
 
 
 

RICE UNIVERSITY 
 
 
 

By 
 
 
 

A THESIS SUBMITTED 
IN PARTIAL FULFILLMENT OF THE 
REQUIREMENTS FOR THE DEGREE 

 
 
 

APPROVED, THESIS COMMITTEE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HOUSTON, TEXAS 

T.S. Eugene Ng

Doctor of Philosophy

Keith Cooper

Moshe Vardi

Afsaneh Rahbar

December 2021

T. S. Eugene Ng (Dec 2, 2021 15:54 CST)
T. S. Eugene Ng

Moshe Vardi (Dec 2, 2021 16:05 CST)
Moshe Vardi

Professor of Computer Science and Electrical
and Computer Engineering

Hardware-Software Co-Design for Optimizing MPI Programs in Data Center Network

University Professor, Karen Ostrum George
Distinguished Service Professor in
Computational Engineering

L. John and Ann H. Doerr Professor in
Computational Engineering, Professor of
Computer Science



ABSTRACT

Hardware-Software Co-Design for Optimizing MPI Programs in Data Center Network

by

Afsaneh Rahbar

High Performance Computing (HPC) systems are critical. A single server/processor

cannot handle the heavy computation needs of today’s applications. HPC systems are

built out of increasing numbers of processors to solve these computation-intensive prob-

lems. Communication between machines is essential. These applications may consist of

thousands of processes spread across machines coordinating to solve a specific large-scale

problem. The critical component of these systems is the network that connects the servers

and makes this collaboration between servers possible. The performance of the network

has a significant impact on the application performance. To better understand the main

issues and improve the communication performance, in this thesis, we investigate data

center networks and provide a general overview and analysis of the literature covering

various research areas, including data center network architectures, network protocols for

data center networks, and state-of-the-art communication frameworks.

We argue that many of the challenges faced by HPC applications in the communi-

cation phase can be addressed by augmenting the existing physical network architecture

with low-cost optical technologies. However, we observe that integrating physical net-

work/ hardware-based solutions alone would not be adoptable by HPC applications users.

It requires some level of software-level application adaptations to the physical network

before benefiting from the new characteristics of the network. Without a proper applica-

tion to network interaction, the network cannot automatically adapt to the application’s

needs and vice versa. Our goal is to explore co-designing hardware and software solu-

tions that optimize the data center network for MPI-based HPC programs. We propose

a static source code analysis solution to identify the di�erent communication patterns



and requirements of applications and design algorithms that find the optimal network

placement of the tasks to reduce the number of cross-rack communications to the least

possible. We implement a prototype of our solution that automates learning the applica-

tion communication characteristics, application to network interaction, and network to

application adaptation (reconfiguring the network). We evaluate our tool and demon-

strate the high potential of hardware-software co-design for optimizing HPC programs in

the data center network.
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Chapter 1

Introduction

High-Performance Computing (HPC) systems play an essential role in today’s heavily

digitized world. HPC systems benefit from parallel computing systems that decompose

problems into sub-problems. These sub-problems run on di�erent computational unit-

s/processors to solve computation-intensive scientific problems in a reasonable amount

of time. The computational units need to collaborate to complete a specific task. If

all the computational units reside in the same machine, processes collaborate using the

shared memory space. Otherwise, for applications on distributed-memory parallel sys-

tems, cross-machine communication is essential. Such applications often communicate

using a standard library for message passing defined by the MPI (Message Passing In-

terface) since the number of processors on one machine is not enough to solve these

computation-intensive problems. Therefore the latter case is more commonly seen. These

MPI-based HPC programs may consist of thousands of processes spread across machines

coordinating to solve a specific large-scale problem.

For instance, consider the distributed machine learning (ML) workloads, including

the Logistic Regression algorithm for Twitter spam filtering [1] and the Alternating Least

Squares algorithm for Netflix movie rating prediction [2, 3]. They manipulate and analyze

massive amounts of data and run on compute clusters and data centers consisting of tens

of thousands of machines. Both jobs take hundreds of iterations, and communications

account for 30% and 45% of the job completion time, respectively. Consider also data

mining workloads (e.g., Apache Hive [4], Spark SQL [5]). In such workloads, one of the

most critical and time-consuming operations is the distributed database join, in which

one of the input tables is multicast to all workers. These tables are up to 6.2 GB in a

popular database benchmark [6]. Another example would be distributed matrix multi-
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plication which is a fundamental linear algebra routine ubiquitous in all areas of science

and engineering.

These popular applications run on compute clusters in the data center. The data

center is a pool of resources (computational, storage, network) interconnected using a

communication network. Data Center Network (DCN) interconnects all data center re-

sources (computational, storage, network) together. Datacenter networks are critical

infrastructure behind today’s cloud services which accommodate diverse applications [7]

including HPC applications. Data and computation-intensive HPC applications are on

the rise in DCNs, and they constantly transmit large objects across servers.

The communication characteristic of these HPC applications is as follows:

1. Performing point-to-point communications.

2. Performing group communications.

3. Dynamically changing the communication pattern/ communicating processors in

di�erent stages of the program.

The performance of the network connecting these resources has a significant impact on

overall application performance. The sensitivity to communication performance increases

with the scale of parallelism. In large-scale applications, communication has always

been one of the main bottlenecks. Several studies have shown that applications spend

a substantial fraction of time moving data between machines rather than performing

computations. Typically these applications spend at least 20% of their execution time

communicating, and some spend more than 50%. Therefore, the network is becoming the

main bottleneck for scaling parallel application [8, 9, 10, 11].

Optimizing network activity is critical for improving large-scale applications perfor-

mance. The problem to be addressed is how to improve and optimize the communication

performance of these applications over data center networks?

From this point forward, we use large-scale HPC applications interchangeably with

MPI-based applications. Researchers have focused on optimizing or redesigning the com-
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munication algorithms used by MPI to optimize the performance of MPI-based appli-

cations [12, 13, 14, 15]. It is recommended to pick di�erent communication algorithms

depending on the message size to minimize latency for short messages and minimize

bandwidth use for long messages. These e�orts and tunings are all at the software level

and not in the actual network.

We argue that many of the challenges HPC applications face in the communication

phase can be addressed by augmenting the existing physical network architecture with

low-cost optical technologies.

We propose co-designing a hardware and software-based solution for optimizing the

data center network to the needs of MPI-based applications. The network topology

and architecture design impact communication performance, but the network is fixed

once installed. A typical data center network topology seen in today’s data centers is

the traditional multilayer oversubscribed Clos topology [16, 17] which is a tree-based

fixed topology. Minor modifications can be done in the data center network occasionally

without a hefty cost and downtime; however, without a proper application to network

interaction, the network cannot automatically adapt to the application’s needs and vice

versa. Without an automated adaptation of the application to the optimized network,

the applications cannot benefit from the optimized network hardware solution.

1.1 Thesis Contributions

This thesis investigates data center networks and provides a general overview and analysis

of the literature covering various research areas, including data center network architec-

tures, network protocols for data center networks, and state-of-the-art communication

frameworks.

We present the design and implementation of multiple systems supporting the com-

munication needs of distributed parallel programs (point-to-point and group communi-

cations). The common goal behind these systems is to improve HPC application perfor-

mance while retaining as many of the existing benefits of current data center networks
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as possible and without significantly changing the network and increasing the hardware

cost. We propose a broad scale of hybrid hardware-software solutions to optimize com-

munication performance. We attack the problem from various angles.

In particular, this thesis makes the following contributions.

• First, we evaluate a network augmentation solution called Shu�ecast. Shu�ecast

augments the existing Clos network with a separate network dedicated to multi-

cast transmissions. This architecture leverages inexpensive passive optical splitters

and cleverly makes use of edge network bandwidth. We show that by separating

multicast tra�c from the Clos network to Shu�ecast, we can achieve line-rate mul-

ticast throughput and low latency. We implement communication routines that are

compatible with Shu�ecast and adapt the distributed parallel applications. We

perform a comprehensive evaluation to observe the benefit of having such solutions

to MPI applications.

• Second, we evaluate a network augmentation solution called RDC—Rackless Data

Center. The goal of RDC is to remove the bandwidth disparity between intra-rack

and cross-rack communications. This architecture logically removes the rack bound-

ary of traditional data centers and the ine�ciencies that come with it. RDC achieves

this by inserting circuit switches at the network edge between the ToR—Top of Rack

switches and the servers and reconfiguring the circuits to regroup servers across

racks based on the tra�c patterns minimizing cross-rack tra�c. Rather than opti-

mizing the MPI applications based on the topology, RDC optimizes the topology

to suit the changing workloads of MPI applications.

We have performed extensive evaluations of RDC in a hardware testbed. RDC

can speed up a 4:1 oversubscribed network to achieve nearly non-blocking network

performance. Note that to improve the communication performance of an MPI ap-

plication executing on RDC, users need to understand how the application’s com-

munication patterns interact with the network, primarily when those interactions

result in congestion and instruct the application with the reconfiguration code.
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• Our third contribution is designing a static analysis-based communication pattern

detection and optimal server placement identification solution for MPI applications.

Automated approaches are needed since understanding application communication

patterns and their interaction with the network is complex for users. Our prototype

uses the optimal server placement to augment the application source code with the

reconfiguration code compatible with RDC. We test the resulting program on the

RDC testbed. Our evaluation shows that the optimal server placement automati-

cally identified by our solution can speedup a 4:1 oversubscribed network to achieve

nearly non-blocking network performance similar to the manual RDC.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 analyzes existing ways

to support multicast group communication in DCNs and demonstrates their limitations.

Chapter 3 presents the first solution to improve MPI program group communication by

using network-level multicast and segregating multicast tra�c from unicast tra�c. Chap-

ter 4 presents the second solution to improve MPI program point-to-point and group

communications using a reconfigurable rackless data center architecture to move servers

to the same logical rack and minimize cross-rack communications. Note that this so-

lution relies on application-level multicast. Chapter 5 presents a static analysis-based

solution to detect MPI program communication patterns and oscillations in di�erent ap-

plications. Furthermore, our solution finds the optimal server placement for the DCN.

This solution leads to automating the network reconfiguration for RDC and similar re-

configurable networks. This chapter discusses the solution, implementation, results, and

evaluation. Finally, Chapter 6 concludes with a summary and a discussion on possible

future directions.
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Chapter 2

Analyzing Existing Ways to Support Multicast

Data and computation-intensive applications such as HPC applications are on the rise in

Data Center Networks (DCN), and they constantly transmit large objects across servers

which leads to more and more tra�c that is multicast “in disguise” [18]. Many scientific

data analysis jobs [19, 20, 21] perform iterative multicasts using MPI_Bcast [22], which

is a primitive in the MPI framework for one-to-many message passing.

2.1 Group communication issues over DCN

Today’s multicast service models are either extremely network-centric or application-

centric. In the former, the network switches directly support IP-level multicast, and in

the latter, applications form a peer-to-peer overlay to spread data via unicast. We analyze

both models in the following sections.

2.1.1 Network-centric service model

The network-centric service model enables multicast packet forwarding on switches. In

practice, this means switch-level multicast over a conventional hierarchical Clos network,

which we will refer to as IP multicast in the rest of this thesis. This model ensures

e�cient use of link bandwidth as there is no data redundancy. Although some recent

works have focused on the switch-level improvement of IP multicast [23, 24, 25, 26], the

network-centric service model is still unable to satisfy several attributes desirable for both

applications and network operators, as shown in Table 2.1. Primarily this service model

lacks an easy way to achieve reliability, predictability and fairness for the inter-mingled

multicast and unicast tra�c. On the one hand, we observe that even a small amount

of switch-level multicast tra�c without congestion control can cause a significant and
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Attributes \ Service model Net.-centric App.-centric

Predictable finish time N N

Easy to achieve reliability N Y

Friendliness with TCP tra�c N Y

E�cient use of link bandwidth Y N

Scale to large group size Y N

Support multiple groups Y Y

Table 2.1 : Comparison between the service models.

disproportional negative impact on co-existing unicast tra�c flows and congestive packet

loss of the multicast flow. On the other hand, we also observe that enabling multicast

congestion control does not guarantee fairness among multicast and other existing unicast

flows.

To observe the e�ect of multicast congestion control on unicast tra�c, we perform

experiment on a 10 Gbps full-bisection bandwidth cluster. The servers are equipped with

NACK-oriented Reliable Multicast (NORM) protocol [27] which uses the TCPFriendly

Multicast Congestion Control (TFMCC) scheme [28, 29]. We configure multicast rules

on the switches and perform a 1 : 15 multicast of a 2 GB file in the presence of steady

background unicast (TCP) tra�c flows sharing a common core-to-ToR switch downlink.

We vary the number of competing unicast (TCP) flows from 1 to 8 and observe both the

multicast throughput (Figure 2.1(a)) and individual TCP per flow average throughput

along with the theoretical fair-share (Figure 2.1(b)). We observe that no matter how many

competing TCP flows are there, the multicast flow achieves 5 - 5.2 Gbps of throughput

at a steady state and the competing TCP flows get the fair-share from the remaining

bandwidth. Clearly, with more competing flows, multicast congestion control scheme

cannot achieve fairness guarantee. Hence, using the network-centric service model is very

hard to find the right balance between multicast and unicast tra�c.
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Figure 2.1 : (a) Throughput of congestion control enabled multicast in the presence of

competing TCP flows, (b) Per flow TCP average throughput and theoretical fair-share

in the presence of 2 GB congestion control enabled multicast.
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2.1.2 Application-centric service model

Today’s DCN does not support IP-level multicast/Network level multicast. Therefore, the

only way of doing group communication is application-based, where applications spread

data on their own via repeated unicast transmissions, there are significant overheads. The

application organizes its processes into an overlay network and sends multicast messages

based on unicast tra�c flows [30, 31, 32, 33, 26]. Although this model is easy to deploy, the

network and the CPU are stressed out since identical packets are pushed multiple times to

the network, and packet replication is performed on end-hosts instead of the network [34].

For instance, variants of BitTorrent are commonly used (e.g. [35, 3]). Unfortunately, even

when very carefully optimized by experts, data redundancy is still at 39% [34]. This

model also su�ers from latency inflation and unpredictability under a large multicast

group size [36] because fluctuations in relay server performance can cause a collapse in

throughput [36]. Moreover, overlays contribute to energy waste [37] because data must be

copied in and out of relay servers’ memory, and server CPU cycles are consumed to route

data and maintain overlays. Hence, the application-centric service model lacks e�cient

utilization of link bandwidth and predictable performance with large multicast group size,

desirable features from network operators and applications, respectively.

In Section 2.1.2.1, we illustrate some of the underlying problems of the application-

centric model. In Section 2.1.2.2, we run experiments to evaluate the state-of-the-art

multicast performance. In Section 2.1.2.3, we run experiments to demonstrate how much

multicast performance a�ects the overall runtime of a variety of real-world applications.

2.1.2.1 BitTorrent over 4-ary fat-tree topology NS3 Simulation

BitTorrent and its variants are commonly used systems for file distribution and application-

level multicast. We simulate a 4-ary fat-tree topology with the Network Simulator 3 (ns3)

using a BitTorrent extension [38] to help illustrate some of the underlying problems of

the application-centric model. Each host in the topology plays a role as a peer in the Bit-

Torrent overlay simulation. In BitTorrent, the data is broken down into a large number
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of equal-sized pieces that are downloaded in rarest-first order. The creator of a torrent

determines the size of a piece. The pieces are further split into a set of a few blocks to

avoid downloading large chunks from slow or overloaded peers. Peers not only download

blocks from others but also serve to other peers. Each peer can start serving other peers

as soon as they have downloaded a block.

We assume that one of the hosts initiates the multicast and all the other 15 hosts start

requesting the data simultaneously. We measure the download rate of BitTorrent overlay

when there is no other tra�c in the network while varying link bandwidths (1 Gbps,

10 Gbps), piece sizes (64 MB, 128 MB, 256 MB), and block sizes (512 KB, 1 MB, 16 MB,

32 MB, 64 MB, 128 MB, 256 MB). The data size exchanged among the peers is 4.03 GB.

We observe: 1) the overall performance of BitTorrent is not very good compared

to the network bandwidth. For example, the download rate does not exceed 1 Gbps

when the link bandwidth is 10 Gbps. 2) It is hard to tune the parameters to obtain

the best performance of BitTorrent. Potential reasons behind the significant di�erence

in BitTorrent download rate vs. the available bandwidth are a) Peer finding process, b)

Duplicate blocks in the network, c) TCP congestion control mechanism. For each block

shared by one peer with any other peer, the TCP transmission su�ers from a slow start

and may not reach the max congestion window. On one hand, we need bigger blocks

to reach the max congestion window. But on the other hand, small block sizes help in

e�cient sharing. Finding the right combination of piece size, block size for a specific link

bandwidth to satisfy such conflicting needs is still an open problem.

2.1.2.2 Multicast performance of state-of-the-art multicast mechanisms

We perform benchmarking experiments to evaluate the state-of-the-art multicast per-

formance. Our baseline mechanisms are state-of-the-art multicast solutions over a full-

bisection bandwidth network: a) IP multicast, and b) peer-to-peer mechanisms such as

MPI_Bcast [22] and Spark-Cornet [3]. As stated in Section 2.1.2, today’s DCN does

not support IP-level multicast/Network level multicast; therefore, we manually calcu-
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late the IP multicast throughput. However, we run the peer-to-peer mechanisms on our

testbed (traditional multi-layer Clos topology). The testbed consists of 16 servers and

4 ToR switches in 4 logical racks as well as one aggregation switch. Each server has 6

3.5 GHz CPU cores with 12 hyperthreads and 128 GB RAM. All connections are 10 Gbps

Ethernet.

We perform a 1 : 15 multicast with varying data size (from 200 MB to 1.4 GB) and

measure the multicast reading time (i.e., the duration between receiving program issues

reading request and finishing reading it). Figure 2.2 shows the application-level multicast

throughput defined as the ratio of multicast data size to multicast reading time.

Without any competing tra�c, IP multicast (assuming that IP multicast is using

a full-bisection bandwidth network) achieves close to line-rate performance irrespective

of multicast data size. However, in presence of competing unicast tra�c, IP multicast

(over full-bisection bandwidth network) without congestion control leads to unreliable

and unpredictable performance (recall Section 2.1.1); similarly, IP multicast (over full-

bisection bandwidth network) with congestion control (e.g., NORM [27]) fails to achieve

fairness with unicast flows (recall Section 2.1.1).

Even without any competing tra�c, we observe that both MPI_Bcast and Spark-

Cornet achieve application-level throughput only upto 35% and 20% of the line-rate

throughput across data size, which is far from optimal. In Spark-Cornet, a node first

locates a block of data it needs from another node then performs a block transfer. We

observe that although each individual block transfer can reach near line-rate throughput,

far more time is taken up by control communications to locate and wait for data blocks,

which becomes the bottleneck for overall throughput. MPI_Bcast, adopts a di�erent

approach, where the data is pipelined from one node to the next. In this case, the

software handling of data from input to output across the pipeline and the need to

ensure reliability across the pipeline becomes the bottleneck for overall throughput.
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Figure 2.2 : Application-level multicast throughput vs. data size for a 1 : 15 multicast

flow.

2.1.2.3 Real-world applications

A variety of applications rely on multicast and point-to-point communications, but their

needs are di�erent. Some applications are throughput sensitive, and some are latency

sensitive. We study throughput sensitive applications and their characteristics in Sec-

tion 2.1.2.3.1 and latency sensitive applications and their characteristics in Section 2.1.2.3.2.

2.1.2.3.1 Throughput sensitive

Most big-data applications rely on multicast communication. We briefly discuss the

workloads and experimental results of these applications.

Spark ML: Under Spark Machine Learning applications, we focus on two popular

iterative machine learning algorithms: Latent Dirichlet Allocation (LDA) and neural

word embedding. We use the Spark LDA implementation [39] with the dataset of 20

Newsgroups as the input corpus [40], and do the one-to-all multicast for the training
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Application Multicast Mechanism Multicast Reading Time (s) Application Running Time (s)

LDA Cornet 34.30 105.13

HTTP 65.74 141.69

Word2Vec Cornet 25.90 984.00

HTTP 58.49 1022.10

Table 2.2 : LDA and Word2Vec: Cornet and HTTP multicast reading time ine�ciency

and their impact on overall application runtime.

vocabulary model (735 MB in size). In addition, we use the Word2Vec [41] neural word

embedding application in Spark MLlib, with a training model size of 504 MB. Currently,

both of these applications use Spark’s native multicast mechanisms like Cornet [3] and

HTTP (repeated unicasts to all receivers).

For these applications, we use 8 servers. The application randomly chooses one server

with four cores and 88 GB RAM as the master, while the other seven servers with two

cores and 44 GB RAM serve as 14 slave executors. Both the Spark ML applications (i.e.,

LDA and Word2Vec) run for 10 iterations. Finally, we obtain the total multicast reading

time and application running time shown in Table 2.2.

For LDA, in an ideal world, IP multicast could speedup multicast reading time by

4◊ and 7◊ compared to Cornet and HTTP, respectively. Similarly, for Word2Vec, IP

multicast could speedup multicast reading time by 3◊ and 6◊ compared to Cornet and

HTTP, respectively.

Word2Vec is more computation-intensive, so the multicast reading time plays a smaller

role in overall application runtime than LDA.

Spark distributed database: TPC-H is a widely used database benchmark of 22

business-oriented queries with high complexity and concurrent data modifications [6]. We

run these queries using the Spark SQL framework [5]. The database tables are 16 GB in

size overall, and the multicast data is one of such tables with sizes ranging from 4 MB

to 6.2 GB for the distributed database join, making a total of 48.3 GB of multicast data
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across queries.

We run Spark distributed database through the traditional two-layer fat-tree network

(full-bisection bandwidth network). Figure 2.3 shows the multicast reading time of each

TPC-H query (queries 1 to 22) averaged over 10 runs. For certain queries (e.g., 1, 4, 6,

14, 15, 22), the amount of multicast data is either very small (under 200 MB) or non-

existent. However, for other queries (e.g., 9, 17, 18), multicast data is large (5 GB), so

with IP multicast we could get a speedup of 2.7◊ and 3.5◊ in multicast reading time

compared to Cornet and HTTP respectively.

DMM: Distributed Matrix Multiplication (DMM) is one of the most important linear

algebra kernels, and it is widely used in diverse applications, such as machine learning

[42, 43, 44, 45], deep neural networks training [46], fluid dynamics [19], climate modelling

[20], and molecular dynamics simulation [21]. We use Fox [47] as an example DMM

algorithm where processes need to multicast chunks of one matrix in di�erent iterations.

DMM is a di�cult workload in general, as it involves multiple processes to multicast the

matrix chunks in di�erent iterations. Current MPI-based Fox implementation [48] uses

MPI_Bcast as the multicast mechanism.
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The Fox algorithm considers p servers to be logically mapped to a Ô
p ◊ Ô

p space

on a single plane containing equal-sized blocks of matrices A and B. It then follows

a “multicast-multiply-roll” cycle, where the servers a) multicast the blocks of matrix A

row-wise, b) multiply with the available blocks of B and finally, c) roll/shift the blocks

of matrix B column-wise. As each server multicasts A’s block only once throughout the

execution, the network will carry one copy of A matrix. We have used a Fox implementa-

tion using the Open MPI library [49] (v1.6.5), which uses a chain-based communication

algorithm for multicast.

We benchmarked with di�erent numbers of machines (2/4/8) and processes (16/64/256)

on varying matrix sizes (10k◊10k-70k◊70k) in 4 di�erent scenarios. Each scenario has

a di�erent oversubscription ratio created by injecting competing tra�c from iPerf3 [50].

The competing tra�c leaves di�erent amounts of available bandwidths for the unicast

network: 10 Gbps (line-rate), 5 Gbps, 2.5 Gbps, and 1.25 Gbps, respectively.

We compare the basic version of MPI multicast in the 4 scenarios using 8 machines

and 64 processes – this combination of machines/processes setting is found to perform

the best.

The process to server mapping is done in a way that only multicast tra�c is sent out-

side of the rack, and all unicast tra�c is contained within a rack, so only multicast tra�c

is impacted by oversubscription. For MPI, the multicast rate decreases with heavier con-

gestion. We ran each combination of matrix sizes, scenarios, and multicast mechanisms

10 times and obtained their average running time. Figure 2.4 shows the average multi-

cast reading time over the average total application running time. Here, the multicast

reading time is defined as the duration from (1) the time when the program issues the

block reading request running in the receiving process to (2) the time when the program

finishes reading the block. The total application running time consists of multicast time,

shift time, and computation time.

In Figure 2.4 we demonstrate that if in an ideal world we had IP multicast without the

disadvantages stated in Section 2.1.1 multicast reading time would improve considerably.
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Figure 2.4 : The average multicast time and application running time of MPI and IP

multicast in all the four scenarios for matrix sizes 30k◊30k to 70k◊70k.

For the matrix size 70k◊70k, IP multicast theoritically achieves speedups of 8.6◊, 28.1◊,

56.02◊, and 74.8◊, compared to MPI with 10 Gbps, 5 Gbps, 2.5 Gbps, and 1.25 Gbps,

respectively. Figure 2.4 further shows that this translates to application-level improve-

ment, by 5.3% (10 Gbps), 17.2% (5 Gbps), 30.04% (2.5 Gbps), and 37.21% (1.25 Gbps),

respectively.

Even non high throughput applications will su�er from application level multicast,

which we will demonstrate in Section 2.1.2.3.2.

2.1.2.3.2 Latency sensitive

Paxos [51, 52, 53] is a consensus protocol for distributed set of unreliable processes. It

is used for implementing a fault-tolerant distributed system. The consensus algorithm

ensures that a single value is chosen among the proposed values by all the processes,

and participants agree on it. It assumes a leader-election oracle. At a high level, Paxos
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Figure 2.5 : The phases of the PAXOS algorithm.

distinguishes the processes as proposers, acceptors, and learners. First, the proposer

multicasts a message with a unique number to all acceptors. If the acceptors have not

seen a message with a higher unique number, they confirm the reservation of the ballot

and send back a message to the proposer. If the proposer receives confirmations from

at least more than half of the acceptors, it will multicast a message including the value

to be proposed and the ballot number to all acceptors. Finally, the acceptors store the

value and multicast their decision to the proposer and all the learners. Three out of four

of the steps above involve multicast. Figure 2.5 shows the sequence of events required in

each instance of consensus in order to deliver a value.

Various implementations of Paxos exist, some of them are based on IP multicast

(RingPaxos[54], LibPaxos v1 and v2[55], etc.) and some are based on Unicast (Paxos4sb

[56], Libpaxos v3 [55]).

Figure 2.6 shows the latency of Unicast based Paxos application level multicast

through the traditional two-layer fat-tree network. As the messages tend to be small,

the performance of Paxos is sensitive to latency. The proposers send a couple of hun-

dred values of size 1 Byte, one at a time to all acceptors. Figure 2.6 shows the 90th

percentile latency of hundreds of values proposed. The latency of Unicast based Paxos

scales linearly with the number of acceptors (receivers), while Multicast based Paxos’s
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Figure 2.6 : The 90th percentile latency of unicast Paxos over fat-tree with one sender.

The latency of Unicast Paxos scales linearly with the number of acceptors (receivers).

latency will be almost constant and minimal due to the use of IP multicast for message

dissemination.

2.2 Summary

Applications in compute clusters heavily rely on multicast group communication. Mul-

ticast service models today could be characterized as “leave it to the network” or “leave

it to the application”. Unfortunately, neither model achieves simultaneously the pre-

dictability and reliability that applications need, and the e�ciency, unicast-friendliness

and scalability that network operators want.
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Chapter 3

Evaluate the benefits of augmenting DCN with a
parallel IP multicast enabled network

In Chapter 2 we saw that both network-centric and application-centric service mod-

els could support multicast transmissions to some degree, but neither provides an ideal

solution. We demonstrated how application-level multicast could hurt the overall run-

time of applications relying on multicast group communications. Continual reliance on

application-level overlays for multicast data transmission is not a tenable position in the

long run. We also saw that network-level multicast could achieve high throughput and

low latency, but it does not come for free and has some disadvantages. Thus it is not

supported in today’s DCNs.

To take advantage of the high throughput and low latency of network-level multicast,

one solution is to reserve multicast trees from the existing Clos-based network; however,

this is very costly, as the multicast trees consume a lot of resources in the network core.

Consider a one-to-all multicast; we need a cluster-wide multicast tree, which would block

a core switch entirely and almost all downlinks of one aggregate switch in each pod.

Even in cases where multicast trees are not cluster-wide, the scenario will worsen due

to the rise of multicast applications with more frequent arrivals and constraints in job

placement within busy clusters. It could become necessary to reserve more than one

cluster-wide multicast tree with a proportionally higher core and aggregate resources.

Hence, involving the core for multicast resource consumption would not be pragmatic.

[57], proposes an edge-network architecture called Shu�ecast, which is responsible

for multicast. It restricts the resource consumption to the network edge, which would

be more sustainable in the long run. Shu�ecast coexists with the unicast network,

and multicast and unicast tra�c are physically isolated. Separating the communication
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classes in this manner enables us to target multicast with the most appropriate network

technology and operating mechanism. The key features are a) multicast and unicast

tra�c are physically segregated; b) the network is responsible for multicast transmission;

and c) its architecture supports high scalability in multicast group size and number of

groups and achieves high reliability in the presence of multiple multicast groups.

Adopting a parallel multicast dedicated network such as Shu�ecast should give us

the benefits of IP-level multicast/Network level multicast without harming the unicast

tra�c. We expect having the ability to do IP multicast would benefit the overall runtime

as shown in Chapter 2 Section 2.1.2.3.

For long-lived bulk data transfers, we build a complete hardware and software proto-

type of Shu�ecast (Section 3.2) and perform comprehensive testbed evaluation (Section

3.3). We want to see how much benefit an auxiliary dedicated multicast network can

bring to the overall runtime. A tutorial of Shu�ecast is given in Section 3.1.

3.1 Shu�ecast

3.1.1 Introduction

Shu�ecast is a novel optical architecture that supports high-performance multicast in

compute clusters or DCNs. Shu�ecast segregates multicast and unicast tra�c and has a

network that has explicit multicast support. The architecture supports high scalability in

terms of multicast group size and also reliably supports multiple multicast groups. As we

saw earlier allocating multicast trees from the existing hierarchical Clos-based network is

very costly as it will consume a lot of resources inside the network core. With multicast-

heavy jobs arriving more frequently and busy clusters having less job placement flexibility,

the problem will worsen. Instead, Shu�ecast restricts multicast resource consumption to

the network edge to have minimal impact on unicast tra�c.

Shu�ecast is a scalable edge-network topology and data plane design that directly

connects the ToR switches using inexpensive passive optical splitters, providing physical-

layer enabled high-performance multicast without disrupting other unicast tra�c. This
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proposed design supports intra-pod and inter-pod multicast with latency growing sub-

linearly while achieving highly desirable properties: no extra rack space, minimal extra

power, low cost, high performance, and low latency at scale. This well-defined topol-

ogy also provides static optimal ToR-level routing. Shu�ecast has a highly responsive,

lightweight control plane design that enables simple customization of ToR-to-server for-

warding based on an application-defined multicast group.

3.1.2 Potential benefits of edge-based design

First, multicast and unicast tra�c do not commingle with each other, leading to more

predictability, reliability, and fairness guarantee for both types of tra�c with much less

complexity. Second, the network is responsible for multicast, eliminating application-level

data redundancy, and ensuring e�cient use of link bandwidths (Section 3.3.1). Third,

Shu�ecast’s data plane design can achieve high scalability in supporting large multicast

group sizes. Fourth, only edge switches carry multicast tra�c, making the Shu�ecast

control plane simple while reliably supporting multiple multicast groups. Finally, edge

resource consumption will not grow as fast as the core, as future multicast tra�c demands

may increase.

3.1.3 Network Architecture

In this section, we first describe the key building blocks and then describe the Shu�ecast

architecture.

3.1.3.1 Building Blocks

In this architecture, every ToR switch is equipped with (i) passive optical splitter(s) and

(ii) fixed-wavelength optical transceivers, and it is connected to some other ToR switches

via (ii) single-mode optical fibers. We describe the key features of these optical devices

below.

Optical Splitters: An optical splitter is a unidirectional passive device with one

input and multiple output ports, typically made of multiple fibers twisted and fused
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together. Splitters can split the incoming optical signal of any wavelength from one

input port to multiple output ports by proportionally dividing the signal power. For

example, a 1 : 2 splitter can evenly split the incoming signal into two output ports,

incurring 10 log
10

2 = 3 dB of insertion loss in the ideal case. In the case of planar

waveguide circuit (PLC) splitters, there may be an additional 1≠1.8 dB of extra loss [58].

Moreover, being a passive device, it does not consume any active power and works for

any data rate. This built-in support for multicast capability, along with its operational

simplicity and low cost, makes the optical splitter commercially suitable for Shu�ecast’s

network design.

Optical Transceivers: Optical transceivers contain both the optical transmitter

(LED or laser: converting electrical to optical signal with specific wavelength) and receiver

(photodetector: converting optical to electrical signal). They are specified with certain

transmitter power (dBm) and receiver sensitivity (dBm) along with achievable bit rate.

The di�erence (in dB) of those two power levels dictates the optical link’s maximum

allowable power budget. For example, a 10 Gbps, 1310 nm, 10 km small form-factor

pluggable (SFP) optical transceiver has the maximum possible transmit power of 0.5

dBm and receiver sensitivity of ≠14.4 dBm [58], resulting in (0.5 ≠ (≠14.4)) = 14.9 dB

of allowable power budget. To make the link practically viable, the sum of all the loss

components along the link should be less than such power budget. Optical transceivers

require low additional power – a 10 Gbps and 100 Gbps transceiver consumes less than

1.5 W and 3.5 W, respectively [59].

Optical Fiber: Optical fiber is the transmission medium to carry light. Single-mode

fiber is widely used due to its low cost and negligible attenuation loss (proportional to

its length). Commercially available single-mode fiber optic cables typically have 0.3 dB

of insertion loss and 0.36 dB/km of attenuation loss at 1310 nm wavelength [58]. Note

that a 1 : p optical splitter is already manufactured with 1 + p optical fiber strands as its

inputs and outputs.

The optical signal propagating through a ToR-to-ToR link in Shu�ecast faces splitter
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insertion loss, fiber insertion loss, and attenuation loss, with the exact amount depending

on the physical length of the link. For example, an optical link with 1 : 8 PLC splitter

and 500 m single-mode fiber have total loss
1
10.6 + 0.3 + 0.36 ú 500

1000

2
= 11.08 dB and 10

Gbps, 1310 nm, 10 km SFP optical transceiver has a max allowable power budget 14.9

dB. Thus, there is a (14.9 ≠ 11.08) = 3.82 dB margin, which makes the design of such

links practically viable.

3.1.3.2 Topology

We discuss how we can build a Shu�ecast topology using the optical devices mentioned

above. Such a topology can be parameterized by p and k, where p denotes the number of

ToRs a single ToR connects to, and k is the number of columns. Such a fabric is called

a p, k-Shu�ecast, with N = k · pk ToR switches forming a p-regular graph. Any ToR

is connected to p other ToRs of the next column. Each column has pk ToRs, and this

connectivity pattern is called a p-shu�e [60]. Moreover, the ToRs of the last column are

connected to those of the first, resulting in the graph wrapping around as a cylinder.

Figure 3.1 shows an example of 2, 2-Shu�ecast, where there are 8 ToRs arranged in

2 columns, with 4 ToRs per column and each ToR equipped with 1 : 2 optical splitter

(nodal degree 2).

3.1.3.2.1 Topological Properties

Scalability and Port Counts: Shu�ecast can scale to arbitrary network size. For

example, a 4, 4-Shu�ecast with 1 : 4 splitters and 4 columns can cover 1024 ToRs in a

data center.

Hop Counts: Shu�ecast routing can be performed with a low worst-case hop count.

For a p, k-Shu�ecast, all the ToRs are reachable from a given source by at most 2k ≠ 1

hops. For example, in Figure 3.1, the maximum hop count is 3. ToR 0’s multicast packet

reaches ToR 4 and 5 in 1st hop. ToR 4 relays these packets to ToR 1, and ToR 5 relays

to ToRs 2 and 3 at the 2nd hop. At 3rd hop, either of ToR 1 or 3 can relay the multicast

packets to ToRs 6 and 7.
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Figure 3.1 : Connectivity of 2, 2-Shu�ecast.

3.1.3.3 Routing properties

Shu�ecast multicast-aware routing provides static ToR-level relaying rules that depend

only on the source ToR ID and has the ability to exploit all degrees of network parallelism.

Implicitly, p dictates the degree of parallelism for Shu�ecast fabric. If we divide the

rows of the topology by p, a ToR from each division can multicast in parallel at line-

rate. In Figure 3.1 the dashed line shows this division. All the outgoing links from the

upper division are marked with darker arrows, and those from lower division are marked

with lighter arrows. For example, the source ToR 0 and ToR 3 can perform multicast

simultaneously at line-rate. Figure 3.2 shows the route to all other ToRs from ToR 0

and ToR 3. We can see that ToR 0 and ToR 3 relay sets are disjoint, {0, 1, 4, 5} and

{2, 3, 6, 7} for this reason, they can operate simultaneously at line-rate.

3.2 Implementation

We implement a prototype of 2, 2-Shu�ecast in our testbed. Our setup uses 3 OpenFlow

switches (2 ToR switches and one core switch), 8 optical splitters (1 : 2), and 16 servers.

We logically divide the 2 ToR switches to emulate 4 ToR switches each, and 2 servers

are connected to each logical ToR. We wire the Shu�ecast network using optical splitters
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Figure 3.2 : Relay sets for ToR 0 and ToR 3 in 2, 2-Shu�ecast.

on these 8 logical ToR switches. The core switch connects to the logical ToRs, creating

a 2-layer full-bisection bandwidth network across ToR switches. Each server has 6 3.5

GHz CPU cores with 12 hyperthreads and 128 GB RAM. All connections are 10 Gbps

Ethernet. To minimize the number of ports used while wiring the 2, 2-Shu�ecast, at

each logical ToR switch, we connect the outgoing fiber (to its splitter) and one of the 2

incoming fibers (from 2 other splitters) to a single transceiver port. Thus, each logical

ToR consumes only 2 transceiver ports (optimal for 2, 2-Shu�ecast). The forwarding

rules are installed on the switches using the Ryu OpenFlow controller [61], running on

one of the servers.

Based on this hardware setup, we use Republic [62], a publicly available platform,

to handle packet transportation and to provide a simple unicast-based loss recovery for

reliable IP multicast transmission. Shu�ecast uses turn-taking as its application-level

flow control mechanism among multiple multicast sources.

The controller program consists of two parts. The first part runs the Shu�ecast

multicast-aware routing algorithm (from Section 3.1.1 of paper [57]) and pre-installs the

static ToR-to-ToR forwarding rules for 2, 2-Shu�ecast (< 100 lines of python code written

by the first author of Shu�ecast). The second part translates application-based multicast

group membership information into the ToR-to-server multicast rules and installs them

on the switches at runtime (< 30 lines of python code). We make simple modifications

to applications to interact with the controller program (¥ 10 lines of C++ code).
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3.3 Experimental Results

In this section, we present comprehensive testbed experimental results to demonstrate

that Shu�ecast can achieve a) optimal and predictable multicast performance with low

cost, b) high end-to-end reliability while supporting concurrent multicast groups with

negligible overhead, and c) improved application performance for both high-bandwidth

and low-latency applications.

3.3.1 Multicast performance of Shu�ecast vs. state-of-the-art multicast

mechanisms

We perform benchmarking experiments to evaluate the multicast performance of Shuf-

flecast. Our baseline mechanisms are state-of-the-art multicast solutions over a full-

bisection bandwidth network: a) IP multicast, and b) peer-to-peer mechanisms such as

MPI_Bcast [22] and Spark-Cornet [3]. We perform a 1 : 15 multicast with varying data

size (from 200 MB to 1.4 GB) and measure the multicast reading time (i.e. the dura-

tion between receiving program issues reading request and finishes reading it). Figure

3.3 shows the application-level multicast throughput defined as the ratio of multicast

data size to multicast reading time. We observe that without any competing tra�c,

Shu�ecast and IP multicast (note that IP multicast is using a full-bisection bandwidth

network) achieve close to line-rate performance irrespective of multicast data size. How-

ever, in presence of competing unicast tra�c, IP multicast (over full-bisection bandwidth

network) without congestion control leads to unreliable and unpredictable performance

(recall Section 2.1.1); similarly, IP multicast (over full-bisection bandwidth network) with

congestion control (e.g., NORM [27]) fails to achieve fairness with unicast flows (recall

Section 2.1.1). On the other hand, Shu�ecast’s performance remains una�ected by uni-

cast tra�c as it physically isolates multicast and unicast tra�c.

We also observe that, even without any competing tra�c, both MPI_Bcast and Spark-

Cornet achieve application-level throughput only up to 35% and 20% of the line-rate

throughput across data size, which is far from optimal. Shu�ecast is up to 3◊ faster
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Figure 3.3 : Application-level Multicast throughput vs. data size for a 1 : 15 multicast

flow.

than MPI_Bcast and up to 6.3◊ faster than Spark-Cornet.

3.3.1.1 Real-world applications

To demonstrate if multicast speedup of Shu�ecast leads to significant application-level

benefit, we use the same case studies as Chapter 2 Section 2.1.2.3.

3.3.1.1.1 Throughput sensitive

MPI: First, we compare the original MPI_Bcast to the modified version that uses Shuf-

flecast. We choose one server under each ToR, and each server is allocated with one

process while one of them multicasts a data chunk to seven other processes. Varying the

multicast data size from 50 MB to 900 MB, we obtain the average multicast reading time

over 10 iterations without any competing tra�c. Figure 3.4(a) shows that Shu�ecast

considerably improves the average multicast reading time compared to MPI_Bcast, with

a speedup of 2.33 ◊ ≠2.8◊ across di�erent data sizes. Moreover, the multicast reading



28

Data Size (MB)

T
im

e
(
s
e
c
)

(a)Multicast reading time

Oversubscription

(b)Multicast speedup

A
v

e
r
a
g

e
s
p

e
e
d

u
p

r
a
t
e

Figure 3.4 : (a)Multicast reading time of Shu�ecast vs. MPI_Bcast. Shu�ecast improves

the multicast reading time considerably, and the speedup is consistent (2.33 ◊ ≠2.8◊)

across di�erent data sizes. (b)Multicast speedup of Shu�ecast over MPI_Bcast under

di�erent oversubscription. The average speedups of Shu�ecast compared to MPI_Bcast

under di�erent oversubscription ratios range from 2.6 ◊ ≠24◊.

time is consistent overall iterations, indicating the predictable performance of Shu�ecast.

At the lower network level, the multicast performance is close to line-rate. We perform

similar experiments with scenarios where the unicast network is oversubscribed. Each sce-

nario has a di�erent oversubscription ratio created by injecting competing tra�c using

iPerf3 [50], which leaves di�erent amounts of available bandwidth for the unicast network:

5 Gbps, 2.5 Gbps, and 1.25 Gbps. Figure 3.4(b) shows that the average speedups of Shuf-

flecast compared to MPI_Bcast ranges from 2.6◊≠24◊ across di�erent oversubscription

ratios.

Spark ML: Under Spark Machine Learning applications, we focus on two popular

iterative machine learning algorithms: Latent Dirichlet Allocation (LDA) and neural

word embedding. We use the Spark LDA implementation [39] with the dataset of 20

Newsgroups as the input corpus [40], and do the one-to-all multicast for the training

vocabulary model (735 MB in size). In addition, we use the Word2Vec [41] neural word
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embedding application in Spark MLlib, with a training model size of 504 MB. Currently,

both of these applications use Spark’s native multicast mechanisms like Cornet [3] and

HTTP (repeated unicasts to all receivers).

We compare the performance of Spark ML with and without Shu�ecast. We use an

extension to Spark that can perform multicast [62] over Shu�ecast network. For this

application, we use 8 servers. The application randomly chooses one server with four

cores and 88 GB RAM as the master, while the other seven servers with two cores and

44 GB RAM serve as 14 slave executors. Both the Spark ML applications (i.e., LDA and

Word2Vec) run for 10 iterations.

Finally, we obtain the total multicast reading time and application running time.
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Figure 3.5 : LDA performance improvement of Shu�ecast compared to native multicast

mechanisms over full-bisection bandwidth network. The speedup in multicast reading

time are 3.25◊ and 6.24◊ compared to Cornet and HTTP, respectively. The correspond-

ing improvement in the application running time are 23.41% and 43.1%.

Figure 3.5 shows that Shu�ecast improves the overall application running time in
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Application Multicast Mechanism Multicast Reading Time (sec) Application Running Time (sec)

Word2Vec Shu�ecast 11.43 973.97

Spark Cornet 25.90 984.00

HTTP 58.49 1022.10

Table 3.1 : Shu�ecast improves the multicast reading time. There are 2.27◊ and 5.12◊

speedup in multicast reading time compared to Spark Cornet and HTTP, respectively.

LDA by accelerating the multicast reading time. Shu�ecast achieves 3.25◊ and 6.24◊

speedup in multicast reading time compared to Cornet and HTTP, respectively. Overall,

the application running time improvement is 23.41% and 43.1% compared to Cornet and

HTTP, respectively.

Table 3.1 shows that Shu�ecast improves the multicast reading time in Word2Vec

however, because Word2Vec is more computation-intensive, so the multicast reading time

plays a smaller role in overall application runtime. There is 2.27◊ and 5.12◊ speedup in

the multicast reading time compared to Cornet and HTTP, respectively.

Next, we compare Spark distributed database with and without Shu�ecast, keeping

the same server configuration as Spark ML.

Figure 3.7 shows the application running time of each TPC-H query (queries 1 to

22) averaged over 10 runs. For certain queries (e.g., 1, 4, 6, 14, 15, 22), the amount of

multicast data is either very small (under 200 MB) or non-existent, showing no visible

di�erence between Shu�ecast, Cornet, and HTTP. However, for other queries (e.g., 9,

17, 18), multicast data is large (5 GB), so Shu�ecast gets speedup of 2.7◊ and 3.5◊ in

multicast reading time compared to Cornet and HTTP respectively (Figure 3.6. Con-

sequently, the total query running time improvement is 13.7% compared to Cornet and

17% compared to HTTP.

DMM: We use Fox [47, 63] as an example DMM algorithm where processes need to

multicast chunks of one matrix in di�erent iterations. Current MPI-based Fox implemen-

tation [48] uses MPI_Bcast as the multicast mechanism.

We have used a Fox implementation using the Open MPI library [49] (v1.6.5), which
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Figure 3.6 : CDF of TPC-H total multicast reading time. Shu�ecast achieves 2.7◊ and

3.5◊ speedup in multicast reading time compared to Cornet and HTTP, respectively.

uses a chain-based communication algorithm for multicast.

We benchmarked with di�erent numbers of machines (2/4/8) and processes (16/64/256)

on varying matrix sizes (10k◊10k-70k◊70k) in 4 di�erent scenarios. Each scenario has

a di�erent oversubscription ratio created by injecting competing tra�c from iPerf3 [50].

We replace the multicast module with our multicast module that uses the Shu�ecast

API. We compare the basic version of MPI and the version supported by Shu�ecast (by

modifying the MPI multicast module to use Shu�ecast APIs) using eight machines and

64 processes – this combination of machines/processes setting performs the best for the

basic MPI version.

In Figure 3.8(a) the process to server and ToR mapping is in a way that only multicast

tra�c is sent outside of the rack, and all unicast tra�c is contained within a rack, so

only multicast tra�c is impacted by oversubscription. Shu�ecast performance remains

close to line-rate across scenarios, as it uses a dedicated multicast network instead of

the oversubscribed unicast network. For MPI, the multicast rate decreases with heavier
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Figure 3.7 : The average running time of each TPC-H query (q1 to q22) over the three

multicast mechanisms: For specific queries (e.g., 1, 4, 6, 14, 15, 22), the amount of

multicast data is either minimal (under 200 MB) or non-existent, so there is no visible

di�erence between Shu�ecast, Cornet, and HTTP. However, for other queries (e.g., 9,

17, 18), the multicast data is large (5 GB), so Shu�ecast reduces the multicast reading

time significantly.

congestion.

We ran each combination of matrix sizes, scenarios, and multicast mechanisms 10

times and obtained their average running time. Figure 3.9 shows the average multicast

reading time over the average total application running time. Here, the multicast reading

time is defined as the duration from (1) the time when the program issues the block

reading request running in the receiving process to (2) the time when the program finishes

reading the block. The total application running time consists of multicast time, shift

time, computation time and waiting time. Note that waiting time is only present in
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Figure 3.8 : Two di�erent process to server/machine mappings for DMM. A-H represent

8 servers. One server is connected to each logical ToR.

Shu�ecast due to the turn-taking flow control mechanism when multiple sources multicast

data. All but one source need to wait on an MPI_Barrier.

Shu�ecast improves multicast reading time considerably. For the matrix size 70k◊70k,

it achieves speedups of 6.04◊, 19.59◊, 39.0◊, and 52.1◊, compared to MPI with 10 Gbps,

5 Gbps, 2.5 Gbps, and 1.25 Gbps, respectively.

Figure 3.9 further shows that this translates to application-level speedups, by 5.8%

(5 Gbps), 20.4% (2.5 Gbps), and 28.6% (1.25 Gbps), respectively. However, the overall

application runtime gets hurt compared to the 10 Gbps case. Furthermore, due to the

turn-taking mechanisms used for Shu�ecast implementation, the number of MPI_barrier

added to the DMM program causes waiting times not present in the original version of

the DMM program. Therefore we see that the upper part of the bar is more significant

for Shu�ecast.

3.3.1.1.2 Latency sensitive

Paxos-based consensus protocol: The performance of Paxos is sensitive to latency

as the messages tend to be small. We choose the data object size as 1 Byte. We run
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Figure 3.9 : The average multicast time and application running time of MPI and Shuf-

flecast in all the four scenarios for matrix sizes 30k◊30k to 70k◊70k.

multicast-based Paxos [64] (natively leverage network-level multicast) over Shu�ecast

(no application modification required) and unicast-based Paxos [65] (repeated-unicasts

to realize multicast) over full-bisection bandwidth network.

We run Paxos, where the client repeatedly sends 1 Byte values to the proposer. The

client sends the next value as soon as the previous is successful and repeats for one hundred

iterations; each iteration provides a latency measurement. All acceptors are placed on

di�erent servers. We compare the latency of unicast-based Paxos (over the full-bisection

bandwidth network) with that of multicast-based Paxos (over Shu�ecast). Figure 3.10

shows the 90th percentile latency of all values proposed. We observe that using Shu�e-

cast, Paxos’ 90th percentile latency is very predictable (close to 40 microseconds) and

stable even as the number of acceptors increases. In contrast, the 90th percentile latency

of unicast-based Paxos increases significantly as the number of acceptors increases and is

at least two times worse than Shu�ecast-enabled Paxos.
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Figure 3.10 : 90th percentile latency of multicast Paxos over Shu�ecast versus unicast

Paxos over full-bisection bandwidth network with one sender. The latency of Unicast

Paxos scales linearly with the number of acceptors (receivers), while multicast based

Paxos over Shu�ecast has almost constant and low latency.

3.4 Limitations

The limitations come from two di�erent aspects of Shu�ecast: 1) Implementation and

2) Architecture.

In MPI programs, multiple processes get assigned to each machine. Those processes

have the same IP address. In the implementation of Shu�ecast, we use Republic [62]

to handle packet transportation and to provide a simple unicast-based loss recovery for

reliable IP-multicast transmission. Republic does not allow an IP address to be part of

multiple active multicast groups simultaneously. Because of this constraint, we choose

to: 1) use turn-taking as our application-level flow control mechanism among multiple

multicast sources so that there are no multiple active multicasts at the same time, and

2) place only one process from a multicast group under a machine (or ToR since there

is also only one machine per ToR in this Shu�ecast testbed) (Figure 3.8(a)). We saw

that applications with parallel multicasts such as DMM would su�er from the introduced



36

Figure 3.11 : Relay sets for ToR 0 to ToR 7 in 2, 2-Shu�ecast.

waiting time caused by turn-taking. Shu�ecast improves the multicast time, but the

overall application runtime is higher than a full-bisection bandwidth network.

If we consider the same process to server mapping in Figure 3.8(a), assuming that

there are no constraints, then DMM can start all the 8 multicasts simultaneously without

turn-taking.

Recall that in a p, k-Shu�ecast, P ToR’s can simultaneously multicast to the rest of

p, k-Shu�ecast network with line-rate. It means that in a 2, 2-Shu�ecast, we can only

have 2 well-placed multicasts in parallel at line-rate. However, the DMM application

starts a multicast from all the 8 ToRs simultaneously. The relays are shared (shown in

Figure 3.11). The multicast rate will be 2.5 Gbps.

Another limitation is that the multicast tree rules installed on the switches are static.

Thus, if the multicast group defined by the application should reach only a subset of
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ToRs, It will still reach all ToRs in Shu�ecast even if that ToR is not a relay for this

subset. Figure 3.8(b) shows another process to server mapping for the DMM application.

With this mapping there are two DMM row-wise multicast groups: { ToR 0, ToR 4, ToR

5, ToR 1} and { ToR 2, ToR 7, ToR 6, ToR 3}. However, Shu�ecast will multicast to

ToR 0 to ToR 7 for both groups; again, multiple simultaneous multicasts will share the

relays. Therefore, multicasting with line-rate would not be possible.

3.5 Summary

Shu�ecast architecture leverages inexpensive optical splitters and cleverly uses edge net-

work bandwidth to segregate physically multicast tra�c from unicast tra�c, and the

network becomes responsible for multicast. Shu�ecast’s data plane is scalable and sup-

ports line-rate throughput; its control plane is responsive and straightforward. Our ex-

periments using a complete hardware and software prototype of Shu�ecast show that

Shu�ecast can achieve high throughput, low latency reliable multicast for various real-

world applications. Note that this solution cannot optimize unicast communications and

perform more than p well-placed multicasts simultaneously with line-rate.
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Chapter 4

Evaluate the benefits of a minimal data center
network augmentation providing flexibility and

reconfigurability

In Chapter 3, we evaluated the addition of a multicast dedicated network to optimize

HPC and big data applications through minimizing group communication latency and

maximizing group communication throughput. We observed that this solution could

primarily benefit specific applications with certain characteristics, such as not having

multiple simultaneous multicasts. For applications with multiple simultaneous multicasts,

either the overhead added by turn-taking neutralize/surpass the improvement caused by

minimizing multicast time, or it cannot multicast with line-rate.

We are interested in solutions that improve the application’s runtime by minimizing

the communication time for “all” HPC applications with zero to an insignificant overhead.

At the same time, we want to retain as many of the existing benefits of the current data

center networks as possible without significantly changing the network and increasing the

hardware cost. How can we better use the DCN bandwidth?

Data center network (DCN) architectures are critical for achieving high throughput

and low latency and maintaining low cost and complexity. To meet these goals, re-

searchers have proposed a series of DCN architectures [66, 17, 16, 67, 68, 69, 70, 71, 72,

73, 74, 75, 76, 77, 78, 79] over the past decade. Although these proposals have compet-

ing designs for the network core, the designs for the network edge are similar: servers

are organized in racks. The network core connects multiple racks, and each rack hosts

tens of statically connected servers via a ToR switch. Standardized racks enable unified

power supply and cooling, as well as significant space and cable savings. This rack-based

topology and connectivity pattern is deeply ingrained in the design of existing DCN ar-
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chitectures. However, the drawback of this rack-based connectivity is also prominent. On

the one hand, DCNs fragment the server pool into isolated racks; although this provides

ease of management, the networks that connect racks are typically oversubscribed at the

core to reduce equipment and operational cost [80, 81]. With typical oversubscription

ratios somewhere between 4:1 to 20:1 [16, 80, 81], servers in the same rack enjoy line-rate

throughput and low latency, but servers communicating across racks have much lower

available bandwidths. On the other hand, tra�c across racks is increasingly dominant in

data center workloads [81, 82, 83, 84]. Firstly, more and more DCN tra�c is escaping the

rack boundary due to resource fragmentation [85], large scale jobs [46], special applica-

tion constraints [86], and type-based server placement strategy [81]—e.g., one rack may

host storage servers, and another rack may host cache servers. Secondly, there is also

an increasing amount of tra�c that leaves the pod. For instance, a web-frontend cluster

may need to retrieve data from a database cluster or submit jobs to Hadoop clusters [81].

As a result, the core links in the oversubscribed layers are usually heavily utilized

by flows across rack, and the edge links within racks are extremely under-utilized due

to congestion higher up in the hierarchy; in some scenarios, more than 98% of the links

observe less than 1% utilization [82].

Existing work mostly views the limitations of the rack design as a given and designs

around them. Non-blocking network and its alternatives [16, 17, 87, 74, 88, 89, 79, 72,

73, 71, 66, 90] aim to enlarge the capacity of the network core to avoid congesting the

over-subscribed layer, but the cost to build, operate, and upgrade those non-blocking

networks will be much higher. Due to the scaling limit of CMOS-based electrical packet

switches [91, 92, 92, 93, 94, 95, 96, 97, 80], building such a network while staying within

the datacenter power budget is challenging. Rack-level reconfigurable networks [67, 69,

78, 77, 75] add additional bandwidth between the most intensively communicating racks

with extra cables, lasers, or antennas to relieve the bottleneck at core links. But the

performance improvement is constrained by the fact that the number of additional paths

is usually limited. Besides better topology designs, smarter job placement and execution
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strategies [98, 84, 99, 100, 101, 3, 102, 103, 104, 105] can also reduce the cross-rack tra�c

by arranging the jobs based on their tra�c pattern. However, these solutions generally

cannot perform well if tra�c patterns fluctuate at runtime [106, 107, 108].

Wu et al.[109] propose a rackless DCN architecture called RDC with the goal of

relieving DCN congestion with topological reconfigurability at the edge. RDC logically

removes the rack boundary of traditional data centers and the ine�ciencies that come

with it. As modern applications generate more and more cross-rack tra�c, the traditional

architecture su�ers from contention at the core, imbalanced bandwidth utilization across

racks, and longer network paths. RDC addresses these limitations by enabling servers

to logically move across the rack boundary at runtime; moreover, it inherits desirable

properties of the Clos topology, such as ease of deployment, maintenance, and expansion.

RDC design achieves this by inserting circuit switches at the network edge between the

ToR switches and the servers, and by reconfiguring the circuits to regroup servers across

racks based on tra�c patterns.

Adopting a reconfigurable network such as RDC should minimize both point-to-point

and group communications across racks. We expect RDC to speed up an oversubscribed

network to achieve near non-blocking network’s performance which benefits the overall

runtime.

We want to see how much benefit it brings to the overall runtime. A tutorial of RDC

is given in Section 4.1. We have performed extensive evaluations of RDC in a hardware

testbed (Section 4.2). RDC can speed up a 4:1 oversubscribed network to achieve nearly

non-blocking network’s performance. Note that to improve the communication perfor-

mance of an HPC application executing on RDC, users need to understand how the

application’s communication patterns interact with the network, especially when those

interactions result in congestion and instruct the application with the reconfiguration

code.
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4.1 RDC

4.1.1 Introduction

The rackless data center (RDC) architecture goal is to remove the fixed, topological rack

boundaries while preserving the benefits of rack-based designs, e.g., ease of power supply,

cooling, and space savings. In RDC, servers remain mounted on physical racks, but they

are not bound statically to any ToR switch. Instead, servers can move logically from one

ToR to another. This is achieved by using circuit switches, which can be dynamically

reconfigured to form di�erent connectivity patterns. Circuit changes can shift the servers

to di�erent topological locations while the servers remain immobile.

The power of RDC stems from the fact that servers can dynamically form logical

groups that are optimized for the current tra�c pattern. With this novel architecture

that is not committed to any static configuration, servers that heavily communicate with

each other can be grouped on-demand, and they can be regrouped as soon as the pattern

changes again. This leads to performance benefits in many common, real-world scenar-

ios: 1)Large jobs fragmented across racks; 2)Workloads with dynamic tra�c patterns;

3)Applications with placement constraints; 4)Imbalanced out-of-pod tra�c.

4.1.2 Potential benefits of rackless DCN design

The authors claim that RDC’s reconfigurability leads to performance benefits in many

common, real-world scenarios.

I 1: Mitigate the e�ect of resource fragmentation. Large jobs cannot be placed

on the same rack because they may not fit within the rack resources due to resource

fragmentation; under RDC, servers that run the same applications can be regrouped for

e�cient communication. RDC can mitigate the e�ect of resource fragmentation reduce

this ine�ciency to a minimum by regrouping the servers smartly.

Since many cluster schedulers assign the resources greedily to each job without a global

view[110, 111, 112], resource fragmentation is common and inevitable in the current data
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centers[113, 114]. Therefore, cross-rack servers may be involved in many jobs, resulting

in cross-rack tra�c that easily congests the oversubscribed core. In contrast, RDC can

relocate servers logically for server groups that heavily communicate, reducing cross-rack

tra�c. As shown in Figure 4.1(a), RDC regroups the servers and localizes the cross-rack

tra�c from the two jobs.

I 2: Optimize for dynamic tra�c patterns. Workloads with changing tra�c pat-

terns can benefit from server regrouping at runtime to localize heavily communicating

servers, enabling more network communication to enjoy full bandwidth and low latency.

Even with flexible resource grouping, RDC may not localize all the tra�c in some sce-

narios, like very large job scale [115], multi-tenant cloud [116], and infrastructure load-

balancing [117], due to the limitation of the physical rack volume, power supply, and cool-

ing requirement. For instance, applications like deep learning [118] and database [115]

cannot be supported by a single rack to achieve both high throughput and low response

time. Thus, the cross-rack tra�c can grow very high, and out-of-pod tra�c demand

for di�erent racks can also vary in the above scenarios. And the situation can be even

worse if the tra�c pattern keeps changing. However, even with such di�culties, RDC

can still optimize the placement by rearranging the servers to balance the link load and

localize the tra�c as much as possible. When the tra�c pattern changes, RDC can also

reconfigure accordingly. As an example, Figure 4.1(b) depicts a large scale job and RDC

finds an optimal way to localize most of the previous cross-rack tra�c.

I 3: Accommodate application placement constraints. Applications may inten-

tionally spread their instances across racks for fault tolerance [86] or reduce synchronized

power consumption spikes [119]. For example, to increase the system’s resilience, some

distributed storage systems, like HDFS, always require at least one data block replica

to be placed on a di�erent rack. RDC can localize tra�c while accommodating appli-

cation placement constraints. Figure 4.1(c) illustrates this mechanism. RDC can send

the replicas to a di�erent physical rack but within the same “logical” rack by regrouping

the servers from di�erent racks into one logical rack. This mechanism provides higher
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Figure 4.1 : Comparisons between before and after server regrouping for (a) placement

optimization, (b) flexible server grouping for large jobs, (c) application constraints ac-

commodation, and (d) out-of-pod load balancing.

bandwidth and also satisfies the replica placement policy of HDFS.

I 4: Balance out-of-pod tra�c. RDC can balance out-of-pod tra�c. Tra�c patterns

across racks may be heavily skewed. RDC can redistribute servers across di�erent racks;

this allows rack uplinks to be load-balanced to mitigate congestion. RDC can regroup

the servers according to their out-of-pod tra�c demands and balance link utilization,

hence relieving the previous bottleneck. In Figure 4.1(d), the imbalance ratio has been

decreased to 1 from 1.5 after the grouping is changed according to the out-of-pod tra�c

demand.

4.1.3 The RDC Architecture

In this section, we first describe the key building block of RDC and then describe the

RDC architecture. One circuit switch is inserted at the edge layer between servers and

ToR switches per pod in this architecture. We describe the key features of the circuit

switching technology below.

Circuit switching: Circuit switches can be dynamically reconfigured to form di�er-

ent connectivity patterns by establishing a circuit, from an entry to an exit servers/port.
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The circuit guarantees the full bandwidth of the channel. The circuit functions as if the

servers are physically connected. RDC uses circuit switching technology to achieve the

design goal of providing pod-level reconfigurability. Supporting rackless architecture for

networks with pods containing tens of racks and several hundreds of servers requires cir-

cuit switches with O(1000) ports. Circuit switches scale to tens of thousands of ports with

switching delay on the order of microseconds (Non-MEMS) [68] to several milliseconds

(3D MEMS-based optical circuit switches (OCS)) [120, 121]. Optical circuit switches do

not encode, decode, or bu�er packets, so they are protocol and data rate transparent,

providing high bandwidth at very low power [121].

4.1.3.1 Connectivity structure

…
ToR

Circuit switch

Servers

…

ToR ToR

Agg. Agg.

ToR

Circuit switch

Servers

…

ToR ToR

Agg. Agg.

ToR

Circuit switch

Servers

…

ToR ToR

Agg. Agg.

Core Core Core Core

RDC pod RDC pod RDC pod

(a) (b)

ToR switches

Controller

② topology
optimization

Agg. switches Circuit switch

Applications

Figure 4.2 : RDC architecture and workflow overview. (a) is an example of the RDC

network topology. Circuit switches are inserted at the edge between servers and ToR

switches. Connectivities for aggregation switches (agg.) and core switches remain the

same as in traditional Clos networks. (b) presents an overview of the workflow.

RDC uses circuit switches to achieve reconfigurable server-ToR connectivities. With

circuit switches, software controllers can manage the circuit setup and reconfiguration,

e.g., the TL1 interface. Circuits can be reconfigured independently of each other, so

only inflight tra�c traversing the reconfigured circuits would be disturbed; moreover,

source hosts can detect the link-down event and bu�er the unsent tra�c for fast recovery.

Since the link-down time is very short and only servers that need to change their rack

membership have to experience this downtime, RDC will not cause significant tra�c

disruption. As for reconfiguration algorithms, we defer the discussion to Section 4.1.4.
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Figure 4.2(a) shows an example of the RDC pods. RDC changes the traditional

multi-layer Clos topology [16, 17] by inserting circuit switches at the edge layer between

servers and ToR switches. The aggregation and core layers of the network remain the

same. One circuit switch is used per pod. Each pod has m racks with n servers per rack,

thus requiring 2mn ports on the circuit switch—half of the ports are connected to servers

while the other half are connected to ToR switches. For example, a 16-rack pod with

32 servers per rack requires 1024 circuit switch ports. In traditional data centers, each

server has a fixed connection to a single ToR; In contrast, RDC enables full flexibility

to permute the server-ToR connectivities, allowing the most intensively communicating

servers to be localized and enjoy the line-rate.

4.1.3.2 The pod controller

Today’s data centers are constructed from modular pods [122, 123, 124, 125], where a

pod typically hosts one type of service. RDC similarly views pods as basic units and

uses a per-pod network controller that manages both packet switches and the circuit

switch within the pod. The controller reconfigures the network at timescales of seconds

or longer depending on the tra�c pattern. The controller receives the tra�c demand

from the applications directly.

The workflow is illustrated in Figure 4.2(b). The controller 1) receives the information

from the applications; 2) determines the optimized topology with certain optimization

goals; 3) generates a set of new routes and pre-installs them on the packet switches; and 4)

finally sends the circuit reconfiguration request to the circuit switch and simultaneously

activates the new routing rules on packet switches. The first two steps serve as the RDC

control plane, while the last two steps configure the data plane. The final step causes a

small amount of disturbance due to the circuit reconfiguration delay.

4.1.4 RDC Control Algorithms

RDC allows applications to explicitly request reconfigurations and export their tra�c de-

mand and other essential information to the controller via RPC. RDC can localize tra�c
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based on application demands. By moving the previous cross-rack tra�c to be intra-rack,

RDC improves the aggregated bandwidth and reduces the average latency. When appli-

cations have changing tra�c patterns (e.g., distributed matrix multiplication (DMM)

algorithms proceed in iterations with shifting tra�c patterns), they can request reconfig-

urations before the next phase starts to ensure locality throughout the job. Section 4.2

presents a detailed evaluation of RDC.

4.2 Implementation and Evaluation

We conduct comprehensive evaluations using testbed experiments to demonstrate that

RDC can improve application performance for applications. Our experiments focus on

real-world applications of RDC to MPI-based distributed matrix multiplication (DMM) [106]

as a use case.

Testbed. Our RDC prototype consists of 16 servers and 4 ToR switches in 4 logical racks,

as well as one agg. switch and one circuit switch; Figure 4.3 illustrates our hardware

testbed. The ToR switches are emulated on two 48-port Quanta T3048-LY2R switches.

Each ToR switch has four 10 Gbps downlinks connected to the servers, and one 10 Gbps

uplink to the agg. switch, forming an oversubscription ratio of 4:1. We can tune this

ratio to emulate a non-blocking network by increasing the number of uplinks to 4. The

agg. switch is a separate OpenFlow switch. The OCS is a 192-port Glimmerglass 3D-

MEMS switch with a switching delay of several milliseconds. Each server has six 3.5 GHz

dual-hyperthreaded CPU cores and 128 GB RAM, running TCP CUBIC on Linux 3.16.5.

4.2.1 Real-world application

We evaluate how RDC can improve the performance of real-world applications. To

demonstrate if the communication speedup of RDC leads to significant application-level

benefit, we use the same case study as Chapter 3 Section 3.3.1.1.1.

MPI DMM. We set up a 8-server OpenMPI cluster and a 16-server OpenMPI cluster

across 4 racks and implemented a commonly used DMM algorithm [106] with 16 and 64
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(a) Servers (b) OCS (c) OpenFlow packet switches

Figure 4.3 : RDC prototype with 4 racks and 16 servers.

A B C D I  J  K  L M N O PE F G H

ToR 0 ToR 1 ToR 2 ToR 3

Spine

Figure 4.4 : The DMM testbed. A-P represent 16 servers, and A-D, E-H, I-L, M-P belong

to four physical racks separately.

processes. Figure 4.4 shows the DMM testbed and the server to rack color coding. We

benchmarked with di�erent numbers of servers (8/16) and processes (16/64) on varying

matrix sizes (10k◊10k-100k◊100k). The combination of 16 servers and 64 processes

performs better than 8 servers and 64 processes and 8 servers and 16 processes. Therefore,

we only show the results of the combination of 16 servers and 64 processes in this section.

Matrices are divided into 64 blocks (submatrices). Each server has 4 processes to form

an 8◊8 process layout. Reminder: DMM in each iteration performs a “multicast-multiply-

roll” cycle where a process a) multicasts submatrix row-wise, b) multiplies submatrices,

and c) shifts submatrices column-wise as shown in Figure 4.5. We consider six placements

for the 64 processes over 16 servers: 1) Figure 4.6(a): places them row-wise zero cross-
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Row-wise broadcast
Column-wise shift

(a) (b)

Row-wise multicast

Column-wise shift
Row-wise broadcast
Column-wise shift

(a) (b)Figure 4.5 : The DMM tra�c pattern.

rack tra�c for multicast but all shift tra�cs are cross-rack, 2) Figure 4.6(b): places

them column-wise zero cross-rack tra�c for shift but all multicast tra�c are cross-rack,

3) Figure 4.6(c): places the processes in a mixed manner, considering both multicast

and shift tra�c across racks, 4) Figure 4.6(d): places the processes in a mixed manner

(some tra�c are cross-rack but not all) for multicast but all shift tra�cs are cross-rack,

5) Figure 4.6(e): places the processes in a mixed manner (some tra�c are cross-rack

but not all) for shift but all multicast tra�c are cross-rack, and 6) Figure 4.6(f): places

the processes in a mixed manner considering shift but places them row-wise considering

multicast (zero cross-rack tra�c).

We ran each combination of matrix sizes, networks (RDC, static 4:1 oversubscribed

network, NBLK network) 10 times and obtained their average running time. Figure 4.10

shows that RDC improves the shift time for placement 1 (Figure 4.6). For the matrix

size 96k ◊ 96k, RDC improves the overall communication time 3.9◊ compared to a static

4:1 oversubscribed network, achieving almost the same performance as NBLK network.

Figure 4.11 shows that RDC improves the broadcast/ multicast time for placement 2

(Figure 4.6). For the matrix size 96k ◊ 96k, RDC improves the overall communication

time 2.3◊ compared to a static 4:1 oversubscribed network, achieving almost the same

performance as NBLK network. Figure 4.12 shows that RDC improves the broadcast/
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Figure 4.6 : Six di�erent placements for DMM. A-P represent 16 servers and A-D, E-H,

I-L, M-P belong to four physical racks separately.

multicast time for placement 3 (Figure 4.6). For the matrix size 96k◊96k, RDC improves

the overall communication time 1.6◊ compared to a static 4:1 oversubscribed network,

achieving almost the same performance as NBLK network.

Since the applications have changing tra�c patterns, no static process placement is

consistently optimal. Out of the three placements, placement 3 jointly minimizes the

cross rack tra�c for both communication patterns in DMM, outperforming the other two

strategies. Even for optimal placement, RDC can further improve the performance by

dynamically optimizing the topology at runtime.
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Figure 4.7 : DMM average shift time and multicast time for placement 1.

0

20

40

60

80

100

4:
1 

ov
er

su
b

R
D

C

no
nb

lo
ck

in
g

4:
1 

ov
er

su
b

R
D

C

no
nb

lo
ck

in
g

4:
1 

ov
er

su
b

R
D

C

no
nb

lo
ck

in
g

57.6k x 57.6k 76.8k x 76.8k 96k x 96k

Placement 2

Chart Title
Broadcast time Shift time

Matrix size (double)

C
o

m
m

u
n

ic
a
t
io

n
t
im

e
(
s
e
c
)

Figure 4.8 : DMM average shift time and multicast time for placement 2.
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Figure 4.9 : DMM average shift time and multicast time for placement 3.
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Figure 4.10 : DMM average shift time and multicast time for placement 4.

4.3 Limitations

Understanding communication patterns and how they interact with the network is com-

plex for users. The application user must know the DCN architecture and topology
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Figure 4.11 : DMM average shift time and multicast time for placement 5.
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Figure 4.12 : DMM average shift time and multicast time for placement 6.
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and know the application’s di�erent communication patterns. Based on this information

and understanding, the user should augment the application source code with the re-

quired code for dynamically reconfiguring the network before each communication pattern

changes. Pushing all this load to the application users is inconvenient and unreasonable.

Therefore, we cannot expect the users to adopt this solution.

4.4 Summary

RDC, a “rackless” pod-centric DCN architecture, breaks the traditional rack boundaries

in a pod. It creates the illusion that servers can move freely among edge switches in

response to tra�c pattern changes. Rather than optimizing the workloads based on the

topology, RDC optimizes the topology to suit the changing workloads. RDC inserts

circuit switches between the edge switches and the servers and reconfigures the circuits

on demand to form di�erent connectivity patterns. Our experimental results on intra-

pod localization show that RDC can decrease communication time considerably for real-

world applications. Although this solution can optimize both point-to-point and group

communications, the high o�ine e�ort expected from the application users makes this

solution not realistic.
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Chapter 5

Automated Optimal Server Placement Detection

When application communication patterns are irregular or oscillating, communication-

aware server placement in Data Center Networks (DCNs) can be critical for overall run-

time. Understanding program communication patterns can be valuable and can let us

leverage reconfigurable networks for improved server placement as seen in Chapter 4.

However, it is limiting to require the user to have a deep and detailed understanding of

their application’s communication patterns and find a better server placement in the data

center to take advantage of reconfigurable networks. Note that the term “communication

pattern” here means the processes communicating in a program stage.

In this chapter, we propose the idea of using static program analysis techniques for

automated communication pattern identification and automated optimal server place-

ment identification in the DCN for each communication pattern in an application. Static

analysis generally begins with control flow analysis—analyzing the code’s intermediate

representation (IR) form to understand the control flow between operations. The result

of the control flow analysis is a control flow graph (CFG). Next, compilers analyze the

details of how values flow through the code. Data flow analysis is the classic technique for

compile time static program analysis. It allows the compiler to reason about the runtime

flow of values in the program [126]. It represents facts about runtime behavior, describes

the e�ect of executing each block on sets of facts, and propagates these facts around the

CFG.

Our prototype uses this idea to augment the application source code with the code

to reconfigure the network after each communication pattern change in the program.

Our proposed solution bridges the gap between reconfigurable networks and users. Using

our static analysis-based approach makes detecting oscillating communication patterns,
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finding the optimal server placement and annotating the program with reconfiguration

codes easier and reduces the application user’s burden.

In Section 5.1 we design techniques to find the optimal server placement for MPI

collective routines (Section 5.1.3) and point-to-point communications (Section 5.1.4). In

Section 5.2 we present some of the applications that can potentially benefit from our so-

lution. In Section 5.3 we discuss the implementation details, describe our empirical study

in Section 5.4 and conclude with a summary of strengths and weaknesses (Section 5.6).

5.1 Method

MPI communication operations are categorized into two groups: point-to-point commu-

nication and collective communication. The primary MPI communication mechanism

is the point-to-point sending and receiving of messages by pairs of processes. Collec-

tive operations are used to exchange information among a group of processes. Although

messages are sent between MPI processes (ranks), ultimately, packets are sent between

physical servers in the network. Therefore, we need to know the mapping of processes

to servers (logical to physical mapping). In subsection 5.1.1, we show how we obtain the

processes to servers mapping.

Our communication pattern detection and optimal server placement identification

methods depend on the MPI communication function category. We present our solution

for each category in subsection 5.1.3 and subsection 5.1.4. The basic compile time analysis

techniques that both solutions rely on are presented in subsection 5.1.2.

After detecting the communication pattern and finding the optimal server placement,

we need to reconfigure the network.

5.1.1 Process to Server Mapping

We create a mapping from the processes to the servers by parsing the rankfile. A rankfile

is a text file passed to mpirun at runtime. It specifies how individual processes should

be mapped to servers and to which core they should be bound. Each line of a rankfile
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Figure 5.1 : Rankfile format.

specifies the location of one process (Figure 5.1). Each process’s rank N refers to its rank

in MPI_COMM_WORLD. The hostname is the IP address of the server to which the

process with that rank is assigned. The slot refers to the core to which the process will be

bound. Figure 5.2 shows an example of a rankfile text file and its graphical representation

for 4 nodes/servers and 16 processes. In this setting, 4 consecutive processes/ranks will

be bounded to 4 cores of a server. Rank 0 to 3 are placed on core 1 to 4 of node1, rank

4 to 7 are placed on core 1 to 4 of node2, and so on. Figure 5.3 shows a second example

of a rankfile text file and its graphic representation for 4 nodes and 16 processes. Each

process/rank are assigned to nodes in a cyclic fashion. Rank 0 is placed on slot 1 of

node1, rank 1 is placed on slot 1 of node2, rank 2 is placed on slot 1 of node3, rank 3 is

placed on slot 1 of node4, rank 4 is placed on slot 2 of node1, so on. Rankfile gives the

user the ability to statically hand tune the placement once before runtime.

5.1.2 Compile-time Analysis and Transformation Techniques

The first compile time analysis that our solutions rely on is the usage-definition (use-def)

analysis which provides a data structure that consists of the uses of a variable X, and

all the definitions of variable X that can reach that use without any other intervening

definitions (Definition 5.1.2). This analysis is built based on Reaching Definition (RD)

analysis (Definition 5.1.1). RD is one of the classic data flow analysis problems. Figure 5.4

shows RD with a simple example. The reaching definitions to the first node are empty.

However, after that statement is executed, we have d1, which reaches the second node. If

the if condition holds then both d1 and d2 can reach the third node because both d1 and

d2 reach the second node.

Definition 5.1.1 [Reaching Definitions] A definition of a variable x is a statement that
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rank 0=node1 slot=1

rank 1=node1 slot=2

rank 2=node1 slot=3

rank 3=node1 slot=4

rank 4=node2 slot=1

rank 5=node2 slot=2

rank 6=node2 slot=3

rank 7=node2 slot=4

rank 8=node3 slot=1

rank 9=node3 slot=2

rank 10=node3 slot=3

rank 11=node3 slot=4

rank 12=node4 slot=1

rank 13=node4 slot=2

rank 14=node4 slot=3

rank 15=node4 slot=4

Figure 5.2 : Example #1: Consecutive process rank to node/server assignment.
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rank 0=node1 slot=1

rank 1=node2 slot=1

rank 2=node3 slot=1

rank 3=node4 slot=1

rank 4=node1 slot=2

rank 5=node2 slot=2

rank 6=node3 slot=2

rank 7=node4 slot=2

rank 8=node1 slot=3

rank 9=node2 slot=3

rank 10=node3 slot=3

rank 11=node4 slot=3

rank 12=node1 slot=4

rank 13=node2 slot=4

rank 14=node3 slot=4

rank 15=node4 slot=4

Figure 5.3 : Example #2: Iterative process rank to node/server assignment.
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d1 : x = 5

if(x == 5)

d2 : x = 7

{}

{d1}

{d1, d2}{d2}

Figure 5.4 : An example of reaching definition.

may modify the value of variable x. A definition of a variable x at node k reaches node

n if there is a path from k to n along which x is not defined. Note that there is no need

to have a use or definition of variable x in node n in order for the definition to reach n.

Definition 5.1.2 [Use-def chain] It is a chain that links each use, U , of variable x to the

definitions, D that can reach that use without any other intervening definitions.

Definition 5.1.3 (Def-use chain) It is a chain that links each definition, D, of variable x

to those uses, U that the definition can reach.

The second compile-time analysis and transformation that our solutions rely on is

program slicing. Program slicing is a technique for simplifying programs by focusing on

selected aspects of program semantics. It computes the program statements (a program

slice) that a�ect the values at a program point, which we are interested in. We find

the program skeleton, which is “an abstracted program that is derived from a more

extensive program where the source code/statements that are determined to be irrelevant

are removed for the purposes of the skeleton” [127, 128]. We use the extractMPISkeleton

program analysis module of the ROSE compiler, which follows an iterative process and

performs static slicing of the code with the aid of annotations.

The skeleton generator module receives as input the AST generated by the ROSE

compiler and the constraints/slicing criterion provided by the user. Constraints are not
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Figure 5.5 : API function specification format.

hard-coded in the tool because they depend on the performance dimension that the user

wants the skeleton to probe. The criteria is expressed in the form of an API specification

file that contains information about the API functions that should be preserved. The

module skeletonizes programs relative to the API specifications. The functions that are

part of the API are preserved in the skeleton, and further code is preserved based on

their dependencies.

We specify each function that we would like to be preserved by the function name,

argument count, and a list of dependency types/roles for each argument by position.

The format to specify a function in the API specification file is as shown in Figure 5.5.

API_FUNCTION_NAME represents the function name, the number of arguments

is represented by ARGUMENT_COUNT , followed by a list of dependency types dep-

type for each argument arg. The example in Figure 5.6 shows a small portion of the API

specification file for MPI API.

The api-spec tag labels each API by name. In the example in Figure 5.6 the API

name is MPI. The dep-types tag contains a list of dependency types. This list allows

analyzing the roles of arguments to API functions and categorizing the code based on

their impact on the API functions. The names of dependency types are user-defined.

For example, MPI calls usually have arguments related to the payload and some other

arguments related to the message passing topology. MPI_Send has six arguments; the

first three are related to “payload”, and the fourth is “topology”. Since the fifth and sixth

arguments are not specified, they take the default dependency type “other”. A simple
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Figure 5.6 : MPI API specification example.
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Figure 5.7 : An example of API specifications collection.

example is to preserve all code that influences the message passing topology and replace

code that initializes bu�ers with a constant value. The API specification collection api-

spec-collection is specified by a set of API of specifications (Figure 5.7), and the skeleton

generator uses it to know what set of APIs to skeletonize relative to and how to do so.

A specification of the dependency type to be eliminated is provided for each API. The

API specification collection in Figure 5.7 instructs the tool to include API specifications

for MPI and a subset of C STDIO functions and to eliminate the code that relates to the

computation of payload data for MPI calls and bu�er management code for the STDIO

API. The user can have relatively fine control over what is removed at the API level.

Given the API specifications and the API specification collection, the skeleton gener-

ator uses dependency analysis provided by ROSE to label statements within the program

based on their role concerning the API. The labels are used to prune the program AST

(Abstract Syntax Tree) before generating source code representing the reduced skeleton.

The AST is one of the most commonly used Internal Representations (IRs) by com-

pilers to transmit the program between compilation phases [129]. It mimics the form of

the program at di�erent points in translation. The AST includes the important syntactic

structure of the program, but as opposed to the parse tree, it omits any nonterminals that

are not needed to understand that structure. It is very close to the source-language syn-

tax, therefore, retains concise representations for most of the abstractions in the source

language. This IR form is mostly used for analyses and transformations that are tied to

source code structure. Figure 5.8 shows the AST for a = 2 ú b + c.

The skeleton generator adds Static Single Assignment (SSA) property to the AST.
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=

a +

*

2 b

c

Figure 5.8 : AST for a = 2 ú b + c.

Figure 5.9 : The SSA form of the program section in (a) is shown in (b).

SSA is a property that requires each variable to be assigned exactly once. In other words,

every assignment to a variable creates a new version of the variable. Figure 5.9 shows

a simple example of a conventional program section and its SSA form. The SSA form

simplifies the process of def-use analysis because determining all uses of a variable from

its definition is done without any other intervening definitions.

A set of variables corresponding to the contents of expressions that form the function

call arguments are obtained for each API function selected to be included in the skeleton.

Each argument is labeled with the dependency type defined with the API specification.

For example, the MPI API dependency types defined in the example were “topology” or

“payload”.

The def-use graph for these expressions is traversed in the skeletonizer. Each pro-

gram element leading to the API call is labeled with the dependency type from the API
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specification.

The code transformation is performed after the AST nodes are annotated/labeled

with their role in the skeleton. If a statement is not in the dependency chain of the

API functions, then the statement is removed. If a statement is in the dependency

chain and the complete set of roles associated with it do not appear in the omit-deps

parameter in the API specification parameter file, the statement is preserved. After the

AST transformation, the final code is generated in the language of the original program

(in our case, c++).

5.1.3 Collective Communication and Computation

Collective operations provide a higher-level approach to organizing a parallel program.

Each process involved in the collective group executes the same communication func-

tion. Communication and computation are coordinated among a group of processes in a

communicator. A communicator represents a logical group of MPI processes.

In this subsection, we are interested in automatically identifying collective communi-

cation patterns to find the optimal server placement in our reconfigurable DCN for each

communication function call and augment the application source code with the reconfig-

uration code to reconfigure the network after each pattern change. The first step toward

our goal is to identify processes in a communicator (Section 5.1.3.1). Our first attempt

to automatically identify collective communicators using static analysis is presented in

Section 5.1.3.1.1 and our second attempt/final solution is presented in Section 5.1.3.1.2.

In Section 5.1.3.2, we present our algorithm that tailors the server placement identified in

Section 5.1.3.1.2 to specific communication algorithms to find the optimal server place-

ment with the least number of cross-rack communications and least number of circuit

reconfiguration.

5.1.3.1 Communication Pattern Detection for Collectives

MPI has five basic types of collective data movement functions: broadcast, scatter,

gather, all-gather, and all-to-all. Note, MPI has a set of collective computation func-
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tions that combine communication with computation: reduce, scan, exscan, and reduce-

scatter. Figure 5.10 and Figure 5.11 show these collective functions with their parameters.

These functions all have a parameter of type MPI_Comm in common that is important

for identifying communication patterns. MPI_Comm is the primary communicator

object type used by MPI to determine which processes are involved in a communica-

tion. The default communicator provided by MPI is MPI_COMM_WORLD. The

MPI_COMM_WORLD contains all processes in program execution. If the parameter

comm is MPI_COMM_WORLD, then we know the processes involved in the com-

munication at that point of the program, and we only need to find the optimal server

placement for the specific communication algorithm used (Section 5.1.3.2). However,

it is not always this simple; complex applications use the MPI_Comm_split function

to create new communicators. MPI_Comm_split is a powerful mechanism for divid-

ing a single communicating group of processes into an arbitrary number of subgroups

(Figure 5.12) [130]. This function splits the original communicator comm to a group of

sub-communicators newcomm based on the input values color and key. A new communi-

cator is created on each process, but it does not mean that the process leaves the original

communicator.

Let us look at a program with 8 processes to understand how the split function works.

All the 8 processes are by default grouped inside MPI_COMM_WORLD as shown in

Figure 5.13. Now, we want to make two new communicator groups. One communicator

will group processes 0, 1, and 2, and the other communicator will group processes 5, 6,

and 7. Processes 3 and 4 will only be part of MPI_COMM_WORLD. Note that

after a split, all the processes are still part of MPI_COMM_WORLD. As pointed

before, the split function distributes all of the processes of an existing communicator to

new communicators based on their color. color is the value assigned to each process that

determines which communicator a process will end in after splitting. To split processes

0, 1, and 2 to one communicator and processes 5, 6, and 7 to another communicator,

we assign processes 0, 1, and 2 the color 0 and assign processes 5, 6, and 7 the color 1
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1. MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm) 

2. MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf,

int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

3. MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, 

int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

4. MPI_Allgather(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, 

int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

5. MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, 

int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

Figure 5.10 : MPI collective data movement functions.

(Figure 5.14). Since we do not assign a color to processes 3 and 4, MPI would not place

them in any new communicators. Figure 5.15 shows the two new communicators created

by the split.

To detect the communication group for every collective function, we want to analyze

the MPI_Comm_split function that generates the communication group/communicator

used by the collective function in the program.

First, we do use-def analysis to find which MPI_Comm_split defines the communi-

cation group used by the collective function. In Figure 5.16 we show a simple example

to demonstrate the use-def annotated CFG of a program containing two split function

calls and a broadcast function call. The MPI_Bcast function in node 6 depends on the

variable newcomm. The split function in node 4 reassigns newcomm after node 2. The

definition of newcomm that reaches node 6 is coming from node 4.

To simplify the program and ease the analysis, we find the skeleton of the program

that the MPI_Comm_split and the MPI collectives parameters of interest depend on by

using the extract MPI skeleton program analysis module. The API function that we want

to preserve for our purpose is the selected MPI_Comm_split function. Figure 5.12,

shows that MPI_Comm_split has four parameters. We create a new API specification



67

1. MPI_Reduce( void* send_data, void* recv_data, int count, MPI_Datatype datatype, 

MPI_Op op, int root, MPI_Comm comm)

2. MPI_Scan(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, 

MPI_Op op, MPI_Comm comm)

3. MPI_Exscan(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, 

MPI_Op op, MPI_Comm comm) 

4. MPI_Reduce_scatter(const void *sendbuf, void *recvbuf, const int recvcounts[], 

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm) 

Figure 5.11 : MPI collective computation functions.

MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)

Figure 5.12 : Splitting a communicator into a group of sub-communicators.

for MPI. There we label the dependency type of the second and third parameters (color

and key) as “topology" shown in Figure 5.17. We pass our MPI API specifications and

the program source code to the skeleton generator. We want the skeleton generator to

skeletonize relative to the API function specifications that we pass and preserve all code

that influences the message passing topology.

An example of a small portion of an MPI program is provided in Figure 5.18. The

def-use/use-def chain for relating uses of variables to their defining statements is shown

in Figure 5.19. Our focus is on the MPI_Comm_split. The blue arrows point from the

uses to the definitions (Use-def chain), and the orange arrows point from the definitions

to the uses (Def-use chain). For the MPI_Comm_split function on line 15, the vari-

ables corresponding to the contents of expressions that form the arguments are obtained.

By traversing the def-use chain, the program elements relating to the expressions row

and myPE are labeled as a dependency with the dependency type “topology” which is

inherited from the MPI API function specification (Figure 5.17).
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0 1 32

4 5 76

MPI_COMM_WORLD

Figure 5.13 : MPI_COMM_WORLD for a program that has 8 processes.

0 1 32

4 5 76

MPI_COMM_WORLD

Color = 0

Color = 1

Figure 5.14 : The color assigned to processes to split the original communicator.

The arguments row and myPE are defined on lines 12 and 3 respectively, so these

lines of code are preserved. The expression on line 12 depends on myPE and maxIndex

therefore, lines 3 and 11 are preserved (following the blue arrow). The variable maxIndex

defined on line 11 has a blue arrow to line 2 (size is defined on line 2) therefore the

expression on line 2 is preserved as well. All expressions defined from line 5 to 11 and

line 13 to 15 are removed. The skeleton we obtain contains the expressions that form

the MPI function call arguments. Figure 5.20 shows the skeleton generated for the input

program in Figure 5.18.

To statically analyze MPI_Comm_split in the generated skeleton without analyzing

the MPI implementation of the split function, we propose to emulate the MPI_Comm_split

to find the communication group at compile time. We also comment out MPI_Comm_size

and MPI_Comm_rank functions. These two functions return the size of the group as-

sociated with MPI_COMM_WORLD and the rank of the process executing the code.

We define new variables holding this information based on the rankfile. Before attempting
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0 1 32

4 5 76

MPI_COMM_WORLD

0 1 2

5 76

COMM_1

COMM_2

Figure 5.15 : The two new communicator generated based on the colors assigned to

processes.

...1

MPI_Comm_split(≠, ≠, ≠, newcomm)2

...3

MPI_Comm_split(≠, ≠, ≠, newcomm)4

...5

MPI_Bcast(≠, ≠, ≠, ≠, newcomm)6

def [necomm] = 2

def [necomm] = 2

def [necomm] = 4

def [necomm] = 4

Figure 5.16 : Use-def Control Flow Graph.

to emulate split, we need to understand how it functions.

The MPI_Comm_split function has four parameters (Figure 5.12). The first pa-

rameter, comm, is the communicator used as the basis for the subcommunicators. In the

example in Figure 5.20, comm is the MPI_COMM_WORLD. The second parameter,
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Figure 5.17 : MPI_Comm_split API specification.

Figure 5.18 : Skeleton generator input program.
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1. int size, myPE;

2. MPI_Comm_size(MPI_COMM_WORLD, &size);

3. MPI_Comm_rank(MPI_COMM_WORLD, &myPE);

4. MPI_Comm commRow;

5. MPI_Request request1, request2;

6. MPI_Status status;

7. char buffer[1000];

8. int n;

9. int valread;

10. int clientSock;

11. int maxIndex = sqrt(size);

12. int row = myPE / maxIndex;

13. timespec start_time0, end_time0;

14. double elapsed;

15. MPI_Comm_split(MPI_COMM_WORLD, row, myPE, &commRow);

…

Figure 5.19 : Def-use chain.

color, determines which communicator each process will belong to (each process gets a

color). All processes with the same color value are assigned to the same communicator.

In this example, the row value determines the new communicator allocation. The third

parameter, key, determines each process’s ordering or rank in the new communicator.

The process with the lowest key value will get rank 0, and so on. In our example, myPE,

the process rank in the original communicator, is passed as key. Therefore, the processes

will retain the same order in the new communicator. The final parameter, newcomm

is the new communicator returned by the function. The newcomm in our example is a

pointer to the new communicator, which is commRow.

The color and key could be of the following type: 1) a constant value, 2) a macro, 3) a

function, 4) a mathematical expression or 5) a variable. All macros are preprocessed and
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Figure 5.20 : Skeleton generator output program.

replaced with their corresponding values. If color and key are of type 3 or 4, their defini-

tion depends on the process rank. If they are of the type variable, then a constant value,

a macro, a function, a mathematical expression, or another variable can be assigned. If

color and key are not type constant, the definition depends on the process rank. We run

use-def analysis and query the use-def analysis graph to find the reaching definition of

color and key to this specific MPI_Comm_split in the program.

Algorithm 1 shows the Split emulation pseudocode. We want to calculate the color

and key for every process in the program and find the processes in subcommunicators.

We replace the rank variable in the definition of color and key with the variable i. We

compute the color for all processes included in comm by looping on all process ranks in

comm (’i : 0 Æ i < size(comm)) (line 1 to 4). Then we sort the processes by their

color so that all processes with the same color are next to each other and create the

new communicator groups newcommPrime (line 5). The newcommPrime is a list of

all processes ordered in groups based on their color. To find the order of the processes in

their new communicator group, we compute key for all the processes included in comm

by looping on all process ranks in comm (’i : 0 Æ i < size(comm)) and create a mapping

from process to key (line 6 to 9). We sort the new communicator groups newcommPrime

based on the process key (line 10).
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Algorithm 1 Emulate Split
1: for i Ω 0 to size do

2: color := colorDef ;

3: processColors[i] := color;

4: end for

5: newcommPrime := sortByColor(processColors);

6: for i Ω 0 to size do

7: key := keyDef ;

8: processToKeyMapping[i] := key;

9: end for

10: sortByKey(newcommPrime, processToKeyMapping);

We explore two approaches to identify collective communicators using static analysis

automatically. Our first approach in analyzing split function emulation is presented in

Section 5.1.3.1.1 and our second approach/final solution is presented in Section 5.1.3.1.2.

5.1.3.1.1 First approach to identifying communicators at compile time

To find the communication group at compile-time, we propose to use something similar

to constant propagation analysis that we call array constant propagation.

Definition 5.1.4 (Constant propagation) An optimization that discovers, at compile time,

expressions that must have known constant values, evaluates them and replaces their run-

time evaluation with the appropriate value [129].

Constant propagation determines at every program point the variables that have a

constant value. Then it propagates these calculated or determined values to the next

reachable point of the program. Constant propagation has been used to turn variable

reads and computations into constants.

For example, if we have int x = 2 in the program. We can replace all occurrences of

x with 2 in the program and eliminate int x = 2. However, for accuracy, all branches of



74

€

Œ...101...≠Œ

‹

Figure 5.21 : Constant Propagation lattice.

the program and reassignments of a variable must be tracked.

Constant propagation tries to find a mapping between variables and values of N fi

{€, ‹} for every program point/statement. If a variable is mapped to a constant num-

ber, that constant number is the variable’s value in that point of the program on every

execution. If a variable’s value in that point of the program is undetermined (It could be

constant or not later in the program), it is mapped to €. In other words, no definition

of the variable has been seen along any path reaching this point of the program. If the

variable’s value is not initialized, or the statement is unreachable (constant value cannot

be guaranteed), the variable is mapped to ‹. In other words, ‹ means that the vari-

able can have di�erent values at this point of the program along di�erent paths reaching

this point. The lattice shown in Figure 5.21 map each variable V in the program to its

constant status (V æ N fi {€, ‹}). At each point in the program, the transfer function

related to that statement is executed on the mapping of the variable from the input lat-

tice to generate the output lattice. For example, if the input mapping of a statement

is [x æ 0, y æ 1], and the statement itself is x = 2, then after moving through this

statement, the mapping should be [x æ 2, y æ 1].

Definition 5.1.5 (Lattice) A lattice is a partially ordered set L(Æ) such that for all a, b
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in L, a and b have a least upper bound a Û b and a greatest lower bound a Ù b. This

lattice is denoted by L(Æ, Û, Ù) [131, 132].

Definition 5.1.6 (Partially ordered set) A partially ordered set is a set S equipped with a

binary relation Æ, which is reflexive, transitive, and antisymmetric [131, 132].

• c œ S is an upper bound of X ™ S if and only if ’cÕ œ X, cÕ Æ c.

• c œ S is a lower bound of X ™ S if and only if ’cÕ œ X,c Æ cÕ.

• c œ S is the least upper bound of X ™ S if and only if ’cÕ œ X, cÕ Æ c, and ’cÕÕ œ S

such that ’cÕ œ X, cÕ Æ cÕÕ, we have c Æ cÕÕ.

The ordering is not necessarily total; that is, it may not have a Æ b or b Æ a. Two

elements can be incomparable.

The communicator defined/initialized by the split function remains static if another

split function does not reassign it at some point in the program. Our MPI_Comm_split

emulation substitutes the MPI communicator with an array. If the elements of this array

are constant and can be determined at compile time similar to constant propagation, we

can use it to reconfigure the network before each communication pattern.

Our emulation of the MPI_Comm_split function for the example in Figure 5.20 is

shown in Listing 5.1. We substitute the line 7 of the skeleton with this code. Only the pro-

cess with rank 0 will run it. We create an array of size size called MPI_COMM_WORLD.

The index of the array relates to the rank of the process in the world communicator. We

calculate the color for every process (line 4 to 7). The color is assigned to the array

element for that process (line 6). We create an array of size size called commRow. In

this array, we order the processes based on their color. For example, processes with color

0 will be added first to the commRow and in the ascending order of their myPE. We

have an emulation of the split in our code that we can run static analysis on it.

Our array constant propagation algorithm finds a mapping between arrays and values

of the lattice for every program point/statement. The Hasse diagram of this lattice
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Listing 5.1: MPI_Comm_split substitution

1 i n t row ;

2 i n t úMPI_COMM_WORLD= create1DArray ( s i z e ) ;

3 i n t úcommRow= create1DArray ( s i z e ) ;

4 f o r ( i n t i = 0 ; i < s i z e ; i ++){

5 row = i / maxIndex ;

6 MPI_COMM_WORLD[ i ] = row ;

7 }

8 // f i n d the number o f d i s t i n c t e lements

9 i n t r e s = 1 ;

10 f o r ( i n t i = 1 ; i < s i z e ; i++) {

11 i n t j = 0 ;

12 f o r ( j = 0 ; j < i ; j++)

13 i f (MPI_COMM_WORLD[ i ] == MPI_COMM_WORLD[ j ] )

14 break ;

15 i f ( i == j )

16 r e s++;

17 }

18 // s o r t p r o c e s s e s based on c o l o r

19 i n t index = 0 ;

20 f o r ( i n t i = 0 ; i < r e s ; i ++){

21 f o r ( i n t j = 0 ; j < s i z e ; j++){

22 i f ( i==MPI_COMM_WORLD[ j ] ) {

23 commRow[ index ]= j ;

24 index++;

25 }

26 }

27 }
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Figure 5.22 : Hasse diagram for power set of 4 processes.

for 4 processes is shown in Figure 5.22. A Hasse diagram represents a finite partially

ordered set, in the form of a drawing of its transitive reduction [133]. A concrete lattice

element here is a set of processes. The level 1 has the combination of all possible groups

containing one process out of size. For example, if the World communicator includes 4

processes then at level 1, there are four possibilities {0}, {1}, {2}, and {3}. The level 2

has the combination of all possible groups containing two processes out of size. If the

World communicator includes 4 processes then at level 1, there are six possibilities {0, 1},

{0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}. The last level has one concrete element, which is a set

of all processes (it equals the World {0, 1, 2, 3}). Each level of the Hasse diagram lattice

includes size!
(size ≠ level)! ◊ level! elements.

However, as the number of processes gets larger the lattice gets much bigger. We can

avoid this problem by using bounded regular section analysis [134, 135]. Regular sections

describe which elements of an array has been used and which have been defined as a side

e�ect of a function call. A bounded regular section is a regular section with bounds. It
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Figure 5.23 : Lattice for regular section subscripts.

1. for (int i=0; i<=6;i++)
2. a[i] = b[i*2+1];

Figure 5.24 : Example of a loop to demonstrate the bounded regular section.

can be written with triplet notation [ l : u : s] . l represents the lower bound, u represents

the upper bound and s the stride. It can represent sparse region such as strips and dense

region such as rows.

Figure 5.23 shows the subscript lattice. The descriptors for bounded regular sections

are vectors of elements from this lattice. The lattice elements include constants, ranges

showed with the triplet notation [ l : u : s] and ‹. Constants represent the value of

variables on the entry of the function. Ranges give the constant for the lower bound,

upper bound, and stride of a variant subscript. ‹ indicates no knowledge of the value.

Ranges can be constructed through a sequence of meet operations or directly from the

bound of loop induction variable used in the array subscript.

For example, in Figure 5.24 the value of i is represented as [ 0 : 6 : 1] and the value of
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iú2+1 (indices of used elements of array b) is represented as [ 2ú l +1 : 2úu+1 : 2ús] =

[ 1 : 13 : 2] .

The bounded regular section analysis algorithm merges the ranges by finding the

lowest lower bound and the highest upper bound, then correcting the stride. The result

of merging 1, 3 and 5 is the same as merging [ 1 : 5 : 4] and 3 which is [ 1 : 5 : 2] .

Most MPI programs split communicators with a regular pattern. Based on a formula,

the processes are regrouped. We mean that, for example, processes are split into two

groups of odd and evens with the formula x mod 2, which the stride is 2. The groups

generated from 16 processes are demonstrated as [ 0 : 14 : 2] and [ 1 : 15 : 2] . The first

group consists of all even processes {0, 2, 4, 6, 8, 10, 12, 14} and the second group consists of

all odd processes {1, 3, 5, 7, 9, 11, 13, 15}. A more general case would be that all processes

with the same value for modular division over a constant number are grouped. Therefore,

this solution can accurately find the processes involved in communication groups following

a pattern.

However, in an unlikely scenario if the split does not follow a regular pattern then

this solution would not be suitable. If a communication group includes process 0, 1, 3,

6, and 9 then the bounded regular section representation of this group is [ 0 : 9 : 1] .

Bounded regular section [ 0 : 9 : 3] does not include process 1 and [ 0 : 9 : 1] includes

extra processes (2, 4, 5, 7, and 8).

Note, after the analysis is over, we bring back/uncomment the MPI_Comm_split

function to the code and store the result of our analysis in variable that will be used in

Section 5.1.3.2. All these actions take place in the middle end of the compiler.

5.1.3.1.2 Second approach to identifying communicators at compile time

We explore another approach to identifying communicators in this section which is based

on commonly used static analysis techniques. After learning which MPI_Comm_split

defines the collective communication group using def-use analysis, we substitute the code

with an emulation of MPI_Comm_split to find the communication group. Algorithm 1
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shows the new communicator group identification pseudocode (Split emulation) for our

second approach. In this solution, instead of analyzing the emulation to find all the ele-

ments in new subgroups in the middle-end of the compiler, we first augment the program

source code with the emulation and unparse the program. Afterward, we run the output

program. The process 0 runs the emulation and obtains the new groups for that setting

(a fixed number of processes and rankfile). We only run the emulation once for each

runtime setting. We do not need to re-run it for the same setting every time running the

MPI program because the subgroups remain the same for each communication pattern.

Figure 5.25 shows the MPI_Comm_split substitution for the skeleton in Figure 5.20.

Since the key is myPE which is the process rank. We do not need to compute key for

all processes.

The result of the emulation are stored and are used in Section 5.1.3.2 to find the

optimal server placement for communication pattern.

The Algorithm 2 shows the pseudocode of the overall steps we take to identify the

processes in new groups/communicators created by a split function. We create a mapping

from the processes to the servers by parsing the rankfile (line 1 in Algorithm 2).

If color and key are not of type constant, the definition depends on the process

rank. We run use-def analysis and query the use-def analysis graph to find the reaching

definition of color and key to this specific MPI_Comm_split in the program (line 3 in

Algorithm 2). We want to find the color for every process in the program. We replace

the rank variable in the definition of color and key with the variable i (line 3 and 4 in

Algorithm 2). The lines 5 to 14 are part of the split emulation pseudocode shown in

Algorithm 1 . We compute the color for all processes included in comm by looping on

all process ranks in comm (’i : 0 Æ i < size(comm)) (line 5 to 8). Then we sort the

processes by their color so that all processes with the same color are next to each other and

create the new communicator groups newcommPrime (line 9). The newcommPrime

is a list of all processes ordered in groups based on their color. To find the order of the

processes in the new communicator group, we compute key for all the processes included
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Figure 5.25 : MPI_Comm_split substitution for the skeleton in Figure 5.20.

in comm by looping on all process ranks in comm (’i : 0 Æ i < size(comm)) and

create a mapping from process to key (line 10 to 13). We sort the new communicator

groups newcommPrime based on the process key (line 14). The last step is to use the

mapping from process to server represented by mapping to replace the processes with

the server node name that they are placed at (line 14) and remove redundancies. For

example: if the process 0 and 1 are on node1 and process 2 and 3 are on node2, and they

all are part of a new communicator group, then without removing the repetitions, the

reconfiguration string looks like "node1, node1, node2, node2". Therefore after removing

the redundancies, we get the proper server placement order "node1, node2". The code on

line 1 and lines 5 to 16 are inserted in the program source code before MPI_Comm_split,

and the values for the optimal server placement are computed at runtime and passed to

the controller to reconfigure the network before the collective communication starts. Note

that only rank 0 emulates split.

Note that the resulting server placement is optimal for the default collective commu-

nication algorithm (chain algorithm). However, it is not optimal for other algorithms.

In section 5.1.3.2 we present our approach to tuning the server placement to di�erent

communication algorithms and obtain the optimal server placement for that specific al-

gorithm.
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Algorithm 2 Steps to identify the new groups/communicators
1: mapping := mapProcessToServer(rankfile);

2: queryUseDef(program, key, color);

3: keyDef := replace(keyDef , rank, i);

4: colorDef := replace(colorDef , rank, i);

5: for i Ω 0 to size do

6: color := colorDef ;

7: processColors[i] := color;

8: end for

9: newcommPrime := sortByColor(processColors);

10: for i Ω 0 to size do

11: key := keyDef ;

12: processToKeyMapping[i] := key;

13: end for

14: sortByKey(newcommPrime, processToKeyMapping);

15: newcomm := replaceProcessByServer(newcommPrime, mapping);

16: newCommMapping := createNewCommMapping(mapping,

processToKeyMapping);

5.1.3.2 Optimal Server Placement Identification

MPI has a wide range of algorithms for collective communication. There is no "one"

optimal implementation. Optimality depends on multiple factors such as the system’s

physical topology, the number of processes involved, and message sizes. For example,

there are nine algorithms for broadcast: basic linear, chain, pipeline, split binary tree,

binary tree, binomial tree, knomial tree, scatter_allgather, and scatter_allgather_ring.

The linear algorithm employs a single-level tree topology where the root node has P ≠ 1

children (P is the total number of processes/nodes). Figure 5.26 shows an example of

the basic linear tree, and Figure 5.27 shows an example of the chain for a group of 8
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Figure 5.26 : Linear (Flat tree).

Figure 5.27 : Chain tree.

Figure 5.28 : Binomial tree.

processes (P = 8).

The binomial tree algorithm [136] is a well-known algorithm, and it is used to broad-

cast small messages. Figure 5.28 shows the structure of a binomial tree for a group of 8

processes. In the first step, the root sends the whole message to process/node 1. Next,

the root and node 1 send the message to node 2 and node 3, respectively. Then the al-

gorithm continues recursively. Here we have marked nodes with colors based on the step

that they receive the message. The maximum nodal degree of the binomial tree decreases

from the root down to the leaves as follows: Álog2P Ë, Álog2P Ë ≠ 1, Álog2P Ë ≠ 2, .... While

this algorithm is preferred for small messages, it is not suitable for large messages because

some nodes send the whole message several times.

Every MPI implementation has a default algorithm. The user can change the al-

gorithm before running their program. The algorithm that they pick will remain static
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Figure 5.29 : Original server placement. A-P represent 16 servers and A-D, E-H, I-L,

M-P belong to four physical racks separately.

during the runtime. This algorithm might not be the optimal algorithm for every instance

of a collective communication function.

Let us see with an example: we have a network containing 16 servers and an applica-

tion that runs on 16 processes spread over this network. Figure 5.29 shows the original

placement of 16 servers in the network topology. A-P represent the 16 servers and A-D,

E-H, I-L, M -P belong to four physical racks (ToRs) color-coded separately. Figure 5.30

shows the application’s process to server mapping (one process per server). Processes’

rank in the WORLD group is shown on the top left of each square box. The server

the process is mapped to is shown with its letter naming in the center of each box. We

have two broadcast groups. Processes with rank smaller or equal to 7 are placed in one

broadcast communicator group, and the processes with rank bigger than 7 are grouped in

another broadcast communicator. In the first group, the process 0 initiates a broadcast,

and in the second group, process 8 in the world communicator initiates a broadcast which

in the new group, this process has the rank 0.

If the broadcast algorithm in our example is set to chain, then the chains for broad-

cast communicators are shown in Figure 5.31. In the first chain (Figure 5.31(a)), all
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Figure 5.30 : Example of a mapping of 16 processes to 16 servers.
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(a) Chain tree for the first broadcast group (b) Chain tree for the second broadcast group

(c) Optimal server placement for broadcast group 1 and 2

0 1 2 4 5 6 73
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0 1 2 4 5 6 73

C G K O D H L P

Figure 5.31 : Example: Broadcast with chain algorithm. (a) shows the chain for the first

broadcast group. (b) shows the chain for the second broadcast group. (c) presents the

optimal server placement for both (a) and (b) in the network.

communications between nodes are cross rack: A to E, E to I, I to M, M to B, B to F,

F to J, and J to N. Similarly, in the second chain (Figure 5.31(b)), all communications

between nodes are cross rack: C to G, G to K, K to O, O to D, D to H, H to L, and

L to P. The optimal server placement in the topology would be A, E, I, M under ToR

0, B, F, J, N under ToR 1, C, G, K, O under ToR 2, and D, H, L, P under ToR 3.

With this placement, the number of cross-rack communication is minimized to the least

possible in our testbed (reduced from 7 to 1 for each broadcast). Figure 5.31(c) shows

our testbed after we reconfigure it with the optimal server placement sequence generated

by Algorithm 2.
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We assume the default algorithm for broadcast is the chain algorithm. Therefore,

the sequence of servers generated by Algorithm 2 is optimal for the default collective

communication algorithm (chain algorithm). However, we can tune it to other algorithms.

For example, If the broadcast algorithm is set to binomial tree, then we can tune the

sequence of servers generated by Algorithm 2 and compute the optimal placement for

the binomial tree algorithm. Figure 5.32(a),(b) show the binomial tree for the broadcast

communicators of our example.

Figure 5.32(a) shows that in the first step server A sends to server E, which A and E

are under two di�erent racks. In the second step, E sends the data to M, and A sends the

data to I, which both communications are cross rack. In the final step, M sends to N, E

sends to F, I sends to J, and A sends to B. This translates to four concurrent flows which

are all local exceptionally. Therefore, only step 2 oversubscribe the network. Considering

both broadcast groups at step 2, network is over-subscribed (4 : 1 over-subscription).

In the first tree, Figure 5.32(a), 3 out of 7 communications are cross rack: A to E, A

to I, and E to M. Similarly, in the second tree (Figure 5.32(b)), 3 out of 7 communications

between nodes are cross rack: C to G, C to K, and G to O. In this example, luckily all the

concurrent communications happening in the last level of the binomial trees are within

racks. However, it is not always the case. An improved server placement in the topology

would be as follow: Placing M, N, E, F under ToR 0, I, J, A, B under ToR 1, O, P, G,

H under ToR 2, and C, D, K, L under ToR 3 (Figure 5.32(c)). With this placement,

the number of cross-rack communication is minimized. It is reduced from 3 to 1 for each

broadcast. Only A to E in group one and C to G in group two are cross-rack. Both

cross-rack communications are in step 0. If the broadcasts happen simultaneously, then

overall, there are two cross-rack communications. If we consider both broadcast groups

at step 0, the network is 2 : 1 over-subscribed, and at other steps with more concurrent

transmissions, there are no cross-rack flows. The number of circuits reconfigured in this

placement is the highest for this setting. All 16 servers have logically moved to a di�erent

ToR; therefore, 16 circuits have been reconfigured.



87

0

1

4

23

57 6

C

G

KO

DLHP

0

1

4

23

57 6

A

E

IM

BJFN

(a) Binomial tree for the first broadcast group (b) Binomial tree for the second broadcast group
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(c) Improved server placement for broadcast group 1 and 2 
with 16 circuits reconfigured

(d) Optimal server placement for broadcast group 1 and 2
with 8 circuits reconfigured

Figure 5.32 : Example: Broadcast with binomial algorithm. (a) shows the binomial tree

for the first broadcast group. (b) shows the binomial tree for the second broadcast group.

(c) presents an improved server placement for both (a) and (b) in the network. (d)

presents the optimal server placement for both (a) and (b) in the network with minimal

circuit reconfigured.

In Figure 5.32(d), we present a better placement with the same performance as the

placement in Figure 5.32(c) however, with minimal circuit reconfiguration required. Only

8 servers are logically moved to another ToR. In this server placement, A, B, I, J are placed

under ToR 0, O, P, G, H are placed under ToR 1, C, D, K, L under ToR 2, and M, N,

E, F under ToR 3. This placement is the optimal server placement because 1) it reduces

the number of cross-rack flows to the lowest number possible, and 2) it logically moves

the least number of servers.

As pointed out before, the sequence of servers generated by Algorithm 2 is the op-

timal for the default collective communication algorithm (chain algorithm). But, if the
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communication algorithm is set to any other algorithm, we tune the sequence of servers

and find the optimal server placement for it.

If the broadcast algorithm is set to the binomial tree, the regular RDC will recon-

figure the network to the order shown in the broadcast group (chain). However, our

automated RDC will take into account the broadcast algorithm simultaneously as the

broadcast group communicator and ranks. It calculates the optimal server placement for

the example above with the lowest number of cross-rack contending flows (Figure 5.32(c)).

This placement matches with the optimal server placement we discussed. It reduces the

number of cross-rack communications from 3 to 1 for each broadcast: A to E in group

one and C to G in group two. Automated RDC will also consider the new ranking in the

broadcast group, but the original RDC does not.

Algorithm 3 shows the pseudocode for identifying the optimal server placement with

the least amount of concurrent cross-rack communication for the binomial tree MPI_Bcast

algorithm. This algorithm is a greedy algorithm walking bottom-up in the tree. As the

number of simultaneous communication is higher as we walk down the tree, minimizing

cross-rack communication is critical for the bottom of the tree.

Lines 3 to 16, goes through all leaf nodes in the binomial tree (biTree). Finds the leaf

node’s parent (line 5) and then find the server that this leaf and parent process are mapped

to, respectively (line 6 to 12). Afterward, we add the pairs of server source (parent) and

destinations (leaf) to the config string and the source to destination mapping. Lines 18

to 36, for every pair of source and destination “< p, n >”, find the parent of the source

node and look up in the source and destination mapping mappingSrcDest to find which

leaf node pÕ is its parent. Then add or insert the non redundant pair or node at the right

location of the config string.
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Algorithm 3 Tune Node/Server Placement to Binomial Tree Algorithm part 1
1: string config := NULL;

2: map mappingsSrcDst;

3: for each node œ biTree do

4: if isLeaf(node) then

5: parrent := findParent(node);

6: if worldComm then

7: parrent := findNode(parrent,mapping);

8: child := findNode(node,mapping);

9: else

10: parrent := findNode(parrent,newCommMapping);

11: child := findNode(node,newCommMapping);

12: end if

13: insertToMappingsSrcDst(mappingsSrcDst,parrent,child);

14: addToConfig(config,parrent,child);

15: end if

16: end for

17: if rackNodeCount/2 > 1 then

18: map tempMapping;

19: for i Ω 0 to rackNodeCount/2 ≠ 1 do

20: if i !=0 then

21: mappingsSrcDst := tempMapping;

22: tempMapping := NULL;

23: end if

24: Û Next page
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Algorithm 3 (Continued) Tune Node/Server Placement to Binomial Tree Algorithm

part 2
25: for each <p,n> œ mappingsSrcDst do

26: pÕ := findParent(p);

27: nÕ := mappingsSrcDst[pÕ];

28: tempMapping[pÕ] := nÕ;

29: if i ==0 w !find(config,"p,n") then

30: addToConfig(config,p,n);

31: else

32: insertToConfig(config,"p,n", pÕ,nÕ);

33: end if

34: end for

35: end for

36: end if

5.1.4 Point-to-Point Communication

MPI has two basic types of point-to-point data movement functions: send and receive.

Sending and receiving are the two foundational concepts of MPI. The sender process calls

the MPI_Send function to send data to the receiver process, and the receiver process

calls the MPI_Recv function to receive the data from the sender. These functions have

an argument of type int that specifies which process their sending to “destination” or

receiving from “source” (marked in red in Figure 5.33). Similar to color and key in

section 5.1.3.1.2, destination and source could be of the following type: 1) a constant

value, 2) a macro, 3) a function, 4) a mathematical expression or 5) a variable.

We are interested in automatically identifying the optimal server placement and re-

configuring the network before every communication pattern changes in the application.

Finding the communication pattern of point-to-point communications boils down to de-

tecting the sender and receiver (destination and source) pairs and creating all the possible

disjoint undirected graphs from these pairs.
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1. MPI_Send(void* data, int count, MPI_Datatype datatype, int destination, 

int tag, MPI_Comm communicator)

2. MPI_Recv(void* data, int count, MPI_Datatype datatype, int source, 

int tag, MPI_Comm communicator, MPI_Status* status)

Figure 5.33 : MPI point-to-point data movement functions.

If source and destination are not of type constant, the definition depends on the rank

of the calling process.

In the example code Listing 5.2, we have a MPI_Send and MPI_Recv pair that

their destination and source are defined earlier in the source code with a mathematical

equation and depend on process rank. Every process runs this code in parallel and

computes a di�erent destination and source pair. The only variable that has a di�erent

value for each process in these equations is rank.

Algorithm 4 shows the pseudocode for identifying the optimal node placement for pairs

of MPI_Send and MPI_Recv. We query the use-def analysis graph to find the reaching

definition of destination to a specific MPI_Send and the reaching definition of source

to the specific MPI_Recv in the program (line 3 and line 5 in Algorithm 4). We want to

find the source and destination for every process in the program. We replace the variable

referring to the process rank in the definition of source and destination with the variable

i (line 4 and 6). We compute the source and destination process rank for all processes in-

cluded in MPI_COMM_WORLD (’i : 0 Æ i < size(MPI_COMM_WORLD)) (line 8

and 9). We find server bounded to each source and destination process rank then add the

source and destination server pair to a source to destination mapping mappingsSrcDst

(line 10 to 12). We find all the disjoint undirected graphs made from the source and des-

tination node mappings (line 14 to 41). The string variable config contains the server

placement order to be passed to the controller. Note that only the process rank 0 of the

MPI_COMM_WORLD runs this algorithm.
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Algorithm 4 Send and Receive node/server placement part 1
1: string config;

2: map mappingsSrcDst;

3: destinationDef := queryUseDef(program, destination);

4: destinationDef := replace(destination, rank, i);

5: srcDef := queryUseDef(program, source);

6: srcDef := replace(source, rank, i);

//Insert all the LOC below into the source code before the specific MPI_send

7: for i Ω 0 to size do

8: destinationPrime := destinationDef ;

9: srcPrime := srcDef ;

10: src := findNode(i,mapping);

11: dst := findNode(destinationPrime,mapping);

12: insertToMappingsSrcDst(src,dst); //do not add if redundant

13: end for

14: for each <s,d> œ mappingsSrcDst do

15: if s = d then

16: if s not in t then

17: addToConfig(config,s);

18: if findCount(mappingsSrcDst,d) > 1 then

19: mappingDestinationSender := findAllMapping(d);

20: for each <d,d’> œ mappingDestinationSender do

21: if d != d’ then

22: addToConfig(config,d’);

23: end if

24: end for

25: end if

26: end if

27: else

28: Û Next page
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Algorithm 4 (Continued) Send and Receive node/server placement part 2
29: if <s,d> not in config then

30: if <d,s> not in config then

31: addToConfig(config,s,d);

32: mappingSameSender := findAllMapping(s);

33: for each <s,d’> in mappingSameSender do

34: if d != d’ then

35: addToConfig(config,d’);

36: end if

37: end for

38: end if

39: end if

40: end if

41: end for

We insert lines 7 to 41 in the program source code before the specific MPI_Send,

and the values for the optimal server placement are computed at runtime and passed to

the controller to reconfigure the network before this point-to-point communication starts.

The Listing 5.3 shows the destination and source calculation code inserted in the

source code from Listing 5.2 and Table 5.2 shows the pairs for our example with the

number of processes in MPI_COMM_WORLD set to 16. Figure 5.34 shows the step-

by-step Send and Receive disjoint undirected graphs creation. For this example, with the

process to server mapping shown in Figure 5.35 the optimal server placement is "A E I

M B F J N C G K O D H L P" which is presented in Figure 5.36. Servers are logically

placed in this order: A, E, I, and M under ToR 0, B, F, J, and N under ToR 1, C, G, K,

and O under ToR 2, and D, H, L, and P under ToR 3. This placement reduces concurrent

cross-rack flows from 16 to 0; therefore, all communications happen at line-rate.
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Listing 5.2: Send and Receive example

1 i n t s i z e , rank ;

2 // Determines the s i z e o f the group a s s o c i a t e d with MPI_COMM_WORLD

3 MPI_Comm_size(MPI_COMM_WORLD, &s i z e ) ;

4 // Determines the rank o f the c a l l i n g proce s s in the MPI_COMM_WORLD

5 MPI_Comm_rank(MPI_COMM_WORLD, &rank ) ;

6 i n t maxIndex = sq r t ( s i z e ) ;

7 i n t d e s t i n a t i o n = ( rank + ( maxIndex ≠ 1) ú maxIndex ) % ( maxIndex ú maxIndex ) ;

8 i n t source = ( rank + maxIndex ) % ( maxIndex ú maxIndex ) ;

9 MPI_Send( s , s i z e , MPI_INT, de s t ina t i on , 0 , MPI_COMM_WORLD) ;

10 MPI_Recv( s , s i z e , MPI_INT, source , 0 , MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;

Listing 5.3: Source and destination pair calculation example

1 i n t s i z e , rank ;

2 // Determines the s i z e o f the group a s s o c i a t e d with MPI_COMM_WORLD

3 MPI_Comm_size(MPI_COMM_WORLD, &s i z e ) ;

4 // Determines the rank o f the c a l l i n g proce s s in the MPI_COMM_WORLD

5 MPI_Comm_rank(MPI_COMM_WORLD, &rank ) ;

6 i n t maxIndex = sq r t ( s i z e ) ;

7 // Ca l cu l a t e s the d e s t i n a t i o n rank

8 i n t d e s t i n a t i o n = ( rank + ( maxIndex ≠ 1) ú maxIndex ) % ( maxIndex ú maxIndex ) ;

9 // Ca l cu l a t e s the source rank

10 i n t source = ( rank + maxIndex ) % ( maxIndex ú maxIndex ) ;

11 // Ca l cu l a t e s a l l p a i r s o f source and d e s t i n a t i o n

12 i n t des t ;

13 i f ( rank == 0){

14 cout << " Source Des t ina t i on " << endl ;

15 f o r ( i n t i = 0 ; i < s i z e ; i ++){

16 dest = ( i + ( maxIndex ≠ 1) ú maxIndex ) % ( maxIndex ú maxIndex ) ;

17 cout << i <<" " << dest << endl ;

18 }

19 }

20 MPI_Send( s , s i z e , MPI_INT, de s t ina t i on , 0 , MPI_COMM_WORLD) ;

21 MPI_Recv( s , s i z e , MPI_INT, source , 0 , MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
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Source Destination Source Destination

0 12 8 4

1 13 9 5

2 14 10 6

3 15 11 7

4 0 12 8

5 1 13 9

6 2 14 10

7 3 15 11

Table 5.2 : Source and Destination pairs for world communicator of size 16.

5.2 Potential Applications

Here we look at a few out of many applications that will potentially benefit from our

solution.

5.2.1 Hierarchical Tucker Tensor Decomposition

Massive amounts of multidimensional data with multiple aspects and high dimension-

ality are generated in big data processing/analysis such as computational neuroscience,

neuro-informatics, pattern/image recognition, imaging data analysis, signal processing

and machine learning. Analyzing large-scale, multidimensional data sets is challenging.

Tensors are a good suit to represent such massive multidimensional data in a compact

way [137]. Diverse branches of science use tensors; such as data analysis, signal and image

processing [138, 139, 140, 141], quantum physics, and quantum chemistry [142, 143, 144].

A tensor is d-dimensional array with a uniform type. d is called the order of the tensor.

It is impossible to store a higher-order tensor explicitly because it grows exponentially

with d. To address this issue various data-sparse formats have been presented.

The hierarchical Tucker decomposition format is a storage-e�cient scheme to approx-
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         (e) 
 
 
 

Figure 5.34 : Steps in the Send and Receive disjoint undirected graphs creation. (a) Steps

to build the first send and receive graph from left to right. (b) Steps to build the second

send and receive graph from left to right. (c) Steps to build the third send and receive

graph from left to right. (d) Steps to build the last send and receive graph from left to

right. (e) All the disjoint graphs from send and receives of the 16 processes.
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Figure 5.35 : Example of a mapping of 16 processes to 16 servers.

Figure 5.36 : Example: The optimal server placement for send and receive.
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(b) Second communication pattern.

Figure 5.37 : 2D-Heat di�usion equation communication patterns.

imate and represent tensors which is well-suited for high-order tensors [145, 146, 147]. It

avoids exponential growth of storage requirements as opposed to the Tucker decomposi-

tion scheme.

The hierarchical Tucker format is a tree network (has no cycles), composed of tensors

of order at most three. Each tree node is associated with a di�erent compute node. There

are toolboxes for the construction and manipulation of tensors in the hierarchical Tucker

format [147].

A high performance computing oriented parallel implementation of the Hierarchical

Tucker tensor decomposition toolbox [148] can benefit from our solution [149] —always

the constructor uses MPI in the building of the tree. Message size is small. Also, each

node communicates with the other nodes on the tree through the Open MPI message

passing library. But the size of the data depends on the type of operation performed.

Some operations that have no communication or the data size is insignificant there is no

need to reconfigure the network. However, some operations have larger data exchanged

and depending on the placement of the processes they can benefit from the automated

network reconfiguration.
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5.2.2 2D-Heat Di�usion Equation

Heat equation was first developed for modeling how a quantity such as heat di�uses

through a given region [150]. It is one the most widely studied topics in pure mathematics,

and its analysis is regarded as fundamental to the broader field of partial di�erential

equations. It is also important in many fields of science and applied mathematics such

as probability theory, quantum mechanics, image analysis, hydrodynamical shocks, and

numerical analysis.

The 2D-heat di�usion equation can be solved by centered finite di�erences in space

and the forward Euler method in time. The finite di�erence method provides a good

numerical approximations to the solution of the 2D-heat equation. Finite di�erence

algorithms are well suited for parallel programming. As the number of evaluation points

increases, the e�ect of parallelism becomes more significant because each processor has

to carry bigger computational e�ort in every iteration.

The first point to point communication pattern is as follows each process p : 0 Æ p Æ

np (np is the number of processes in the group) communicates with the next process p+1

counter clockwise communication. Only the last process p = np ≠ 1 communicates with

process 0. Figure 5.37a shows the first communication pattern for np = 16. The second

communication pattern is the reverse of the first pattern. Every process p : 0 Æ p Æ np

communicate with the process p ≠ 1 clockwise communication. Only the last process

0 communicates with process np ≠ 1. Figure 5.37b shows the second communication

pattern for np = 16. We want to see if our automated solution can benefit this testcase.

Figure 5.29 shows the RDC testbed and our server to rack color coding. Figure 5.39

shows the first communication pattern for the 64 processes. We consider five placements

for the np = 64 processes over 16 servers: 1) Figure 5.38(a): places them row-wise- one

cross-rack tra�c in every 8, 2) Figure 5.38(b): places them column-wise- all tra�c are

cross-rack, 3) Figure 5.38(c): one cross-rack tra�c in every 4, 4) Figure 5.38(d): places

the processes in a mixed manner, one cross-rack tra�c in every 8 or one cross-rack tra�c

in every 4, 5) Figure 5.38(e): places the processes in a manner (some tra�c are cross-rack
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(d) Placement 4 (e) Placement 5

A A A A C C C C
E E E E G G G G
I I I I K K K K
M M M M O O O O
B B B B D D D D
F F F F H H H H
J J J J L L L L
N N N N P P P P

(a) Placement 1

A E I M B F J N
A E I M B F J N
A E I M B F J N
A E I M B F J N
C G K O D H L P
C G K O D H L P
C G K O D H L P
C G K O D H L P

(b) Placement 2

A A B B I I J J
A A B B I I J J
C C D D K K L L
C C D D K K L L
E E F F M M N N
E E F F M M N N
G G H H O O P P
G G H H O O P P

(c) Placement 3

Figure 5.38 : Five di�erent process to server placements. A-P represent 16 servers and

A-D, E-H, I-L, M-P belong to four physical racks separately.

but not all) that there is one cross-rack tra�c in every 16.

Based on Figure 5.39, placement 5 is already optimal so our solution would not be

able to reduce the communication time further but we can automatically reconfigure the

network so that this testcase perform as well as placement 5 for the other four process to

server placements.

5.2.3 Distributed Matrix Multiplication

Distributed Matrix Multiplication (DMM) is another application that can benefit from

our solution. Matrices are decomposed into np blocks. In each iteration of a commonly
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Figure 5.39 : 2D-Heat di�usion equation first communication pattern for 64 processes.

used DMM algorithm [47, 63] , the algorithm performs a "broadcast-shift-multiply" cycle

where a process a) broadcasts its submatrix block row-wise, b) shifts its submatrix block

column-wise, and c) multiplies submatrices. Figure 5.40 shows the tra�c pattern for

np = 64. Every row and column has
Ô

np = 8 processes that form a 8 ◊ 8 2D process

layout. The red arrows show the first communication pattern (row-wise broadcast) and

the green arrows show the second communication pattern (column-wise shift).

We want to see if our automated solution can benefit this testcase. Our server to rack

assignment in our testbed and color coding is shown in Figure 5.29. Considering the five

placements in Figure 5.38 for the np = 64 processes over 16 servers. Each server has 4

processes.

1) Figure 5.38(a): places them row-wise zero cross-rack tra�c for broadcast but all
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Row-wise broadcast

Column-wise shift
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Figure 5.40 : Distributed matrix multiplication tra�c patterns for 64 processes.

shift tra�cs are cross-rack, 2) Figure 5.38(b): places them column-wise zero cross-rack

tra�c for shift but all broadcast tra�c are cross-rack, 3) Figure 5.38(c): places the

processes in a mixed manner, considering both broadcast and shift tra�c across racks,

4) Figure 5.38(d): places the processes in a mixed manner (some tra�c are cross-rack

but not all) for broadcast but all shift tra�cs are cross-rack, 5) Figure 5.38(e): places

the processes in a mixed manner considering shift but places them row-wise considering

broadcast (zero cross-rack tra�c).

Based on Figure 5.40, none of the placements is optimal for both of the communica-

tion patterns in the DMM algorithm. Using our solution (Algorithm 1, Algorithm 3, and

Algorithm 4) we can automatically find the optimal placement for each communication
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pattern and reconfigure the network before the communication pattern changes in every

iteration. This will reduce the communication time for both broadcast and shift by logi-

cally moving the servers and minimizing the number of cross-rack communications. For

example, for the first communication pattern with placement 1 and broadcast algorithm

set as chain, there are no cross-rack flows but the second communication pattern has 8

cross-rack flows per column therefore, we need to reconfigure the network to the optimal

placement for the second communication pattern to minimize the number of cross-rack

flows. Our solution will place A, E, I, and M under ToR 0, B, F, J, and N under ToR 1,

C, G, K, and O under ToR 2, and D, H, L, and P under ToR 3. The number of cross-rack

flows drops from 8 to 2 per column. Only, B to M and A to N remain cross-rack. In the

next iteration, the network is not suited for the first communication pattern so we also

need to reconfigure the network for the first communication pattern. Our solution will

place A, C, E, and G under ToR 0, I, K, M, and O under ToR 1, B, D, F, and H under

ToR 2, and J, L, N, and P under ToR 3.

5.3 Implementation

The input to our prototype consists of the source file of a C++/MPI program, API

specification file and a rankfile. The analyzer—our module for communication pattern

identification and code transformation—is based on the ROSE framework [151]. ROSE

is a compiler infrastructure supplying methods for source-to-source code analysis and

transformation. Our program inserts the reconfiguration code in the source code, passes

the new placement order of servers to the controller before the corresponding communi-

cation function. We first create a general socket connection to the controller. For each

reconfiguration, we use the same socket. The controller expects a string containing the

servers/nodes. Based on the order that the servers’ name/IP have in the config string,

the circuit switch is reconfigured, and the servers will be placed in that order. Note that

we only need the process with rank 0 of the MPI_COMM_WORLD to send the node

order to the controller.
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Figure 5.41 : Placement 1: DMM average shift time and broadcast time.

5.4 Experimental Results

We set up a 16-node Open MPI cluster across 4 racks and implement a commonly used

Distributed Matrix Multiplication (DMM) algorithm [47, 63] with 64 processes. Matrices

are decomposed into 64 blocks. Each server has 4 processes to form a 8◊8 2D process lay-

out. We presented the di�erent communication patterns in each iteration in Section 5.2.3

(Figure 5.40). We run experiments with the first three placements from Figure 5.38 for

the 64 processes over 16 servers.

We ran each of the combinations of matrix sizes, networks (Automated RDC, Man-

ual RDC, static 4 : 1 oversubscribed network, NBLK network) 10 times and obtained

their average running time. The analysis and program extension take around 27.5 sec-

onds. The communication group identification takes approximately 9 milliseconds for a

communication world of size 64.
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Figure 5.42 : Placement 2: DMM average shift time and broadcast time.

Figure 5.41 shows that for the process to server placement 1, our automated solution

improves the overall communication time by 2.78◊ and the shift time by 3.93◊ compared

to a static 4 : 1 oversubscribed network. The manual solution improves the overall

communication time by 2.79◊ and the shift time by 3.91◊ compared to a static 4 : 1

oversubscribed network. The amount of improvement due to automated RDC remains the

same as the manual improvement. Our experiment results for placement 2 and placement

3 shown in Figure 5.42 and Figure 5.43 makes the same point as above. The automated

RDC performs as well as manual RDC and close to the nonblocking network.

5.5 Related Work

Researchers have studied communication pattern identification with di�erent goals in

mind including debugging and performance analysis, optimization, job scheduling, target

system selection, and system design.
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Figure 5.43 : Placement 3: DMM average shift time and broadcast time.

Oxbow toolkit [152] is a collection of tools that empirically characterize application

behaviors independent of performance. It characterizes on several axes: computation,

communication, memory capacity and access patterns. Oxbow uses mpiP library[153]

which is a lightweight profiling tool used to generate statistics and communication topol-

ogy data. It stores the volume of data transferred between ranks in an adjacency matrix.

The communication topology is the result of visualizing the adjacency matrix for an

application run.

It captures communication topology, message size histograms for point-to-point op-

erations and captures message size histograms for collective operations. Oxbow, uses

this data to compare communication patterns and data transfer volumes across di�erent

applications and their input sets. It can predict what kinds of system attributes better

matches an application by testing a given system with a given application.

Roth et al. [154] propose AChax (Automated Communication Pattern Characteriza-
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tion) [155] which captures communication pattern recognition expertise in an automated

tool. The mpiP profiling tool is used to collect information about an application’s com-

munication topology and message volume. Given data describing application communi-

cation behavior, a search-based analysis is used to compare the application’s observed

communication pattern against a library of common communication patterns.

Later they propose a hybrid approach [156] that combines deep learning classification,

and regression with the existing AChax. It is more e�ective to detect and parameterize the

communication patterns and pattern combinations used by some real-world applications

but it is very slow.

Communication performance has substantial variation on parallel computing clus-

ters depending on if the communication is on-node, intra-rack, or cross-rack locations.

Communication aware/optimal process placement can be critical for the overall runtime

when the application communication patterns are irregular. A high level understanding

of communication patterns as well as their relation to source code structures is required

to optimize the performance of High Performance Computing (HPC) applications.

Cornea et al. [157] propose a static program analysis approach (using AST and SDG)

which identifies application communication signature topologies such as star, ring, mesh,

or torus. They have formally defined a few communication topologies such as star, ring,

mesh, or torus that they check the application communication signature against. Their

goal is to understand program communication patterns in order to minimize the impact

of capacity variation in communication parameters and use this knowledge to choose the

best execution platform. As opposed to the previous lines of work, this work does not

rely on profiling or using execution traces and it statically identifies the communication

topology.

Preissl et al. [158] propose an algorithm to detect communication patterns in parallel

traces in order to identify the Send and Receive events that are part of ine�cient/repet-

itive communication patterns (e.g., poorly implemented broadcast operations). These

ine�cient communication patterns are good targets for source code optimizations by re-
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placing them with more e�cient equivalent operations. They achieve their goal by taking

two steps. The first step is to detect the ine�cient communication patterns which relies

on dynamic program analysis. They annotate the target MPI application to generate an

MPI trace of the program executed under a given set of parameters. They use pattern

matching to find recurring ine�cient communication structures. The second step is to

do the program transformation which relies on static program analysis. They generate

an abstract syntax tree (AST) of the application and perform a static analyses to extract

control and data flow. They do mapping between the detected communication patterns

and the static analyses information and guide potential source-to-source transformations.

5.6 Summary

Many applications have oscillating tra�c patterns therefore no static placement is suit-

able for every communication pattern. Our automated static analysis-based solution can

complement RDC and, without user involvement, instruct the program with the appro-

priate reconfiguration code to improve the performance and dynamically optimize the

topology at runtime. Our solution can even benefit applications with a single tra�c

pattern. It can find the optimal placement for that specific tra�c pattern. For these

applications, we need to reconfigure the network only once at the starting point of the

application as opposed to applications with changing communication pattern which we

need to reconfigure the network multiple time (before every oscillation). Our experimen-

tal results on automated intra-pod localization show that automated RDC can perform

as well as manual RDC and decrease communication time considerably for real-world

applications.
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Chapter 6

Conclusions and Future Work

The main goal of this thesis is to investigate whether challenges faced by HPC applications

in the communication phase can be addressed by augmenting/tweaking the existing data

center network architectures with low-cost optical technologies.

We study data center networks and provide an analysis of the literature covering var-

ious research areas, including data center network interconnection architectures, network

protocols for data center networks, and state-of-the-art communication frameworks.

We propose a broad scale of solutions to improve HPC application performance by

optimizing and improving the communication performance for HPC applications. We

keep in mind to retain as many of the existing benefits of current data center networks

as possible without significantly changing the network and increasing the hardware cost.

6.1 Concluding remarks

Overall, the results from the above chapters 3, 4, and 5 suggest a positive answer to

our main question “ Whether augmenting/tweaking the existing data center network

architectures with low-cost optical technologies can solve issues that HPC applications

are facing in current data center networks?”. Specifically, the highlights of our results

are:

• We show that augmenting the existing data center network with a dedicated mul-

ticast network such as Shu�ecast can relieve the bandwidth requirement pressure

on the existing network and improve multicast communication performance of real-

world applications with minor modifications, which leads to overall application

runtime performance improvement.
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• We show that a dynamic network such as RDC that can adjust its topology for

di�erent tra�c patterns can improve the overall network performance of real-world

applications with minor modifications regardless of the communication type (mul-

ticast or unicast).

• We design a static analysis-based communication pattern detection and optimal

server placement identification solution for HPC applications. We show that using

our solution can complement and make a dynamic/ reconfigurable network such as

RDC more accessible and user-friendly while maintaining the same performance.

Our experimental evaluations show that the optimal server placement automatically

identified by our solution can speedup a 4 : 1 oversubscribed network to achieve

nearly non-blocking network’s performance similar to the original manual RDC.

6.2 Future work

This section points out directions for future works that leverage automated rackless data

center networks. Although this thesis has made progress towards understanding how

to improve network performance for HPC applications through software and hardware

augmentation to today’s DCN architecture, some exciting problems remain unresolved:

The solutions we proposed in Chapter 4 and Chapter 5 optimize the network topology

for the di�erent communication patterns of a single application. However, it is likely

that multiple applications run on the cluster. We want to answer this question: “Can we

optimize the network topology to the needs of multiple concurrent applications?”.

Handling Concurrent Applications. First, let us look at some simple examples.

Imagine we have 32 servers belonging to eight physical racks in our testbed as shown in

Figure 6.1, and two DMM applications run in this cluster. In this setting, each application

with 64 processes run on 16 di�erent servers. The mappings of processes to servers are

shown in Figure 6.2. For both mappings, the row-wise broadcasts are intra-rack; however,

there are 8 cross-rack flows for every column-wise shift. Because these two applications do

not share any servers, our current solution can handle it and find the optimal placement
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that minimizes the number of cross-rack communications for both applications. Each

application can separately reconfigure its section of the network without hurting the

other concurrent running application. Figure 6.3 shows the topology that reduces the

number of cross-rack flows for each column-wise shift from 8 to 2.

What happens if the servers are shared? Figure 6.4 shows an example in which we

have 24 servers belonging to six physical racks. Two DMM applications (DMM1 and

DMM2) with the process to server mapping shown in Figure 6.2 run on this testbed

concurrently. The servers under ToR 0 (A, B, C, D), ToR 1 (E, F, G, H), ToR 2 (I, J,

K, L), and ToR 3 (M, N, O, P) are shared by the DMM applications. The first DMM

application uses four cores of the sixteen first servers and the second DMM application

uses two cores of the sixteen first servers plus four cores of the eight last servers belonging

to ToR 4 (Q, R, S, T), and ToR 5 (U, V, W, X).

If we assume that both identical DMM applications start at the same time and work

on the same size of matrices, then the points in the program that the communication

pattern changes are the same, and since they run on the same size of matrices, both

applications will reach to those points approximately at the same time. With some

stretching, our algorithms in Chapter 5 can minimize the number of cross-rack flows for

both applications. To find the optimal placement for the joint applications: 1) it has to

prioritize between the applications per zone/ToR and 2) only one process from one of the

applications should be in charge to reconfigure the network and not both, or a controller

can take charge.

A technique to find the application with a higher priority in one zone/ToR is to find

the application with the highest number of cross-rack flows in that zone/ToR. In our

example, the number of cross-rack flows originating from the first four racks by the first

DMM application is higher than the second DMM app. Therefore, DMM1 has a higher

priority for the first four racks. We place A, E, I, M under ToR 0, Q, U, Y, AC under

ToR 1, C, G, K, O under ToR 2, and S, W, AA, AE under ToR 3. This placement

minimizes the number of cross-rack flows for each column-wise shift from 8 to 2 for
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Figure 6.2 : Mappings of 64 processes to 16 servers for two DMM applications.

the DMM1. Now, we find the optimal placement for the remainder of the servers as it

suits DMM2. We place Q, R, U, V under ToR 4, and U, V, W, X under ToR 5. The

resulting placement is shown in Figure 6.6. The cross-rack flows for each column-wise

shift are minimized from 8 to 3 for the DMM2. We can reconfigure the network before

the shift phase of both DMM applications starts. Since both applications are launched

simultaneously, and the matrices are the same size, the processes involved will all finish

the broadcast phase and get to the shift phase approximately at the same time. After

the shift phase and before the broadcast phase, we reconfigure the network back to the

original placement shown in Figure 6.4 which has the optimal placement for the broadcast

phase. In this placement, all row-wise broadcasts are intra-rack. Throughout the runtime

of both DMMs the network will be reconfigured back and forth between the placement

in Figure 6.6 and the placement in Figure 6.6.

Note that the assumption we made for this example does not hold in many cases.

The applications can start at di�erent timestamps and overlap at di�erent stages of the

algorithm, or they can operate on di�erent matrix sizes.

If two instances of the same application start at a di�erent time, then one of the

instances is ahead of the other. For example, in the case of the DMM application,

one can be in the broadcast phase and the other in the shift phase or one in the shift

phase and the other in the computation phase, etc. For the former case, the network
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Spine

ToR 2ToR 1ToR 0 ToR 3 ToR 4 ToR 5

A B C D E F G H I J K L M N O P Q R S T U V W X

Figure 6.4 : The original server placement in the testbed. A-X represent 24 servers and

A-D, E-H, I-L, M-P, Q-T, U-X belong to six physical racks separately.

Figure 6.5 : Mappings of 64 processes to 16 servers for two DMM applications.

Spine

ToR 2ToR 1ToR 0 ToR 3 ToR 4 ToR 5

A B C D E F G H I J K L M N O P Q R S T U V W X

Figure 6.6 : Optimal server placement for shift with minimal cross-rack communication.

should be reconfigured in a way that minimizes the number of row-wise broadcast’s

cross-rack communication for DMM1 and column-wise shift’s cross-rack communication

for DMM2, and for the latter, the network should be reconfigured to a placement that
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has the minimum amount of column-wise shift’s cross-rack communication for DMM1.

Finding the joint communication patterns of multiple concurrent applications with

overlapping/shared servers can be challenging. By running our static analysis-based

solution, we can find the di�erent communication patterns of each application separately,

but because the servers are shared between the applications, the applications can not

individually reconfigure the network. If they do, it can create: 1) packet loss and 2) create

higher cross-rack tra�c for the other applications sharing the servers. We need to know

which phase each application is at and how long each phase approximately takes. Based

on these approximations and each application’s starting time, we can have an image

of the joint tra�c pattern at di�erent times in the data center network. A controller

can use these pieces of information to find the optimal placement for all the concurrent

applications at di�erent points and reconfigure the network before a new communication

pattern starts.

Challenges. One challenge here is how to have an overall image of our network and

the communication patterns of the concurrent applications running on it. The question

to be solved is “how can we estimate and approximate when certain combined tra�c

patterns will be seen on our network?”. If we could have an abstraction of the program

that demonstrates the notion of time with an approximation of how long each stage will

take, we could have an automated controller that reconfigures the network based on this

information.

One direction that can be explored is temporal logic, which specifies properties/ events

occurring over time. Linear Temporal Logic (LTL) expresses properties over a single

computation path or run. In LTL, each moment in time has a well-defined successor

moment. We can encode the behavior the behavior of applications with LTL. LTL shows

the orders of events and do not show the time between events. The extensions of LTL is

called Timed Propositional Temporal Logic (TPTL), in which variables are introduced

to measure times between two events. Using these types of logic, we can have an abstract

image of the network showing di�erent possibilities of concurrent events (phases of the
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applications). One crucial missing piece is the estimation of the time between events or

how long every application phase takes. These problems need to be addressed in future

studies.
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