 
magnitude less than one, then φ (t) ∈ L2 . 

Here the successive approximation algorithm (cascade algorithm) converges strongly to φ (t) ∈ L2 . This 
is developed in [493]. 

If in addition to requiring (6.10), we require the quadratic coe°cient conditions (6.14), a tighter result 
occurs which gives φ (t) ∈ L2 (R) and a multiresolution tight frame system. P √ 

Theorem 13 (Lawton) If h (n) has ˝nite support or decays fast enough and if n h (n) = 2 and ifP 
h (n) h (n − 2k) = δ (k), then φ (t) ∈ L2 (R) exists, and generates a wavelet system that is a tight frame 

in 
n 
L2 . 
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This important result from Lawton [315], [319] gives the su°cient conditions for φ (t) to exist and generate 
wavelet tight frames. The proof uses an iteration of the basic recursion equation (6.1) as a successive 
approximation similar to Picard's method for di˙erential equations. Indeed, this method is used to calculate 
φ (t) in Section 6.10 (Calculating the Basic Scaling Function and Wavelet). It is interesting to note that 
the scaling function may be very rough, even �fractal" in nature. This may be desirable if the signal being 
analyzed is also rough. 

Although this theorem guarantees that φ (t) generates a tight frame, in most practical situations, the 
resulting system is an orthonormal basis [319]. The conditions in the following theorems are generally 
satis˝ed. P √ P 

Theorem 14 (Lawton) If h(n) has compact support, n h (n) = 2, and n h (n) h (n − 2k) = δ (k), 
then φ (t − k) forms an orthogonal set if and only if the transition matrix T has a simple unity eigenvalue. 

This powerful result allows a simple evaluation of h (n) to see if it can support a wavelet expansion system 
[315], [319], [318]. An equivalent result using the frequency response of the FIR digital ˝lter formed from 
h (n) was given by Cohen. P √ 

Theorem 15 (Cohen) If H (ω) is the DTFT of h (n) with compact support and h (n) = 2 withP n 

n h (n) h (n − 2k) = δ (k),and if H (ω) =6 0 for −π/3 ≤ ω ≤ π/3, then the φ (t − k) satisfying (6.1) generate 
an orthonormal basis in L2 . 

A slightly weaker version of this frequency domain su°cient condition is easier to prove [340], [345] and to 
extend to the M-band case for the case of no zeros allowed in −π/2 ≤ ω ≤ π/2[120]. There are other su°cient 
conditions that, together with those in Theorem p. 60, will guarantee an orthonormal basis. Daubechies' 
vanishing moments will guarantee an orthogonal basis. 

Theorems , , and show that h (n) has the characteristics of a lowpass FIR digital ˝lter. We will later see 
that the FIR ˝lter made up of the wavelet coe°cients is a high pass ˝lter and the ˝lter bank view developed 
in Chapter: Filter Banks and the Discrete Wavelet Transform (Chapter 4) and Section: Multiplicity-M 
(M-Band) Scaling Functions and Wavelets (Section 8.2: Multiplicity-M (M-Band) Scaling Functions and 
Wavelets) further explains this view. 

Theorem 16 If h (n) has ˝nite support and if φ (t) ∈ L1 , then φ (t) has ˝nite support [314]. 
If φ (t) is not restricted to L1 , it may have in˝nite support even if h (n) has ˝nite support. 
These theorems give a good picture of the relationship between the recursive equation coe°cients h (n) 

and the scaling function φ (t) as a solution of (6.1). More properties and characteristics are presented in 
Section 6.8 (Further Properties of the Scaling Function and Wavelet). 

6.4.1 Wavelet System Design 

One of the main purposes for presenting the rather theoretical results of this chapter is to set up the conditions 
for designing wavelet systems. One approach is to require the minimum su°cient conditions as constraints 
in an optimization or approximation, then use the remaining degrees of freedom to choose h (n) that will 
give the best signal representation, decomposition, or compression. In some cases, the su°cient conditions 
are overly restrictive and it is worthwhile to use the necessary conditions and then check the design to see if 
it is satisfactory. In many cases, wavelet systems are designed by a frequency domain design of H (ω) using 
digital ˝lter design techniques with wavelet based constraints. 

6.5 The Wavelet 

Although this chapter is primarily about the scaling function, some basic wavelet properties are included 
here. 

Theorem 17 If the scaling coe°cients h (n) satisfy the conditions for existence and orthogonality of the 
scaling function and the wavelet is de˝ned by (3.24), then the integer translates of this wavelet span W0, 
the orthogonal compliment of V0, both being in V1, i.e., the wavelet is orthogonal to the scaling function at 
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the same scale, Z 
φ (t − n) ψ (t − m) dt = 0, (6.24) 

if and only if the coe°cients h1 (n) are given by 

n
h1 (n) = ±(−1) h (N − n) (6.25) 

where N is an arbitrary odd integer chosen to conveniently position h1 (n). 
An outline proof is in Appendix A. 
Theorem 18 If the scaling coe°cients h (n) satisfy the conditions for existence and orthogonality of the 

scaling function and the wavelet is de˝ned by (3.24), then the integer translates of this wavelet span W0, 
the orthogonal compliment of V0, both being in V1; i.e., the wavelet is orthogonal to the scaling function at 
the same scale. If Z 

φ (t − n) ψ (t − m) dt = 0 (6.26) 

then X 
h (n) h1 (n − 2k) = 0 (6.27) 

n 

which is derived in Appendix A, (13.40). 
The translation orthogonality and scaling function-wavelet orthogonality conditions in (6.14) and (6.27) 

can be combined to give X 
h` (n) hm (n − 2k) = δ (k) δ (` − m) (6.28) 

n 

if h0 (n) is de˝ned as h (n). 
Theorem 19 If h (n) satis˝es the linear and quadratic admissibility conditions of (6.10) and (6.14), then X 

h1 (n) = H1 (0) = 0, (6.29) 
n 

|H1 (ω) | = |H (ω + π) |, (6.30) 

2 2|H (ω) | + |H1 (ω) | = 2, (6.31) 

and Z 
ψ (t) dt = 0. (6.32) 

The wavelet is usually scaled so that its norm is unity. 
The results in this section have not included the e˙ects of integer shifts of the scaling function or wavelet 

coe°cients h (n) or h1 (n). In a particular situation, these sequences may be shifted to make the correspond-
ing FIR ˝lter causal. 
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6.6 Alternate Normalizations 

An alternate normalization of the scaling coe°cients is used by some authors. In some ways, it is a cleaner 
form than that used here, but it does not state the basic recursion as a normalized expansion, and it does 
not result in a unity norm for h (n). The alternate normalization uses the basic multiresolution recursive √ 
equation with no 2 X 

φ (t) = h (n) φ (2t − n) . (6.33) 
n 

Some of the relationships and results using this normalization are: P 
h (n) = 2 nP 2|h (n) | = 2 nP 

h (n) h (h − 2k) = 2 δ (k)P n P (6.34) 
h (2n) = h (2n + 1) = 1 n n 

H (0) = 2 
2 2|H (ω) | + |H (ω + π) | = 4 

√ 
A still di˙erent normalization occasionally used has a factor of 2 in (6.33) rather than 2 or unity, givingP 

n h (n) = 1. Other obvious modi˝cations of the results in other places in this book can be worked out.√ 
Take care in using scaling coe°cients h (n) from the literature as some must be multiplied or divided by 2 
to be consistent with this book. 

6.7 Example Scaling Functions and Wavelets 

Several of the modern wavelets had never been seen or described before the 1980's. This section looks at 
some of the most common wavelet systems. 

6.7.1 Haar Wavelets 

The oldest and most basic of the wavelet systems that has most of our desired properties is constructed 
from the Haar basis functions. If one chooses a length N = 2 scaling coe°cient set, after satisfying the 
necessary conditions in (6.10) and (6.14), there are no remaining degrees of freedom. The unique (within 
normalization) coe°cients are 

1 1 
h (n) = {√ , √ } (6.35)

2 2 

and the resulting normalized scaling function is 

1 for 0 < t < 1 
φ (t) = { (6.36) 

0 otherwise. 

The wavelet is, therefore, 

1 for 0 < t < 1/2 

ψ (t) = { −1 for 1/2 < t < 1 (6.37) 

0 otherwise. 
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Their satisfying the multiresolution equation (3.13) is illustrated in Figure: Haar and Triangle Scaling 
Functions. Haar showed that translates and scalings of these functions form an orthonormal basis for 
L2 (R). We can easily see that the Haar functions are also a compact support orthonormal wavelet system 
that satisfy Daubechies' conditions [120]. Although they are as regular as can be achieved for N = 2, they 
are not even continuous. The orthogonality and nesting of spanned subspaces are easily seen because the 
translates have no overlap in the time domain. It is instructive to apply the various properties of Section 6.5 
(The Wavelet) and Section 6.8 (Further Properties of the Scaling Function and Wavelet) to these functions 
and see how they are satis˝ed. They are illustrated in the example in Figure: Haar Scaling Functions and 
Wavelets that Span Vj through Figure: Haar Function Approximation in Vj (Figure 3.15). 

6.7.2 Sinc Wavelets 

The next best known (perhaps the best known) basis set is that formed by the sinc functions. The sinc 
functions are usually presented in the context of the Shannon sampling theorem, but we can look at translates 
of the sinc function as an orthonormal set of basis functions (or, in some cases, a tight frame). They, likewise, 
usually form a orthonormal wavelet system satisfying the various required conditions of a multiresolution 
system. 

The sinc function is de˝ned as 

sin (t)
sinc (t) = (6.38)

t 

where sinc (0) = 1. This is a very versatile and useful function because its Fourier transform is a simple 
rectangle function and the Fourier transform of a rectangle function is a sinc function. In order to be a 
scaling function, the sinc must satisfy (3.13) as X 

sinc (Kt) = h (n) sinc (K2t − Kn) (6.39) 
n 

for the appropriate scaling coe°cients h (n) and some K. If we construct the scaling function from the 
generalized sampling function as presented in (5.35), the sinc function becomes X � π π � 

sinc (Kt) = sinc (KTn) sinc t − n . (6.40)
RT R 

n 

In order for these two equations to be true, the sampling period must be T = 1/2 and the parameter 

π 
K = (6.41)

R 
which gives the scaling coe°cients as � �π 

h (n) = sinc n . (6.42)
2R 

We see that φ (t) = sinc (Kt) is a scaling function with in˝nite support and its corresponding scaling 
coe°cients are samples of a sinc function. If R = 1, then K = π and the scaling function generates 
an orthogonal wavelet system. For R > 1, the wavelet system is a tight frame, the expansion set is not 
orthogonal or a basis, and R is the amount of redundancy in the system as discussed in this chapter. For 
the orthogonal sinc scaling function, the wavelet is simply expressed by 

ψ (t) = 2 φ (2t) − φ (t) . (6.43) 

The sinc scaling function and wavelet do not have compact support, but they do illustrate an in˝nitely 
di˙erentiable set of functions that result from an in˝nitely long h (n). The orthogonality and multiresolution 
characteristics of the orthogonal sinc basis is best seen in the frequency domain where there is no overlap of 
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the spectra. Indeed, the Haar and sinc systems are Fourier duals of each other. The sinc generating scaling 
function and wavelet are shown in Figure 6.1. 

Figure 6.1: Sinc Scaling Function and Wavelet 

6.7.3 Spline and Battle-Lemarié Wavelet Systems 

The triangle scaling function illustrated in Figure: Haar and Triangle Scaling Functions is a special case of 
a more general family of spline scaling functions. The scaling coe°cient system h (n) = { √1 , √1 , √1 , 0}

2 2 2 2 2 
gives rise to the piecewise linear, continuous triangle scaling function. This function is a ˝rst-order spline, 
being a concatenation of two ˝rst order polynomials to be continuous at the junctions or �knots". A√ 
quadratic spline is generated from h = {1/4, 3/4, 3/4, 1/4}/ 2 as three sections of second order polyno-
mials connected to give continuous ˝rst order derivatives at the junctions. The cubic spline is generated√ 
from h (n) = {1/16, 1/4, 3/8, 1/4, 1/16}/ 2. This is generalized to an arbitrary Nth order spline with con-
tinuous (N − 1)th order derivatives and with compact support of N + 1. These functions have excellent 
mathematical properties, but they are not orthogonal over integer translation. If orthogonalized, their sup-
port becomes in˝nite (but rapidly decaying) and they generate the �Battle-Lemarié wavelet system" [120], 
[493], [68], [71]. Figure 6.2 illustrates the ˝rst-order spline scaling function which is the triangle function 
along with the second-, third-, and fourth-order spline scaling functions. 
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Figure 6.2: Spline Scaling Functions 

6.8 Further Properties of the Scaling Function and Wavelet 

The scaling function and wavelet have some remarkable properties that should be examined in order to 
understand wavelet analysis and to gain some intuition for these systems. Likewise, the scaling and wavelet 
coe°cients have important properties that should be considered. 

We now look further at the properties of the scaling function and the wavelet in terms of the basic 
de˝ning equations and restrictions. We also consider the relationship of the scaling function and wavelet 
to the equation coe°cients. A multiplicity or rank of two is used here but the more general multiplicity-M 
case is easily derived from these (See Section: Multiplicity-M (M-Band) Scaling Functions and Wavelets 
(Section 8.2: Multiplicity-M (M-Band) Scaling Functions and Wavelets) and Appendix B (Chapter 14)). 
Derivations or proofs for some of these properties are included in Appendix B (Chapter 14). 

The basic recursive equation for the scaling function, de˝ned in (6.1) as X √ 
φ (t) = h (n) 2 φ (2t − n) , (6.44) 

n 

is homogeneous, so its solution is unique only within a normalization factor. In most cases, both the scaling 
function and wavelet are normalized to unit energy or unit norm. In the properties discussed here, we R 2
normalize the energy as E = |φ (t) | dt = 1. Other normalizations can easily be used if desired. 
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6.8.1 General Properties not Requiring Orthogonality 

There are several properties that are simply a result of the multiresolution equation (6.44) and, therefore, 
hold for orthogonal and biorthogonal systems. 

Property 1 The normalization of φ (t) is arbitrary and is given in (6.13) as E. Here we usually set E = 1 
so that the basis functions are orthonormal and coe°cients can easily be calculated with inner products. Z 2 

|φ (t) | dt = E = 1 (6.45) 

Property 2 Not only can the scaling function be written as a weighted sum of functions in the next higher 
scale space as stated in the basic recursion equation (6.44), but it can also be expressed in higher resolution 
spaces: X � � 

h(j) (n) 2j/2 φφ (t) = 2j t − n (6.46) 
n 

where h(1) (n) = h (n) and for j ≥ 1 X 
h(j+1) (n) = h(j) (k) h(j) (n − 2k) . (6.47) 

k 

Property 3 A formula for the sum of dyadic samples of φ (t) � �X k 
2Jφ = (6.48)

2J 
k 

Property 4 A �partition of unity" follows from (6.48) for J = 0 X 
φ (m) = 1 (6.49) 

m 

Property 5 A generalized partition of unity exists if φ (t) is continuous X 
φ (t − m) = 1 (6.50) 

m 

Property 6 A frequency domain statement of the basic recursion equation (6.44) 

1 
Φ (ω) = √ H (ω/2) Φ (ω/2) (6.51)

2 

Property 7 Successive approximations in the frequency domain is often easier to analyze than the time 
domain version in (6.44). The convergence properties of this in˝nite product are very important. 

∞ � �Y 1 ω 
Φ (ω) = {√ H }Φ (0) (6.52)

2k2 
k=1 

This formula is derived in (6.74). 

6.8.2 Properties that Depend on Orthogonality 

The following properties depend on the orthogonality of the scaling and wavelet functions. 
Property 8 The square of the integral of φ (t) is equal to the integral of the square of φ (t), or A20 = E. �Z �2 Z 

2
φ (t) dt = φ(t) dt (6.53) 
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Property 9 The integral of the wavelet is necessarily zero Z 
ψ (t) dt = 0 (6.54) R 2

The norm of the wavelet is usually normalized to one such that |ψ (t) | dt = 1. 
Property 10 Not only are integer translates of the wavelet orthogonal; di˙erent scales are also orthog-

onal. Z � � � � 
2j/2ψ 2i/2ψ2j t − k 2it − ` dt = δ (k − `) δ (j − i) (6.55) 

where the norm of ψ (t) is one. 
Property 11 The scaling function and wavelet are orthogonal over both scale and translation. Z � � � � 

2j/2ψ 2i/2φ2j 2it − k t − ` dt = 0 (6.56) 

for all integer i, j, k, ̀  where j ≤ i. 
Property 12 A frequency domain statement of the orthogonality requirements in (6.13) . It also is a 

statement of equivalent energy measures in the time and frequency domains as in Parseval's theorem, which 
is true with an orthogonal basis set. Z 2 ZX 

2 2|Φ (ω + 2πk) | = |Φ (ω) | dω = |φ (t) | dt = 1 (6.57) 
k 

Property 13 The scaling coe°cients can be calculated from the orthogonal or tight frame scaling functions 
by Z√ 

h (n) = 2 φ (t) φ (2t − n) dt. (6.58) 

Property 14 The wavelet coe°cients can be calculated from the orthogonal or tight frame scaling functions 
by Z√ 

h1 (n) = 2 ψ (t) φ (2t − n) dt. (6.59) 

Derivations of some of these properties can be found in Appendix B (Chapter 14). Properties in equations 
(6.1), (6.10), (6.14), (6.53), (6.51), (6.52), and (6.57) are independent of any normalization of φ (t). Nor-
malization a˙ects the others. Those in equations (6.1), (6.10), (6.48), (6.49), (6.51), (6.52), and (6.57) do 
not require orthogonality of integer translates of φ (t). Those in (6.14), (6.16), (6.17), (6.22), (6.20), (6.53), 
(6.58) require orthogonality. No properties require compact support. Many of the derivations interchange 
order of summations or of summation and integration. Conditions for those interchanges must be met. 

6.9 Parameterization of the Scaling Coe°cients 

The case where φ (t) and h (n) have compact support is very important. It aids in the time localization 
properties of the DWT and often reduces the computational requirements of calculating the DWT. If h (n) 
has compact support, then the ˝lters described in Chapter: Filter Banks and the Discrete Wavelet Transform 
are simple FIR ˝lters. We have stated that N , the length of the sequence h (n), must be even and h (n) must 
satisfy the linear constraint of (6.10) and the N 

2 bilinear constraints of (6.14). This leaves 
N 
2 − 1 degrees of 

freedom in choosing h (n) that will still guarantee the existence of φ (t) and a set of essentially orthogonal 
basis functions generated from φ (t). 
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6.9.1 Length-2 Scaling Coe°cient Vector 

For a length-2 h (n), there are no degrees of freedom left after satisfying the required conditions in (6.10) 
and (6.14). These requirements are 

√ 
h (0) + h (1) = 2 (6.60) 

and 

h2 (0) + h2 (1) = 1 (6.61) 

which are uniquely satis˝ed by 

1 1 
hD2 = {h (0) , h (1)} = {√ , √ }. (6.62)

2 2 

These are the Haar scaling functions coe°cients which are also the length-2 Daubechies coe°cients [120] 
used as an example in Chapter: A multiresolution formulation of Wavelet Systems and discussed later in 
this book. 

6.9.2 Length-4 Scaling Coe°cient Vector 

For the length-4 coe°cient sequence, there is one degree of freedom or one parameter that gives all the 
coe°cients that satisfy the required conditions: 

√ 
h (0) + h (1) + h (2) + h (3) = 2, (6.63) 

h2 (0) + h2 (1) + h2 (2) + h2 (3) = 1 (6.64) 

and 

h (0) h (2) + h (1) h (3) = 0 (6.65) 

Letting the parameter be the angle α, the coe°cients become � √ � 
h (0) = (1 − cos (α) + sin (α)) / 2 2 � √ � 
h (1) = (1 + cos (α) + sin (α)) / 2 2 � √ � (6.66) 
h (2) = (1 + cos (α) − sin (α)) / 2 2 � √ � 
h (3) = (1 − cos (α) − sin (α)) / 2 2 . 

These equations also give the length-2 Haar coe°cients (6.62) for α = 0, π/2, 3π/2 and a degenerate 
condition for α = π. We get the Daubechies coe°cients (discussed later in this book) for α = π/3. These 
Daubechies-4 coe°cients have a particularly clean form, 

√ √ √ √ 
1 + 3 3 + 3 3 − 3 1 − 3 

hD4 = { √ , √ , √ , √ } (6.67)
4 2 4 2 4 2 4 2 
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6.9.3 Length-6 Scaling Coe°cient Vector 

For a length-6 coe°cient sequence h (n), the two parameters are de˝ned as α and β and the resulting 
coe°cients are � √ � 

h (0) = [(1 + cos (α) + sin (α)) (1 − cos (β) − sin (β)) + 2sin (β) cos (α)] / 4 2 � √ � 
h (1) = [(1 − cos (α) + sin (α)) (1 + cos (β) − sin (β)) − 2sin (β) cos (α)] / 4 2 � √ � 
h (2) = [1 + cos (α − β) + sin (α − β)] / 2 2 � √ � (6.68) 
h (3) = [1 + cos (α − β) − sin (α − β)] / 2 2 

√ 
h (4) = 1/ 2 − h (0) − h (2) 

√ 
h (5) = 1/ 2 − h (1) − h (3) 

Here the Haar coe°cients are generated for any α = β and the length-4 coe°cients (6.66) result if β = 0 
with α being the free parameter. The length-4 Daubechies coe°cients are calculated for α = π/3 and β = 0. 
The length-6 Daubechies coe°cients result from α = 1.35980373244182 and β = −0.78210638474440. 

The inverse of these formulas which will give α and β from the allowed h (n) are ⎛ � � √ ⎞ 
2 2

2 h(0) + h(1) − 1 + (h (2) + h (3)) / 2 
α = arctan ⎝ √ ⎠ (6.69)

2 (h (1) h (2) − h (0) h (3)) + 2 (h (0) − h (1)) � � 
h (2) − h (3)

β = α − arctan √ (6.70)
h (2) + h (3) − 1/ 2 

As α and β range over −π to π all possible h (n) are generated. This allows informative experimentation 
to better see what these compactly supported wavelets look like. This parameterization is implemented in 
the Matlab programs in Appendix C (Chapter 15) and in the Aware, Inc. software, UltraWave [23]. 

Since the scaling functions and wavelets are used with integer translations, the location of their support 
is not important, only the size of the support. Some authors shift h (n), h1 (n), φ (t), and ψ (t) to be 
approximately centered around the origin. This is achieved by having the initial nonzero scaling coe°cient 

N−start at n = 2 + 1 rather than zero. We prefer to have the origin at n = t = 0. 
Matlab programs that calculate h (n) for N = 2, 4, 6 are furnished in Appendix C (Chapter 15). They 

calculate h (n) from α and β according to (6.62), (6.66), and (6.68). They also work backwards to calculate α 
and β from allowable h (n) using (6.70). A program is also included that calculates the Daubechies coe°cients 
for any length using the spectral factorization techniques in [120] and Chapter: Regularity, Moments, and 
Wavelet System Design of this book. 

Longer h (n) sequences are more di°cult to parameterize but can be done with the techniques of Pollen 
[424] and Wells [568] or the lattice factorization by Vaidyanathan [527] developed in Chapter: Filter Banks 
and Transmultiplexers. Selesnick derived explicit formulas for N = 8 using the symbolic software system, 
Maple, and set up the formulation for longer lengths [463]. It is over the space of these independent 
parameters that one can ˝nd optimal wavelets for a particular problem or class of signals [120], [207]. 

6.10 Calculating the Basic Scaling Function and Wavelet 

Although one never explicitly uses the scaling function or wavelet (one uses the scaling and wavelet coef-
˝cients) in most practical applications, it is enlightening to consider methods to calculate φ (t) and ψ (t). 
There are two approaches that we will discuss. The ˝rst is a form of successive approximations that is used 
theoretically to prove existence and uniqueness of φ (t) and can also be used to actually calculate them. This 
can be done in the time domain to ˝nd φ (t) or in the frequency domain to ˝nd the Fourier transform of φ (t) 
which is denoted Φ (ω). The second method solves for the exact values of φ (t) on the integers by solving a 
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set of simultaneous equations. From these values, it is possible to then exactly calculate values at the half 
integers, then at the quarter integers and so on, giving values of φ (t) on what are called the dyadic rationals. 

6.10.1 Successive Approximations or the Cascade Algorithm 

In order to solve the basic recursion equation (6.1), we propose an iterative algorithm that will generate 
successive approximations to φ (t). If the algorithm converges to a ˝xed point, then that ˝xed point is a 
solution to (6.1). The iterations are de˝ned by 

N−1X √ 
φ(k+1) (t) = h (n) 2 φ(k) (2t − n) (6.71) 

n=0 

for the kth iteration where an initial φ(0) (t) must be given. Because this can be viewed as applying the 
same operation over and over to the output of the previous application, it is sometimes called the cascade 
algorithm. 

Using de˝nitions (6.2) and (6.3), the frequency domain form becomes 

The limit does not depend on the shape of the initial φ(0) (t), but only on Φ(k) 

Φ(k+1) (ω) = 
� �1 ω √ H 

2 2 

� �ω 
Φ(k) 

2 
(6.72) 

and the limit can be written as an in˝nite product in the form " ∞ � ��#Y 1 � ω 
Φ(∞) Φ(∞)(ω) = √ H (0) . 

2k2 
k=1 

(6.73) 

If this limit exists, the Fourier transform of the scaling function is " ∞ � � ��#Y 1 ω 
Φ (ω) = √ H Φ (0) . 

2k2 
k=1 

(6.74) 

R 
(0) = φ(k) (t) dt = A0, 

which is invariant over the iterations. This only makes sense if the limit of Φ (ω) is well-de˝ned as when it 
is continuous at ω = 0. 

The Matlab program in Appendix C (Chapter 15) implements the algorithm in (6.71) which converges 
reliably to φ (t), even when it is very discontinuous. From this scaling function, the wavelet can be generated 
from (3.24). It is interesting to try this algorithm, plotting the function at each iteration, on both admissible 
h (n) that satisfy (6.10) and (6.14) and on inadmissible h (n). The calculation of a scaling function for N = 4 
is shown at each iteration in Figure 6.3. 

Because of the iterative form of this algorithm, applying the same process over and over, it is sometimes 
called the cascade algorithm [493], [488]. 

6.10.2 Iterating the Filter Bank 

An interesting method for calculating the scaling function also uses an iterative procedure which consists 
of the stages of the ˝lter structure of Chapter: Filter Banks and the Discrete Wavelet Transform which 
calculates wavelet expansions coe°cients (DWT values) at one scale from those at another. A scaling 
function, wavelet expansion of a scaling function itself would be a single nonzero coe°cient at the scale of 
j = 1. Passing this single coe°cient through the synthesis ˝lter structure of Figure: Two-Stage Two-Band 
Synthesis Tree (Figure 4.7) and (4.17) would result in a ˝ne scale output that for large j would essentially 
be samples of the scaling function. 
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6.10.3 Successive approximation in the frequency domain 

The Fourier transform of the scaling function de˝ned in (6.2) is an important tool for studying and developing 
wavelet theory. It could be approximately calculated by taking the DFT of the samples of φ (t) but a more 
direct approach is available using the in˝nite product in (6.74). From this formulation we can see how the 
zeros of H (ω) determine the zeros of Φ (ω). The existence conditions in Theorem 5 (p. 59) require H (π) = 0 
or, more generally, H (ω) = 0 for ω = (2k + 1) π. Equation (6.74) gives the relation of these zeros of H (ω) 
to the zeros of Φ (ω). For the index k = 1, H (ω/2) = 0 at ω = 2 (2k + 1) π. For k = 2, H (ω/4) = 0 at 
ω = 4 (2k + 1) π, H (ω/8) = 0 
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Figure 6.3: Iterations of the Successive Approximations for φ
D4 
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at ω = 8 (2k + 1) π, etc. Because (6.74) is a product of stretched versions of H (ω), these zeros of� � 
H ω/2j are the zeros of the Fourier transform of φ (t). Recall from Theorem 15 (p. 61) that H (ω) has 
no zeros in −π/3 < ω < π/3. All of this gives a picture of the shape of Φ (ω) and the location of its zeros. 
From an asymptotic analysis of Φ (ω) as ω →∞, one can study the smoothness of φ (t). 

A Matlab program that calculates Φ (ω) using this frequency domain successive approximations ap-
proach suggested by (6.74) is given in Appendix C (Chapter 15). Studying this program gives further insight 
into the structure of Φ (ω). Rather than starting the calculations given in (6.74) for the index j = 1, they 
are started for the largest j = J and worked backwards. If we calculate a length-N DFT consistent with� � 
j = J using the FFT, then the samples of H ω/2j for j = J − 1 are simply every other sample of the case 
for j = J . The next stage for j = J − 2 is done likewise and if the original N is chosen a power of two, 
the process in continued down to j = 1 without calculating any more FFTs. This results in a very e°cient 
algorithm. The details are in the program itself. 

This algorithm is so e°cient, using it plus an inverse FFT might be a good way to calculate φ (t) itself. 
Examples of the algorithm are illustrated in Figure 6.4 where the transform is plotted for each step of the 
iteration. 

Figure 6.4: Iterations of the Successive Approximations for Φ(ω) 
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6.10.4 The Dyadic Expansion of the Scaling Function 

The next method for evaluating the scaling function uses a completely di˙erent approach. It starts by 
calculating the values of the scaling function at integer values of t, which can be done exactly (within our 
ability to solve simultaneous linear equations). Consider the basic recursion equation (6.1) for integer values 
of t = k X √ 

φ (k) = h (n) 2 φ (2k − n) , (6.75) 
n 

and assume h (n) 6= 0 for 0 ≤ n ≤ N − 1. 
This is the re˝nement matrix illustrated in (6.6) for N = 6 which we write in matrix form as 

M0 φ = φ. (6.76) 

In other words, the vector of φ (k) is the eigenvector of M0 for an eigenvalue of unity. The simple sumP √ P 
of n h (n) = 2 in (6.10) does not guarantee that M0 always has such an eigenvalue, but n h (2n) =P 

n h (2n + 1) in (6.12) does guarantee a unity eigenvalue. This means that if (6.12) is not satis˝ed, φ (t) is 
not de˝ned on the dyadic rationals and is, therefore, probably not a very nice signal. 

Our problem is to now ˝nd that eigenvector. Note from (6.6) that φ (0) = φ (N − 1) = 0 or h (0) = √ 
h (N − 1) = 1/ 2. For the Haar wavelet system, the second is true but for longer systems, this would mean 
all the other h (n) would have to be zero because of (6.10) and that is not only not interesting, it produces 
a very poorly behaved φ (t). Therefore, the scaling function with N > 2 and compact support will always 
be zero on the extremes of the support. This means that we can look for the eigenvector of the smaller 4 by 
4 matrix obtained by eliminating the ˝rst and last rows and columns of M0. 

From (6.76) we form [M0 − I] φ = 0 which shows that [M0 − I] is singular, meaning its rows are not 
independent. We remove the last row and assume the remaining rows are now independent. If that is not 
true, we remove another row. We next replace that row with a row of ones in order to implement the 
normalizing equation X 

φ (k) = 1 (6.77) 
k 

This augmented matrix, [M0 − I] with a row replaced by a row of ones, when multiplied by φ gives a vector 
of all zeros except for a one in the position of the replaced row. This equation should not be singular and is 
solved for φ which gives φ (k), the scaling function evaluated at the integers. 

From these values of φ (t) on the integers, we can ˝nd the values at the half integers using the recursive 
equation (6.1) or a modi˝ed form X √ 

φ (k/2) = h (n) 2 φ (k − n) (6.78) 
n 

This is illustrated with the matrix equation (6.8) as 

M1φ = φ2 (6.79) 

Here, the ˝rst and last columns and last row are not needed (because φ0 = φ5 = φ11/2 = 0) and can be 
eliminated to save some arithmetic. 

The procedure described here can be repeated to ˝nd a matrix that when multiplied by a vector of the 
scaling function evaluated at the odd integers divided by k will give the values at the odd integers divided 
by 2k. This modi˝ed matrix corresponds to convolving the samples of φ (t) by an up-sampled h (n). Again, 
convolution combined with up- and down-sampling is the basis of wavelet calculations. It is also the basis 
of digital ˝lter bank theory. Figure 6.5 illustrates the dyadic expansion calculation of a Daubechies scaling 
function for N = 4 at each iteration of this method. 
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Figure 6.5: Iterations of the Dyadic Expansion for ΦD4 
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Not only does this dyadic expansion give an explicit method for ˝nding the exact values of φ (t) of the 
dyadic rationals (t = k/2j ), but it shows how the eigenvalues of M say something about the φ (t). Clearly, 
if φ (t) is continuous, it says everything. 

Matlab programs are included in Appendix C (Chapter 15) to implement the successive approximation 
and dyadic expansion approaches to evaluating the scaling function from the scaling coe°cients. They were 
used to generate the ˝gures in this section. It is very illuminating to experiment with di˙erent h (n) and 
observe the e˙ects on φ (t) and ψ (t). 
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Chapter 7 

Regularity, Moments, and Wavelet 

System Design1 

We now look at a particular way to use the remaining N 
2 − 1 degrees of freedom to design the N values of 

h (n) after satisfying (6.10) and (6.14), which insure the existence and orthogonality (or property of being a 
tight frame) of the scaling function and wavelets [121], [113], [126]. 

One of the interesting characteristics of the scaling functions and wavelets is that while satisfying (6.10) 
and (6.14) will guarantee the existence of an integrable scaling function, it may be extraordinarily irregular, 
even fractal in nature. This may be an advantage in analyzing rough or fractal signals but it is likely to be 
a disadvantage for most signals and images. 

We will see in this section that the number of vanishing moments of h1 (n) and ψ (t) are related to the 
smoothness or di˙erentiability of φ (t) and ψ (t). Unfortunately, smoothness is di°cult to determine directly 
because, unlike with di˙erential equations, the de˝ning recursion (6.1) does not involve derivatives. 

We also see that the representation and approximation of polynomials are related to the number of 
vanishing or minimized wavelet moments. Since polynomials are often a good model for certain signals and 
images, this property is both interesting and important. 

The number of zero scaling function moments is related to the �goodness" of the approximation of high-
resolution scaling coe°cients by samples of the signal. They also a˙ect the symmetry and concentration of 
the scaling function and wavelets. 

This section will consider the basic 2-band or multiplier-2 case de˝ned in (3.13). The more general M-
band or multiplier-M case is discussed in Section: Multiplicity-M (M-Band) Scaling Functions and Wavelets 
(Section 8.2: Multiplicity-M (M-Band) Scaling Functions and Wavelets). 

7.1 K-Regular Scaling Filters 

Here we start by de˝ning a unitary scaling ˝lter to be an FIR ˝lter with coe°cients h (n) from the basic 
recursive (6.1) satisfying the admissibility conditions from (6.10) and orthogonality conditions from (6.14) 
as X √ X 

h (n) = 2 and h (k) h (k + 2m) = δ (m) . (7.1) 
n k 

The term �scaling ˝lter" comes from Mallat's algorithm, and the relation to ˝lter banks discussed in Chap-
ter: Filter Banks and the Discrete Wavelet Transform. The term �unitary" comes from the orthogonality 
conditions expressed in ˝lter bank language, which is explained in Chapter: Filter Banks and Transmulti-
plexers. 

1This content is available online at <http://cnx.org/content/m45098/1.3/>. 
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A unitary scaling ˝lter is said to be K-regular if its z-transform has K zeros at z = eiπ . This looks like � �K−11 + z 
H (z) = Q (z) (7.2)

2 P 
where H (z) = n h (n) z−n is the z-transform of the scaling coe°cients h (n) and Q (z) has no poles or 
zeros at z = eiπ . Note that we are presenting a de˝nition of regularity of h (n), not of the scaling function 
φ (t) or wavelet ψ (t). They are related but not the same. Note also from (6.20) that any unitary scaling 
˝lter is at least K = 1 regular. 

The length of the scaling ˝lter is N which means H (z) is an N − 1 degree polynomial. Since the multiple 
zero at z = −1 is order K, the polynomial Q (z) is degree N −1−K. The existence of φ (t) requires the zeroth 

√ 
moment be 2 which is the result of the linear condition in (7.1). Satisfying the conditions for orthogonality 
requires N/2 conditions which are the quadratic equations in (7.1). This means the degree of regularity is 
limited by 

N 
1 ≤ K ≤ . (7.3)

2 
Daubechies used the degrees of freedom to obtain maximum regularity for a given N , or to obtain the 
minimum N for a given regularity. Others have allowed a smaller regularity and used the resulting extra 
degrees of freedom for other design purposes. 

Regularity is de˝ned in terms of zeros of the transfer function or frequency response function of an FIR 
˝lter made up from the scaling coe°cients. This is related to the fact that the di˙erentiability of a function 
is tied to how fast its Fourier series coe°cients drop o˙ as the index goes to in˝nity or how fast the Fourier 
transform magnitude drops o˙ as frequency goes to in˝nity. The relation of the Fourier transform of the 
scaling function to the frequency response of the FIR ˝lter with coe°cients h (n) is given by the in˝nite 
product (6.74). From these connections, we reason that since H (z) is lowpass and, if it has a high order zero 
at z = −1 (i.e., ω = π), the Fourier transform of φ (t) should drop o˙ rapidly and, therefore, φ (t) should be 
smooth. This turns out to be true. 

We next de˝ne the kth moments of φ (t) and ψ (t) as Z 
m (k) = tk φ (t) dt (7.4) 

and Z 
m1 (k) = tk ψ (t) dt (7.5) 

and the discrete kth moments of h (n) and h1 (n) as X 
µ (k) = n k h (n) (7.6) 

n 

and X 
µ1 (k) = n k h1 (n) . (7.7) 

n 

The partial moments of h (n) (moments of samples) are de˝ned as X 
k

ν (k, ̀ ) = (2n + `) h (2n + `) . (7.8) 
n 

Note that µ (k) = ν (k, 0) + ν (k, 1). 
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From these equations and the basic recursion (6.1) we obtain [189] ⎛⎝ ⎞⎠ k 

(2k − 1) 2 ` `=1 

X k1 √m (k) = µ (`) m (k − `) (7.9) 

which can be derived by substituting (6.1) into (7.4), changing variables, and using (7.6). Similarly, we 
obtain ⎛⎝ ⎞⎠ k 

2k 2 ` `=0 

X k1 √m1 (k) = µ1 (`) m (k − `) . (7.10) 

These equations exactly calculate the moments de˝ned by the integrals in (7.4) and (7.5) with simple ˝nite 
convolutions of the discrete moments with the lower order continuous moments. A similar equation also holds 
for the multiplier-M case described in Section: Multiplicity-M (M-Band) Scaling Functions and Wavelets 
(Section 8.2: Multiplicity-M (M-Band) Scaling Functions and Wavelets) [189]. A Matlab program that 
calculates the continuous moments from the discrete moments using (7.9) and (7.10) is given in Appendix C. 

7.2 Vanishing Wavelet Moments 

Requiring the moments of ψ (t) to be zero has several interesting consequences. The following three theorems 
show a variety of equivalent characteristics for the K-regular scaling ˝lter, which relate both to our desire 
for smooth scaling functions and wavelets as well as polynomial representation. 

Theorem 20 (Equivalent Characterizations of K-Regular Filters) A unitary scaling ˝lter is 
K-regular if and only if the following equivalent statements are true: 

1. All moments of the wavelet ˝lters are zero, µ1 (k) = 0, for k = 0, 1, · · · , (K − 1) 
2. All moments of the wavelets are zero, m1 (k) = 0, for k = 0, 1, · · · , (K − 1) 
3. The partial moments of the scaling ˝lter are equal for k = 0, 1, · · · , (K − 1) 
4. The frequency response of the scaling ˝lter has a zero of order K at ω = π, i.e. (7.2). 
5. The kth derivative of the magnitude-squared frequency response of the scaling ˝lter is zero at ω = 0 

for k = 1, 2, · · · , 2K − 1. 
6. All polynomial sequences up to degree (K − 1) can be expressed as a linear combination of shifted 

scaling ˝lters. 
7. All polynomials of degree up to (K − 1) can be expressed as a linear combination of shifted scaling 

functions at any scale. 

This is a very powerful result [484], [253]. It not only ties the number of zero moments to the regularity but 
also to the degree of polynomials that can be exactly represented by a sum of weighted and shifted scaling 
functions. 

Theorem 21 If ψ (t) is K-times di˙erentiable and decays fast enough, then the ˝rst K − 1 wavelet 
moments vanish [121]; i.e., 

dk 

ψ (t)
dtk 

< ∞, 0 ≤ k ≤ K (7.11) 

implies 

m1 (k) = 0. 0 ≤ k ≤ K (7.12) 

Unfortunately, the converse of this theorem is not true. However, we can relate the di˙erentiability of ψ (t) 
to vanishing moments by 
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Theorem 22 There exists a ˝nite positive integer L such that if m1 (k) = 0 for 0 ≤ k ≤ K − 1 then 

dP 

ψ (t) < ∞ (7.13)
dtP 

for LP > K. 
For example, a three-times di˙erentiable ψ (t) must have three vanishing moments, but three vanishing 

moments results in only one-time di˙erentiability. 
These theorems show the close relationship among the moments of h1 (n), ψ (t), the smoothness of H (ω) 

at ω = 0 and π and to polynomial representation. It also states a loose relationship with the smoothness of 
φ (t) and ψ (t) themselves. 

7.3 Daubechies' Method for Zero Wavelet Moment Design 

Daubechies used the above relationships to show the following important result which constructs orthonormal 
wavelets with compact support with the maximum number of vanishing moments. 

Theorem 23 The discrete-time Fourier transform of h (n) having K zeros at ω = π of the form � �Kiω1 + e 
H (ω) = L (ω) (7.14)

2 

satis˝es 

2 2|H (ω) | + |H (ω + π) | = 2 (7.15) 

if and only if L (ω) = |L (ω) |2 
can be written � � 

L (ω) = P sin2 (ω/2) (7.16) 

with K ≤ N/2 where ⎛ ⎞ 
K−1 � �X K − 1 + k kP (y) = ⎝ ⎠ y + y K R 

1 − y (7.17)
2kk=0 

and R (y) is an odd polynomial chosen so that P (y) ≥ 0 for 0 ≤ y ≤ 1. 
If R = 0, the length N is minimum for a given regularity K = N/2. If N > 2 K, the second term 

containing R has terms with higher powers of y whose coe°cients can be used for purposes other than 
regularity. 

The proof and a discussion are found in Daubechies [104], [121]. Recall from (6.20) that H (ω) always 
has at least one zero at ω = π as a result of h (n) satisfying the necessary conditions for φ (t) to exist and 
have orthogonal integer translates. We are now placing restrictions on h (n) to have as high an order zero 
at ω = π as possible. That accounts for the form of (7.14). Requiring orthogonality in (6.22) gives (7.15). 

Because the frequency domain requirements in (7.15) are in terms of the square of the magnitudes of 

the frequency response, spectral factorization is used to determine H (ω) and therefore h (n) from |H (ω) |2 
. 

(7.14) becomes 

2Kiω1 + e |H (ω) |2 
= |L (ω) |2 

. (7.18)
2 

If we use the functional notation: 

2 2
M (ω) = |H (ω) | and L (ω) = |L (ω) | (7.19) 
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then (7.18) becomes 

K
M (ω) = |cos 2(ω/2) | L (ω) . (7.20) 

Since M (ω) and L (ω) are even functions of ω they can be written as polynomials in cos (ω) and, using 
cos (ω) = 1 − 2 sin2 (ω/2), (7.20) becomes � � K � �

M̃ sin2 (ω/2) = |cos 2 (ω/2) | P sin2 (ω/2) (7.21) 

which, after a change of variables of y = sin2 (ω/2) = 1 − cos2 (ω/2), becomes 

K
M̃ (y) = (1 − y) P (y) (7.22) 

where P (y) is an (N − K) order polynomial which must be positive since it will have to be factored to ˝nd 
H (ω) from (7.19). This now gives (7.14) in terms of new variables which are easier to use. 

In order that this description supports an orthonormal wavelet basis, we now require that (7.22) satis˝es 
(6.22) 

2 2|H (ω) | + |H (ω + π) | = 2 (7.23) 

which using (7.19) and (7.22) becomes 

K
M (ω) + M (ω + π) = (1 − y) P (y) + y K P (1 − y) = 2. (7.24) 

Equations of this form have an explicit solution found by using Bezout's theorem. The details are developed 
by Daubechies [121]. If all the (N/2 − 1) degrees of freedom are used to set wavelet moments to zero, we set 
K = N/2 and the solution to (7.24) is given by ⎛ ⎞ 

K−1X ⎝ K − 1 + k kP (y) = ⎠ y (7.25) 
kk=0 

which gives a complete parameterization of Daubechies' maximum zero wavelet moment design. It also gives 
a very straightforward procedure for the calculation of the h (n) that satisfy these conditions. Herrmann 
derived this expression for the design of Butterworth or maximally ˛at FIR digital ˝lters [262]. 

If the regularity is K < N/2, P (y) must be of higher degree and the form of the solution is ⎛ ⎞ 
K−1 � �X K − 1 + k 1kP (y) = ⎝ ⎠ y + y K R − y (7.26)

2kk=0 

where R (y) is chosen to give the desired ˝lter length N , to achieve some other desired property, and to give 
P (y) ≥ 0. 

The steps in calculating the actual values of h (n) are to ˝rst choose the length N (or the desired 
regularity) for h (n), then factor |H (ω) |2 

where there will be freedom in choosing which roots to use for 
H (ω). The calculations are more easily carried out using the z-transform form of the transfer function 
and using convolution in the time domain rather than multiplication (raising to a power) in the frequency 
domain. That is done in the Matlab program [hn,h1n] = daub(N) in Appendix C where the polynomial 
coe°cients in (7.25) are calculated from the binomial coe°cient formula. This polynomial is factored with 
the roots command in Matlab and the roots are mapped from the polynomial variable y` to the variable p 
z` in (7.2) using ˝rst cos (ω) = 1 − 2 y`, then with i sin (ω) = cos2 (ω) − 1 and eiω = cos (ω) ± isin (ω) we 
use z = eiω . These changes of variables are used by Herrmann [262] and Daubechies [121]. 

Examine the Matlab program to see the details of just how this is carried out. The program uses the 
sort command to order the roots of H (z) H (1/z) after which it chooses the N − 1 smallest ones to give 
a minimum phase H (z) factorization. You could choose a di˙erent set of N − 1 roots in an e˙ort to get 
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a more linear phase or even maximum phase. This choice allows some variation in Daubechies wavelets 
of the same length. The M -band generalization of this is developed by Heller in [484], [253]. In [121], 
Daubechies also considers an alternation of zeros inside and outside the unit circle which gives a more 
symmetric h (n). A completely symmetric real h (n) that has compact support and supports orthogonal 
wavelets is not possible; however, symmetry is possible for complex h (n), biorthogonal systems, in˝nitely 
long h (n), and multiwavelets. Use of this zero moment design approach will also assure the resulting wavelets 
system is an orthonormal basis. 

If all the degrees of freedom are used to set moments to zero, one uses K = N/2 in (7.14) and the above 
procedure is followed. It is possible to explicitly set a particular pair of zeros somewhere other than at ω = π. 
In that case, one would use K = (N/2) − 2 in (7.14). Other constraints are developed later in this chapter 
and in later chapters. 

To illustrate some of the characteristics of a Daubechies wavelet system, Table 7.1 shows the scaling 
function and wavelet coe°cients, h (n) and h1 (n), and the corresponding discrete scaling coe°cient moments 
and wavelet coe°cient moments for a length-8 Daubechies system. Note the N/2 = 4 zero moments of the√ 
wavelet coe°cients and the zeroth scaling coe°cient moment of µ (0) = 2. 

n h (n) h1 (n) µ (k) µ1 (k) k 

0 0.23037781330890 0.01059740178507 1.414213 0 0 

1 0.71484657055292 0.03288301166689 1.421840 0 1 

2 0.63088076792986 -0.03084138183556 1.429509 0 2 

3 -0.02798376941686 -0.18703481171909 0.359097 0 3 

4 -0.18703481171909 0.02798376941686 -2.890773 12.549900 4 

5 0.03084138183556 0.63088076792986 -3.453586 267.067254 5 

6 0.03288301166689 -0.71484657055292 23.909120 3585.681937 6 

7 -0.01059740178507 0.23037781330890 

Table 7.1: Scaling Function and Wavelet Coe°cients plus their Discrete Moments for Daubechies-8 

Table 7.2 gives the same information for the length-6, 4, and 2 Daubechies scaling coe°cients, wavelet 
coe°cients, scaling coe°cient moments, and wavelet coe°cient moments. Again notice how many discrete 
wavelet moments are zero. 

Table 7.3 shows the continuous moments of the scaling function φ (t) and wavelet ψ (t) for the Daubechies 
systems with lengths six and four. The discrete moments are the moments of the coe°cients de˝ned by (7.6) 
and (7.7) with the continuous moments de˝ned by (7.4) and (7.5) calculated using (7.9) and (7.10) with the 
programs listed in Appendix C. 
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Daubechies N = 6 

n h (n) h1 (n) µ (k) µ1 (k) k 

0 0.33267055295008 -0.03522629188571 1.414213 0 0 

1 0.80689150931109 -0.08544127388203 1.155979 0 1 

2 0.45987750211849 0.13501102001025 0.944899 0 2 

3 -0.13501102001025 0.45987750211849 -0.224341 3.354101 3 

4 -0.08544127388203 -0.80689150931109 -2.627495 40.679682 4 

5 0.03522629188571 0.33267055295008 5.305591 329.323717 5 

Daubechies N = 4 

n h (n) h1 (n) µ (k) µ1 (k) k 

0 0.48296291314453 0.12940952255126 1.414213 0 0 

1 0.83651630373781 0.22414386804201 0.896575 0 1 

2 0.22414386804201 -0.83651630373781 0.568406 1.224744 2 

3 -0.12940952255126 0.48296291314453 -0.864390 6.572012 3 

Daubechies N = 2 

n h (n) h1 (n) µ (k) µ1 (k) k 

0 0.70710678118655 0.70710678118655 1.414213 0 0 

1 0.70710678118655 -0.70710678118655 0.707107 0.707107 1 

Table 7.2: Daubechies Scaling Function and Wavelet Coe°cients plus their Moments 

N = 6 

k µ (k) µ1 (k) m (k) m1 (k) 

0 1.4142135 0 1.0000000 0 

1 1.1559780 0 0.8174012 0 

2 0.9448992 0 0.6681447 0 

3 -0.2243420 3.3541019 0.4454669 0.2964635 

4 -2.6274948 40.6796819 0.1172263 2.2824642 

5 5.3055914 329.3237168 -0.0466511 11.4461157 

N = 4 

k µ (k) µ1 (k) m (k) m1 (k) 

0 1.4142136 0 1.0000000 0 

1 0.8965755 0 0.6343975 0 

2 0.5684061 1.2247449 0.4019238 0.2165063 

3 -0.8643899 6.5720121 0.1310915 0.7867785 

4 -6.0593531 25.9598790 -0.3021933 2.0143421 

5 -23.4373939 90.8156100 -1.0658728 4.4442798 



86 
CHAPTER 7. REGULARITY, MOMENTS, AND WAVELET SYSTEM 

DESIGN 

Table 7.3: Daubechies Scaling Function and Wavelet Continuous and Discrete Moments 

These tables are very informative about the characteristics of wavelet systems in general as well as√ 
particularities of the Daubechies system. We see the µ (0) = 2 of (7.1) and (6.10) that is necessary for 
the existence of a scaling function solution to (6.1) and the µ1 (0) = m1 (0) = 0 of (6.32) and (6.29) that 
is necessary for the orthogonality of the basis functions. Orthonormality requires (3.25) which is seen in 
comparison of the h (n) and h1 (n), and it requires m (0) = 1 from (6.53) and (6.45). After those conditions 
are satis˝ed, there are N/2 − 1 degrees of freedom left which Daubechies uses to set wavelet moments m1 (k) 
equal zero. For length-6 we have two zero wavelet moments and for length-4, one. For all longer Daubechies 
systems we have exactly N/2 − 1 zero wavelet moments in addition to the one m1 (0) = 0 for a total of 
N/2 zero wavelet moments. Note m (2) = m(1)2 

as will be explained in (7.32) and there exist relationships 
among some of the values of the even-ordered scaling function moments, which will be explained in (7.51) 
through (7.51). 

As stated earlier, these systems have a maximum number of zero moments of the wavelets which results 
in a high degree of smoothness for the scaling and wavelet functions. Figure 7.1 and Figure 7.2 show the 
Daubechies scaling functions and wavelets for N = 4, 6, 8, 10, 12, 16, 20, 40. The coe°cients were generated 
by the techniques described in Section: Parameterization of the Scaling Coe°cients (Section 6.9: Parame-
terization of the Scaling Coe°cients) and Chapter: Regularity, Moments, and Wavelet System Design. The 
Matlab programs are listed in Appendix C and values of h (n) can be found in [121] or generated by the 
programs. Note the increasing smoothness as N is increased. For N = 2, the scaling function is not continu-
ous; for N = 4, it is continuous but not di˙erentiable; for N = 6, it is barely di˙erentiable once; for N = 14, 
it is twice di˙erentiable, and similarly for longer h (n). One can obtain any degree of di˙erentiability for 
su°ciently long h (n). 

The Daubechies coe°cients are obtained by maximizing the number of moments that are zero. This 
gives regular scaling functions and wavelets, but it is possible to use the degrees of 



87 

Figure 7.1: Daubechies Scaling Functions, N = 4, 6, 8, ..., 40 
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freedom to maximize the di˙erentiability of φ (t) rather than maximize the zero moments. This is not 
easily parameterized, and it gives only slightly greater smoothness than the Daubechies system [121]. 
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Figure 7.2: Daubechies Wavelets, N = 4, 6, 8, ..., 40 
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Examples of Daubechies scaling functions resulting from choosing di˙erent factors in the spectral factor-
ization of |H (ω) |2 

in (7.18) can be found in [121]. 

7.4 Non-Maximal Regularity Wavelet Design 

If the length of the scaling coe°cient ˝lter is longer than twice the desired regularity, i.e., N > 2 K, then the 
parameterization of (7.26) should be used and the coe°cients in the polynomial R (y) must be determined. 
One interesting possibility is that of designing a system that has one or more zeros of H (ω) between ω = π/2 
and ω = π with the remaining zeros at π to contribute to the regularity. This will give better frequency 
separation in the ˝lter bank in exchange for reduced regularity and lower degree polynomial representation. 

If a zero of H (ω) is set at ω = ω0, then the conditions of 

dM (ω)
M (ω0) = 0 and = 0 (7.27)

dω ω=ω0 

are imposed with those in (7.26), giving a set of linear simultaneous equations that can be solved to ˝nd 
the scaling coe°cients h (n). 

A powerful design system based on a Remez exchange algorithm allows the design of an orthogonal 
wavelet system that has a speci˝ed regularity and an optimal Chebyshev behavior in the stopband of H (ω). 
This and a variation that uses a constrained least square criterion [464] is described in [311] and another 
Chebyshev design in [444]. 

An alternative approach is to design the wavelet system by setting an optimization criterion and using 
a general constrained optimization routine, such as that in the Matlab optimization toolbox, to design the 
h (n) with the existence and orthogonality conditions as constraints. This approach was used to generate 
many of the ˝lters described in Table 7.7. Jun Tian used a Newton's method [513], [515] to design wavelet 
systems with zero moments. 

7.5 Relation of Zero Wavelet Moments to Smoothness 

We see from p. 81 and p. 81 that there is a relationship between zero wavelet moments and smoothness, but 
it is not tight. Although in practical application the degree of di˙erentiability may not be the most important 
measure, it is an important theoretical question that should be addressed before application questions can 
be properly posed. 

First we must de˝ne smoothness. From the mathematical point of view, smoothness is essentially the 
same as di˙erentiability and there are at least two ways to pose that measure. The ˝rst is local (the Hölder 
measure) and the second is global (the Sobolev measure). Numerical algorithms for estimating the measures 
in the wavelet setting have been developed by Rioul [438] and Heller and Wells [256], [257] for the Hölder 
and Sobolev measures respectively. 

De˝nition 1 (Hölder continuity) Let φ : IR → C and let 0 < α < 1. Then the function φ is Hölder 
continuous of order α if there exists a constant c such that 

|φ(x) − φ(y)| ≤ c|x − y| for all x, y ∈ IR (7.28)α 

Based on the above de˝nition, one observes φ has to be a constant if α > 1. Hence, this is not very useful 
for determining regularity of order α > 1. However, using the above de˝nition, Hölder regularity of any 
order r > 0 is de˝ned as follows: 

De˝nition 2 (Hölder regularity) A function φ : R → C is regular of order r = P + α (0<α≤1) if 
φ ∈ CP and its Pth derivative is Hölder continuous of order α 

De˝nition 3 (Sobolev regularity) Let φ : R → C, then φ is said to belong to the Sobolev space of order s (φ ∈ Hs) if Z 2� � Θs
2

1 + |ω| Φ (ω) dω < ∞ (7.29) 
IR 
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Notice that, although Sobolev regularity does not give the explicit order of di˙erentiability, it does yield 
lower and upper bounds on r, the Hölder regularity, and hence the di˙erentiability of φ if φ ∈ L2 . This can 
be seen from the following inclusions: 

Hs+1/2 ⊂ Cr ⊂ Hs (7.30) 

A very interesting and important result by Volkmer [555] and by Eirola [172] gives an exact asymptotic 
formula for the Hölder regularity index (exponent) of the Daubechies scaling function. 

Theorem 24 The limit of the Hölder regularity index of a Daubechies scaling function as the length of 
the scaling ˝lter goes to in˝nity is [555] � � 

αN
lim 

N→∞ N 
= 

log (3)
1 − 

2 log (2) 
= (0.2075 · · · ) (7.31) 

This result, which was also proven by A. Cohen and J. P. Conze, together with empirical calculations for 
shorter lengths, gives a good picture of the smoothness of Daubechies scaling functions. This is illustrated 
in Figure 7.3 where the Hölder index is plotted versus scaling ˝lter length for both the maximally smooth 
case and the Daubechies case. 

The question of the behavior of maximally smooth scaling functions was empirically addressed by Lang 
and Heller in [312]. They use an algorithm by Rioul to calculate the Hölder smoothness of scaling functions 
that have been designed to have maximum Hölder smoothness and the results are shown in Figure 7.3 
together with the smoothness of the Daubechies scaling functions as functions of the length of the scaling 
˝lter. For the longer lengths, it is possible to design systems that give a scaling function over twice as smooth 
as with a Daubechies design. In most applications, however, the greater Hölder smoothness is probably not 
important. 
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Figure 7.3: Hölder Smoothness versus Coe°cient Length for Daubechies' (+) and Maximally Smooth 
(o) Wavelets. 
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Figure 7.4: Number of Zeros at ω = π versus Coe°cient Length for Daubechies' (+) and Maximally 
Smooth (o) Wavelets. 

Figure 7.4 shows the number of zero moments (zeros at ω = π) as a function of the number of scaling 
function coe°cients for both the maximally smooth and Daubechies designs. 
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One case from this ˝gure is for N = 26 where the Daubechies smoothness is SH = 4.005 and the maximum 
smoothness is SH = 5.06. The maximally smooth scaling function has one more continuous derivative than 
the Daubechies scaling function. 

Recent work by Heller and Wells [256], [257] gives a better connection of properties of the scaling coef-
˝cients and the smoothness of the scaling function and wavelets. This is done both for the scale factor or 
multiplicity of M = 2 and for general integer M . 

The usual de˝nition of smoothness in terms of di˙erentiability may not be the best measure for certain 
signal processing applications. If the signal is given as a sequence of numbers, not as a function of a 
continuous variable, what does smoothness mean? Perhaps the use of the variation of a signal may be a 
useful alternative [214], [410], [402]. 

7.6 Vanishing Scaling Function Moments 

While the moments of the wavelets give information about ˛atness of H (ω) and smoothness of ψ (t), the 
moments of φ (t) and h (n) are measures of the �localization" and symmetry characteristics of the scal-P √ 
ing function and, therefore, the wavelet transform. We know from (6.10) that h (n) = 2 and, afterR n 
normalization, that φ (t) dt = 1. Using (7.9), one can show [189] that for K ≥ 2, we have 

m (2) = m 2 (1) . (7.32) 

This can be seen in Table 7.3. A generalization of this result has been developed by Johnson [284] and is 
given in (7.51) through (7.51). 

A more general picture of the e˙ects of zero moments can be seen by next considering two approximations. 
Indeed, this analysis gives a very important insight into the e˙ects of zero moments. The mixture of zero 
scaling function moments with other speci˝cations is addressed later in Section 7.9 (Coi˛ets and Related 
Wavelet Systems). 

7.7 Approximation of Signals by Scaling Function Projection 

The orthogonal projection of a signal f (t) on the scaling function subspace Vj is given and denoted by X 
P j {f (t)} = < f (t) , φj,k (t) > φj,k (t) (7.33) 

k 

which gives the component of f (t) which is in Vj and which is the best least squares approximation to f (t) 
in Vj . 

As given in (7.5), the `th moment of ψ (t) is de˝ned as Z 
m1 (`) = t ` ψ (t) dt. (7.34) 

We can now state an important relation of the projection (7.33) as an approximation to f (t) in terms of 
the number of zero wavelet moments and the scale. 

Theorem 25 If m1 (`) = 0 for ` = 0, 1, · · · , L then the L2 error is 

≤ C 2−j(L+1)�1 =k f (t) − P j {f (t)}k2 , (7.35) 

where C is a constant independent of j and L but dependent on f (t) and the wavelet system [180], [519]. 
This states that at any given scale, the projection of the signal on the subspace at that scale approaches 

the function itself as the number of zero wavelet moments (and the length of the scaling ˝lter) goes to in˝nity. 
It also states that for any given length, the projection goes to the function as the scale goes to in˝nity. These 
approximations converge exponentially fast. This projection is illustrated in Figure 7.5. 
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7.8 Approximation of Scaling Coe°cients by Samples of the Signal 

A second approximation involves using the samples of f (t) as the inner product coe°cients in the wavelet 
expansion of f (t) in (7.33). We denote this sampling approximation by 

Sj {f (t)} = 
X � � 

2−j/2 f k/2j φj,k (t) 
k 

(7.36) 

and the scaling function moment by Z 
m (`) = t ` φ (t) dt (7.37) 

and can state [513] the following 
Theorem 26 If m (`) = 0 for ` = 1, 2, · · · , L then the L2 error is 

�2 =k Sj {f (t)} − P j {f (t)}k ≤ C2 2
−j(L+1), (7.38)2 

where C2 is a constant independent of j and L but dependent on f (t) and the wavelet system. 
This is a similar approximation or convergence result to the previous theorem but relates the projection 

of f (t) on a j-scale subspace to the sampling approximation in that same subspace. These approximations 
are illustrated in Figure 7.5. 

Figure 7.5: Approximation and Projection of f (t) at a Finite Scale 

This �vector space" illustration shows the nature and relationships of the two types of approximations. 
The use of samples as inner products is an approximation within the expansion subspace Vj . The use of a 
˝nite expansion to represent a signal f (t) is an approximation from L2 onto the subspace Vj . Theorems p. 
94 and p. 95 show the nature of those approximations, which, for wavelets, is very good. 

An illustration of the e˙ects of these approximations on a signal is shown in Figure 7.6 where a signal 
with a very smooth component (a sinusoid) and a discontinuous component (a square wave) is expanded 
in a wavelet series using samples as the high resolution scaling function coe°cients. Notice the e˙ects of 
projecting onto lower and lower resolution scales. 
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If we consider a wavelet system where the same number of scaling function and wavelet moments are set 
zero and this number is as large as possible, then the following is true [569], [513]: 

Theorem 27 If m (`) = m1 (`) = 0 for ` = 1, 2, · · · , L and m1 (0) = 0, then the L2 error is 

�3 =k f (t) − Sj {f (t)}k ≤ C3 2
−j(L+1), (7.39)2 

where C3 is a constant independent of j and L, but dependent on f (t) and the wavelet system. 
Here we see that for this wavelet system called a Coifman wavelet system, that using samples as the inner 

product expansion coe°cients is an excellent approximation. This justi˝es that using samples of a signal as 
input to a ˝lter bank gives a proper wavelet analysis. This approximation is also illustrated in Figure 7.5 
and in [565]. 

7.9 Coi˛ets and Related Wavelet Systems 

From the previous approximation theorems, we see that a combination of zero wavelet and zero scaling 
function moments used with samples of the signal may give superior results to wavelets with only zero 
wavelet moments. Not only does forcing zero scaling function moments give a better approximation of the 
expansion coe°cients by samples, it often causes the scaling function to be more symmetric. Indeed, that 
characteristic may be more important than the sample approximation in certain applications. 

Daubechies considered the design of these wavelets which were suggested by Coifman [121], [126], [36]. 
Gopinath [209], [189] and Wells [569], [515] show how zero scaling function moments give a better approx-
imation of high-resolution scaling coe°cients by samples. Tian and Wells [513], [515] have also designed 
biorthogonal systems with mixed zero moments with very interesting properties. 



97 

Figure 7.6: Approximations to f (t) at a Di˙erent Finite Scales 



98 
CHAPTER 7. REGULARITY, MOMENTS, AND WAVELET SYSTEM 

DESIGN 

The Coifman wavelet system (Daubechies named the basis functions �coi˛ets") is an orthonormal mul-
tiresolution wavelet system with Z 

tkφ (t) dt = m (k) = 0, for k = 1, 2, · · · , L − 1 (7.40) 

Z 
tkψ (t) dt = m1 (k) = 0, for k = 1, 2, · · · , L − 1. (7.41) 

This de˝nition imposes the requirement that there be at least L − 1 zero scaling function moments and at 
least L − 1 wavelet moments in addition to the one zero moment of m1 (0) required by orthogonality. This 
system is said to be of order or degree L and sometime has the additional requirement that the length of the 
scaling function ˝lter h (n), which is denoted N , is minimum [121], [126]. In the design of these coi˛ets, one 
obtains more total zero moments than N/2 − 1. This was ˝rst noted by Beylkin, et al [36]. The length-4 
wavelet system has only one degree of freedom, so it cannot have both a scaling function moment and wavelet 
moment of zero (see Table 7.6). Tian [513], [515] has derived formulas for four length-6 coi˛ets. These are: " #√ √ √ √ √ √ 

−3 + 7 1 − 7 7 − 7 7 + 7 5 + 7 1 − 7 
h = √ , √ , √ , √ , √ , √ , (7.42)

16 2 16 2 8 2 8 2 16 2 16 2 

or " #√ √ √ √ √ √ 
−3 − 7 1 + 7 7 + 7 7 − 7 5 − 7 1 + 7 

h = √ , √ , √ , √ , √ , √ , (7.43)
16 2 16 2 8 2 8 2 16 2 16 2 

or " #√ √ √ √ √ √ 
−3 + 15 1 − 15 3 − 15 3 + 15 13 + 15 9 − 15 

h = √ , √ , √ , √ , √ , √ , (7.44)
16 2 16 2 8 2 8 2 16 2 16 2 

or " #√ √ √ √ √ √ 
−3 − 15 1 + 15 3 + 15 3 − 15 13 − 15 9 + 15 

h = √ , √ , √ , √ , √ , √ , (7.45)
16 2 16 2 8 2 8 2 16 2 16 2 

with the ˝rst formula (7.42) giving the same result as Daubechies [121], [126] (corrected) and that of Odegard 
[52] and the third giving the same result as Wickerhauser [572]. The results from (7.42) are included in Table 
7.4 along with the discrete moments of the scaling function and wavelet, µ (k) and µ1 (k) for k = 0, 1, 2, 3. 
The design of a length-6 Coifman system speci˝es one zero scaling function moment and one zero wavelet 
moment (in addition to µ1 (0) = 0), but we, in fact, obtain one extra zero scaling function moment. That is 

the result of m (2) = m(1)2 
from [189]. In other words, we get one more zero scaling function moment than 

the two degrees of freedom would seem to indicate. This is true for all lengths N = 6` for ` = 1, 2, 3, · · · and 
is a result of the interaction between the scaling function moments and the wavelet moments described later. 

The property of zero wavelet moments is shift invariant, but the zero scaling function moments are shift 
dependent [36]. Therefore, a particular shift for the scaling function must be used. This shift is two for the 
length-6 example in Table 7.4, but is di˙erent for the solutions in (7.44) and (7.45). Compare this table to 
the corresponding one for Daubechies length-6 scaling functions and wavelets given in Table 7.2 where there 
are two zero discrete wavelet moments � just as many as the degrees of freedom in that design. 

The scaling function from (7.42) is fairly symmetric, but not around its center and the other three 
designs in (7.43), (7.44), and (7.45) are not symmetric at all. The scaling function from (7.42) is also fairly 
smooth, and from (7.44) only slightly less so but the scaling function from (7.43) is very rough and from 
(7.45) seems to be fractal. Examination of the frequency response H (ω) and the zero location of the FIR 
˝lters h (n) shows very similar frequency responses for (7.42) and (7.44) with (7.43) having a somewhat 
irregular but monotonic frequency response and (7.45) having a zero on the unit circle at ω = π/3, i.e., not 



99 

satisfying Cohen's condition [78] for an orthognal basis. It is also worth noticing that the design in (7.42) has 
the largest Hölder smoothness. These four designs, all satisfying the same necessary conditions, have very 
di˙erent characteristics. This tells us to be very careful in using zero moment methods to design wavelet 
systems. The designs are not unique and some are much better than others. 

Table 7.4 contains the scaling function and wavelet coe°cients for the length-6 and 12 designed by 
Daubechies and length-8 designed by Tian together with their discrete moments. We see the extra zero 
scaling function moments for lengths 6 and 12 and also the extra zero for lengths 8 and 12 that occurs after 
a nonzero one. 

The continuous moments can be calculated from the discrete moments and lower order continuous mo-
ments [36], [189], [505] using (7.9) and (7.10). An important relationship of the discrete moments for a 
system with K − 1 zero wavelet moments is found by calculating the derivatives of the magnitude squared of 

−iωn and has 2K − 1 zero derivatives 
P 

the discrete time Fourier transform of h (n) which is H (ω) = n h (n) e 
of the magnitude squared at ω = 0. This gives [189] the kth derivative for k even and 1 < k < 2K − 1 ⎛⎝ ⎞⎠ k 

` `=0 

√ 
Solving for µ (k) in terms of lower order discrete moments and using µ (0) = 2 gives for k even 

X k ` 
(−1) µ (`) µ (k − `) = 0. (7.46) 

⎛⎝ ⎞⎠X−k 1 

2 2 ` `=1 

k1 ` √µ (k) = (−1) µ (`) µ (k − `) (7.47) 

which allows calculating the even-order discrete scaling function moments in terms of the lower odd-order 
discrete scaling function moments for k = 2, 4, · · · , 2K − 2. For example: 

√1 µ2 (1)µ (2) = � 2 � 
µ (4) = −1√ 8µ (1) µ (3) − 3µ4 (1)

2 2 
(7.48) 

· · · · · · 

which can be seen from values in Table 7.2. 
Johnson [284] noted from Beylkin [32] and Unser [519] that by using the moments of the autocorrelation 

function of the scaling function, a relationship of the continuous scaling function moments can be derived in 
the form ⎛⎝ ⎞⎠Xk 

` `=0 

where 0 < k < 2K if K − 1 wavelet moments are zero. Solving for m (k) in terms of lower order moments 
gives for k even 

k k−` 
(−1) m (`) m (k − `) = 0 (7.49) 

⎛⎝ ⎞⎠Xk−1 

2 ` `=1 

k−1 ` 
m (k) = (−1) m (`) m (k − `) (7.50) 

which allows calculating the even-order scaling function moments in terms of the lower odd-order scaling 
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function moments for k = 2, 4, · · · , 2K − 2. For example [284]: 

m (2) = m2 (1) 

m (4) = 4 m (3) m (1) − 3 m4 (1) 

m (6) = 6 m (5) m (1) + 10 m2 (3) + 60 m (3) m3 (1) + 45 m6 (1) 
(7.51) 

m (8) = 8 m (7) m (1) + 56 m (5) m (3) − 168 m (5) m3 (1) 

+2520 m (3) m5 (1) − 840 m (3) m2 (1) − 1575 m8 (1) 

· · · · · · 
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Length-N = 6, Degree L = 2 

n h (n) h1 (n) µ (k) µ1 (k) k 

-2 -0.07273261951285 0.01565572813546 1.414213 0 0 

-1 0.33789766245781 -0.07273261951285 0 0 1 

0 0.85257202021226 -0.38486484686420 0 -1.163722 2 

1 0.38486484686420 0.85257202021226 -0.375737 -3.866903 3 

2 -0.07273261951285 -0.33789766245781 -2.872795 -10.267374 4 

3 -0.01565572813546 -0.07273261951285 

Length-N = 8, Degree L = 3 

n h (n) h1 (n) µ (k) µ1 (k) k 

-4 0.04687500000000 0.01565572813546 1.414213 0 0 

-3 -0.02116013576461 -0.07273261951285 0 0 1 

-2 -0.14062500000000 -0.38486484686420 0 0 2 

-1 0.43848040729385 1.38486484686420 -2.994111 0.187868 3 

0 1.38486484686420 -0.43848040729385 0 11.976447 4 

1 0.38486484686420 -0.14062500000000 -45.851020 -43.972332 5 

2 -0.07273261951285 0.02116013576461 63.639610 271.348747 6 

3 -0.01565572813546 0.04687500000000 

Length-N = 12, Degree L = 4 

n h (n) h1 (n) µ (k) µ1 (k) k 

-4 0.016387336463 0.000720549446 1.414213 0 0 

-3 -0.041464936781 0.001823208870 0 0 1 

-2 -0.067372554722 -0.005611434819 0 0 2 

-1 0.386110066823 -0.023680171946 0 0 3 

0 0.812723635449 0.059434418646 0 11.18525 4 

1 0.417005184423 0.076488599078 -5.911352 175.86964 5 

2 -0.076488599078 -0.417005184423 0 1795.33634 6 

3 -0.059434418646 -0.812723635449 -586.341304 15230.54650 7 

4 0.023680171946 -0.386110066823 3096.310009 117752.68833 8 

5 0.005611434819 0.067372554722 

6 -0.001823208870 0.041464936781 

7 -0.000720549446 -0.016387336463 

Table 7.4: Coi˛et Scaling Function and Wavelet Coe°cients plus their Discrete Moments 

if the wavelet moments are zero up to k = K − 1. Notice that setting m (1) = m (3) = 0 causes 
m (2) = m (4) = m (6) = m (8) = 0 if su°cient wavelet moments are zero. This explains the extra zero 
moments in Table 7.4. It also shows that the traditional speci˝cation of zero scaling function moments is 
redundant. In Table 7.4 m (8) would be zero if more wavelet moments were zero. 
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N = 6, L = 2 

k µ (k) µ1 (k) m (k) m1 (k) 

0 1.4142135623 0 1.0000000000 0 

1 0 0 0 0 

2 0 -1.1637219122 0 -0.2057189138 

3 -0.3757374752 -3.8669032118 -0.0379552166 -0.3417891854 

4 -2.8727952940 -10.2673737288 -0.1354248688 -0.4537580992 

5 -3.7573747525 -28.0624304008 -0.0857053279 -0.6103378310 

N = 8, L = 3 

k µ (k) µ1 (k) m (k) m1 (k) 

0 1.4142135623 0 1.0000000000 0 

1 0 0 0 0 

2 0 0 0 0 

3 -2.9941117777 0.1878687376 -0.3024509630 0.0166054072 

4 0 11.9764471108 0 0.5292891854 

5 -45.8510203537 -43.9723329775 -1.0458570134 -0.9716604635 

Table 7.5: Discrete and Continuous Moments for the Coi˛et Systems 

To see the continuous scaling function and wavelet moments for these systems, Table 7.5 shows both the 
continuous and discrete moments for the length-6 and 8 coi˛et systems. Notice the zero moment m (4) = 
µ (4) = 0 for length-8. The length-14, 20, and 26 systems also have the �extra" zero scaling moment just 
after the ˝rst nonzero moment. This always occurs for length-N = 6` + 2 coi˛ets. 

Figure 7.7 shows the length-6, 8, 10, and 12 coi˛et scaling functions φ (t) and wavelets ψ (t). Notice their 
approximate symmetry and compare this to Daubechies' classical wavelet systems and her more symmetric 
ones achieved by using the di˙erent factorization mentioned in Section 7.3 (Daubechies' Method for Zero 
Wavelet Moment Design) and shown in [121]. The di˙erence between these systems and truly symmetric 
ones (which requires giving up orthogonality, realness, or ˝nite support) is probably negligible in many 
applications. 
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Figure 7.7: Length-6, 8, 10, and 12 Coi˛et Scaling Functions and Wavelets 
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7.9.1 Coifman Wavelet Systems from a Speci˝ed Filter Length 

The preceding section shows that Coifman systems do not necessarily have an equal number of scaling 
function and wavelet moments equal to zero. Lengths N = 6` + 2 have equal numbers of zero scaling 
function and wavelet moments, but always have even-order �extra" zero scaling function moments located 
after the ˝rst nonzero one. Lengths N = 6` always have an �extra" zero scaling function moment. Indeed, 
both will have several even-order �extra" zero moments for longer N as a result of the relationships illustrated 
in (7.51) through (7.51). Lengths N = 6` − 2 do not occur for the original de˝nition of a Coifman system 
if one looks only at the degree with minimum length. If we specify the length of the coe°cient vector, all 
even lengths become possible, some with the same coi˛et degree. 

We examine the general Coifman wavelet system de˝ned in (7.40) and (7.41) and allow the number of 
speci˝ed zero scaling function and wavelet moments to di˙er by at most one. That will include all the 
reported coi˛ets plus length-10, 16, 22, and N = 6` − 2. The length-10 was designed by Odegard [52] 
by setting the number of zero scaling functions to 3 and the number of zero wavelet moment to 2 rather 
than 2 and 2 for the length-8 or 3 and 3 for the length-12 coi˛ets. The result in Table 7.6 shows that the 
length-10 design again gives one extra zero scaling function moment which is two more than the number of 
zero wavelet moments. This is an even-order moment predicted by (7.51) and results in a total number of 
zero moments between that for length-8 and length-12, as one would expect. A similar approach was used 
to design length-16, 22, and 28. 

Length-N = 4, Degree L = 1 

n h (n) h1 (n) µ (k) µ1 (k) k 

-1 0.224143868042 0.129409522551 1.414213 0 0 

0 0.836516303737 0.482962913144 0 -0.517638 1 

1 0.482962913144 -0.836516303737 0.189468 0.189468 2 

2 -0.129409522551 0.224143868042 -0.776457 0.827225 3 

Length-N = 10, Degree L = 3 

n h (n) h1 (n) µ (k) µ1 (k) k 

-2 0.032128481856 0.000233764788 1.414213 0 0 

-1 -0.075539271956 -0.000549618934 0 0 1 

0 -0.096935064502 -0.013550370057 0 0 2 

1 0.491549094027 0.033777338659 0 3.031570 3 

2 0.805141083557 0.304413564385 0 24.674674 4 

3 0.304413564385 -0.805141083557 -14.709025 138.980052 5 

4 -0.033777338659 0.491549094027 64.986095 710.373341 6 

5 -0.013550370057 0.096935064502 

6 0.000549618934 -0.075539271956 

7 0.000233764788 0.032128481856 

Table 7.6: Coi˛et Scaling Function and Wavelet Coe°cients plus their Discrete Moments 

We have designed these �new" coi˛et systems (e.g., N = 10, 16, 22, 28) by using the Matlab optimization 
toolbox constrained optimization function. Wells and Tian [515] used Newton's method to design lengths 
N = 6` + 2 and N = 6` coi˛ets up to length 30 [52]. Selesnick [465] has used a ˝lter design approach. Still 
another approach is given by Wei and Bovik [564]. 
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Table 7.6 also shows the result of designing a length-4 system, using the one degree of freedom to ask for 
one zero scaling function moment rather than one zero wavelet moment as we did for the Daubechies system. 
For length-4, we do not get any �extra" zero moments because there are not enough zero wavelet moments. 
Here we see a direct trade-o˙ between zero scaling function moments and wavelet moments. Adding these 
new lengths to our traditional coi˛ets gives Table 7.7. 

N L m = 0 m1 = 0 m = 0 m1 = 0 Total zero Hölder 

set set* actual actual* moments exponent 

4 1 1 0 1 0 1 0.2075 

6 2 1 1 2 1 3 1.0137 

8 3 2 2 2 2 4 1.3887 

10 3 3 2 4 2 6 1.0909 

12 4 3 3 4 3 7 1.9294 

14 5 4 4 4 4 8 1.7353 

16 5 5 4 6 4 10 1.5558 

18 6 5 5 6 5 11 2.1859 

20 7 6 6 6 6 12 2.8531 

22 7 7 6 8 6 14 2.5190 

24 8 7 7 8 7 15 2.8300 

26 9 8 8 8 8 16 3.4404 

28 9 9 8 10 8 18 2.9734 

30 10 9 9 10 9 19 3.4083 

Table 7.7: Moments for Various Length-N and Degree-L Coi˛ets, where (*) is the number of zero wavelet 
moments, excluding the m1 (0) = 0 

The fourth and sixth columns in Table 7.7 contain the number of zero wavelet moments, excluding the 
m1 (0) = 0 which is zero because of orthogonality in all of these systems. The extra zero scaling function 
moments that occur after a nonzero moment for N = 6` + 2 are also excluded from the count. This table 
shows coi˛ets for all even lengths. It shows the extra zero scaling function moments that are sometime 
achieved and how the total number of zero moments monotonically increases and how the �smoothness" as 
measured by the Hölder exponent [440], [312], [257] increases with N and L. 

When both scaling function and wavelet moments are set to zero, a larger number can be obtained than 
is expected from considering the degrees of freedom available. As stated earlier, of the N degrees of freedom 
available from the N coe°cients, h (n), one is used to insure existence of φ (t) through the linear constraint 
(7.1), and N/2 are used to insure orthonormality through the quadratic constraints (7.1). This leaves N/2−1 
degrees of freedom to achieve other characteristics. Daubechies used these to set the ˝rst N/2 − 1 wavelet 
moments to zero. If setting scaling function moments were independent of setting wavelet moments zero, one 
would think that the coi˛et system would allow (N/2 − 1) /2 wavelet moments to be set zero and the same 
number of scaling function moments. For the coi˛ets described in Table 7.7, one always obtains more than 
this. The structure of this problem allows more zero moments to be both set and achieved than the simple 
degrees of freedom would predict. In fact, the coi˛ets achieve approximately 2N/3 total zero moments as 
compared with the number of degrees of freedom which is approximately N/2, and which is achieved by the 
Daubechies wavelet system. 

As noted earlier and illustrated in Table 7.8, these coi˛ets fall into three classes. Those with scaling 
˝lter lengths of N = 6` + 2 (due to Tian) have equal number of zero scaling function and wavelet moments, 
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but always has �extra" zero scaling function moments located after the ˝rst nonzero one. Lengths N = 6` 
(due to Daubechies) always have one more zero scaling function moment than zero wavelet moment and 
lengths N = 6` − 2 (new) always have two more zero scaling function moments than zero wavelet moments. 
These �extra" zero moments are predicted by (7.51) to (7.51), and there will be additional even-order zero 
moments for longer lengths. We have observed that within each of these classes, the Hölder exponent 
increases monotonically. 

N m = 0— m1 = 0* Total zero 

Length achieved achieved moments 

N = 6` + 2 (N − 2) /3 (N − 2) /3 (2/3) (N − 2) 

N = 6` N/3 (N − 3) /3 (2/3) (N − 3/2) 

N = 6` − 2 (N + 2) /3 (N − 4) /3 (2/3) (N − 1) 

Table 7.8: Number of Zero Moments for The Three Classes of Coi˛ets (` = 1, 2, · · ·), *excluding µ1 (0) = 0, 
—excluding Non-Contiguous zeros 

The approach taken in some investigations of coi˛ets would specify the coi˛et degree and then ˝nd the 
shortest ˝lter that would achieve that degree. The lengths N = 6` − 2 were not found by this approach 
because they have the same coi˛et degree as the system just two shorter. However, they achieve two more 
zero scaling function moments than the shorter length with the same degree. By specifying the number of 
zero moments and/or the ˝lter length, it is easier to see the complete picture. 

Table 7.7 is just part of a large collection of zero moment wavelet system designs with a wide variety 
of trade-o˙s that would be tailored to a particular application. In addition to the variety illustrated here, 
many (perhaps all) of these sets of speci˝ed zero moments have multiple solutions. This is certainly true 
for length-6 as illustrated in (7.42) through (7.45) and for other lengths that we have found experimentally. 
The variety of solutions for each length can have di˙erent shifts, di˙erent Hölder exponents, and di˙erent 
degrees of being approximately symmetric. 

The results of this chapter and section show the importance of moments to the characteristics of scaling 
functions and wavelets. It may not, however, be necessary or important to use the exact criteria of Daubechies 
or Coifman, but understanding the e˙ects of zero moments is very important. It may be that setting a few 
scaling function moments and a few wavelets moments may be su°cient with the remaining degrees of 
freedom used for some other optimization, either in the frequency domain or in the time domain. As is noted 
in the next section, an alternative might be to minimize a larger number of various moments rather than to 
zero a few [409]. 

Examples of the Coi˛et Systems are shown in Figure 7.7. 

7.10 Minimization of Moments Rather than Zero Moments 

Odegard has considered the case of minimization of a larger number of moments rather than setting N/2 − 1 
equal to zero [405], [410], [409]. This results in some improvement in representing or approximating a larger 
class of signals at the expense of a better approximation of a smaller class. Indeed, Götze [241] has shown 
that even in the designed zero moments wavelet systems, the implementation of the system in ˝nite precision 
arithmetic results in nonzero moments and, in some cases, non-orthogonal systems. 



Chapter 8 

Generalizations of the Basic 

Multiresolution Wavelet System1 

Up to this point in the book, we have developed the basic two-band wavelet system in some detail, trying to 
provide insight and intuition into this new mathematical tool. We will now develop a variety of interesting 
and valuable generalizations and extensions to the basic system, but in much less detail. We hope the detail 
of the earlier part of the book can be transferred to these generalizations and, together with the references, 
will provide an introduction to the topics. 

8.1 Tiling the Time�Frequency or Time�Scale Plane 

A qualitative descriptive presentation of the decomposition of a signal using wavelet systems or wavelet 
transforms consists of partitioning the time�scale plane into tiles according to the indices k and j de˝ned 
in (2.5). That is possible for orthogonal bases (or tight frames) because of Parseval's theorem. Indeed, it 
is Parseval's theorem that states that the signal energy can be partitioned on the time-scale plane. The 
shape and location of the tiles shows the logarithmic nature of the partitioning using basic wavelets and 
how the M-band systems or wavelet packets modify the basic picture. It also allows showing that the e˙ects 
of time- or shift-varying wavelet systems, together with M-band and packets, can give an almost arbitrary 
partitioning of the plane. 

The energy in a signal is given in terms of the DWT by Parseval's relation in (3.36) or (5.24). This shows 
the energy is a function of the translation index k and the scale index j. Z ∞ ∞ ∞2 X X X 

2 2|g (t) | dt = |c (l) | + |d (j, k) | (8.1) 
l=−∞ j=0 k=−∞ 

The wavelet transform allows analysis of a signal or parameterization of a signal that can locate energy 
in both the time and scale (or frequency) domain within the constraints of the uncertainty principle. The 
spectrogram used in speech analysis is an example of using the short-time Fourier transform to describe 
speech simultaneously in the time and frequency domains. 

This graphical or visual description of the partitioning of energy in a signal using tiling depends on the 
structure of the system, not the parameters of the system. In other words, the tiling partitioning will depend 
on whether one uses M = 2 or M = 3, whether one uses wavelet packets or time-varying wavelets, or whether 
one uses over-complete frame systems. It does not depend on the particular coe°cients h (n) or hi (n), on 
the number of coe°cients N , or the number of zero moments. One should remember that the tiling may 
look as if the indices j and k are continuous variables, but they are not. The energy is really a function of 

1This content is available online at <http://cnx.org/content/m45095/1.4/>. 
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discrete variables in the DWT domain, and the boundaries of the tiles are symbolic of the partitioning. These 
tiling boundaries become more literal when the continuous wavelet transform (CWT) is used as described in 
Section 8.8 (Discrete Multiresolution Analysis, the Discrete-Time Wavelet Transform, and the Continuous 
Wavelet Transform), but even there it does not mean that the partitioned energy is literally con˝ned to the 
tiles. 

8.1.1 Nonstationary Signal Analysis 

In many applications, one studies the decomposition of a signal in terms of basis functions. For example, 
stationary signals are decomposed into the Fourier basis using the Fourier transform. For nonstationary 
signals (i.e., signals whose frequency characteristics are time-varying like music, speech, images, etc.) the 
Fourier basis is ill-suited because of the poor time-localization. The classical solution to this problem is 
to use the short-time (or windowed) Fourier transform (STFT). However, the STFT has several problems, 
the most severe being the ˝xed time-frequency resolution of the basis functions. Wavelet techniques give 
a new class of (potentially signal dependent) bases that have desired time-frequency resolution properties. 
The �optimal� decomposition depends on the signal (or class of signals) studied. All classical time-frequency 
decompositions like the Discrete STFT (DSTFT), however, are signal independent. Each function in a 
basis can be considered schematically as a tile in the time-frequency plane, where most of its energy is 
concentrated. Orthonormality of the basis functions can be schematically captured by nonoverlapping tiles. 
With this assumption, the time-frequency tiles for the standard basis (i.e., delta basis) and the Fourier basis 
(i.e., sinusoidal basis) are shown in Figure 8.1. 

Figure 8.1: (a) Dirac Delta Function or Standard Time Domain Basis (b) Fourier or Standard Frequency 
Domain Basis 
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8.1.2 Tiling with the Discrete-Time Short-Time Fourier Transform 

The DSTFT basis functions are of the form 

−ßjω0t wj,k (t) = w (t − kτ0) e (8.2) 

where w (t) is a window function [177]. If these functions form an orthogonal (orthonormal) basis,P 
x (t) = < x,wj,k The DSTFT coe°cients, < x,wj,k >, estimate the presence of signal j,k > wj,k (t). 
components centered at (kτ0, jω0) in the time-frequency plane, i.e., the DSTFT gives a uniform tiling of the 
time-frequency plane with the basis functions {wj,k (t)}. If Δt and Δω are time and frequency resolutions 
respectively of w (t), then the uncertainty principle demands that ΔtΔω ≤ 1/2[114], [471]. Moreover, if the 
basis is orthonormal, the Balian-Low theorem implies either Δt or Δω is in˝nite. Both Δt and Δω can be 
controlled by the choice of w (t), but for any particular choice, there will be signals for which either the time 
or frequency resolution is not adequate. Figure 8.2 shows the time-frequency tiles associated with the STFT 
basis for a narrow and wide window, illustrating the inherent time-frequency trade-o˙s associated with this 
basis. Notice that the tiling schematic holds for several choices of windows (i.e., each ˝gure represents all 
DSTFT bases with the particular time-frequency resolution characteristic). 

Figure 8.2: (a) STFT Basis - Narrow Window. (b) STFT Basis - Wide Window. 

8.1.3 Tiling with the Discrete Two-Band Wavelet Transform 

The discrete wavelet transform (DWT) is another signal-independent tiling of the time-frequency plane 
suited for signals where high frequency signal components have shorter duration than low frequency signal � � 
components. Time-frequency atoms for the DWT, {ψj,k (t)} = {2j/2ψ 2j t − k }, are obtained by translates 
and scales of the wavelet function ψ (t). One shrinks/stretches the wavelet to capture high-/low-frequency P 
components of the signal. If these atoms form an orthonormal basis, then x (t) = < x, ψj,k > ψj,k (t).j,k 
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The DWT coe°cients, < x, ψj,k >, are a measure of the energy of the signal components located at 2−j k, 2j 

in the time-frequency plane, giving yet another tiling of the time-frequency plane. As discussed in Chapter: 
Filter Banks and the Discrete Wavelet Transform and Chapter: Filter Banks and Transmultiplexers, the 
DWT (for compactly supported wavelets) can be e°ciently computed using two-channel unitary FIR ˝lter 
banks [105]. Figure 8.3 shows the corresponding tiling description which illustrates time-frequency resolu-
tion properties of a DWT basis. If you look along the frequency (or scale) axis at some particular time 
(translation), you can imagine seeing the frequency response of the ˝lter bank as shown in (8.7) with the 
logarithmic bandwidth of each channel. Indeed, each horizontal strip in the tiling of Figure 8.3 corresponds 
to each channel, which in turn corresponds to a scale j. The location of the tiles corresponding to each 
coe°cient is shown in Figure 8.4. If at a particular scale, you imagine the translations along the k axis, 
you see the construction of the components of a signal at that scale. This makes it obvious that at lower 
resolutions (smaller j) the translations are large and at higher resolutions the translations are small. 

Figure 8.3: Two-band Wavelet Basis 

The tiling of the time-frequency plane is a powerful graphical method for understanding the properties 
of the DWT and for analyzing signals. For example, if the signal being analyzed were a single wavelet itself, 
of the form 

f (t) = ψ (4t − 2) , (8.3) 

the DWT would have only one nonzero coe°cient, d2 (2). To see that the DWT is not time (or shift) 
invariant, imagine shifting f (t) some noninteger amount and you see the DWT changes considerably. If the 
shift is some integer, the energy stays the same in each scale, but it �spreads out" along more values of k and 
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spreads di˙erently in each scale. If the shift is not an integer, the energy spreads in both j and k. There is 
no such thing as a �scale limited" signal corresponding to a band-limited (Fourier) signal if arbitrary shifting 
is allowed. For integer shifts, there is a corresponding concept [208]. 

Figure 8.4: Relation of DWT Coe°cients dj,k to Tiles 

8.1.4 General Tiling 

Notice that for general, nonstationary signal analysis, one desires methods for controlling the tiling of the 
time-frequency plane, not just using the two special cases above (their importance notwithstanding). An 
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alternative way to obtain orthonormal wavelets ψ (t) is using unitary FIR ˝lter bank (FB) theory. That will 
be done with M-band DWTs, wavelet packets, and time-varying wavelet transforms addressed in Section: 
Multiplicity-M (M-Band) Scaling Functions and Wavelets (Section 8.2: Multiplicity-M (M-Band) Scaling 
Functions and Wavelets) and Section: Wavelet Packets (Section 8.3: Wavelet Packets) and Chapter: Filter 
Banks and Transmultiplexers respectively. 

Remember that the tiles represent the relative size of the translations and scale change. They do not 
literally mean the partitioned energy is con˝ned to the tiles. Representations with similar tilings can have 
very di˙erent characteristics. 

8.2 Multiplicity-M (M-Band) Scaling Functions and Wavelets 

While the use of a scale multiplier M of two in (6.1) or (8.4) ˝ts many problems, coincides with the concept of 
an octave, gives a binary tree for the Mallat fast algorithm, and gives the constant-Q or logarithmic frequency 
bandwidths, the conditions given in Chapter: The Scaling Function and Scaling Coe°cients, Wavelet and 
Wavelet Coe°cients and Section: Further Properties of the Scaling Function and Wavelet (Section 6.8: 
Further Properties of the Scaling Function and Wavelet) can be stated and proved in a more general setting 
where the basic scaling equation [590], [589], [192], [485], [254], [205], [523] rather than the speci˝c doubling 
value of M = 2. Part of the motivation for a larger M comes from a desire to have a more ˛exible tiling of the 
time-scale plane than that resulting from the M = 2 wavelet or the short-time Fourier transform discussed 
in Section: Tiling the Time�Frequency or Time�Scale Plane (Section 8.1: Tiling the Time�Frequency or 
Time�Scale Plane). It also comes from a desire for some regions of uniform band widths rather than the 
logarithmic spacing of the frequency responses illustrated in Figure: Frequency Bands for the Analysis Tree 
(Figure 4.5). The motivation for larger M also comes from ˝lter bank theory which is discussed in Chapter: 
Filter Banks and Transmultiplexers. 

We pose the more general multiresolution formulation where (6.1) becomes X √ 
φ (x) = h (n) M φ (Mx − n) . (8.4) 

n 

In some cases, M may be allowed to be a rational number; however, in most cases it must be an integer, 
and in (6.1) it is required to be 2. In the frequency domain, this relationship becomes 

1 
Φ (ω) = √ H (ω/M) Φ (ω/M) (8.5) 

M 

and the limit after iteration is 

∞ � �Y 1 ω 
Φ (ω) = {√ H }Φ (0) (8.6)

MkM
k=1 

assuming the product converges and Φ (0) is well de˝ned. This is a generalization of (6.52) and is derived 
in (6.74). 

8.2.1 Properties of M-Band Wavelet Systems 

These theorems, relationships, and properties are generalizations of those given in Chapter: The Scaling 
Function and Scaling Coe°cients, Wavelet and Wavelet Coe°cients and Section: Further Properties of the 
Scaling Function and Wavelet (Section 6.8: Further Properties of the Scaling Function and Wavelet) with 
some outline proofs or derivations given in the Appendix. For the multiplicity-M problem, if the support of 
the scaling function and wavelets and their respective coe°cients is ˝nite and the system is orthogonal or a 
tight frame, the length of the scaling function vector or ˝lter h (n) is a multiple of the multiplier M . This is 
N = M G, where Resniko˙ and Wells [431] call M the rank of the system and G the genus. 

The results of (6.10), (6.14), (6.16), and (6.17) become 
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R 
Theorem 28 If φ (t) is an L1 solution to (8.4) and φ (t) dt =6 0, then X √ 

h (n) = M. (8.7) 
n 

This is a generalization of the basic multiplicity-2 result in (6.10) and does not depend on any particular 
normalization or orthogonality of φ (t). 

Theorem 29 If integer translates of the solution to (8.4) are orthogonal, then X 
h (n + Mm) h (n) = δ (m) . (8.8) 

n 

This is a generalization of (6.14) and also does not depend on any normalization. An interesting corollary 
of this theorem is 

Corollary 3 If integer translates of the solution to (8.4) are orthogonal, then X 
n 

2|h (n) | = 1. (8.9) 

A second corollary to this theorem is 
Corollary 4 If integer translates of the solution to (8.4) are orthogonal, then X √ 

h (Mn + m) = 1/ M. m ∈ Z (8.10) 
n 

This is also true under weaker conditions than orthogonality as was discussed for the M = 2 case. 
Using the Fourier transform, the following relations can be derived: R 
Theorem 30 If φ (t) is an L1 solution to (8.4) and φ (t) dt =6 0, then 

√ 
H (0) = M (8.11) 

which is a frequency domain existence condition. 
Theorem 31 The integer translates of the solution to (8.4) are orthogonal if and only if X 

2|Φ (ω + 2π`) | = 1 (8.12) 
` R 

Theorem 32 If φ (t) is an L1 solution to (8.4) and φ (t) dt =6 0, then X 
h (n + Mm) h (n) = δ (m) (8.13) 

n 

if and only if 

|H (ω) |2 
+ |H (ω + 2π/M) |2 

+ |H (ω + 4π/M) |2 
+ · · · + |H (ω + 2π (M − 1) /M) |2 

= M. (8.14) 

This is a frequency domain orthogonality condition on h (n). 
Corollary 5 

H (2π ̀ /M) = 0, for ` = 1, 2, · · · ,M − 1 (8.15) 

which is a generalization of (6.20) stating where the zeros of H (ω), the frequency response of the scaling 
˝lter, are located. This is an interesting constraint on just where certain zeros of H (z) must be located. P √ 

Theorem 33 If n h (n) = M , and h (n) has ˝nite support or decays fast enough, then a φ (t) ∈ L2 

that satis˝es (8.4) exists and is unique.P √ P 
Theorem 34 If n h (n) = M and if n h (n) h (n − Mk) = δ (k), then φ (t) exists, is integrable, and 

generates a wavelet system that is a tight frame in L2 . 
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These results are a signi˝cant generalization of the basic M = 2 wavelet system that we discussed in the 
earlier chapters. The de˝nitions, properties, and generation of these more general scaling functions have the 
same form as for M = 2, but there is no longer a single wavelet associated with the scaling function. There 
are M − 1 wavelets. In addition to (8.4) we now have M − 1 wavelet equations, which we denote as X√ 

ψ` (t) = M h` (n) φ (Mt − n) (8.16) 
n 

for 

` = 1, 2, · · · ,M − 1. (8.17) 

Some authors use a notation h0 (n) for h (n) and φ0 (t) for ψ (t), so that h` (n) represents the coe°cients 
for the scaling function and all the wavelets and φ` (t) represents the scaling function and all the wavelets. 

Just as for the M = 2 case, the multiplicity-M scaling function and scaling coe°cients are unique and are 
simply the solution of the basic recursive or re˝nement equation (8.4). However, the wavelets and wavelet 
coe°cients are no longer unique or easy to design in general. 

We now have the possibility of a more general and more ˛exible multiresolution expansion system with 
the M-band scaling function and wavelets. There are now M −1 signal spaces spanned by the M −1 wavelets 
at each scale j. They are denoted � � 

W`,j = Span{ψ` M
j t + k (8.18) 

k 

for ` = 1, 2, · · · ,M − 1. For example with M = 4, 

V1 = V0 ⊕ W1,0 ⊕ W2,0 ⊕ W3,0 (8.19) 

and 

V2 = V1 ⊕ W1,1 ⊕ W2,1 ⊕ W3,1 (8.20) 

or 

V2 = V0 ⊕ W1,0 ⊕ W2,0 ⊕ W3,0 ⊕ W1,1 ⊕ W2,1 ⊕ W3,1. (8.21) 

In the limit as j →∞, we have 

L2 = V0 ⊕ W1,0 ⊕ W2,0 ⊕ W3,0 ⊕ W1,1 ⊕ W2,1 ⊕ W3,1 ⊕ · · · ⊕ W3,∞. (8.22) 

Our notation for M = 2 in Chapter: A multiresolution formulation of Wavelet Systems is W1,j = Wj 

This is illustrated pictorially in Figure 8.5 where we see the nested scaling function spaces Vj but each 
annular ring is now divided into M −1 subspaces, each spanned by the M −1 wavelets at that scale. Compare 
Figure 8.5 with Figure: Scaling Function and Wavelet Vector Spaces (Figure 3.3) for the classical M = 2 
case. 
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Figure 8.5: Vector Space Decomposition for a Four-Band Wavelet System, W`j 

The expansion of a signal or function in terms of the M-band wavelets now involves a triple sum over 
`, j, and k. 

∞ ∞ MX−1X X X � � 
f (t) = c (k) φk (t) + M j/2 d`,j (k) ψ` M

j t − k (8.23) 
k k=−∞ j=0 `=1 

where the expansion coe°cients (DWT) are found by Z 
c (k) = f (t) φ (t − k) dt (8.24) 

and 

d`,j (k) = 
Z � � 
f (t) M j/2 ψ` M

j t − k dt. (8.25) 

We now have an M-band discrete wavelet transform. 
Theorem 35 If the scaling function φ (t) satis˝es the conditions for existence and orthogonality and 

the wavelets are de˝ned by (8.16) and if the integer translates of these wavelets span W`,0 the orthogonal 
compliments of V0, all being in V1, i.e., the wavelets are orthogonal to the scaling function at the same scale; 
that is, if Z 

φ (t − n) ψ` (t − m) dt = 0 (8.26) 

for ` = 1, 2, · · · ,M − 1, then X 
h (n) h` (n − Mk) = 0 (8.27) 

n 

for all integers k and for ` = 1, 2, · · · ,M − 1. 
Combining (8.8) and (8.27) and calling h0 (n) = h (n) gives X 

hm (n) h` (n − Mk) = δ (k) δ (m − `) (8.28) 
n 

as necessary conditions on h` (n) for an orthogonal system. 
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Figure 8.6: Filter Bank Structure for a Four-Band Wavelet System, W`j 

Unlike the M = 2 case, for M > 2 there is no formula for h` (n) and there are many possible wavelets 
for a given scaling function. 

Mallat's algorithm takes on a more complex form as shown in Figure 8.6. The advantage is a more ˛exible 
system that allows a mixture of linear and logarithmic tiling of the time�scale plane. A powerful tool that 
removes the ambiguity is choosing the wavelets by �modulated cosine" design. 

Figure 8.7 shows the frequency response of the ˝lter band, much as Figure: Frequency Bands for the 
Analysis Tree (Figure 4.5) did for M = 2. Examples of scaling functions and wavelets are illustrated in , 
and the tiling of the time-scale plane is shown in Figure 8.9. Figure 8.9 shows the time-frequency resolution 
characteristics of a four-band DWT basis. Notice how it is di˙erent from the Standard, Fourier, DSTFT 
and two-band DWT bases shown in earlier chapters. It gives a mixture of a logarithmic and linear frequency 
resolution. 
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Figure 8.7: Frequency Responses for the Four-Band Filter Bank, W`j 
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Figure 8.8: A Four-Band Six-Regular Wavelet System: Φ 
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Figure 8.9: 4-band Wavelet Basis Tiling 

We next de˝ne the kth moments of ψ` (t) as Z 
m` (k) = tk ψ` (t) dt (8.29) 

and the kth discrete moments of h` (n) as X 
µ` (k) = n k h` (n) . (8.30) 

n 

Theorem 36 (Equivalent Characterizations of K-Regular M-Band Filters) A unitary scaling ˝lter 
is K-regular if and only if the following equivalent statements are true: 
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1. All moments of the wavelet ˝lters are zero, µ` (k) = 0, for k = 0, 1, · · · , (K − 1) and for ` = 
1, 2, · · · , (M − 1) 

2. All moments of the wavelets are zero, m` (k) = 0, for k = 0, 1, · · · , (K − 1) and for ` = 1, 2, · · · , (M − 1) 
3. The partial moments of the scaling ˝lter are equal for k = 0, 1, · · · , (K − 1) 
4. The frequency response of the scaling ˝lter has zeros of order K at the M th roots of unity, ω = 2π ̀ /M 

for ` = 1, 2, · · · ,M − 1. 
5. The magnitude-squared frequency response of the scaling ˝lter is ˛at to order 2K at ω = 0. This 

follows from (6.22). 
6. All polynomial sequences up to degree (K − 1) can be expressed as a linear combination of integer-

shifted scaling ˝lters. 
7. All polynomials of degree up to (K − 1) can be expressed as a linear combination of integer-shifted 

scaling functions for all j. 

This powerful result [485], [254] is similar to the M = 2 case presented in Chapter: Regularity, Moments, 
and Wavelet System Design . It not only ties the number of zero moments to the regularity but also to the 
degree of polynomials that can be exactly represented by a sum of weighted and shifted scaling functions. 
Note the location of the zeros of H (z) are equally spaced around the unit circle, resulting in a narrower 
frequency response than for the half-band ˝lters if M = 2. This is consistent with the requirements given in 
(8.14) and illustrated in Section 8.1.2 (Tiling with the Discrete-Time Short-Time Fourier Transform). 

Sketches of some of the derivations in this section are given in the Appendix or are simple extensions of 
the M = 2 case. More details are given in [192], [485], [254]. 

8.2.2 M-Band Scaling Function Design 

Calculating values of φ (n) can be done by the same methods given in Section: Calculating the Basic Scaling 
Function and Wavelet (6.10). However, the design of the scaling coe°cients h (n) parallels that for the 
two-band case but is somewhat more di°cult [254]. 

One special set of cases turns out to be a simple extension of the two-band system. If the multiplier 
M = 2m , then the scaling function is simply a scaled version of the M = 2 case and a particular set of 
corresponding wavelets are those obtained by iterating the wavelet branches of the Mallat algorithm tree as 
is done for wavelet packets described in Section 8.3 (Wavelet Packets). For other values of M , especially odd 
values, the situation is more complex. 

8.2.3 M-Band Wavelet Design and Cosine Modulated Methods 

For M > 2 the wavelet coe°cients h` (n) are not uniquely determined by the scaling coe°cients, as was the 
case for M = 2. This is both a blessing and a curse. It gives us more ˛exibility in designing speci˝c systems, 
but it complicates the design considerably. For small N and M , the designs can be done directly, but for 
longer lengths and/or for large M , direct design becomes impossible and something like the cosine modulated 
design of the wavelets from the scaling function as described in Chapter: Filter Banks and Transmultiplexers, 
is probably the best approach [294], [394], [395], [356], [370][407], [215], [188], [201], [195], [401], [429], [398], 
[399]. 

8.3 Wavelet Packets 

The classical M = 2 wavelet system results in a logarithmic frequency resolution. The low frequencies have 
narrow bandwidths and the high frequencies have wide bandwidths, as illustrated in Figure: Frequency 
Bands for the Analysis Tree (Figure 4.5). This is called �constant-Q" ˝ltering and is appropriate for some 
applications but not all. The wavelet packet system was proposed by Ronald Coifman [452], [93] to allow 
a ˝ner and adjustable resolution of frequencies at high frequencies. It also gives a rich structure that 
allows adaptation to particular signals or signal classes. The cost of this richer structure is a computational 
complexity of O (Nlog (N)), similar to the FFT, in contrast to the classical wavelet transform which is O (N). 
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8.3.1 Full Wavelet Packet Decomposition 

In order to generate a basis system that would allow a higher resolution decomposition at high frequencies, 
we will iterate (split and down-sample) the highpass wavelet branch of the Mallat algorithm tree as well as 
the lowpass scaling function branch. Recall that for the discrete wavelet transform we repeatedly split, ˝lter, 
and decimate the lowpass bands. The resulting three-scale analysis tree (three-stage ˝lter bank) is shown in 
Figure: Three-Stage Two-Band Analysis Tree (Figure 4.4). This type of tree results in a logarithmic splitting 
of the bandwidths and tiling of the time-scale plane, as shown in Figure 8.3. 

If we split both the lowpass and highpass bands at all stages, the resulting ˝lter bank structure is like 
a full binary tree as in Figure 8.10. It is this full tree that takes O (NlogN) calculations and results in 
a completely evenly spaced frequency resolution. In fact, its structure is somewhat similar to the FFT 
algorithm. Notice the meaning of the subscripts on the signal spaces. The ˝rst integer subscript is the scale 
j of that space as illustrated in Figure 8.11. Each following subscript is a zero or one, depending the path 
taken through the ˝lter bank illustrated in Figure: Three-Stage Two-Band Analysis Tree (Figure 4.4). A 
�zero" indicates going through a lowpass ˝lter (scaling function decomposition) and a �one" indicates going 
through a highpass ˝lter (wavelet decomposition). This is di˙erent from the convention for the M > 2 case 
in Section 8.2 (Multiplicity-M (M-Band) Scaling Functions and Wavelets). 

Figure 8.10: The full binary tree for the three-scale wavelet packet transform. 

Figure 8.11 pictorially shows the signal vector space decomposition for the scaling functions and wavelets. 
Figure 8.12 shows the frequency response of the packet ˝lter bank much as Figure: Frequency Bands for the 
Analysis Tree (Figure 4.5) did for M = 2 and Figure 8.7 for M = 3 wavelet systems. 

Figure 8.14 shows the Haar wavelet packets with which we ˝nish the example started in Section: An 
Example of the haar Wavelet System (Section 3.8: An Example of the Haar Wavelet System). This is an 
informative illustration that shows just what �packetizing" does to the regular wavelet system. It should 
be compared to the example at the end of Chapter: A multiresolution formulation of Wavelet Systems. 
This is similar to the Walsh-Haddamar decomposition, and Figure 8.13 shows the full wavelet packet system 
generated from the Daubechies φD8' scaling function. The �prime" indicates this is the Daubechies system 
with the spectral factorization chosen such that zeros are inside the unit circle and some outside. This 
gives the maximum symmetry possible with a Daubechies system. Notice the three wavelets have increasing 
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�frequency." They are somewhat like windowed sinusoids, hence the name, wavelet packet. Compare the 
wavelets with the M = 2 and M = 4 Daubechies wavelets. 

8.3.2 Adaptive Wavelet Packet Systems 

Normally we consider the outputs of each channel or band as the wavelet transform and from this have a 
nonredundant basis system. If, however, we consider the signals at the output of each band and at each 
stage or scale simultaneously, we have more outputs than inputs and clearly have a redundant system. From 
all of these outputs, we can choose an independent subset as a basis. This can be done in an adaptive 
way, depending on the signal characteristics according to some optimization criterion. One possibility is the 
regular wavelet decomposition shown in Figure: Frequency Bands for the Analysis Tree (Figure 4.3). 

Figure 8.11: Vector Space Decomposition for a M = 2 Full Wavelet Packet System 

Figure 8.12: Frequency Responses for the Two-Band Wavelet Packet Filter Bank 
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Another is the full packet decomposition shown in Figure 8.10. Any pruning of this full tree would 
generate a valid packet basis system and would allow a very ˛exible tiling of the time-scale plane. 

We can choose a set of basic vectors and form an orthonormal basis, such that some cost measure on the 
transformed coe°cients is minimized. Moreover, when the cost is additive, the 

Figure 8.13: Wavelet Packets Generated by φD8 ' 
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Figure 8.14: The Haar Wavelet Packet 

best orthonormal wavelet packet transform can be found using a binary searching algorithm [93] in 
O (NlogN) time. 

Some examples of the resulting time-frequency tilings are shown in Figure 8.15. These plots demonstrate 
the frequency adaptation power of the wavelet packet transform. 
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Figure 8.15: Examples of Time-Frequency Tilings of Di˙erent Three-Scale Orthonormal Wavelet Packet 
Transforms. 

There are two approaches to using adaptive wavelet packets. One is to choose a particular decomposi-
tion (˝lter bank pruning) based on the characteristics of the class of signals to be processed, then to use 
the transform nonadaptively on the individual signals. The other is to adapt the decomposition for each 
individual signal. The ˝rst is a linear process over the class of signals. The second is not and will not obey 
superposition. 

Let P (J) denote the number of di˙erent J-scale orthonormal wavelet packet transforms. We can easily 
see that 

2
P (J) = P (J − 1) + 1, P (1) = 1. (8.31) 

So the number of possible choices grows dramatically as the scale increases. This is another reason for 
the wavelet packets to be a very powerful tool in practice. For example, the FBI standard for ˝ngerprint 
image compression [42], [45] is based on wavelet packet transforms. The wavelet packets are successfully 
used for acoustic signal compression [570]. In [427], a rate-distortion measure is used with the wavelet packet 
transform to improve image compression performance. 

M -band DWTs give a ˛exible tiling of the time-frequency plane. They are associated with a particular 
tree-structured ˝lter bank, where the lowpass channel at any depth is split into M bands. Combining the 
M -band and wavelet packet structure gives a rather arbitrary tree-structured ˝lter bank, where all channels 
are split into sub-channels (using ˝lter banks with a potentially di˙erent number of bands), and would give a 
very ˛exible signal decomposition. The wavelet analog of this is known as the wavelet packet decomposition 
[93]. For a given signal or class of signals, one can, for a ˝xed set of ˝lters, obtain the best (in some sense) 
˝lter bank tree-topology. For a binary tree an e°cient scheme using entropy as the criterion has been 
developed�the best wavelet packet basis algorithm [93], [427]. 

8.4 Biorthogonal Wavelet Systems 

Requiring the wavelet expansion system to be orthogonal across both translations and scale gives a clean, 
robust, and symmetric formulation with a Parseval's theorem. It also places strong limitations on the 
possibilities of the system. Requiring orthogonality uses up a large number of the degrees of freedom, results 
in complicated design equations, prevents linear phase analysis and synthesis ˝lter banks, and prevents 
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asymmetric analysis and synthesis systems. This section will develop the biorthogonal wavelet system using 
a nonorthogonal basis and dual basis to allow greater ˛exibility in achieving other goals at the expense of 
the energy partitioning property that Parseval's theorem states [75], [563], [514], [567], [401], [17], [74], [292], 
[435], [503]. Some researchers have considered �almost orthogonal" systems where there is some relaxation of 
the orthogonal constraints in order to improve other characteristics [404]. Indeed, many image compression 
schemes (including the ˝ngerprint compression used by the FBI [42], [45]) use biorthogonal systems. 

8.4.1 Two Channel Biorthogonal Filter Banks 

In previous chapters for orthogonal wavelets, the analysis ˝lters and synthesis ˝lters are time reversal of 
each other; i.e., h̃ (n) = h (−n), g̃ (n) = g (−n). Here, for the biorthogonal case, we relax these restrictions. 
However, in order to perfectly reconstruct the input, these four ˝lters still have to satisfy a set of relations. 

Figure 8.16: Two Channel Biorthogonal Filter Banks 

Let c1 (n) , n ∈ Z be the input to the ˝lter banks in Figure 8.16, then the outputs of the analysis ˝lter 
banks are X X 

˜c0 (k) = h (2k − n) c1 (n) , d0 (k) = g̃ (2k − n) c1 (n) . (8.32) 
n n 

The output of the synthesis ˝lter bank is X 
c̃1 (m) = [h (2k − m) c0 (k) + g (2k − m) d0 (k)] . (8.33) 

k 

Substituting Equation (8.32) into (8.33) and interchanging the summations gives XXh i 
c̃1 (m) = h (2k − m) h̃ (2k − n) + g (2k − m) g̃ (2k − n) c1 (n) . (8.34) 

n k 

For perfect reconstruction, i.e., c̃1 (m) = c1 (m) , ∀m ∈ Z, we need Xh i 
h (2k − m) h̃ (2k − n) + g (2k − m) g̃ (2k − n) = δ (m − n) . (8.35) 

k 

Fortunately, this condition can be greatly simpli˝ed. In order for it to hold, the four ˝lters have to be 
related as [75] 

n n˜g̃ (n) = (−1) h (1 − n) , g (n) = (−1) h (1 − n) , (8.36) 
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up to some constant factors. Thus they are cross-related by time reversal and ˛ipping signs of every other 
element. Clearly, when h̃ = h, we get the familiar relations between the scaling coe°cients and the wavelet 
coe°cients for orthogonal wavelets, g (n) = (−1)nh (1 − n). Substituting (8.36) back to (8.35), we get X ̃

h (n) h (n + 2k) = δ (k) . (8.37) 
nP 

In the orthogonal case, we have n h (n) h (n + 2k) = δ (k); i.e., h (n) is orthogonal to even translations of 
itself. Here h̃ is orthogonal to h, thus the name biorthogonal. 

˜Equation (8.37) is the key to the understanding of the biorthogonal ˝lter banks. Let's assume h (n) is 
˜ ˜nonzero when N1 ≤ n ≤ N2, and h (n) is nonzero when N1 ≤ n ≤ N2. Equation (8.37) implies that [75] 

N2 − Ñ 
1 = 2k + 1, Ñ 

2 − N1 = 2k̃ + 1, k, k̃ ∈ Z. (8.38) 

In the orthogonal case, this reduces to the well-known fact that the length of h has to be even. (8.38) also 
imply that the di˙erence between the lengths of h̃ and h must be even. Thus their lengths must be both 
even or both odd. 

8.4.2 Biorthogonal Wavelets 

We now look at the scaling function and wavelet to see how removing orthogonality and introducing a dual 
basis changes their characteristics. We start again with the basic multiresolution de˝nition of the scaling 
function and add to that a similar de˝nition of a dual scaling function. X √ 

Φ (t) = h (n) 2Φ (2t − n) , (8.39) 
n X √ 

˜ ˜ 2˜ (8.40)Φ (t) = h (n) Φ (2t − n) . 
n 

From Theorem p. 57 in Chapter: The Scaling Function and Scaling Coe°cients, Wavelet and Wavelet 
Coe°cients , we know that for φ and φ̃ to exist, X X √ 

˜h (n) = h (n) = 2. (8.41) 
n n 

Continuing to parallel the construction of the orthogonal wavelets, we also de˝ne the wavelet and the dual 
wavelet as X √ X √ 

n˜ψ (t) = g (n) 2Φ (2t − n) = (−1) h (1 − n) 2Φ (2t − n) , (8.42) 
n n X √ X √ 

˜ 2˜ 2˜ψ (t) = g̃ (n) Φ (2t − n) = (−1)nh (1 − n) Φ (2t − n) . (8.43) 
n n 

Now that we have the scaling and wavelet functions and their duals, the question becomes whether we can 
expand and reconstruct arbitrary functions using them. The following theorem [75] answers this important 
question. 

Theorem 37 For h̃ and h satisfying (8.37), suppose that for some C, � > 0, 

−1/2−� −1/2−�|˜|Φ (ω) | ≤ C(1 + ω) , Φ (ω) | ≤ C(1 + ω) . (8.44) 

def 
2j/2ψ 

� � 
If Φ and Φ̃ de˝ned above have su°cient decay in the frequency domain, then ψj,k = 2j x − k , j, k ∈ 

def � � 
2j/2 ˜Z constitute a frame in L2 (R). Their dual frame is given by ψ̃ 

j,k = ψ 2j x − k , j, k ∈ Z; for any 
f ∈ L2 (R), X X 

˜f = < f, ψj,k > ψj,k = < f, ψ̃ 
j,k > ψj,k (8.45) 

j,k j,k 
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where the series converge strongly. 
Moreover, the ψj,k and ψ̃ 

j,k constitute two Riesz bases, with � � � �
˜< ψj,k, ψj' ,k' > = δ j − j ' δ k − k ' (8.46) 

if and only if Z 
˜Φ (x) Φ (x − k) dx = δ (k) . (8.47) 

This theorem tells us that under some technical conditions, we can expand functions using the wavelets and 
reconstruct using their duals. The multiresolution formulations in Chapter: A multiresolution formulation 
of Wavelet Systems (Chapter 3) can be revised as 

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · (8.48) 

· · · ⊂ Ṽ−2 ⊂ Ṽ−1 ⊂ Ṽ0 ⊂ Ṽ1 ⊂ Ṽ2 ⊂ · · · (8.49) 

where 

˜Vj = Span{Φj.k}, Vj = Span{Φ̃ 
j.k}. (8.50) 

k k 

If (8.47) holds, we have 

Vj ⊥ W̃ 
j , Ṽj ⊥ Wj , (8.51) 

where 

Wj = Span{ψj.k}, W̃ 
j = Span{ψ̃ 

j.k}. (8.52) 
k k 

Although Wj is not the orthogonal complement to Vj in Vj+1 as before, the dual space W̃ 
j plays the much 

needed role. Thus we have four sets of spaces that form two hierarchies to span L2 (R). 
In Section: Further Properties of the Scaling Function and Wavelet (Section 6.8: Further Properties of 

the Scaling Function and Wavelet), we have a list of properties of the scaling function and wavelet that do 
not require orthogonality. The results for regularity and moments in Chapter: Regularity, Moments, and 
Wavelet System Design can also be generalized to the biorthogonal systems. 

8.4.3 Comparisons of Orthogonal and Biorthogonal Wavelets 

The biorthogonal wavelet systems generalize the classical orthogonal wavelet systems. They are more ˛exible 
and generally easy to design. The di˙erences between the orthogonal and biorthogonal wavelet systems can 
be summarized as follows. 

• The orthogonal wavelets ˝lter and scaling ˝lter must be of the same length, and the length must be 
even. This restriction has been greatly relaxed for biorthogonal systems. 

• Symmetric wavelets and scaling functions are possible in the framework of biorthogonal wavelets. 
Actually, this is one of the main reasons to choose biorthogonal wavelets over the orthogonal ones. 

• Parseval's theorem no longer holds in biorthogonal wavelet systems; i.e., the norm of the coe°cients 
is not the same as the norm of the functions being spanned. This is one of the main disadvantages of 
using the biorthogonal systems. Many design e˙orts have been devoted to making the systems near 
orthogonal, so that the norms are close. 

• In a biorthogonal system, if we switch the roles of the primary and the dual, the overall system is 
still sound. Thus we can choose the best arrangement for our application. For example, in image 
compression, we would like to use the smoother one of the pair to reconstruct the coded image to get 
better visual appearance. 
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• In statistical signal processing, white Gaussian noise remains white after orthogonal transforms. If 
the transforms are nonorthogonal, the noise becomes correlated or colored. Thus, when biorthogonal 
wavelets are used in estimation and detection, we might need to adjust the algorithm to better address 
the colored noise. 

8.4.4 Example Families of Biorthogonal Systems 

Because biorthogonal wavelet systems are very ˛exible, there are a wide variety of approaches to design 
di˙erent biorthogonal systems. The key is to design a pair of ˝lters h and h̃ that satisfy (8.37) and (8.41) 
and have other desirable characteristics. Here we review several families of biorthogonal wavelets and discuss 
their properties and design methods. 

8.4.5 Cohen-Daubechies-Feauveau Family of Biorthogonal Spline Wavelets 

Splines have been widely used in approximation theory and numerical algorithms. Therefore, they may be 
desirable scaling functions, since they are symmetric, smooth, and have dyadic ˝lter coe°cients (see Section: 
Example Scaling Functions and Wavelets (Section 6.7: Example Scaling Functions and Wavelets)). However, 
if we use them as scaling functions in orthogonal wavelet systems, the wavelets have to have in˝nite support 
[69]. On the other hand, it is very easy to use splines in biorthogonal wavelet systems. Choose h to be a 
˝lter that can generate splines, then (8.37) and (8.41) are linear in the coe°cients of h̃ . Thus we only have 
to solve a set of linear equations to get h̃ , and the resulting h̃ also have dyadic coe°cients. In [75], better 
methods are used to solve these equations indirectly. 

The ˝lter coe°cients for some members of the Cohen-Daubechies-Feauveau family of biorthogonal spline 
wavelets are listed in Table 8.1. Note that they are symmetric. It has been shown that as the length increases, 
the regularity of φ and φ̃ of this family also increases [75]. 

√ √ 
h/ 2 h̃/ 2 

1/2, 1/2 −1/16, 1/16, 1/2, 1/16, −1/16 
1/4, 1/2, 1/4 −1/8, 1/4, 3/4, 1/4, −1/8 
1/8, 3/8, 3/8, 1/8 −5/512, 15/512, 19/512, −97/512, −13/256, 175/256, · · · 

Table 8.1: Coe°cients for Some Members of Cohen-Daubechies-Feauveau Family of Biorthogonal Spline 
Wavelets (For longer ˝lters, we only list half of the coe°cients) 

8.4.6 Cohen-Daubechies-Feauveau Family of Biorthogonal Wavelets with Less 
Dissimilar Filter Length 

The Cohen-Daubechies-Feauveau family of biorthogonal wavelets are perhaps the most widely used biorthog-
onal wavelets, since the scaling function and wavelet are symmetric and have similar lengths. A member of 
the family is used in the FBI ˝ngerprint compression standard [42], [45]. The design method for this family 
is remarkably simple and elegant. 

In the frequency domain, (8.37) can be written as 

H (ω) H̃ ∗ (ω) + H (ω + π) H̃ ∗ (ω + π) = 2. (8.53) 

Recall from Chapter: Regularity, Moments, and Wavelet System Design that we have an explicit solution 
for |H (ω) |2 

= M (ω) such that 

M (ω) + M (ω + π) = 2, (8.54) 
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and the resulting compactly supported orthogonal wavelet has the maximum number of zero moments 
possible for its length. In the orthogonal case, we get a scaling ˝lter by factoring M (ω) as H (ω) H∗ (ω). 
Here in the biorthogonal case, we can factor the same M (ω) to get H (ω) and H̃ (ω). 

Factorizations that lead to symmetric h and h̃ with similar lengths have been found in [75], and their 
coe°cients are listed in Table 8.2. Plots of the scaling and wavelet functions, which are members of the 
family used in the FBI ˝ngerprint compression standard, are in Figure 8.17. 

h̃ h 

0.85269867900889 0.78848561640637 

0.37740285561283 0.41809227322204 

-0.11062440441844 -0.04068941760920 

-0.02384946501956 -0.06453888262876 

0.03782845550726 

Table 8.2: Coe°cients for One of the Cohen-Daubechies-Feauveau Family of Biorthogonal Wavelets that is 
Used in the FBI Fingerprint Compression Standard (We only list half of the coe°cients) 

8.4.7 Tian-Wells Family of Biorthogonal Coi˛ets 

The coi˛et system is a family of compactly supported orthogonal wavelets with zero moments of both the 
scaling functions and wavelets described in Section: Coi˛ets and Related Wavelet Systems (Section 7.9: 
Coi˛ets and Related Wavelet Systems). Compared with Daubechies' wavelets with only zero wavelet mo-
ments, the coi˛ets are more symmetrical and may have better approximation properties when sampled data 
are used. However, ˝nding the orthogonal coi˛ets involves solving a set of nonlinear equations. No closed 
form solutions have been found, and when the length increases, numerically solving these equations becomes 
less stable. 

Tian and Wells [516], [512] have constructed biorthogonal wavelet systems with both zero scaling function 
and wavelet moments. Closed form solutions for these biorthogonal coi˛ets have been found. They have 
approximation properties similar to the coi˛ets, and the ˝lter coe°cients are dyadic rationals as are the 
splines. The ˝lter coe°cients for these biorthogonal Coi˛ets are listed in Table 8.3. Some members of this 
family are also in the spline family described earlier. 

8.4.8 Lifting Construction of Biorthogonal Systems 

We have introduced several families of biorthogonal systems and their design methods. There is another 
method called a lifting scheme, which is very simple and general. It has a long history 
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Figure 8.17: Plots of Scaling Function and Wavelet and their Duals for one of the Cohen-Daubechies-
Feauveau Family of Biorthogonal Wavelets that is Used in the FBI Fingerprint Compression Standard 

[365], [367], [171], [291], [540], [152], and has been systematically developed recently [503], [501]. The 
key idea is to build complicated biorthogonal systems using simple and invertible stages. The ˝rst stage 
does nothing but to separate even and odd samples, and it is easily invertible. The structure is shown in 
Figure 8.18, and is called the lazy wavelet transform in [503]. 

√ √ 
2h 2h̃ 

1, 1 1, 1 

1/2, 1, 1/2 −1/4, 1/2, 3/2, 1/2, −1/4 
3/8, 1, 3/4, 0, −1/8 3/64, 0, −3/16, 3/8, 41/32, 3/4, −3/16, −1/8, 3/64 
−1/16, 0, 9/16, 1, 9/16, 0, −1/16 −1/256, 0, 9/128, −1/16, −63/256, 9/16, 87/64, · · · 

Table 8.3: Coe°cients for some Members of the Biorthogonal Coi˛ets. For Longer Filters, We only List 
Half of the Coe°cients. 
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Figure 8.18: The Lazy Wavelet Transform 

After splitting the data into two parts, we can predict one part from the other, and keep only the 
prediction error, as in Figure 8.19. We can reconstruct the data by recomputing the prediction and then 
add back the prediction. In Figure 8.19, s and t are prediction ˝lters. 

By concatenating simple stages, we can implement the forward and inverse wavelet transforms as in 
Figure 8.20. It is also called the ladder structure, and the reason for the name is clear from the ˝gure. 
Clearly, the system is invertible, and thus biorthogonal. Moreover, it has been shown the orthogonal wavelet 
systems can also be implemented using lifting [133]. The advantages of lifting are numerous: 

• Lifting steps can be calculated inplace. As seen in Figure 8.20, the prediction outputs based on one 
channel of the data can be added to or subtracted from the data in other channels, and the results can 
be saved in the same place in the second channel. No auxiliary memory is needed. 

• The predictors s and t do not have to be linear. Nonlinear operations like the medium ˝lter or rounding 
can be used, and the system remains invertible. This allows a very simple generalization to nonlinear 
wavelet transform or nonlinear multiresolution analysis. 

• The design of biorthogonal systems boils down to the design of the predictors. This may lead to simple 
approaches that do not relay on the Fourier transform [503], and can be generalized to irregular samples 
or manifolds. 

• For biorthogonal systems, the lifting implementations require less numerical operations than direct 
implementations [133]. For orthogonal cases, the lifting schemes have the computational complexity 
similar to the lattice factorizations, which is almost half of the direct implementation. 
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Figure 8.19: The Lifting and Dual Lifting Step 

Figure 8.20: Wavelet Transform using Lifting 

8.5 Multiwavelets 

In Chapter: A multiresolution formulation of Wavelet Systems, we introduced the multiresolution analysis 
for the space of L2 functions, where we have a set of nesting subspaces 

{0} ⊂ · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2 , (8.55) 

where each subspace is spanned by translations of scaled versions of a single scaling function φ; e.g., � � 
Vj = Span{2j/2φ 2j t − k }. (8.56) 

k 
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The direct di˙erence between nesting subspaces are spanned by translations of a single wavelet at the 
corresponding scale; e.g., � � 

2j 

k 
Wj = Vj+1 Vj = Span{2j/2ψ t − k }. (8.57) 

There are several limitations of this construction. For example, nontrivial orthogonal wavelets can not be 
symmetric. To avoid this problem, we generalized the basic construction, and introduced multiplicity-M 
(M -band) scaling functions and wavelets in Section 8.2 (Multiplicity-M (M-Band) Scaling Functions and 
Wavelets), where the di˙erence spaces are spanned by translations of M−1 wavelets. The scaling is in terms 
of the power of M ; i.e., � � 

φj,k (t) = M j/2φ M j t − k . (8.58) 

In general, there are more degrees of freedom to design the M-band wavelets. However, the nested V spaces 
are still spanned by translations of a single scaling function. It is the multiwavelets that removes the above 
restriction, thus allowing multiple scaling functions to span the nested V spaces [184], [183], [497]. Although 
it is possible to construct M -band multiwavelets, here we only present results on the two-band case, as most 
of the researches in the literature do. 

8.5.1 Construction of Two-Band Multiwavelets 

Assume that V0 is spanned by translations of R di˙erent scaling functions φi (t), i = 1, ..., R. For a two-band 
system, we de˝ne the scaling and translation of these functions by � � 

φi,j,k (t) = 2
j/2φi 2

j t − k . (8.59) 

The multiresolution formulation implies 

Vj = Span{φi,j,k (t) : i = 1, ..., R}. (8.60) 
k 

We next construct a vector scaling function by 

T
Φ (t) = [φ1 (t) , ..., φR (t)] . (8.61) 

Since V0 ⊂ V1, we have 

√ X 
Φ (t) = 2 H (n) Φ (2t − n) (8.62) 

n 

where H (k) is a R×R matrix for each k ∈ Z. This is a matrix version of the scalar recursive equation (3.13). 
The ˝rst and simplest multiscaling functions probably appear in [19], and they are shown in Figure 8.21. 
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Figure 8.21: The Simplest Alpert Multiscaling Functions 

The ˝rst scaling function φ1 (t) is nothing but the Haar scaling function, and it is the sum of two 
time-compressed and shifted versions of itself, as shown in (a). The second scaling function can be easily 
decomposed into linear combinations of time-compressed and shifted versions of the Haar scaling function 
and itself, as 

√ √ 
3 1 3 1 

φ2 (t) = 
2 
φ1 (2t) + φ2 (2t) − 

2 2 
φ1 (2t − 1) + φ2 (2t − 1) . 

2 
(8.63) 

This is shown in Figure 8.22 
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Figure 8.22: Multiwavelet Re˝nement Equation (8.63) 

Putting the two scaling functions together, we have ⎡⎣ φ1 (t) 
⎤⎦ = 

⎡⎣ √ 
1 0 

⎡⎣ ⎤⎦ φ1 (2t) 
⎤⎦+ 

⎡⎣ ⎡⎣ ⎤⎦ φ1 (2t − 1) 
⎤⎦1 0 

√ . (8.64) 
φ2 (t) 3/2 1/2 φ2 (2t) − 3/2 1/2 φ2 (2t − 1) 

Further assume R wavelets span the di˙erence spaces; i.e., 

Wj = Vj+1 Vj = Span{ψi,j,k (t) : i = 1, ..., R}. (8.65) 
k 

Since W0 ⊂ V1 for the stacked wavelets Ψ(t) there must exist a sequence of R × R matrices G (k), such that 

√ X 
Ψ(t) = 2 G (k) Φ (2t − k) (8.66) 

k 

These are vector versions of the two scale recursive equations and . 
We can also de˝ne the discrete-time Fourier transform of H (k) and G (k) as XX 

iωk iωk H (ω) = H (k) e , G (ω) = G (k) e . (8.67) 
k k 

8.5.2 Properties of Multiwavelets 

8.5.3 Approximation, Regularity and Smoothness 

Recall from Chapter: Regularity, Moments, and Wavelet System Design that the key to regularity and 
smoothness is having enough number of zeros at π for H (ω). For multiwavelets, it has been shown that 
polynomials can be exactly reproduced by translates of Φ (t) if and only if H (ω) can be factored in special 
form [420], [418], [419]. The factorization is used to study the regularity and convergence of re˝nable 
function vectors [77], and to construct multi-scaling functions with approximation and symmetry [423]. 
Approximation and smoothness of multiple re˝nable functions are also studied in [246], [281], [283]. 
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8.5.4 Support 

In general, the ˝nite length of H (k) and G (k) ensure the ˝nite support of Φ (t) and Ψ(t). However, there 
are no straightforward relations between the support length and the number of nonzero coe°cients in H (k) 
and G (k). An explanation is the existence of nilpotent matrices [479]. A method to estimate the support is 
developed in [479]. 

8.5.5 Orthogonality 

For these scaling functions and wavelets to be orthogonal to each other and orthogonal to their translations, 
we need [489] 

H (ω) H† (ω) + H (ω + π) H† (ω + π) = IR, (8.68) 

G (ω) G† (ω) + G (ω + π) G† (ω + π) = IR, (8.69) 

H (ω) G† (ω) + H (ω + π) G† (ω + π) = 0R, (8.70) 

where † denotes the complex conjugate transpose, IR and 0R are the R × R identity and zero matrix 
respectively. These are the matrix versions of and . In the scalar case, can be easily satis˝ed if we choose the 
wavelet ˝lter by time-reversing the scaling ˝lter and changing the signs of every other coe°cients. However, 
for the matrix case here, since matrices do not commute in general, we cannot derive the G (k)'s from 
H (k)'s so straightforwardly. This presents some di°culty in ˝nding the wavelets from the scaling functions; 
however, this also gives us ˛exibility to design di˙erent wavelets even if the scaling functions are ˝xed [489]. 

The conditions in (8.68)�(8.70) are necessary but not su°cient. Generalization of Lawton's su°cient 
condition (Theorem Theorem 14 (p. 61) in Chapter: The Scaling Function and Scaling Coe°cients, Wavelet 
and Wavelet Coe°cients ) has been developed in [422], [421], [282]. 

8.5.6 Implementation of Multiwavelet Transform 

Let the expansion coe°cients of multiscaling functions and multiwavelets be 

ci,j (k) =< f (t) , φi,j,k (t) >, (8.71) 

di,j (k) =< f (t) , ψi,j,k (t) > . (8.72) 

We create vectors by 

T
Cj (k) = [c1,j (k) , ..., cR,j (k)] , (8.73) 

T
Dj (k) = [d1,j (k) , ..., dR,j (k)] . (8.74) 

For f (t) in V0, it can be written as linear combinations of scaling functions and wavelets, 

∞X XX 
T T

f (t) = Cj0 (k) ΦJ0,k (t) + Dj (k) Ψj,k (t) . (8.75) 
k j=j0 k 

Using (8.62) and (8.66), we have 

√ X 
Cj−1 (k) = 2 H (n) Cj (2k + n) (8.76) 

n 

https://8.68)�(8.70
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and 

√ X 
Dj−1 (k) = 2 G (n) Cj (2k + n) . (8.77) 

n 

Figure 8.23: Discrete Multiwavelet Transform 

Moreover, 

√ X� � 
† †

Cj (k) = 2 H(k) Cj−1 (2k + n) + G(k) Dj−1 (2k + n) . (8.78) 
k 

These are the vector forms of (4.9), (4.10), and (4.17). Thus the synthesis and analysis ˝lter banks for 
multiwavelet transforms have similar structures as the scalar case. The di˙erence is that the ˝lter banks 
operate on blocks of R inputs and the ˝ltering and rate-changing are all done in terms of blocks of inputs. 

To start the multiwavelet transform, we need to get the scaling coe°cients at high resolution. Recall that 
in the scalar case, the scaling functions are close to delta functions at very high resolution, so the samples 
of the function are used as the scaling coe°cients. However, for multiwavelets we need the expansion 
coe°cients for R scaling functions. Simply using nearby samples as the scaling coe°cients is a bad choice. 
Data samples need to be preprocessed (pre˝ltered) to produce reasonable values of the expansion coe°cients 
for multi-scaling function at the highest scale. Pre˝lters have been designed based on interpolation [582], 
approximation [244], and orthogonal projection [556]. 
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8.5.7 Examples 

Because of the larger degree of freedom, many methods for constructing multiwavelets have been developed. 

8.5.8 Geronimo-Hardin-Massopust Multiwavelets 

A set of multiscaling ˝lters based on fractal interpolation functions were developed in [178], and the corre-
sponding multiwavelets were constructed in [489]. As shown in Figure 8.24, they 

Figure 8.24: Geronimo-Hardin-Massopust Multi-scaling Function and Strang-Strela Multiwavelets: φ
1 

are both symmetrical and orthogonal�a combination which is impossible for two-band orthogonal scalar 
wavelets. They also have short support, and can exactly reproduce the hat function. These interesting 
properties make multiwavelet a promising expansion system. 
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8.5.9 Spline Multiwavelets 

Spline bases have a maximal approximation order with respect to their length, however spline uniwavelets are 
only semiorthogonal [499]. A family of spline multiwavelets that are symmetric and orthogonal is developed 
in [434]. 

8.5.10 Other Constructions 

Other types of multiwavelets are constructed using Hermite interpolating conditions [67], matrix spectral 
factorization [98], ˝nite elements [499], and oblique projections [16]. Similar to multiwavelets, vector-valued 
wavelets and vector ˝lter banks are also developed [583]. 

8.5.11 Applications 

Multiwavelets have been used in data compression [252], [326], [498], noise reduction [166], [498], and solution 
of integral equations [63]. Because multiwavelets are able to o˙er a combination of orthogonality, symmetry, 
higher order of approximation and short support, methods using multiwavelets frequently outperform those 
using the comparable scale wavelets. However, it is found that pre˝ltering is very important, and should be 
chosen carefully for the applications [166], [498], [582]. Also, since discrete multiwavelet transforms operate 
on size-R blocks of data and generate blocks of wavelet coe°cients, the correlation within each block of 
coe°cients needs to be exploited. For image compression, predictions rules are proposed to exploit the 
correlation in order to reduce the bit rate [326]. For noise reduction, joint thresholding coe°cients within 
each block improve the performance [166]. 

8.6 Overcomplete Representations, Frames, Redundant Transforms, 
and Adaptive Bases 

In this chapter, we apply the ideas of frames and tight frames introduced in Chapter: Bases, Orthogonal 
Bases, Biorthogonal Bases, Frames, Right Frames, and unconditional Bases as well as bases to obtain a more 
e°cient representation of many interesting signal classes. It might be helpful to review the material on bases 
and frames in that chapter while reading this section. 

Traditional basis systems such as Fourier, Gabor, wavelet, and wave packets are e°cient representations 
for certain classes of signals, but there are many cases where a single system is not e˙ective. For example, 
the Fourier basis is an e°cient system for sinusoidal or smooth periodic signals, but poor for transient 
or chirp-like signals. Each system seems to be best for a rather well-de˝ned but narrow class of signals. 
Recent research indicates that signi˝cant improvements in e°ciency can be achieved by combining several 
basis systems. One can intuitively imagine removing Fourier components until the expansion coe°cients 
quit dropping o˙ rapidly, then switching to a di˙erent basis system to expand the residual and, after that 
expansion quits dropping o˙ rapidly, switching to still another. Clearly, this is not a unique expansion 
because the order of expansion system used would give di˙erent results. This is because the total expansion 
system is a linear combination of the individual basis systems and is, therefore, not a basis itself but a frame. 
It is an overcomplete expansion system and a variety of criteria have been developed to use the freedom of 
the nonuniqueness of the expansion to advantage. The collection of basis systems from which a subset of 
expansion vectors is chosen is sometimes called a dictionary. 

There are at least two descriptions of the problem. We may want a single expansion system to handle 
several di˙erent classes of signals, each of which are well-represented by a particular basis system or we 
may have a single class of signals, but the elements of that class are linear combinations of members of the 
well-represented classes. In either case, there are several criteria that have been identi˝ed as important [58], 
[60]: 
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• Sparsity: The expansion should have most of the important information in the smallest number of 
coe°cients so that the others are small enough to be neglected or set equal to zero. This is important 
for compression and denoising. 

• Separation: If the measurement consists of a linear combination of signals with di˙erent characteristics, 
the expansion coe°cients should clearly separate those signals. If a single signal has several features 
of interest, the expansion should clearly separate those features. This is important for ˝ltering and 
detection. 

• Superresolution: The resolution of signals or characteristics of a signal should be much better than with 
a traditional basis system. This is likewise important for linear ˝ltering, detection, and estimation. 

• Stability: The expansions in terms of our new overcomplete systems should not be signi˝cantly changed 
by perturbations or noise. This is important in implementation and data measurement. 

• Speed: The numerical calculation of the expansion coe°cients in the new overcomplete system should 
be of order O (N) or O (Nlog (N)). 

These criteria are often in con˛ict with each other, and various compromises will be made in the algorithms 
and problem formulations for an acceptable balance. 

8.6.1 Overcomplete Representations 

This section uses the material in Chapter: Bases, Orthogonal Bases, Biorthogonal Bases, Frames, Right 
Frames, and unconditional Bases on bases and frames. One goal is to represent a signal using a �dictionary" 
of expansion functions that could include the Fourier basis, wavelet basis, Gabor basis, etc. We formulate a 
˝nite dimensional version of this problem as X 

y (n) = αk xk (n) n, k ∈ Z (8.79) 
k 

for n = 0, 1, 2, · · · , N − 1 and k = 0, 1, 2, · · · ,K − 1. This can be written in matrix form as 

y = X α (8.80) 

where y is a N × 1 vector with elements being the signal values y (n), the matrix X is N × K the columns of 
which are made up of all the functions in the dictionary and α is a K × 1 vector of the expansion coe°cients 
αk. The matrix operator has the basis signals xk as its columns so that the matrix multiplication (8.80) is 
simply the signal expansion (8.79). 

For a given signal representation problem, one has two decisions: what dictionary to use (i.e., choice of 
the X) and how to represent the signal in terms of this dictionary (i.e., choice of α). Since the dictionary is 
overcomplete, there are several possible choices of α and typically one uses prior knowledge or one or more 
of the desired properties we saw earlier to calculate the α. 

8.6.2 A Matrix Example 

Consider a simple two-dimensional system with orthogonal basis vectors 

x1 = 

⎡⎣ 1 
⎤⎦ and x2 = 

⎡⎣ 0 
⎤⎦ (8.81) 

0 1 

which gives the matrix operator with x1 and x2 as columns ⎡⎣ ⎤⎦X = 
1 0 

0 1 
. (8.82) 
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Decomposition with this rather trivial operator gives a time-domain description in that the ˝rst expansion 
coe°cient α0 is simply the ˝rst value of the signal, x (0), and the second coe°cient is the second value of 
the signal. Using a di˙erent set of basis vectors might give the operator 

X = 

⎡⎣ 0.7071 0.7071 
⎤⎦ (8.83) 

0.7071 −0.7071 

which has the normalized basis vectors still orthogonal but now at a 45o angle from the basis vectors in 
(8.82). This decomposition is a sort of frequency domain expansion. The ˝rst column vector will simply be 
the constant signal, and its expansion coe°cient α (0) will be the average of the signal. The coe°cient of 
the second vector will calculate the di˙erence in y (0) and y (1) and, therefore, be a measure of the change. 

1 
⎤⎦ ⎡⎣Notice that y = can be represented exactly with only one nonzero coe°cient using (8.82) but will 

0 

= 

⎡⎣ 1 ⎤⎦ = 

⎡⎣ 1 ⎤⎦ andrequire two with (8.83), while for y the opposite is true. This means the signals y 
1 0 ⎡⎣ 0 ⎤⎦ = 

⎡⎣ 1 ⎤⎦ = 

⎡⎣ 1 
⎤⎦can be represented sparsely by (8.82) while y and y can be represented y = 

1 1 −1 
sparsely by (8.83). 

If we create an overcomplete expansion by a linear combination of the previous orthogonal basis systems, 
then it should be possible to have a sparse representation for all four of the previous signals. This is done 
by simply adding the columns of (8.83) to those of (8.82) to give 

X = 

⎡⎣ 1 0 0.7071 0.7071 
⎤⎦ (8.84) 

0 1 0.7071 −0.7071 

This is clearly overcomplete, having four expansion vectors in a two-dimensional system. Finding αk requires 
solving a set of underdetermined equations, and the solution is not unique. 

For example, if the signal is given by ⎡⎣ 1 
⎤⎦ (8.85)y = 

0 

there are an in˝nity of solutions, several of which are listed in the following table. 

Case 1 2 3 4 5 6 7 

α0 0.5000 1.0000 1.0000 1.0000 0 0 0 

α1 0.0000 0.0000 0 0 -1.0000 1.0000 0 

α2 0.3536 0 0.0000 0 1.4142 0 0.7071 

α3 0.3536 0 0 0.0000 0 1.4142 0.7071 

2||α|| 0.5000 1.0000 1.0000 1.0000 3.0000 3.0000 1.0000 

Table 8.4 
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Case 1 is the minimum norm solution of y = X α for αk. It is calculated by a pseudo inverse with 
the Matlab command a = pinv(X)*y . It is also the redundant DWT discussed in the next section and 
calculated by a = X'*y/2. Case 2 is the minimum norm solution, but for no more than two nonzero values 
of αk. Case 2 can also be calculated by inverting the matrix (8.84) with columns 3 and 4 deleted. Case 3 is 
calculated the same way with columns 2 and 4 deleted, case 4 has columns 2 and 3 deleted, case 5 has 1 and 
4 deleted, case 6 has 1 and 3 deleted, and case 7 has 1 and 2 deleted. Cases 3 through 7 are unique since 
the reduced matrix is square and nonsingular. The second term of α for case 1 is zero because the signal is 
orthogonal to that expansion vector. Notice that the norm of α is minimum for case 1 and is equal to the 
norm of y divided by the redundancy, here two. Also notice that the coe°cients in cases 2, 3, and 4 are the 
same even though calculated by di˙erent methods. 

Because X is not only a frame, but a tight frame with a redundancy of two, the energy (norm squared) 
of α is one-half the norm squared of y. The other decompositions (not tight frame or basis) do not preserve 
the energy. 

Next consider a two-dimensional signal that cannot be exactly represented by only one expansion vector. 
If the unity norm signal is given by ⎡⎣ 0.9806 

⎤⎦y = (8.86) 
0.1961 

the expansion coe°cients are listed next for the same cases described previously. 

Case 1 2 3 4 5 6 7 

α0 0.4903 0.9806 0.7845 1.1767 0 0 0 

α1 0.0981 0.1961 0 0 -0.7845 1.1767 0 

α2 0.4160 0 0.2774 0 1.3868 0 0.8321 

α3 0.2774 0 0 -0.2774 0 1.3868 0.5547 

2||α|| 0.5000 1.0000 0.6923 1.4615 2.5385 3.3077 1.0000 

Table 8.5 

Again, case 1 is the minimum norm solution; however, it has no zero components this time because there 
are no expansion vectors orthogonal to the signal. Since the signal lies between the 90o and 45o expansion 
vectors, it is case 3 which has the least two-vector energy representation. 

There are an in˝nite variety of ways to construct the overcomplete frame matrix X. The one in this 
example is a four-vector tight frame. Each vector is 45o degrees apart from nearby vectors. Thus they are 
evenly distributed in the 180o upper plane of the two dimensional space. The lower plane is covered by the 
negative of these frame vectors. A three-vector tight frame would have three columns, each 60o from each 
other in the two-dimension plane. A 36-vector tight frame would have 36 columns spaced 5o from each other. 
In that system, any signal vector would be very close to an expansion vector. 

Still another alternative would be to construct a frame (not tight) with nonorthogonal rows. This would 
result in columns that are not evenly spaced but might better describe some particular class of signals. 
Indeed, one can imagine constructing a frame operator with closely spaced expansion vectors in the regions 
where signals are most likely to occur or where they have the most energy. 

We next consider a particular modi˝ed tight frame constructed so as to give a shift-invariant DWT. 
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8.6.3 Shift-Invariant Redundant Wavelet Transforms and Nondecimated Filter 
Banks 

One of the few ˛aws in the various wavelet basis decompositions and wavelet transforms is the fact the DWT 
is not translation-invariant. If you shift a signal, you would like the DWT coe°cients to simply shift, but it 
does more than that. It signi˝cantly changes character. 

Imagine a DWT of a signal that is a wavelet itself. For example, if the signal were � � 
y (n) = φ 24 n − 10 (8.87) 

then the DWT would be 

d4 (10) = 1 all other dj (k) = c (k) = 0. (8.88) 

In other words, the series expansion in the orthogonal wavelet basis would have only one nonzero coe°cient. � � 
If we shifted the signal to the right so that y (n) = φ 24 (n − 1) − 10 , there would be many nonzero 

coe°cients because at this shift or translation, the signal is no longer orthogonal to most of the basis functions. 
The signal energy would be partitioned over many more coe°cients and, therefore, because of Parseval's 
theorem, be smaller. This would degrade any denoising or compressions using thresholding schemes. The 
DWT described in Chapter: Calculation of the Discrete Wavelet Transform is periodic in that at each scale 
j the periodized DWT repeats itself after a shift of n = 2j , but the period depends on the scale. This can 
also be seen from the ˝lter bank calculation of the DWT where each scale goes through a di˙erent number 
of decimators and therefore has a di˙erent aliasing. 

A method to create a linear, shift-invariant DWT is to construct a frame from the orthogonal DWT 
supplemented by shifted orthogonal DWTs using the ideas from the previous section. If you do this, the 
result is a frame and, because of the redundancy, is called the redundant DWT or RDWT. 

The typical wavelet based signal processing framework consists of the following three simple steps, 1) 
wavelet transform; 2) point-by-point processing of the wavelet coe°cients (e.g. thresholding for denoising, 
quantization for compression); 3) inverse wavelet transform. The diagram of the framework is shown in 
Figure 8.25. As mentioned before, the wavelet transform is not translation-invariant, so if we shift the 
signal, perform the above processing, and shift the output back, then the results are di˙erent for di˙erent 
shifts. Since the frame vectors of the RDWT consist of the shifted orthogonal DWT basis, if we replace the 
forward/inverse wavelet transform 

Figure 8.25: The Typical Wavelet Transform Based Signal Processing Framework (Δ denotes the 
pointwise processing) 
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Figure 8.26: The Typical Redundant Wavelet Transform Based Signal Processing Framework (Δ de-
notes the pointwise processing) 

in the above framework by the forward/inverse RDWT, then the result of the scheme in Figure 8.26 is 
the same as the average of all the processing results using DWTs with di˙erent shifts of the input data. This 
is one of the main reasons that RDWT-based signal processing tends to be more robust. 

Still another view of this new transform can be had by looking at the Mallat-derived ˝lter bank described 
in Chapter: The Scaling Function and Scaling Coe°cients, Wavelet and Wavelet Coe°cients and Chapter: 
Filter Banks and Transmultiplexers . The DWT ˝lter banks illustrated in Figure: Two-Stage Two-Band 
Analysis Tree (Figure 4.3) and Figure: Two-Band Synthesis Bank (Figure 4.6) can be modi˝ed by removing 
the decimators between each stage to give the coe°cients of the tight frame expansion (the RDWT) of 
the signal. We call this structure the undecimated ˝lter bank. Notice that, without the decimation, the 
number of terms in the DWT is larger than N . However, since these are the expansion coe°cients in our 
new overcomplete frame, that is consistent. Also, notice that this idea can be applied to M-band wavelets 
and wavelet packets in the same way. 

These RDWTs are not precisely a tight frame because each scale has a di˙erent redundancy. However, 
except for this factor, the RDWT and undecimated ˝lter have the same characteristics of a tight frame and, 
they support a form of Parseval's theorem or energy partitioning. 

If we use this modi˝ed tight frame as a dictionary to choose a particular subset of expansion vectors as 
a new frame or basis, we can tailor the system to the signal or signal class. This is discussed in the next 
section on adaptive systems. 

This idea of RDWT was suggested by Mallat [348], Beylkin [33], Shensa [467], Dutilleux [169], Nason 
[392], Guo [230], [231], Coifman, and others. This redundancy comes at a price of the new RDWT having 
O (N log (N)) arithmetic complexity rather than O (N). Liang and Parks [328], [330], Bao and Erdol [24], 
[25], Marco and Weiss [361], [359], [360], Daubechies [122], and others [416] have used some form of averaging 
or �best basis" transform to obtain shift invariance. 

Recent results indicate this nondecimated DWT, together with thresholding, may be the best denoising 
strategy [163], [162], [305], [88], [302], [223], [308], [231]. The nondecimated DWT is shift invariant, is less 
a˙ected by noise, quantization, and error, and has order Nlog (N) storage and arithmetic complexity. It 
combines with thresholding to give denoising and compression superior to the classical Donoho method for 
many examples. Further discussion of use of the RDWT can be found in Section: Nonlinear Filtering or 
Denoising with the DWT (Section 4.3: Input Coe°cients). 

8.6.4 Adaptive Construction of Frames and Bases 

In the case of the redundant discrete wavelet transform just described, an overcomplete expansion system 
was constructed in such a way as to be a tight frame. This allowed a single linear shift-invariant system to 
describe a very wide set of signals, however, the description was adapted to the characteristics of the signal. 
Recent research has been quite successful in constructing expansion systems adaptively so as to give high 
sparsity and superresolution but at a cost of added computation and being nonlinear. This section will look 
at some of the recent results in this area [350], [156], [58], [60]. 

While use of an adaptive paradigm results in a shift-invariant orthogonal transform, it is nonlinear. It has 
the property of DW T {a f (x)} = a DW T {f (x)}, but it does not satisfy superposition, i.e. DW T { f (x) + 
g (x)} 6= DW T {f (x)} + DW T {g (x)}. That can sometimes be a problem. 
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Since these ˝nite dimensional overcomplete systems are a frame, a subset of the expansion vectors can 
be chosen to be a basis while keeping most of the desirable properties of the frame. This is described well 
by Chen and Donoho in [58], [60]. Several of these methods are outlined as follows: 

• The method of frames (MOF) was ˝rst described by Daubechies [109], [114], [122] and uses the rather 
straightforward idea of solving the overcomplete frame (underdetermined set of equations) in (8.84) 
by minimizing the L2 norm of α. Indeed, this is one of the classical de˝nitions of solving the normal 
equations or use of a pseudo-inverse. That can easily be done in Matlab by a = pinv(X)*y. This 
gives a frame solution, but it is usually not sparse. 

• The best orthogonal basis method (BOB) was proposed by Coifman and Wickerhauser [93], [156] to 
adaptively choose a best basis from a large collection. The method is fast (order NlogN) but not 
necessarily sparse. 

• Mallat and Zhang [350] proposed a sequential selection scheme called matching pursuit (MP) which 
builds a basis, vector by vector. The e°ciency of the algorithm depends on the order in which vectors 
are added. If poor choices are made early, it takes many terms to correct them. Typically this method 
also does not give sparse representations. 

• A method called basis pursuit (BP) was proposed by Chen and Donoho [58], [60] which solves (8.84) 
while minimizing the L1 norm of α. This is done by linear programming and results in a globally 
optimal solution. It is similar in philosophy to the MOFs but uses an L1 norm rather than an L2 norm 
and uses linear programming to obtain the optimization. Using interior point methods, it is reasonably 
e°cient and usually gives a fairly sparse solution. 

• Krim et al. describe a best basis method in [299]. Tew˝k et al. propose a method called optimal 
subset selection in [390] and others are [30], [100]. 

All of these methods are very signal and problem dependent and, in some cases, can give much better results 
than the standard M-band or wavelet packet based methods. 

8.7 Local Trigonometric Bases 

In the material up to this point, all of the expansion systems have required the translation and scaling 
properties of (2.5) and the satisfaction of the multiresolution analysis assumption of (3.13). From this we 
have been able to generate orthogonal basis systems with the basis functions having compact support and, 
through generalization to M-band wavelets and wavelet packets, we have been able to allow a rather general 
tiling of the time-frequency or time-scale plane with ˛exible frequency resolution. 

By giving up the multiresolution analysis (MRA) requirement, we will be able to create another basis 
system with a time-frequency tiling somewhat the dual of the wavelet or wavelet packet system. Much as 
we saw the multiresolution system dividing the frequency bands in a logarithmic spacing for the M = 2 
systems and a linear spacing for the higher M case, and a rather general form for the wavelet packets, 
we will now develop the local cosine and local sine basis systems for a more ˛exible time segmenting of 
the time-frequency plane. Rather than modifying the MRA systems by creating the time-varying wavelet 
systems, we will abandon the MRA and build a basis directly. 

What we are looking for is an expansion of a signal or function in the form X 
f (t) = ak (n) χk,n (t) , (8.89) 

k,n 

where the functions χj,k (t) are of the form (for example) 

χk,n (t) = wk (t) cos (απ (n + β) t + γ) . (8.90) 

Here wk (t) is a window function giving localization to the basis function and α, β and γ are constants 
the choice of which we will get to shortly. k is a time index while n is a frequency index. By requiring 



147 

orthogonality of these basis functions, the coe°cients (the transform) are found by an inner product Z 
ak (n) =< f (t) , χk,n (t) >= f (t) χk,n (t) dt. (8.91) 

We will now examine how this can be achieved and what the properties of the expansion are. 
Fundamentally, the wavelet packet system decomposes L2 (R) into a direct sum of orthogonal spaces, 

each typically covering a certain frequency band and spanned by the translates of a particular element of 
the wavelet packet system. With wavelet packets time-frequency tiling with ˛exible frequency resolution is 
possible. However, the temporal resolution is determined by the frequency band associated with a particular 
element in the packet. 

Local trigonometric bases [573], [22] are duals of wavelet packets in the sense that these bases give ˛exible 
temporal resolution. In this case, L2 (R) is decomposed into a direct sum of spaces each typically covering 
a particular time interval. The basis functions are all modulates of a ˝xed window function. 

One could argue that an obvious approach is to partition the time axis into disjoint bins and use a 
Fourier series expansion in each temporal bin. However, since the basis functions are �rectangular-windowed� 
exponentials they are discontinuous at the bin boundaries and hence undesirable in the analysis of smooth 
signals. If one replaces the rectangular window with a �smooth� window, then, since products of smooth 
functions are smooth, one can generate smooth windowed exponential basis functions. For example, if the 
time axis is split uniformly, one is looking at basis functions of the form {w (t − k) eι2πnt}, k, n ∈ Z for some 
smooth window function w (t). Unfortunately, orthonormality disallows the function w (t) from being well-
concentrated in time or in frequency - which is undesirable for time frequency analysis. More precisely, the 
Balian-Low theorem (see p.108 in [122]) states that the Heisenberg product of g (the product of the time-
spread and frequency-spread which is lower bounded by the Heisenberg uncertainty principle) is in˝nite. 
However, it turns out that windowed trigonometric bases (that use cosines and sines but not exponentials) 
can be orthonormal, and the window can have a ˝nite Heisenberg product [128]. That is the reason why we 
are looking for local trigonometric bases of the form given in (8.90). 

8.7.1 Nonsmooth Local Trigonometric Bases 

To construct local trigonometric bases we have to choose: (a) the window functions wk (t); and (b) the 
trigonometric functions (i.e., α, β and γ in Eq. (8.90)). If we use the rectangular window (which we know is 
a bad choice), then it su°ces to ˝nd a trigonometric basis for the interval that the window spans. Without 
loss of generality, we could consider the unit interval (0, 1) and hence we are interested in trigonometric bases 
for L2 ((0, 1)). It is easy to see that the following four sets of functions satisfy this requirement. 

√ � � � � 
11. {Φn (t)} = { 2cos π n + t }, n ∈ {0, 1, 2, ...};2√ � � � � 
12. {Φn (t)} = { 2sin π n + t }, n ∈ {0, 1, 2, ...};2√ 

3. {Φn (t)} = {1, 2cos (πnt)}, n ∈ {1, 2, ...};√ 
4. {Φn (t)} = { 2sin (πnt)}, n ∈ {0, 1, 2, ...}. 

Indeed, these orthonormal bases are obtained from the Fourier series on (−2, 2) (the ˝rst two) and on 
(−1, 1) (the last two) by appropriately imposing symmetries and hence are readily veri˝ed to be complete 
and orthonormal on (0, 1). If we choose a set of nonoverlapping rectangular window functions wk (t) such P 
that kwk (t) = 1 for all t ∈ R, and de˝ne χk,n (t) = wk (t) Φn (t), then, {χk,n (t)} is a local trigonometric 
basis for L2 (R), for each of the four choices of phin (t) above. 

8.7.2 Construction of Smooth Windows 

We know how to construct orthonormal trigonometric bases for disjoint temporal bins or intervals. Now we 
need to construct smooth windows wk (t) that when applied to cosines and sines retain orthonormality. An 
outline of the process is as follows: A unitary operation is applied that �unfolds� the discontinuities of all the 
local basis functions at the boundaries of each temporal bin. Unfolding leads to overlapping (unfolded) basis 
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functions. However, since unfolding is unitary, the resulting functions still form an orthonormal basis. The 
unfolding operator is parameterized by a function r (t) that satis˝es an algebraic constraint (which makes 
the operator unitary). The smoothness of the resulting basis functions depends on the smoothness of this 
underlying function r (t). 

The function r (t), referred to as a rising cuto˙ function, satis˝es the following conditions (see Figure 8.27) 
: 

2 2 0, if t ≤ −1 
|r (t)| + |r (−t)| = 1, for all t ∈ IR; r (t) = { (8.92) 

1, if t ≥ 1 

r (t) is called a rising cuto˙ function because it rises from 0 to 1 in the interval [−1, 1] (note: it does not 
necessarily have to be monotone increasing). Multiplying a function by r (t) would localize it to [−1, ∞]. 
Every real-valued function r (t) satisfying (8.92) is of the form r (t) = sin (θ (t)) where 

π 0, if t ≤ −1. 
θ (t) + θ (−t) = for all t ∈ IR; r (t) = { (8.93)

2 π 
2 , if t ≥ 1. � � 

This ensures that r (−t) = sin (θ (−t)) = sin π 
2 − θ (t) = cos (θ (t)) and therefore r2 (t)+ r2 (−t) = 1. One 

can easily construct arbitrarily smooth rising cuto˙ functions. We give one such recipe from [573] (p.105) . 
Start with a function 

0, if t ≤ −1 � � 
πr[0] (t) = { sin (1 + t) , if − 1 < t < 1 (8.94)
4 

1, if t ≥ 1 

It is readily veri˝ed to be a rising cuto˙ function. Now recursively de˝ne r[1] (t) , r[2] (t) , ... as follows: � � ��π 
r[n+1] (t) = r[n] sin t . (8.95)

2 

Notice that r[n] (t) is a rising cuto˙ function for every n. Moreover, by induction on n it is easy to show 
that r[n] (t) ∈ C2

n−1 (it su°ces to show that derivatives at t = −1 and t = 1 exist and are zero up to order 
2n − 1). 

8.7.3 Folding and Unfolding 

Using a rising cuto˙ function r (t) one can de˝ne the folding operator, U , and its inverse, the unfolding 
operator U [U+2606] as follows: 

r (t) f (t) + r (−t) f (−t) , if t > 0 
U (r) f (t) = { (8.96) 

r (−t) f (t) − r (t) f (−t) , if t < 0 

r (t) f (t) − r (−t) f (−t) , if t > 0 
U[U+2606] (r) f (t) = { (8.97) 

r (−t) f (t) + r (t) f (−t) , if t < 0 � � 
2 2

Notice that U[U+2606] (r) U (r) f (t) = |r (t)| + |r (−t)| f (t) = U (r) U[U+2606] (r) f (t) and that 

kU (r) fk = kfk = kU[U+2606] (r) fk showing that U (r) is a unitary operator on L2 (R). Also these op-
U[U+2606] (r) f (t) for t ≤ −1 and t ≥ 1.erators change f (t) only in [−1, 1] since U (r) f (t) = f (t) = The 

interval [−1, 1] is the action region of the folding/unfolding operator. U (r) is called a folding operator 
acting at zero because for smooth f , U (r) f has a discontinuity at zero. By translation and dilation of r (t) 
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one can de˝ne U (r, t0, �) and U[U+2606] (r, t0, �) that folds and unfolds respectively about t = t0 with action 
region[t0 − �, t0 + �] and action radius �. 

Notice (8.96) and (8.97) do not de˝ne the value U (r) f (0) and U[U+2606] (r) f (0) because of the dis-
continuity that is potentially introduced. An elementary exercise in calculus divulges the nature of this 
discontinuity. If f ∈ Cd (R), then U (r) f ∈ Cd (R \ {0}). At t = 0, left and right derivatives exist with all 
even-order left-derivatives and all odd order right-derivatives (upto and including d) being zero. Conversely, 
given any function f ∈ Cd (R \ {0}) which has a discontinuity of the above type, U[U+2606] (r) f has a unique 
extension across t = 0 (i.e., a choice of value for (U[U+2606] (r) f (0)) that is in Cd (R). One can switch the signs 
in (8.96) and (8.97) to obtain another set of folding and unfolding operators. In this case, for f ∈ Cd (R), 
U (r) f will have its even-order right derivatives and odd-order left derivatives equal to zero. We will use U+, 
U[U+2606] and U−, U

[U+2606] 
+ − , respectively to distinguish between the two types of folding/unfolding operators 

and call them positive and negative polarity folding/unfolding operators respectively. 
So far we have seen that the folding operator is associated with a rising cuto˙ function, acts at a certain 

point, has a certain action region and radius and has a certain polarity. To get a qualitative idea of what 
these operators do, let us look at some examples. 

First, consider a case where f (t) is even- or-odd symmetric about the folding point on the action interval. 
Then, Uf corresponds to simply windowing f by an appropriate window function. Indeed, if f (t) = f (−t) 
on [−1, 1], 

(r (t) + r (−t)) f (t) , if t > 0, 
U+ (r, 0, 1) f (t) = { (8.98) 

(r (−t) − r (t)) f (t) , if t < 0, 

and if f (t) = −f (−t) on [−1, 1] 

(r (t) − r (−t)) f (t) , if t > 0, 
U+ (r, 0, 1) f (t) = { (8.99) 

(r (−t) − r (t)) f (t) , if t < 0. 

Figure 8.27 shows a rising cuto˙ function and the action of the folding operators of both polarities on the 
constant function. Observe the nature of the discontinuity at t = 0 and the e˙ect of polarityreversal. 



150 
CHAPTER 8. GENERALIZATIONS OF THE BASIC MULTIRESOLUTION 

WAVELET SYSTEM 

Figure 8.27: The Rising Cuto˙ Function r (t) = r[3] (t) 

We saw that for signals with symmetry in the action region folding, corresponds to windowing. Next we 
look at signals that are supported to the right (or left) of the folding point and see what unfolding does to 
them. In this case, U[U+2606] (r) (f) is obtained by windowing the even (or odd) extension of f (t) about the+ 
folding point. Indeed if f (t) = 0, t < 0 

r (t) f (t) , if t > 0, 
U[U+2606] (r, 0, 1) f (t) = { (8.100)+ 

r (t) f (−t) , if t < 0, 

and if f (t) = 0, t > 0, 

−− r (−t) f (−t) , if t > 0, 
U[U+2606] (r, 0, 1) f (t) = { (8.101)+ 

r (−t) f (t) , if t < 0, 

Figure 8.28 shows the e˙ect of the positive unfolding operator acting on cosine and sine functions supported 
on the right and left half-lines respectively. Observe that unfolding removes the discontinuities at t = 0. If 
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the polarity is reversed, the e˙ects on signals on the half-line are switched; the right half-line is associated 
with windowed odd extensions and left half-line with windowed even extensions. 

Figure 8.28: Folding Functions Supported on Half-Lines:� � � � 
(a) f (t) = cos π 11t u (t) ((u (t) is the Unit Step or Heaviside Function) (b) U+ r[3], 0, 1 f (t)� 2 � 
(c) f (t) = sin π 

2 11t u (−t)� � 
(d) U+ r[3], 0, 1 f (t) 

8.7.4 Local Cosine and Sine Bases 

Recall the four orthonormal trigonometric bases for L2 ((0, 1)) we described earlier. 
√ � � � � 

11. {Φn (t)} = { 2cos π n + t }, n ∈ {0, 1, 2, ...};2√ � � � � 
12. {Φn (t)} = { 2sin π n + t }, n ∈ {0, 1, 2, ...};2√ 

3. {Φn (t)} = {1, 2cos (πnt)}, n ∈ {1, 2, ...};√ 
4. {Φn (t)} = { 2sin (πnt)}, n ∈ {0, 1, 2, ...}. 
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The bases functions have discontinuities at t = 0 and t = 1 because they are restrictions of the cosines 
and sines to the unit interval by rectangular windowing. The natural extensions of these basis functions 
to t ∈ R (i.e., unwindowed cosines and sines) are either even (say �+�) or odd (say �-�) symmetric (locally) 
about the endpoints t = 0 and t = 1. Indeed the basis functions for the four cases are (+, −), (−, +), 
(+, +) and (−, −) symmetric, respectively, at (0, 1). From the preceding analysis, this means that unfolding 
these basis functions corresponds to windowing if the unfolding operator has the right polarity. Also observe 
that the basis functions are discontinuous at the endpoints. Moreover, depending on the symmetry at each 
endpoint all odd derivatives (for �+� symmetry) or even derivatives (for �−� symmetry) are zero. By choosing 
unfolding operators of appropriate polarity at the endpoints (with non overlapping action regions) for the 
four bases, we get smooth basis functions of compact support. For example, for (+,−) symmetry, the basis 
function U+ (r0, 0, �0) U+ (r1, 1, �1) ψn (t) is supported in (−�0, 1 + �1) and is as many times continuously 
di˙erentiable as r0 and r1 are. 

Let {tj } be an ordered set of points in R de˝ning a partition into disjoint intervals Ij = [tj , tj+1]. Now 
choose one of the four bases above for each interval such that at tj the basis functions for Ij−1 and that for 
Ij have opposite symmetries. We say the polarity at tj is positive if the symmetry is − (+ and negative if it 
is +(− . At each tj choose a smooth cuto˙ function rj (t) and action radius �j so that the action intervals 
do not overlap. Let p (j) be the polarity of tj and de˝ne the unitary operator Y 

U[U+2606] U[U+2606]= p(j) (rj , tj , �j ) . (8.102) 
j 

Let {ψn (t)} denote all the basis functions for all the intervals put together. Then {ψn (t)} forms a nonsmooth 
orthonormal basis for L2 (R). Simultaneously {U[U+2606]ψn (t)} also forms a smooth 

orthonormal basis for L2 (R). To ˝nd the expansion coe°cients of a function f (t) in this basis we use 

< f, U[U+2606]ψn >=< Uf, ψn > . (8.103) 

In other words, to compute the expansion coe°cients of f in the new (smooth) basis, one merely folds f 
to Uf and ˝nds its expansion coe°cients with respect to the original basis. This allows one to exploit fast 
algorithms available for coe°cient computation in the original basis. 

So for an arbitrary choice of polarities at the end points tj we have smooth local trigonometric bases. 
In particular by choosing the polarity to be positive for all tj (consistent with the choice of the ˝rst basis 
in all intervals) we get local cosine bases. If the polarity is negative for all tj (consistent with the choice of 
the second basis for all intervals), we get local sine bases. Alternating choice of polarity (consistent with the 
alternating choice of the third and fourth bases in the intervals) thus leads to alternating cosine/sine bases. 
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Figure 8.29: Trigonometric basis functions - before and after unfolding:� � 
(a) f (t) = cos π �4 (n + .5) t u (t) u (4 − t) where n = 10 � 
(b) U+ r[3], 0, 1 U+ r[3], 4, 1 f (t)� � 
(c) f (t) = sin π �4 (n + .5) t u (t) u (4 − t) where n = 10 � 
(d) U− r[3], 0, 1 U− r[3], 4, 1 f (t)� � 
(e) f (t) = cos π �4 (n) t u (t) u (4 − t) where n = 10 � 
(f) U+ r[3], 0, 1 U− r[3], 4, 1 f (t)� � 
(g) f (t) = sin π �4 (n) t u (t) u (4 − t) where n = 10� 
(h) U− r[3], 0, 1 U+ r[3], 4, 1 f (t) 

All these bases can be constructed in discrete time by sampling the cosines/sines basis functions [573]. 
Local cosine bases in discrete time were constructed originally by Malvar and are sometimes called lapped 
orthogonal transforms [356]. In the discrete case, the e°cient implementation of trigonometric transforms 
(using DCT I-IV and DST I-IV) can be utilized after folding. In this case, expanding in local trigonometric 
bases corresponds to computing a DCT after preprocesing (or folding) the signal. 

For a sample basis function in each of the four bases, Figure 8.7 shows the corresponding smooth basis 
function after unfolding. Observe that for local cosine and sine bases, the basis functions are not linear 
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phase; while the window is symmetric, the windowed functions are not. However, for alternating sine/cosine 
bases the (unfolded) basis functions are linear phase. There is a link between local sine (or cosine) bases 
and modulated ˝lter banks that cannot have linear phase ˝lters (discussed in Chapter: Filter Banks and 
Transmultiplexers ). So there is also a link between alternating cosine/sine bases and linear-phase modulated 
˝lter banks (again see Chapter: Filter Banks and Transmultiplexers ). This connection is further explored 
in [185]. 

Local trigonometric bases have been applied to several signal processing problems. For example, they 
have been used in adaptive spectral analysis and in the segmentation of speech into voiced and unvoiced 
regions [573]. They are also used for image compression and are known in the literature as lapped-orthogonal 
transforms [356]. 

8.7.5 Signal Adaptive Local Trigonometric Bases 

In the adaptive wavelet packet analysis described in Section 8.3.2 (Adaptive Wavelet Packet Systems), we 
considered a full ˝lter bank tree of decompositions and used some algorithm (best-basis algorithm, for 
instance) to prune the tree to get the best tree topology (equivalently frequency partition) for a given signal. 
The idea here is similar. We partition the time axis (or interval) into bins and successively re˝ne each 
partition into further bins, giving a tree of partitions for the time axis (or interval). If we use smooth local 
trigonometric bases at each of the leaves of a full or pruned tree, we get a smooth basis for all signals on the 
time axis (or interval). In adaptive local bases one grows a full tree and prunes it based on some criterion 
to get the optimal set of temporal bins. 

Figure 8.30 schematically shows a sample time-frequency tiling associated with a particular local trigono-
metric basis. Observe that this is the dual of a wavelet packet tiling (see Figure 8.15)�in the sense that one 
can switch the time and frequency axes to go between the two. 

8.8 Discrete Multiresolution Analysis, the Discrete-Time Wavelet 
Transform, and the Continuous Wavelet Transform 

Up to this point, we have developed wavelet methods using the series wavelet expansion of continuous-
time signals called the discrete wavelet transform (DWT), even though it probably should be called the 
continuous-time wavelet series. This wavelet expansion is analogous to the 
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Figure 8.30: Local Basis 

Fourier series in that both are series expansions that transform continuous-time signals into a discrete 
sequence of coe°cients. However, unlike the Fourier series, the DWT can be made periodic or nonperiodic 
and, therefore, is more versatile and practically useful. 

In this chapter we will develop a wavelet method for expanding discrete-time signals in a series expansion 
since, in most practical situations, the signals are already in the form of discrete samples. Indeed, we have 
already discussed when it is possible to use samples of the signal as scaling function expansion coe°cients in 
order to use the ˝lter bank implementation of Mallat's algorithm. We ˝nd there is an intimate connection 
between the DWT and DTWT, much as there is between the Fourier series and the DFT. One expands 
signals with the FS but often implements that with the DFT. 

To further generalize the DWT, we will also brie˛y present the continuous wavelet transform which, 
similar to the Fourier transform, transforms a function of continuous time to a representation with continuous 
scale and translation. In order to develop the characteristics of these various wavelet representations, we will 
often call on analogies with corresponding Fourier representations. However, it is important to understand 
the di˙erences between Fourier and wavelet methods. Much of that di˙erence is connected to the wavelet 
being concentrated in both time and scale or frequency, to the periodic nature of the Fourier basis, and to 
the choice of wavelet bases. 
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8.8.1 Discrete Multiresolution Analysis and the Discrete-Time Wavelet Trans-
form 

Parallel to the developments in early chapters on multiresolution analysis, we can de˝ne a discrete multires-
olution analysis (DMRA) for l2, where the basis functions are discrete sequences [441], [439], [551]. The 
expansion of a discrete-time signal in terms of discrete-time basis function is expressed in a form parallel to 
(2.7) as X � � 

f (n) = dj (k) ψ 2j n − k (8.104) 
j,k 

where ψ (m) is the basic expansion function of an integer variable m. If these expansion functions are an 
orthogonal basis (or form a tight frame), the expansion coe°cients (discrete-time wavelet transform) are 
found from an inner product by � � X � � 

2j 2jdj (k) = < f (n) , ψ n − k > = f (n) ψ n − k (8.105) 
n 

If the expansion functions are not orthogonal or even independent but do span `2 , a biorthogonal system 
or a frame can be formed such that a transform and inverse can be de˝ned. 

Because there is no underlying continuous-time scaling function or wavelet, many of the questions, prop-
erties, and characteristics of the analysis using the DWT in Chapter: Introduction to Wavelets, Chapter: A 
multiresolution formulation of Wavelet Systems, Chapter: Regularity, Moments, and Wavelet System Design 
, etc. do not arise. In fact, because of the ˝lter bank structure for calculating the DTWT, the design is often 
done using multirate frequency domain techniques, e.g., the work by Smith and Barnwell and associates [14]. 
The questions of zero wavelet moments posed by Daubechies, which are related to ideas of convergence for 
iterations of ˝lter banks, and Coifman's zero scaling function moments that were shown to help approximate 
inner products by samples, seem to have no DTWT interpretation. 

The connections between the DTWT and DWT are: 

• If the starting sequences are the scaling coe°cients for the continuous multiresolution analysis at 
very ˝ne scale, then the discrete multiresolution analysis generates the same coe°cients as does the 
continuous multiresolution analysis on dyadic rationals. 

• When the number of scales is large, the basis sequences of the discrete multiresolution analysis converge 
in shape to the basis functions of the continuous multiresolution analysis. 

The DTWT or DMRA is often described by a matrix operator. This is especially easy if the transform is 
made periodic, much as the Fourier series or DFT are. For the discrete time wavelet transform (DTWT), 
a matrix operator can give the relationship between a vector of inputs to give a vector of outputs. Several 
references on this approach are in [431], [255], [293], [292], [436], [435], [301], [300]. 

8.8.2 Continuous Wavelet Transforms 

The natural extension of the redundant DWT in Section 8.6 (Overcomplete Representations, Frames, Re-
dundant Transforms, and Adaptive Bases) is to the continuous wavelet transform (CWT), which transforms 
a continuous-time signal into a wavelet transform that is a function of continuous shift or translation and a 
continuous scale. This transform is analogous to the Fourier transform, which is redundant, and results in 
a transform that is easier to interpret, is shift invariant, and is valuable for time-frequency/scale analysis. 
[249], [220], [588], [442], [122], [551], [437] 

The de˝nition of the CWT in terms of the wavelet w (t) is given by Z � � 
t − τ−1/2F (s, τ) = s f (t) w dt (8.106) 
s 
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where the inverse transform is Z Z � � 
1 t − τ 

f (t) = K F (s, τ ) w ds dτ (8.107) 
s2 s 

with the normalizing constant given by Z 
|W (ω) |2 

K = dω, (8.108)
|ω| 

with W (ω) being the Fourier transform of the wavelet w (t). In order for the wavelet to be admissible (for 
(8.107) to hold), K < ∞. In most cases, this simply requires that W (0) = 0 and that W (ω) go to zero 
(W (∞) = 0) fast enough that K < ∞. 

These admissibility conditions are satis˝ed by a very large set of functions and give very little insight 
into what basic wavelet functions should be used. In most cases, the wavelet w (t) is chosen to give as good 
localization of the energy in both time and scale as possible for the class of signals of interest. It is also 
important to be able to calculate samples of the CWT as e°ciently as possible, usually through the DWT 
and Mallat's ˝lter banks or FFTs. This, and the interpretation of the CWT, is discussed in [122], [551], 
[210], [187], [535], [220], [285], [442], [557]. 

The use of the CWT is part of a more general time-frequency analysis that may or may not use wavelets 
[83], [86], [266], [4], [2]. 

8.8.3 Analogies between Fourier Systems and Wavelet Systems 

In order to better understand the wavelet transforms and expansions, we will look at the various forms of 
Fourier transforms and expansion. If we denote continuous time by CT, discrete time by DT, continuous 
frequency by CF, and discrete frequency by DF, the following table will show what the discrete Fourier 
transform (DFT), Fourier series (FS), discrete-time Fourier transform (DTFT), and Fourier transform take 
as time domain signals and produce as frequency domain transforms or series. For example, the Fourier 
series takes a continuous-time input signal and produces a sequence of discrete-frequency coe°cients while 
the DTFT takes a discrete-time sequence of numbers as an input signal and produces a transform that is a 
function of continuous frequency. 

DT CT 

DF DFT FS 

CF DTFT FT 

Table 8.6: Continuous and Discrete Input and Output for Four Fourier Transforms 

Because the basis functions of all four Fourier transforms are periodic, the transform of a periodic signal 
(CT or DT) is a function of discrete frequency. In other words, it is a sequence of series expansion coe°cients. 
If the signal is in˝nitely long and not periodic, the transform is a function of continuous frequency and the 
inverse is an integral, not a sum. 

Periodic in time ⇔ Discrete in frequency (8.109) 

Periodic in frequency ⇔ Discrete in time (8.110) 

A bit of thought and, perhaps, referring to appropriate materials on signal processing and Fourier methods 
will make this clear and show why so many properties of Fourier analysis are created by the periodic basis 
functions. 
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Also recall that in most cases, it is the Fourier transform, discrete-time Fourier transform, or Fourier 
series that is needed but it is the DFT that can be calculated by a digital computer and that is probably using 
the FFT algorithm. If the coe°cients of a Fourier series drop o˙ fast enough or, even better, are zero after 
some harmonic, the DFT of samples of the signal will give the Fourier series coe°cients. If a discrete-time 
signal has a ˝nite nonzero duration, the DFT of its values will be samples of its DTFT. From this, one sees 
the relation of samples of a signal to the signal and the relation of the various Fourier transforms. 

Now, what is the case for the various wavelet transforms? Well, it is both similar and di˙erent. The 
table that relates the continuous and discrete variables is given by where DW indicates discrete values for 
scale and translation given by j and k, with CW denoting continuous values for scale and translation. 

DT CT 

DW DTWT DWT 

CW DTCWT CWT 

Table 8.7: Continuous and Discrete Input and Output for Four Wavelet Transforms 

We have spent most this book developing the DWT, which is a series expansion of a continuous time 
signal. Because the wavelet basis functions are concentrated in time and not periodic, both the DTWT 
and DWT will represent in˝nitely long signals. In most practical cases, they are made periodic to facilitate 
e°cient computation. Chapter: Calculation of the Discrete Wavelet Transform gives the details of how the 
transform is made periodic. The discrete-time, continuous wavelet transform (DTCWT) is seldom used and 
not discussed here. 

The naming of the various transforms has not been consistent in the literature and this is complicated 
by the wavelet transforms having two transform variables, scale and translation. If we could rename all 
the transforms, it would be more consistent to use Fourier series (FS) or wavelet series (WS) for a series 
expansion that produced discrete expansion coe°cients, Fourier transforms (FT) or wavelet transforms 
(WT) for integral expansions that produce functions of continuous frequency or scale or translation variable 
together with DT (discrete time) or CT (continuous time) to describe the input signal. However, in common 
usage, only the DTFT follows this format! 

Common Consistent Time, Transform Input Output 

name name C or D C or D periodic periodic 

FS CTFS C D Yes No 

DFT DTFS D D Yes Yes 

DTFT DTFT D C No Yes 

FT CTFT C C No No 

DWT CTWS C D Y or N Y or N 

DTWT DTWS D D Y or N Y or N 

� DTWT D C N N 

CWT CTWT C C N N 

Table 8.8: Continuous and Discrete, Periodic and Nonperiodic Input and Output for Transforms 

Recall that the di˙erence between the DWT and DTWT is that the input to the DWT is a sequence 
of expansion coe°cients or a sequence of inner products while the input to the DTWT is the signal itself, 
probably samples of a continuous-time signal. The Mallat algorithm or ˝lter bank structure is exactly the 
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same. The approximation is made better by zero moments of the scaling function (see Section: Approxi-
mation of Scaling Coe°cients by Samples of the Signal (Section 7.8: Approximation of Scaling Coe°cients 
by Samples of the Signal)) or by some sort of pre˝ltering of the samples to make them closer to the inner 
products [494]. 

As mentioned before, both the DWT and DTWT can be formulated as nonperiodic, on-going transforms 
for an exact expansion of in˝nite duration signals or they may be made periodic to handle ˝nite-length or 
periodic signals. If they are made periodic (as in Chapter: Calculation of the Discrete Wavelet Transform 
), then there is an aliasing that takes place in the transform. Indeed, the aliasing has a di˙erent period at 
the di˙erent scales which may make interpretation di°cult. This does not harm the inverse transform which 
uses the wavelet information to �unalias" the scaling function coe°cients. Most (but not all) DWT, DTWT, 
and matrix operators use a periodized form [480]. 
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Chapter 9 

Filter Banks and Transmultiplexers1 

9.1 Introduction 

In this chapter, we develop the properties of wavelet systems in terms of the underlying ˝lter banks associated 
with them. This is an expansion and elaboration of the material in Chapter: Filter Banks and the Discrete 
Wavelet Transform , where many of the conditions and properties developed from a signal expansion point 
of view in Chapter: The Scaling Function and Scaling Coe°cients, Wavelet and Wavelet Coe°cients are 
now derived from the associated ˝lter bank. The Mallat algorithm uses a special structure of ˝lters and 
downsamplers/upsamplers to calculate and invert the discrete wavelet transform. Such ˝lter structures 
have been studied for over three decades in digital signal processing in the context of the ˝lter bank and 
transmultiplexer problems [478], [521], [539], [536], [545], [541], [357], [528], [425]. Filter bank theory, 
besides providing e°cient computational schemes for wavelet analysis, also gives valuable insights into the 
construction of wavelet bases. Indeed, some of the ˝ner aspects of wavelet theory emanates from ˝lter bank 
theory. 

9.1.1 The Filter Bank 

A ˝lter bank is a structure that decomposes a signal into a collection of subsignals. Depending on the 
application, these subsignals help emphasize speci˝c aspects of the original signal or may be easier to work 
with than the original signal. We have linear or non-linear ˝lter banks depending on whether or not the 
subsignals depend linearly on the original signal. Filter banks were originally studied in the context of 
signal compression where the subsignals were used to �represent� the original signal. The subsignals (called 
subband signals) are downsampled so that the data rates are the same in the subbands as in the original 
signal�though this is not essential. Key points to remember are that the subsignals convey salient features 
of the original signal and are su°cient to reconstruct the original signal. 

Figure 9.1 shows a linear ˝lter bank that is used in signal compression (subband coding). The analysis 
˝lters {hi} are used to ˝lter the input signal x (n). The ˝ltered signals are downsampled to give the 
subband signals. Reconstruction of the original signal is achieved by upsampling, ˝ltering and adding up 
the subband signals as shown in the right-hand part of Figure 9.1. The desire for perfect reconstruction 
(i.e., y (n) = x (n)) imposes a set of bilinear constraints (since all operations in Figure 9.1 are linear) on the 
analysis and synthesis ˝lters. This also constrains the downsampling factor, M , to be at most the number 
of subband signals, say L. Filter bank design involves choosing ˝lters {hi} and {gi} that satisfy perfect 
reconstruction and simultaneously give informative and useful subband signals. In subband speech coding, 
for example, a natural choice of desired frequency responses�motivated by the nonuniform sensitivity of the 
human ear to various frequency bands�for the analysis and synthesis ˝lters is shown in Figure 9.2. 

1This content is available online at <http://cnx.org/content/m45068/1.3/>. 
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Figure 9.1: L-Band Filter Bank with Rate-Change Factor of M 

In summary, the ˝lter bank problem involves the design of the ˝lters hi (n) and gi (n), with the following 
goals: 

1. Perfect Reconstruction (i.e., y (n) = x (n)). 
2. Usefulness. Clearly this depends on the application. For the subband coding application, the ˝lter 

frequency responses might approximate the ideal responses in Figure 9.2. In other applications the 
˝lters may have to satisfy other constraints or approximate other frequency responses. 

If the signals and ˝lters are multidimensional in Figure 9.1, we have the multidimensional ˝lter bank design 
problem. 
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Figure 9.2: Ideal Frequency Responses in an L-band Filter Bank 

9.1.2 Transmultiplexer 

A transmultiplexer is a structure that combines a collection of signals into a single signal at a higher rate; 
i.e., it is the dual of a ˝lter bank. If the combined signal depends linearly on the constituent signal, we have a 
linear transmultiplexer. Transmultiplexers were originally studied in the context of converting time-domain-
multiplexed (TDM) signals into frequency domain multiplexed (FDM) signals with the goal of converting 
back to time-domain-multiplexed signals at some later point. A key point to remember is that the constituent 
signals should be recoverable from the combined signal. Figure 9.3 shows the structure of a transmultiplexer. 
The input signals yi (n) were upsampled, ˝ltered, and combined (by a synthesis bank of ˝lters) to give a 
composite signal d (n). The signal d (n) can be ˝ltered (by an analysis bank of ˝lters) and downsampled 
to give a set of signals xi (n). The goal in transmultiplexer design is a choice of ˝lters that ensures perfect 
reconstruction (i.e., for all i, xi (n) = yi (n)). This imposes bilinear constraints on the synthesis and analysis 
˝lters. Also, the upsampling factor must be at least the number of constituent input signals, say L. Moreover, 
in classical TDM-FDM conversion the analysis and synthesis ˝lters must approximate the ideal frequency 
responses in Figure 9.2. If the input signals, analysis ˝lters and synthesis ˝lters are multidimensional, we 
have a multidimensional transmultiplexer. 

9.1.3 Perfect Reconstruction�A Closer Look 

We now take a closer look at the set of bilinear constraints on the analysis and synthesis ˝lters of a ˝lter 
bank and/or transmultiplexer that ensures perfect reconstruction (PR). Assume that there are L analysis 
˝lters and L synthesis ˝lters and that downsampling/upsampling is by some integer M . These constraints, 
broadly speaking, can be viewed in three useful ways, each applicable in speci˝c situations. 

1. Direct characterization - which is useful in wavelet theory (to characterize orthonormality and frame 
properties), in the study of a powerful class of ˝lter banks (modulated ˝lter banks), etc. 

2. Matrix characterization - which is useful in the study of time-varying ˝lter banks. 
3. z-transform-domain (or polyphase-representation) characterization - which is useful in the design and 

implementation of (unitary) ˝lter banks and wavelets. 
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9.1.4 Direct Characterization of PR 

We will ˝rst consider the direct characterization of PR, which, for both ˝lter banks and transmultiplexers, 
follows from an elementary superposition argument. 

Theorem 38 A ˝lter bank is PR if and only if, for all integers n1 and n2, 

L−1XX 
hi (Mn + n1) gi (−M n − n2) = δ (n1 − n2) . (9.1) 

i=0 n 

A transmultiplexer is PR if and only if, for all i, j ∈ {0, 1, ..., L − 1}, X 
hi (n) gj (−Ml − n) = δ (l) δ (i − j) . (9.2) 

n 

Figure 9.3: L-Band Transmultiplexer with Rate Change Factor of M 

Moreover, if the number of channels is equal to the downsampling factor (i.e., L = |M |),(9.1) and (9.2) 
are equivalent. 

Consider a PR ˝lter bank. Since an arbitrary signal is a linear superposition of impulses, it su°ces 
to consider the input signal, x (n) = δ (n − n1), for arbitrary integer n1. Then (see Figure 9.1) di (n) =P P 
hi (Mn − n1) and therefore, y (n2) = i n gi (n2 − Mn) di (n). But by PR, y (n2) = δ (n2 − n1). The 
˝lter bank PR property is precisely a statement of this fact: XX XX 

y (n2) = gi (n2 − Mn) di (n) = gi (n2 − Mn) hi (Mn − n1) = δ (n2 − n1) . (9.3) 
i n i n 

Consider a PR transmultiplexer. Once again because of linear superposition, it su°ces to cosnsider only 
the input signals xi (n) = δ (n) δ (i − j) for all i and j. Then, d (n) = gj (n) (see Figure 9.3), and yi (l) = 



165 

P 
n hi (n) d (Ml − n). But by PR yi (l) = δ (l) δ (i − j). The transmultiplexer PR property is precisely a 

statement of this fact: X X 
yi (l) = hi (n) d (Ml − n) = hi (n) gj (Ml − n) = δ (l) δ (i − j) . (9.4) 

n n 

Remark: Strictly speaking, in the superposition argument proving (9.2), one has to consider the input 
signals xi (n) = δ (n − n1) δ (i − j) for arbitrary n1. One readily veri˝es that for all n1 (9.2) has to be 
satis˝ed. 

The equivalence of (9.1) and (9.2) when L = M is not obvious from the direct characterization. However, 
the transform domain characterization that we shall see shortly will make this connection obvious. For a PR 
˝lter, bank the L channels should contain su°cient information to reconstruct the original signal (note the 
summation over i in (9.1)), while for a transmultiplexer, the constituent channels should satisfy biorthog-
onality constraints so that they can be reconstructed from the composite signal (note the biorthogonality 
conditions suggested by (9.2)). 

9.1.5 Matrix characterization of PR 

The second viewpoint is linear-algebraic in that it considers all signals as vectors and all ˝ltering op-
erations as matrix-vector multiplications [545]. In Figure 9.1 and Figure 9.3 the signals x (n), di (n) 
and y (n) can be naturally associated with in˝nite vectors x, di and y respectively. For example, 
x = [· · · , x (−1) , x (0) , x (1) , · · · ]. Then the analysis ˝ltering operation can be expressed as 

di = Hix, for i ∈ {0, 1, 2, ..., L − 1}, (9.5) 

where, for each i, Hi is a matrix with entries appropriately drawn from ˝lter hi. Hi is a block Toeplitz 
matrix (since its obtained by retaining every M th row of the Toeplitz matrix representing convolution by 
hi) with every row containing hi in an index-reversed order. Then the synthesis ˝ltering operation can be 
expressed as X 

y = Gi
T di (9.6) 

i 

where, for each i, Gi is a matrix with entries appropriately drawn from ˝lter gi. Gi is also a block Toeplitz 
matrix (since it is obtained by retaining every M th row of the Toeplitz matrix whose transpose represents 
convolution by gi) with every row containing gi in its natural order. De˝ne d to be the vector obtained 
by interlacing the entries of each of the vectors di: d = [· · · , d0 (0) , d1 (0) , · · · , dM−1 (0) , d0 (1) , d1 (1) , · · · ]. 
Also de˝ne the matrices H and G (in terms of Hi and Gi) so that 

d = Hx, and y = GT d. (9.7) 

H is obtained by interlacing the rows of Hi and G is obtained by interlacing the rows of Gi. For example, 
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in the FIR case if the ˝lters are all of length N , ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

h0 (N − 1) ... h0 (N − M − 1) ... h0 (0) 0 
. . . ... ... ... ... ... 

. . . . . hL−1 (N − 1) ... hL−1 (N − M − 1) ... hL−1 (0) 0 

0 0 h0 (N − 1) ... ... ... 
. . . . . . . . . ... ... ... 

0 0 hL−1 (N − 1) ... ... · · · 
. . . . . . . . . . . . . . . . . . 

. 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

x. (9.8)
def

d = Hx = 

From this development, we have the following result: 
Theorem 39 A ˝lter bank is PR i˙ 

GT H = I. (9.9) 

A transmultiplexer is PR i˙ 

HGT = I. (9.10) 

Moreover, when L = M , both conditions are equivalent. 
One can also write the PR conditions for ˝lter banks and transmultiplexers in the following form, which 

explicitly shows the formal relationship between the direct and matrix characterizations. For a PR ˝lter 
bank we have X 

GT 
i Hi = I. 

i 

Correspondingly for a PR transmultiplexer we have 

HiG
T = δ (i − j) I.j 

(9.11) 

(9.12) 

9.1.6 Polyphase (Transform-Domain) Characterization of PR 

We ˝nally look at the analysis and synthesis ˝lter banks from a polyphase representation viewpoint. Here 
subsequences of the input and output signals and the ˝lters are represented in the z-transform domain. 
Indeed let the z-transforms of the signals and ˝lters be expressed in terms of the z-transforms of their 
subsequences as follows: 

MX−1 �
kXk 

MX (z) = (9.13)z z 
k=0 

MX−1 �
kYk 

MY (z) = (9.14)z z 
k= 

MX−1 � 
Hi (z) = z −kHi,k 

M z (9.15) 
k=0 
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MX−1 � � 
Gi (z) = z kGi,k z 

M (9.16) 
k=0 

Then, along each branch of the analysis bank we have 

Di (z) = [↓ M ] {Hi (z) X (z)}�PM−1 
��PM−1 � �� 

M= [↓ M ] { z−kHi,k (z) zlXl z }k=0 l=0 PM −1 � � � � (9.17)
M M= [↓ M ] { k,l=0 z

l−kHi,k z Xl z }PM−1 PM−1 
= k,l=0 δ (l − k) Hi,k (z) Xl (z) = k Hi,k (z) Xk (z) . 

Similarly, from the synthesis bank, we have PL−1 � � 
MY (z) = Di z Gi (z)i=0PL−1 � � PM−1 � � 

= Di z
M { zkGi,k z

M } (9.18)
i=0 k=0PM−1 PL−1 � � � � 

M M= zk{ Gi,k z Di z .}k=0 i=0 

and therefore (from (9.14)) 

L−1X 
Yk (z) = Gi,k (z) Di (z) . (9.19) 

i=0 

For i ∈ {0, 1, ..., L − 1} and k ∈ {0, 1, ..., M − 1}, de˝ne the polyphase component matrices (Hp (z)) = i,k 

Hi,k (z) and (Gp (z)) = Let Xp (z) and Yp (z) denote the z-transforms of the polyphase signals i,k Gi,k (z). 

xp (n) and yp (n), and let Dp (z) be the vector whose components are Di (z). Equations (9.17) and (9.19) 
can be written compactly as 

Dp (z) = Hp (z) Xp (z) , (9.20) 

Yp (z) = Gp
T (z) Dp (z) , (9.21) 

and 

Yp (z) = GT (z) Hp (z) Xp (z) . (9.22)p 

Thus, the analysis ˝lter bank is represented by the multi-input (the polyphase components of X (z)), multi-
output (the signals Di (z)) linear-shift-invariant system Hp (z) that takes in Xp (z) and gives out Dp (z). 
Similarly, the synthesis ˝lter bank can be interpreted as a multi-input (the signals Di (z)), multi-output 
(the polyphase components of Y (z)) system Gp

T (z), which maps Dp (z) to Yp (z). Clearly we have PR i˙ 

Yp (z) = Xp (z). This occurs precisely when Gp
T (z) Hp (z) = I. 

For the transmultiplexer problem, let Yp (z) and Xp (z) be vectorized versions of the input and out-
put signals respectively and let Dp (z) be the generalized polyphase representation of the signal D (z). 
Now Dp (z) = GT

p (z) Yp (z) and Xp (z) = Hp (z) Dp (z). Hence Xp (z) = Hp (z) GT
p (z) Yp (z), and for PR 

Hp (z) GT (z) = I.p 
Theorem 40 A ˝lter bank has the PR property if and only if 

GT
p (z) Hp (z) = I. (9.23) 

A transmultiplexer has the PR property if and only if 

Hp (z) Gp
T (z) = I (9.24) 
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where Hp (z) and Gp (z) are as de˝ned above. 
Remark: If GT

p (z) Hp (z) = I, then Hp (z) must have at least as many rows as columns (i.e., L ≥ M is 
necessary for a ˝lter bank to be PR). If Hp (z) GT

p (z) = I then Hp (z) must have at least as many columns as 

rows (i.e., M ≥ L is necessary for a tranmultiplexer to be PR). If L = M , GT
p (z) Hp (z) = I = Hp

T (z) Gp (z) 
and hence a ˝lter bank is PR i˙ the corresponding transmultiplexer is PR. This equivalence is trivial with 
the polyphase representation, while it is not in the direct and matrix representations. 

Notice that the PR property of a ˝lter bank or transmultiplexer is unchanged if all the analysis and 
synthesis ˝lters are shifted by the same amount in opposite directions. Also any one analysis/synthesis 
˝lter pair can be shifted by multiples of M in opposite directions without a˙ecting the PR property. Using 
these two properties (and assuming all the ˝lters are FIR), we can assume without loss of generality that the 
analysis ˝lters are supported in [0, N − 1] (for some integer N). This also implies that Hp (z) is a polynomial 
in z−1 , a fact that we will use in the parameterization of an important class of ˝lter banks�unitary ˝lter 
banks. 

All through the discussion of the PR property of ˝lter banks, we have deliberately not said anything 
about the length of the ˝lters. The bilinear PR constraints are completely independent of ˝lter lengths 
and hold for arbitrary sequences. However, if the sequences are in˝nite then one requires that the in˝nite 
summations over n in (9.1) and (9.2) converge. Clearly, assuming that these ˝lter sequences are in `2 (Z) is 
su°cient to ensure this since inner products are then well-de˝ned. 

9.2 Unitary Filter Banks 

From (9.7) it follows that a ˝lter bank can be ensured to be PR if the analysis ˝lters are chosen such that 
H is left-unitary, i.e., HT H = I. In this case, the synthesis matrix G = H (from (9.9)) and therefore 
Gi = Hi for all i. Recall that the rows of Gi contain gi in natural order while the rows of Hi contains hi 
in index-reversed order. Therefore, for such a ˝lter bank, since Gi = Hi, the synthesis ˝lters are re˛ections 
of the analysis ˝lters about the origin; i.e., gi (n) = hi (−n). Filter banks where the analysis and synthesis 
˝lters satisfy this re˛ection relationship are called unitary (or orthogonal) ˝lter banks for the simple reason 
that H is left-unitary. In a similar fashion, it is easy to see that if H is right-unitary (i.e., HHT = I), then 
the transmultiplexer associated with this set of analysis ˝lters is PR with gi (n) = hi (−n). This de˝nes 
unitary transmultiplexers. 

We now examine how the three ways of viewing PR ˝lter banks and transmultiplexers simplify when we 
focus on unitary ones. Since gi (n) = hi (−n), the direct characterization becomes the following: 

Theorem 41 A ˝lter bank is unitary i˙ XX 
hi (Mn + n1) hi (Mn + n2) = δ (n1 − n2) . (9.25) 

i n 

A transmultiplexer is unitary i˙ X 
hi (n) hj (Ml + n) = δ (l) δ (i − j) . (9.26) 

n 

If the number of channels is equal to the downsampling factor, then a ˝lter bank is unitary i˙ the corre-
sponding transmultiplexer is unitary. 

The matrix characterization of unitary ˝lter banks/transmultiplexers should be clear from the above 
discussion: 

Theorem 42 A ˝lter bank is unitary i˙ HT H = I, and a transmultiplexer is unitary i˙ HHT = I. 
The z-transform domain characterization of unitary ˝lter banks and transmultiplexers is given below: � � 
Theorem 43 A ˝lter bank is unitary i˙ Hp

T z−1 Hp (z) = I, and a transmultiplexer is unitary i˙� � −1Hp (z) HT z = I.p 
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In this book (as in most of the work in the literature) one primarily considers the situation where the 
number of channels equals the downsampling factor. For such a unitary ˝lter bank (transmultiplexer), (9.11) 
and (9.12) become: X 

HT
i Hi = I, (9.27) 

i 

and 

HiH
T
j = δ (i − j) I. (9.28) 

The matrices Hi are pairwise orthogonal and form a resolution of the identity matrix. In other words, for 
each i, HT

i Hi is an orthogonal projection matrix and the ˝lter bank gives an orthogonal decomposition of a 
given signal. Recall that for a matrix P to be an orthogonal projection matrix, P 2 = P and P ≥ 0; in our 
case, indeed, we do have HT Hi ≥ 0 and HT HiH

T Hi = HT Hi.i i i i 
Unitarity is a very useful constraint since it leads to orthogonal decompositions. Besides, for a unitary 

˝lter bank, one does not have to design both the analysis and synthesis ˝lters since hi (n) = gi (−n). But 
perhaps the most important property of unitary ˝lter banks and transmultiplexers is that they can be 
parameterized. As we have already seen, ˝lter bank design is a nonlinear optimization (of some goodness 
criterion) problem subject to PR constraints. If the PR constraints are unitary, then a parameterization 
of unitary ˝lters leads to an unconstrained optimization problem. Besides, for designing wavelets with 
high-order vanishing moments, nonlinear equations can be formulated and solved in this parameter space. 
A similar parameterization of nonunitary PR ˝lter banks and transmultiplexers seems impossible and it 
is not too di°cult to intuitively see why. Consider the following analogy: a PR ˝lter bank is akin to a 
left-invertible matrix and a PR transmultiplexer to a right-invertible matrix. If L = M , the PR ˝lter 
bank is akin to an invertible matrix. A unitary ˝lter bank is akin to a left-unitary matrix, a unitary 
transmultiplexer to a right-unitary matrix, and when L = M , either of them to a unitary matrix. Left-
unitary, right-unitary and in particular unitary matrices can be parameterized using Givens' rotations or 
Householder transformations [182]. However, left-invertible, right-invertible and, in particular, invertible 
matrices have no general parameterization. Also, unitariness allows explicit parameterization of ˝lter banks 
and transmultiplexers which just PR alone precludes. The analogy is even more appropriate: There are 
two parameterizations of unitary ˝lter banks and transmultiplexers that correspond to Givens' rotation and 
Householder transformations, respectively. All our discussions on ˝lter banks and transmultiplexers carry 
over naturally with very small notational changes to the multi-dimensional case where downsampling is by 
some integer matrix [197]. However, the parameterization result we now proceed to develop is not known in 
the multi-dimensional case. In the two-dimensional case, however, an implicit, and perhaps not too practical 
(from a ˝lter-design point of view), parameterization of unitary ˝lter banks is described in [26]. 

Consider a unitary ˝lter bank with ˝nite-impulse response ˝lters (i.e., for all i, hi is a ˝nite sequence). 
Recall that without loss of generality, the ˝lters can be shifted so that Hp (z) is a polynomial in z−1 . In this� � −1case Gp (z) = Hp z is a polynomial in z. Let 

K−1X 
Hp (z) = −khp (k) z . (9.29) 

k=0 

That� is,� Hp (z) is a matrix polynomial in −1z with coe°cients hp (k) and degree K − 1. Since 
−1 K−1Hp

T z Hp (z) = I, from (9.29) we must have hTp (0) hp (K − 1) = 0 as it is the coe°cient of z� � 
in the product Hp

T z−1 Hp (z). Therefore hp (0) is singular. Let PK−1 be the unique projection ma-

trix onto the range of hp (K − 1) (say of dimension δK−1). Then hp(0)
T 
PK−1 = 0 = PK−1hp (0). Also 

PK−1h (K − 1) = h (K − 1) and hence (I − PK−1) h (K − 1) = 0. Now [I − PK−1 + zPK−1] Hp (z) is a ma-
trix polynomial of degree at most K − 2. If h (0) and h (K − 1) are nonzero (an assumption one makes 
without loss of generality), the degree is preciselyK − 2. Also it is unitary since I − PK−1 + zPK−1 is uni-
tary. Repeated application of this procedure (K − 1) times gives a degree zero (constant) unitary matrix V0. 
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The discussion above shows that an arbitrary unitary polynomial matrix of degree K − 1 can be expressed 
algorithmically uniquely as described in the following theorem: � � 

Theorem 44 For a polynomial matrix Hp (z), unitary on the unit circle (i.e., Hp
T z−1 Hp (z) = I), and 

of polynomial degree K − 1, there exists a unique set of projection matrices Pk (each of rank some integer 
δk), such that 

1Y � � 
Hp (z) = { I − Pk + z −1Pk }V0. (9.30) 

k=K−1 

Remark: Since the projection Pk is of rank δk, it can be written as v1v
T + ... + vδk v

T , for a nonunique set1 δk 

of orthonormal vectors vi. Using the fact that 

j−1� � �� Y � �
T T −1 T T T −1 TI − vj vj − vj−1vj−1 + z vj vj + vj−1vj−1 = I − vivi + z vivi , (9.31) 

i=jP 
de˝ning Δ = kδk and collecting all the vj 's that de˝ne the Pk's into a single pool (and reindexing) we 
get the following factorization: 

1Y � �
T −1 THp (z) = { I − vkvk + z vkvk }V0. (9.32) 

k=Δ 

If Hp (z) is the analysis bank of a ˝lter bank, then notice that Δ (from (9.32)) is the number of storage 
elements required to implement the analysis bank. The minimum number of storage elements to implement 
any transfer function is called the McMillan degree and in this case Δ is indeed the McMillan degree [528]. 
Recall that PK is chosen to be the projection matrix onto the range of hp (K − 1). Instead we could 
have chosen PK to be the projection onto the nullspace of hp (0) (which contains the range of hp (K − 1)) 
or any space sandwiched between the two. Each choice leads to a di˙erent sequence of factors PK and 
corresponding δk (except when the range and nullspaces in question coincide at some stage during the order 
reduction process). However, Δ, the McMillan degree is constant. 

Equation (9.32) can be used as a starting point for ˝lter bank design. It parameterizes all unitary ˝lter 
banks with McMillan degree Δ. If Δ = K, then all unitary ˝lter banks with ˝lters of length N ≤ MK 
are parameterized using a collection of K − 1 unitary vectors, vk, and a unitary matrix, V0. Each unitary 
vector has (M − 1) free parameters, while the unitary matrix has M (M − 1) /2 free parameters for a total⎛ ⎞ ⎝M 
of (K − 1) (M − 1) + ⎠ free parameters for Hp (z). The ˝lter bank design problem is to choose these 

2 

free parameters to optimize the �usefulness� criterion of the ˝lter bank. 
If L > M , and Hp (z) is left-unitary, a similar analysis leads to exactly the same factorization as 

before except that V0 is a left unitary matrix. In this case, the number of free parameters is given by ⎛ ⎞ ⎛ ⎞ 
(K − 1) (L − 1) + ⎝L⎠ − ⎝M⎠. For a transmultiplexer with L < M , one can use the same factorization 

2 2 

above for Hp
T (z) (which is left unitary). Even for a ˝lter bank or transmultiplexer with L = M , factorizations 

of left-/right-unitary Hp (z) is useful for the following reason. Let us assume that a subset of the analysis 
˝lters has been predesigned (for example in wavelet theory one sometimes independently designs h0 to be a 
K-regular scaling ˝lter, as in Chapter: Regularity, Moments, and Wavelet System Design ). The submatrix 
of Hp (z) corresponding to this subset of ˝lters is right-unitary, hence its transpose can be parameterized as 
above with a collection of vectors vi and a left-unitary V0. Each choice for the remaining columns of V0 gives 
a choice for the remaining ˝lters in the ˝lter bank. In fact, all possible completions of the original subset 
with ˝xed McMillan degree are given this way. 
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Orthogonal ˝lter banks are sometimes referred to as lossless ˝lter banks because the collective energy of 
the subband signals is the same as that of the original signal. If U is an orthogonal matrix, then the signals 
x (n) and Ux (n) have the same energy. If P is an orthogonal projection matrix, then 

2 2 2kxk = kPxk + k (I − P ) xk . (9.33) 

For any give X (z), X (z) and z−1X (z) have the same energy. Using the above facts, we ˝nd that for any 
projection matrix, P , � � def−1PDp (z) = I − P + z Xp (z) = T (z) Xp (z) (9.34) 

has the same energy as Xp (z). This is equivalent to the fact that T (z) is unitary on the unit circle (one 
can directly verify this). Therefore (from (9.30)) it follows that the subband signals have the same energy 
as the original signal. 

In order to make the free parameters explicit for ˝lter design, we now describe V0 and {vi} using angle 
parameters. First consider vi, with kvik = 1. Clearly, vi has (M − 1) degrees of freedom. One way to 
parameterize vi using (M − 1) angle parameters θi,k, k ∈ {0, 1, ..., M − 2} would be to de˝ne the components 
of vi as follows: Qj−1{ sin (θi,l)}cos (θi,j ) for j ∈ {0, 1, ..., M − 2}

(vi)j = { l=0QM −1 
(9.35) 

{ sin (θi,l)} for j = M − 1.l=0 ⎛ ⎞ ⎝M 
As for V0, it being an M × M orthogonal matrix, it has ⎠ degrees of freedom. There are two well 

2 

known parameterizations of constant orthogonal matrices, one based on Givens' rotation (well known in QR 
factorization etc. [134]), and another based on Householder re˛ections. In the Householder parameterization 

MY−1 � � 
= I − 2viv T , (9.36)V0 i 

i=0 � � 
where vi are unit norm vectors with the ˝rst i components of vi being zero. Each matrix factor I − 2vivi

T 

when multiplied by a vector q, re˛ects q about the plane perpendicular to vi, hence the name Householder 
re˛ections. Since the ˝rst i components of vi is zero, and kvik = 1, vi has M − i − 1 degrees of freedom. 
Each being a unit vector, they can be parameterized as before using M − i − 1 angles. Therefore, the total 
degrees of freedom are ⎛ ⎞ 

MX−1 MX−1 ⎝M 
(M − 1 − i) = i = ⎠ . (9.37) 

2i=0 i=0 

In summary, any orthogonal matrix can be factored into a cascade of M re˛ections about the planes 
perpendicular to the vectors vi. 

Notice the similarity between Householder re˛ection factors for V0 and the factors of Hp (z) in (9.32). 
Based on this similarity, the factorization of unitary matrices and vectors in this section is called the House-
holder factorization. Analogous to the Givens' factorization for constant unitary matrices, also one can 
obtain a factorization of unitary matrices Hp (z) and unitary vectors V (z)[137]. However, from the points 
of view of ˝lter bank theory and wavelet theory, the Householder factorization is simpler to understand and 
implement except when M = 2. 

Perhaps the simplest and most popular way to represent a 2×2 unitary matrix is by a rotation parameter 
(not by a Householder re˛ection parameter). Therefore, the simplest way to represent a unitary 2 × 2 matrix 
Hp (z) is using a lattice parameterization using Given's rotations. Since two-channel unitary ˝lter banks 
play an important role in the theory and design of unitary modulated ˝lter banks (that we will shortly 
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address), we present the lattice parameterization [537]. The lattice parameterization is also obtained by an 
order-reduction procedure we saw while deriving the Householder-type factorization in (9.30). 

Theorem 45 Every unitary 2 × 2 matrix Hp (z) (in particular the polyphase matrix of a two channel 
FIR unitary ˝lter bank) is of the form 

Hp (z) = 

⎡⎣ 1 0 
⎤⎦R (θK−1) ZR (θK−2) Z...ZR (θ1) ZR (θ0) , (9.38) 

0 ±1 

where 

R (θ) = 

⎡⎣ ⎤⎦ and Z 

⎡ 
1⎣ ⎤⎦ (9.39) 

cosθ sinθ 0 
= 

−1−sinθ cosθ 0 z 

Equation (9.38) is the unitary lattice parameterization of Hp (z). The ˝lters H0 (z) and H1 (z) are given by ⎡⎣ H0 (z) 
⎤⎦ = Hp z 

2
� ⎡⎣ 1 

⎤⎦ . (9.40)
−1H1 (z) z 

By changing the sign of the ˝lter h1 (n), if necessary, one can always write Hp (z) in the form 

Hp (z) = R (θK−1) ZR (θK−2) Z...ZR (θ0) . (9.41)� 
Now, if H0 

R
,j (z) is the re˛ection of H0,j (z) (i.e., H0,j (z) = z−K+1H0,j z

−1 ), then (from the algebraic form 
of R (θ)) ⎡⎣ H0,0 (z) H0,1 (z) 

⎤⎦ = 

⎡⎣ H0,0 (z) H0,1 (z) 
⎤⎦ . (9.42) 

H1,0 (z) H1,1 (z) −H0 
R
,1 (z) H0 

R
,0 (z) 

With these parameterizations, ˝lter banks can be designed as an unconstrained optimization problem. 
The parameterizations described are important for another reason. It turns out that the most e°cient 
(from the number of arithmetic operations) implementation of unitary ˝lter banks is using the Householder 
parameterization. With arbitrary ˝lter banks, one can organize the computations so as capitalize on the 
rate-change operations of upsampling and downsampling. For example, one need not compute values that 
are thrown away by downsampling. The gain from using the parameterization of unitary ˝lter banks is 
over and above this obvious gain (for example, see pages 330-331 and 386-387 in [528]). Besides, with small 
modi˝cations these parameterizations allow for unitariness to be preserved, even under ˝lter coe°cient 
quantization�with this having implications for ˝xed-point implementation of these ˝lter banks in hardware 
digital signal processors [528]. 

9.3 Unitary Filter Banks�Some Illustrative Examples 

A few concrete examples of M -band unitary ˝lter banks and their parameterizations should clarify our 
discussion. 

First consider the two-band ˝lter bank associated with Daubechies' four-coe°cient scaling function and 
wavelet that we saw in Section: Parameterization of the Scaling Coe°cients (Section 6.9: Parameterization 
of the Scaling Coe°cients). Recall that the lowpass ˝lter (the scaling ˝lter) is given by 

n 0 
√ 

1 
√ 

2 
√ 

3 
√ 

h0 (n) 1+ 3√ 
4 2 

3+ 3√ 
4 2 

3− 3√ 
4 2 

1− 3√ . 
4 2 
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Table 9.1 

The highpass ˝lter (wavelet ˝lter) is given by h1 (n) = (−1)nh0 (3 − n), and both (9.1) and (9.2) are 
satis˝ed with gi (n) = hi (−n). The matrix representation of the analysis bank of this ˝lter bank is given by 

d = Hx = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
x. (9.43) 

. . . . . . . . . . . . . . . . . . 
√ √ √ √ 

1− 3√ 
4 2 

3− 3√ 
4 2 

3+ 3√ 
4 2 

1+ 3√ 
4 2 

0 0 
. . . 

√ 
− 1+ 3√ 

√ 
3+ 3√ 

√ 
− 3− 3√ 

√ 
1− 3√ 0 0 

. . . 
4 2 4 2 4 2 4 2√ √ √ √ 

1− 3 3− 3 3+ 3 1+ 30 0 √ √ √ √ 
4 2 4 2 4 2 4 2√ √ √ √ 

− 1+ 3 3+ 3 − 3− 3 1− 30 0 √ √ √ √ 
4 2 4 2 4 2 4 2 

. . . . . . . . . . . . . . . . . . . . . 

One readily veri˝es that HT H = I and HHT = I. The polyphase representation of this ˝lter bank is given 
by ⎡⎣ ⎤⎦ � �

−3 
√ � √ � �√ √ −1 + z−1 1 −1 + 3 3 3 + 3 31 + z � � √ � � √ � �Hp (z) = √ , (9.44)√ √ −1 −14 2 3 + 3 + z 1 − 3 −3 + 3 − z 1 + 3 �� −1 −1and one can show that Hp

T z Hp (z) = I and Hp (z) Hp
T z = I. The Householder factorization of 

Hp (z) is given by � �
T −1 TI − v1v1 + z v1v1Hp (z) = V0, (9.45) 

where ⎡⎣ ⎤⎦ = 

⎡⎣ √ √ 
1/ 2 1/ 2 
√ √ 

⎤⎦ . (9.46) 
sin (π/12) 

and V0v1 = 
cos (π/12) 1/ 2 −1/ 2 

Incidentally, all two-band unitary ˝lter banks associated with wavelet tight frames have the same value of 
V0. Therefore, all ˝lter banks associated with two-band wavelet tight frames are completely speci˝ed by a set 
of orthogonal vectors vi, K − 1 of them if the h0 is of length 2K. Indeed, for the six-coe°cient Daubechies 
wavelets (see Section: Parameterization of the Scaling Coe°cients (Section 6.9: Parameterization of the 
Scaling Coe°cients)), the parameterization of Hp (z) is associated with the following two unitary vectors 

T T(since K = 3): v = [−.3842.9232] and v = [−.1053 − .9944].1 2 
The Givens' rotation based factorization of Hp (z) for the 4-coe°cient Daubechies ˝lters given by: ⎡⎣ cosθ0 z−1sinθ0 

⎡⎣ ⎤⎦ cosθ1 sinθ1 

⎤⎦Hp (z) = , (9.47) 
−sinθ0 z−1cosθ0 −sinθ1 cosθ1 

where θ0 = π 
3 and θ1 = − 12 

π . The fact that the ˝lter bank is associated with wavelets is precisely because 
θ0 + θ1 = π More generally, for a ˝lter bank with ˝lters of length 2K to be associated with wavelets, PK−1

4 
π 

. 

θk = . This is expected since for ˝lters of length 2K to be associated with wavelets we have seen k=0 4 
(from the Householder factorization) that there are K − 1 parameters vk. Our second example belongs to a 
class of unitary ˝lter banks called modulated ˝lter banks, which is described in a following section. A Type 
1 modulated ˝lter bank with ˝lters of length N = 2M and associated with a wavelet orthonormal basis is 
de˝ned by ����r �� 

1 π (i + 1) (n + .5) π πi (n + .5) π 
hi (n) = sin − (2i + 1) − sin − (2i + 1) , (9.48)

2M M 4 M 4 
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where i ∈ {0, ..., M − 1} and n ∈ {0, ..., 2M − 1}[202], [216]. Consider a three-band example with length six 
˝lters. In this case, K = 2, and therefore one has one projection P1 and the matrix V0. The projection is 
one-dimensional and given by the Householder parameter ⎡ ⎢⎢⎣ − 

1 
√ 
2 

⎤ ⎥⎥⎦ 
⎡ ⎢⎢⎣ − 

⎤ ⎥⎥⎦ . (9.49) 

1 1 1 
√ √1 1 

and V0 = √T 3+1 
2 1 3−1√v = 1 26 3 √ √ 
3−1 3+11 1 −2 2 

The third example is another Type 1 modulated ˝lter bank with M = 4 and N = 8. The ˝lters are given 
in (9.48). Hp (z) had the following factorization � � 

I − P1 + z −1P1Hp (z) = V0, (9.50) 

where P1 is a two-dimensional projection P1 = v1v1 
T + v2v2 

T (notice the arbitrary choice of v1 and v2) given 
by 

v1 = 

⎡ ⎢⎢⎢⎢⎢⎣ 
0.41636433418450 

−0.78450701561376 
0.32495344564406 

⎤ ⎥⎥⎥⎥⎥⎦ , v2 = 

⎡ ⎢⎢⎢⎢⎢⎣ 
0.00000000000000 

−0.14088210492943 
0.50902478635868 

⎤ ⎥⎥⎥⎥⎥⎦ (9.51) 

0.32495344564406 −0.84914427477499 

and 

1 
V0 = 

2 

⎡ ⎢⎢⎢⎢⎢⎣ 
1 1 1 1 
√ √ 

− 2 0 2 0 
√ √ 

0 2 0 − 2 

1 −1 1 −1 

⎤ ⎥⎥⎥⎥⎥⎦ . (9.52) 

Notice that there are in˝nitely many choices of v1 and v2 that give rise to the same projection P1. 

9.4 M-band Wavelet Tight Frames 

In Section 9.2 (Unitary Filter Banks), Theorem 7 , while discussing the properties of M -band wavelet 
systems, we saw that the lowpass ˝lter h0 (h in the notation used there) must satisfy the linear constraint P √ 

n h0 (n) = M . Otherwise, a scaling function with nonzero integral could not exit. It turns out that 
this is precisely the only condition that an FIR unitary ˝lter bank has to satisfy in order for it to generate 
an M -band wavelet system [316], [193]. Indeed, if this linear constraint is not satis˝ed the ˝lter bank does 

P 
Pnot generate a wavelet system. 

hi (n) = 0 for i ∈ {1, 2, ..., M − 1} (because of Eqn. (9.1)). We now give the precise result connectingh 
FIR unitary ˝lter banks and wavelet tight frames. 

This single linear constraint (for unitary ˝lter banks) also implies that 

√ ihh0 (n) = n 
N−1supported, scaling function ψ0 (t) ∈ L2 (R) (with support in 0, M−1 , assuming h0 is supported in [0, N − 1]) 

determined by the scaling recursion: 

Theorem 46 Given an FIR unitary ˝lter bank with M , there exists an unique, compactly 

√ X 
ψ0 (t) = M h0 (k) ψ0 (Mt − k) . (9.53) 

k 

De˝ne wavelets, ψi (t), 

√ X 
ψi (t) = M hi (k) ψ0 (Mt − k) i ∈ {1, 2, ..., M − 1}, (9.54) 

k 
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and functions, ψi,j,k (t), � � 
M jψi,j,k (t) = M j/2ψi t − k . (9.55) 

Then {ψi,j,k} forms a tight frame for L2 (R). That is, for all f ∈ L2 (R) 

MX−1 ∞X 
f (t) = < f, ψi,j,k > ψi,j,k (t) . 

i=1 j,k=−∞ 

(9.56) 

Also, 

MX−1 ∞ ∞X X X 
f (t) = < f, ψ0,0,k > ψ0,0,k (t) + < f, ψi,j,k > ψi,j,k (t) . 

k i=1 j=1 k=−∞ 

(9.57) 

Remark: A similar result relates general FIR (not necessarily unitary) ˝lter banks and M -band wavelet 
frames p. 257, p. 260, p. 261. 

Starting with (9.53), one can calculate the scaling function using either successive approximation or inter-
polation on the M -adic rationals�i.e., exactly as in the two-band case in Chapter Section 8.2 (Multiplicity-M 
(M-Band) Scaling Functions and Wavelets). Equation (9.54) then gives the wavelets in terms of the scaling 
function. As in the two-band case, the functions ψi (t), so constructed, invariably turn out highly irregular 
and sometimes fractal. The solution, once again, is to require that several moments of the scaling function 
(or equivalently the moments of the scaling ˝lter h0) are zero. This motivates the de˝nition of K-regular 
M -band scaling ˝lters: A unitary scaling ˝lter h0 is said to be K regular if its Z-transform can be written 
in the form � �K−1 −(M −1)1 + z + ... + z 

H0 (z) = Q (z) , (9.58)
M P √ 

for maximal possible K. By default, every unitary scaling ˝lter h0 is one-regular (because n h0 (n) = M 
- see , Theorem (9.58) for equivalent characterizations of K-regularity). Each of the K-identical factors in 
Eqn. adds an extra linear constraint on h0 (actually, it is one linear constraint on each of the M polyphase 
subsequences of h0 - see ). 

There is no simple relationship between the smoothness of the scaling function and K-regularity. How-
ever, the smoothness of the maximally regular scaling ˝lter, h0, with ˝xed ˝lter length N , tends to be an 
increasing function of N . Perhaps one can argue that K-regularity is an important concept independent of 
the smoothness of the associated wavelet system. K-regularity implies that the moments of the wavelets 
vanish up to order K − 1, and therefore, functions can be better approximated by using just the scaling 
function and its translates at a given scale. Formulae exist for M -band maximally regular K-regular scaling 
˝lters (i.e., only the sequence h0) [486]. Using the Householder parameterization, one can then design the 
remaining ˝lters in the ˝lter bank. 

The linear constraints on h0 that constitute K-regularity become nonexplicit nonlinear constraints on 
the Householder parameterization of the associated ˝lter bank. However, one-regularity can be explicitly 
incorporated and this gives a parameterization of all M -band compactly supported wavelet tight frames. To 
see, this consider the following two factorizations of Hp (z) of a unitary ˝lter bank. 

1Y � � 
Hp (z) = I − Pk + z −1Pk V0, (9.59) 

k=K−1 

and 

1Y � � 
HT (z) = I − Qk + z −1Qk W0. (9.60)p 

k=K−1 
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Since Hp (1) = V0 and Hp
T (1) = W0, V0 = W0 

T . The ˝rst column of W0 is the unit vector 
T

[H0,0 (1) , H0,1 (1) , ..., H0,M−1 (1)] . Therefore, 

MX−1 

H0,k(1)
2 
= 1. (9.61) 

k=0 P √ 
But since n h0 (n) = H0 (1) = M , 

MX−1 √ 
H0,k (1) = M. (9.62) 

k=0 h √ √ √ i 
√1Therefore, for all k, H0,k (1) = . Hence, the ˝rst row of V0 is 1/ M, 1/ M, ..., 1/ M . In other 
M 

words, a unitary ˝lter bank gives rise to a WTF i˙ the ˝rst row of V0 in the Householder parameterization√ 
is the vector with all entries 1/ M . 

Alternatively, consider the Given's factorization of Hp (z) for a two-channel unitary ˝lter bank. 

1Y ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦cosθi z−1sinθi cosθ0 sinθ0 
Hp (z) = { } . (9.63) 

−sinθi z−1cosθi −sinθ0 cosθ0i=K−1 

Since for a WTF we require ⎡⎣ 1 1√ √ 
2 2 

⎤⎦ = 

⎡ 
H (1)0 0⎣ , H1,0 (1) 

⎤⎦ ⎡⎣ ⎤⎦cos (Θ) sin (Θ) 
, (9.64)= 

1− √1 √ H0,1 (1) H1,1 (1) −sin (Θ) cos (Θ)
2 2 PK−1 

we have Θ = k=0 θk = π This is the condition for the lattice parameterization to be associated with4 . 
wavelets. 

9.5 Modulated Filter Banks 

Filter bank design typically entails optimization of the ˝lter coe°cients to maximize some goodness measure 
subject to the perfect reconstruction constraint. Being a constrained (or unconstrained for parameterized 
unitary ˝lter bank design) nonlinear programming problem, numerical optimization leads to local minima, 
with the problem exacerbated when there are a large number of ˝lter coe°cients. To alleviate this problem 
one can try to impose structural constraints on the ˝lters. For example, if Figure 9.2 is the desired ideal 
response, one can impose the constraint that all analysis (synthesis) ˝lters are obtained by modulation of 
a single �prototype� analysis (synthesis) ˝lter. This is the basic idea behind modulated ˝lter banks [357], 
[295], [528], [396], [202], [196], [186], [331]. In what follows, we only consider the case where the number of 
˝lters is equal to the downsampling factor; i.e., L = M . ���The frequency responses in Figure 9.2 can be obtained by shifting an the response of an ideal lowpass 

π π 1 π˝lter (supported in − , ) by i + , i ∈ {0, ..., M − 1}. This can be achieved by modulating with2M 2M 2 M 
a cosine (or sine) with appropriate frequency and arbitrary phase. However, some choices of phase may be 
incompatible with perfect reconstruction. A general choice of phase (and hence modulation, that covers all 
modulated ˝lter banks of this type) is given by the following de˝nition of the analysis and synthesis ˝lters: �� 

π 1 
�� �� α 

n −hi (n) = h (n) cos i + , i ∈ R (M) (9.65)
M 2 2 �� 
π 1 

�� �� α 
gi (n) = g (n) cos i + n + , i ∈ R (M) (9.66)

M 2 2 
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Here α is an integer parameter called the modulation phase. Now one can substitute these forms for the 
˝lters in (9.1) to explicit get PR constraints on the prototype ˝lters h and g. This is a straightforward 
algebraic exercise, since the summation over i in (9.1) is a trigonometric sum that can be easily computed. 
It turns out that the PR conditions depend only on the parity of the modulation phase α. Hence without 
loss of generality, we choose α ∈ {M − 1,M − 2}�other choices being incorporated as a preshift into the 
prototype ˝lters h and g. 

Thus there are two types of MFBs depending on the choice of modulation phase: 

M − 1 Type 1 Filter Bank 
α = { (9.67) 

M − 2 Type 2 Filter Bank 

The PR constraints on h and g are quite messy to write down without more notational machinery. But 
the basic nature of the constraints can be easily understood pictorially. Let the M polyphase components 
of h and g respectively be partitioned into pairs as suggested in list, p. 163. Each polyphase pair from h 
and an associated polyphase pair g (i.e., those four sequences) satisfy the PR conditions for a two-channel 
˝lter bank. In other words, these subsequences could be used as analysis and synthesis ˝lters respectively 
in a two-channel PR ˝lter bank. As seen in list, p. 163, some polyphase components are not paired. The 
constraints on these sequences that PR imposes will be explicitly described soon. Meanwhile, notice that 
the PR constraints on the coe°cients are decoupled into roughly M/2 independent sets of constraints (since 
there are roughly M/2 PR pairs in list, p. 163). To quantify this, de˝ne J : 

M 
2 Type 1, M even 

J = { 
M−1 
2 

M−2 
2 

Type 1, M odd 

Type 2, M even 
(9.68) 

M−1 
2 Type 2, M odd. 

In other words, the MFB PR constraint decomposes into a set of J two-channel PR constraints and a few 
additional conditions on the unpaired polyphase components of h and g. 
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Figure 9.4: Two-Channel PR Pairs in a PR MFB 

We ˝rst de˝ne M polyphase components of the analysis and synthesis prototype ˝lters, viz., Pl (z) and 
Ql (z) respectively. We split these sequences further into their even and odd components to give Pl,0 (z), 
Pl,1 (z), Ql,0 (z) and Ql,1 (z) respectively. More precisely, let 

MX−1 MX−1� � � � � � ��
M −l 2M 2MH (z) = z −lPl z = z Pl,0 z + z −M Pl,1 z , (9.69) 

l=0 l=0 
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G (z) = 
MX−1 � �

M z lQl z = 
MX−1 � � � � ��

l 2M 2M z Ql,0 z + z M Ql,1 z , (9.70) 
l=0 l=0 

and let ⎡ ⎤ ⎣ Pl,0 (z)P (z) = 
Pl,1 (z) ⎦ (9.71) 

Pα−l,0 (z) −Pα−l,1 (z) 

with Q (z) de˝ned similarly. Let I be the 2 × 2 identity matrix. 
Theorem 47 (Modulated Filter Banks PR Theorem) An modulated ˝lter bank (Type 1 or Type 

2) (as de˝ned in (9.65) and (9.66)) is PR i˙ for l ∈ R (J) 

Pl (z) QT (z) = (9.72)l 

,0 (z) Qα 
2 ,0 (z) = M 

1 . In the Type 2 case, we further requireand furthermore if α is even Pα 
2 

2PM−1 (z) QM −1 (z) = .M 
The result says that Pl, Pα−l, Ql and Qα−l form analysis and synthesis ˝lters of a two-channel PR ˝lter 

bank ((9.1) in Z-transform domain). 
Modulated ˝lter bank design involves choosing h and g to optimize some goodness criterion while subject 

to the constraints in the theorem above. 

9.5.1 Unitary Modulated Filter Bank 

In a unitary bank, the ˝lters satisfy gi (n) = hi (−n). From (9.15) and (9.16), it is clear that in a modulated 
˝lter bank if g (n) = h (−n), then gi (n) = hi (−n). Imposing this restriction (that the analysis and synthesis 
prototype ˝lters are re˛ections of each other) gives PR conditions for unitary modulated ˝lter banks. That� � � � −1 −1g (n) = h (−n) means that Pl (z) = Ql z and therefore Ql (z) = Pl z . Indeed, for PR, we require � � 2 Pl (z) Pl

T z −1 = I. (9.73)
M 

This condition is equivalent to requiring that Pl and Pα−l are analysis ˝lters of a two-channel unitary ˝lter 
bank. Equivalently, for l ∈ R (M), Pl,0 and Pl,1 are power-complementary. 

Corollary 6 (Unitary MFB PR Theorem) A modulated ˝lter bank (Type 1 or Type 2) is unitary 
i˙ for l ∈ R (J), Pl,0 (z) and Pl,1 (z) are power complementary. � � � �−1 −1Pl,0 (z) Pl,0 z + Pl,1 (z) Pl,1 z � � = 

2 
, l ∈ R (M)

M 
(9.74) 

,0 (z) Pα 
2 ,0 z

−1 = 1 
M� (i.e., P� α 

2 ,0 (z) has to be √1 
M 
zk for some integer k).Furthermore, when α is even Pα 

2 

−1 2 √2 kIn the Type 2 case, we further require PM−1 (z) PM−1 z = M (i.e., PM−1 (z) has to be z for some 
M 

integer k). 
Unitary modulated ˝lter bank design entails the choice of h, the analysis prototype ˝lter. There are J 

associated two-channel unitary ˝lter banks each of which can be parameterized using the lattice parame-
terization. Besides, depending on whether the ˝lter is Type 2 and/or alpha is even one has to choose the 
locations of the delays. 

For the prototype ˝lter of a unitary MFB to be linear phase, it is necessary that � �−2k+1Pl 
−1Pα−l (z) = z z , (9.75) � � 

for some integer k. In this case, the prototype ˝lter (if FIR) is of length 2Mk and symmetric about Mk − 12 
in the Type 1 case and of length 2Mk − 1 and symmetric about (Mk − 1) (for both Class A and Class B 
MFBs). In the FIR case, one can obtain linear-phase prototype ˝lters by using the lattice parameterization 
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[537] of two-channel unitary ˝lter banks. Filter banks with FIR linear-phase prototype ˝lters will be said 
to be canonical. In this case, Pl (z) is typically a ˝lter of length 2k for all l. For canonical modulated ˝lter 
banks, one has to check power complementarity only for l ∈ R (J). 

9.6 Modulated Wavelet Tight Frames 

For all M , there exist M -band modulated WTFs. The simple linear constraint on h0 becomes a set of J 
linear constraints, one each, on each of the J two-channel unitary lattices associated with the MFB. 

Theorem 48 (Modulated Wavelet Tight Frames Theorem) Every compactly supported modu-
lated WTF is associated with an FIR unitary MFB and is parameterized by J unitary lattices such that the 
sum of the angles in the lattices satisfy (for l ∈ R (J)) Eqn. (9.76). X � � 

def π π α 
θl,k = Θl = + − l . (9.76)

4 2M 2 
k 

If a canonical MFB has Jk parameters, the corresponding WTF has J (k − 1) parameters. 
Notice that even though the PR conditions for MFBs depended on whether it is Type 1 or Type 2, the 

MWTF conditions are identical. Now consider a Type 1 or Type 2 MFB with one angle parameter per 
lattice; i.e., N = 2M (Type 1) or N = 2M − 1 (Type 2). This angle parameter is speci˝ed by the MWTF 
theorem above if we want associated wavelets. This choice of angle parameters leads to a particularly simple 
form for the prototype ˝lter. 

In the Type 1 case [202], [196], r � �2 π 
h (n) = sin (2n + 1) . (9.77)

M 4M 

and therefore q h � � � �i 
π(i+1)(n+.5) πi(n+.5)hi (n) = 1 sin − (2i + 1) π − sin − (2i + 1) π . (9.78)

2M M 4 M 4 

In the Type 2 case [202], r � �2 π 
h (n) = sin (n + 1) , (9.79)

M 2M 

and hence r � � � � �� 
1 π (i + 1) (n + 1) π πi (n + 1) π 

hi (n) = sin − (2i + 1) − sin − (2i + 1) . (9.80)
2M M 4 M 4 

9.7 Linear Phase Filter Banks 

In some applications. it is desirable to have ˝lter banks with linear-phase ˝lters [481]. The linear-phase 
constraint (like the modulation constraint studied earlier) reduces the number of free parameters in the 
design of a ˝lter bank. Unitary linear phase ˝lter banks have been studied recently [481], [198]. In this 
section we develop algebraic characterizations of certain types of linear ˝lter banks that can be used as a 
starting point for designing such ˝lter banks. 

In this section, we assume that the desired frequency responses are as in (9.2). For simplicity we also 
assume that the number of channels, M , is an even integer and that the ˝lters are FIR. It should be possible 
to extend the results that follow to the case when M is an odd integer in a straightforward manner. 

Consider an M -channel FIR ˝lter bank with ˝lters whose passbands approximate ideal ˝lters. Several 
transformations relate the M ideal ˝lter responses. We have already seen one example where all the ideal 
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˝lters are obtained by modulation of a prototype ˝lter. We now look at other types of transformations 
that relate the ˝lters. Speci˝cally, the ideal frequency response of hM−1−i can be obtained by shifting the 
response of the hi by π. This either corresponds to the restriction that 

n
hM−1−i (n) = (−1) hi (n) ; HM−1−i (z) = Hi (−z) ; HM−1−i (ω) = Hi (ω + π) , (9.81) 

or to the restriction that 

n 
; HM−1−i (ω) = H[U+2606]hM−1−i (n) = (−1) hi (N − 1 − n) ; HM−1−i (z) = HR (−z) (ω + π) (9.82)i i 

where N is the ˝lter length and for polynomial H (z), HR (z) denotes its re˛ection polynomial (i.e. the poly-
nomial with coe°cients in the reversed order). The former will be called pairwise-shift (or PS) symmetry (it 
is also known as pairwise-mirror image symmetry [397]) , while the latter will be called pairwise-conjugated-
shift (or PCS) symmetry (also known as pairwise-symmetry [397]). Both these symmetries relate pairs of 
˝lters in the ˝lter bank. Another type of symmetry occurs when the ˝lters themselves are symmetric or 
linear-phase. The only type of linear-phase symmetry we will consider is of the form 

hi (n) = ±hi (N − 1 − n) ; Hi (z) = ±HR (z) , (9.83)i 

where the ˝lters are all of ˝xed length N , and the symmetry is about N 
2 
−1 . For an M -channel linear-phase 

˝lter bank (with M an even integer), M/2 ˝lters each are even-symmetric and odd-symmetric respectively 
p. 270. 

We now look at the structural restrictions on Hp (z), the polyphase component matrix of the analysis 
bank that these three types of symmetries impose. Let J denote the exchange matrix with ones on the 
antidiagonal. Postmultiplying a matrix A by J is equivalent to reversing the order of the columns of A, 
and premultiplying is equivalent to reversing the order of the rows of A. Let V denote the sign-alternating 
matrix, the diagonal matrix of alternating ±1's. Postmultiplying by V , alternates the signs of the columns 
of A, while premultiplying alternates the signs of the rows of A. The polyphase components of H (z) are 
related to the polyphase components of HR (z) by re˛ection and reversal of the ordering of the components. PM −1 � � 
Indeed, if H (z) is of length Mm, and H (z) = l=0 z

−lHl z
M , then, PM−1 � � −Mm+1 −MHR (z) = z zlHl zl=0PM−1 � � �� 

= z−(M −1−l) z−mM +M Hl z
−M (9.84)

l=0 PM−1 � � −lHR M= z z .l=0 M−1−l 

Therefore � � R
HR (z) = (HM−1−l) (z) (9.85)

l 

and for linear-phase H (z), since HR (z) = ±H (z), � � 
HRHl (z) = ± (z) . (9.86)

M−1−l 

Lemma 2 For even M , Hp (z) is of the form 

PS Symmetry: ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎣ W0 (z) 

JW0 (z) V 

W1 (z) 
M/2

(−1) JW1 (z) V 
⎦ = ⎣ I 

0 

0 

J 
⎣ W0 (z)⎦ 
W0 (z) V 

W1 (z) 
M/2

(−1) W1 (z) V 
⎦ (9.87) 



182 CHAPTER 9. FILTER BANKS AND TRANSMULTIPLEXERS 

PCS Symmetry: 

W0 (z) W1 (z) J 
⎡⎣ ⎤⎦ = 

⎡⎣ I 0 
⎡⎣ ⎤⎦ W0 (z) W1 (z) J 

⎤⎦ (9.88)
M/2 M/2

JW R (z) V (−1) JW R (z) JV 0 J W R (z) V (−1) W R (z) JV 1 0 1 0 

Linear Phase: ⎡⎣ W0 (z) D0W R 
0 (z) J 

⎤⎦ = 

⎡⎣ W0 (z) D0W R 
0 (z)

⎡ 
I⎣ ⎤⎦ 0 

⎤⎦ (9.89) 
W1 (z) D1W R (z) J W1 (z) D1W R (z) 0 J1 1 ⎡⎣ W0 (z) W R 

0 (z) J 
⎤⎦ ⎡⎣ W0 (z) W R 

0 (z) 
⎡⎣ ⎤⎦ I 0 

⎤⎦ 
or 

Q = Q (9.90) 
W1 (z) −W R (z) J W1 (z) −W R (z) 0 J1 1 

Linear Phase and PCS: ⎡⎣ W0 (z) DW0 
R (z) J 

⎤⎦ = 

⎡⎣ I 0 
⎡⎣ ⎤⎦ W0 (z) DW0 

R 
⎤⎦(z) J 

(9.91)
M/2 M/2

JDW0 (z) V (−1) JW R (z) JV 0 J DW0 (z) V (−1) W R (z) JV 0 0 

Linear Phase and PS: ⎡⎣ W0 (z) DW0 
R (z) J 

⎤⎦ = 

⎡⎣ I 0 
⎡⎣ ⎤⎦ W0 (z) DW0 

R (z) J 
⎤⎦ 

M/2 M/2
JW0 (z) V (−1) JDW R (z) JV 0 JD DW0 (z) V (−1) W R (z) JV 0 0 

(9.92) 

Thus in order to generate Hp (z) for all symmetries other than PS, we need a mechanism that generates a 
pair of matrices and their re˛ection (i.e., W0 (z), W1 (z)W0 

R (z) and W1 
R (z)). In the scalar case, there are 

two well-known lattice structures, that generate such pairs. The ˝rst case is the orthogonal lattice [537], 
A Kthwhile the second is the linear-prediction lattice [426]. order orthogonal lattice is generated by the 

Y 
product 

K 
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ −1bi b0 Y0 (z) Y1 (z)ai z a0 def def{ } X (z) . (9.93)= = 

−1 −Y1 
R (z) Y0 

R (z)−bi z −b0ai a0i=0 

This lattice is always invertible (unless ai and bi are both zero!), and the inverse is anticausal since ⎡⎣ ai z−1bi 

⎤⎦ −1 

= 
1 

⎡⎣ ai −bi 
⎤⎦ (9.94).2−bi z−1ai a1 + bi 

2 
zbi zai 

Y 
As we have seen, this lattice plays a fundamental role in the theory of two-channel FIR unitary modulated 
˝lter banks. The hyperbolic lattice of order K generates the product 

K 
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ −1bi b0 Y0 (z) Y1 (z)ai z a0 def def{ } X (z) . (9.95)= = 

−1 Y R (z) Y R 
1 0 (z)bi z b0ai a0i=0 

where Y0 (z) and Y1 (z) are of order K. This lattice is invertible only when ai 
2 6= b2 

i (or equivalently 
(ai + bi) /2 and (ai − bi) /2 are nonzero) in which case the inverse is noncausal since ⎡⎣ ai z−1bi 

⎤⎦ −1 

= 
1 

⎡⎣ ai −bi 
⎤⎦ . (9.96)

−1 a2 − b2 
bi z ai 1 i −zbi zai 
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ai bi 
Since the matrix 

⎡⎣ ⎤⎦ 
bi ai 

can be orthogonal i˙ {ai, bi} = {±1, 0}, or {ai, bi} = {0, ±1}, the (2 × 2) 

matrix generated by the lattice can never be unitary. 
Formally, it is clear that if we replace the scalars ai and bi with square matrices of size M/2 × M/2 

then we would be able to generate matrix versions of these two lattices which can then be used to generate 
˝lter banks with the symmetries we have considered. We will shortly see that both the lattices can generate 
unitary matrices, and this will lead to a parameterization of FIR unitary Hp (z) for PCS, linear-phase, 
and PCS plus linear-phase symmetries. We prefer to call the generalization of the orthogonal lattice, the 
antisymmetric lattice and to call the generalization of the hyperbolic lattice, the symmetric lattice, which 
should be obvious from the form of the product. The reason for this is that the antisymmetric lattice may 
not generate a unitary matrix transfer function (in the scalar case, the 2 × 2 transfer function generated is 
always unitary). The antisymmetric lattice is de˝ned by the product 

KY ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦Ai z−1Bi A0 B0def 
= {X (z) } (9.97) 

−Bi z−1Ai −B0 A0i=1 

where Ai and Bi are constant square matrices of size M/2 × M/2. It is readily veri˝ed that X (z) is of the 
form ⎡⎣ ⎤⎦Y0 (z) Y1 (z)

X (z) = (9.98) 
−Y1 

R (z) Y0 
R (z) 

Given X (z), its invertibility is equivalent to the invertibility of the constant matrices, ⎡⎣ Ai Bi 

⎤⎦ since 

⎡⎣ Ai z−1Bi 

⎤⎦ = 

⎡⎣ Ai Bi 

⎡⎣ ⎤⎦ I 0 
⎤⎦ (9.99), 

−Bi Ai −Bi z−1Ai −Bi Ai 0 z−1I 

which, in turn is related to the invertibility of the complex matrices Ci = (Ai + ßBi) and Di = (Ai − ßBi), 
since, 

1 
⎡⎣ I I 

⎡⎣ ⎤⎦ Ci 0 
⎡⎣ ⎤⎦ I −ßI 

⎤⎦ = 

⎡⎣ Ai Bi 

⎤⎦ . (9.100)
2 ßI −ßI 0 Di I ßI −Bi Ai 

Moreover, the orthogonality of the matrix is equivalent to the unitariness of the complex matrix Ci (since 
Di ⎞⎠ ⎛⎝ 

is just its Hermitian conjugate). 

M/2 
⎤⎦ ⎡⎣ 

Since an arbitrary complex matrix of size M/2 × M/2 is determined 

Ai Bi 
by precisely 2 parameters, each of the matrices has that many degrees of freedom. 

2 −Bi Ai � 

Y 

Clearly when these matrices are orthogonal X (z) is unitary (on the unit circle) and XT z−1 X (z) = I. 
For unitary X (z) the converse is also true as will be shortly proved. 

The symmetric lattice is de˝ned by the product 

K 
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦Ai z−1Bi A0 B0def 

= {X (z) } (9.101) 
Bi z−1Ai B0 A0i=1 

Once again Ai and Bi are constant square matrices, and it is readily veri˝ed that X (z) written as a product 
above is of the form ⎡⎣ ⎤⎦X (z) = 

Y0 (z) Y1 (z) 

Y R (z) Y R (z)1 0 

(9.102) 
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The invertibility of X (z) is equivalent to the invertibility of ⎡⎣ Ai Bi 

⎤⎦ since 

⎡⎣ Ai z−1Bi 

⎤⎦ = 

⎡⎣ Ai Bi 

⎡⎣ ⎤⎦ I 0 
⎤⎦ (9.103), 

Bi Ai Bi z−1Ai Bi Ai 0 z−1I 

which in turn is equivalent to the invertibility of Ci = (Ai + Bi) and Di = (Ai − Bi) since 

1 
⎡⎣ I I 

⎡⎣ ⎤⎦ Ci 0 
⎡⎣ ⎤⎦ I I 

⎤⎦ = 

⎡⎣ Ai Bi 

⎤⎦ (9.104). 
2 I −I 0 Di I −I Bi Ai 

⎞⎠ ⎛⎝ 
The orthogonality of the constant matrix is equivalent to the orthogonality of the real matrices Ci 

M/2 

and 

Di, and since each real orthogonal matrix of size M/2 × M/2 is determined by parameters, the 
2 ⎛⎝ ⎞⎠M/2 

constant orthogonal matrices have 2 degrees of freedom. Clearly when the matrices are orthogonal 
2� 

XT z−1 X (z) = I. For the hyperbolic lattice too, the converse is true. 
We now give a theorem that leads to a parameterization of unitary ˝lter banks with the symmetries we 

have considered (for a proof, see [198]). 
Theorem 49 Let X (z) be a unitary M × M polynomial matrix of degree K. Depending on whether 

X (z) is of the form in (9.98), or (9.102), it is generated by an order Kantisymmetric or symmetric lattice. 

9.7.1 Characterization of Unitary Hp (z) � PS Symmetry 

The form of Hp (z) for PS symmetry in (9.87) can be simpli˝ed by a permutation. Let P be the permutation 
matrix that exchanges the ˝rst column with the last column, the third column with the last but third, etc. 
That is, 

P = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
. 

0 0 0 ... 0 0 1 

0 1 0 ... 0 0 0 

0 0 0 ... 1 0 0 
. . . . . . . . . . . . . . . ... . . . 

0 0 1 ... 0 0 0 

0 0 0 ... 0 1 0 

1 0 0 ... 0 0 0 

(9.105) 

Then the matrix 

⎡⎣ ⎤⎦ 1√ 

⎡⎣ ⎤⎦ ' ' W0 (z) W1 (z)W0 (z) W1 (z) 
in (9.87) can be rewritten as P ,

M/2 2 ' ' W0 (z) V (−1) W1 (z) V −W0 (z) W1 (z) 
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and therefore ⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦I 0 

J⎡⎣ 
W0 (z) W1 (z)

Hp (z) = 
M/2

(−1)0 W0 (z) V 

I 0 
⎡⎣ ⎤⎦ 

W1 (z) V 

' ' 
⎤⎦W0 (z) W1 (z)1 = √ P 

2 ' ' 0 J −W0 (z)⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ 
W1 (z) 

1 = √ 

⎡⎣ ⎤⎦ (9.106) 
' I 0 I I W0 (z) 0 

P ⎤⎦ 
2 ' J −I I 1 (z)⎡⎣ ⎤⎦ ⎡⎣ 

0 0 W 

' I I W0 (z) 0
1= √ P. 
2 ' −J J 0 W1 (z) 

For PS symmetry, one has the following parameterization of unitary ˝lter banks. 
Theorem 50 (Unitary PS Symmetry)Hp (z) of order K forms a unitary PR ˝lter bank with PS 

symmetry i˙ there exist unitary, order K, M/2 × M/2 matrices W0 
' (z) and W1 

' (z), such that ⎡⎣ I I 
⎡⎣ ⎤⎦ ' W0 (z) 0 

⎤⎦1 
Hp (z) = √ P. (9.107)

2 −J J 0 W1 
' (z) ⎛⎝M/2 

⎞⎠A unitary Hp, with PS symmetry is determined by precisely 2 (M/2 − 1) (L0 + L1)+2 parameters 
2 

where L0 ≥ K and L1 ≥ K are the McMillan degrees of W0 
' (z) and W1 

' (z) respectively. 

9.7.2 Characterization of Unitary Hp (z) � PCS Symmetry 

In this case ⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦ ⎡⎣ 
I 0 

J ⎤⎦ ⎡⎣ ⎤⎦ 
W0 (z) W1 (z) J 

W R (z) JV 1 

Hp (z) = 
M/2

W R 
0(−1)0 (z) V 

' ' 

⎡⎣ 
I 0 

J 

W W1J �R 
def 
= 0 

' 
�R ⎤⎦ 

W0 

P (9.108)
' − W0 J1⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦P. ' ' I 0 W W I 00 1�R�R = 

' ' 

Y 

0 J − W W 0 J1 0 

Hence from Lemma "Linear Phase Filter Banks"Hp (z) of unitary ˝lter banks with PCS symmetry can be 
parameterized as follows: 

Theorem 51 Hp (z) forms an order K, unitary ˝lter bank with PCS symmetry i˙ 

K 
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦ −1BiI 0 Ai A0 B0 I 0z 

{ }Hp (z) = P (9.109) 
−Bi z−1Ai −B00 J A0 0 Ji=1 ⎡⎣ ⎤⎦ ⎛⎝ ⎞⎠Ai Bi M/2 

where are constant orthogonal matrices. Hp (z) is characterized by 2K parameters. 
−Bi Ai 2 
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9.7.3 Characterization of Unitary Hp (z) � Linear-Phase Symmetry 

For the linear-phase case, ⎡⎣ W0 (z) W R (z)0 

⎡⎣ ⎤⎦ I 0 
⎤⎦Hp (z) = Q 

W1 (z) −W R (z) 0 J1 

1 
2 Q 

⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦ 

⎡ 
I⎣ ⎤⎦ 
0 

⎤⎦W R (z) − W R 
0 1I I 

−I⎡⎣ 
W0 (z) + W1 (z) (z) 0 

(9.110)= 
W0 (z) − W1 (z) (z) + W R 

1⎤ 
' ' ⎦ ⎡⎣ ⎤⎦ 

W R 
0I (z)⎡⎣ I 0 

J 

I I W0 (z)�R 

W1 (z)�R 
def √1 Q= . 

2 I −I W ' (z) W ' (z) 0 J1 0 

Therefore, we have the following Theorem: 
Theorem 52 Hp (z) of order K, forms a unitary ˝lter bank with linear-phase ˝lters i˙ 

KY ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦ −1BiI I Ai A0 B0 I 01 z 
√ { }Hp (z) = Q , (9.111)

−1Ai2 I −I Bi B0 A0 0 Jzi=1 

where 

⎡⎣ Ai Bi 

⎤⎦ ⎛⎝M/2 
⎞⎠are constant orthogonal matrices. Hp (z) is characterized by 2K parameters. 

Bi Ai 2 

9.7.4 Characterization of Unitary Hp (z) � Linear Phase and PCS Symmetry 

In this case, Hp (z) is given by ⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦DW0 
R (z) J 

⎡⎣ 
I 0 

0 

W0 (z)
Hp (z) = 

(−1)M/2
W R 
0J ⎡⎣ ⎤⎦ 

DW0 (z) V 

' ' 
⎤⎦ ⎤⎦ 

(z) JV 

(z) J 

(z) J 

�R 
I 0 W0 (z) D Wdef 0�R 

1 = √ P (9.112) ⎡⎣ ⎤⎦ ⎡⎣ 
2 0 −DW ' ' J 0 (z) W0⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦P. ' I 0 I D W0 (z) 0 I 0

1= √ �R2 0 J −D I 0 W ' (z) 0 J0 

Therefore we have proved the following Theorem: 
Theorem 53 Hp (z) of order K forms a unitary ˝lter bank with linear-phase and PCS ˝lters i˙ there 

exists a unitary, order K, M/2 × M/2 matrix W0 
' (z) such that ⎡⎣ I D 
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ I 0 

⎤⎦ ' W0 (z) 01 �RHp (z) = √ P. (9.113)
2 −JD J 0 W ' (z) 0 J0 ⎛⎝M/2 

⎞⎠(z) is determined by precisely (M/2 − 1) L + parameters where L ≥ K is theIn this case Hp 
2 

McMillan degree of W0 
' (z). 
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9.7.5 Characterization of Unitary Hp (z) � Linear Phase and PS Symmetry 

From the previous result we have the following result: 
Theorem 54Hp (z) of order K forms a unitary ˝lter bank with linear-phase and PS ˝lters i˙ there exists 

a unitary, order K, M/2 × M/2 matrix W0 
' (z) such that ⎡⎣ I D 

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ I 0

⎤⎦ ' W0 (z) 01 
Hp (z) = √ �R P. (9.114)

2 −J JD 0 W ' (z) 0 J0 ⎛⎝M/2 
⎞⎠Hp is determined by precisely (M/2 − 1) L + parameters where L ≥ K is the McMillan degree of 

2 

W0 
' (z). 
Notice that Theorems "Characterization of Unitary H p (z) � PS Symmetry" through Theorem "Char-

acterization of Unitary H p (z) � Linear Phase and PS Symmetry" give a completeness characterization for 
unitary ˝lter banks with the symmetries in question (and the appropriate length restrictions on the ˝lters). 
However, if one requires only the matrices W0 

' (z) and W1 
' (z) in the above theorems to be invertible on 

the unit circle (and not unitary), then the above results gives a method to generate nonunitary PR ˝lter 
banks with the symmetries considered. Notice however, that in the nonunitary case this is not a complete 
parameterization of all such ˝lter banks. 

9.8 Linear-Phase Wavelet Tight Frames 

A necessary and su°cient condition for a unitary (FIR) ˝lter bank to give rise to a compactly supported 
wavelet tight frame (WTF) is that the lowpass ˝lter h0 in the ˝lter bank satis˝es the linear constraint [193] X √ 

h0 (n) = M. (9.115) 
n 

We now examine and characterize how Hp (z) for unitary ˝lter banks with symmetries can be constrained 
to give rise to wavelet tight frames (WTFs). First consider the case of PS symmetry in which case Hp (z) is 
parameterized in (9.107). We have a WTF i˙ h i√ √ 

˝rst row of Hp (z)| = 1/ M ... 1/ M . (9.116)z=1 

In (9.107), since P permutes the columns, the ˝rst row is una˙ected. Hence (9.116) is equivalent to the ˝rst 
rows of both W0 

' (z) and W1 
' (z) when z = 1 is given by h p ip

(9.117)2/M ... 2/M . 

This is precisely the condition to be satis˝ed by a WTF of multiplicity M/2. Therefore both W0 
' (z) and 

' ' W1 (z) give rise to multiplicity M/2 compactly supported WTFs. 

' 

⎞⎠ ⎛⎝ 
If the McMillan degree of W 

M/2 − 1 

0 (z) and 

W1 (z) are L0 and L1 respectively, then they are parameterized respectively by +(M/2 − 1) L0 
2 

and 

⎛⎝ ⎞⎠M/2 − 1 
+ (M/2 − 1) L1 parameters. In summary, a WTF with PS symmetry can be explicitly 

2 ⎛⎝ ⎞⎠parameterized by 2 
M/2 − 1 

+ (M/2 − 1) (L0 + L1) parameters. Both L0 and L1 are greater than or 
2 

equal to K. 
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PS symmetry does not re˛ect itself as any simple property of the scaling function ψ0 (t) and wavelets 
ψi (t), i ∈ {1, ..., M −1} of the WTF. However, from design and implementation points of view, PS symmetry 
is useful (because of the reduction in the number of parameters). 

Next consider PCS symmetry. From (9.109) one sees that (9.116) is equivalent to the ˝rst rows of the 
matrices A and B de˝ned by 

0 

} 

⎤⎦Y ⎡⎣ ⎤⎦ ⎡⎣A B Ai Bi 
= { (9.118) 

−B A −Bi Aii=K h i√ √ 
are of the form 1/ M ... 1/ M . Here we only have an implicit parameterization of WTFs, unlike 

the case of PS symmetry. As in the case of PS symmetry, there is no simple symmetry relationships between 
the wavelets. 

Now consider the case of linear phase. In this case, it can be seen [481] that the wavelets are also linear 
phase. If we de˝ne 

0Y ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦A B Ai Bi 
= { }, (9.119) 

B A i=K Bi Ai h p
then it can be veri˝ed that one of the rows of the matrix A+B has to be of the form 2/M 

ip
2/M .... 

This is an implicit parameterization of the WTF. 
Finally consider the case of linear phase with PCS symmetry. In this case, also the wavelets are linear-

' 
0 (z) for z = 1, evaluates iphase. From (9.113) it can be veri˝ed that we have a WTF i˙ the ˝rst row of Wh p p

' to the vector 2/M ... 2/M ⎞⎠ ⎛⎝ 
. Equivalently, W0 (z) gives rise to a multiplicity M/2 WTF. In this 

M/2 − 1 
case, the WTF is parameterized by precisely + (M/2 − 1) L parameters where L ≥ K is the 

2 

McMillan degree of W0 
' (z). 

9.9 Linear-Phase Modulated Filter Banks 

The modulated ˝lter banks we described 

1. have ˝lters with nonoverlapping ideal frequency responses as shown in Figure 9.2. 
2. are associated with DCT III/IV (or equivalently DST III/IV) in their implementation 
3. and do not allow for linear phase ˝lters (even though the prototypes could be linear phase). 

In trying to overcome 3, Lin and Vaidyanathan introduced a new class of linear-phase modulated ˝lter banks 
by giving up 1 and 2 [331]. We now introduce a generalization of their results from a viewpoint that uni˝es 
the theory of modulated ˝lter banks as seen earlier with the new class of modulated ˝lter banks we introduce 
here. For a more detailed exposition of this viewpoint see [186]. 

The new class of modulated ˝lter banks have 2M analysis ˝lters, but M bands�each band being shared 
by two overlapping ˝lters. The M bands are the M -point Discrete Fourier Transform bands as shown in 
Figure 9.5. 

1√ n ∈ {0,M}
kn = { 2 (9.120) 

1 otherwise. 

Two broad classes of MFBs (that together are associated with all four DCT/DSTs [430]) can be de˝ned. 
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Figure 9.5: Ideal Frequency Responses in an M -band DFT-type Filter Bank 

9.9.1 DCT/DST I/II based 2M Channel Filter Bank 

� � ��π α 
hi (n) = kih (n) cos i n − , i ∈ S1 (9.121)

M 2 � � ��π α 
hM+i (n) = kih (n − M) sin i n − , i ∈ S2 (9.122)

M 2 � � ��π α 
gi (n) = kig (n) cos i n + , i ∈ S1 (9.123)

M 2 � � ��π α 
gM+i (n) = −kig (n + M) sin i n + , i ∈ S2 (9.124)

M 2 

The sets S1 and S2 are de˝ned depending on the parity of α as shown in Table 9.1. When α is even (i.e., 
Type 1 with odd M or Type 2 with even M), the MFB is associated with DCT I and DST I. When α is 
odd (i.e., Type 1 with even M or Type 2 with odd M), the MFB is associated with DCT II and DST II. 
The linear-phase MFBs introduced in [331] correspond to the special case where h (n) = g (n) and α is even. 
The other cases above and their corresponding PR results are new. 

S1 S2 

α even, DCT/DST I R (M) ∪ {M} R (M) {\} {0} 
α odd, DCT/DST II R (M) R (M) {\} {0} ∪ {M} 

Table 9.2: Class A MFB: The Filter Index Sets S1 and S2 

The PR constraints on the prototype ˝lters h and g (for both versions of the ˝lter banks above) are 
exactly the same as that for the modulated ˝lter bank studied earlier [186]. When the prototype ˝lters are 
linear phase, these ˝lter banks are also linear phase. An interesting consequence is that if one designs an 
M -channel Class B modulated ˝lter bank, the prototype ˝lter can also be used for a Class A 2M channel 
˝lter bank. 
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9.10 Linear Phase Modulated Wavelet Tight Frames 

Under what conditions do linear phase modulated ˝lter banks give rise to wavelet tight frames (WTFs)? To 
answer this question, it is convenient to use a slightly di˙erent lattice parameterization than that used for 
Class B modulated ˝lter banks. A seemingly surprising result is that some Class A unitary MFBs cannot 
be associated with WTFs. More precisely, a Class A MFB is associated with a WTF only if it is Type 1. ⎡⎣ ⎤⎦Pl,0 (z) Pl, 

R 
1 (z) 

1 

= { T (θl,k)}T (θl,0) (9.125)
M 

Yr 
2 

' ' 

−Pl,1 (z) Pl, 
R 
0 (z) k=kl−1 

where 

' T (θ) = 

⎡⎣ ⎤⎦cosθl,k z−1sinθl,k 
. (9.126) 

−sinθl,k z−1cosθl,k 

With this parameterization we de˝ne Θl as follows: ⎡⎣ Pl,0 (1) P R (1)l,1 

⎤⎦ = 

⎡⎣ cos (Θl) sin (Θl) 
⎤⎦ , (9.127) 

−Pl,1 (1) P R (1) −sin (Θl) cos (Θl)l,0 Pkl −1 πwhere in the FIR case Θl = k=0 θl,k as before. Type 1 Class A MFBs give rise to a WTF i˙ Θl = 4 for 
all l ∈ R (J). 

Theorem 55 (Modulated Wavelet Tight Frames Theorem) �A class A MFB of Type 1 gives rise 
π π π αto a WTF i˙ Θl = . A class B MFB (Type 1 or Type 2) gives rise to a WTF i˙ Θl = + − l .4 4 2M 2 

9.11 Time-Varying Filter Bank Trees 

Filter banks can be applied in cascade to give a rich variety of decompositions. By appropriately designing 
the ˝lters one can obtain an arbitrary resolution in frequency. This makes them particularly useful in the 
analysis of stationary signals with phenomena residing in various frequency bands or scales. However, for 
the analysis of nonstationary or piecewise stationary signals such ˝lter bank trees do not su°ce. With this 
in mind we turn to ˝lter banks for ˝nite-length signals. 

If we had ˝lter bank theory for ˝nite-length signals, then, piecewise stationary signals can be handled by 
considering each homogeneous segment separately. Several approaches to ˝lter banks for ˝nite-length signals 
exist and we follow the one in [199]. If we consider the ˝lter bank tree as a machine that takes an input 
sample(s) and produces an output sample(s) every instant then one can consider changing machine every 
instant (i.e., changing the ˝lter coe°cients every instant). Alternatively, we could use a ˝xed machine for 
several instants and then switch to another ˝lter bank tree. The former approach is investigated in [417]. 
We follow the latter approach, which, besides leveraging upon powerful methods to design the constituent 
˝lter bank trees switched between, also leads to a theory of wavelet bases on an interval [259], [199]. 

Let Hp (z), the polyphase component matrix of the analysis ˝lter bank of a unitary ˝lter bank be of the 
form (see (9.29)) 

XK−1 

Hp (z) = hp (k) z 
−k . (9.128) 

k=0 

Φ 
It is convenient to introduce the sequence x = [· · · , x (0) , x (−1) , · · · , x (−M + 1) , x (M) , x (M − 1) , · · · ] 
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obtained from x by a permutation. Then, ⎡ ⎢⎢⎢⎢⎢⎢⎢⎣ 

. . . . . . . . . . . . . . . 

. . . . hp (K − 1) hp (K − 2) ... hp (0) 0 . 

0 hp (K − 1) ... hp (1) hp (0) 
. . . 

. . . 
. . . 

. . . 
. . . 

. 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎦ 
Φ 
(9.129)x, 

ΦΦ def
d =H x = 

ΦΦ 
and H is unitary i˙ H is unitary. (9.30) induces a factorization of H (and hence H). If V0 = diag (V0) and 

Vi = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎣ 

. . . . . . . . . 

. . . Pi I − Pi 0 
. . . 

0 Pi I − Pi 

. . . . . . . . . 

Φ 
0Y 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎦
, for i ∈ {1, ..., K − 1}, (9.130) 

H = Vi.(9.131) 
i=K−1 

The factors Vi, with appropriate modi˝cations, will be used as fundamental building blocks for ˝lter banks 
for ˝nite-length signals. 

Now consider a ˝nite input signal x = [x (0) , x (1) , · · · , x (L − 1)], where L is a multiple of M and 
Φ 

let x = [x (M − 1) , · · · , x (0) , x (M) , · · · , x (L − 1) , · · · , x (L − M)]. Then, the ˝nite vector d (the output 
signal) is given by 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

hp (K − 1) ... hp (0) 0 ... ... ... 0 
. . . . 
. . . .0 hp (K − 1) ... hp (0) . . . . 

ΦΦ Φdef
d = . . . . 

H x . . 
. . 

. . . . 
. . . . . . 
. . . . (9.132)

. .

x .= 
. 
. 
. ... ... 0 hp (K − 1) ... hp (0) 0 

0 ... ... ... 0 hp (K − 1) ... hp (0) 

ΦΦ 
H is an (L − N + M)×L matrix, where N = MK is the length of the ˝lters. Now since the rows of H are 

mutually orthonormal (i.e., has rank L), one has to append N − M = M (K − 1) rows from the orthogonal 
Φ 

complement of H to make the map from x to an augmented d unitary. To get a complete description of these 
rows, we turn to the factorization of Hp (z). De˝ne the L×L matrix V0 = diag (V0) and for i ∈ {1, ..., K −1}
the (L − Mi) × (L − Mi + M) matrices ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

Pi I − Pi 0 ... ... 0 
. 

0 Pi I − Pi ... ... . . 
. . . . . 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
Vi = . (9.133). . . . .0. . .. . 

. . . 
. . . 0 Pi I − Pi 0 

0 ... ... 0 Pi I − Pi 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
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Φ Q0 
Vi. Since each of the factors (except V0) has M more⎤ ⎥⎥⎦ 

⎡ ⎢⎢⎣ 
then H is readily veri˝ed by induction to be i=K−1 

Bi 

columns than rows, they can be made unitary by appending appropriate rows. Indeed, 

ihih 
is unitaryVi 

Ci 

where, Bj =  j
T (I − Pj ) 0 ... 0 , and Cj = 0 ... 0 Ξj

T Pj . . Here Ξ is the δi × M left unitary 

matrix that spans the range of the Pi; i.e., Pi = ΞΞT , and   is the (M − δi) × M left unitary matrix that 
spans the range of the I − Pi; i.e., I − Pi =   T . Clearly [ iΞi] is unitary. Moreover, if we de˝ne T0 = V0 

and for i ∈ {1, ..., K − 1}, 

Ti = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

I(M−δi)(i−1) 0 0 

0 Bi 0 

0 Vi 0 

0 Ci 0 

0 0 Iδi(i−1) 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
(9.134) 

then each of the factors Ti is a square unitary matrix of size L − N + M and 

Y0 

i=K−1 

Ti = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

B1V0 

. . . 
Φ 
H 
. . . 

C1V0 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
, (9.135) 

⎤ ⎥⎥⎦ 
is the unitary matrix that acts on the data. The corresponding unitary matrix that acts on x (rather than⎡ ⎢⎢⎣ 

U 

, where U has MK − M − Δ rows of entry ˝lters in (K − 1) sets given by (9.136), 
Φ 
x) is of the form H 

W 
while W has Δ rows of exit ˝lters in (K − 1) given by (9.137): ih 

 j (I − Pj ) hj (j − 1) J hj (j − 2) J ... hj (0) J, (9.136)p p p ih 

X 
Ξj Pj hj (j − 1) J hj (j − 2) J ... hj (0) J , (9.137)p p p 

where J is the exchange matrix (i.e., permutation matrix of ones along the anti-diagonal) and 

j−1Y1 

(z) = I − Pi + z 
� � def

Hj 
p 

−1Pi hj 
p (i) z 

−i . (9.138)V0 = 
i=j−1 i=0 

The rows of U and W form the entry and exit ˝lters respectively. Clearly they are nonunique. The 
input/output behavior is captured in ⎡ ⎢⎢⎣ 

⎤ ⎥⎥⎦ 
⎡ ⎢⎢⎣ 

⎤ ⎥⎥⎦ 
Uu 

x. (9.139)d H= 

w W 
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For example, in the four-coe°cient Daubechies' ˝lters in [106] case, there is one entry ˝lter and exit ˝lter. ⎡ ⎢⎢⎢⎢⎢⎣ 
0.8660 0.5000 0 0 

−0.1294 0.2241 0.8365 0.4830 

−0.4830 0.8365 −0.2241 −0.1294 
0 0 −0.5000 0.8660 

⎤ ⎥⎥⎥⎥⎥⎦ . (9.140) 

If the input signal is right-sided (i.e., supported in {0, 1, ...}), then the corresponding ˝lter bank would 
only have entry ˝lters. If the ˝lter bank is for left-sided signals one would only have exit ˝lters. Based on 
the above, we can consider switching between ˝lter banks (that operate on in˝nite extent input signals). 
Consider switching from a one-channel to an M channel ˝lter bank. Until instant n = −1, the input is 
the same as the output. At n = 0, one switches into an M -channel ˝lter bank as quickly as possible. The 
transition is accomplished by the entry ˝lters (hence the name entry) of the M -channel ˝lter bank. The 
input/output of this time-varying ˝lter bank is 

d = 

⎡ ⎢⎢⎣ 
I 0 

0 U 

⎤ ⎥⎥⎦x. (9.141) 

0 H 

Next consider switching from an M -channel ˝lter bank to a one-channel ˝lter bank. Until n = −1, the 
M -channel ˝lter bank is operational. From n = 0 onwards the inputs leaks to the output. In this case, there 
are exit ˝lters corresponding to ˛ushing the states in the ˝rst ˝lter bank implementation at n = 0. 

d = 

⎡ ⎢⎢⎣ 
H 0 

W 0 

⎤ ⎥⎥⎦x. (9.142) 

0 I 

Finally, switching from an M1-band ˝lter bank to an M2-band ˝lter bank can be accomplished as follows: 

d = 

⎡ ⎢⎢⎢⎢⎢⎣ 
H1 0 

W1 0 

0 U2 

0 H2 

⎤ ⎥⎥⎥⎥⎥⎦ x. (9.143) 

The transition region is given by the exit ˝lters of the ˝rst ˝lter bank and the entry ˝lters of the second. ⎤⎦ ⎡⎣ 
Clearly the transition ˝lters are abrupt (they do not overlap). One can obtain overlapping transition ˝lters as 

W1 0 
follows: replace them by any orthogonal basis for the row space of the matrix . For example, 

0 U2 

consider switching between two-channel ˝lter banks with length-4 and length-6 Daubechies' ˝lters. In this 
case, there is one exit ˝lter (W1) and two entry ˝lters (U2). 

9.11.1 Growing a Filter Bank Tree 

Consider growing a ˝lter bank tree at n = 0 by replacing a certain output channel in the tree (point of tree 
growth) by an M channel ˝lter bank. This is equivalent to switching from a one-channel to an M -channel 
˝lter bank at the point of tree growth. The transition ˝lters associated with this change are related to the 
entry ˝lters of the M -channel ˝lter bank. In fact, every transition ˝lter is the net e˙ect of an entry ˝lter at 
the point of tree growth seen from the perspective of the input rather than the output point at which the 
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tree is grown. Let the mapping from the input to the output �growth� channel be as shown in Figure 9.6. 
The transition ˝lters are given by the system in Figure 9.7, which is driven by the entry ˝lters of the newly 
added ˝lter bank. Every transition ˝lter is obtained by running the corresponding time-reversed entry ˝lter 
through the synthesis bank of the corresponding branch of the extant tree. 

9.11.2 Pruning a Filter Bank Tree 

In the more general case of tree pruning, if the map from the input to the point of pruning is given as in 
Figure 9.6, then the transition ˝lters are given by Figure 9.8. 

Figure 9.6: A Branch of an Existing Tree 

9.11.3 Wavelet Bases for the Interval 

By taking the e˙ective input/output map of an arbitrary unitary time-varying ˝lter bank tree, one readily 
obtains time-varying discrete-time wavelet packet bases. Clearly we have such bases for one-sided and 
˝nite signals also. These bases are orthonormal because they are built from unitary building blocks. We 
now describe the construction of continuous-time time-varying wavelet bases. What follows is the most 
economical (in terms of number of entry/exit functions) continuous-time time-varying wavelet bases. 

Figure 9.7: Transition Filter For Tree Growth 

9.11.4 Wavelet Bases for L2 ([0, ∞)) P √ 
Recall that an M channel unitary ˝lter bank (with synthesis ˝lters {hi}) such that h0 (n) = M gives 
rise to an M -band wavelet tight frame for L2 (R). If 

n 

def � � 
M j 

then W0,j forms a multiresolution analysis of L2 (R) with 

W0,j = W0,j−1 ⊕ W1,j−1... ⊕ WM−1,j−1 ∀j ∈ Z. (9.145) 

In [123], Daubechies outlines an approach due to Meyer to construct a wavelet basis for L2 ([0, ∞)). One 
projects W0,j onto W half which is the space spanned by the restrictions of ψ0,j,k (t) to t > 0. We give a 

Wi,j = Span{ψi,j,k} = {M j/2ψi t − k } for k ∈ Z, (9.144) 

0,j 
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di˙erent construction based on the following idea. For k ∈ IN , support of ψi,j,k (t) is in [0, ∞). With this 
restriction (in (9.144)) de˝ne the spaces W + As j →∞ (since W0,j → L2 (R)) W + → L2 ([0, ∞)). Hencei,j . 0,j 
it su°ces to have a multiresolution 

Figure 9.8: Transition Filter For Pruning 

analysis for W0
+ 
,j to get a wavelet basis for L

2 ([0, ∞)). (9.145) does not hold with Wi,j replaced by W + 
i,j 

because W0
+ 
,j is bigger than the direct sum of the constituents at the next coarser scale. Let Uj−1 be this 

di˙erence space: 

W + = W + ⊕ W1
+ 
,j−1... ⊕ W + ⊕ Uj−1 (9.146)0,j 0,j−1 M −1,j−1 

If we can ˝nd an orthonormal basis for Uj , then we have a multiresolution analysis for L
2 ([0, ∞)). 

We proceed as follows. Construct entry ˝lters (for the analysis ˝lters) of the ˝lter bank with synthesis 
˝lters {hi}. Time-reverse them to obtain entry ˝lters (for the synthesis ˝lters). If Δ is the McMillan degree 
of the synthesis bank, there are Δ entry ˝lters. Let ui (n) denote the ith synthesis entry ˝lters. De˝ne the 
entry functions 

LXl−1√ 
µl (t) = M ul (k) ψ0 (Mt − k) , l ∈ {0, ..., Δ − 1}. (9.147) 

k=0 h i 
Ll−1 N−1 def � � 

µi (t) is compactly supported in 0, + . Let Uj = Span{µl,j } = Span{M j/2µi M
j t }. ByM M−1 

considering one stage of the analysis and synthesis stages of this PR ˝lter bank on right sided signals), it 
readily follows that (9.146) holds. Therefore 

{ψi,j,k | i ∈ {1, ..., M − 1}, j ∈ Z, k ∈ IN} ∪ {µi,j | i ∈ {0, ..., Δ − 1}, j ∈ Z} (9.148) 

forms a wavelet tight frame for L2 ([0, ∞)). If one started with an ON basis for L2 (R), the newly constructed 
basis is an ON basis for L2 ([0, ∞)). Indeed if {ψ0 (t − k)} is an orthonormal system Z X 

µl (t) ψi (t − n) dt = ul (k) hi (Ml + k) = 0, (9.149) 
t≥0 k 

and Z X 
µl (t) µm (t) dt = ul (k) um (k) = 0. (9.150) 

t≥0 k 

The dimension of Uj is precisely the McMillan degree of the polyphase component matrix of the scaling and 
wavelet ˝lters considered as the ˝lters of the synthesis bank. There are precisely as many entry functions 
as there are entry ˝lters, and supports of these functions are explicitly given in terms of the lengths of the 
corresponding entry ˝lters. Figure 9.9 shows the scaling function, wavelet, their integer translates and the√ 
single entry function corresponding to Daubechies four coe°cient wavelets. In this case, u0 = {− 3/2, 1/2}. 
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9.11.5 Wavelet Bases for L2 ((−∞, 0]) 

One could start with a wavelet basis for L2 ([0, ∞)) and re˛ect all the functions about t = 0. This is equivalent 
to swapping the analysis and synthesis ˝lters of the ˝lter bank. We give an independent development. We 
start with a WTF for L2 (R) with functions 

N−1√ X 
ψi (t) = M hi (k) ψ0 (Mt + k) , (9.151) 

k=0 h i 
− N−1supported in M−1 , 0 . Scaling and wavelet ˝lters constitute the analysis bank in this case. Let Δ be the 

McMillan degree of the analysis bank and let {wi} be the (analysis) exit ˝lters. De˝ne the exit functions 

LXl−1√ 
νl (t) = M wl (k) ψ0 (Mt + k) , l ∈ {0, ..., Δ − 1}. (9.152) 

k=0 � � def � � 
= Span{M j/2νi M

j t }, and W − = {M j/2ψi M
j t + k } for k ∈ IN . Then as j →∞, 

W0 
− 
,j → L2 ((−∞, 0]) and 

Wj i,j = Span{ψi,j,k} 

{ψi,j,k | i ∈ {1, ..., M − 1}, j ∈ Z, k ∈ IN} ∪ {νi,j | i ∈ {0, ..., Δ − 1}, j ∈ Z} (9.153) 

forms a WTF for L2 ((−∞, 0]). Orthonormality of this basis is equivalent to the orthonormality of its parent 
basis on the line. An example with one exit function (corresponding to M = 3, N = 6) Type 1 modulated 
WTF obtained earlier is given in Figure 9.10. 

Figure 9.9: (a) Entry function µ0 (t), ψ0 (t) and ψ0 (t − 1) (b) Wavelet ψ1 (t) and ψ1 (t − 1) 

9.11.6 Segmented Time-Varying Wavelet Packet Bases 

Using the ideas above, one can construct wavelet bases for the interval and consequently segmented wavelet 
bases for L2 (R). One can write R as a disjoint union of intervals and use a di˙erent wavelet basis in each 
interval. Each interval is will be spanned by a combination of scaling functions, wavelets, and corresponding 
entry and exit functions. For instance Figure 9.10 and Figure 9.9 together correspond to a wavelet basis 
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for L2 (R), where a 3-band wavelet basis with length-6 ˝lters is used for t < 0 and a 2-band wavelet basis 
with length-4 ˝lters is used for t > 0. Certainly a degree of overlap between the exit functions on the 
left of a transition and entry functions on the right of the transition can be obtained by merely changing 
coordinates in the ˝nite dimensional space corresponding to these functions. Extension of these ideas to 
obtain segmented wavelet packet bases is also immediate. 

Figure 9.10: (a) Exit function ν0 (t), ψ0 (t) and ψ0 (t + 1) (b) Wavelet ψ1 (t) and ψ1 (t + 1) (c) Wavelet 
ψ2 (t) and ψ2 (t + 1) 

9.12 Filter Banks and Wavelets�Summary 

Filter banks are structures that allow a signal to be decomposed into subsignals�typically at a lower sampling 
rate. If the original signal can be reconstituted from the subsignals, the ˝lter bank is said to be a perfect 
reconstruction (PR) ˝lter bank. For PR, the analysis and synthesis ˝lters have to satisfy a set of bilinear 
constraints. These constraints can be viewed from three perspectives, viz., the direct, matrix, and polyphase 
formulations. In PR ˝lter bank design one chooses ˝lters that maximize a �goodness" criterion and satisfy 
the PR constraints. 

Unitary ˝lter banks are an important class of PR ˝lter banks�they give orthogonal decompositions of 
signals. For unitary ˝lter banks, the PR constraints are quadratic in the analysis ˝lters since the synthesis 
˝lters are index-reverses of the analysis ˝lters. All FIR unitary ˝lter banks can be explicitly parameterized. 
This leads to easy design (unconstrained optimization) and e°cient implementation. Sometimes one can 
impose structural constraints compatible with the goodness criterion. For example, modulated ˝lter banks 
require that the analysis and synthesis ˝lters are modulates of single analysis and synthesis prototype ˝lter 
respectively. Unitary modulated ˝lter banks exist and can be explicitly parameterized. This allows one 
to design and implement ˝lter banks with hundreds of channels easily and e°ciently. Other structural 
constraints on the ˝lters (e.g., linear phase ˝lters) can be imposed and lead to parameterizations of associated 
unitary ˝lter banks. Cascades of ˝lter banks (used in a tree structure) can be used to recursively decompose 
signals. 

Every unitary FIR ˝lter bank with an additional linear constraint on the lowpass ˝lter is associated with 
a wavelet tight frame. The lowpass ˝lter is associated with the scaling function, and the remaining ˝lters 
are each associated with wavelets. The coe°cients of the wavelet expansion of a signal can be computed 
using a tree-structure where the ˝lter bank is applied recursively along the lowpass ˝lter channel. The 
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parameterization of unitary ˝lter banks, with a minor modi˝cation, gives a parameterization of all compactly 
supported wavelet tight frames. In general, wavelets associated with a unitary ˝lter bank are irregular (i.e., 
not smooth). By imposing further linear constraints (regularity constraints) on the lowpass ˝lter, one obtains 
smooth wavelet bases. Structured ˝lter banks give rise to associated structured wavelet bases; modulated 
˝lter banks are associated with modulated wavelet bases and linear phase ˝lter banks are associated with 
linear-phase wavelet bases. Filter banks cascade�where all the channels are recursively decomposed, they 
are associated with wavelet packet bases. 

From a time-frequency analysis point of view ˝lter banks trees can be used to give arbitrary resolutions 
of the frequency. In order to obtain arbitrary temporal resolutions one has to use local bases or switch 
between ˝lter bank trees at points in time. Techniques for time-varying ˝lter banks can be used to generate 
segmented wavelet bases (i.e., a di˙erent wavelet bases for disjoint segments of the time axis). Finally, just as 
unitary ˝lter banks are associated with wavelet tight frames, general PR ˝lter banks, with a few additional 
constraints, are associated with wavelet frames (or biorthogonal bases). 



Chapter 10 

Calculation of the Discrete Wavelet 

Transform1 

Although when using the wavelet expansion as a tool in an abstract mathematical analysis, the in˝nite sum 
and the continuous description of t ∈ R are appropriate, as a practical signal processing or numerical analysis 
tool, the function or signal f (t) in (10.1) is available only in terms of its samples, perhaps with additional 
information such as its being band-limited. In this chapter, we examine the practical problem of numerically 
calculating the discrete wavelet transform. 

10.1 Finite Wavelet Expansions and Transforms 

The wavelet expansion of a signal f (t) as ˝rst formulated in p. 11 is repeated here by 

X∞ ∞X 
f (t) = < f, ψj,k > ψj,k (t) (10.1) 

k=−∞ j=−∞ 

where the {ψj,k (t)} form a basis or tight frame for the signal space of interest (e.g., L2). At ˝rst glance, this 
in˝nite series expansion seems to have the same practical problems in calculation that an in˝nite Fourier 
series or the Shannon sampling formula has. In a practical situation, this wavelet expansion, where the 
coe°cients are called the discrete wavelet transform (DWT), is often more easily calculated. Both the time 
summation over the index k and the scale summation over the index j can be made ˝nite with little or no 
error. 

sin(t)The Shannon sampling expansion [413], [363] of a signal with in˝nite support in terms of sinc(t) = t 
expansion functions 

∞ � �X π 
f (t) = f (Tn) sinc t − πn (10.2)

T 
n=−∞ 

requires an in˝nite sum to evaluate f (t) at one point because the sinc basis functions have in˝nite support. 
This is not necessarily true for a wavelet expansion where it is possible for the wavelet basis functions to 
have ˝nite support and, therefore, only require a ˝nite summation over k in (10.1) to evaluate f (t) at any 
point. 

1This content is available online at <http://cnx.org/content/m45093/1.3/>. 
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The lower limit on scale j in (10.1) can be made ˝nite by adding the scaling function to the basis set as 
was done in (3.28). By using the scaling function, the expansion in (10.1) becomes 

∞ ∞ ∞X X X 
f (t) = < f, φJ0,k > φJ0,k (t) + < f, ψj,k > ψj,k (t) . (10.3) 

k=−∞ k=−∞ j=J0 

where j = J0 is the coarsest scale that is separately represented. The level of resolution or coarseness to 
start the expansion with is arbitrary, as was shown in Chapter: A multiresolution formulation of Wavelet 
Systems (Chapter 3) in (3.19), (3.20), and (3.21). The space spanned by the scaling function contains all 
the spaces spanned by the lower resolution wavelets from j = −∞ up to the arbitrary starting point j = J0. 
This means VJ0 = W−∞ ⊕ · · · ⊕WJ0−1. In a practical case, this would be the scale where separating detail 
becomes important. For a signal with ˝nite support (or one with very concentrated energy), the scaling 
function might be chosen so that the support of the scaling function and the size of the features of interest 
in the signal being analyzed were approximately the same. 

This choice is similar to the choice of period for the basis sinusoids in a Fourier series expansion. If the 
period of the basis functions is chosen much larger than the signal, much of the transform is used to describe 
the zero extensions of the signal or the edge e˙ects. 

The choice of a ˝nite upper limit for the scale j in (10.1) is more complicated and usually involves some 
approximation. Indeed, for samples of f (t) to be an accurate description of the signal, the signal should be 
essentially bandlimited and the samples taken at least at the Nyquist rate (two times the highest frequency 
in the signal's Fourier transform). 

The question of how one can calculate the Fourier series coe°cients of a continuous signal from the 
discrete Fourier transform of samples of the signal is similar to asking how one calculates the discrete 
wavelet transform from samples of the signal. And the answer is similar. The samples must be �dense" 
enough. For the Fourier series, if a frequency can be found above which there is very little energy in the 
signal (above which the Fourier coe°cients are very small), that determines the Nyquist frequency and the 
necessary sampling rate. For the wavelet expansion, a scale must be found above which there is negligible 
detail or energy. If this scale is j = J1, the signal can be written 

∞X 
f (t) ≈ < f, φJ1,k > φJ1,k (t) (10.4) 

k=−∞ 

or, in terms of wavelets, (10.3) becomes 

∞ ∞ JX1 −1X X 
f (t) ≈ < f, φJ0 ,k > φJ0,k (t) + < f, ψj,k > ψj,k (t) . (10.5) 

k=−∞ k=−∞ j=J0 

This assumes that approximately f ∈ VJ1 or equivalently, k f −PJ1 f k≈ 0, where PJ1 denotes the orthogonal 
projection of f onto VJ1 . 

Given f (t) ∈ VJ1 so that the expansion in (10.5) is exact, one computes the DWT coe°cients in two 
steps. 

1. Projection onto ˝nest scale: Compute < f, φJ1,k > 
2. Analysis: Compute < f, ψj,k >, j ∈ {J0, ..., J1 − 1} and < f, φJ0,k >. R 

For J1 large enough, φJ1,k (t) can be approximated by a Dirac impulse at its center of mass since φ (t) dt = 1. 
For large j this gives Z Z� � � � � � 

2j f (t) φ 2j t dt ≈ f (t) δ t − 2−j m0 dt = f t − 2−j m0 (10.6) 
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R 
where m0 = t φ (t) dt is the ˝rst moment of φ (t). Therefore the scaling function coe°cients at the j = J1 

scale are Z Z� � � � � � 
cJ1 (k) =< f, φJ1 ,k >= 2

J1/2 f (t) φ 2J1 t − k dt = 2J1/2 f t + 2−J1 k φ 2J1 t dt (10.7) 

which are approximately � � 
cJ1 (k) =< f, φJ1,k >≈ 2−J1/2f 2−J1 (m0 + k) . (10.8) 

For all 2-regular wavelets (i.e., wavelets with two vanishing moments, regular wavelets other than the Haar 
wavelets�even in the M -band case where one replaces 2 by M in the above equations, m0 = 0), one can 
show that the samples of the functions themselves form a third-order approximation to the scaling function 
coe°cients of the signal [190]. That is, if f (t) is a quadratic polynomial, then � � � � 

cJ1 (k) =< f, φJ1,k >= 2
−J1/2f 2−J1 (m0 + k) ≈ 2−J1/2f 2−J1 k . (10.9) 

Thus, in practice, the ˝nest scale J1 is determined by the sampling rate. By rescaling the function and 
amplifying it appropriately, one can assume the samples of f (t) are equal to the scaling function coe°cients. 
These approximations are made better by setting some of the scaling function moments to zero as in the 
coi˛ets. These are discussed in Section: Approximation of Scaling Coe°cients by Samples of the Signal 
(Section 7.8: Approximation of Scaling Coe°cients by Samples of the Signal). 

Finally there is one other aspect to consider. If the signal has ˝nite support and L samples are given, then 
we have L nonzero coe°cients < f, φJ1,k >. However, the DWT will typically have more than L coe°cients 
since the wavelet and scaling functions are obtained by convolution and downsampling. In other words, the 
DWT of a L-point signal will have more than L points. Considered as a ˝nite discrete transform of one 
vector into another, this situation is undesirable. The reason this �expansion" in dimension occurs is that 
one is using a basis for L2 to represent a signal that is of ˝nite duration, say in L2 [0, P ]. 

When calculating the DWT of a long signal, J0 is usually chosen to give the wavelet description of the 
slowly changing or longer duration features of the signal. When the signal has ˝nite support or is periodic, 
J0 is generally chosen so there is a single scaling coe°cient for the entire signal or for one period of the 
signal. To reconcile the di˙erence in length of the samples of a ˝nite support signal and the number of DWT 
coe°cients, zeros can be appended to the samples of f (t) or the signal can be made periodic as is done for 
the DFT. 

10.2 Periodic or Cyclic Discrete Wavelet Transform 

If f (t) has ˝nite support, create a periodic version of it by X 
f̃ (t) = f (t + Pn) (10.10) 

n 

where the period P is an integer. In this case, < f, φj,k > and < f, ψj,k > are periodic sequences in k with 
period P 2j (if j ≥ 0 and 1 if j < 0) and Z � � 

d (j, k) = 2j/2 f̃ (t) ψ 2j t − k dt (10.11) 

Z Z� � � � � � � � 
d (j, k) = 2j/2 f̃  t + 2−j k ψ 2j t dt = 2j/2 f̃  t + 2−j ` ψ 2j t dt (10.12) 

where ` =< k> P 2j (k modulo P 2j ) and l ∈ {0, 1, ..., P 2j − 1}. An obvious choice for J0 is 1. Notice 
that in this case given L = samples of the signal, < f, φJ1,k >, the wavelet transform has exactly 2J1 

1 + 1 + 2 + 22 + · · · + 2J1−1 = 2J1 = L terms. Indeed, this gives a linear, invertible discrete transform 
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which can be considered apart from any underlying continuous process similar the discrete Fourier transform 
existing apart from the Fourier transform or series. 

There are at least three ways to calculate this cyclic DWT and they are based on the equations (10.25), 
(10.26), and (10.27) later in this chapter. The ˝rst method simply convolves the scaling coe°cients at one 
scale with the time-reversed coe°cients h (−n) to give an L + N − 1 length sequence. This is aliased or 
wrapped as indicated in (10.27) and programmed in dwt5.m in Appendix 3. The second method creates a 
periodic c̃j (k) by concatenating an appropriate number of cj (k) sections together then convolving h (n) with 
it. That is illustrated in (10.25) and in dwt.m in Appendix 3. The third approach constructs a periodic h̃ (n) 
and convolves it with cj (k) to implement (10.26). The Matlab programs should be studied to understand 
how these ideas are actually implemented. 

Because the DWT is not shift-invariant, di˙erent implementations of the DWT may appear to give 
di˙erent results because of shifts of the signal and/or basis functions. It is interesting to take a test signal 
and compare the DWT of it with di˙erent circular shifts of the signal. 

Making f (t) periodic can introduce discontinuities at 0 and P . To avoid this, there are several alternative 
constructions of orthonormal bases for L2 [0, P ][79], [258], [260], [200]. All of these constructions use (directly 
or indirectly) the concept of time-varying ˝lter banks. The basic idea in all these constructions is to retain 
basis functions with support in [0, P ], remove ones with support outside [0, P ] and replace the basis functions 
that overlap across the endpoints with special entry/exit functions that ensure completeness. These boundary 
functions are chosen so that the constructed basis is orthonormal. This is discussed in Section: Time-Varying 
Filter Bank Trees (Section 9.11: Time-Varying Filter Bank Trees). Another way to deal with edges or 
boundaries uses �lifting" as mentioned in Section: Lattices and Lifting (Section 4.4: Lattices and Lifting). 

10.3 Filter Bank Structures for Calculation of the DWT and Com-
plexity 

Given that the wavelet analysis of a signal has been posed in terms of the ˝nite expansion of (10.5), the 
discrete wavelet transform (expansion coe°cients) can be calculated using Mallat's algorithm implemented 
by a ˝lter bank as described in Chapter: Filter Banks and the Discrete Wavelet Transform and expanded 
upon in Chapter: Filter Banks and Transmultiplexers . Using the direct calculations described by the one-
sided tree structure of ˝lters and down-samplers in Figure: Three-Stage Two-Band Analysis Tree (Figure 4.4) 
allows a simple determination of the computational complexity. 

If we assume the length of the sequence of the signal is L and the length of the sequence of scaling ˝lter 
coe°cients h (n) is N , then the number of multiplications necessary to calculate each scaling function and 
wavelet expansion coe°cient at the next scale, c (J1 − 1, k) and d (J1 − 1, k), from the samples of the signal, 
f (Tk) ≈ c (J1, k), is LN . Because of the downsampling, only half are needed to calculate the coe°cients at 
the next lower scale, c (J2 − 1, k) and d (J2 − 1, k), and repeats until there is only one coe°cient at a scale 
of j = J0. The total number of multiplications is, therefore, 

Mult = LN + LN/2 + LN/4 + · · · + N (10.13) 

= LN (1 + 1/2 + 1/4 + · · · + 1/L) = 2NL − N (10.14) 

which is linear in L and in N . The number of required additions is essentially the same. 
If the length of the signal is very long, essentially in˝nity, the coarsest scale J0 must be determined 

from the goals of the particular signal processing problem being addressed. For this case, the number of 
multiplications required per DWT coe°cient or per input signal sample is � � 

Mult/sample = N 2 − 2−J0 (10.15) 

Because of the relationship of the scaling function ˝lter h (n) and the wavelet ˝lter h1 (n) at each scale 
(they are quadrature mirror ˝lters), operations can be shared between them through the use of a lattice 
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˝lter structure, which will almost halve the computational complexity. That is developed in Chapter: Filter 
Banks and Transmultiplexers and [529]. 

10.4 The Periodic Case 

In many practical applications, the signal is ˝nite in length (˝nite support) and can be processed as single 
�block," much as the Fourier Series or discrete Fourier transform (DFT) does. If the signal to be analyzed 
is ˝nite in length such that 

0 t < 0 

f (t) = { 0 t > P (10.16) 

f (t) 0 < t < P 

we can construct a periodic signal f̃ (t) by X 
f̃ (t) = f (t + Pn) (10.17) 

n 

and then consider its wavelet expansion or DWT. This creation of a meaningful periodic function can still 
be done, even if f (t) does not have ˝nite support, if its energy is concentrated and some overlap is allowed 
in (10.17). 

Periodic Property 1: If f̃ (t) is periodic with integer period P such that f̃ (t) = f̃ (t + Pn), then the 
scaling function and wavelet expansion coe°cients (DWT terms) at scale J are periodic with period 2J P . � �

˜ ˜If f̃ (t) = f̃ (t + P ) then dj (k) = dj k + 2j P (10.18) 

This is easily seen from Z ∞ Z� � � � 
d̃  
j (k) = f̃ (t) ψ 2j t − k dt = f̃ (t + Pn) ψ 2j t − k dt (10.19) 

−∞ 

which, with a change of variables, becomes Z Z� � � � �� � � 
= f̃ (x) ψ 2j (x − Pn) − k dx = f̃ (x) ψ 2j x − 2j Pn + k dx = d̃  

j k + 2j Pn (10.20) 

and the same is true for c̃j (k). 
Periodic Property 2: The scaling function and wavelet expansion coe°cients (DWT terms) can be 

calculated from the inner product of f̃ (t) with φ (t) and ψ (t) or, equivalently, from the inner product of 
f (t) with the periodized φ̃ (t) and ψ̃ (t). 

˜c̃j (k) =< f̃ (t) , φ (t) >=< f (t) , φ (t) > (10.21) 

and 

˜ ˜dj (k) =< f̃ (t) , ψ (t) >=< f (t) , ψ (t) > (10.22) P P 
where φ̃ (t) = φ (t + Pn) and ψ̃ (t) = ψ (t + Pn). n n 

This is seen from 

˜ R∞ P R 
dj (k) = f̃ (t) ψ (2j t − k) dt = P 

f (t) ψ (2j (t + Pn) − k) dt = (10.23)−∞ n 0R P P 
0 f (t) n ψ (2j (t + Pn) − k) dt 
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Z P � � 
d̃  
j (k) = f (t) ψ̃ 2j t − k dt (10.24) 

0 � � P � � 
where ψ̃ 2j t − k = n ψ 2j (t + Pn) − k is the periodized scaled wavelet. 

Periodic Property 3: If f̃ (t) is periodic with period P , then Mallat's algorithm for calculating the 
DWT coe°cients in (4.9) becomes X 

c̃j (k) = h (m − 2k) c̃j+1 (m) (10.25) 
m 

or X 
c̃j (k) = h̃ (m − 2k) cj+1 (m) (10.26) 

m 

or X 
c̃j (k) = cj (k + Pn) (10.27) 

n 

where for (10.27) X 
cj (k) = h (m − 2k) cj+1 (m) (10.28) 

m 

The corresponding relationships for the wavelet coe°cients are X X 
d̃  
j (k) = h1 (m − 2k) c̃j+1 (m) = h̃ 

1 (m − 2k) cj+1 (m) (10.29) 
m m 

or X � �
d̃j (k) = dj k + 2j Pn (10.30) 

n 

where X 
dj (k) = h1 (m − 2k) cj+1 (m) (10.31) 

m 

These are very important properties of the DWT of a periodic signal, especially one arti˝cially constructed 
from a nonperiodic signal in order to use a block algorithm. They explain not only the aliasing e˙ects of 
having a periodic signal but how to calculate the DWT of a periodic signal. 

10.5 Structure of the Periodic Discrete Wavelet Transform 

If f (t) is essentially in˝nite in length, then the DWT can be calculated as an ongoing or continuous process 
in time. In other words, as samples of f (t) come in at a high enough rate to be considered equal to cJ1 (k), 
scaling function and wavelet coe°cients at lower resolutions continuously come out of the ˝lter bank. This 
is best seen from the simple two-stage analysis ˝lter bank in Section: Three-Stage Two-Band Analysis Tree 
(Figure 4.4). If samples come in at what is called scale J1 = 5, wavelet coe°cients at scale j = 4 come out 
the lower bank at half the input rate. Wavelet coe°cients at j = 3 come out the next lower bank at one 
quarter the input rate and scaling function coe°cients at j = 3 come out the upper bank also at one quarter 
the input rate. It is easy to imagine more stages giving lower resolution wavelet coe°cients at a lower and 
lower rate depending on the number of stages. The last one will always be the scaling function coe°cients 
at the lowest rate. 
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For a continuous process, the number of stages and, therefore, the level of resolution at the coarsest 
scale is arbitrary. It is chosen to be the nature of the slowest features of the signals being processed. It is 
important to remember that the lower resolution scales correspond to a slower sampling rate and a larger 
translation step in the expansion terms at that scale. This is why the wavelet analysis system gives good 
time localization (but poor frequency localization) at high resolution scales and good frequency localization 
(but poor time localization) at low or coarse scales. 

For ˝nite length signals or block wavelet processing, the input samples can be considered as a ˝nite 
dimensional input vector, the DWT as a square matrix, and the wavelet expansion coe°cients as an output 
vector. The conventional organization of the output of the DWT places the output of the ˝rst wavelet ˝lter 
bank in the lower half of the output vector. The output of the next wavelet ˝lter bank is put just above that 
block. If the length of the signal is two to a power, the wavelet decomposition can be carried until there is 
just one wavelet coe°cient and one scaling function coe°cient. That scale corresponds to the translation 
step size being the length of the signal. Remember that the decomposition does not have to carried to 
that level. It can be stopped at any scale and is still considered a DWT, and it can be inverted using the 
appropriate synthesis ˝lter bank (or a matrix inverse). 

10.6 More General Structures 

The one-sided tree structure of Mallet's algorithm generates the basic DWT. From the ˝lter bank in Section: 
Three-Stage Two-Band Analysis Tree (Figure 4.4), one can imagine putting a pair of ˝lters and downsamplers 
at the output of the lower wavelet bank just as is done on the output of the upper scaling function bank. 
This can be continued to any level to create a balanced tree ˝lter bank. The resulting outputs are �wavelet 
packets" and are an alternative to the regular wavelet decomposition. Indeed, this �growing" of the ˝lter 
bank tree is usually done adaptively using some criterion at each node to decide whether to add another 
branch or not. 

Still another generalization of the basic wavelet system can be created by using a scale factor other than 
two. The multiplicity-M scaling equation is X 

φ (t) = h (k) φ (Mt − k) (10.32) 
k 

and the resulting ˝lter bank tree structure has one scaling function branch and M − 1 wavelet branches 
at each stage with each followed by a downsampler by M . The resulting structure is called an M -band 
˝lter bank, and it too is an alternative to the regular wavelet decomposition. This is developed in Section: 
Multiplicity-M (M-band) Scaling Functions and Wavelets (Section 8.2: Multiplicity-M (M-Band) Scaling 
Functions and Wavelets). 

In many applications, it is the continuous wavelet transform (CWT) that is wanted. This can be calculated 
by using numerical integration to evaluate the inner products in (2.11) and (8.106) but that is very slow. 
An alternative is to use the DWT to approximate samples of the CWT much as the DFT can be used to 
approximate the Fourier series or integral [393], [443], [558]. 

As you can see from this discussion, the ideas behind wavelet analysis and synthesis are basically the same 
as those behind ˝lter bank theory. Indeed, ˝lter banks can be used calculate discrete wavelet transforms 
using Mallat's algorithm, and certain modi˝cations and generalizations can be more easily seen or interpreted 
in terms of ˝lter banks than in terms of the wavelet expansion. The topic of ˝lter banks in developed in 
Chapter: Filter Banks and the Discrete Wavelet Transform and in more detail in Chapter: Filter Banks and 
Transmultiplexers . 
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Chapter 11 

Wavelet-Based Signal Processing and 

Applications1 

This chapter gives a brief discussion of several areas of application. It is intended to show what areas and 
what tools are being developed and to give some references to books, articles, and conference papers where 
the topics can be further pursued. In other words, it is a sort of annotated bibliography that does not 
pretend to be complete. Indeed, it is impossible to be complete or up-to-date in such a rapidly developing 
new area and in an introductory book. 

In this chapter, we brie˛y consider the application of wavelet systems from two perspectives. First, we 
look at wavelets as a tool for denoising and compressing a wide variety of signals. Second, we very brie˛y 
list several problems where the application of these tools shows promise or has already achieved signi˝cant 
success. References will be given to guide the reader to the details of these applications, which are beyond 
the scope of this book. 

11.1 Wavelet-Based Signal Processing 

To accomplish frequency domain signal processing, one can take the Fourier transform (or Fourier series or 
DFT) of a signal, multiply some of the Fourier coe°cients by zero (or some other constant), then take the 
inverse Fourier transform. It is possible to completely remove certain components of a signal while leaving 
others completely unchanged. The same can be done by using wavelet transforms to achieve wavelet-based, 
wavelet domain signal processing, or ˝ltering. Indeed, it is sometimes possible to remove or separate parts of 
a signal that overlap in both time and frequency using wavelets, something impossible to do with conventional 
Fourier-based techniques. 

1This content is available online at <http://cnx.org/content/m45101/1.5/>. 

207 

http://cnx.org/content/m45101/1.5


208 
CHAPTER 11. WAVELET-BASED SIGNAL PROCESSING AND 

APPLICATIONS 

Figure 11.1: Transform-Based Signal Processor 

The classical paradigm for transform-based signal processing is illustrated in Figure 11.1 where the center 
�box" could be either a linear or nonlinear operation. The �dynamics" of the processing are all contained in 
the transform and inverse transform operation, which are linear. The transform-domain processing operation 
has no dynamics; it is an algebraic operation. By dynamics, we mean that a process depends on the present 
and past, and by algebraic, we mean it depends only on the present. An FIR (˝nite impulse response) ˝lter 
such as is part of a ˝lter bank is dynamic. Each output depends on the current and a ˝nite number of past 
inputs (see (4.11)). The process of operating point-wise on the DWT of a signal is static or algebraic. It 
does not depend on the past (or future) values, only the present. This structure, which separates the linear, 
dynamic parts from the nonlinear static parts of the processing, allows practical and theoretical results that 
are impossible or very di°cult using a completely general nonlinear dynamic system. 

Linear wavelet-based signal processing consists of the processor block in Figure 11.1 multiplying the DWT 
of the signal by some set of constants (perhaps by zero). If undesired signals or noise can be separated from 
the desired signal in the wavelet transform domain, they can be removed by multiplying their coe°cients 
by zero. This allows a more powerful and ˛exible processing or ˝ltering than can be achieved using Fourier 
transforms. The result of this total process is a linear, time-varying processing that is far more versatile than 
linear, time-invariant processing. The next section gives an example of using the concentrating properties of 
the DWT to allow a faster calculation of the FFT. 

11.2 Approximate FFT using the Discrete Wavelet Transform 

In this section, we give an example of wavelet domain signal processing. Rather than computing the DFT 
from the time domain signal using the FFT algorithm, we will ˝rst transform the signal into the wavelet 
domain, then calculate the FFT, and ˝nally go back to the signal domain which is now the Fourier domain. 

Most methods of approximately calculating the discrete Fourier transform (DFT) involve calculating 
only a few output points (pruning), using a small number of bits to represent the various calculations, or 
approximating the kernel, perhaps by using cordic methods. Here we use the characteristics of the signal 
being transformed to reduce the amount of arithmetic. Since the wavelet transform concentrates the energy 
of many classes of signals onto a small number of wavelet coe°cients, this can be used to improve the 
e°ciency of the DFT [235], [239], [234], [240] and convolution [236]. 

11.2.1 Introduction 

The DFT is probably the most important computational tool in signal processing. Because of the character-
istics of the basis functions, the DFT has enormous capacity for the improvement of its arithmetic e°ciency 
[54]. The classical Cooley-Tukey fast Fourier transform (FFT) algorithm has the complexity of O (Nlog2N). 
Thus the Fourier transform and its fast algorithm, the FFT, are widely used in many areas, including signal 
processing and numerical analysis. Any scheme to speed up the FFT would be very desirable. 
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Although the FFT has been studied extensively, there are still some desired properties that are not 
provided by the classical FFT. Here are some of the disadvantages of the FFT algorithm: 

1. Pruning is not easy. When the number of input points or output points are small compared to the 
length of the DWT, a special technique called pruning [482] is often used. However, this often requires 
that the nonzero input data are grouped together. Classical FFT pruning algorithms do not work well 
when the few nonzero inputs are randomly located. In other words, a sparse signal may not necessarily 
give rise to faster algorithm. 

2. No speed versus accuracy tradeo˙. It is common to have a situation where some error would be 
allowed if there could be a signi˝cant increase in speed. However, this is not easy with the classical 
FFT algorithm. One of the main reasons is that the twiddle factors in the butter˛y operations are unit 
magnitude complex numbers. So all parts of the FFT structure are of equal importance. It is hard 
to decide which part of the FFT structure to omit when error is allowed and the speed is crucial. In 
other words, the FFT is a single speed and single accuracy algorithm. 

3. No built-in noise reduction capacity. Many real world signals are noisy. What people are really 
interested in are the DFT of the signals without the noise. The classical FFT algorithm does not have 
built-in noise reduction capacity. Even if other denoising algorithms are used, the FFT requires the 
same computational complexity on the denoised signal. Due to the above mentioned shortcomings, the 
fact that the signal has been denoised cannot be easily used to speed up the FFT. 

11.2.2 Review of the Discrete Fourier Transform and FFT 

The discrete Fourier transform (DFT) is de˝ned for a length-N complex data sequence by 

N−1X 
−j2π nk/N X (k) = x (n) e , k = 0, ..., N − 1 (11.1) 

n=0 
√ 

where we use j = −1. There are several ways to derive the di˙erent fast Fourier transform (FFT) algo-
rithms. It can be done by using index mapping [54], by matrix factorization, or by polynomial factorization. 
In this chapter, we only discuss the matrix factorization approach, and only discuss the so-called radix-2 
decimation in time (DIT) variant of the FFT. 

Instead of repeating the derivation of the FFT algorithm, we show the block diagram and matrix factor-
ization, in an e˙ort to highlight the basic idea and gain some insight. The block diagram of the last stage 
of a length-8 radix-2 DIT FFT is shown in Figure 11.2. First, the input data are separated into even and 
odd groups. Then, each group goes through a length-4 DFT block. Finally, butter˛y operations are used to 
combine the shorter DFTs into longer DFTs. 
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Figure 11.2: Last Stage of a Length-8 Radix-2 DIT FFT 

−j2πi/N The details of the butter˛y operations are shown in Figure 11.3, where WN
i = e is called the 

twiddle factor. All the twiddle factors are of magnitude one on the unit circle. This is the main reason that 
there is no complexity versus accuracy tradeo˙ for the classical FFT. Suppose some of the twiddle factors 
had very small magnitude, then the corresponding branches of the butter˛y operations could be dropped 
(pruned) to reduce complexity while minimizing the error to be introduced. Of course the error also depends 
on the value of the data to be multiplied with the twiddle factors. When the value of the data is unknown, 
the best way is to cuto˙ the branches with small twiddle factors. 

The computational complexity of the FFT algorithm can be easily established. If we let CFFT (N) be 
the complexity for a length-N FFT, we can show 

CFFT (N) = O (N) + 2CFFT (N/2) , (11.2) 

where O (N) denotes linear complexity. The solution to Equation (11.2) is well known: 

CFFT (N) = O (Nlog2N) . (11.3) 

This is a classical case where the divide and conquer approach results in very e˙ective solution. 
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Figure 11.3: Butter˛y Operations in a Radix-2 DIT FFT 

The matrix point of view gives us additional insight. Let FN be the N×N DFT matrix; i.e., FN (m, n) = 
−j2πmn/N , where m, n ∈ {0, 1, ..., N −1}. Let SN ⎡ ⎢⎢⎢⎢⎢⎣ 

be the N ×N even-odd separation matrix; e.g., e 

S4 = 

1 0 0 0 

0 0 1 0 

0 1 0 0 

0 0 0 1 

⎤ ⎥⎥⎥⎥⎥⎦ . (11.4) 

Clearly S ' = IN , where IN is the N ×N identity matrix. Then the DIT FFT is based on the following N SN 

matrix factorization, 

FN = FN SN 
' SN = 

⎡⎣ IN/2 TN/2 

⎡⎣ ⎤⎦ FN/2 0 
⎤⎦SN , (11.5) 

IN/2 −TN/2 0 FN/2 

where TN/2 is a diagonal matrix with WN
i , i ∈ {0, 1, ..., N/2−1} on the diagonal. We can visualize the 

above factorization as 

(11.6) 
where we image the real part of DFT matrices, and the magnitude of the matrices for butter˛y operations 
and even-odd separations. N is taken to be 128 here. 

11.2.3 Review of the Discrete Wavelet Transform 

In this section, we brie˛y review the fundamentals of the discrete wavelet transform and introduce the 
necessary notation for future sections. The details of the DWT have been covered in other chapters. 
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At the heart of the discrete wavelet transform are a pair of ˝lters h and g � lowpass and highpass 
respectively. They have to satisfy a set of constraints Figure: Sinc Scaling Function and Wavelet (6.1) [552], 
[495], [530]. The block diagram of the DWT is shown in Figure 11.4. The input data are ˝rst ˝ltered by h 
and g then downsampled. The same building block is further iterated on the lowpass outputs. 

Figure 11.4: Building Block for the Discrete Wavelet Transform 

The computational complexity of the DWT algorithm can also be easily established. Let CDW T (N) be 
the complexity for a length-N DWT. Since after each scale, we only further operate on half of the output 
data, we can show 

CDW T (N) = O (N) + CDW T (N/2) , (11.7) 

which gives rise to the solution 

CDW T (N) = O (N) . (11.8) 

The operation in Figure 11.4 can also be expressed in matrix form WN ; e.g., for Haar wavelet, 

√ 
WHaar = 2/24 

⎡ ⎢⎢⎢⎢⎢⎣ 
1 −1 0 0 

0 0 1 −1 
1 1 0 0 

0 0 1 1 

⎤ ⎥⎥⎥⎥⎥⎦ . (11.9) 

The orthogonality conditions on h and g ensure W ' = IN . The matrix for multiscale DWT is formedN WN 

by WN for di˙erent N ; e.g., for three scale DWT, ⎡ ⎢⎢⎣ 
⎡⎣ WN/4 

IN/4 

⎤⎦ ⎡⎣ 
⎤ ⎥⎥⎦ WN/2 

⎤⎦WN . (11.10) 
IN/2 

IN/2 

We could further iterate the building block on some of the highpass outputs. This generalization is called 
the wavelet packets [94]. 

11.2.4 The Algorithm Development 

The key to the fast Fourier transform is the factorization of FN into several sparse matrices, and one of the 
sparse matrices represents two DFTs of half the length. In a manner similar to the DIT FFT, the following 
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matrix factorization can be made: 

FN = FN WN
T WN = 

⎡⎣ AN/2 BN/2 

⎡⎣ ⎤⎦ FN/2 0 
⎤⎦WN , (11.11) 

CN/2 DN/2 0 FN/2 

where AN/2, BN/2, CN/2, and DN/2 are all diagonal matrices. The values on the diagonal of AN/2 and 
CN/2 are the length-N DFT (i.e., frequency response) of h, and the values on the diagonal of BN/2 and 
DN/2 are the length-N DFT of g. We can visualize the above factorization as 

(11.12) 
where we image the real part of DFT matrices, and the magnitude of the matrices for butter˛y operations 
and the one-scale DWT using length-16 Daubechies' wavelets [107], [124]. Clearly we can see that the new 
twiddle factors have non-unit magnitudes. 

Figure 11.5: Last stage of a length-8 DWT based FFT. 

The above factorization suggests a DWT-based FFT algorithm. The block diagram of the last stage of 
a length-8 algorithm is shown in Figure 11.5. This scheme is iteratively applied to shorter length DFTs 
to get the full DWT based FFT algorithm. The ˝nal system is equivalent to a full binary tree wavelet 
packet transform [96] followed by classical FFT butter˛y operations, where the new twiddle factors are the 
frequency response of the wavelet ˝lters. 



214 
CHAPTER 11. WAVELET-BASED SIGNAL PROCESSING AND 

APPLICATIONS 

The detail of the butter˛y operation is shown in Figure 11.6, where i ∈ {0, 1, ...,N/2−1}. Now the twiddle 
factors are length-N DFT of h and g. For well de˝ned wavelet ˝lters, they have well known properties; e.g., 
for Daubechies' family of wavelets, their frequency responses are monotone, and nearly half of which have 
magnitude close to zero. This fact can be exploited to achieve speed vs. accuracy tradeo˙. The classical 
radix-2 DIT FFT is a special case of the above algorithm when h = [1, 0] and g = [0, 1]. Although they 
do not satisfy some of the conditions required for wavelets, they do constitute a legitimate (and trivial) 
orthogonal ˝lter bank and are often called the lazy wavelets in the context of lifting. 

Figure 11.6: Butter˛y Operations in a Radix-2 DIT FFT 

11.2.5 Computational Complexity 

For the DWT-based FFT algorithm, the computational complexity is on the same order of the FFT � 
O (Nlog2N), since the recursive relation in (11.2) is again satis˝ed. However, the constant appearing before 
Nlog2N depends on the wavelet ˝lters used. 

11.2.6 Fast Approximate Fourier Transform 

The basic idea of the fast approximate Fourier transform (FAFT) is pruning ; i.e., cutting o˙ part of the 
diagram. Traditionally, when only part of the inputs are nonzero, or only part of the outputs are required, 
the part of the FFT diagram where either the inputs are zero or the outputs are undesired is pruned [482], so 
that the computational complexity is reduced. However, the classical pruning algorithm is quite restrictive, 
since for a majority of the applications, both the inputs and the outputs are of full length. 

The structure of the DWT-based FFT algorithm can be exploited to generalize the classical pruning idea 
for arbitrary signals. From the input data side, the signals are made sparse by the wavelet transform [382], 
[371], [374], [124]; thus approximation can be made to speed up the algorithm by dropping the insigni˝cant 
data. In other words, although the input signal are normally not sparse, DWT creates the sparse inputs for 
the butter˛y stages of the FFT. So any scheme to prune the butter˛y stages for the classical FFT can be 
used here. Of course, the price we have to pay here is the computational complexity of the DWT operations. 
In actual implementation, the wavelets in use have to be carefully chosen to balance the bene˝t of the 
pruning and the price of the transform. Clearly, the optimal choice depends on the class of the data we 
would encounter. 

From the transform side, since the twiddle factors of the new algorithm have decreasing magnitudes, 
approximation can be made to speed up the algorithm by pruning the sections of the algorithm which 
correspond to the insigni˝cant twiddle factors. The frequency response of the Daubechies' wavelets are 
shown in Figure 11.7. We can see that they are monotone decreasing. As the length increases, more and 
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more points are close to zero. It should be noted that those ˝lters are not designed for frequency responses. 
They are designed for ˛atness at 0 and π. Various methods can be used to design wavelets or orthogonal 
˝lter banks [403], [462], [530] to achieve better frequency responses. Again, there is a tradeo˙ between the 
good frequency response of the longer ˝lters and the higher complexity required by the longer ˝lters. 

Figure 11.7: The Frequency Responses of Daubechies' Family of Wavelets 

11.2.7 Computational Complexity 

The wavelet coe°cients are mostly sparse, so the input of the shorter DFTs are sparse. If the implementation 
scales well with respect to the percentage of the signi˝cant input (e.g., it uses half of the time if only half of 
the inputs are signi˝cant), then we can further lower the complexity. Assume for N inputs, αN of them are 
signi˝cant (α ≤ 1), we have 

CF AF T (N) = O (N) + 2αCF AF T (N/2) . (11.13) 

For example, if α = 2
1 , Equation (11.13) simpli˝es to 

CF AF T (N) = O (N) + CF AF T (N/2) , (11.14) 

which leads to 

CF AF T (N) = O (N) . (11.15) 

So under the above conditions, we have a linear complexity approximate FFT. Of course, the complexity 
depends on the input data, the wavelets we use, the threshold value used to drop insigni˝cant data, and 
the threshold value used to prune the butter˛y operations. It remains to ˝nd a good tradeo˙. Also the 
implementation would be more complicated than the classical FFT. 
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11.2.8 Noise Reduction Capacity 

It has been shown that the thresholding of wavelet coe°cients has near optimal noise reduction property for 
many classes of signals [150]. The thresholding scheme used in the approximation in the proposed FAFT 
algorithm is exactly the hard thresholding scheme used to denoise the data. Soft thresholding can also be 
easily embedded in the FAFT. Thus the proposed algorithm also reduces the noise while doing approximation. 
If we need to compute the DFT of noisy signals, the proposed algorithm not only can reduce the numerical 
complexity but also can produce cleaner results. 

11.2.9 Summary 

In the past, the FFT has been used to calculate the DWT [552], [495], [530], which leads to an e°cient 
algorithm when ˝lters are in˝nite impulse response (IIR). In this chapter, we did just the opposite � using 
DWT to calculate FFT. We have shown that when no intermediate coe°cients are dropped and no approx-
imations are made, the proposed algorithm computes the exact result, and its computational complexity is 
on the same order of the FFT; i.e., O (Nlog2N). The advantage of our algorithm is two fold. From the input 
data side, the signals are made sparse by the wavelet transform, thus approximation can be made to speed 
up the algorithm by dropping the insigni˝cant data. From the transform side, since the twiddle factors of 
the new algorithm have decreasing magnitudes, approximation can be made to speed up the algorithm by 
pruning the section of the algorithm which corresponds to the insigni˝cant twiddle factors. Since wavelets 
are an unconditional basis for many classes of signals [495], [374], [124], the algorithm is very e°cient and 
has built-in denoising capacity. An alternative approach has been developed by Shentov, Mitra, Heute, and 
Hossen [469], [267] using subband ˝lter banks. 

11.3 Nonlinear Filtering or Denoising with the DWT 

Wavelets became known to most engineers and scientists with the publication of Daubechies' important 
paper [107] in 1988. Indeed, the work of Daubechies [124], Mallat [341], [346], [351], Meyer [378], [382], 
and others produced beautiful and interesting structures, but many engineers and applied scientist felt they 
had a �solution looking for a problem." With the recent work of Donoho and Johnstone together with ideas 
from Coifman, Beylkin and others, the ˝eld is moving into a second phase with a better understanding of 
why wavelets work. This new understanding combined with nonlinear processing not only solves currently 
important problems, but gives the potential of formulating and solving completely new problems. We 
now have a coherence of approach and a theoretical basis for the success of our methods that should be 
extraordinarily productive over the next several years. Some of the Donoho and Johnstone references are 
[155], [145], [150], [139], [153], [164], [159], [157], [59], [147], [148], [61] and related ones are [459], [389], [507], 
[506], [46]. Ideas from Coifman are in [96], [94], [95], [92], [91], [89], [37]. 

These methods are based on taking the discrete wavelet transform (DWT) of a signal, passing this 
transform through a threshold, which removes the coe°cients below a certain value, then taking the inverse 
DWT, as illustrated in Figure 11.1. They are able to remove noise and achieve high compression ratios 
because of the �concentrating" ability of the wavelet transform. If a signal has its energy concentrated in a 
small number of wavelet dimensions, its coe°cients will be relatively large compared to any other signal or 
noise that has its energy spread over a large number of coe°cients. This means that thresholding or shrinking 
the wavelet transform will remove the low amplitude noise or undesired signal in the wavelet domain, and 
an inverse wavelet transform will then retrieve the desired signal with little loss of detail. In traditional 
Fourier-based signal processing, we arrange our signals such that the signals and any noise overlap as little 
as possible in the frequency domain and linear time-invariant ˝ltering will approximately separate them. 
Where their Fourier spectra overlap, they cannot be separated. Using linear wavelet or other time-frequency 
or time-scale methods, one can try to choose basis systems such that in that coordinate system, the signals 
overlap as little as possible, and separation is possible. 

The new nonlinear method is entirely di˙erent. The spectra can overlap as much as they want. The 
idea is to have the amplitude, rather than the location of the spectra be as di˙erent as possible. This allows 
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clipping, thresholding, and shrinking of the amplitude of the transform to separate signals or remove noise. 
It is the localizing or concentrating properties of the wavelet transform that makes it particularly e˙ective 
when used with these nonlinear methods. Usually the same properties that make a system good for denoising 
or separation by nonlinear methods, makes it good for compression, which is also a nonlinear process. 

11.3.1 Denoising by Thresholding 

We develop the basic ideas of thresholding the wavelet transform using Donoho's formulations [150], [155], 
[306]. Assume a ˝nite length signal with additive noise of the form 

yi = xi + �ni, i = 1, ..., N (11.16) 

as a ˝nite length signal of observations of the signal xi that is corrupted by i.i.d. zero mean, white Gaussian 
iid

noise ni with standard deviation �, i.e., ni ∼ N (0, 1). The goal is to recover the signal x from the noisy 
observations y. Here and in the following, v denotes a vector with the ordered elements vi if the index i is 
omitted. Let W be a left invertible wavelet transformation matrix of the discrete wavelet transform (DWT). 
Then Eq. (11.16) can be written in the transformation domain 

Y = X + N, or, Yi = Xi + Ni, (11.17) 

where capital letters denote variables in the transform domain, i.e., Y = Wy. Then the inverse transform 
matrix W −1 exists, and we have 

W −1W = I. (11.18) 

The following presentation follows Donoho's approach [155], [145], [150], [139], [306] that assumes an or-
thogonal wavelet transform with a square W ; i.e., W −1 = W T . We will use the same assumption throughout 
this section. 

^ 
Let X denote an estimate of X, based on the observations Y . We consider diagonal linear projections 

Δ = diag (δ1, ..., δN ) , δi ∈ {0, 1}, i = 1, ..., N, (11.19) 

which give rise to the estimate 

^^ 
x= W −1 

X= W −1ΔY = W −1ΔW y. (11.20) 

^ 
The estimate X is obtained by simply keeping or zeroing the individual wavelet coe°cients. Since we are 
interested in the l2 error we de˝ne the risk measure � � � � � � � � � � 

^ ^ ^^ R X,X = E kx −x k2 = E k W −1 
X −X k22 = E kX −X k2 . (11.21)2 2 

Notice that the last equality in Eq. (11.21) is a consequence of the orthogonality of W . The optimal coe°-
cients in the diagonal projection scheme are δi = 1Xi>�;

2 i.e., only those values of Y where the corresponding 
elements of X are larger than � are kept, all others are set to zero. This leads to the ideal risk � � N^ X � � 

Rid X,X = min X2, �2 . (11.22) 
n=1 

The ideal risk cannot be attained in practice, since it requires knowledge of X, the wavelet transform of the 
unknown vector x. However, it does give us a lower limit for the l2 error. 

Donoho proposes the following scheme for denoising: 

2It is interesting to note that allowing arbitrary δi ∈ IR improves the ideal risk by at most a factor of 2[157] 
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1. compute the DWT Y = Wy 
2. perform thresholding in the wavelet domain, according to so-called hard thresholding 

^ Y, |Y | ≥ t 
X= Th (Y, t) = { (11.23) 

0, |Y | < t 

or according to so-called soft thresholding 

^ sgn (Y ) (|Y | − t) , |Y | ≥ t 
X= TS (Y, t) = { (11.24) 

0, |Y | < t 

^^ 
3. compute the inverse DWT x= W −1 X 

This simple scheme has several interesting properties. It's risk is within a logarithmic factor (logN) of 
the ideal risk for both thresholding schemes and properly chosen thresholds t (N, �). If one employs soft 
thresholding, then the estimate is with high probability at least as smooth as the original function. The 
proof of this proposition relies on the fact that wavelets are unconditional bases for a variety of smoothness 

^ 
classes and that soft thresholding guarantees (with high probability) that the shrinkage condition |Xi| < |Xi|

^ 
holds. The shrinkage condition guarantees that x is in the same smoothness class as is x. Moreover, the soft 
threshold estimate is the optimal estimate that satis˝es the shrinkage condition. The smoothness property 
guarantees an estimate free from spurious oscillations which may result from hard thresholding or Fourier 
methods. Also, it can be shown that it is not possible to come closer to the ideal risk than within a factor 
logN . Not only does Donoho's method have nice theoretical properties, but it also works very well in practice. 

Some comments have to be made at this point. Similar to traditional approaches (e.g., low pass ˝ltering), 
there is a trade-o˙ between suppression of noise and oversmoothing of image details, although to a smaller 
extent. Also, hard thresholding yields better results in terms of the l2 error. That is not surprising since 
the observation value yi itself is clearly a better estimate for the real value xi than a shrunk value in a zero 
mean noise scenario. However, the estimated function obtained from hard thresholding typically exhibits 
undesired, spurious oscillations and does not have the desired smoothness properties. 

11.3.2 Shift-Invariant or Nondecimated Discrete Wavelet Transform 

As is well known, the discrete wavelet transform is not shift invariant; i.e., there is no �simple� relationship 
between the wavelet coe°cients of the original and the shifted signal3 . In this section we will develop a shift-
invariant DWT using ideas of a nondecimated ˝lter bank or a redundant DWT [306], [309], [303]. Because 
this system is redundant, it is not a basis but will be a frame or tight frame (see Section: Overcomplete 
Representations, Frames, Redundant Transforms, and Adaptive Bases (Section 8.6: Overcomplete Repre-
sentations, Frames, Redundant Transforms, and Adaptive Bases)). Let X = Wx be the (orthogonal) DWT 
of x and SR be a matrix performing a circular right shift by R with R ∈ Z. Then 

Xs = Wxs = WSRx = WSRW −1X, (11.25) 

which establishes the connection between the wavelet transforms of two shifted versions of a signal, x and 
xs, by the orthogonal matrix WSRW −1 . As an illustrative example, consider Figure 11.8. 

3Since we deal with ˝nite length signals, we really mean circular shift. 
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(a) (b) 

Figure 11.8: Shift Variance of the Wavelet Transform (a) DWT of skyline (b) SWT of skyline circular 
shifted by 1 

The ˝rst and most obvious way of computing a shift invariant discrete wavelet transform (SIDWT) is 
simply computing the wavelet transform of all shifts. Usually the two band wavelet transform is computed 
as follows: 1) ˝lter the input signal by a low-pass and a high-pass ˝lter, respectively, 2) downsample each 
˝lter output, and 3) iterate the low-pass output. Because of the downsampling, the number of output values 
at each stage of the ˝lter bank (corresponding to coarser and coarser scales of the DWT) is equal to the 
number of the input values. Precisely N values have to be stored. The computational complexity is O (N). 
Directly computing the wavelet transform of all shifts therefore requires the storage of N2 elements and has� � 
computational complexity O N2 . 

Beylkin [34], Shensa [468], and the Rice group4 independently realized that 1) there are only NlogN 
di˙erent coe°cient values among those corresponding to all shifts of the input signal and 2) those can be 
computed with computational complexity NlogN . This can be easily seen by considering one stage of the 
˝lter bank. Let 

T 
y = [y0 y1 y2 ... yN ] = hx (11.26) 

where y is the output of either the high-pass or the low-pass ˝lter in the analysis ˝lter bank, x the input and 
the matrix h describes the ˝ltering operation. Downsampling of y by a factor of two means keeping the even 
indexed elements and discarding the odd ones. Consider the case of an input signal shifted by one. Then 
the output signal is shifted by one as well, and sampling with the same operator as before corresponds to 
keeping the odd-indexed coe°cients as opposed to the even ones. Thus, the set of data points to be further 
processed is completely di˙erent. However, for a shift of the input signal by two, the downsampled output 
signal di˙ers from the output of the nonshifted input only by a shift of one. This is easily generalized for 
any odd and even shift and we see that the set of wavelet coe°cients of the ˝rst stage of the ˝lter bank for 
arbitrary shifts consists of only 2N di˙erent values. Considering the fact that only the low-pass component 
(N values) is iterated, one recognizes that after L stages exactly LN values result. Using the same arguments 
as in the shift variant case, one can prove that the computational complexity is O (NlogN). The derivation 
for the synthesis is analogous. 

Mallat proposes a scheme for computing an approximation of the continuous wavelet transform [349] that 
turns out to be equivalent to the method described above. This has been realized and proved by Shensa 
[468]. Moreover, Shensa shows that Mallat's algorithm exhibits the same structure as the so-called algorithm 

4Those are the ones we are aware of. 
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à trous. Interestingly, Mallat's intention in [349] was not in particular to overcome the shift variance of the 
DWT but to get an approximation of the continuous wavelet transform. 

In the following, we shall refer to the algorithm for computing the SIDWT as the Beylkin algorithm5 

since this is the one we have implemented. Alternative algorithms for computing a shift-invariant wavelet 
transform [329] are based on the scheme presented in [34]. They explicitly or implicitly try to ˝nd an optimal, 
signal-dependent shift of the input signal. Thus, the transform becomes shift-invariant and orthogonal but 
signal dependent and, therefore, nonlinear. We mention that the generalization of the Beylkin algorithm to 
the multidimensional case, to an M -band multiresolution analysis, and to wavelet packets is straightforward. 

11.3.3 Combining the Shensa-Beylkin-Mallat-à trous Algorithms and Wavelet 
Denoising 

It was Coifman who suggested that the application of Donoho's method to several shifts of the observation 
combined with averaging yields a considerable improvement.6 This statement ˝rst lead us to the following 
algorithm: 1) apply Donoho's method not only to �some� but to all circular shifts of the input signal 2) 
average the adjusted output signals. As has been shown in the previous section, the computation of all 
possible shifts can be e˙ectively done using Beylkin's algorithm. Thus, instead of using the algorithm 
just described, one simply applies thresholding to the SIDWT of the observation and computes the inverse 
transform. 

Before going into details, we want to brie˛y discuss the di˙erences between using the traditional or-
thogonal and the shift-invariant wavelet transform. Obviously, by using more than N wavelet coe°cients, 
we introduce redundancy. Several authors stated that redundant wavelet transforms, or frames, add to the 
numerical robustness [124] in case of adding white noise in the transform domain; e.g., by quantization. This 
is, however, di˙erent from the scenario we are interested in, since 1) we have correlated noise due to the 
redundancy, and 2) we try to remove noise in the transform domain rather than considering the e˙ect of 
adding some noise [306], [309]. 

11.3.4 Performance Analysis 

The analysis of the ideal risk for the SIDWT is similar to that by Guo [232]. De˝ne the sets A and B 
according to 

A = {i| |Xi| ≥ �} 
(11.27) 

B = {i| |Xi| < �} 

and an ideal diagonal projection estimator, or oracle, 

Yi = Xi + Ni i ∈ A
X̃ = { (11.28) 

0 i ∈ B. 

The pointwise estimation error is then 

Ni i ∈ A
X̃i − Xi = { (11.29) 

−Xi i ∈ B. 

In the following, a vector or matrix indexed by A (or B) indicates that only those rows are kept that have 
indices out of A (or B). All others are set to zero. With these de˝nitions and (11.21), the ideal risk for the 

5However, it should be noted that Mallat published his algorithm earlier. 
6A similar remark can be found in [457], p. 53. 
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SIDWT can be derived � � h � � i 
˜ k W −1 ˜ k2Rid X,X = E X − X 2 � � 

= E k W −1 (NA − XB ) k2 ⎡ 2 ⎤ 
T 

= E ⎣(NA − XB ) W −1T W −1 (NA − XB )⎦| {z } 
CW −1 (11.30)� � 

= E NT W −1T W −1NA − 2XT CW −1 E [NA] + XT CW −1 XBA B B� � �� 
= tr E W −1NANA

T W −1T + XB
T CW −1 XB� � � � 

= tr W −1E WA�n�n
T W T W −1T + XT CW −1 XB� A � B 

= �2tr W −1WAW T W −1T + XT CW −1 XB .A B 

where tr(X) denotes the trace of X. For the derivation we have used, the fact that NA = �WAn and 
consequently the NAi have zero mean. Notice that for orthogonal W the Eq. (11.30) immediately specializes 
to Eq. (11.22). Eq. (11.30) depends on the particular signal XB , the transform, W −1 , and the noise level �. 

It can be shown that when using the SIDWT introduced above and the thresholding scheme proposed 
by Donoho (including his choice of the threshold) then there exists the same upper bound for the actual 
risk as for case of the orthogonal DWT. That is the ideal risk times a logarithmic (in N) factor. We give 
only an outline of the proof. Johnstone and Silverman state [286] that for colored noise an oracle chooses 
δi = 1Xi≥�i , where �i is the standard deviation of the ith component. Since Donoho's method applies uniform 
thresholding to all components, one has to show that the diagonal elements of CW −1 (the variances of the 
components of N) are identical. This can be shown by considering the reconstruction scheme of the SIDWT. 
With these statements, the rest of the proof can be carried out in the same way as the one given by Donoho 
and Johnstone [155]. 

11.3.5 Examples of Denoising 

The two examples illustrated in Figure 11.9 show how wavelet based denoising works. The ˝rst shows a 
chirp or doppler signal which has a changing frequency and amplitude. Noise is added to this chirp in (b) 
and the result of basic Donoho denoising is shown in (c) and of redundant DWT denoising in (d). First, 
notice how well the noise is removed and at almost no sacri˝ce in the signal. This would be impossible with 
traditional linear ˝lters. 

The second example is the Houston skyline where the improvement of the redundant DWT is more 
obvious. 
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Figure 11.9: Example of Noise Reduction using ψD8 ' 
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11.4 Statistical Estimation 

This problem is very similar to the signal recovery problem; a signal has to be estimated from additive white 
Gaussian noise. By linearity, additive noise is additive in the transform domain where the problem becomes: 
estimate θ from y = θ + �z, where z is a noise vector (with each component being a zero mean variance 
one Gaussian random variable) and � > 0 is a scalar noise level. The performance measured by the mean 
squared error (by Parseval) is given by ! 

^ ^ 
R� θ, θ = Ek θ (y) − θk22 . (11.31) 

^ 
It depends on the signal (θ), the estimator θ , the noise level �, and the basis. 

For a ˝xed �, the optimal minmax procedure is the one that minimizes the error for the worst possible 
signal from the coe°cient body Θ. ! 

R ∗ 
� (Θ) = inf supR� 

θ∈Θ^ 

^ 
θ, θ . (11.32) 

θ 

^ 
Consider the particular nonlinear procedure θ that corresponds to soft-thresholding of every noisy coe°cient 
yi: 

T� (xi) = sgn (yi) (|yi| − �) . (11.33)+ 

[U+2606]Let r� (θ) be the corresponding error for signal θ and let r� (Θ) be the worst-case error for the coe°cient 
body Θ. 

If the coe°cient body is solid, orthosymmetric in a particular basis, then asymptotically (� → 0) the 
error decays at least as fast in this basis as in any other basis. That is r� (Θ) approaches zero at least as fast 
as r� (UΘ) for any orthogonal matrix U . Therefore, unconditional bases are nearly optimal asymptotically. 
Moreover, for small � we can relate this procedure to any other procedure as follows [145]: 

R ∗ (�, Θ) ≤ r ∗ (�, Θ) ≤ O (log (1/�)) · R ∗ (�, Θ) , � → 0. (11.34) 

11.5 Signal and Image Compression 

11.5.1 Fundamentals of Data Compression 

From basic information theory, we know the minimum average number of bits needed to represent realizations 
of a independent and identically distributed discrete random variable X is its entropyH (X)[99]. If the 
distribution p (X) is known, we can design Hu˙man codes or use the arithmetic coding method to achieve 
this minimum [27]. Otherwise we need to use adaptive method [576]. 

Continuous random variables require an in˝nite number of bits to represent, so quantization is always 
necessary for practical ˝nite representation. However, quantization introduces error. Thus the goal is to 
achieve the best rate-distortion tradeo˙ [276], [99], [50]. Text compression [27], waveform coding [276] 
and subband coding [552] have been studied extensively over the years. Here we concentrate on wavelet 
compression, or more general, transform coding. Also we concentrate on low bitrate. 
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Figure 11.10: Prototype Transform Coder 

11.5.2 Prototype Transform Coder 

The simple three-step structure of a prototype transform coder is shown in Figure 11.10. The ˝rst step is 
the transform of the signal. For a length-N discrete signal f (n), we expand it using a set of orthonormal 
basis functions as 

NX 
f (n) = ciψi (n) , (11.35) 

1 

where 

ci =< f (n) , ψi (n) > . (11.36) 

We then use the uniform scalar quantizer Q as in Figure 11.11, which is widely used for wavelet based image 
compression [466], [455], 

^ 
c i = Q (ci) . (11.37) 

Denote the quantization step size as T . Notice in the ˝gure that the quantizer has a dead zone, so if |ci| < T , 
then Q (ci) = 0. We de˝ne an index set for those insigni˝cant coe°cients 



 

225 

Figure 11.11: Uniform Scalar Quantizer 

I = {i : |ci| < T }. Let M be the number of coe°cients with magnitudes greater than T (signi˝cant 
coe°cients). Thus the size of I is N − M . The squared error caused by the quantization is 

N � �2 � �2X X X^ ^ 
ci − c i = ci 

2 + ci − c i . (11.38) 
i=1 i∈I i/∈I 

Since the transform is orthonormal, it is the same as the reconstruction error. Assume T is small enough, 
so that the signi˝cant coe°cients are uniformly distributed within each quantization bins. Then the second 
term in the error expression is �X �2

^ T 2 

ci − c i = M . 
12 

(11.39) 
i /∈I 

For the ˝rst term, we need the following standard approximation theorem [136] that relates it to the lp 

norm of the coe°cients, !1/pNX 
k f k p = |ci|p 

. (11.40) 
i=1 
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1 1Theorem 56 Let λ = > then2p X 
2 ci ≤ 

k f k2 

2λ − 1 
p
M1−2λ (11.41) 

i∈I 

2k kThis theorem be generalized in˝nite dimensional if ftocan space p 
2k k ∞for functions in Besov f does depend the particular choice of the wavelet < + nota space, on asp 

< + ∞. It has been shown that 

long as each wavelet in the basis has q > λ − 12 vanishing moments and is q times continuously di˙erentiable 
[378]. The Besov space includes piece-wise regular functions that may include discontinuities. This theorem 
indicates that the ˝rst term of the error expression decreases very fast when the number of signi˝cant 
coe°cient increases. 

The bit rate of the prototype compression algorithm can also be separated in two parts. For the ˝rst part, 
we need to indicate whether the coe°cient is signi˝cant, also known as the signi˝cant map. For example, 
we could use 1 for signi˝cant, and 0 for insigni˝cant. We need a total of N these indicators. For the second 
part, we need to represent the values of the signi˝cant coe°cients. We only need M values. Because the 
distribution of the values and the indicators are not known in general, adaptive entropy coding is often used 
[576]. 

Energy concentration is one of the most important properties for low bitrate transform coding. Suppose 
for the sample quantization step size T , we have a second set of basis that generate less signi˝cant coe°cients. 
The distribution of the signi˝cant map indicators is more skewed, thus require less bits to code. Also, we 
need to code less number of signi˝cant values, thus it may require less bits. In the mean time, a smaller 
M reduces the second error term as in (11.39). Overall, it is very likely that the new basis improves the 
rate-distortion performance. Wavelets have better energy concentration property than the Fourier transform 
for signals with discontinuities. This is one of the main reasons that wavelet based compression methods 
usually out perform DCT based JPEG, especially at low bitrate. 

11.5.3 Improved Wavelet Based Compression Algorithms 

The above prototype algorithm works well [355], [234], but can be further improved for its various building 
blocks [238]. As we can see from Figure 11.12, the signi˝cant map still has considerable structure, which 
could be exploited. Modi˝cations and improvements use the following ideas: 

• Insigni˝cant coe°cients are often clustered together. Especially, they often cluster around the same 
location across several scales. Since the distance between nearby coe°cients doubles for every scale, 
the insigni˝cant coe°cients often form a tree shape, as we can see from Figure: Discrete Wavelet √ 
Transform of the Houston Skyline, using ψD8' with a Gain of 2 for Each Higher Scale (Figure 3.5). 
These so called zero-trees can be exploited [466], [455] to achieve excellent results. 

• The choice of basis is very important. Methods have been developed to adaptively choose the basis for 
the signal [428], [584]. Although they could be computationally very intensive, substantial improvement 
can be realized. 

• Special run-length codes could be used to code signi˝cant map and values [511], [517]. 
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Figure 11.12: The Signi˝cant Map for the Lenna image. 

• Advanced quantization methods could be used to replace the simple scalar quantizer [287]. 
• Method based on statistical analysis like classi˝cation, modeling, estimation, and prediction also pro-

duces impressive result [333]. 
• Instead of using one ˝xed quantization step size, we can successively re˝ne the quantization by using 

smaller and smaller step sizes. These embedded schemes allow both the encoder and the decoder to 
stop at any bit rate [466], [455]. 

• The wavelet transform could be replaced by an integer-to-integer wavelet transform, no quantization 
is necessary, and the compression is lossless [455]. 

Other references are:[150], [155], [145], [459], [228], [466], [8], [9], [466], [554], [455], [456], [50], [234]. 

11.6 Why are Wavelets so Useful? 

The basic wavelet in wavelet analysis can be chosen so that it is smooth, where smoothness is measured 
in a variety of ways [371]. To represent f (t) with K derivatives, one can choose a wavelet ψ (t) that is 
K (or more) times continuously di˙erentiable; the penalty for imposing greater smoothness in this sense 
is that the supports of the basis functions, the ˝lter lengths and hence the computational complexity all 
increase. Besides, smooth wavelet bases are also the �best bases� for representing signals with arbitrarily 
many singularities [145], a remarkable property. 

The usefulness of wavelets in representing functions in these and several other classes stems from the fact 
that for most of these spaces the wavelet basis is an unconditional basis, which is a near-optimal property. 

To complete this discussion, we have to motivate the property of an unconditional basis being asymp-
totically optimal for a particular problem, say data compression [145]. Figure 11.13 suggests why a basis 
in which the coe°cients are solid and orthosymmetric may be desired. The signal class is de˝ned to be 
the interior of the rectangle bounded by the lines x = ±a and y = ±b. The signal corresponding to point 
A is the worst-case signal for the two bases shown in the ˝gure; the residual error (with n = 1) is given 
by asin (θ) + bcos (θ) for θ ∈ {0, α} and is minimized by θ = 0, showing that the orthosymmetric basis is 
preferred. This result is really a consequence of the fact that a 6= b (which is typically the case why one 
uses transform coding�if a = b, it turns out that the �diagonal� basis with θ = π 

4 is optimal for n = 1). 
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The closer the coe°cient body is to a solid, orthosymmetric body with varying side lengths, the less the 
individual coe°cients are correlated with each other and the greater the compression in this basis. 

In summary, the wavelet bases have a number of useful properties: 

1. They can represent smooth functions. 
2. They can represent singularities 
3. The basis functions are local. This makes most coe°cient-based algorithms naturally adaptive to 

inhomogeneities in the function. 
4. They have the unconditional basis (or near optimal in a minimax sense) property for a variety of 

function classes implying that if one knows very little about a signal, the wavelet basis is usually a 
reasonable choice. 

Figure 11.13: Optimal Basis for Data Compression 

5. They are computationally inexpensive�perhaps one of the few really useful linear transform with a 
complexity that is O (N)�as compared to a Fourier transform, which is Nlog (N) or an arbitrary� � 
linear transform which is O N2 . 

6. Nonlinear soft-thresholding is near optimal for statistical estimation. 
7. Nonlinear soft-thresholding is near optimal for signal recovery. 
8. Coe°cient vector truncation is near optimal for data compression. 

11.7 Applications 

Listed below are several application areas in which wavelet methods have had some success. 

11.7.1 Numerical Solutions to Partial Di˙erential Equations 

The use of wavelets as basis functions for the discretization of PDEs has had excellent success. They seem to 
give a generalization of ˝nite element methods with some characteristics of multigrid methods. It seems to 
be the localizing ability of wavelet expansions that give rise to sparse operators and good numerical stability 
of the methods [181], [447], [432], [37], [35], [263], [38], [327], [41], [39]. 
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11.7.2 Seismic and Geophysical Signal Processing 

One of the exciting applications areas of wavelet-based signal processing is in seismic and geophysical signal 
processing. Applications of denoising, compression, and detection are all important here, especially with 
higher-dimensional signals and images. Some of the references can be found in [448], [585], [460], [7], [459], 
[313], [179], [237][222], [218], [11], [40]. 

11.7.3 Medical and Biomedical Signal and Image Processing 

Another exciting application of wavelet-based signal processing is in medical and biomedical signal and image 
processing. Again, applications of denoising, compression, and detection are all important here, especially 
with higher dimensional signals and images. Some of the references can be found in [10], [518], [270]. 

11.7.4 Application in Communications 

Some applications of wavelet methods to communications problems are in [507], [325], [332], [581], [454]. 

11.7.5 Fractals 

Wavelet-based signal processing has been combined with fractals and to systems that are chaotic [6], [368], 
[579], [131], [20], [21], [577], [578]. The multiresolution formulation of the wavelet and the self-similar 
characteristic of certain fractals make the wavelet a natural tool for this analysis. An application to noise 
removal from music is in [31]. 

Other applications are to the automatic target recognition (ATR) problem, and many other questions. 

11.8 Wavelet Software 

There are several software packages available to study, experiment with, and apply wavelet signal analysis. 
There are several Matlab programs at the end of this book. MathWorks, Inc. has a Wavelet Toolbox 
[386]; Donoho's group at Stanford has WaveTool; the Yale group has XWPL and WPLab [574]; Taswell at 
Stanford has WavBox [508], a group in Spain has Uvi-Wave; MathSoft, Inc. has S+WAVELETS; Aware, 
Inc. has WaveTool; and the DSP group at Rice has a Matlab wavelet toolbox available over the internet at 
http://www-dsp.rice.edu. There is a good description and list of several wavelet software packages in [43]. 
There are several Matlab programs in Appendix C of this book. They were used to create the various 
examples and ˝gures in this book and should be studied when studying the theory of a particular topic. 

http://www-dsp.rice.edu
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Chapter 12 

Summary Overview1 

12.1 Properties of the Basic Multiresolution Scaling Function 

The ˝rst summary is given in four tables of the basic relationships and equations, primarily developed in 
Chapter: The Scaling Function and Scaling Coe°cients, Wavelet and Wavelet Coe°cients , for the scaling 
function φ (t), scaling coe°cients h (n), and their Fourier transforms Φ (ω) and H (ω) for the multiplier 
M = 2 or two-band multiresolution system. The various assumptions and conditions are omitted in order 
to see the �big picture" and to see the e˙ects of increasing constraints. 

Case Condition φ (t) Φ (ω) � � Signal Space 

1 Multiresolution 
P √ 

φ (t) = h (n) 2φ (2t − n) 
Q 

1 ωΦ (ω) = √ H 
2 2k distribution 

2 Partition of 1 
P 
φ (t − n) = 1 R Φ (2πk) = δ (k) distribution 

3 Orthogonal φ (t) φ (t − k) dt = δ (k) 
P 
|Φ (ω + 2πk) |2 

= 1 L2 

5 SF Smoothness d(`)φ < ∞dtR poly ∈ Vj 

6 SF Moments tkφ (t) dt = 0 Coi˛ets 

Table 12.1: Properties of M = 2 Scaling Functions (SF) and their Fourier Transforms 

Case Condition h (n) H (ω) Eigenval.{T} 

1 Existence 
P √ 
h (n) = 2 

√ 
H (0) = 2 

2 Fundamental 
P P 
h (2n) = h (2n + 1) H (π) = 0 EV = 1 

3 QMF 
P 
h (n) h (n − 2k) = δ (k) |H (ω) |2 

+ |H (ω + π) |2 
= 2 EV ≤ 1 

4 Orthogonal 
P 
h (n) h (n − 2k) = δ (k) 2 2|H (ω) | + |H (ω + π) | = 2 one EV = 1 

L2 Basis and H (ω) 6= 0, |ω| ≤ π/3 others < 1 

6 Coi˛ets 
P 
nkh (n) = 0 

Table 12.2: Properties of M = 2 Scaling Coe°cients and their Fourier Transforms 

1This content is available online at <http://cnx.org/content/m45099/1.3/>. 
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Case Condition ψ (t) P √ 
Ψ (ω) � � Signal Space 

1 MRA ψ (t) = h1 (n) 2φ (2t − n)R Q 
1 ωΨ (ω) = √ H12 2k distribution 

3 Orthogonal ϕ (t) ψ (t − k) dt = 0 R L2 

3 Orthogonal ψ (t) ψ (t − k) dt = δ (k)R L2 

5 W Moments tk ψ (t) dt = 0 poly not ∈ Wj 

Table 12.3: Properties of M = 2 Wavelets (W) and their Fourier Transforms 

Case Condition h1 (n) H1 (ω) Eigenval.{T} 

2 Fundamental 
P 
h1 (n) = 0 H1 (0) = 0 

3 Orthogonal h1 (n) = (−1)nh (1 − n) |H1 (ω) | = |H (ω + π) | 
3 Orthogonal 

P 
h1 (n) h1 (2m − n) = δ (m) 2 2|H1(ω) | + |H (ω) | = 2 

5 Smoothness 
P 
nkh1 (n) = 0 k ˜H (ω) = (ω − π) H (ω) 1 11, , , · · · 2 4 

Table 12.4: Properties of M = 2 Wavelet Coe°cients and their Fourier Transforms 

The di˙erent �cases" represent somewhat similar conditions for the stated relationships. For example, 
in Case 1, Table 1, the multiresolution conditions are stated in the time and frequency domains while in 
Table 2 the corresponding necessary conditions on h (n) are given for a scaling function in L1 . However, 
the conditions are not su°cient unless general distributions are allowed. In Case 1, Table 3, the de˝nition 
of a wavelet is given to span the appropriate multiresolution signal space but nothing seems appropriate for 
Case 1 in Table 4. Clearly the organization of these tables are somewhat subjective. 

If we �tighten" the restrictions by adding one more linear condition, we get Case 2 which has consequences 
in Tables 1, 2, and 4 but does not guarantee anything better that a distribution. Case 3 involves orthogonality, 
both across scales and translations, so there are two rows for Case 3 in the tables involving wavelets. Case 4 
adds to the orthogonality a condition on the frequency response H (ω) or on the eigenvalues of the transition 
matrix to guarantee an L2 basis rather than a tight frame guaranteed for Case 3. Cases 5 and 6 concern 
zero moments and scaling function smoothness and symmetry. 

In some cases, columns 3 and 4 are equivalent and others, they are not. In some categories, a higher 
numbered case assumes a lower numbered case and in others, they do not. These tables try to give a structure 
without the details. It is useful to refer to them while reading the earlier chapters and to refer to the earlier 
chapters to see the assumptions and conditions behind these tables. 

12.2 Types of Wavelet Systems 

Here we try to present a structured list of the various classes of wavelet systems in terms of modi˝cation 
and generalizations of the basic M = 2 system. There are some classes not included here because the whole 
subject is still an active research area, producing new results daily. However, this list plus the table of 
contents, index, and references will help guide the reader through the maze. The relevant section or chapter 
is given in parenthesis for each topic. 

• Signal Expansions 

· General Expansion Systems Section 7.6 (Vanishing Scaling Function Moments) 
· Multiresolution Systems 

• Multiresolution Wavelet Systems 

· M = 2 or two-band wavelet systems -
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· M > 2 or M-band wavelet systems Section 8.2 (Multiplicity-M (M-Band) Scaling Functions and 
Wavelets) 

· wavelet packet systems Section 8.3 (Wavelet Packets) 
· multiwavelet systems Section 8.5 (Multiwavelets) 

• Length of scaling function ˝lter 

· Compact support wavelet systems 
· In˝nite support wavelet systems 

• Orthogonality 

· Orthogonal or Orthonormal wavelet bases 
· Semiorthogonal systems 
· Biorthogonal systems Section 8.4 (Biorthogonal Wavelet Systems) 

• Symmetry 

· Symmetric scaling functions and wavelets Section 8.4 (Biorthogonal Wavelet Systems),Section 8.5 
(Multiwavelets) 

· Approximately symmetric systems Section 7.9 (Coi˛ets and Related Wavelet Systems) 
· Minimum phase spectral factorization systems 
· General scaling functions 

• Complete and Overcomplete systems ,Section 8.6 (Overcomplete Representations, Frames, Redundant 
Transforms, and Adaptive Bases) 

· Frames 
· Tight frames 
· Redundant systems and transforms Section 8.6 (Overcomplete Representations, Frames, Redun-

dant Transforms, and Adaptive Bases),Section 11.3 (Nonlinear Filtering or Denoising with the 
DWT) 

· Adaptive systems and transforms, pursuit methods Section 8.6 (Overcomplete Representations, 
Frames, Redundant Transforms, and Adaptive Bases) 

• Discrete and continuous signals and transforms {analogous Fourier method} Section 8.8 (Discrete Mul-
tiresolution Analysis, the Discrete-Time Wavelet Transform, and the Continuous Wavelet Transform) 

· Discrete Wavelet Transform {Fourier series} 
· Discrete-time Wavelet Transform {Discrete Fourier transforms} , 
· Continuous-time Wavelet Transform {Fourier transform or integral} Section 8.8 (Discrete Mul-

tiresolution Analysis, the Discrete-Time Wavelet Transform, and the Continuous Wavelet Trans-
form) 

• Wavelet design 

· Max. zero wavelet moments [Daubechies] 
· Max. zero scaling function moments 
· Max. mixture of SF and wavelet moments zero [Coifman] Section 7.9 (Coi˛ets and Related 

Wavelet Systems) 
· Max. smooth scaling function or wavelet [Heller, Lang, etc.] 
· Min. scaling variation [Gopinath, Odegard, etc.] 
· Frequency domain criteria 

* Butterworth [Daubechies] 
* least-squares, constrained LS, Chebyshev 

· Cosine modulated for M-band systems 

• Descriptions 

· The signal itself 
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· 
· 
· 

The discrete wavelet transform (expansion coe°cients) 
Time functions at various scales or translations 
Tiling of the time-frequency/scale plane Section 8.1 (Tiling the Time�Frequency or Time�Scale 
Plane) 



Appendix A1 

This appendix contains outline proofs and derivations for the theorems and formulas given in early part of 
Chapter: The Scaling Function and Scaling Coe°cients, Wavelet and Wavelet Coe°cients . They are not 
intended to be complete or formal, but they should be su°cient to understand the ideas behind why a result 
is true and to give some insight into its interpretation as well as to indicate assumptions and restrictions. 

Proof 1 The conditions given by (6.10) and (8.7) can be derived by integrating both sides of X √ 
φ (x) = h (n) M φ (M x − n) (13.1) 

n 

and making the change of variables y = Mx Z ZX √ 
φ (x) dx = h (n) M φ (Mx − n) dx (13.2) 

n 

and noting the integral is independent of translation which gives ZX √ 1 
= h (n) M φ (y) dy. (13.3)

M 
n R 

With no further requirements other than φ ∈ L1 to allow the sum and integral interchange and φ (x) dx 6= 
0, this gives (8.7) as X √ 

h (n) = M (13.4) 
n 

and for M = 2 gives (6.10). Note this does not assume orthogonality nor any speci˝c normalization of φ (t) 
and does not even assume M is an integer. 

This is the most basic necessary condition for the existence of φ (t) and it has the fewest assumptions or 
restrictions. 

Proof 2 The conditions in (6.14) and (8.8) are a down-sampled orthogonality of translates by M of the 
coe°cients which results from the orthogonality of translates of the scaling function given by Z 

φ (x) φ (x − m) dx = E δ (m) (13.5) 

in . The basic scaling equation (13.1) is substituted for both functions in (13.5) giving " #" #Z X √ X √ 
h (n) M φ (Mx − n) h (k) M φ (Mx − Mm − k) dx = E δ (m) (13.6) 

n k 

which, after reordering and a change of variable y = M x, gives ZXX 
h (n) h (k) φ (y − n) φ (y − Mm − k) dy = E δ (m) . (13.7) 

n k 

1This content is available online at <http://cnx.org/content/m45083/1.3/>. 
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Using the orthogonality in (13.5) gives our result X 
h (n) h (n − Mm) = δ (m) (13.8) 

n 

in (6.13) and (8.8). This result requires the orthogonality condition (13.5), M must be an integer, and any 
non-zero normalization E may be used. 

Proof 3 (Corollary 2) The result that X X √ 
h (2n) = h (2n + 1) = 1/ 2 (13.9) 

n n 

in (6.17) or, more generally X X √ 
h (M n) = h (M n + k) = 1/ M (13.10) 

n n 

is obtained by breaking (13.4) for M = 2 into the sum of the even and odd coe°cients. X X X √ 
h (n) = h (2k) + h (2k + 1) = K0 + K1 = 2. (13.11) 

n k k 

Next we use (13.8) and sum over n to give XX 
h (k + 2n) h (k) = 1 (13.12) 

n k 

which we then split into even and odd sums and reorder to give: P P P 
[ h (2k + 2n) h (2k) + h (2k + 1 + 2n) h (2k + 1)] n k kP P P P 

= [ h (2k + 2n)] h (2k) + [ h (2k + 1 + 2n)] h (2k + 1) (13.13)
k n k nP P 

= K0h (2k) + K1h (2k + 1) = K2 + K2 = 1.k k 0 1 

√ 
Solving (13.11) and (13.13) simultaneously gives K0 = K1 = 1/ 2 and our result (6.17) or (13.9) for M = 2. 

If the same approach is taken with (8.7) and (8.8) for M = 3, we have X X X X √ 
x (n) = x (3n) + x (3n + 1) + x (3n + 2) = 3 (13.14) 

n n n n 

which, in terms of the partial sums Ki, is X √ 
x (n) = K0 + K1 + K2 = 3. (13.15) 

n 

Using the orthogonality condition (13.13) as was done in (13.12) and gives 

K0
2 + K1

2 + K2 = 1. (13.16)2 
√ 

Equation (13.15) and (13.16) are simultaneously true if and only if K0 = K1 = K2 = 1/ 3. This process 
is valid for any integer M and any non-zero normalization. 

Proof 3 If the support of φ (x) is [0, N − 1], from the basic recursion equation with support of h (n) 
assumed as [N1, N2] we have 

N2X √ 
φ (x) = h (n) 2 φ (2x − n) (13.17) 

n=N1 
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where the support of the right hand side of (13.17) is [N1/2, (N − 1 + N2) /2). Since the support of both 
sides of (13.17) must be the same, the limits on the sum, or, the limits on the indices of the non zero h (n) 
are such that N1 = 0 and N2 = N , therefore, the support of h (n) is [0, N − 1]. 

Proof 4 First de˝ne the autocorrelation function Z 
a (t) = φ (x) φ (x − t) dx (13.18) 

and the power spectrum Z Z Z 
−jωt dt = −jωt dtA (ω) = a (t) e φ (x) φ (x − t) dx e (13.19) 

which after changing variables, y = x − t, and reordering operations gives Z Z 
−jωx dx jωy dyA (ω) = φ (x) e φ (y) e (13.20) 

2 
= Φ(ω) Φ (−ω) = |Φ (ω) | (13.21) 

If we look at (13.18) as being the inverse Fourier transform of (13.21) and sample a (t) at t = k, we have Z ∞1 2 jωk dωa (k) = |Φ (ω) | e (13.22)
2π −∞ " #Z ZX 2π 2π X1 2 jωk dω =

1 2 jωk dω= |Φ (ω + 2π`) | e |Φ (ω + 2π`) | e (13.23)
2π 2π0 0` ` 

but this integral is the form of an inverse discrete-time Fourier transform (DTFT) which means X X 
jωk 2 

a (k) e = |Φ (ω + 2π`) | . (13.24) 
, ` 

If the integer translates of φ (t) are orthogonal, a (k) = δ (k) and we have our result X 
|Φ (ω + 2π`) |2 

= 1. (13.25) 
` 

If the scaling function is not normalized ZX 
2 2|Φ (ω + 2π`) | = |φ (t) | dt (13.26) 

` 

which is similar to Parseval's theorem relating the energy in the frequency domain to the energy in the time 
domain. 

Proof 6 Equation (6.20) states a very interesting property of the frequency response of an FIR ˝lter 
with the scaling coe°cients as ˝lter coe°cients. This result can be derived in the frequency or time domain. 
We will show the frequency domain argument. The scaling equation (13.1) becomes (6.51) in the frequency 
domain. Taking the squared magnitude of both sides of a scaled version of 

1 
Φ (ω) = √ H (ω/2) Φ (ω/2) (13.27)

2 

gives 

12 2 2|Φ (2ω) | = |H (ω) | |Φ (ω) | (13.28)
2 
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Add kπ to ω and sum over k to give for the left side of (13.28) X 
2|Φ (2ω + 2πk) | = K = 1 (13.29) 

k 

which is unity from (6.57). Summing the right side of (13.28) gives X 1 2 2|H (ω + kπ) | |Φ (ω + kπ) | (13.30)
2 

k 

Break this sum into a sum of the even and odd indexed terms. X X1 12 2 2 2|H (ω + 2πk) | |Φ (ω + 2πk) | + |H (ω + (2k + 1) π) | |Φ (ω + (2k + 1) π) | (13.31)
2 2 

k k X X1 1 
= |H (ω) |2 |Φ (ω + 2πk) |2 

+ |H (ω + π) |2 |Φ (ω + (2k + 1) π) |2 
(13.32)

2 2 
k k 

which after using (13.29) gives 

1 1 
= |H (ω) |2 

+ |H (ω + π) |2 
= 1 (13.33)

2 2 

which gives (6.20). This requires both the scaling and orthogonal relations but no speci˝c normalization of 
φ (t). If viewed as an FIR ˝lter, h (n) is called a quadrature mirror ˝lter (QMF) because of the symmetry 
of its frequency response about π. 

Proof 10 The multiresolution assumptions in require the scaling function and wavelet satisfy (6.1) and 
(3.24) X √ X √ 

φ (t) = h (n) 2 φ (2t − n) , ψ (t) = h1 (n) 2 φ (2t − n) (13.34) 
n n 

and orthonormality requires Z 
φ (t) φ (t − k) dt = δ (k) (13.35) 

and Z 
ψ (t) φ (t − k) dt = 0 (13.36) 

for all k ∈ Z. Substituting (13.34) into (13.36) gives Z X √ X √ 
h1 (n) 2 φ (2t − n) h (`) 2 φ (2t − 2k − `) dt = 0 (13.37) 

n ` 

Rearranging and making a change of variables gives ZX 1 
h1 (n) h (`) φ (y − n) φ (y − 2k − `) dy = 0 (13.38)

2 
n,` 

Using (13.35) gives X 
h1 (n) h (`) δ (n − 2k − `) = 0 (13.39) 

n,` 
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for all k ∈ Z. Summing over ` gives X 
h1 (n) h (n − 2k) = 0 (13.40) 

n 

Separating (13.40) into even and odd indices gives XX 
h1 (2m) h (2m − 2k) + h1 (2` + 1) h (2` + 1 − 2k) = 0 (13.41) 

m ` 

which must be true for all integer k. De˝ning he (n) = h (2n), ho (n) = h (2n + 1) and g̃ (n) = g (−n) for 
any sequence g, this becomes 

he[U+2606]h̃ 
1e + ho[U+2606]h̃ 

1o = 0. (13.42) 

From the orthonormality of the translates of φ and ψ one can similarly obtain the following: 

he[U+2606]h̃ 
e + ho[U+2606]h̃ 

o = δ. (13.43) 

h1e[U+2606]h̃ 
1e + h1o[U+2606]h̃ 

1o = δ. (13.44) 

This can be compactly represented as ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ = 

⎡⎣ ⎤⎦ ˜ ˜he h1ehe ho δ 0 
[U+2606] . (13.45)

˜ ˜ho h1oh1e h1o 0 δ 

Assuming the sequences are ˝nite length (13.45) can be used to show that 

he[U+2606]h1o − ho[U+2606]h1e = ±δk, (13.46) 

where δk (n) = δ (n − k). �Indeed, taking the Z-transform of (13.45) we get using the notation of Chapter: 
Filter Banks and Transmultiplexers Hp (z) Hp

T z−1 = I. Because, the ˝lters are FIR Hp (z) is a (Laurent) 
polynomial matrix with a polynomial matrix inverse. Therefore the determinant of Hp (z) is of the form ±zk 

for some integer k. This is equivalent to (13.46). Now, convolving both sides of (13.46) by h̃ 
e we get 

±h̃ 
e[U+2606]δk [he[U+2606]h1o − ho[U+2606]h1e] [U+2606]h̃ 

e = h i 
he[U+2606]h̃ 

e[U+2606]h1o − h1e[U+2606]h̃ 
e[U+2606]ho = h i 

he h[U+2606]h̃ 
e[U+2606]h1o + h1o i[U+2606]h̃ 

o[U+2606]ho (13.47)= 

= he[U+2606]h̃ 
e + ho[U+2606]h̃ 

o [U+2606]h1o 

= h1o. 

Similarly by convolving both sides of (13.46) by h̃o we get 

 h̃o[U+2606]δk = h1e. (13.48) 

Combining (13.47) and (13.48) gives the result 

n
h1 (n) = ±(−1) h (−n + 1 − 2k) . (13.49) 

Proof 11 We show the integral of the wavelet is zero by integrating both sides of ((13.34)b) gives ZXZ √ 
ψ (t) dt = h1 (n) 2 φ (2t − n) dt (13.50) 

n 
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But the integral on the right hand side is A0, usually normalized to one and from (6.17) or (13.9) and 
(13.49) we know that X 

h1 (n) = 0 (13.51) 
n 

and, therefore, from (13.50), the integral of the wavelet is zero. 
The fact that multiplying in the time domain by (−1)n 

is equivalent to shifting in the frequency domain 
by π gives H1 (ω) = H (ω + π). 



Appendix B1 

In this appendix we develop most of the results on scaling functions, wavelets and scaling and wavelet 
coe°cients presented in Section 6.8 (Further Properties of the Scaling Function and Wavelet) and elsewhere. 
For convenience, we repeat (6.1), (6.10), (6.13), and (6.15) here X √ 

φ (t) = h (n) 2 φ (2t − n) (14.1) 
n X √ 
h (n) = 2 (14.2) 

n 

Z 
φ (t) φ (t − k) dt = Eδ (k) = { E ifk = 00 otherwise (14.3) 

If normalized Z 
φ (t) φ (t − k) dt = δ (k) = { 1 ifk = 00 otherwise (14.4) 

The results in this appendix refer to equations in the text written in bold face fonts. 
Equation (6.45) is the normalization of (6.15) and part of the orthonormal conditions required by (14.3) 

for k = 0 and E = 1. 
Equation (6.53) If the φ (x − k) are orthogonal, (14.3) states Z 

φ (x + m) φ (x) dx = E δ (m) (14.5) 

Summing both sides over m gives ZX 
φ (x + m) φ (x) dx = E (14.6) 

m 

which after reordering is Z X 
φ (x) φ (x + m) dx = E. (14.7) 

m 

Using (6.50), (14.21), and (14.24) gives Z 
φ (x) dx A0 = E (14.8) R 

but φ (x) dx = A0 from (14.19), therefore 

A20 = E (14.9) 

1This content is available online at <http://cnx.org/content/m45075/1.3/>. 
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If the scaling function is not normalized to unity, one can show the more general result of (6.53). This is 
done by noting that a more general form of (6.50) is ZX 

φ (x + m) = φ (x) dx (14.10) 
m 

if one does not normalize A0 = 1 in (14.20) through (14.24). 
Equation (6.53) follows from summing (14.3) over m as Z ZX 

2
φ (x + m) φ (x) dx = φ(x) dx (14.11) 

m 

which after reordering gives Z ZX 
2

φ (x) φ (x + m) dx = φ(x) dx (14.12) 
m 

and using (14.10) gives (6.53). 
Equation (6.46) is derived by applying the basic recursion equation to its own right hand side to give X √ X √ 

φ (t) = h (n) 2 h (k) 2 φ (2 (2t − n) − k) (14.13) 
n k 

which, with a change of variables of ` = 2n + k and reordering of operation, becomes " #X X 
φ (t) = h (n) h (` − 2n) 2 φ (4t − `) . (14.14) 

` n 

Applying this j times gives the result in (6.46). A similar result can be derived for the wavelet. 
Equation (6.48) is derived by de˝ning the sum � �X ` 

AJ = φ (14.15)
2J 

` 

n 

and using the basic recursive equation (14.1) to give XX √ � 
` 

� 
AJ = h (n) 2 φ 2 

2J 
− n . (14.16) 

` n 

Interchanging the order of summation gives 

√ X X � ` � 
AJ = 2 h (n) { 

` 

φ 
2J−1 

− n } (14.17) 

but the summation over ` is independent of an integer shift so that using (14.2) and (14.15) gives � �√ √ X X ` 
AJ = 2 2 h (n) { φ } = 2 AJ−1. (14.18)

2J−1 
n ` 

This is the linear di˙erence equation 

AJ − 2 AJ−1 = 0 (14.19) 

which has as a solution the geometric sequence 

AJ = A0 2
J . (14.20) 
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If the limit exists, equation (14.15) divided by 2J is the Riemann sum whose limit is the de˝nition of the 
Riemann integral of φ (x) Z 

1 
lim {AJ } = φ (x) dx = A0. (14.21) 
J→∞ 2J 

It is stated in (6.57) and shown in (14.6) that if φ (x) is normalized, then A0 = 1 and (14.20) becomes 

AJ = 2
J . (14.22) 

which gives (6.48). 
Equation (14.21) shows another remarkable property of φ (x) in that the bracketed term is exactly equal 

to the integral, independent of J . No limit need be taken! 
Equation (6.49) is the �partitioning of unity" by φ (x). It follows from (6.48) by setting J = 0. 
Equation (6.50) is generalization of (6.49) by noting that the sum in (6.48) is independent of a shift of 

for any integers M ≥ J and L. In the limit as M →∞, can be made arbitrarily close to any x, therefore, 

the form �X ` 
φ 

2J 

� 
L − = 2J 

2M 
(14.23) 

` 

L 
2M 

if φ (x) is continuous, � �X ` 
φ − x = 2J . (14.24)

2J 
` 

This gives (6.50) and becomes (6.49) for J = 0. Equation (6.50) is called a �partitioning of unity" for 
obvious reasons. 

The ˝rst four relationships for the scaling function hold in a generalized form for the more general de˝ning 
equation (8.4). Only (6.48) is di˙erent. It becomes � �X k 

φ = M J (14.25)
MJ 

k 

for M an integer. It may be possible to show that certain rational M are allowed. 
Equations (6.51), (6.72), and (6.52) are the recursive relationship for the Fourier transform of the 

scaling function and are obtained by simply taking the transform (6.2) of both sides of (14.1) giving ZX √ −jωt dtΦ (ω) = h (n) 2 φ (2t − n) e (14.26) 
n 

which after the change of variables y = 2t − n becomes 

√ Z 
2 X 

−jω(y+n)/2 dyΦ (ω) = h (n) φ (y) e (14.27)
2 

n 

and using (6.3) gives Z 
11 X 

−jωn/2 −jωy/2 dyΦ (ω) = √ h (n) e φ (y) e = √ H (ω/2) Φ (ω/2) (14.28)
2 2 

n 

which is (6.51) and (6.72). Applying this recursively gives the in˝nite product (6.52) which holds for any 
normalization. 

Equation (6.57) states that the sum of the squares of samples of the Fourier transform of the scaling 
function is one if the samples are uniform every 2π. An alternative derivation to that in Appendix A is shown 
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here by taking the de˝nition of the Fourier transform of φ (x), sampling it every 2πk points and multiplying 
it times its complex conjugate. Z Z 

−j(ω+2πk)x dx j(ω+2πk)y dyΦ (ω + 2πk) Φ (ω + 2πk) = φ (x) e φ (y) e (14.29) 

Summing over k gives Z Z 

X 

X X 
|Φ (ω + 2πk) |2 

= 
k k 

−jω(x−y)φ (x) φ (y) e e −j2πk(x−y) dx dy (14.30) 

Z Z X 
= jω(y−x)φ (x) φ (y) e ej2πk(y−x) dx dy (14.31) 

k Z Z X 
= jωz φ (x) φ (x + z) e ej2πkz dx dz (14.32) 

k 

but X X 
j2πkz e = δ (z − `) (14.33) 

k ` 

therefore ZX 
2|Φ (ω + 2πk) | = 

k 

φ (x) 
X 

−jω` dxφ (x + `) e 
` 

(14.34) 

which becomes Z 
jω` φ (x) φ (x + `) dx e (14.35) 

` R 2
Because of the orthogonality of integer translates of φ (x), this is not a function of ω but is |φ (x) | dx 
which, if normalized, is unity as stated in (6.57). This is the frequency domain equivalent of (6.13). 

Equations (6.58) and (6.59) show how the scaling function determines the equation coe°cients. This 
is derived by multiplying both sides of (14.1) by φ (2x − m) and integrating to give Z Z X 

φ (x) φ (2x − m) dx = h (n) φ (2x − n) φ (2x − m) dx (14.36) 
n ZX1 

= √ h (n) φ (x − n) φ (x − m) dx. (14.37)
2 

n 

Using the orthogonality condition (14.3) gives Z Z 
1 12

φ (x) φ (2x − m) dx = h (m) √ |φ (y) | dy = √ h (m) (14.38)
2 2 

which gives (6.58). A similar argument gives (6.59). 
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You are free to use these programs or any derivative of them for any scienti˝c purpose but please reference 
this book. Up-dated versions of these programs and others can be found on our web page at: http://www-
dsp.rice.edu/ 

function p = psa(h,kk) 
% p = psa(h,kk) calculates samples of the scaling function 
% phi(t) = p by kk successive approximations from the 
% scaling coefficients h. Initial iteration is a constant. 
% phi_k(t) is plotted at each iteration. csb 5/19/93 
% 
if nargin==1, kk=11; end; % Default number of iterations 
h2= h*2/sum(h); % normalize h(n) 
K = length(h2)-1; S = 128; % Sets sample density 
p = [ones(1,3*S*K),0]/(3*K); % Sets initial iteration 
P = p(1:K*S); % Store for later plotting 
axis([0 K*S+2 -.5 1.4]); 
hu = upsam(h2,S); % upsample h(n) by S 
for iter = 0:kk % Successive approx. 

p = dnsample(conv(hu,p)); % convolve and down-sample 
plot(p); pause; % plot each iteration 

% P = [P;p(1:K*S)]; % store each iter. for plotting 
end 
p = p(1:K*S); % only the supported part 
L = length(p); 
x = ([1:L])/(S); 
axis([0 3 -.5 1.4]); 
plot(x,p); % Final plot 
title('Scaling Function by Successive Approx.'); 
ylabel('Scaling Function'); 
xlabel('x'); 

function p = pdyad(h,kk) 
% p = pdyad(h,kk) calculates approx. (L-1)*2^(kk+2) samples of the 
% scaling function phi(t) = p by kk+3 dyadic expansions 
% from the scaling coefficient vector h where L=length(h). 
% Also plots phi_k(t) at each iteration. csb 5/19/93 
% 
if nargin==1, kk = 8; end % Default iterations 
h2 = h*2/sum(h); % Normalize 

1This content is available online at <http://cnx.org/content/m45088/1.2/>. 

245 

http://cnx.org/content/m45088/1.2
https://dsp.rice.edu
http://www


246 APPENDIX 

N = length(h2); hr = h2(N:-1:1); hh = h2; 
axis([0,N-1,-.5,1.4]); 
MR = [hr,zeros(1,2*N-2)]; % Generater row for M0 
MT = MR; M0 = []; 
for k = 1:N-1 % Generate convolution and 

MR = [0, 0, MR(1:3*N-4)]; % downsample matrix from h(n) 
MT = [MT; MR]; 

end 
M0 = MT(:,N:2*N-1); % M0*p = p if p samples of phi 
MI = M0 - eye(N); 
MJ = [MI(1:N-1,:);ones(1,N)]; 
pp = MJ\[zeros(N-1,1);1]; % Samples of phi at integers 
p = pp(2:length(pp)-1).'; 

x = [0:length(p)+1]*(N-1)/(length(p)+1); plot(x,[0,p,0]); pause 
p = conv(h2,p); % value on half integers 

x = [0:length(p)+1]*(N-1)/(length(p)+1); plot(x,[0,p,0]); pause 
y = conv(h2,dnsample(p)); % convolve and downsample 
p = merge(y,p); % interleave values on Z and Z/2 

x = [0:length(p)+1]*(N-1)/(length(p)+1); plot(x,[0,p,0]); pause 
for k = 1:kk 

hh = upsample(hh); % upsample coefficients 
y = conv(hh,y); % calculate intermediate terms 
p = merge(y,p); % insert new terms between old 
x = [0:length(p)+1]*(N-1)/(length(p)+1); plot(x,[0,p,0]); pause; 

end 
title('Scaling Function by Dyadic Expansion'); 
ylabel('Scaling Function'); 
xlabel('x'); 
axis; 

function [hf,ht] = pf(h,kk) 
% [hf,ht] = pf(h,kk) computes and plots hf, the Fourier transform 
% of the scaling function phi(t) using the freq domain 
% infinite product formulation with kk iterations from the scaling 
% function coefficients h. Also calculates and plots ht = phi(t) 
% using the inverse FFT csb 5/19/93 
if nargin==1, kk=8; end % Default iterations 
L = 2^12; P = L; % Sets number of sample points 
hp = fft(h,L); hf = hp; % Initializes iteration 
plot(abs(hf));pause; % Plots first iteration 
for k = 1:kk % Iterations 
hp = [hp(1:2:L), hp(1:2:L)]; % Sample 
hf = hf.*hp/sqrt(2); % Product 
plot(abs(hf(1:P/2)));pause; % Plot Phi(omega) each iteration 

P=P/2; % Scales axis for plot 
end; 
ht = real(ifft(hf)); % phi(t) from inverse FFT 
ht = ht(1:8*2^kk); plot(ht(1:6*2^kk)); % Plot phi(t) 

function hn = daub(N2) 
% hn = daub(N2) 
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% Function to compute the Daubechies scaling coefficients from 
% her development in the paper, "Orthonormal bases of compactly 
% supported wavelets", CPAM, Nov. 1988 page 977, or in her book 
% "Ten Lectures on Wavelets", SIAM, 1992 pages 168, 216. 
% The polynomial R in the reference is set to zero and the 
% minimum phase factorization is used. 
% Not accruate for N > 20. Check results for long h(n). 
% Input: N2 = N/2, where N is the length of the filter. 
% Output: hn = h(n) length-N min phase scaling fn coefficients 
% by rag 10/10/88, csb 3/23/93 
a = 1; p = 1; q = 1; % Initialization of variables 
hn = [1 1]; % Initialize factors of zeros at -1 
for j = 1:N2-1, 

hn = conv(hn,[1,1]); % Generate polynomial for zeros at -1 
a = -a*0.25*(j+N2-1)/j; % Generate the binomial coeff. of L 
p = conv(p,[1,-2,1]); % Generate variable values for L 
q = [0 q 0] + a*p; % Combine terms for L 

end; 
q = sort(roots(q)); % Factor L 
hn = conv(hn,real(poly(q(1:N2-1)))); % Combine zeros at -1 and L 
hn = hn*sqrt(2)/(sum(hn)); % Normalize 

function h = h246(a,b) 
% h = h246(a,b) generates orthogonal scaling function 
% coefficients h(n) for lengths 2, 4, and 6 using 
% Resnikoff's parameterization with angles a and b. 
% csb. 4/4/93 
if a==b, h = [1,1]/sqrt(2); % Length-2 
elseif b==0 

h0 = (1 - cos(a) + sin(a))/2; % Length-4 
h1 = (1 + cos(a) + sin(a))/2; 
h2 = (1 + cos(a) - sin(a))/2; 
h3 = (1 - cos(a) - sin(a))/2; 
h = [h0 h1 h2 h3]/sqrt(2); 

else % Length-6 
h0 = ((1+cos(a)+sin(a))*(1-cos(b)-sin(b))+2*sin(b)*cos(a))/4; 
h1 = ((1-cos(a)+sin(a))*(1+cos(b)-sin(b))-2*sin(b)*cos(a))/4; 
h2 = (1+cos(a-b)+sin(a-b))/2; 
h3 = (1+cos(a-b)-sin(a-b))/2; 
h4 = (1-h0-h2); 
h5 = (1-h1-h3); 
h = [h0 h1 h2 h3 h4 h5]/sqrt(2); 

end 

function [a,b] = ab(h) 
% [a,b] = ab(h) calculates the parameters a and b from the 
% scaling function coefficient vector 
% systems of length 2, 4, or 6 only. 
% 
h = h*2/sum(h); x=0; 
if length(h)==2, h = [0 0 h 0 0]; x=2; 

h for orthogonal 
csb. 5/19/93. 

% normalization 
end; 
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if length(h)==4, h = [0 h 0]; x=4; end; 
a = atan2((2*(h(1)^2+h(2)^2-1)+h(3)+h(4)),(2*h(2)*(h(3)-1)-2*h(1)*(h(4)-1))); 
b = a - atan2((h(3)-h(4)),(h(3)+h(4)-1)); 
if x==2, a = 1; b = 1; end; 
if x==4, b = 0; end; 

function y = upsample(x) 
% y = upsample(x) inserts zeros between each term in the row vector x. 
% for example: [1 0 2 0 3 0] = upsample([1 2 3]). csb 3/1/93. 
L = length(x); 
y(:) = [x;zeros(1,L)]; y = y.'; 
y = y(1:2*L-1); 

function y = upsam(x,S) 
% y = upsam(x,S) inserts S-1 zeros between each term in the row vector x. 
% for example: [1 0 2 0 3 0] = upsample([1 2 3]). csb 3/1/93. 
L = length(x); 
y(:) = [x;zeros(S-1,L)]; y = y.'; 
y = y(1:S*L-1); 

function y = dnsample(x) 
% y = dnsample(x) samples x by removing the even terms in x. 
% for example: [1 3] = dnsample([1 2 3 4]). csb 3/1/93. 
L = length(x); 
y = x(1:2:L); 

function z = merge(x,y) 
% z = merge(x,y) interleaves the two vectors x and y. 
% Example [1 2 3 4 5] = merge([1 3 5],[2 4]). 
% csb 3/1/93. 
% 
z = [x;y,0]; 
z = z(:); 
z = z(1:length(z)-1).'; 

function w = wave(p,h) 
% w = wave(p,h) calculates and plots the wavelet psi(t) 
% from the scaling function p and the scaling function 
% coefficient vector h. 
% It uses the definition of the wavelet. csb. 5/19/93. 
% 
h2 = h*2/sum(h); 
NN = length(h2); LL = length(p); KK = round((LL)/(NN-1)); 
h1u = upsam(h2(NN:-1:1).*cos(pi*[0:NN-1]),KK); 
w = dnsample(conv(h1u,p)); w = w(1:LL); 
xx = [0:LL-1]*(NN-1)/(LL-1); 
axis([1 2 3 4]); axis; 
plot(xx,w); 
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function g = dwt(f,h,NJ) 
% function g = dwt(f,h,NJ); Calculates the DWT of periodic g 
% with scaling filter h and NJ scales. rag & csb 3/17/94. 
% 
N = length(h); L = length(f); 
c = f; t = []; 
if nargin==2, NJ = round(log10(L)/log10(2)); end; % Number of scales 
h0 = fliplr(h); % Scaling filter 
h1 = h; h1(1:2:N) = -h1(1:2:N); % Wavelet filter 
for j = 1:NJ % Mallat's algorithm 

L = length(c); 
c = [c(mod((-(N-1):-1),L)+1) c]; % Make periodic 
d = conv(c,h1); d = d(N:2:(N+L-2)); % Convolve & d-sample 
c = conv(c,h0); c = c(N:2:(N+L-2)); % Convolve & d-sample 
t = [d,t]; % Concatenate wlet coeffs. 

end; 
g = [c,t]; % The DWT 

function f = idwt(g,h,NJ) 
% function f = idwt(g,h,NJ); Calculates the IDWT of periodic g 
% with scaling filter h and NJ scales. rag & csb 3/17/94. 
% 
L = length(g); N = length(h); 
if nargin==2, NJ = round(log10(L)/log10(2)); end; % Number of scales 
h0 = h; % Scaling filter 
h1 = fliplr(h); h1(2:2:N) = -h1(2:2:N); % Wavelet filter 
LJ = L/(2^NJ); % Number of SF coeffs. 
c = g(1:LJ); % Scaling coeffs. 
for j = 1:NJ % Mallat's algorithm 

w = mod(0:N/2-1,LJ)+1; % Make periodic 
d = g(LJ+1:2*LJ); % Wavelet coeffs. 
cu(1:2:2*LJ+N) = [c c(1,w)]; % Up-sample & periodic 
du(1:2:2*LJ+N) = [d d(1,w)]; % Up-sample & periodic 
c = conv(cu,h0) + conv(du,h1); % Convolve & combine 
c = c(N:N+2*LJ-1); % Periodic part 
LJ = 2*LJ; 

end; 
f = c; % The inverse DWT 

function r = mod(m,n) 
% r = mod(m,n) calculates r = m modulo n 
% 
r = m - n*floor(m/n); % Matrix modulo n 

function g = dwt5(f,h,NJ) 
% function g = dwt5(f,h,NJ) 
% Program to calculate the DWT from the L samples of f(t) in 
% the vector f using the scaling filter h(n). 
% csb 3/20/94 
% 
N = length(h); 
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c = f; t = []; 
if nargin==2 

NJ = round(log10(L)/log10(2)); 
end; 
h1 = h; h1(1:2:N) = -h1(1:2:N); 
h0 = fliplr(h); 
for j = 1:NJ 

L = length(c); 
d = conv(c,h1); 
c = conv(c,h0); 
Lc = length(c); 
while Lc > 2*L 

d = [(d(1:L) + d(L+1:2*L)), 
c = [(c(1:L) + c(L+1:2*L)), 
Lc = length(c); 

end 
d = [(d(1:N-1) + d(L+1:Lc)), d(N:L)]; 
d = d(1:2:L); 
c = [(c(1:N-1) + c(L+1:Lc)), c(N:L)]; 
c = c(1:2:L); 
t = [d,t]; 

end 
g = [c,t]; 

function a = choose(n,k) 
% a = choose(n,k) 
% BINOMIAL COEFFICIENTS 
% allowable inputs: 
% n : integer, k : integer 
% n : integer vector, k : integer 
% n : integer, k : integer vector 
% n : integer vector, k : integer vector 
nv = n; 
kv = k; 
if (length(nv) == 1) & (length(kv) > 1) 
nv = nv * ones(size(kv)); 
elseif (length(nv) > 1) & (length(kv) == 
kv = kv * ones(size(nv)); 
end 
a = nv; 
for i = 1:length(nv) 

n = nv(i); 
k = kv(i); 
if n >= 0 

if k >= 0 
if n >= k 

% Number of scales 

% Wavelet filter 
% Scaling filter 
% Mallat's algorithm 

% Convolve 
% Convolve 

% Multi-wrap? 
d(2*L+1:Lc)]; % Wrap output 
c(2*L+1:Lc)]; % Wrap output 

% Wrap output 
% Down-sample wlets coeffs. 
% Wrap output 
% Down-sample scaling fn c. 
% Concatenate wlet coeffs. 
% Finish wavelet part 
% Add scaling fn coeff. 

(of equal dimension) 

1) 

c = prod(1:n)/(prod(1:k)*prod(1:n-k)); 
else 

c = 0; 
end 

else 
c = 0; 
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end 
else 

if k >= 0 
c = (-1)^k * prod(1:k-n-1)/(prod(1:k)*prod(1:-n-1)); 

else 
if n >= k 

c = (-1)^(n-k)*prod(1:-k-1)/(prod(1:n-k)*prod(1:-n-1)); 
else 

c = 0; 
end 

end 
end 
a(i) = c; 

end 
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Chapter 13 

Bibliography1 

16.1 Bibliography 

In 1998 we especially recommended ˝ve books that complement this one. An excellent reference for the 
history, philosophy, and overview of wavelet analysis has been written by Barbara Burke Hubbard [269]. 
The best source for the mathematical details of wavelet theory is by Ingrid Daubechies [125]. Two good 
general books which starts with the discrete-time wavelet series and ˝lter bank methods are by Martin 
Vetterli and Jelena Kova£evi¢ [553] and by Gilbert Strang and Truong Nguyen [496]. P. P. Vaiyanathan has 
written a good book on general multirate systems as well as ˝lter banks [531]. 

Much of the recent interest in compactly supported wavelets was stimulated by Daubechies [115], [108], 
[125], [80] and S. Mallat [342], [347], [337] and others [317], [320]. A powerful point of view has been recently 
presented by D. L. Donoho, I. M. Johnstone, R. R. Coifman, and others [146], [151], [140], [154], [165], 
[160], [158], [47], [62], [90]. The development in the DSP community using ˝lters has come from Smith and 
Barnwell [475], [477], Vetterli [543], [546], [548], [553], and Vaidyanathan [522], [538], [531]. Some of the 
work at Rice is reported in [211], [217], [487], [203], [213], [51], [226], [229], [408], [307], [561][304], [224], 
[310], [562], [560] Analysis and experimental work was done using the Matlab computer software system 
[388], [387]. Overview and introductory articles can be found in [221], [372], [110], [51], [87], [491], [194], 
[453], [29], [49], [492]. [446], [275], [400], [534], [44] Two special issues of IEEE Transactions have focused on 
wavelet methods [101], [168]. Books on wavelets, some of which are edited conference proceedings include 
[271], [289], [334], [375], [377], [70], [72], [125], [531], [13], [450], [358], [379][586], [383], [28], [461], [296], [335], 
[175], [57], [176], [288][559], [369], [553], [575], [496], [18], [261], [580], [269], [509][13], [352], [510], [15], [433], 
[73]. 

In this 2015 revision, we add several new references. An excellent collection of basic wavelet research 
papers has been published by Heil and Walnut [251], a very good modern signal procession book which 
is also available online is written by Kova£evi¢, Goyal, and Vetterli [297]. Stéphane Mallat has written a 
comprehensive third revised edition of his book on Wavelets [353]. New work on lifting can be found in [279], 
[274], a general guide in [391], and book on Frames [66] and a new book on sampling [173]. 

Another way to keep up with current research and results on wavelets is to read the Wavelet Digest on 
the world-wide-web at: http://www.wavelet.org/ or the Rice DSP site at http://dsp.rice.edu/software 

1This content is available online at <http://cnx.org/content/m57423/1.5/>. 
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