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ABSTRACT

How to Group: from Time Series to Manifold

by

Romain Cosentino-Faugere

This thesis addresses the problem of data representation for pattern recognition

by focusing on three fundamental properties: the efficiency, adaptivity, and inter-

pretability of the representation. The century of progress in harmonic analysis led

to the development of theoretically sounded and interpretable tools to decompose,

analyze, and process signals. Nevertheless, these tools have now shown their limitation

in terms of expressive power and flexibility. The last decade of research in pattern

recognition has been revolutionized by the myriad of results that Deep Learning (DL)

algorithms provided, helping us to understand better how one can build an efficient

data representation. Among the intuitions that DL approaches provided, which most

of them are yet to be proven, we will focus on the fact that an efficient representation

of the data should be learned jointly with the task at hand. While DL provides

the framework and practical tools that enable the efficiency and adaptivity of the

representation, it lacks interpretability and theoretical guarantees. By intersecting

harmonic analysis and deep learning, the work undertaken in this thesis explores the

possibility of providing Deep Harmonic Learning tools, where the interpretability is

driven by our profound knowledge of harmonic analysis techniques, and DL techniques

drive the flexibility.



The first objective is to explore the generalization and learnability of the wavelet

transform. Our approach decomposes this task by considering the wavelet transform

as two building blocks: a mother wavelet and a group. We first propose to tackle the

learnability of the mother wavelet exploiting the efficient representation of the mother

wavelet using the Hermite cubic spline as a basis. This approach, both efficient and

learnable, is used to replace the first layer of Deep Neural Networks (DNNs) and

proved its performance on a large-scale pattern recognition task. Then, we consider

the learnability of the group by which the mother wavelet is transformed to produce

the filter bank. This approach allows for the learnability of intricate correlations that

are often aligned with the symmetry of the data. Again, the replacement of the first

layer of DNNs by these adaptive filters provides state-of-the-art results on various

datasets.

The second objective of this thesis is to explore the approximation and quantization

of manifolds by exploiting the assumption that the data manifold is governed by a

symmetry group. Our approach is two-fold: firstly, we provide a quantizer of the image

manifold that is based on the learnability of the non-rigid transformations governing

the images. In particular, we build a metric aware of these intricate transformations,

and that can adapt to the data at hand. The challenge of learning in an unsupervised

fashion appropriate invariance is tackled by exploiting the intuitive parameterization

that the Thin-Plate-Spline interpolation method offers. The resulting shallow clustering

algorithm is fully interpretable and achieves performances comparable to its deep

learning counterpart. Secondly, we provide a new approach to perform manifold

approximation with generalization guarantees. This is achieved by exploiting the piece-

wise continuous approximation property of autoencoders which can be constrained to

be equivariant to a group of transformations. Again, we consider the learnability of

the group underlying the data to steer the equivariance. The equivariant autoencoder

we propose achieves state-of-the-art results on a large number of datasets.
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v

Seydoux, for sharing his passion for his field, his knowledge, and his friendship.

I would like to thanks each member of the jury for their help, advice, and time.

A great thanks to Dr. Harry Sevi, with whom I share many passions, values,

and discussions. Thanks to Pierro, for being supportive and mentoring me since my

childhood and always having the right advice.

I am extremely grateful to my mother, father, brother, and grandparents for all

the values they shared with me, their patience, and eternal support. My deepest

gratitude goes to my grandfather, Guy, for his genuinely humble and inspiring passion

for learning.

Finally, I owe a deep sense of gratitude to my wife, Hélène, for being here and

being her.



vi

Contents

Abstract ii

Acknowledgments iv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Gaps and Research Questions . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Organisation & Publications . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background & Pre-requisites 14

2.1 Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Group Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Lie Group Transformations . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Thin Plate Spline Interpolation . . . . . . . . . . . . . . . . . . . . . 26

3 Learnable Wavelet Transform 30

3.1 Outline of the Chapter and Contribution Summary . . . . . . . . . . 32

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

i Existence & Uniqueness . . . . . . . . . . . 37

ii Space Dimensions . . . . . . . . . . . . . . . 38

iii Filter-bank Derivation . . . . . . . . . . . . 39



vii

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

i Task . . . . . . . . . . . . . . . . . . . . . . 40

ii Filters Implementation . . . . . . . . . . . . 41

iii Architecture Comparison . . . . . . . . . . . 44

iv Complexity & Parameters . . . . . . . . . . 49

v Results . . . . . . . . . . . . . . . . . . . . 49

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Learnable Group Transform 52

4.1 Outline of the Chapter and Contribution Summary . . . . . . . . . . 53

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

i Recovering Standard Filter Banks . . . . . . 59

ii Equivariance Properties of the learnable

group transform . . . . . . . . . . . . . . . 60

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

i Sampling the group . . . . . . . . . . . . . . 63

ii Objective Function and Learning: . . . . . . 63

iii Model Constraints to Reduce Aliasing . . . 64

iv Classification of chirp signals . . . . . . . . 66

v Supervised Bird Detection Task . . . . . . . 68

vi Classification of haptics data . . . . . . . . 70

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Learnable Invariant Distance 74

5.1 Outline of the Chapter and Contribution Summary . . . . . . . . . . 76

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



viii

5.4 Image Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Learning the Spatial Transformer K-means . . . . . . . . . . . . . . . 81

5.6 Properties & Geometrical Aspects . . . . . . . . . . . . . . . . . . . . 83

i Quasi-pseudo-semi Metric . . . . . . . . . . 83

ii Invariance Property . . . . . . . . . . . . . 85

iii Convergence of the Spatial Transformer

K-means . . . . . . . . . . . . . . . . . . . . 86

iv Geometrical Interpretation of the Similarity

Measure . . . . . . . . . . . . . . . . . . . . 87

v Complexity & Parameters . . . . . . . . . . 89

5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

i Evaluation Methods . . . . . . . . . . . . . 93

ii Cross-validation Settings . . . . . . . . . . . 93

iii Results . . . . . . . . . . . . . . . . . . . . 94

iv Interpretability: Centroids Visualization . . 95

v Interpretability: Embedding Visualization . 96

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Learnable Lie Group for Manifold Approximation 100

6.1 Outline of the Chapter and Contribution Summary . . . . . . . . . . 102

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Properties & Geometrical Aspects . . . . . . . . . . . . . . . . . . . . 107

i Reconstruction Guarantees . . . . . . . . . 107

ii Tangents and Hessians . . . . . . . . . . . . 109

iii Interpretability of Regularization Techniques 111

iv Lie Group Orbit Fitting . . . . . . . . . . . 114

v Regularizations for Continuous Piecewise

Affine Maps . . . . . . . . . . . . . . . . . . 116



ix

vi Manifold Approximation Error . . . . . . . 121

vii Complexity & Parameters . . . . . . . . . . 124

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

i Parameters . . . . . . . . . . . . . . . . . . 126

ii Results . . . . . . . . . . . . . . . . . . . . 127

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Discussion & Conclusion 131

7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Conclusion & Future work . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 138



x

List of Figures

2.1 Morlet Wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Gammatone Wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Paul Wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Hermite cubic spline: cubic polynomial on a close interval . . . . . . 42

3.2 Concatenation of Hermite cubic splines . . . . . . . . . . . . . . . . . 43

3.3 Insuring continuity and smoothness of the filter . . . . . . . . . . . . 43

3.4 From the smooth filter to wavelet . . . . . . . . . . . . . . . . . . . . 44

3.5 From the mother wavelet to the filter-bank . . . . . . . . . . . . . . . 44

3.6 Training accuracy w.r.t epochs for FreeField dataset . . . . . . . . . . 46

3.7 Learned filters: CNN vs Spline filter . . . . . . . . . . . . . . . . . . . 47

3.8 First layer representation: MFSC vs CNN vs Spline filters . . . . . . 48

4.1 Time-frequency tilings . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Learnable group transform - Summary . . . . . . . . . . . . . . . . . 57

4.3 Transformation of a Morlet wavelet . . . . . . . . . . . . . . . . . . . 58

4.4 Learnable group transform filters - artificial dataset . . . . . . . . . . 65

4.5 Artificial as/de-scending chirp . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Learnable group transform visualizations . . . . . . . . . . . . . . . . 69

4.7 Learnable group transform filters - bird dataset . . . . . . . . . . . . 69

4.8 Learnable group transform filter - haptics dataset . . . . . . . . . . . 71



xi

5.1 Image transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Orbit of a hand-written digit 7 according to the group of rotation SOp2q. 81

5.3 Centroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 t-SNE projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Computational time . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Accuracy vs distortion error . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Autoencoder input space’s partitioning . . . . . . . . . . . . . . . . . 104

6.2 Autoencoder manifold . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 Number of data VS regions inside a ball . . . . . . . . . . . . . . . . 113

6.4 Test set reconstruction error . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Group element parameters . . . . . . . . . . . . . . . . . . . . . . . . 129



xii

List of Tables

3.1 Classification results - bird detection . . . . . . . . . . . . . . . . . . 50

4.1 Recovering well-known filters . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Testing Accuracy for the Chirp Signals Classification Task . . . . . . 66

4.3 Testing AUC for the Bird Detection Task . . . . . . . . . . . . . . . . 68

4.4 Testing Accuracy for the Haptics Classification Task . . . . . . . . . . 72

5.1 Clustering accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Autoencoders accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 127



1

1

Introduction

1.1 Motivation

The last decade of research in machine learning that this work is inscribed in might

be described as one of the most experimental and prosperous periods of all time

in artificial intelligence. The performances of recent machine learning algorithms

are outperforming any of their ancestors in a large number of applications [1]. In

particular, the capability of machines to perform perceptual tasks such as speech

and image recognition are now at the level of human performances [2–4] if not

superhuman for certain specific tasks [5,6]. This huge step forward pushing further

the boundaries of machine learning is mainly due to Deep Neural Networks (DNNs)

extensive development. Behind their creation, their wish was to provide a DNN that

would take inspiration from the brain’s functioning behind pattern recognition tasks

and inform about its mechanism [7].

In particular, two major concepts that were known to neuroscientists as the key
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elements to describe the representations that the brain might perform [8] have been

digitalized: the equivariance and invariance of a representation with respect to specific

transformations. In particular, convolutional neural networks [9] were conceived

to integrate these concepts as part of the representation of the data they enable.

Twenty years later, in [10], S. Mallat provided its harmonic analysis description along

with a specific deep network architecture: the scattering network. This network

architecture that looks, from far to a convolutional neural network and close to an

intricate time-frequency based filtering representation, highlights the importance of

two concepts that a salient representation of the data should yield, the equivariance

and invariance with respect to groups. Whether it is from an experimental point

of view or a more theoretical approach, these approaches reinforce the belief that

machine learning algorithms’ performances are mainly tied to the embedding that the

data are transformed with. While the requirement for an appropriate embedding is

now better than ever theoretically motivated, their use in signal processing has been

there for decades and in human history for at least 73.000 years.

In our quest to understand what aspect of deep learning can be leveraged to

develop harmonic analysis based algorithms that can be interpretable, efficient, and

adaptive, we propose to consider the following approach to pattern recognition.

A pattern recognition task usually induces on the data a specific set of nuisances

that should be removed to ease the detection of salient features by the classifier. For

instance, in the context of image recognition, the pose of an object can be categorized

as a nuisance, while in the case of pose estimation, the class is the nuisance. Similarly,

in the case of time series classification, such as the diagnosis of heart disease via ECG

recordings, the age of the patient and its sex are among the set of nuisances.

Therefore, one is interested in “observing” the data in a space where such nuisances
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are aligned with some of the coordinate axes. The salient features of the data allowing

to perform the pattern recognition task are then obtained by averaging along the

nuisances axis. This simplified and intuitive idea depicts the importance of an

appropriate change of basis, highlighting the different representations the data can

take.

An important field of mathematics that has been used for decades to describe how

an entity varies under the action of specific transformations, called a group, can be

used to describe how one can use equivariant representations to better represent the

data so that the invariance required to perform the pattern recognition task can be

easily achieved. A group is a set that consists of all the elements that could produce a

particular type of transformation, such as rotation, permutation, and translation. The

question is now, how can one represent the data with respect to a basis that aligns

with the different groups composing the symmetry of the data? An intuitive way of

representing the data in accordance with this principle is to project the data onto

the group underlying all the important transformations that the object undergoes

without altering its identity. Such a projection enables the localization of the data on

an interpretable manifold. One can easily assume that one or more of these manifolds

exist for each class and that each of them has a specific set of transformations. For

instance, one can consider all the images of the handwritten digit 4 as a manifold

where the location of the sample on this manifold depends on the pose, lighting, and

deformation relative to an implicitly defined canonical version of that entity [11].

Now, given the coordinate on this local manifold, one can easily produce an invariant

representation by averaging over one coordinate axis.

The development of an operator that projects the data onto the group is there-

fore crucial. This operator would ease the computation of interpretable invariant
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representations, which are now known to be crucial to perform pattern recognition.

1.2 Gaps and Research Questions

Two of the machine learning pillars helping us understand practically and theoretically

these considerations are convolutional neural networks and the scattering network.

While convolutional neural networks are fully adaptive and transformed the machine

learning scene, the scattering network lacks expressive power but provides a fully

interpretable representation of the data. The development of methods in between

these approaches, trying to build an interpretable and efficient representation of

the data driven by the task at hand, was almost absent from the literature at the

commencement of this Ph.D.

In this section, we propose to briefly describe the main limitations and challenges

that need to be addressed to learn an appropriate representation of the data for pattern

recognition tasks. We are in particular interested in the learnability of appropriate

representations for time-series as well as for manifold.

In the case of pattern recognition for time series data, the traditional wavelet

transform remains one of the most used data representations because of its capability

of decomposing the signal with respect to a structured basis that yields a sparse

representation of a large number of signals [12]. Its wide application led to the

development of various wavelets that often resonate well with specific applications [13].

Naturally, the selection of the mother filter, which required expert knowledge on the

data at hand, has been progressively replaced by an automated search for the optimal

filter among a selected list of mother wavelets [14–16]. However, these pre-processing

techniques were derived for goals not necessarily aligned with the current tasks at

hand (reconstruction, compression, classification), thus do not provide an adapted
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solution. Later, attempts to provide end-to-end filter learning has been investigated.

In particular, in [17, 18] they consider the learning of parameters inherent to time-

frequency representations such as Mel-Frequency Spectral Coefficients; however, their

approaches were applied to datasets that did not contain external nuisances and did

not provide a generalization of well known harmonic analysis methods.

Understanding the dataset as a whole and an attempt to understand its structure

has been the center of manifold learning algorithms. We are particularly interested in

two aspects, the approximation of the manifold and its quantization. Following that

goal, various approaches have been developed: Kernel PCA [19], Isomap [20], Laplacian

eigenmaps [21], Locally Linear Embedding [22]. Most of the approaches developed

during that period were based on the idea that, using neighboring data, one can

appropriately interpolate and approximate the curvature of the data manifold. These

local methods and their drawbacks have been precisely pinpointed in [23]. In particular,

we know that most of the data available to us are high-dimensional, and therefore

the estimation of distance is challenging as per the curse of dimensionality and the

large number of nuisances that need to be removed. To alleviate such drawbacks, one

approach consists of augmenting the data by using the symmetry of the data [24,25].

Now, the problem is that this requires the knowledge of the symmetry of the data

that are aligned with the task at hand. Considering and learning these groups is

crucial to perform an accurate unsupervised approximation and quantization of the

data manifold.

From time-series to manifold, finding an appropriate way to learn the representation

of the data is the milestone of efficient machine learning algorithms. Following decades

of development in harmonic analysis, statistics, and artificial intelligence, the question

that this thesis attempt to tackle is
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Is it possible to build an adaptive algorithm capable of representing the

data efficiently such that: the representation is interpretable, theoretically

grounded, and efficient?

In order to approach the answer to this question, we consider the following

subquestions that will help us understand how such a goal can be achieved.

1. The wavelet transform of time series data has been used for decades for its

efficiency to capture salient features, its interpretability, and its tractability; how

can one provide a framework that allows their generalization and learnability

while conserving the tractability and interpretability of the representation?

1.1. Is it possible to appropriately learn a mother wavelet that characterizes the

salient feature of the data?

1.2. Is it possible to learn the group governing the plane onto which the signal

is projected when performing a wavelet transform?

2. The K-means algorithm remains one of the most used clustering algorithms

because of its interpretability and tractability; how can one equip it with a

metric that alleviates the drawback of the Euclidean distance and appropriately

capture the geometry of the data?

2.1. Is it possible to learn an invariant metric with respect to non-rigid trans-

formations in a fully unsupervised fashion?

2.2. Does the theoretical convergence guarantees of the K-means algorithm hold

when one replaces the Euclidean distance with an adaptive metric?

3. Autoencoders are state-of-the-art algorithms capable of encoding the underlying

manifold of the data; how can one equip them with generalization guarantees?
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3.1. Is there any formulation of autoencoders that enable us to characterize how

they approximate the manifold, and what is their limitation?

3.2. Is it possible to enforce their generalization under the assumption that the

data form a homogeneous space?

3.3. How can one learn the symmetry of the data and incorporate it into the

manifold approximation performed by autoencoders?

1.3 Contributions

The research work carried out to accomplish the outlined research objectives has

resulted in several original contributions to the field of machine learning. The contri-

butions of this thesis are detailed in the following.

Contribution I: Learning the Mother Wavelet We propose to tackle the

problem of end-to-end learning for raw waveform signals by introducing learnable

continuous time-frequency atoms. The derivation of these filters is achieved by defining

a functional space with a given smoothness order and boundary conditions. From

this space, we derive the parametric analytical filters using cubic Hermite splines.

Their differentiability property allows gradient-based optimization. As such, one can

utilize any Deep Neural Network (DNN) with these filters. This enables us to tackle

in a front-end fashion a large-scale bird detection task based on the freefield1010

dataset known to contain key challenges, such as the dimensionality of the input data

(ą 100, 000) and the presence of additional noises: multiple sources and soundscapes.

This contribution is reported in chapter 3.
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Contribution II: Learnable Group Transform We propose a novel approach

to filter bank learning for time-series by considering spectral decompositions of signals

defined as a Group Transform. This framework allows us to generalize classical

time-frequency transformations such as the Wavelet Transform and efficiently learn

the representation of signals. While the creation of the wavelet transform filter-bank

relies on affine transformations of a mother filter, our approach allows for non-linear

transformations. The transformations induced by such maps enable us to span a

larger class of signal representations, from wavelet to chirplet-like filters. We propose

a parameterization of such a non-linear map such that its sampling can be optimized

for a specific task and signal. The Learnable Group Transform can be cast into a

Deep Neural Network. The experiments on diverse time-series datasets demonstrate

the expressivity of this framework, which competes with state-of-the-art performances.

This contribution is reported in chapter 4.

Contribution III: Learnable Invariant Distance K-means defines one of

the most employed centroid-based clustering algorithms with performances tied to the

data’s embedding. Intricate data embeddings have been designed to push K-means

performances at the cost of reduced theoretical guarantees and interpretability of the

results. Instead, we propose preserving the intrinsic data space and augment K-means

with a similarity measure invariant to non-rigid transformations. This enables (i) the

reduction of intrinsic nuisances associated with the data, reducing the complexity

of the clustering task and increasing performances and producing state-of-the-art

results, (ii) clustering in the input space of the data, leading to a fully interpretable

clustering algorithm, and (iii) the benefit of convergence guarantees. This contribution

is reported in chapter 5.
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Contribution IV: Learnable Lie Group for Manifold Approximation A

big mystery in deep learning continues to be the ability of methods to generalize

when the number of model parameters is larger than the number of training examples.

In this work, we take a step towards a better understanding of the underlying

phenomena of Deep Autoencoders (AEs), a mainstream deep learning solution for

learning compressed, interpretable, and structured data representations. In particular,

we interpret how AEs approximate the data manifold by exploiting their continuous

piecewise affine structure. Our reformulation of AEs provides new insights into their

mapping, reconstruction guarantees, as well as an interpretation of commonly used

regularization techniques. We leverage these findings to derive two new regularizations

that enable AEs to capture the inherent symmetry in the data. Our regularizations

leverage recent advances in the group of transformation learning to enable AEs to

better approximate the data manifold without explicitly defining the group underlying

the manifold. Under the assumption that the symmetry of the data can be explained

by a Lie group, we prove that the regularizations ensure the generalization of the

corresponding AEs. A range of experimental evaluations demonstrates that our

methods outperform other state-of-the-art regularization techniques. The contribution

is reported in chapter 6.

1.4 Organisation & Publications

The thesis is organized as follows. Chapter 2 covers the necessary background on

wavelets, group transform, and other specific tools that we use in this thesis. For a

review of machine learning and deep learning, the reader should refer to [26,27]. In

chapter 3 and 4, we explore the generalization and learnability of the wavelet transform.

While chapter 3 focuses on the learnability of the mother wavelet, chapter 4 allows
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for the learnability of another equivariant structure generalizing the assumed affine

symmetry in the data.

Then, in chapter 5 we provide a metric that is invariant to learnable non-rigid

deformations. That is, we address the problem of unsupervised invariance learning.

That metric allows us to provide a fully interpretable and theoretically guaranteed

clustering technique competing with state-of-the-art approaches.

Finally, in chapter 6, we propose to understand how autoencoders approximate

manifold to develop a regularization enforcing generalization guarantees. In particular,

such a regularization adapts the geometry of the manifold spanned by the autoencoder

to the group of symmetry governing the data as to provide an adaptive equivariant

interpolation method.

This manuscript is then concluded by a discussion in chapter 7.

Most of the work detailed and gathered in this thesis has led to work that was

published in peer-reviewed publications.

• “Learnable Group Transform”, Romain Cosentino, Behnaam Aazhang, ICML.

• “Spline Filters For End-to-End Deep Learning”, Randall Balestriero‹, Romain

Cosentino‹, Hervé Glotin, Richard Baraniuk (‹: equal contribution), ICML .

• “Spatial Transformer K-means”, Romain Cosentino, Randall Balestriero, Yanis

Bahroun, Anirvan Sengupta, Richard Baraniuk, Behnaam Aazhang, submitted

to ICML

• “Deep Autoencoders: From Understanding to Generalization Guarantees”, Ro-

main Cosentino, Randall Balestriero, Richard Baraniuk, Behnaam Aazhang,

MSML.
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• “Universal Frame Thresholding”, Romain Cosentino, Randall Balestriero, Richard

Baraniuk, Behnaam Aazhang, IEEE Signal Processing Letters

• “Sparse Multi-Family Deep Scattering Network”, Romain Cosentino, Randall

Balestriero, arXiv
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List of Symbols

R Real numbers

N Natural numbers

Dλ Dilation operator

G Group

G Generator of the group

TIG Lie algebra of the group G

d Group operation

GL The general linear group

ρ Group representation operator

O Orbit of a group

˝ Composition operator

E Encoder
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D Decoder

Tp.q Tangent space

γ Smooth curve on manifold

Jr.s Jacobian matrix

Hr.s Hessian matrix

dp, q Distance

L2 Space of square integrable functions

Cn Space of function with n continuous derivative

ψ Mother wavelet in the time domain

ψ̂ Mother wavelet in the frequency domain

J,Q Number of octave and number of wavelet per octave

ω Frequency axis

t Time axis
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2

Background & Pre-requisites

2.1 Wavelet Transform

”By oscillating it resembles a wave, but by being localized it is a wavelet”.

Yves Meyer

Wavelets were first introduced for high resolution seismology [28] [29] and then

developed theoretically by Meyer et al. [30]. Formally, wavelet is a function ψ P L2

such that:
ż

ψptqdt “ 0, (2.1)

it is normalized such that }ψ}L2 “ 1. There exist two categories of wavelets, the

discrete wavelets and the continuous ones. The discrete wavelets transform are

constructed based on a system of linear equation. These equations represent the

atom’s property. These wavelet when scaled in a dyadic fashion form an orthonormal

atom dictionary. Withal, the continuous wavelets have an explicit formulation and
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build an over-complete dictionary when successively scaled. In this work, we will focus

on the continuous wavelets as they provide a more complete tool for analysis of signals.

In order to perform a time-frequency transform of a signal, we first build a filter bank

based on the mother wavelet. This wavelet is names the mother wavelet since it will

be dilated and translated in order to create the filters that will constitute the filter

bank. Notice that wavelets have a constant-Q property, thereby the ratio bandwidth

to center frequency of the children wavelets are identical to the one of the mother.

Then, the more the wavelet atom is high frequency the more it will be localized in

time. The usual dilation parameters follows a geometric progression and belongs to

the following set:

Λ “
 

2j{Q, j “ 0, ..., J ˆQ´ 1
(

. Where the integers J and Q denote respectively the number of octaves, and the

number of wavelets per octave.

Having selected a geometric progression ensemble, the dilated version of the mother

wavelet in the time are computed as follows:

ψλptq “
1

λ
ψp
t

λ
q, @λ P Λ

, and can be calculated in the Fourier domain as follows:

ψ̂λpωq “ ψ̂pλωq, @λ P Λ

.

Notice that in practice the wavelets are computed in the Fourier domain as the

wavelet transform will be based on a convolution operation which can be achieved

with more efficiency. By construction the children wavelets have the same properties

than the mother one. As a result, in the Fourier domain:

ψ̂λ “ 0, @λ P Λ
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. Thus, to create a filter bank that cover all the frequency support, one needs a

function that captures the low frequencies contents. The function is called the scaling

function and satisfies the following criteria:

ż

φptqdt “ 1

.

Among the continuous wavelets, different selection of mother wavelet is possible.

Each one posses different properties, such as bandwidth, center frequency. This section

is dedicated to the development of the families that are important for the analysis of

diverse signals.

The Morlet wavelet The Morlet wavelet (Fig. 2.1) is built by modulating a

complex exponential and a Gaussian window defined in the time domain by,

ψM
ptq “ π´

1
4 eiω0te´

t2

2 , (2.2)

where ω0 defines the frequency plane. In the frequency domain, we denote it by ψ̂Mptq,

ψ̂M
pωq “ π´

1
4 e´

pω´ω0q
2

2 , @ω P R‹`, (2.3)

thus, it is clear that ω0 defines the center frequency of the mother wavelet.

With associated frequency center and standard deviation denoted respectively by

ωλic and ∆λiω, @j P t0, ..., JQ´ 1u are:

ωλic “
ω0

λi
,

∆λiω “
1

2λ2
i

.

Notice that for the admissibility criteria ω0 “ 6, however one can impose that zeros-

mean condition facilely in the Fourier domain. Usually, this parameter is assign to
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the control of the center frequency of the mother wavelet. Then, we are able to vary

the parameter ω0 in order to have different support of Morlet wavelet.

Figure 2.1 : On the left a Morlet wavelet in the time domain where the dashed line
is the imaginary part, the solid line is the real part, and the black envelope is the
complex modulus, on the right a Morlet wavelet in the frequency domain.

The Morlet wavelet, is optimal from the uncertainty principle point of view [31].

The uncertainty principle, when given a time-frequency atoms, is the area of the

rectangle of its joint time-frequency resolution. In the case of wavelet, given the

fact that their ratio bandwidth to center frequency is equal implies that this area

is equal for the mother wavelets and its scaled versions. As a result, because of its

time-frequency versatility this wavelet is wildly used for biological signals such as

bio-acoustic [32], seismic traces [33], EEG [34] data.

The Gammatone wavelet The Gammatone wavelet is a complex-valued wavelet

that has been developed by [35] via a transformation of the real-valued Gammatone

auditory filter which provides a good approximation of the basilar membrane filter [36].
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Because of its origin and properties, this wavelet has been successfully applied for

classification of acoustic scene [37]. The Gammatone wavelet (Fig. 2.2) is defined in

the time domain by,

ψG
ptq “

`

2πpi´ σqtm´1
` pm´ 1qtm´2

˘

e´2piσte2piit, (2.4)

and in the frequency domain by,

ψ̂G
pωq “

iωpm´ 1q!

pσ ` ipω ´ σqqm
. (2.5)

A precise work on this wavelet achieved by V. Lostalnen in [38] allows us to have an

explicit formulation of the parameter σ such that the wavelet can be scaled while

respecting the admissibility criteria:

σ2
“
r

2
m p1´ r

2
m qm2ξ2

2

˜d

1`
B2

p1´ r
2
m q2m2ξ2

´ 1

¸

,

where ξ is the center frequency and B is the bandwidth parameter. Notice that

B “ p1´ 2´
1
Q qξ with ξ “ 2π

1`2
1
Q

induce a quasi orthogonal filter bank. The associated

frequency center and standard deviation denoted respectively by ωλic and ∆λiω, @j P

t0, ..., JQ´ 1u are thus:

ωλic “ ξ,

∆λiω “ B.

For this wavelet, thanks to the derivation in [38], we can manually select for each order

m the center frequency and bandwidth of the mother wavelet, which ease the filter

bank design. An important property that is directly related to the auditory response

system is the asymmetric envelop, thereby the Gammatone wavelet is not invariant to

time reversal to the contrary of the Morlet wavelet that behaves as a Gaussian function.

Thus, for task such as sound classifications, this wavelet provides an efficient filter that
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Figure 2.2 : On the upper (bottom) left a m “ 4 (m “ 10) Gammatone wavelet in the
time domain where the dashed line is the imaginary part and the solid line is the real
part, on the upper (bottom) right a m “ 4 (m “ 10) wavelet in the frequency domain.
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will be prone to perceive the sound attack’s. Beside this suitable property for specific

analysis, this wavelet is near optimal with respect to the uncertainty principle. Notice

that, when mÑ 8 it yields the Gabor wavelet [39]. Another interesting property of

this wavelet is the causality, by taking into account only the previous and present

information, there is no bias implied by some future information and thus it is suitable

for real time signal analysis.

The Paul wavelet The Paul wavelet is a complex-valued wavelet which is highly

localized in time, thereby has a poor frequency resolution. Because of its precision in

the time domain, this wavelet is an ideal candidate to perform transient detection.

The Paul wavelet of order m ( Fig. 2.3) is defined in the time domain by,

ψP
ptq “

2mimm!
?

2m!π
p1´ itq´pm`1q (2.6)

and in the frequency domain by,

ψ̂P
ptq “

2m
a

mp2m´ 1q!
pωqme´ω, @ω P R‹`, (2.7)

With associated frequency center and standard deviation denoted respectively by ωλic

and ∆λiω , @j P t0, ..., JQ´ 1u are:

ωλjc “
2m` 1

2λj
,

∆λjω “

?
2m` 1

2λj
.

In [13] they provide a clear and explicit formulation of some wavelet families applied

the Paul wavelet in order to capture irregularly periodical variation in winds and sea

surface temperatures over the tropical eastern Pacific Ocean . In addition, it directly

represents the phase gradient from a single fringe pattern, yet providing a powerful

tool in order to perform optical phase evaluation [40].
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Figure 2.3 : On the upper (bottom) left a m “ 2 (m “ 6) Paul wavelet in the time
domain where the dashed line is the imaginary part and the solid line is the real part,
on the upper (bottom) right a m “ 2 (m “ 6) wavelet in the frequency domain.

2.2 Group Transform

In this section, we briefly describe the notion of group transform and its relation to the

wavelet transform. For further details on the group theoretical aspects we presently
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describe, the reader should refer to [41].

Definition 1. A group is a set G with a multiplicative operation d that respects

enclosure, identity element, inverse element, and associativity.

The representation of the group determines its action on a function space and

bridges the gap between group theory and linear algebra, allowing to compute the

transformation of a function following the rules induced by the specific group at hand.

The representation of a group can be thought as a far-reaching generalization of the

exponential function property, exppx` yq “ exppxq exppyq, @x, y P R [42]. In fact, it

is defined as,

Definition 2. A linear continuous representation ρ of a group G on the linear space

H is defined as

ρ : GÑ GLpHq, (2.8)

where GLpHq is the the group of linear map in H such that @g, g
1

P G

ρpg d g1q “ ρpgqρpg1q. (2.9)

For instance, let H be a vector space such as R3, the representation of the group

is induced by 3 ˆ 3 matrices. In this case, the operation on the right of (2.9) is a

matrix multiplication, where each matrix depends on the group elements g and g1.

This concept extends to linear operators acting on functional spaces.

As such, multiple transformations of a function by different elements of the group

is equal to the representation of the combination of the group elements applied to the

function.

This structure-preserving map defines the action of a group on elements of function

spaces. Group transforms such as STFT and CWT can be expressed in such a way
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by selecting a mother filter space and a group. The representation of the group in

the mother filter space provides an operator that takes as input an element of the

group and acts on the filter to transform it. A filter-bank can thus be created by

iterating this process with different group elements. Therefore, the selected group

carries the characteristics of the filter-bank and consequently, the group transform and

its time-frequency tiling. Notice that further properties such as the invariant measure

of the group and the resolution of the identity can be develop using the representation

of the group.

As an example of group transform, we consider the creation of a wavelet filter-bank

utilizing transformation group. Let’s denote by Gaff the affine group, the so called

”ax` b” group, where the elements pλ, τq P R‹` ˆ R, where R‹` “ p0,`8q, where the

multiplicative operation of the group d is defined by

pλ, τq d pλ1, τ 1q “ pλλ1, τ ` λτ 1q (2.10)

Let’s define by ρaff the representation of the affine group in L2pRq, i.e., ρaff : Gaff Ñ

GLpL2pRqq, such that ρaff is a homomorphism as per Definition 2. Its action on square

integrable function ψ is defined as

rρaffpgqψs ptq “
1
?
λ
ψp
t´ τ

λ
q, t P R, (2.11)

where pa, bq are respectively the dilation and translation parameters. The wavelet

filter-bank is built by transforming a mother filter, ψ by the representation ρaff for

specific elements of the group. A visualization of this approach for a Morlet wavelet

filter can be seen in Figure (4.3). The wavelet transform of a signal si P L
2pRq is
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achieved by

Wpsi, ψqpgpλ,τqq “
@

si, ρaffpgpλ,τqqψ̄
D

, @gpλ,τq P Gaff, (2.12)

“ psi ‹ ρaffpgpλ,0qqψq, @gpλ,0q P Gaff, (2.13)

where ψ̄ptq “ ψp´tq, x., .y denotes the inner product, ‹ the convolution, and ρaffpgpλ,τqqψ

the action of the operator ρaff, evaluated at the group element gpλ,τq, on the mother

filter ψ as per (2.11). In practice, the filter-bank is generated by sampling a few

elements of the group. For instance, in the case of the dyadic wavelet transform, the

dilation parameters follow a geometric progression of common ratio equals to 2. In

general, the translation parameter is sampled according to the scaling one [43]. Notice

that in the convolution expression (2.13), the translation parameter τ “ 0, in fact the

convolution operator ‹ acts as the translation one. In the case where the translation

parameter depends on the scaling one, a specific stride is used to perform the discrete

convolution.

Note that the STFT can be constructed similarly utilizing the Weyl-Heisenberg

group [44], whose representation on L2pRq consists of frequency modulations and

translations. More intricated group representations can be built as in [45] where the

combination of the affine group and Weyl-Heisenberg group is considered.

2.3 Lie Group Transformations

The learnability of the group governing the data is crucial to our approach. We present

here the major concepts that has been developed during the last decades regarding the

approximation of Lie group. In [46–50], they propose methods capable of discovering

the symmetry within the data alleviating the need for explicitly defining appropriate

equivalence classes for the data. In fact, in a simple computer vision dataset such as
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MNIST or in a music retrieval dataset such as GTZAN, there is more than translation

and rotation to characterize efficiently the data [51]. This section is dedicated to the

understanding of such approximation methods, which will be an important part of

our work on manifold approximation with generalization guarantees.

The approximation of Lie groups has been introduced by [46] and later extended

in [47, 52], and aims at learning the transformation operator underlying the data with

the assumption that the dataset is the result of the action of a group on a sample. This

framework has an essential place in neuroscience as there is evidence of an underlying

network of neurons enabling the detection of a class of equivalence via transformation

learning [49,53,54].

In the case of a Lie group, the dataset can be modeled according to the first-order

Lie equation

dxpθq

dθ
“ Gxpθq, (2.14)

where xpθq P Rd, θ is the coefficient governing the amount of transformation, and

G P Rdˆd. This first-order differential equation indicates that the variation of the data

is linear with respect to the data and depends on the infinitesimal operator G P TIG

where TIG denotes the Lie algebra of the group G, i.e., the tangent of the group at the

identity element. An introduction to group transformations can be found in [55]. The

solution of Eq. 2.14 is given by xpθq “ exppθGqxp0q.

One example of the orbit of a data with respect to a Lie group is the result of

the rotation on an initial point xp0q P R2, we have xpθq “ exppθGqxp0q, θ P R, G “
¨

˚

˝

0 ´1

1 0

˛

‹

‚

. In fact, where we recall that exp

¨

˚

˝

θ

¨

˚

˝

0 ´1

1 0

˛

‹

‚

˛

‹

‚

“

¨

˚

˝

cospθq ´ sinpθq

sinpθq cospθq

˛

‹

‚

.

The infinitesimal operator G is thus encapsulating the group information. For more

details regarding Lie group and the exponential map refer to [55].
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While the learnability of the exponential map is tedious, one can exploit its Taylor

series expansion to learn the infinitesimal operator. In fact, for a small ε we have

xpθ ` εq « pI ` εGqxpθq (2.15)

The operator G can thus be learned using data that are close to each other as they

result from small transformations and thus follow this approximation. Without this

form of supervision, the search for neighbor data is achieved by the nearest neighbor

algorithm, as in [48]. Note that in our case, we will consider multiple transformations,

each parametrized by a 1-dimensional Lie group, i.e. xpθq “
śh

k“1 exppθkGkqxp0q,

where θ P Rh. In that case the first order approximation around the identity element

of each group, as Eq. 2.15, becomes xpθ` εq « pI`
řh
k“1 εkGkqxpθq, where ε P Rh and

with εk being the transformation parameter associated to infinitesimal operator Gk.

2.4 Thin Plate Spline Interpolation

While the formalism described above is appropriate for learning general Lie group, we

thereby present an efficient parametrization of diffeomorphic-like transformations for

images. Being capable of transforming images with respect to non-rigid transformation

in an efficient way was crucial to perform image registrations. In our approach, we will

leverage one of image registration favorite tool, the Thin Plate Spline Interpolation

method,

Let’s consider two set of landmarks, the source ones νs “ tui, viu
`
i“1 and the

transformed νt “ tu
1
i, v

1
iu
`
i“1 where ` denotes the number of landmarks. The TPS aim

at finding a mapping F “ pF1, F2q, such that F pu, vq “ pF1pu, vq, F2pu, vqq “ pu
1, v1q,

that is, the mapping between two set of landmarks. The particularity of the TPS is that

it learns such a mapping by minimizing the interpolation term, and a regularization
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that consists in penalizing the bending energy.

The TPS optimization problem is defined by

min
F

N
ÿ

i“1

}pu1i, v
1
iq ´ F pui, viq}

2
` λ

ż ż
„

p
B2F

Bu2
q
2
` 2p

B2F

BuBv
q
2
` p
B2F

Bv2
q
2



dudv. (2.16)

In our model, the source landmarks are consider to be the coordinates of a uniform

grid. Also note that both the source landmarks and transformed ones are usually a

subsets of the set of coordinate of the images. For instance, for the MNIST dataset of

size 28 ˆ 28, the landmarks would be a grid of size ` ˆ `, where ` ă 28. While the

mapping is based on the landmark, it is then applied to the entire image coordinate.

In fact, F “ pF1, F2q is mapping R2 Ñ R2, where F1 (resp. F2) corresponds to the

mapping from px, yq to the first dimension x1 (resp. the second dimension y1).

The solution of the TPS optimization problem, Eq. 2.16, provides the following

analytical formula for F

F1pu, vq “u
1
“a

p1q
1 `a

p1q
u u`ap1qv v`

ÿ̀

i“1

w
puq
i Up|pui, viq´pu, vq|q, (2.17)

F2pu, vq “v
1
“a

p2q
1 `a

p2q
u u`ap2qv v`

ÿ̀

i“1

w
pvq
i Up|pui, viq´pu, vq|q, (2.18)

where |.| is the L1-norm, a1, au, av are the parameters governing the affine transforma-

tion, and wi are parameters responsible for non-rigid transformations as they stand

as a weight of the non-linear kernel U . The non-linear kernel U is expressed by

Uprq “ r2 logpr2q, @r P R`.

Based on the landmarks νs and νt, we can obtain these parameters by solving a

simple system of equation define by the following operations

L´1V “

»

—

–

pW pxq|a
pxq
1 a

pxq
x a

pxq
y q

T

pW pxq|a
pyq
1 a

pyq
x a

pyq
y q

T

fi

ffi

fl

. (2.19)
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where the matrix L P Rp``3qˆp``3q, is defined as

L “

»

—

–

K P

PT O

fi

ffi

fl

,K “

»

—

—

—

—

—

—

—

–

0 Upr12q . . . Upr1`q

Upr21q 0 . . . Upr2`q

. . . . . . . . . . . .

Upr`1q . . . . . . 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,P “

»

—

—

—

—

—

—

—

–

1 x1 y1

1 x2 y2

. . . . . . . . .

1 x` y`

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where rij “ |pui, viq ´ puj, vjq|, K P R`ˆ`
` , and V “

»

—

–

x11 x12 . . . x1`|0 0 0

y11 y12 . . . y1`|0 0 0

fi

ffi

fl

.

Note that, since the matrix L depends only on the source landmarks, and that

in our case these are unchanged, its inverse can be computed only once. The only

operation required to be computed for each data and each centroid is the matrix

multiplication L´1V providing the parameters of the TPS transformation, as per

Eq. 2.17, 2.18. Given these parameters, the mapping F can be applied to to each

coordinate of the image.

Now in order to render the image, one can perform bilinear interpolation as it

is achieved in . Besides, the bilinear interpolation will allow the propagation of the

gradient through any differentiable loss function.

Given an image x1 P Rn where n “ W ˆH, W denotes the width and H the height

of the image, and two sets of landmarks νs “ tui, viu
`
i“1 ,uniform grid coordinate of

x1, and νt “ tu
1
i, v

1
iu
`
i“1, the transformation of the uniform grid, which are subset of

the image coordinate, We are able to learn a mapping F “ pF1, F2q such that for

each original pixel coordinate, we have their transformed coordinates. In fact, given

any position pu, vq on the original image, the mapping F provides the new positions

pu1, v1q as per Eq. 2.17, Eq. 2.18.

Now, from this transformed the coordinates space, we can render an image x2 P Rn

using, as in [56], the bilinear interpolation function Γ : R2 ˆ Rn Ñ R which takes as
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input the original image x1 and the transformed pixel coordinates pu1, v1q, and outputs

the pixel value of the transformed image at a given pixel coordinate

x2pk, lq “ΓrF puk, vlq, x1s

“Γrpu1k, v
1
lq, x1s

“
ÿ

t,hPt0,1u

W
ÿ

i“1

H
ÿ

j“1

x1pi, jqδptu
1
k ` tu´ iq ˆ δptv

1
l ` hu´ jqpu

1
k ´ tu1kuq

δptq
pv1l ´ tv1luq

δphq

ˆ p1´ pv1l ´ tv1luqq
δpt´1q

p1´ pu1k ´ tu1kuqq
δph´1q,

where δ is the Kronecker delta function and t.u is the floor function rounding the real

coordinate to the closest pixel coordinate.
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3

Learnable Wavelet Transform

Numerous learning tasks can be formed in a pattern recognition framework. Some

of these applications are in speech, bioacoustic, and healthcare where the data have

been exposed to different types of nuisances. For example, colored noises, multiple

sources, measurements errors are a few to name. Recently, DNNs have provided

an end-to-end learnable pipeline (from raw input data to the final prediction). In

particular, convolutional-based DNNs are state-of-the-art in computer vision and other

areas [1, 57, 58]. This approach reduces the need of designing hand-crafted features

which involves an expert knowledge and a tedious search over the set of all possible

features. Such paradigm shift opens the door to novel algorithms that encapsulate

the learning of both, the features and the decision.

While providing a fully automated approach, DNNs’ performances depend on

the number of perturbations such as noise and inherent nuisances contained in the

dataset. This is mainly due to the use of greedy optimization schemes applied on a

very high-dimensional parametric model as well as the lack of explicit perturbation
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modeling in DNNs [59]. This effect is amplified with the dimensionality of the input

and the dimensionality of the filters.

Thus, it is particularly detrimental for time-series data, especially for bio-accoustic

signals. In fact, those signals can be sampled at a high-frequency rate (up to 2,000

kHz). To add, the signals are recorded for long durations and exhibited non-stationary

nuisances including sensor noise, background noise, and variant sources [60–62]. In

addition, features of interest can lie at many different frequencies and in small time

windows, adding complexity to the learning task.

Overall, current solutions to tackle bio-acoustic signals still rely on hand-crafted

features providing representations that are input to the DNNs. Considered representa-

tions are often based on a time-frequency framework as they stretch and reveal crucial

information embedded in the time-amplitude domain [63]. Moreover, decomposing

signals in the time-frequency plane leverage the capability of Convolutional Neural

Networks (CNNs). In fact, this feature is now considered as an image where CNNs

are known to perform [2]. In addition, the design and selection of the filter enabling

the time-frequency representation of the signal is directed by the prior knowledge on

the feature of interest.

For instance, in the case of wavelet transform, one selects the most suitable wavelet

family (i.e: Seismic data: Morlet wavelet, Speech: Gammatone wavelet [38,64]). Since

the generalization capability of handcrafted features is only proportional to the amount

of data witnessed by the designer. In [65, 66], they developed algorithms that were

able to automate the search for the optimal filter. However, these pre-processing

techniques were derived for goals not necessarily aligned with the current tasks at

hand (reconstruction, compression, classification) and thus do not provide a universal

solution. In this work, we propose to alleviate the limitation of DNNs by proposing a
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universal, learnable time-frequency representation that can be trained with respect to

the application.

In particular, our solution learns the optimal time-frequency representation for

the task and data at hand. This is done by learning time-frequency atoms with

respect to the loss function (which can be of reconstruction, compression, anomaly

detection, classification). The expression of these atoms corresponds to continuous

filters analytically derived by spline functions. The filters can be constrained to

inherit some pre-imposed properties such as smoothness and boundary conditions.

Since the unique analytical expressions of the filters are differentiable with respect

to their parameters, they can be optimized via first-order derivative methods such

as gradient descent. As such, they can be cast in a DNN layer and learned by using

backpropagation.

3.1 Outline of the Chapter and Contribution Summary

• We leverage hermite cubic spline interpolation to provide explicit expression of

learnable continuous filters (Sec. 3.3).

• Derive the properties of the newly introduced learnable wavelet filter as to charac-

terize the space and unicity of the basis the wavelets are built upon (Sec. 3.4).

• Allow to replace the filters of the first layer of Convolutional Neural Networks to

provide a robust and interpretable representation of the signal showing state-of-the-

art results on a bird detection task (Sec. 3.5).
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3.2 Related Work

To provide flexible time-frequency representations and avoid the selection of hand-

crafted filters, [17] proposed to learn the Mel-scale filters leading to Mel-Frequency

Spectral Coefficients (MFSC). This approach concludes to learning the linear combi-

nation of the spectrogram frequency filters instead of using triangular windows. In

this case, the underlying representation still relies on Fourier basis and thus inherits

the problem of a pre-imposed basis. On the other hand, [18] proposed the use of a

complex 1D convolutional layer followed by complex modulus and local averaging.

This was motivated by stating that a Gabor scalogram followed by complex modulus

and local averaging approximates MFSC coefficients [67]. Finally, with DNNs using

the raw waveforms as input, [68–70] demonstrated that, with careful model design,

one could reach results on parity with MFSC. Yet, the previously described work

was applied onto datasets that are obtained from controlled experiments containing

negligible noise and low-frequency sampling (leading to small length signals). As such,

their results do not reflect the reliability and robustness of their methods for general

real world-tasks.

3.3 Formalism

In this work, we propose to build continuous filters that can be extended to ren-

der time-frequency representation and specifically constant-Q transform [71]. This

transformation renders the signal into a time-frequency plane where the frequency

resolution decreases as the frequency increases. This transformation is directly related

to the mapping performed by the human cochlea [72]. Our approach is general enough

to produce any continuous filter as soon as a functional space to which they belong
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exist. For sake of clarity, we will present the development of smooth locally supported

oscillating filters, namely wavelet filters. As such, we provide the theoretical building

blocks enabling one to build its own continuous filters depending on the application.

As we will show for the specific case of wavelet filters, our method is based on

the definition of a functional space highlighting the properties of the wished filters.

Given the latter, first, we will perform its discretization in the same manner as finite

element methods for the variational problem of partial differential equations [73].

We build a discretization of the functional space such that as the number of knots

grows, any continuous filter from the original functional space can be approximated

arbitrarily closely. The filters are based on the linear combination of atoms that are

basis elements of the discrete space, Hermite cubic splines in our case. It results

in a filter that approximates a particular function in the infinite dimensional space.

This filter, learned with respect to the data and the task, will describe a physical

process underlying the signal while holding the properties of the functional space

that it approximates. Thus, we create a framework enabling one to have theoretical

guarantees based on the original functional space while being data and task driven.

Wavelets are square integrable localized wave functions [31]. Their ability to extract

subtle patterns within non-stationary signals is inherited from their compact support

[74]. In fact, wavelets are known to provide a robust time-frequency representation

for non-stationary signals as it is localized both in time and frequency, and close to

optimal from an uncertainty principle perspective with constant bandwidth to center

frequency ratio [75]. In fact, the higher the frequency is, the higher the wavelet is

precise in time (per contra, for low-frequency contents, wavelets are highly localized

in frequency but wide in time). Besides, given the nature of the time-series data (e.g.

non-stationary biological time-series), this embedding will encode the signal with only
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a few activated wavelet atoms resulting in a sparse representation [76].

While we will leverage spline interpolation techniques to sample the filters from

the functional space, our approach is independent of the spline wavelets setting.

As a matter of fact, spline wavelets, well developed by [77] are constructed upon

multiresolution analysis. These wavelets have an explicit expression in both the time

and frequency domain hence facilitating their computation. Besides, they span a wide

range of filter’s smoothness order [77]. Despite the detachment between our framework

and the one of spline wavelet, we can make an analogy between them. The ability of

spline wavelets to provide an analytical formula for discrete wavelets is analogous to

our proposal to provide the analytical continuous formula for the discrete filter-banks

of convolutional networks.

In our case, we provide a theoretical framework enabling one to build through a

data-driven process a continuous filter-bank spanning wavelet filters. Let define the

space of wavelets be

VL2
c
“

"

ψ P L2
cpRq,

ż

ψptqdt “ 0

*

, (3.1)

where L2
cpRq defines the space of square integrable functions with compact support.

We direct the reader to a complete review of spline operators in [78]. In order to

control the smoothness of the wavelets and thus of the sampled filters, we propose to

restrict our study to the space of zero-mean functions with compact support belonging

to Cn
c pRq

VCnc “

"

ψ P Cn
c pRq,

ż

ψptqdt “ 0

*

. (3.2)

Since continuous and differentiable functions with compact support are square inte-

grable, and a fortiori they belong to L8c , it is clear that VCnc Ă VL2
c
. Therefore, VCnc is

a space of function with compact support where the smoothness is described by the
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order n. In this work, we will restrain our study to the space VC1
c

which will provide

an efficient trade-off between smoothness characterization and tractability. In order

to build the discrete space denoted by V , we first proceed with the partition of the

support of the function, denoted by the segment ra, bs, in N ` 1 intervals of length

h “ b´a
N`1

, we thus defined as ti “ a` ih, @i P t0, ..., N ` 1u the N ` 2 points on the

mesh, where in particular t0 “ a and tN`1 “ b. We define the discretization of the

functional space VC1
c

as

V “

"

ψh P V̄ ,

ż

ψhptqdt “ 0

*

, (3.3)

where

V̄ “

"

ψh P SC1
c
, ψhpaq “ ψhpbq “

dψh
dt

“
dψh
dt

“ 0

*

, (3.4)

and

SC1
c
“

!

ψh P C
1
c pra, bsq, ψh|rti,ti`1s

P P3, i “ 1, . . . , N
)

, (3.5)

where P3 defines the space of order 3 polynomials and SC1
c

the space of cubic and

smooth splines.

Then, @ψh P V̄ , we have

ψh “
N
ÿ

i“1

θtiu
piq
`

N
ÿ

i“1

θ
1

ti
vpiq. (3.6)

One can easily explicitly derived this basis via the following reference functions

u0ptq “ p1` 2tqp1´ tq2, u1ptq “ p2´ 2tqt2, (3.7)

v0ptq “ tp1´ tq2, v1ptq “ ´p1´ tqt
2, (3.8)

then @i P t1, ..., Nu we have the following functions defined on their supports

upiqptq “ u0p
t´ ti´1

h
q, @t P rti´1, tis (3.9)

“ u1p
t´ ti
h
q, @t P rti, ti`1s, (3.10)
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and

vpiqptq “ v0p
t´ ti´1

h
qh, @t P rti´1, tis (3.11)

“ v1p
t´ ti
h
qh, @t P rti, ti`1s. (3.12)

Finally, from V̄ to V , we require that the integral of the polynomial is null over the

whole domain.

Note that the error of the approximation involved by the discretization of the

space by mean of cubic Hermite splines is of the order Oph4q [79]. As a matter of

fact, the smaller the segment of the mesh is, the closer the approximant will be to the

associated function in the functional space.

3.4 Properties

i Existence & Uniqueness

Lemma 1. Any function in SC1
c

is entirely and uniquely defined by its values and its

first order derivative values on each point of the mesh ti, @i P t0, ..., N ` 1u.

Proof. Let ψh P SC1
c
, without loss of generality we focus on ψh|rti,ti`1s

. It is clear that

given the fact that it is a polynomial of degree 3 on the interval rti, ti`1s it can be

expressed as

ψh|rti,ti`1s
“ apt´ tiq

3
` bpt´ tiq

2
` cpt´ tiq ` d. (3.13)

Let show that the coefficients a, b, c, d of the polynom are uniquely determined by

θti , θti`1
, θ
1

ti
, θ
1

ti`1
. Naturally, d “ θti and θ

1

ti
“ c, then, the coefficient a, b are defined

by the solution of the following problem
¨

˚

˝

h3 h2

3h2 2h

˛

‹

‚

¨

˚

˝

a

b

˛

‹

‚

“

¨

˚

˝

θti`1
´ θ

1

ti
h´ θti

θ
1

ti`1
´ θ

1

ti

˛

‹

‚

, (3.14)
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since det

¨

˚

˝

h3 h2

3h2 2h

˛

‹

‚

“ ´h4, the system has a unique solution.

Theorem 1. Let define upiq and vpiq as functions belonging to SC1
c

such as @i P

t0, ..., N ` 1u

upiqptjq “ δij, u
piq
1

ptjq “ 0, (3.15)

vpiqptjq “ 0, vpiq
1

ptjq “ δij. (3.16)

These functions form a basis of SC1
c
, and for all ψh P SC1

c
, we have,

ψh “
N`1
ÿ

i“0

pθtiu
piq
` θ

1

ti
vpiqq. (3.17)

Proof. We first show that the space SC1
c

is spanned by such functions. Let ψh any

function belonging to SC1
c
, et let z defined such as

z “
N`1
ÿ

i“0

pθtiu
piq
` θ

1

ti
vpiqq, (3.18)

it is clear that z belongs to SC1
c

as a linear combination of functions belonging to SC1
c
.

Then, for all j P t0, ...N ` 1u, we have zptjq “ θtj and dz
dt
“ θ

1

tj
. Thus z coincides with

the function ψh on all the points of the mesh. From Lemma 1, we know that z “ ψh,

thus upiq and vpiq span the space SC1
c
. Let’s now prove that this family is linearly

independent. Let’s assume ψh “
řN`1
i“0 pλiu

piq ` µiv
piqq “ 0, where λi, µi are scalar

coefficients. Then, for all j P t0, ...N ` 1u we have θtj “ λj “ 0 and θ
1

tj
“ µj “ 0.

Notice that the parameters θti , θ
1

ti
, correspond respectively to the value of the

function ψh and the derivative of the function ψh at the knot ti.

ii Space Dimensions

Corollary 1. The dimension of the space SC1
c

is 2pN ` 2q.
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The proof is immediate given that its basis forms a 2pN ` 2q functions as defined

in the previous theorem. We have built a basis for the space SC1
c
, it is simple to

analyze the basis of its subspaces, namely V̄ and V , where we have V Ă V̄ Ă SC1
c
.

From the space SC1
c

to V̄ we add Dirichlet and Neumann boundary conditions. These

conditions imply directly that any function in V̄ is C1pRq as the function in SC1
c

has a

compact support, it is null out of its support, then imposing that both the derivative

and the value on the boundary of the support is zeros implies the continuity and

differentiability on R.

Corollary 2. The dimension of the space V̄ is 2N .

Proof. Imposing the boundaries conditions remove 4 degrees of freedom from the

space SC1
c

as we only consider the internal part of the mesh.

Corollary 3.

V “

"

ψh P V̄ , Dj, θtj “ ´
ÿ

i‰j

θti

*

, (3.19)

and the dimension of V is 2N ´ 1.

Proof. While integrating ψh P V̄ and using Chasles’ relation to split the integral over

the mesh’s segments, the C1 property implies that the coefficients θ
1

ti
cancel each other.

Then the equality of the integral to zeros is equivalent to the condition following

condition Dj P t1, ..., Nu, θtj “ ´
ř

i‰j θti , which proves the first part of the corollary.

The dimension of the space is the dimension of V̄ minus one degree of freedom, which

completes the proof.

iii Filter-bank Derivation Another advantage of analytical filters resides in

the possibility to apply standard continuous operators such as time-dilation and

frequency-shift. Applying such operators to the primitive filter yields the creation of
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the filter-bank. From Lemma 1, it is clear that the set of parameters θ “ tpθti , θ
1

ti
q, @i P

t1, ..., Nuu defines uniquely the spline filter. We now denote our discretized filter ψh

by ψθ. For our experiments, we will consider the use of our filter formulation to derive

a filter-bank. This is done by only learning a mother filter which is then dilated to

build the collection of filters. Hence they all rely upon the same analytical form but

are dilated versions of each other. Let’s suppose we have a mother wavelet, ψθ P VL2
c
,

we propose an operation, a dilation, that will provide the analytic expression of our

redundant frame.

Let Dλ, a dilation operator defined by

Dλrψθsptq :“
1
?
λ
ψθ

´ t

λ

¯

. (3.20)

The scale parameter λ P R` allows for time dilation and frequency-shift and follows a

geometric progression for the case of wavelets. It is defined as λi “ 2
i´1
Q , i “ 1, . . . , JQ

where J P N, Q P N define respectively the number of octave and the number of

wavelets per octave. Taking Q ą 1 yields a redundant frame, which can be more

powerful for representation analysis [80]. We now denote this collection of scales as

Λ :“ tλi, i “ 1, . . . , JQu. Note that, in this work, this parameter will not be learned

but will be specified given a priori knowledge on the data.

3.5 Experiments

i Task In order to validate the proposed method in a supervised task, we provide

experiments on a large scale bird detection application. The data set is composed of

7, 000 field recording signals of 10 sec. sampled at 44 kHz from the Freesound [81]

audio archive representing slightly less than 20 hours of audio signals. The audio

waveforms are extracted from diverse scenes such as city, nature, train, voice, water,
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etc., some of which include bird songs. In this paper, we will focus on the supervised

bird detection task consisting of assigning the label 1 if the sound contains a bird

song and 0 otherwise. The labels regarding the bird detection task can be found

in freefield1010∗. Due to the unbalanced distribution of the classes (3 for 1), the

metric to evaluate these methods is the Area Under Curve (AUC) applied on a test

set consisting of 33% of the overall dataset.

ii Filters Implementation In order to implement such filters, we leverage the

Hermite cubic spline interpolation formula (3.6) between each of the knots of a specified

domain to obtain the sampled filter’s chunk per region (between two knots). This

takes the following form for a set of given filters

ψiptq “ p2t
3
´ 3t2 ` 1qθti ` pt

3
´ 2t2 ` tqθ

1

ti

` p´2t3 ` 3t2qθti`1
` pt3 ´ t2qθ

1

ti`1
(3.21)

ψθptq “
N
ÿ

i“0

ψi

ˆ

t´ ti
ti`1 ´ ti

˙

1ttPrti,ti`1su. (3.22)

Then, one derives the filter bank by using the above equation with different time

sampling according to the dilation from Λ. For each scale λi the time sample is refined

as t “ tt0, t0`
h
λi
, . . . , tNu. This process can be done independently for the calculation

of the real and imaginary coefficients. For the time-dilation operation, it suffices to

repeat this process with a finer or larger sampling grid where the Hermite cubic spline

interpolation occurs.

We provide in this section a step-by-step construction of the proposed spline filters.

First, in Fig. 3.1 we show the Hermite cubic spline that will be used as building blocks

our filters. As can be seen, it is a cubic polynomial defined on a closed interval. Its

∗http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge/
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parameters are uniquely defined by specifying the values of the polynomial at the

boundaries as well as the values of the derivative of the polynomial at the boundaries.

Then, in Fig. 3.2 we demonstrate how one leverages multiple Hermite cubic splines

Figure 3.1 : Hermite cubic spline: cubic polynomial on a close interval

to construct the spline filters. The first step is to concatenate the Hermite cubic

splines on a uniform partition of a closed interval. Each region leverages a Hermite

cubic spline and we denote as spline filter the piecewise Hermite cubic spline function.

In order to enforce the spline filter to be in the space of the considered filter (here

wavelets), one has to impose continuity and smoothness by constraining the values

that the Hermite cubic splines of each region, Fig. 3.3. In fact, by specifying that

neighboring Hermite cubic splines have the same values at the shared boundary we

reach smoothness. In addition, we require a localized and centered spline filter. This

is imposed by constraining the values of the Hermite cubic splines as demonstrated in

Fig. 3.4.

With the derived mother filter, it is now possible to sample the filter-bank that can
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Figure 3.2 : Concatenation of Hermite cubic splines

Figure 3.3 : Insuring continuity and smoothness of the filter

be used in place of standard filter of a convolutional layer of a deep network. To do

so, the analytical expression is simply evaluated over a uniform sampling grid. Each

grid will sample a filter and the filter-bank is sampled with different grids, each with

different number of points. The more points in the grid the more dilated will be the

filters.
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Figure 3.4 : From the smooth filter to wavelet

Figure 3.5 : From the mother wavelet to the filter-bank

iii Architecture Comparison To compare our method we propose different

training settings. For all the trained methods, the signals are subsampled by 2, leading

to a sampling rate of « 22 kHz. The learning was set for 120 epochs with the batch

size being 10 samples. The learning rate for each method has been cross-validated

with respect to the following learning rate grid: r0.0001, 0.005, 0.01, 0.05s. We did not
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perform data augmentation. We provide average and standard deviation for the AUC

evaluation score over 10 independent runs.

For each run, all the topologies are trained and tested on the same training and

testing set leading to a comparison of the different algorithms using the same data.

The different methods we will apply correspond to variants of the state-of-the-art

method proposed in [82]. The difference will lie in the first layer of the topology which

corresponds to either an MFSC transform, an unconstrained complex 1D convolutional

layer and finally the complex spline filters cast into the complex 1D convolutional

layer. For all cases, the number and sizes of the filters are identical. Everything else in

the DNN is kept identical between the methods. Also, both the Spline convolutional

layer and the convolutional layer were tested with two filter initialization settings:

random and Gabor.

Finally, due to the induced extra representation to store on GPU (namely Wψθrxspλ, tq)

prior applying the mean-pooling, the required memory for the Spline convolutional

and convolutional topologies is higher than the baseline which computes the MFSC

on CPU a priori. As a result, the mean-pooling applied to these cases is chosen twice

bigger for those topologies as opposed to the MFSC baseline, leading to a first layer

representation twice smaller. We briefly describe the different methods and choice of

parameters.

State-of-the-art method MFSC + ConvNet: The baseline and state-of-the-

art method [82] is based on MFSC: spectrogram with window size of 1024 and 30%

overlap, then mapped to the mel-scale by mean of 80 triangular filters from 50 Hz

to 11 kHz. The MFSC are computed by applying a logarithm. This time-frequency

representation is then fed to the following network: Conv2D. layer (16 filters 3ˆ 3),

Pooling (3ˆ 3), Conv2D. layer (16 filters 3ˆ 3), Pooling (3ˆ 3), Conv2D. layer (16
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Figure 3.6 : Training AUC on FreeField dataset - Initializing the CNN filters
with a Gabor filter-bank leads to increased performances as opposed to random
initialization. Yet, the final performances remain around 10 percentage point below
the other methods. The spline-based convolutional layer with random initialization
is able to reach similar performances with the MFSC features after only 20 epochs.
Finally, the Gabor initialized spline filter-bank starts on pair with the MFSC features
as can be seen for the first couple of epochs and is then able to overcome the MFSC
feature to rapidly obtain about 2 point of percentage increased performances. Hence
we can see the MFSC representation to be a satisfactory initializer yet not optimal.

filters 3ˆ 1), Pooling (3ˆ 1), Conv2D. layer (16 filters 3ˆ 1), Pooling (3ˆ 1), Dense

layer (256), Dense layer (32), Dense layer (1 sigmoid). At each layer a leaky ReLU is

applied following a batch-normalization. For the last three layers a 50% dropout is

applied.

ConvNet: In this method, we keep the architecture of state-of-the-art solution,

while replacing the deterministic MFSC by a regular complex convolutional layer,

followed by a complex modulus, a logarithm operation, and an average pooling,

providing as stated in [18] a learnable MFSC representation. The number of complex

filters for the first layer is 80 leading to a representation at the first layer equivalent to

the MFSC. We propose two initialization settings for the first layer of discrete filters:

random and Gabor. The complex convolution is simply implemented as a two channel

convolution corresponding to the real and imaginary part.
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Convolutional Filter with random initialization

Convolutional Filter with Gabor initialization

Spline Convolutional Filter with random initialization

Spline Convolutional Filter with Gabor initialization

Figure 3.7 : Filters extracted from the convolutional Layer and spline con-
volutional layer. The red and blue lines correspond to the complex and real part
respectively. Filters are presented in the left, middle, and right column respectively
corresponding to the initialization, during learning, and after learning. As can be
witnessed in the third row, even with random initialization, the smoothness and
boundary conditions are able to prevent too erratic filters. Our Spline configuration
initialized Gabor (the bottom row) through learning tends to a modified Gabor. In
fact, while a Gabor is roughly a complex sine localized via a Gaussian window, the
learned filter seems closer to a complex sine localized with a Welch window [83].
For the discrete convolutional filters, even with Gabor initialization (second row),
the nuisances (noise, and other nonstationary class independent perturbations) are
absorbed during learning even at early stages (middle column).

Spline Continuous Filter ConvNet: As for the Conv. Net model, we keep the

same architecture but replace the first layer with the proposed method. In particular,
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MFSC Representation

Convolutional Representation with random initialization

Convolutional Representation with Gabor initialization

Spline Convolutional Representation with random initialization

Spline Convolutional Representation with Gabor initialization

Figure 3.8 : First layer representations (time-frequency plane). Signals of class
1 (a bird is present). Each column depicts a different signal. Firstly, the amount of
sparsity (the L1-norm of the representation) often considered as a quality criterion
can be seen to be conserved with the spline convolutional. In addition, the events are
well localized in frequency as opposed to the convolutional representations depicting
events covering the whole axis and/or time dimension. The detected events seem to
be in accordance with all representations.

the first layer is a complex convolutional Layer with filters computed from our method.

Given the dataset context, we naturally impose the functional space for the filters

as the wavelet space. We use 80 filters based on the dilation operator developed

in Eq. 3.20 with J “ 5, Q “ 16. This layer is followed by a complex modulus, a



49

logarithm operation, and an average pooling. We propose two initializations as for the

previous method: random, and Gabor. For each filter, the number of cubic Hermite

polynomials respective the boundary condition is 15 as 16 knots are used. Since the

set of filters are derived by the dilation of one mother filter, the number of parameters

for this layer is 56 (14ˆ 4).

iv Complexity & Parameters The number of parameters for the spline convo-

lutional DNN is of 145, 073. The computation time for one batch of 10 examples is

0.44˘ 0.009 sec. For the convolutional DNN, the number of parameters is 227, 089

and the computation time for one batch is 0.42˘ 0.01 sec. In fact, given our current

implementation, the Spline convolutional layer first has to interpolate and generate

the filter-bank based on the parameters of the Hermite cubic spline and this filter-bank

(for real and complex parts) is then used in a convolutional layer.

This extra computation time of interpolation and filter-bank derivation thus takes

an additional 0.02 sec. per batch on average. Finally, for the state-of-the-art method,

the number of parameters is 374, 385 and the computation time for one batch is

0.01˘ 0.0004 sec. This comes from the input being directly the MFSC representation

as opposed to the raw waveform. The increased number of degrees of freedom comes

from having a time-frequency representation longer in time as opposed to the other

two topologies having larger time-pooling for memory constraints.

v Results Table 5.1 displays the average over the last 20 epochs of the 10 runs

for each method as shown in 3.6. We see that using classical discrete filters on the

raw waveforms fail to generalize and is seen to overfit starting at epoch 50. However,

performing MFSC representation drastically increases the accuracy. Finally, we see

that our approach is capable of performing equivalent results than the state-of-the-art
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Table 3.1 : Classification Results - Bird Detection - Area Under Curve metric (AUC)

Model (learning rate) AUC (mean˘std)

Conv. MFSC (0.01) 77.83 ˘ 1.34

Conv. init. random (0.01) 66.77 ˘ 1.04

Conv. init. Gabor (0.01) 67.67 ˘ 0.98

Spline Conv. init. random (0.005) 78.17 ˘ 1.48

Spline Conv. init. Gabor (0.01) 79.32 ˘ 1.53

in the case of random initialization and increases score by nearly 2 points when

initialized with Gabor filters.

3.6 Conclusion

In this work, we proposed a novel way to tackle end-to-end architecture for waveform

analysis. As a matter of fact, while current work mainly focus on the architecture, we

proposed to highlight the need of designing new learnable filters that can be used with

any differentiable loss function and architecture. This approach showed its potential

and robustness on a challenging audio scene dataset reaching new state-of-the-art

results. One challenging issue that remains for both classical discrete filters as well as

our filters is their size when one needs to capture low frequency components. As a

matter of fact, in our case we reduced the number of degrees of freedom compared

to classical filters, however the size of the filters remain the same leading to the

same computational power needs. The problem of filter design becomes a problem of

functional space design. While we exploited the finite impulse response filter type, the

reduction of the dimension of filters capable of capturing low frequency component
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can be achieved via infinite impulse response filters. Another point to be tackled is

the learning of the dilation operator leading to the filter bank. As a matter of fact, as

we have shown in Sec. 3.4 iii this operator can be written

Dλrψsptq :“
1
?
λ
ψθ

´ t

λ

¯

,

where instead of constraining the parameter λ to follow a geometric progression we can

learn it as it is a differentiable parameter. It would lead to a redundant dictionary that

would be dilated according to the data and the task at hand, thus not capturing certain

frequency bands that can be disregarded with respect to the task at hand. Finally,

other operators can be introduced and learned. For instance, the frequency-chirp

operator proposed by [84] and defined as,

Ccrψθsptq “ exp
!

i2π
c

2
t2
)

ψθptq, c P R,

allows to introduce variation, through time, of the frequency content. Thus leading to

even more flexible filtering operations.
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4

Learnable Group Transform

To this day, the front-end processing of time-series remains a keystone toward the

improvement of a wealth of applications such as health-care [85], environmental

sound [86, 87], and seismic data analysis [88]. The common denominator of the

recorded signals in these fields is their undulatory behavior. While these signals share

this common behavior, two significant factors imply the need of learning the repre-

sentation: piq time-series are intrinsically different because of their physical nature,

piiq the machine learning task can be different even within the same type of data.

Therefore, the representation should be induced by both the signal and the task at hand.

A common approach to performing inference on time-series consists of building a Deep

Neural Network (DNN) that operates on a spectral decomposition of the time-series

such as wavelet transform (WT) or Mel Frequency Spectral Coefficients (MFSC).

These decompositions represent the signal. While the use of these decompositions is

extensive, we show in Section 4.2 their inherent biases and motivate the development of
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a generalized framework. The selection of the judicious transform is either performed

by an expert on the signal at hand, or by considering filter selection methods [89–91].

However, an inherent drawback is that the selection of the filters decomposing the

signals is often achieved with criteria that do not align with the task. For instance, a

selection based on the sparsity of the representation while the task is the classification

of the signals. Besides, these selection methods and transformations require substantial

cross-validations of a large number of hyperparameters such as mother filter family,

number of octaves, number of wavelets per octave, size of the window [76,92].

In this work, we alleviate these drawbacks by proposing a simple and efficient

approach by considering the generalization of these spectral decompositions. They

consist of taking the inner product between filters and the signals. From one decom-

position to the other, only the filter bank differs. The filters of well-known spectral

decompositions, such as the short-time Fourier transform (STFT) and the continuous

wavelet transform (CWT) are built following a particular scheme. Each filter is the

result of the action of a transformation map on a selected mother filter, e.g., a Gabor

filter. If the transformation map is induced by a Group, the representation is called a

Group Transform (GT), and both the group with the mother filter characterize the

decomposition.

4.1 Outline of the Chapter and Contribution Summary

• We generalize common group transforms that are used to decompose signals in a

multi-scale fashion replacing the commonly used affine group by a subgroup of the

group of diffeomorphisms. (Sec. 4.3).

• Draw the connection between filters that can be learned by our framework and

commonly observed waveform in biological time-series (Ref. 4.4 - i).
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• Provide the equivariance properties of the representation and how it differs from

the equivariance induced by the utilization of the affine group (Ref. 4.4 - vii).

• We propose an efficient way to learn the appropriate elements of the group of

diffeomorphisms (Sec. 4.5 - vii).

• We show results competing with state-of-the-art methods on different datasets

(Sec. 4.5 - v - vi).

4.2 Related Work

One approach to represent the data consists of building equivariant-invariant represen-

tations. For instance, in [10,93] they propose a translation-invariant representation,

the Scattering Transform, which is stable under the action of small diffeomorphisms.

In [59, 94], they focus on equivariant-invariant representations for images, which

reduces the sample complexity and endow DNN’s layers with interpretability.

The closest work to ours consist of learning the filter bank in an end-to-end

fashion. [17,86,95,96] investigated the learnability of a mother filter such that it can be

jointly optimized with the DNN. In order to build the filter bank, this learnable mother

filter is transformed by deterministic affine maps. The representation of the signal

is obtained by convolving the filter bank elements with the signals. Recently, [97]

investigated the learnability of the affine transformations, that is, the sampling of the

dilation parameter of the affine group inducing the wavelet filter bank. Optimized

jointly with the DNN, their method allows for an adaptive transformation of the

mother filter. Our work generalizes this approach and provide its theoretical properties

and building blocks.

One of the main drawbacks of these approaches using time-frequency representation
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Figure 4.1 : Time-Frequency Tilings at a given time τ : (left) short-time Fourier
transform, i.e., constant bandwidth, (middle) wavelet transform, i.e., proportional
bandwidth, (right) Learnable Group Transform, i.e, adaptive bandwidth, the ”tiling”
is induced by the learned non-linear transformation underlying the filter bank decom-
position.

is that the filter bank induces a bias that might not be adapted to the data. This bias

can be understood by considering the time-frequency tiling of each GT. It is known

that the spread of a filter and its Fourier transform are inversely proportional as per

the Heisenberg uncertainty principle [98].

Following this principle, we can observe that in the case of STFT (respectively

WT with a Gabor wavelet), at a given time τ , the signal is transformed by a window

of constant bandwidth (respectively proportional bandwidth) modulated by complex

exponential resulting in a uniform tiling (respectively proportional) on the frequency

axis, Figure 4.1.

This implies that, for instance, in the case of WT, the precision in frequency

degrades as the frequency increases while its precision in time increases [98]. Thus,

WT is not adapted for fast-varying frequency signals [99]. In the case of STFT, the

uniform tiling implies that the precision is constant along the frequency axis.
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4.3 Formalism

Common time-frequency filter banks are built by transforming a mother filter that

we denote by ψ. We consider the transformations of this mother filter defined as

ψ ˝ g, g P F, where F defines the functional space of the transformation and ψ ˝ g

denotes the function composition. Note that in signal processing, such a transformation

is called warping [100,101]. Given a space F, the filter bank with K filters is created by

first, sampling K transformation maps from F and then, by transforming the mother

filter such as

tψ ˝ g1, . . . , ψ ˝ gK |g1, . . . , gK P Fu .

Now, let’s denote a signal by s P L2pRq, we will consider the representation of the

signal as the result of its convolution with the filter bank elements and denote it by

Wrs, ψspg, .q “ rWrs, ψspg1, .q, . . . ,Wrs, ψspgK , .qs
T ,

where

Wrs, ψspg, .q “ si ‹ pψ ˝ gq, @g P F,

with ‹ the convolution operator and p.q corresponds to the time axis.

Therefore, the properties of the representation are carried by the mother filter

ψ, and space F. In this work, we focus on the warping that generalizes common

time-frequency decompositions as well as the properties carried by the associated filter

bank, in particular we consider nonlinear warping. We provide a parameterization

of such a warping and show how one can efficiently learn these parameters. The

decomposition of the signal by this learned filter bank defines a Group Transform.

The overall building blocks of the LGT, and its application on a signal is depicted in

Figure 4.2.
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Figure 4.2 : Learnable Group Transform: (left) generating the strictly increasing
continuous functions gθk with parameters θk, @k P t1, . . . , Ku, where K denotes the
number of filters in the filter bank. The x-axis is the time variable and the y-axis the
amplitude. (middle) The mother filter, ψ (presently a Morlet wavelet), is composed
with each warping function gθk , where the imaginary part is shown in red and the
real part in blue. The x-axis represents the time and y-axis the amplitude of the
filter. These transformations lead to the filter bank (only the kth element is displayed).
Then, the convolutions between the filter bank elements and the signal si lead to the
LGT of the signal. The black box on the LGT representation (right) corresponds to
the convolution of the kth filter with the signal. In this figure, the horizontal axis
corresponds to the time, each row corresponds to the convolution with a filter of the
filter bank, and the color displays the amplitude of each inner product. Notice that a
complex modulus has been applied to the LGT. The strictly increasing and continuous
piecewise linear functions can be learned efficiently by back-propagating the error
induced by the generated GT.
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Figure 4.3 : Transformation of a Morlet Wavelet: For all the filters, the real
part is shown in blue and the imaginary in red. (left) Morlet wavelet mother filter.
(middle) Transformation of the mother filter with respect to an affine transform:
the dilation parameter 0 ă a ă 1, i.e., contraction, and translation b “ 0, i.e., no
translation. (right) Increasing and continuous transformation of the mother filter for
some randomly generated function g P C0

incpRq leading to chirplet-like filter.

We propose to transform the mother filter by means of a subset of invertible maps

on R. Instead of the affine warping used in WT, we propose the use of a more general

transformation map space F. In particular, we will use the space of strictly increasing

and continuous functions defined as

C0
incpRq “

 

g P C0
pRq|g is strictly increasing

(

,

where C0pRq defines the space of continuous functions defined on R. This set of

functions is composed of invertible maps which is crucial in order to derive invariance

properties as well as avoid artifacts in the transformed filters.

The transformation of a mother filter ψ is defined by the linear operator ρincpgq

such as

ρincpgqψ “ ψ ˝ g, g P C0
incpRq,

By construction, this space allows for non-linear transformations of a mother filter.

An example of such a warping can be visualized in Figure 4.3.

In the next paragraph, we introduce some filters that can be recovered using this

transformation map. For some of these filters, the estimation of their parameter has

been investigated [99,102,103], however, our method provides two benefits, first, the



59

Table 4.1 : Recovering well-known filters

g P C0
incpRq ψ ˝ g

Affine Wavelet

Quadratic Convex Increasing Quadratic Chirplet

Quadratic Concave Decreasing Quadratic Chirplet

Logarithmic Logarithmic Chirplet

Exponential Exponential Chirplet

generalization which alleviates the need of selecting a specific type of filter bank,

second, the scalability of our method leading to a learnable filter bank.

4.4 Properties

i Recovering Standard Filter Banks The space C0
incpRq allows us to span well

known transformations. In particular, a filter can inherit a particular chirpyness∗ from

nonlinear transformations belonging to C0
incpRq.

This property is interesting for the decomposition of non-stationary and fast-

varying signals. In fact, various signals include such an intricate feature, such as bird

song, speech, sonar system [105]. Among the possible transformations induced on a

mother filter by the mapping g P C0
incpRq, some of them correspond to well-known

filters described in Table 4.1.

For instance, let’s consider the case where F is the space of linear function with

positive slope and defined as @g P F, gptq “ t
λ
, where λ is positive. In this case,

we recover the transformation leading to the dilation or contraction of a wavelet

∗Chirpyness is defined as the rate of change of the instantaneous frequency of the filter [104].
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mother filter. The filter bank is then generated by sampling a few elements of the

group. In the case of the dyadic wavelet transform, the dilation parameters follow a

geometric progression of common ratio equals to 2, such as λk “ 2pk´1q{Q, k “ 1, ..., K,

where K “ J ˆQ, with J and Q are the number of octaves and wavelets per octave,

respectively. The filter bank obtained is
!

ψp t
λ1
q, . . . , ψp t

λK
q

)

, and the representation

of signal is obtained by convolutions between the filter bank elements and the signal.

Equivalently, the space F can be defined as affine, and the WT is achieved by inner

products between the filters and the signal.

While the WT filter bank can easily be recovered, our modelization of the filter

bank does not allow for elements with a number of oscillations that differ from the

mother filter. To enable such a transformation, another function h with a number of

oscillations that differs from the mother filter could be multiplied with the mother

filter, such that hˆ ψ ˝ g provides the elements of the filter bank. Therefore, STFT is

not part of the representations that such a framework encompasses.

In this work, we also consider the case where the representation of the signal is

performed by convolutions. This representation has equivariance properties that are

induced by the convolutional operator as well as the space C0
incpRq.

ii Equivariance Properties of the learnable group transform The equivariance-

invariance properties of signal representations play a crucial role in the efficiency of

the algorithm at hand as they define how some variations in the signal may or may

not be captured [106]. These properties can be intuitively explained and analyzed by

considering the representation of the signal as a function of group elements. Details

regarding the background of group theory and its link with wavelet analysis are

provided in Sec. 2.2. Considering the mapping ρinc “ ψ ˝ g, g P C0
incpRq, as a group
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action on the space of the mother filter, i.e., L2pRq, or more precisely, a representation

of a group on L2pRq, we can develop the equivariance properties of the LGT.

Proposition 1. ρinc is a group representation of Ginc on L2pRq.

Proof. Let g, g1 P Ginc, then

rρincpg
1
f gqψsptq “ ψppg1 f gqptqq

“ ψpg1pgptqqq

and,

rρincpg
1
qρincpgqψsptq “ rρincpg

1
qψspgptqq

“ ψpg1pgptqqq

which verifies the homogeneity property. The linearity is implied by,

rρincpgqpκψ1 ` ψ2qsptq “ pκψ1 ` ψ2qpgptqq “ κψ1pgptqq ` ψ2pgptqq, @t P R.

where ψ1, ψ2 P L
2pRq and κ P R. It is in fact a Koopman operator [107].

We can consider the set C0
incpRq with the operation d consisting of the composition

of functions to form the group of strictly increasing and continuous maps denoted by

Ginc. This formulation eases the derivation of the equivariance properties of group

transforms which can be defined for a group G for all g, g1 P G by

Wrρpg1qsi, ψspg, .q “Wrsi, ψsppg
1
q
´1
d g, .q.

Transforming the signal with respect to the group G and computing its representation

is equal to computing the representation of the signal and then transforming the

representation. If G corresponds to the affine group, the associated group transform is
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the WT, which is equivariant to scalings and translations. One can already notice

that since Wp., .q employs convolution to decompose the signal, for any group G, the

LGT is translation equivariant. We now focus on more specific equivariance properties

of the LGT by defining the local equivariance for all g, g1 P G by

Dτ P R,Wrρpg1qsi, ψspg, τq “Wrsi, ψsppg
1
q
´1
d g, τq.

That is, the representation of a local transformation of a signal in a window centered

at τ is equal to the transformation of the representation at τ . The size of the

window depends on the support of the filter. As a matter of fact, assuming that the

representation of Ginc is unitary, we have the following proposition.

Proposition 2. The LGT is locally equivariant with respect to the action of the group

Ginc.

Proof. Let τ P R and g, g1 P Ginc,

Wrρincpg
1
qsi, ψspg, τq “

@

ρincpg
1
qsi, ρincpgqψτ

D

“
@

si, ρincpg
1
q
´1ρincpgqψτ

D

“
@

si, ρincpg
1´1
qρincpgqψτ

D

“
@

si, ρincpg
1´1
d gqψτ

D

“Wrsi, ψspg
1´1
d g, τq,

where ψτ ptq “ ψτ p´tq denotes the filter ψ centered at position τ . Then, there is not

guarantee that this can be extrapolated to all τ P R, i.e., in the convolution case,

except in the affine case where the global transformation matches the iteration of a

local one.
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As we mentioned, a filter bank of K filters is created by sampling the space

C0
incpRq. We now show how this sampling can be achieved efficiently by proposing a

parametrization of functions belonging to such a space.

4.5 Experiments

i Sampling the group In this work, we are specifically interested in the learn-

ability of such an increasing and continuous map. We provide a way to sample this

space via its parameterization. We use piecewise affine functions constrained such

that they belong to the class of strictly increasing and continuous functions, which

can be efficiently performed by sorting the output of a 1-layer ReLU NN.

To implement the non-linear mapping induced by the representation of the piecewise

affine group, we use the fact that a piecewise continuous function can be re-written as

a 1-layer ReLU Neural Network [108,109].

Besides the computational advantages of such relationships and the differentiable

property of the weights of the NN, this model is a knot-free piecewise affine mapping,

providing more flexibility regarding the warping function. The knot-free mapping

implies that instead of having each affine piece of the function with uniform support, it

can vary. As such, this flexibility induces better approximation property [110]. Then,

the increasing constraint on the mapping is implemented by sorting the output of the

NN. This operation has a Opn log nq complexity and is applied on the warped time,

which is usually of size « 29.

ii Objective Function and Learning: Let θk be the parameters of each increas-

ing piecewise affine map computed by the NN and we denote by gθk the sorted outputs
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of the NN. The LGT filter bank has the following form

tψ ˝ gθ1 , . . . , ψ ˝ gθKu .

Given a set of signals tsi P L
2pRquNi“1 and given a task specific loss function L, we aim

at solving the following optimization problem

min
Θ

N
ÿ

i“1

L
`

F pWrsi, ψspgΘ, .qq
˘

,

where Θ “ pθ1, . . . , θKq, N denotes the number of signals, K the number of filters, F

represents a DNN, and we recall that

Wrsi, ψspgΘ, .q “ rWrsi, ψspgθ1 , .q, . . . ,Wrsi, ψspgθK , .qs
T .

Since, the gθk are computed by sorting the output of the NN and the parameters can

be learned by a gradient descent optimization jointly with the parameters of F .

iii Model Constraints to Reduce Aliasing The nonlinearity of the transfor-

mation might reduce the localization of the filter in the frequency domain, and produce

aliasing. For some applications, the localization of each filter in the frequency domain

is crucial, e.g., the bird detection task in Section v.

In order to limit the possible aliasing induced by the piecewise increasing mappings

applied to the mother filter, we propose different settings. Besides, these constraints

also impact the type of filter bank our method can reach.

First, we propose a normalization of the frequency of the transform filter (denoted

in the result tables by nLGT). This normalization helps to reduce the aliasing induced

by the filters. We propose to use f̂ , the normalized frequency f with respect to the

maximum slope of the piecewise affine mapping. For instance, in the case of a Morlet

wavelet, the normalization is as follows

pψ ˝ gθqptq “ π´
1
4 exp

´

2πjf̂gθptq
¯

exp

ˆ

´
1

2
pgθptq{σq

2

˙

,
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Figure 4.4 : Learnable Group Transform Filters for the Artificial Data - Each
row displays two selected filters (left and right sub-figure) for different settings: (from
top to bottom) nLGT, cLGT, cnLGT. For each subfigure, the left part corresponds to
the filter before training and the right part to the filter after training. The blue and
red denote the real and imaginary parts of the filters, respectively.

where f̂ “ f{maxlPt1,...,nu al, where n denotes the number of pieces of the piecewise map,

and al the slope of each piece, j is the imaginary unit, and σ is the width parameter

defining the localization of the wavelet in time and frequency. This normalization

will be performed for each sample of the group, and thus for each generated filter

k P t1, . . . , Ku of the filter bank.

Second, we constrain the domain of the piecewise affine map (denoted in the result

tables by cLGT). In the following experiments, we propose a dyadic constraint of the

domain as in the WT. The support of the filter is close to the support of a wavelet

filter bank. However, the envelope of the filter and the instantaneous frequency still

has a learned chirpyness.
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Figure 4.5 : Artificial Dataset: (Top Left) Ascending Chirp, (Top Right) Descending
Chirp, i.e. class 0, (Bottom Left) Ascending Chirp plus Gaussian noise, (Bottom
Right) Descending Chirp plus Gaussian noise, i.e., class 1. The samples contained in
the training and testing set are higher in frequency and close to the Nyquist frequency.

Table 4.2 : Testing Accuracy for the Chirp Signals Classification Task

Representation ` Non-Linearity ` Linear Classifier Accuracy

Wavelet Transform (64 Filters) 53.01 ˘ 5.1

Short-Time Fourier Transform (64 Filters) 65.1 ˘ 11.9

Short-Time Fourier Transform (128 Filters) 86.6 ˘ 9.8

Short-Time Fourier Transform (512 Filters) 100 ˘ 0.0

LGT (64 Filters) 92.9 ˘ 4.0

nLGT (64 Filters) 95.7 ˘ 3.3

cLGT (64 Filters) 56.8 ˘ 1.6

cnLGT (64 Filters) 100.0 ˘ 0.0
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iv Classification of chirp signals We present an artificial dataset that demon-

strates how a specific time-frequency tiling might not be adapted or would require

cross-validations for a given task and data. To build the dataset, we generate one

high frequency ascending chirp and one descending high-frequency chirp of size 8192

following the chirplet formula provided in [84]. Then for both chirp signals, we add

Gaussian noise samples (100 times for each class), see Fig. 4.5. The task aims at being

able to detect whether the chirp is ascending or descending. Both the training and

test sets are composed of 50 instances of each class. For all models, set the batch

size to 10, the number of epochs to 50. Each experiment was repeated 5 times with

randomly sampled train and test set, and the accuracy was the result of the average

over these 5 runs. Each GT is composed with a complex modulus, and the inference

is performed by a linear classifier. For the case of WT and LGT, the size of the filters

is 512.

As we can observe in Table 5.1, the WT, as well as the STFT with few numbers of

filters, perform poorly on this dataset. The chirp signals to be analyzed are localized

close to the Nyquist frequency, and in the case of WT, as illustrated in Figure 4.1, the

wavelet filter bank has a poor frequency resolution in high frequency while benefiting

from a high time resolution. In this experiment, we can see that this characteristic the

WT time-frequency tiling implies that through time, the small frequency variations of

the chirp are not efficiently captured. In the case of STFT, as the number of filters

decreases, the frequency resolution is altered. Thus, this frequency variation is not

captured. Using a large window for the STFT increases the frequency resolution of the

tiling and thus enables to capture the difference between the two classes. In the LGT

setting, the tiling has adapted to the task and produces good performances except for

the cLGT model. In fact, the domain of the piecewise linear map is constrained to be
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dyadic, and thus the adaptivity of the filter bank is reduced, which is not suitable for

this specific task.

This experiment shows an example of signals that are not easily classified by

neither the proportional-bandwidth nor the constant-bandwidth without considering

cross-validation of hyperparameters.

Table 4.3 : Testing AUC for the Bird Detection Task

Representation + Non-Linearity + Deep Network AUC

MFSC (80 Filters) 77.83 ˘ 1.34

Conv. Filter init. random (80 Filters) 66.77 ˘ 1.04

Conv. Filter init. Gabor (80 Filters) 67.67 ˘ 0.98

Spline Conv. init. random (80 Filters) [86] 78.17 ˘ 1.48

Spline Conv. init. Gabor (80 Filters) [86] 79.32 ˘ 1.52

LGT (80 Filters) 78.41 ˘ 1.38

nLGT (80 Filters) 75.50 ˘ 1.39

cLGT (80 Filters) 79.14 ˘ 0.83

cnLGT (80 Filters) 79.68 ˘ 1.35

v Supervised Bird Detection Task We now propose a large scale dataset to

validate the suitability of our model in a noisy and realistic setting. The dataset is

extracted from the Freesound audio archive [81]. This dataset contains about 7, 000

field recording signals of 10 seconds sampled at 44 kHz, representing slightly less than

20 hours of audio signals. The content of these recordings varies from water sounds

to city noises. Among these signals, some contain bird songs that are mixed with

different background sounds having more energy than the bird song. The given task
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Figure 4.6 : Learnable Group Transform - Visualization of a sample containing
a bird song (cLGT), where (left) at the initialization and (right) after learning. For
each subfigure, the x-axis corresponds to time and the y-axis to the different filters.
Notice that the y-axis usually corresponds to the scale or the center-frequency of the
filters. We can observe that compared to the initialization, the learned representation
is sparser and the SNR is increased. Besides, the representation is less redundant in
the frequency axis.

Figure 4.7 : Learnable Group Transform Filters for the Bird Detection Data -
Each row displays two selected filters (left and right sub-figure) for different settings:
(from top to bottom) LGT, nLGT, cLGT. For each subfigure, the left part corresponds
to the filter before training and the right part to the filter after training. The blue
and red denote the real and imaginary parts of the filters, respectively.

is a binary classification where one should predict the presence or absence of a bird

song. As the dataset is unbalanced, we use the Area Under Curve (AUC) metric. The
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results we propose for both the benchmarks and our models are evaluated on a test

set consisting of 33% of the total dataset.

In order to compare with previously used methods, we use the same seeds to sample

the train and test set, the batch size, i.e., 10, and the learning rate cross-validation grid

as in [86]. For each model, the best hyperparameters are selected, and we train and

evaluated randomly 10-times the models with early stopping, the results are shown in

Table 4.3. While the first layer of the architecture has a model-dependent representation

(i.e., MFSC, LGT, Conv. filters,...), we use the state-of-the-art architecture defined

in [82]. Notice that this specific DNN architecture has been designed and optimized

for MFSC representation.

As we can see in Table 4.3, the case without constraints (LGT) reaches better accu-

racy than the domain expert benchmark (MFSC). Besides, including more constraints

on the model (cnLGT) reduces overfitting and further improve results to outperform

the other benchmarks. One can also remark that both the LGT framework and

learnable mother wavelet reach almost the same accuracy, while they both outperform

the hand-crafted feature as well as the unconstrained convolutional filters. One can

notice that all the learned filters in Figure 4.7 contain either an increasing chirp or

a decreasing chirp, corresponding respectively to the convexity or concavity of the

instantaneous phase of the filter and thus of the piecewise linear map. Such a feature

is being used and is crucial in the detection and analysis of bird song [111].

vi Classification of haptics data The Haptics dataset is a classification problem

with five classes and 155 training and 308 testing samples from the UCR Time Series

Repository [116], where each time-series has 1092 time samples. As opposed to the

bird dataset where features of interests are known, and competitive methods have



71

Figure 4.8 : Learnable Group Transform Filters for the Haptics Data - Each row
displays two selected filters (left and right sub-figure) for different settings: (from top
to bottom) nLGT, cLGT, cnLGT. For each subfigure, the left part corresponds to the
filter before training and the right part to the filter after training. The blue and red
denote the real and imaginary parts of the filters, respectively.

been established, there is no expert knowledge regarding the specific signal features

(see Table 4.4). One can see that our method outperforms other approaches in the

cLGT setting while performing the classification with a linear classifier as opposed

to other methods using DNN algorithms. This demonstrates the capability of our

method to transform the data efficiently while not requiring a further change of basis

as well as knowledge on the features of interests. Besides, even in a small dataset

regime, our approach is capable of learning an efficient transformation of the data.

We provide in Figure 4.8 the visualization of some sampled filters before and after

learning. As opposed to the supervised bird dataset, we can see that the filters do not

coincide with well-known filters that are commonly used in signal processing. This is



72

Table 4.4 : Testing Accuracy for the Haptics Classification Task

Model Accuracy

DTW [112] 37.7

BOSS [113] 46.4

Residual NN [114] 50.5

COTE ( [115] 51.2

Fully Convolutional NN [114] 55.1

WD + Convolutional NN [97] 57.5

LGT (96 Filters)+ Non-Linearity + Linear Classifier 53.5

nLGT (96 Filters)+ Non-Linearity + Linear Classifier 50.4

cLGT (96 Filters)+ Non-Linearity + Linear Classifier 58.2

cnLGT (96 Filters)+ Non-Linearity + Linear Classifier 54.3

an example of an application where the features of interest in the signals are unknown,

and one requires a learnable representation.

4.6 Conclusion

We enable the learnability of Group Transform and generalize the wavelet transform

by introducing non-linear transformations of a mother filter as well as an efficient way

to sample this mapping. We establish the connections with well-known time-frequency

filters that are common in diverse biological signals as well as the derivation of the

equivariance properties of the LGT. Also, we have shown a tractable way to learn to

sample these transformations using a 1-layer NN enabling an end-to-end approach.

Our approach competes with state-of-the-art methods without a priori knowledge
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on the signal power spectrum and outperforms classical hand-crafted time-frequency

representations. Interestingly, in the bird detection experiment, we recover chirplet

filters that are known to be crucial to their detection, while in the case of the haptic

dataset where important features to be captured to perform the classification of the

signals are unknown, the filters learned are very dissimilar to classical time-frequency

filters and allow to outperform state-of-the-art methods with a linear classifier.
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5

Learnable Invariant Distance

Clustering algorithms aim at discovering patterns in the data that enable their

characterization, identification, and separation. The development of such a framework

without any prior information regarding the data remains one of the milestones of

machine learning that would assist clinicians, physicists, and data scientists, among

others, with a better pattern discovery tool [117,118].

While supervised learning has been converging toward the almost exclusive use

of Deep Neural Networks (DNN), avoiding the development of handcrafted features

to provide the desired linearly separable embedding map, unsupervised clustering

algorithms take various forms depending on the application at hand [119–121]. For

instance, the usage of SIFT features combined with clustering algorithm for medical

imaging [122], the extraction of DNNs embedding used as the input of the K-means

algorithm for computer vision tasks [123], and the combination of signal-processing

features extractors combined with Gaussian mixture model to understand the nature

of the various seismic activities [124]. The important role of clustering algorithms in
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assisting medical diagnoses as well as scientific discoveries highlight the importance of

the development of an interpretable and theoretically guaranteed tool [125,126].

In this work, we focus our attention on the K-means clustering algorithm [127]

and its application to 2-dimensional signals, such as images or time-frequency repre-

sentations. Well-known for its simplicity, efficiency, and interpretability, the K-means

algorithm partitions the data space into K disjoint regions. Each region is represented

by a centroid, and each datum is assigned to the closest centroid’s region. The integral

part in the design of a clustering algorithm is the choice of an appropriate distance,

and the number of clusters [128–130]. While the Euclidean distance makes the design

of the algorithm straightforward, this measure of similarity might omit the geometrical

relationships between data points [131]. In fact, a small rigid perturbation of an image,

such as rotation or translation, is enough to change the cluster assignment.

There are two major difficulties in constructing a distance for a clustering algorithm;

on the one hand, the metric should take into account the geometry of the data, e.g.,

be invariant to rigid transformations for images, and on the other hand, the metric

should be interpretable as it is tied to the interpretability of the algorithm [131].

In this work, we tackle these two difficulties by introducing in our similarity

measure the spatial transformations inherent to the geometry of the data at hand. In

particular, we: piq formulate an interpretable and theoretically guaranteed K-means

framework capable of exploiting the symmetry within the data, piiq extend prior work

on metrics invariant to rigid transformations to non-rigid transformations, thus taking

into account a more realistic set of nuisances and piiiq allow the learnability of the

symmetry underlying the data at hand, therefore enabling the exploration of data

where the equivalence classes are yet to be determined.

To learn the symmetry in the data and perform their transformations, we will use
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the spatial transformer framework, which was successfully introduced in [56]. This

allows us to provide a learnable metric invariant to non-rigid transformations that is

used as the K-means distortion error.

While many approaches to learn and estimate non-rigid transformations have

been proposed, we will follow one of nowadays mainstream approaches developed

in [56] where the Thin Plate Spline is used as a differentiable deformation model. Our

attempt is, in fact, not to compare among deformation models but to consider a way

to approach the learnability of invariances in an unsupervised setting such that it is

effective, tractable, and interpretable.

5.1 Outline of the Chapter and Contribution Summary

• We propose a novel approach to tackle clustering using a novel adaptive similarity

measure within the K-means framework that considers non-rigid transformations

(Sec. 5.3).

• We derive an appropriate update rule for the centroids that drastically improves

both the interpretability of the centroids and their quality (Sec. 5.5).

• We provide its invariance properties (Sec. 5.6 - ii), convergence guarantees (Sec. 5.6

- iii), and geometrical interpretations of our approach (Sec. 5.6 - iv).

• Finally, we show numerically that our unsupervised algorithm competes with state-

of-the-art methods on various datasets while benefiting from interpretable results

(Sec. 5.7).
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5.2 Related Work

The development of measures invariant to specific deformations has been under

investigation in the computer vision community for decades [132–134]. By considering

affine transformations such as shearing, translation, and rotation of the data as being

nuisances, these approaches propose a distance that reduces the variability intrinsic to

high-dimensional images. These works are considered as appearance manifold-based

framework; that is, the distance are quantified by taking into account geometric

proximity [135–138].

While the development of affine invariant metrics is pretty standard, their extension

to more general non-rigid transformations requires more attention. Recently, various

deep learning methods proposed ways to learn diffeomorphic transformations [139–143].

Others adopt a more theoretically grounded approach based on group theory as

in [144–147] as well as the statistical “pattern theory” approach developed in [148,149].

5.3 Formalism

We recall that in this work we will consider 2-dimensional signals defined by their

width and height, such as images and time-frequency representation of time-series.

Given a set of 2-dimensional signals, txiu
N
i“1, with xi P Rn, the K-means algorithm

aims at grouping the data into K distinct clusters defining the partition C “ tCku
K
k“1,

with YkCk “ txiu
N
i“1 and Ci X Cj “ H, @i ‰ j. Each cluster Ck of the partition is

represented by a centroid µk P Rn, @k P t1, . . . , Ku.

As for the K-means algorithm, the goal of the ST K-means is to find centroids
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minimizing the following distortion error

min
C,µ1,...,µK

K
ÿ

k“1

ÿ

i:xiPCk

dpxi, µkq . (5.1)

The assignment of a signal xi to a cluster Ck is achieved through the evaluation of

the similarity measure, d, between the signal and each centroid. A signal xi belongs

to the cluster Cl if and only if l “ arg mink dpxi, µkq. While the standard K-means

algorithm makes use of the Euclidean distance, i.e., dpxi, µkq “ }xi ´ µk}
2
2, we instead

propose to use the following deformation invariant similarity measure

dpxi, µkq :“ min
νPR2`

}Tpxi, νq ´ µk}
2
2 , (5.2)

where the transformer operator, denoted by T, allows for non-rigid image transfor-

mations. It is based on the composition of two mappings; a deformation map and a

sampling function. The deformation maps a uniform grid of 2-dimensionak coordinates

to provide its transformed version. The sampling function samples the signal with

respect to a given grid of 2-dimensional coordinates.

This similarity measure represents the least-square distance between the centroids

and the datum that has been fit to the centroid via the spatial transformer operator.

Once this fitting is done for each centroid, the cluster assignment is done based on the

argmin of those distances, i.e., the data xi is assigned to arg mink dpxi, µkq. Therefore,

the underlying assumption of our approach is that the distance between the optimal

transformation of a signal into a centroid belonging to the same ”class” should be

smaller than the distance between its optimal transformation into a centroid that

does not. That is, let xi be geometrically near µk, then minνPR2` }Tpxi, νq ´ µk}
2
2 ă

minνPR2` }Tpxi, νq ´ µ
1
k}

2
2.

This measure requires solving a non-convex optimization problem. It can be

achieved in practice by exploiting the spatial transformer’s differentiability with
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respect to the landmarks ν. As a result, we can learn the transformation by performing

gradient-descent based optimization [150].

The crucial property of the measure we propose is its invariance to deformations

that are spanned by the spatial transformer. This means that evaluating Eq. 5.2 with

any datum that is transformed from the spatial transformer will produce the same

value, as long as no information is lost.

5.4 Image Transformations

The mapping we select to enable the learnability of the transformation in the coordinate

space of the 2-dimensional signal is the Thin-Plate-Spline (TPS) interpolation technique

[151–153] which produces smooth surfaces from R2 to R2 [154]. We refer the reader to

Sec. 2.4 for details regarding this method. We consider as learnable parameters of the

TPS a set of 2-dimensional coordinates, called landmarks, and denoted by ν. Given a

set of landmarks, the TPS provides the transformation map of a 2-dimensional grid.

That is, the euclidean plane is bent according to the learned landmarks.

In Fig. 5.1, we show on the bottom right the grid associated with the ` “ 62

landmarks. Each grid corresponds to the spatial transformation applied to the hand-

written digit 4. The transformation of the signal based on these new coordinates is

produced by performing bilinear interpolation using the original signal (top left) and

the new coordinates; the details are provided in Sec. 2.4.

The spatial transformer is the composition of these two maps and is defined as

Tpx, νq , (5.3)

where x P Rn is the original 2-dimensional signal, ν P R2` is the set of 2-dimensional

transformed coordinate to be learned. Note that 2` can be smaller than the dimension
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Figure 5.1 : Spatial Transformations - Visualizations of a sample taken from the
MNIST dataset and its transformed versions. Each image results from the application
of the spatial transformer that take as input the original signal (top left), and the grid
displayed below its transformed version. (Left) we observe the original image and its
associated original transformation grid, which corresponds to the identity transform.
(Middle) the image has been transformed by the affine transformation induced by the
associated grid. (Right) the image transformed by the non-rigid transformation using
the TPS induced by the grid below it.

of the image as the TPS interpolates to re-scale the transformation to any size.

Such a framework composing the TPS and bilinear interpolation has been defined

as spatial transformer in [56]. However, in their work, the inference of the non-rigid

transformations is performed using each datum as the input of a “localisation network”;

instead, we directly learn the transformation parameters.
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Figure 5.2 : Orbit of a hand-written digit 7 according to the group of rotation SOp2q.

5.5 Learning the Spatial Transformer K-means

Solving the optimization problem in Eq. 5.1, similarly to K-means, is an NP-hard

problem. A popular tractable solution nonetheless exists and is known as the two-step

Lloyd algorithm [155].

In the ST K-means, the first step of the Lloyd algorithm consists of assigning the

data to the clusters using the newly defined measure of similarity in Eq. 5.2 . The second

step is the update of the centroids using the previously determined cluster assignment.

It corresponds to the result of the optimization problem: arg minµk
ř

i:xiPCk
dpxi, µkq,

provided in following Proposition 3.

Proposition 3. The centroids update of the ST K-means algorithm are given by

µ‹k :“
1

|Ck|

ÿ

i:xiPCk

Tpxi, ν
‹
i,kq, @k (5.4)

where |Ck| denotes the cardinal of the set Ck, ν‹i,k is the set of parameters of the TPS that

best transforms the signal xi into the centroid µk, that is, ν‹i,k “ arg minνPR2l }Tpxi, νq ´ µk}
2
2.

We consider the Féchet mean of the centroid k to be the solution of the following

optimization problem, arg minµk
ř

i:xiPCk
dpxi, µkq. Using our similarity measure, we

obtain the following.

Proof. The Fréchet mean for the cluster Ck is defined as arg minµk
ř

i:xiPCk
}Tpxi, ν

‹q ´ µk}
2

since the optimization problem is convex in µk (as the result of the composition of the
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identity map and a norm which are both convex) we have µ‹k : ∇µ

ř

i:xiPCk
}Tpxi, ν

‹q ´ µk}
2
“

0. with,

∇µ

ÿ

i:xiPCk

}Tpxi, ν
‹
q ´ µk}

2
“ 2 p|Ck|q ˆ µk ` 2

ÿ

i:xiPCk

Tpxi, ν
‹
q. (5.5)

The averaging in Eq. 5.4 is performed on the transformed version of the signals.

The ST K-means thus considers the topology of the signal’s space. A pseudo-code of

the centroid update Eq. 5.4 is presented in Algo. 1.

Algorithm 1 Centroids Updates of ST K-means

Input: Cluster Ck, TPS parameters
 

ν‹i,k
(

i:xiPCk

Output: Centroids update µ‹k

1: Initialize µk “ 0

2: for i : xi P Ck do

3: Compute µk “ µk ` T`pxi; ν
‹
i,kq, Eq. 5.4

4: µ‹k “
µk
|Ck|

The ST K-means, which aims to minimize the distortion error Eq. 5.1 is done by

alternating between the two steps detailed above until convergence, as summarized in

Algo. 2.

The update in Eq. 5.4, induced by our similarity measure, alleviates a fundamental

limitation of the standard K-means. In fact, in the standard K-means, the average

of the data belonging to a cluster Ck,
1
|Ck|

ř

i:xiPCk
xi, consists of an averaging of

the signals without deforming them, which, as a result, does not account for the

non-euclidean geometry of the signals [156,157].
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Algorithm 2 Spatial Transformer K-means

Input: Initial centroids µk, dataset txiu
N
i“1

Output: Cluster partition tCku
K
k“1

1: repeat

2: for i “ 1 to N do

3: for k “ 1 to K do

4: Compute and store dpxi, µkq by solving Eq. 5.2

5: Assign xi to Cl where l “ arg mink dpxi, µkq

6: Update the centroid µk using Algo. 1

7: until Convergence

5.6 Properties & Geometrical Aspects

i Quasi-pseudo-semi Metric

Proposition 4. The similarity measure defined by minνPR2` }Tpx, νq´µ} is a Quasipseu-

dosemimetric.

Proof. Let’s first define the orbit of an image with respect to the TPS transformations.

Note that, the TPS does not form a group as it is a piecewise mapping. However, we

know that it approximate any diffeomorphism on R2. Therefore, for sake of simplicity,

we will make a slight notation abuse by considering the orbit, equivariance, and others

group specific properties as being induced by the spatial transformer T.

Definition 3. We define the orbit an image x under the action the T by

Opxq “
 

Tpx, νq|ν P R2`
(

. (5.6)
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Let’s now consider each metric statement: 1) It is non-negative as per the use of a

norm.

2) Pseudo: minνPR2` }pTpx, νq ´ µ} “ 0 ô Dν P R2`, s.t. x “ Tpx, νq ô x „T µ,

that is, x and µ are equivariant with respect to the transformations induced by T.

Thus, dpx, µq “ 0 for possibly distinct values x and µ, however, these are not distinct

when we consider the data as any possible point on their orbit with respect to the

group of diffeomorphism. In fact, the distance is equal to 0 if and only if, µ and x are

equivariant.

3) Quasi: The asymmetry of the distance is due to the non-volume preserving

deformations considered. In fact, we do not consider the Haar measure of the associated

diffeomorphism group and consider the L2 distance with respect to the Lebesgue

measure. Although the asymmetry of d does not affect our algorithm or results, a

symmetric metric can be built by normalizing the distance by the determinant of

the Jacobian of the transformation. Such a normalization would make the metric

volume-preserving and as a result make the distance symmetric.

4) Semi: If x, x1, x2 P O, then dpx, x2q “ dpx, x1q “ dpx1, x2q “ 0 as it exist

a ν, ν 1, ν2 such that the TPS maps each data onto the other as per definition of

the orbit, thus the triangular inequality holds. If x, x2 P O and x1 R O, we have

dpx, x2q “ 0 ď dpx, x1q`dpx1, x2q. If x, x1 P O and x2 R O, we have dpx1, x2q “ dpx, x2q,

and since 0 ď dpx, x1q, the inequality is respected. However, if x, x1, x2 belong to three

different orbits, then we do not have the guarantee that then triangular inequality

holds. In fact, it will depend on the distance between the orbits which is specific to

each dataset.
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ii Invariance Property Motivated by the fact that small non-rigid transforma-

tions, usually, do not change nature of an image, we propose to exploit the invariance

property of the similarity measure we proposed.

In this section, for sake of simplicity we will assume that the transformations belong

to the group of diffeomorphism. In practice, the TPS can only approximate element

of such group, and the constraint we impose on the transformation, e.g., number of

landmark, also limit the type of diffeomorphism that can be approximated, therefore,

we could instead consider that we approximate a subgroup of the diffeomorphism

group.

Let’s define an invariant similarity measure under the action of such group. That

is, the similarity between two 2-dimensional signals remain the same under any

diffeomorphic transformations. We propose to define the invariance in the framework

of centroid-based clustering algorithm as follows.

Definition 4. An invariant similarity measure with respect to diffpR2q is defined as

d : Rn ˆRn Ñ R` such that for all images x P Rn, all centroids µ P R2, and all group

elements @g P diffpR2q, we have

dpx, µq “ dpg ‹ x, µq, (5.7)

where g ‹ x denotes the action of the group element g onto the image x.

The similarity used in Eq. 5.2 of the optimization problem is diffpR2q-invariant as

per Definition 4.

Proposition 5. The similarity mingPdiffpR2q }g ‹ x´ µ} is diffpR2q-invariant.

Proof. Let consider g‹ “ arg mingPdiffpR2q }g ‹ x´ µ}, we have arg mingPdiffpR2q }g ¨ g
1 ‹ x´ µ} “

g‹ ¨ g1´1, where g1´1 is the inverse group element of g1. In fact, }g‹ ¨ g1´1 ¨ g1 ‹ x´ µ} “
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}g‹ ‹ x´ µ} . Since for all g1 P diffpR2q, it exists an inverse element g1´1, we have that

@g P diffpR2q, dpg1 ‹ x, µq “ dpx, µq.

That is, by definition of the group, there is always another element that minimizes

the loss function by using the composition between the inverse element of the group

that has just been added, g1, and the optimal element g‹.

iii Convergence of the Spatial Transformer K-means As we mentioned,

our development is motivated by the interest in proposing a novel way to think

about invariance in an unsupervised fashion while conserving the interpretability

and theoretical guarantees of the K-means algorithm. We propose here to prove the

convergence of the ST K-means algorithm following the generalization of clustering

algorithms via the Bregman divergence as developed in [158]. In their work, they

provide the class of distortion function that admits an iterative relocation scheme

where a global objective function, such as the one in Eq. 5.1, is progressively decreased.

We, therefore, prove that Algo. 2 monotonically decreases the distortion error of the

ST K-means in Eq. 5.1 which in turn implies that Algo. 2 converges to a local optimal.

Proposition 6. Under the assumption that the spatial transformation optimization

problem in Eq. 5.2, reaches a global minimum, the ST K-means algorithm described

in Algo. 2 terminates in a finite number of step at a partition that is locally optimal.

Proof. Following the notation of Sec. 2.4, we can define the spatial transformer

operator T as the composition of the TPS and bilinear interpolation map. That is,

Tpx, νq “ ΓrF pνq, xs. Now the aim is to prove that minνPR2l }Tpx, νq ´ µ}22 defines a

Bregman divergence measure as in [158]. In such a case, Algo. 2 defines a special case

of the Bregman divergence hard-clustering algorithm again defined in [158] which is

proven to converge.
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Let’s first start by making an assumption on the data x, we can without loss of

generality assume that they are non-negative as we are dealing either with images or

time-frequency representation where a modulus is applied to obtain the 2-dimensional

real representation. Then, we also assume that the minimum over the transformation

parameters ν reaches a global unique minimum, denoted by ν‹. Now,

}Tpx, ν‹q ´ µ}22 “ xTpx, ν
‹
q,Tpx, νqy ` xµ, µy ´ 2xTpx, ν‹q, µy

“ xTpx, ν‹q,Tpx, ν‹qy ´ xµ, µy ´ xTpx, ν‹q ´ µ, 2µy ,

Now it is clear that µ “ Tpµ, 0q which consists in the identity transform of the centroid

µ. Then we denote by φν‹pyq “ xTpy, ν
‹q,Tpy, ν‹qy where y P Rn, and obtain that,

}Tpx, ν‹q ´ µ}22 “ φν‹pxq ´ φ0pµq ´ xTpx, ν
‹
q ´ Tpµ, 0q,∇φ0pµqy .

Now, we know that xx, xy is non-decreasing w.r.t each dimension since the image or

time-frequency representation are positive real valued, and the inner product defines a

strictly convex map. Then, we also know that Tpx, ν‹q “ ΓrF pν‹q, xs is defined as the

composition of the TPS for the coordinate and the bilinear map for the image, which

can be formulated as a linear transformation with respect to the data x : Ax, where

A is a structured sparse matrix where each block denotes the dependency to nearby

pixels. Therefore this mapping is convex. As a composition between a non-decreasing

w.r.t each dimension and strictly convex function with a convex function, φν‹ is strictly

convex, which complete the proof.

iv Geometrical Interpretation of the Similarity Measure One of the great

benefit of the K-means algorithm is the interpretability of the regions composing

its partitioning. In particular, they are related to Voronoi diagrams which are well
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studied partitioning techniques [159,160]. Following this framework, we propose now

to highlight the regions defined by the ST K-means algorithm. This is achieved by

analysing the following sets @k P t1, . . . , Ku

Rk “ tx P Rn
|dpx, µkq ď dpx, µjq, @j ‰ ku , (5.8)

where we recall dpx, µkq “ minνPR2` }Tpx, νq ´ µk}
2
2. Such a partitioning falls in the

framework of a special type of Voronoi diagram.

Proposition 7. The partitioning induced by the ST K-means corresponds to a weighted

Voronoi diagram where each region’s size depends on the per data spatial transforma-

tions.

Let’s start by re-writting the similarity measure as to analytically express a

metric tensor that would be the weight in the weighted Voronoi diagram the ST K-

means defines. Using App. 2.4, we can re-write dpx, µkq “ minνPR2` }Tpx, νq ´ µk}
2
2 “

minνPR2` }Apνqx´ µk}
2
2, where Apνq is bilinear in the coordinates that are induced by

the TPS. In this formulation we can observe that ν defines the displacement vector

w.r.t the original uniform grid of landmark. That is, if ν is the null vector, then

Apνqx “ x. Now, we assume that such linear operator is inversible, i.e., the TPS

transformation is invertible (note that this is not always the case [161]). Then, we can

re-write dpx, µkq as

min
νPR2`

›

›x´ Apνx,kq
´1µk

›

›

2

Apνx,kqTApνx,kq
,

where }x}Apνx,kqTApνx,kq “ xTApνx,kq
TApνx,kqx, and Apνx,kq

TApνx,kq defines the metric

tensor, and the notation νx,k indicates that the displacement vector ν depends on the

centroid µk and the datum x. Also, note that while Apνx,kq defines the transformation

operator to map x onto µk, Apνx,kq
´1 is the inverse operator mapping the centroid µk

to the datum x.
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Now the tuple of cells tRku
K
k“1 defines such as

Rk “

!

x P Rn
|
›

›x´ Apνx,kq
´1µk

›

›

Apνx,kqTApνx,kq
ď
›

›x´ Apνx,jq
´1µj

›

›

Apνx,jqTApνx,jq
, @j ‰ k

)

,

defines a weighted Voronoi diagram [162,163], where we observe that the metric tensor

is dependant on all the spatial transformations.

While the Euclidean K-means induces a Voronoi diagram where each region is a

polytope, the ST K-means does not impose such a constraint of its geometry. The

similarity measure we propose adapts the geometry of each data to each centroid and

thus induces a specific metric space for each data-centroid pair. In particular, for

each data-centroid pair, the ST K-means has a particular metric that induces the

boundary of the regions. In a more general setting, each region is defined as the orbit

of the centroid with respect to the transformations induced by the spatial transformer,

thus defining regions that depend on the orbit’s shape instead of polytopal ones.

This geometric observation can lead to efficient initializations for the ST K-

means [164], as well as the evaluation of its optimality [165]. Besides, one can perform

in depth study to understand the shape of the regions spanned by our approach to

understand the fail cases of the algorithm for a particular application [166,167]. One

can also compare the partitioning achieved in our approach with the one of DNN as

in [168] to gain more insights into both models.

v Complexity & Parameters The time complexity of STK-means isOpNKp`3`

`nqq. In fact, the ST K-means computes a TPS of computational complexity Op`3``nq

for each sample of the N samples and each of the K centroids, as in Eq. 5.2. In

practice, ` is of the order 26. The number of parameters of the model is 2`ˆN ˆK;

it depends on the number of samples, clusters, and landmarks.

To speed up the computation, we piq pre-compute the matrix inverse responsible
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Figure 5.3 : Centroids - We depict some centroids for the different K-means
algorithms. The centroid at initialization are displayed in the nth1 row. The centroids
learned by K-means are shown in the 2 row, by the Affine invariant K-means in the
3 row, and by our ST K-means in the 4 row. By comparing the results of the AI
K-means (3 row) with the standard K-means (2 row), we can see that using only affine
transformations slightly improves the K-means centroids and reduces the superposition
issue that K-means suffers from. By comparing the results of our ST K-means (4 row)
with the other methods, it is clear that using non-rigid transformations significantly
improves the quality of the centroids, making them sharper and removing the issue
related to the non-additiveness of images. Note that K-means iteratively updates the
centroids and cluster assignments, as such, the class associated to a specific centroid
usually changes during training.

for the dominating cubic term, see Sec. 2.4 for implementation details regarding

the TPS, and piiq implement ST K-means on GPU with SymJAX [169] where high

parallelization renders the practical computation time near constant with respect to

the number of landmarks as we depict in Fig. 5.5.

5.7 Experiments

In this section, we detail the experimental settings followed to evaluate the perfor-

mances of our model. For all the experiments, the number of clusters is set to be the

number of classes the dataset contains for all clustering algorithms.
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Figure 5.4 : t-SNE projections

2-dimensional t-SNE - (# denotes the number of clusters) - We suggest the reader

to zoom in the plots to best appreciate the visualizations. - The raw data (left

column), the affinely transformed data using the AI distance, i.e., we extract the best

affine transformation of the data that corresponds to the centroid it was assigned

and perform the t-SNE on these affinely transformed data, (middle column), the data

transformed with respect to the TPS as per Eq. 5.2, i.e., the same process as previously

mentioned but we consider the spatial transformer instead, and then perform the

dimension reduction on these transformed data, (right column).
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Figure 5.5 : Computational time

Computational Training Time - Comparison between our ST K-means and the

Affine Invariant (AI) K-means computational times on the Arabic Characters dataset.

The input pixel size is n “ 1024. (Left) shows the computational time for varying

training set sizes and ` “ 72. (Right) shows the computational time as a function of

the number of landmarks, `, for N “ 10, 000. Since the AI K-means does not use

the TPS algorithm, its computational time is constant as a function of the number of

landmarks. We can observe that our process to speed up the computation enables the

tractability of the ST K-means.
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i Evaluation Methods For all the experiments, the accuracy is calculated using

the metric proposed in [170] and defined as

Accuracy “ max
m

1
N

N
ÿ

i“1

1tli“mpl̂iqu , (5.9)

where li is the ground-truth label, l̂i the cluster assignment and m all the possible

one-to-one mappings between clusters and labels. The results in Table 5.1 are taken

as the best score on the test set based on the ground truth labels among 10 runs

as in [123]. We also provide on the same run the normalized mutual information

(NMI) [171], and adjusted rand index (ARI) [172].

ii Cross-validation Settings Our model requires the cross-validation of hyper-

parameters: the number of landmarks and the learning rate to learn the similarity

measure in Eq. 5.2. However, the clustering framework does not allow the use of label

information to perform the cross-validation of the parameters. We thus need to find a

proxy for it to determine the optimal model parameters. Interestingly, the distortion

error related used in the ST K-means, Eq. 5.1, appears to be negatively correlated

to the accuracy, as displayed in Fig. 5.6. Note that the use of the distortion error is

commonly used as a fitness measure in K-means, for example, when cross-validating

the number of clusters.

We cross-validate the number of landmarks, `, which defines the resolution of the

transformation, which we optimize over the following grid, r32, 42, 52, 62, 72, 82s. Then,

the learning of the landmarks, ν, is done via Adam optimizer. The learning rate

is picked according to r10´4, 5ˆ 10´4, 10´3, 5ˆ 10´3, 10´2, 5ˆ 10´2s. We train our

method for 150 epochs for all the datasets, with batches of size 64. As for K-means

and AI K-means, the centroids’ initialization of the ST K-means is performed by the

K-means`` algorithm. Importantly, the same procedure is applied to all datasets.
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Figure 5.6 : Accuracy vs distortion error

Accuracy vs Distortion Error - Clustering accuracy, Eq. 5.9, of ST K-means

algorithm on the MNIST dataset as a function of the distortion error, Eq. 5.1, using

the similarity measure, Eq. 5.2. Each gray dot is associated with a specific set of

hyper-parameters, e.g., the learning rate and the number of landmarks for the spatial

transformer. The accuracy is negatively correlated to the distortion error (see the blue

line corresponding to the ordinary least square fit), indicating that the distortion error

is an appropriate metric to cross-validate the hyper-parameters of the ST K-means

algorithm, which is crucial in an unsupervised setting as the labels are not available.

Note that during the training, both the similarity measure in Eq. 5.2 and the

clustering update are performed, Eq. 5.9. During the algorithm’s testing phase, the

centroids remain fixed, and only the similarity measure is performed to assign each

testing datum to a cluster.

iii Results We report in Table 5.1 the accuracy of the different models considered

on the different datasets. Our approach shows to outperform existing models on most

datasets. Our model equals the performance of AI K-means on Affine MNIST and is
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only outperformed by VaDE (MLP) on MNIST.

Whereas the various deep learning approaches perform well on datasets for which

their architectures were developed, e.g., MNIST and its derivatives: E-MNIST, Arabic

Characters, they show limited performance on higher resolution datasets with a small

number of samples, such as Rock-Paper-Scissors, Face-10 as well as the two toy

examples. In fact, they are composed of only 700 training data and 300 testing data.

In the following sections, we interpret various visualizations of the K-means variants

used in this work.

iv Interpretability: Centroids Visualization We propose in Fig. 5.3 to visu-

alize the centroids obtained via K-means, AI K-means, and our ST K-means. For

each dataset, the first row shows the clusters after initialization from K-means``.

The three following rows show the centroids obtained via the K-means, AI K-means,

and ST K-means algorithms, respectively.

We observe that, for all datasets, the K-means centroids are not lying on the

data manifold as they are unrealistic images that could not occur naturally in the

dataset. Besides, they appear to be blurry and hardly interpretable. These drawbacks

are due to the update rule that consists in the average of the data belonging to

each cluster in the pixel space. The AI K-means algorithm drastically reduces the

centroids’ blurriness induced by such an averaging as it considers the average of affinely

transformed data. However, our ST K-means produces the crispest centroids and does

not introduce any ambiguity in between the different clusters. In fact, the update of

our method, Eq. 5.4, takes into account the non-linear structure of the manifold by

taking the average over data transformed using a non-rigid transformation.

Interestingly, Fig. 5.3 shows that even if at initialization multiple centroids assigned
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to the same class are attributed to different clusters, the ST K-means is able to recover

this poor initialization thanks to its explicit manifold modeling and centroid averaging

technique. For instance, in the Rock-Paper-Scissors dataset, although at initialization,

two centroids correspond to the class paper, the ST K-means learns centroids of each

of the three classes within this dataset. In the Face-10 dataset, some centroids learned

correspond to the rotation of the initialization; even in such extreme change of pose,

the centroids remain crisp in most cases.

v Interpretability: Embedding Visualization To get further insights into the

disentangling capability of the ST K-means, we compare the 2-dimensional projections

of the data using t-SNE [174], of the K-means, AI K-means and ST K-means.

The t-SNE visualizations, for both the AI and ST K-means, are obtained by

extracting the optimal transformation that led to the assignment. Precisely, for each

image xi, we compute l “ arg mink dpxi, µkq and extract the optimal parameter ν‹i,l

which is then used to obtain the transformed image fed as the input of the t-SNE.

We can observe in Fig. 5.4 that across datasets, both the affine transformations

learned on the data and the non-rigid transformations help to define more localized

clusters. One can observe that for the Face-10 dataset, while the dataset contains

13 clusters, we can see that the ST K-means induced transformations lead to a

2-dimensional space where the faces are clustered 3 majors orientations. The top left

cluster corresponds to faces pointing left, the bottom one face pointing right, and

the bottom right one face pointing front. We also propose to zoom-in two locations

where the ambiguity in the transformation induced by the spatial transformer is

noticeable. In particular, we show two cases where the non-rigid transformations are

too large for certain samples leading to an erroneous clustering assignment, e.g., in

the MNIST dataset, the yellow samples in the lense are initial instance of the class 4
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that have been transformed into digit that geometrically ressemble the centroid of

the cluster 9, thus being assigned to the 9’s cluster. The same concept is shown in

the Rock-Paper-Scissors lense where some instance of the classes rock and paper are

assigned to the class scissors.

Overall, the ST K-means drastically enhances the separability of the different

clusters. When using ST K-means, the data are clustered based on macroscopically

meaningful and interpretable parameters, making the model’s performance possible

to understand. For instance, for the Face-10 dataset, the t-SNE representation of

the ST K-means clusters’ shows that faces are grouped according to three significant

orientations, left, right, and front. These three clusters are more easily observed in our

ST K-means than in the affine invariant model. However, the 13 different orientations

present in the dataset remain too subtle to be captured by the ST K-means.

For the MNIST dataset, the last row and column of Fig. 5.4, we observe that most

of the incorrectly clustered images are almost indistinguishable from samples of the

cluster they have been attributed. In particular, we highlight this by proposing to

zoom-in into the cluster of hand-written 9 in Fig. 5.4. We can see that the yellow

instances are samples from the class 4 that have been transformed such that they

resemble the 9’s centroid in Fig. 5.3. We also provide a zoom-in on one of the clusters

obtained on the rock-paper-scissors dataset, first row and last column of Fig. 5.4. The

incorrectly clustered data are the ones that, when transformed, easily fit the scissors

shape.

5.8 Conclusion

Designing an unsupervised algorithm that is robust to non-rigid transformations

remains challenging, despite the tremendous breakthrough in machine learning. The
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problem lies in appropriately limiting the size of the transformations. We showed

that the spatial transformer could achieve this as the number of landmarks allows

the learnability of a coarse to fine grid of transformation. However, such a parameter

controlling the size of the transformation should be designed as well as be learned

per-cluster or per-sample. Besides this difficulty, we showed that we could conserve

the interpretability of the K-means algorithm applied in the input data space while

drastically improving its performances. Such a framework should be favored in

clustering applications where the explainability of the decision is critical.
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Table 5.1 : Clustering accuracy

Clustering results in % of the test set accuracy Eq. 5.9 - Following the benchmarks

evaluation method, the best accuracy (ACC) over 10 runs are displayed - We also

provide the associated normalized mutual information (NMI) - the number of clusters

is denoted by # next to the dataset name and where (:): [123] and (;): [173].
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ACC NMI

K-means 7 68 61 53 10 39 40 20 19 - - 50 1 39 5 18 27

AI K-means 7 100 91 75 29 48 72 31 30 - - 62 18 45 30 30 37

ST K-means 7 100 99 92 41 65 86 45 51 - - 82 26 63 63 53 61

AE + K-means 3 72 60 66 13 41 48 37 23 - - 64 1 40 9 27 33

DEC (MLP) (:) 3 84 77 84 10 55 46 33 24 - - 83 1 51 12 20 32

DEC (Conv) 3 70 68 78 15 60 54 38 29 - - 74 3 56 18 31 39

VaDE (MLP) (;) 3 68 65 94 11 20 50 36 26 - - 89 1 12 16 27 30

VaDE (Conv) 3 65 59 81 14 58 55 40 46 - - 78 2 55 20 35 53
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6

Learnable Lie Group for Manifold Approximation

Autoencoders (AEs) provide a rich and versatile framework that discovers the data’s

salient features in an unsupervised manner. They are commonly leveraged to effi-

ciently perform compression [175], denoising [176], data completion [177], as well as

pre-training supervised DNs [178]. Solving these tasks is equivalent to discovering the

data’s underlying manifold, a task becoming challenging in the high dimensional and

the finite samples regime [179–182]. To overcome these challenges and improve the effi-

ciency of AEs, various explicit or implicit regularizations have been proposed [183–186].

Despite these improvements, the underlying mechanisms and generalization capability

of AEs are still poorly understood [187–189].

A compelling approach to understanding the inner mechanisms of DNs considers

their capability at modeling the ubiquitous symmetries in the [106, 190]. Theoreti-

cally grounded data models such as the Deep Scattering Network and its derivatives

have been derived in accordance with this principle [67, 191–193]. In [59, 194, 195]
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they propose to explain the success of deep convolutional architectures through the

development of an equivariance theory of DNs; in particular, they provide piq an

understanding and formalism behind the equivariance properties of DNs as well as

their generalization, and piiq reduce the sample complexity of DNs by exploiting

well-known symmetry group inherent to the image manifold.

Besides explicitly imposing specific group of transformations, the studies of DNs

through that lens mainly consider the properties of internal layers of DNs, e.g., convo-

lution, pooling, per-layer representation. In this paper, we propose a global analysis

by considering the DN from a geometrical standpoint. By global analysis, we consider

the understanding of the output of a DN given its input in an end-to-end manner.

Such analysis is presently performed by leveraging the analytical continuous piecewise

affine (CPA) map formulation of DNs, as described in [196]. Such an approach has

two significant advantages; it is agnostic of the architecture, e.g., type of layer, nonlin-

earities, number of layers, and it provides an analytical formula for the entire network

mapping. These criteria are crucial since the understanding of AEs performed in this

work has the goal of developing practical tools that are not tied to any specific AE

architecture.

In the present work, the CPA formulation is leveraged to take a step into answering

the following questions: piq How an AE can effectively approximate a data manifold?

piiq How can one improve and guarantee the generalization of AEs exploiting the

symmetry in the data?

We will execute this by considering the following two-fold approach: First, we
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provide an analytical and interpretable formulation of the CPA representation of the

manifold spanned by AEs. We make explicit some critical properties of AEs such

as what type of function do they belong to, how standard regularization techniques

affect the AE mapping, and how the encoder and decoder per region affine mappings

are related. Second, we exploit the developed understanding of AEs to provide novel

regularizations for AEs that capture the symmetry in the data. In particular, our

regularizations constrain the global CPA surface spanned by AEs such that they

adapt to the geometry of the data manifold modeled from as the orbit of a Lie group.

We show that these regularizations constrain the entire surface even at locations in

the manifold where data are missing, which is critical for the generalization of AEs.

Besides, we show that these regularizations lead to generalization guarantees in the

finite data regime.

6.1 Outline of the Chapter and Contribution Summary

• We demonstrate that AEs provide a CPA approximation of the data manifold. From

this analytical characterization, we interpret the role of the encoder, decoder, layer

parameters, and latent dimension (Sec. 6.3).

• Following these findings, we obtain reconstruction guarantees (Sec. 6.4 - i), inter-

pretable formulas for the Jacobian and approximated Hessian of AEs (Sec. 6.4 -

ii); and leverage them to provide insights into standard regularization techniques

employed in AEs (Sec. 6.4 - iii).

• We demonstrate that when considering the symmetry of the data, we can impose

constraints on an interpolation function, e.g., an AE, such that it approximates the

data manifold driven by a Lie group (Sec. 6.4 - iv).
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• We turn these constraints into regularizations adapted to AEs (Sec. 6.4 - v) and

demonstrate their generalization guarantees under a finite data regime (Sec. 6.4 -

vi).

• We provide experimental validations and computational complexity of the developed

regularizations which compete with state-of-the-art methods on various datasets

(Sec. 6.5).

6.2 Related Work

A compelling approach to understanding the inner mechanisms of DNs considers their

capability at modeling the ubiquitous symmetries in the [106, 190]. Theoretically

grounded data models such as the Deep Scattering Network and its derivatives

have been derived in accordance with this principle [67, 191–193]. In [59, 194, 195]

they propose to explain the success of deep convolutional architectures through the

development of an equivariance theory of DNs; in particular, they provide piq an

understanding and formalism behind the equivariance properties of DNs as well as

their generalization, and piiq reduce the sample complexity of DNs by exploiting

well-known symmetry group inherent to the image manifold.

In this work, we focus on autoencoders (AE), which aim at learning an identity

mapping, also known as auto-association [197], on a given dataset with a bottleneck

latent dimension. It has been implemented first for image compression [198], speech

recognition [199], and dimensionality reduction [200]. It is composed of two nonlinear

maps: an encoder, denoted by E and a decoder, denoted by D. The encoder maps an

input x P Rd to a hidden layer of dimension h ă d, Epxq, which encodes the salient

features in the data [27] and defines its code or embedding. The decoder reconstructs

the input from its code, thus the entire AE map is defined as pD ˝Eq pxq with ˝
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Figure 6.1 : 2-dimensional visualizations of the input space partitioning ΩE,D induced
by two randomly initialized AEs with bias (left) and zero bias (right). Each region,
depicted by a particular color, bounded by the black lines has a set of CPA parameters
AEω , A

D
ω , B

E
ω , B

D
ω described in Eq. 6.3 which depend on the per-layer affine parameters

as well as the state of the nonlinearities of the region ω. To reconstruct its input, an
AE achieves an affine map for each region; its output for a sample of a given region ω
is provided by Eq. 6.2.

denoting the composition operator.

The weights of the AE are learned based on some flavors of reconstruction losses,

e.g., the mean-square error for real data and the binary cross-entropy for binary data,

between the output, pD ˝Eq pxq, and the input, x. To improve generalization, some

regularizations can complement the reconstruction loss [201] such as favoring sparsity

of the code [185] or sparsity of the weights [202]. Other types of regularization include

injecting noise in the input leading to Denoising AE known to increase the robustness

to small input perturbations [183]. Closer to our work, [203] and [184] proposed to

improve the robustness of the code to small input perturbations by penalizing the

curvature of the encoder mapping by regularizing the Jacobian as well as the Hessian

of E.
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6.3 Formalism

A DN is an operator fΘ with parameters Θ composing L intermediate layer mappings

f `, ` “ 1, . . . , L, that combine affine and simple nonlinear operators such as the

fully connected operator, convolution operator, activation operator (applying a scalar

nonlinearity such as the ubiquitous ReLU), or pooling operator.

A DN employing nonlinearities such as (leaky-)ReLU, absolute value, and max-

pooling is a continuous piecewise linear operator and thus lives on a partition Ω of

the input space. As such, the DN’s CPA mapping of an input x can be written as

fΘpxq “
ÿ

ωPΩ

1txPωu pAωx`Bωq (6.1)

where 1 defines the indicator function, Aω and Bω the per region affine parameters

involving the DN per layer affine parameters , W `, b` P Θ, @`, and the nonlinearities

state of the region ω P Ω [204]. The unit and layer input space partitioning can be

rewritten as Power Diagrams, a generalization of Voronoi Diagrams [205]; composing

layers produce a Power Diagram subdivision.

The output of a CPA DN is formed as per Eq. 6.1. An AE composing two CPA

functions, the encoder and the decoder, the entire mapping remains a CPA with an

input space partition and per region affine mappings. Because we can consider an AE

as a network or as the composition of two networks, we will consider two different

space partitioning. The partition of the input, i.e., data space, induced by the entire

AE, and denoted by ΩE,D, as well as the partition of the decoder induced in the

latent space, i.e., bottleneck layer, and denoted by ΩD. Examples of the entire AE

partitioning, i.e., ΩE,D, can be visualized in Fig. 6.1.

Now, let ω P ΩE,D defines a region induced by the AE partitioning in the input
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space as aforementioned. Given a d-dimensional sample x P ω, the max affine spline

formulation of the AE mapping is defined as

D ˝Epxq “ ADωA
E
ωx` A

D
ωB

E
ω `B

D
ω , (6.2)

where ˝ is the composition operator, ADω P Rdˆh, AEω P Rhˆd, BE
ω P Rh and BD

ω P Rd

with d being the dimension of the input space and h the bottleneck dimension.

The mapping from these global parameters to the per-layer ones is performed as

follows. First, we denote by W ` P Rd`ˆd`´1 , b` P Rd` the affine parameters of each

layer, where ` P t1, . . . , Lu defines the encoder indexes and ` P tL` 1, . . . , L` P u

the decoder ones (with structure depending on the layer type), where L denotes the

number of encoder layers, P the number of decoder layers, d`´1 the input dimension

of the layer ` and d` its output dimension. We have that dL “ h the bottleneck

dimension, d0 “ dL`P “ d the input and output dimension. Then, we also denote

by Q` the diagonal matrices encoding the region induced states of the nonlinearities,

p0, 1q for ReLU, p´1, 1q for absolute value. Finally, the parameters of the max affine

spline AE formulation described in Eq. 6.2 are defined as

AEω “W
LQL´1

ω WL´1 . . . Q1
ωW

1 and BE
ω “ b

L
`

L´1
ÿ

i“1

WLQL´1
ω WL´1 . . . Qi

ωb
i. (6.3)

ADω and ADω are defined similarly with ` P tL` 1, . . . , L` P u. Therefore, there is a

direct mapping from the intuitive piecewise affine parameterization of the network to

the per-layer parametrization as it is commonly used in the literature.

Given these analytical maps, we now provide insights into the AE approximation.

Let’s rewrite Eq. 6.2 as

D ˝Epxq “
h
ÿ

k“1

A

aE
T

k rωs,x
E

aDk rωs `B
E,D
ω “ ADωµx `B

E,D
ω , (6.4)

where BE,D
ω “ ADωB

E
ω ` BD

ω , aE
T

k rωs are the rows of AEω , aDk rωs are the columns of

ADω . This is the shifted mapping of x onto the subspace spanned by ADω and with



107

coordinates driven by AEω .

From Eq. 6.4, we deduce the per region role of the encoder and decoder. The

samples of each region ω P ΩE,D, are expressed in the basis defined by the decoder

region-dependent parameter ADω , i.e., the per region parametric representation of the

approximated manifold, and the coordinates of this sample in such a basis are induced

by the region-dependent parameter AEω , the whole mapping is then shifted according

to both the encoder and decoder CPA parameters.

6.4 Properties & Geometrical Aspects

i Reconstruction Guarantees We now derive a necessary condition on the CPA

parameters, ADω , A
E
ω , such that the AE achieves perfect reconstruction on a given

continuous piecewise linear surface in the case of zero bias as often used in practice [206].

Proposition 8. A necessary condition for the zero-bias AE to reconstruct a continuous

piecewise linear data surface is to be bi-orthogonal as per @x P ω, D ˝Epxq “ x ùñ

@

aDk rωs,a
E
k1rωs

D

“ 1tk“k1u, where X denotes the data surface.

Proof. Perfect reconstruction ñ: @ω, @x P ω, x “
řh
k“1

@

x, aEk
D

aDk . We have @ω, @x P

ω

ÿ

k

@

x, aEk rωs
D

aDk rωs “
h
ÿ

k“1

C

h
ÿ

k1“1

@

x, aEk1rωs
D

aDk1rωs, a
E
k rωs

G

aDk rωs

“
ÿ

k

h
ÿ

k1“1

@

x, aEk1rωs
D @

aDk1rωs, a
E
k rωs

D

aDk rωs

ðñ ADωA
E
ωx “ ADωA

DT

ω AE
T

ω AEωx since ADωA
E
ω is injective on the region (as per perfect

reconstruction condition) it implies that AD
T

ω AE
T

ω “ Ih, where Ih is the identity matrix

of dimension hˆ h

That is, if a continuous piecewise linear surface is correctly approximated, we know
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that the parameters of the MAS operator describing the encoder and decoder will

be bi-orthogonal, i.e., the column vectors of ADω and the row vectors of AEω form a

bi-orthogonal basis.

We now propose to give intuitions regarding this condition by utilizing the mapping

between CPA parameters and layer weights as per Eq. 6.3. In fact, the following

corollary provides the conditions for the bi-orthogonality to be fulfilled depending on

the weights of the autoencoder, i.e., W `. For the sake of clarity, we consider the case

of a 2-layer ReLU AE.

Corollary 4. Let E and D be a 2-layer ReLU network with respective weights

W 1 P Rhˆn and W 2 P Rnˆh, as per Eq. 6.3. We denote by W 1
i,j the ith row and

jth column of the weight matrix W 1. Now, @x P X, a necessary condition for bi-

orthogonality is that, for each k, k1 P t1, . . . , hu, one of the following is fulfilled:

(i) W 1T

k1,.x ď 0.

(ii) @i P t1, . . . , du , W 2T

i,. Epxq ď 0.

(iii) @i P t1, . . . , du , W 2T

i,. Epxq ą 0 and
@

W 2
.,k,W

1
k1,.

D

“ 0.

(iv)
řd
i“1W

2
i,kW

1
k1,i1tW 2T

i,. Epxqą0u
“ 0.

Proof. For a 2-layers ReLU autoencoder network, we have the following affine spline

parameters @x P ω:

aEk1rωs “ 1!
W 1T

k1,.
xą0

)W 1
k1,.

aDk rωs “

¨

˚

˚

˚

˚

˝

1
tW 2T

1,. zą0u

...

1
tW 2T

d,. zą0u

˛

‹

‹

‹

‹

‚

¨W 2
.,k
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where ¨ defines here the elementwise vector multiplication. Now,

@

aDk rωs, a
E
k1rωs

D

“

B

Q2
ωW

2
.,k, 1

!

W 1T

k1,.
xą0

)W 1
k1,.

F

“ 1!
W 1T

k1,.
xą0

)W 2T

.,k Q
2
ωW

1
k1,.

“ 1!
W 1T

k1,.
xą0

)W 2T

.,k

¨

˚

˚

˚

˚

˝

1
tW 2T

1,. Epxqą0u
W 1
k1,1

...

1
tW 2T

n,.Epxqą0u
W 1
k1,d

˛

‹

‹

‹

‹

‚

“ 1!
W 1T

k1,.
xą0

)

˜

d
ÿ

i“1

W 2
i,kW

1
k1,i1tW 2T

i,. Epxqą0u

¸

This results shows that the bi-orthogonality condition can be obtained via a

combination of orthogonality conditions between the weights and/or nonlinearity

activations.

For instance, the proposition piq corresponds to the case where the input of the

k1 unit in the bottleneck layer is negative, condition piiq is the case where the input

of all output units is negative, condition piiiq corresponds to a linear decoder and

orthogonality of the weights, and pivq corresponds to an orthogonality condition

between the kth column of the decoder weight with the k1th row of the encoder weight

modulo the activations of the decoder layer. Note that if piiq and piiiq hold for multiple

regions ω P ΩE,D it implies that the decoder is linear with respect to the coordinate

space and forms a linear manifold. Thus, these are not realistic conditions to have

efficient AEs.

ii Tangents and Hessians From the CPA formulation, we observed that for each

region ω P ΩE,D, D ˝ E defines a composition of two continuous piecewise affine

functions, each defined respectively by the parameters AEω , BE
ω , and ADω , BD

ω . We can
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Figure 6.2 : Piecewise linear surfaces induced by two randomly initialized AE decoders
and visualized in the ambient space of dimension d “ 3 (latent dimension being h “ 2).
The gray denotes the regions, and the red lines their borders. As they correspond to
the MAS surface induced by the decoder, each gray region has a slope characterized by
the Jacobien of the decoder as in Eq. 6.8. Our work aims at developing a constraint on
these surfaces via their per region tangent, such that they approximate the manifold
defined by the orbit of a signal with respect to the action of a group.

thus derive simple analytical formulas for the per region Jacobian and approximated

Hessian of the AE.

The Jacobian of the AE for a given region ω P ΩE,D is given by

JωrD ˝Es “ ADωA
E
ω . (6.5)

In fact, let rD ˝ Ep.qsi : Rd Ñ R be the ith coordinate output of the AE, defined as

rD ˝ Epxqsi “ rA
D
ω si,.A

E
ωx` rA

D
ω si,.B

E
ω ` rB

D
ω si.

drD ˝ Ep.qsi “ rD ˝ Epx` εqsi ´ rpD ˝ Eqpxqsi “
A

AE
T

ω rADω s
T
i,., ε

E

, @ε P Rd. (6.6)

As such, we directly obtain that

∇xrD ˝ Ep.qsi “ AE
T

ω rADω s
T
i,., (6.7)

which leads to Eq. 6.5.
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It is also clear that the rank of the Jacobian is upper bounded by the latent

dimension as rankpJωrD ˝Esq ď h, where h is the number of units of the bottleneck

layer of the AE, and in general by the min` d`. This dimension is directly related to

the manifold’s dimension that one aims to approximate, assuming that all other layer

widths are larger than h.

One can similarly obtain the per region tangent of the decoder, as it defines the

per region parametric representation of the manifold, see Fig. 6.2. We recall that we

denote by ΩD the partition of the latent space induced by the decoder

@ω P ΩD, JωrDs “ ADω , (6.8)

where the columns of ADω form the basis of the tangent space induced by D.

The characterization of the curvature of the approximation of the data manifold

can be done using the per region Hessian defined by Hω, @ω P ΩD, which in our case

will be defined as the sum of the difference of neighboring tangent planes.

@ω P ΩD, }Hω}F “
ÿ

ω1PNpωq

}JωrDs ´ Jω1rDs}F , (6.9)

where Npωq denotes the set of neighbors of region ω and }.}F is the Frobenius norm.

This approach is based on the derivation described in [203]. In practice, we use

a stochastic approximation of the sum by generating a small mini-batch of a few

corrupted samples which induce neighboring regions.

iii Interpretability of Regularization Techniques We are now interested in

leveraging these findings to analyze and interpret common AE regularizations.

(i) Higher-Order Contractive AE [203]: This regularization penalizes the en-

ergy of the first and approximated second derivative the encoder map for any

region containing a training sample, i.e.,
›

›AEω
›

›

F
and

ř

ω1PNpωq

›

›AEω ´ A
E
ω1

›

›

F
. In

the case of a ReLU AE, we know from Eq. 6.2 and the submultiplicativity
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of the Frobenius norm that the norm of the Jacobian is upper-bounded by
›

›WL
›

›

F
ˆ ¨ ¨ ¨ ˆ }W 1}F . Therefore adding a weight-decay penalty on the encoder

weights induces the first-order contractive AE. The second-order induces the

curvature of the piecewise linear map AE to be small. Note that it is the

per-region affine map induced by the encoder that is regularized, and that it

depends on the region’s activation codes, i.e., Qi and W i @i P t1, . . . , Lu. Thus,

if two neighboring regions have only have few changes in their code, and that

the associated weights are small, then, such a constraint does not affect the

overall curvature. On the other hand, if between two regions, the code of a unit

having a weight with large amplitude does not change, then the regularization

does not affect the curvature either as we can see in the following toy example.

Let consider the case of a 1 hidden-layer encoder, follows by any depth encoder.

In the second order regularization, one penalizes
›

›AEω ´ A
E
ω1

›

›

F
, where ω and

ω1 are neighboring regions. We know that AEω “ Q1
ωW

1, now let consider the

case of a 3 ReLU-units encoder, that is, Q1
ω is a 3 ˆ 3 diagonal matrix, and

W 1 P R3ˆn, where n is the input space dimension. A particular case we consider

for our analysis is, Q1
ω “ Diagp1, 0, 1q, and Q1

ω1 “ Diagp1, 1, 1q, i.e., the first

region ω is encoded by 2 activated ReLUs and ω1 by 3. The associated HOC

penalization is
›

›

›

›

›

›

›

›

›

›

¨

˚

˚

˚

˚

˝

W 1
1,:

0

W 1
3,:

˛

‹

‹

‹

‹

‚

´

¨

˚

˚

˚

˚

˝

W 1
1,:

W 1
2,:

W 1
3,:

˛

‹

‹

‹

‹

‚

›

›

›

›

›

›

›

›

›

›

F

“
›

›W 1
2,:

›

›

2
, where W 1

“

¨

˚

˚

˚

˚

˝

W 1
1,:

W 1
2,:

W 1
3,:

˛

‹

‹

‹

‹

‚

.

Therefore we see even if W 1
1,: or W 1

3,: are large, they will not induce a penalization

of the curvature between the region ω and ω1. Besides, if W 1
2,: is small, even

thought it is associated with the changing unit between the two regions, the
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Figure 6.3 : The first and second figures (from left to right) represent the number
of data points inside a ball of growing radius (first to second : CIFAR10, MNIST).
From the third to the last figure (from left to right), we show the number of regions
in the latent space of the AE inside the same ball of growing radius for different AE
architectures (third to fifth: Small MLP, Large MLP, Convolutional). We observe that
the number of regions induced by the AE partitioning of any DN architecture in any
randomly sampled ball is much larger than the number of data for any radius.

curvature will not be penalized either.

(ii) Denoising AE [183]: Denoising AE is known to have a similar effect than the

weight-decay penalty on the DN architecture [207]. A penalty on the energy of

W ` induces a penalty on the energy of the AEω and ADω , @ω P ΩE,D. Therefore,

it constrains each piece’s slope to be as flat a possible, implying that the

piecewise linear map focuses on approximating the low-frequency content in the

data, which reinforces the learning bias of deep networks towards low-frequency

information [208]. Thus, we see how denoising and Higher-Order Contractive

are tied together.

Now that we understand autoencoders’ different components and their underlying

functionality, we propose to constrain the surface’s geometry spanned by the CPA

map. In fact, we can see in Fig. 6.3 that for a given ball positioned in the input data
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space, the number of regions induced by the AE is much larger than the number of

data. It is then clear that only a few of the regions contain data points. Thus, besides

the implicit constraints of Deep Network, such as weight sharing on convolutional

nets, and the continuity constraints of the mapping, there are no other structural

constraints on the behavior of regions where no training data are available [209,210].

There is, therefore, a need to constrain all the regions of the CPA to guarantee the

generalization capability of AEs.

iv Lie Group Orbit Fitting For the remaining of the paper, we model the dataset

as the orbit of a Lie group, that is, as per Eq. 2.14, xpθq “ exppθGqxp0q, θ P R, G P TIG,

where TIG denotes the Lie algebra of the group G. We also assume that @θ P R,

xpθq P Rdz t0u to avoid degenerated cases. Our aim is to provide a regularization that

leads to generalization guarantees, i.e., the AE is equal to x at any location of the

manifold. In Sec. iv, we first provide such a regularization from a general point of

view, that is, we consider the approximation of x by a smooth interpolation function

(C2pR,Rdq). We then translate this condition for CPA operators (Sec. v) to apply it

to any AE. We then demonstrate the generalization guarantees it yields (Sec. vi).

First, we want to understand under which condition a interpolation function

f P C2pR,Rdq coincides with the orbit of xp0q P Rdz t0u under the action of the group

G. In particular, we propose to exploit a regularization that induces an orbit of a Lie

group, such as

Rkpfq fi

ż

›

›

›

›

dkfpθq

dθk
´G

dk´1fpθq

dθk´1

›

›

›

›

dθ, (6.10)

where dkfpθq
dθk

denotes the kth order derivative of f .

This regularization constrains f such that its kth order derivative is a linear map

of the k ´ 1 order. In the following theorem, we show that, for k P t1, 2u, such regu-
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larization coupled with an interpolation loss function leads to a perfect approximation

of the data manifold x. That is, f coincides with xpθq “ exppθGqxp0q, @θ P R if

and only if dkfpθq
dθk

“ Gdk´1fpθq
dθk´1 and it exists a certain number of θi, depending on the

order k, such that fpθiq “ xpθiq. Note that the restriction to the first two orders is

natural as we will apply these results on continuous piecewise affine maps, in which

the second-order can only be approximated using stochastic approximation as per

Sec. ii.

Theorem 2. For all k P t1, 2u, assuming G is invertible, and that a function f

minimizes the regularization Rkpfq and it exists θi, i P t1, . . . , ku such that fpθiq “

xpθiq then f has perfect generalization as in

Rkpfq “ 0 and Dθi P t1, . . . , ku s.t. fpθiq “ xpθiq ðñ @θ,xpθq “ fpθq. (6.11)

Proof. For both cases, we recall that we assume that @θ, xpθq ‰ 0. In fact, relaxing

such assumption would lead to a degenerated case where the interpolant can be

constant and equal to 0. In practice this assumption is more than realistic as the

’0-datum’ is usually not part of any dataset. Let’s first consider the case k “ 1.

We know that the solution of dfpθq
dθ

“ Gf is fpθq “ exppθGqfp0q. Now it is clear that if

Dθ1 such that fpθ1q “ xpθ1q, then fp0q “ xp0q, and therefore, fpθq “ exppθGqxp0q “

xpθq, @θ.

Now for the case k “ 2,

Let ypθq “ dfpθq
dθ

, then we have

dypθq

dθ
“ Gypθq,
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which solution is

ypθq “ exppθGqyp0q.

Thus, df
dθ
“ exppθGqdfpθq

dθ
|θ“0. Now since

exppθGqG
dfpθq

dθ
|θ“0 “

ÿ

ně0

Gn

n!
G
dfpθq

dθ
|θ“0 “

ÿ

ně0

G
Gn

n!

dfpθq

dθ
|θ“0 “ G exppθGq

dfpθq

dθ
|θ“0

we have that,

fpθq “ exppθGqG´1dfpθq

dθ
|θ“0 ` c1,

where c P R and 1 denotes the d-dimensional vector of 1. Let’s now add the interpola-

tion condition, that is

Dθ1, θ2, s.t. fpθ1q “ xpθ1q, fpθ2q “ xpθ2q

Which is equivalent to
$

’

&

’

%

exppθ1GqG
´1 dfpθq

dθ
|θ“0 ` c1 “ exppθ1Gqxp0q

exppθ2GqG
´1 dfpθq

dθ
|θ“0 ` c1 “ exppθ2Gqxp0q

Which implies that, dfpθq
dθ
|θ“0 “ Gxp0q and that c “ 0.

Therefore,

fpθq “ exppθGqxp0q “ xpθq, @θ

Thus an interpolant f, can approximate the orbit of a Lie group, utilizing two

components, the aforementioned regularization with k P t1, 2u, and a reconstruction

error that force the interpolation function to coincide with k training samples.

v Regularizations for Continuous Piecewise Affine Maps The derived reg-

ularizations were based on a smooth interpolant f and need to be adapted to the case

of a CPA map. To do so, there are several crucial considerations:
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(i) For the sake of clarity, the previous section illustrated the case of a one-

dimensional group. Here we propose to generalize such an approach to multiple

groups of transformations. We, therefore, consider the case of h infinitesimal

operators G1, . . . , Gh each corresponding to a 1-dimensional group, as explained

in Sec. 2.3.

(ii) The second-order regularization requires constrains the Hessian of the CPA,

which by definition, can only be approximated stochastically as explained in

Sec. 6.4 - ii.

(iii) The assumption on the data is that they are generated by h transformation

groups. Thus, the intrinsic dimensionality of the data is at most h. Therefore,

the size of the bottleneck layer, which corresponds to the maximum dimension

of the manifold the autoencoder can generate is also h.

The case k “ 1: The first-order regularization corresponds to the assumption that

data that are generated by the decoder and that are close to each other result from

small transformations of one to another. As per Eq. 2.15, we obtain

R1pDq fi min
G1,...,Gh

ż

Rh

ż

Npθq

min
ε1,...,εh

›

›

›

›

›

Dpθq ´ pI `
h
ÿ

k“1

εkGkqDpθ
1
q

›

›

›

›

›

2

dθ1dθ, (6.12)

where Npθq denotes the neighborhood of θ P Rh, the parameters ε1, . . . , εh are the

scalars corresponding to the scale of the transformations, and the G1, . . . , Gh the

infinitesimal operators. The optimal parameters ε‹ “ rε1, . . . , εhs
T used during the

training of the regularized AE are provided by the following proposition.

Proposition 9. The ε of the first-order regularization defined in Eq. 6.12 is obtained
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as

ε˚ “

¨

˚

˚

˚

˚

˝

}G1Dpθ
1q}

2
2 . . . xGhDpθ

1q, G1Dpθ
1qy

...
. . .

...

xG1Dpθ
1q, GhDpθ

1qy . . . }GhDpθ
1q}

2
2

˛

‹

‹

‹

‹

‚

´1 ¨

˚

˚

˚

˚

˝

xDpθq ´Dpθ1q, G1Dpθ
1qy

...

xDpθq ´Dpθ1q, GhDpθ
1qy

˛

‹

‹

‹

‹

‚

where the matrix is always invertible (Dpθ1q ‰ 0).

Proof.
›

›

›

›

›

Dpθq ´ pI `
h
ÿ

k“1

εkGkqDpθ
1
q

›

›

›

›

›

2

2

“

›

›

›

›

›

Dpθq ´Dpθ1q ´
h
ÿ

k“1

εkGkDpθ
1
q

›

›

›

›

›

2

2

“ xDpθq ´Dpθ1q,Dpθq ´Dpθ1qy

´ 2

C

Dpθq ´Dpθ1q,
h
ÿ

k“1

εkGkDpθ
1
q

G

`

C

h
ÿ

k“1

εkGkDpθ
1
q,

h
ÿ

k“1

εkGkDpθ
1
q

G

,

Now, @j P t1, . . . , hu

δ
›

›

›
Dpθq ´Dpθ1q ´

řh
k“1 εkGkDpθ

1q

›

›

›

2

2

δεj
“ ´2pDpθq ´Dpθ1qqTGjDpθ

1
q`

2
h
ÿ

k“1

εkDpθ
1
q
TGT

kGjDpθ
1
q,

setting
δ}Dpθq´Dpθ1q´

řh
k“1 εkGkDpθ

1q}
2

2

δεj
“ 0, for all j we obtain

ε˚ “

¨

˚

˚

˚

˚

˝

}G1Dpθ
1q}

2
2 . . . Dpθ1qTGT

hG1Dpθ
1q

...
. . .

...

Dpθ1qTGT
1GhDpθ

1q . . . }GhDpθ
1q}

2
2

˛

‹

‹

‹

‹

‚

´1 ¨

˚

˚

˚

˚

˝

pDpθq ´Dpθ1qqTG1Dpθ
1q

...

pDpθq ´Dpθ1qqTGhDpθ
1q

˛

‹

‹

‹

‹

‚

, and we have that
¨

˚

˚

˚

˚

˝

}G1Dpθ
1q}

2
2 . . . Dpθ1qTGT

hG1Dpθ
1q

...
. . .

...

Dpθ1qTGT
1GhDpθ

1q . . . }GhDpθ
1q}

2
2

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

G1Dpθ
1q

...

GhDpθ
1q

˛

‹

‹

‹

‹

‚

T ¨

˚

˚

˚

˚

˝

G1Dpθ
1q

...

GhDpθ
1q

˛

‹

‹

‹

‹

‚

which is thus a positive definite matrix.
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Note that the infinitesimal operators are learned using stochastic gradient descent

and that the approximation of the integrals in Eq. 6.12 is developed in Sec. 6.5 - ii.

The case k “ 2: We know from Sec. ii that for each region ω P ΩD, the decoder

is characterized by its tangent plane, ADω . The second-order regularization imposes

that each tangent plane of the AE is related to their neighboring tangents plane

by small transformations. Again, considering the linearized exponential maps and

exploiting the definition of the Hessian in Eq. 6.9 we obtain the following second-order

regularization on the CPA

R2pDq fi min
G1,...,Gh

ż

Rh

ż

Npωq

min
ε1,...,εh

›

›

›

›

›

JωrDs ´ pI `
h
ÿ

k“1

εkGkqJω1rDs

›

›

›

›

›

F

dω1dω, (6.13)

where Npωq denotes the set of neighbors of region ω and }.}F is the Frobenius norm

and we recall that Jω1rDs “ ADω1 and JωrDs “ ADω . The implementation regarding

the sampling of neighboring regions is detailed Sec. 6.5 - ii. In this case also, the

optimal parameters ε‹ “ rε1, . . . , εhs
T used during the training of the regularized AE

are provided in the following proposition.

Proposition 10. The ε of the second-order regularization defined in Eq. 6.13 is

obtained by

ε˚ “

¨

˝

ř

i }G1rA
D
ω s.,i}

2
2 . . .

ř

ixG1rA
D
ω s.,i, GhrA

D
ω s.,iy

.

.

.
.
.
.

.

.

.
ř

ixGhrA
D
ω s.,i, G1rA

D
ω s.,iy . . .

ř

i }GhrA
D
ω s.,i}

2
2

˛

‚

´1 ¨

˝

ř

ixG1rA
D
ω s.,i, rA

D
ω1 s.,i ´ rA

D
ω s.,iq

.

.

.
ř

ixGhrA
D
ω s.,i, rA

D
ω1 s.,i ´ rA

D
ω s.,iq

˛

‚,

where the matrix is invertible (ADω ‰ 0).
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Proof. Given Jω1rDs “ ADω1 and JωrDs “ ADω , we have
›

›

›

›

›

ADω1 ´ A
D
ω ´

h
ÿ

k“1

εkGkA
D
ω

›

›

›

›

›

2

F

“ TrpADω1 d A
D
ω1 ´ A

D
ω1 d A

D
ω ´ A

D
ω1 d p

k
ÿ

h“1

εkGkA
D
ω q

` ADω d A
D
ω ´ A

D
ω d A

D
ω1 ` A

D
ω d p

k
ÿ

h“1

εkGkA
D
ω q

´ p

k
ÿ

h“1

εkGkA
D
ω q d A
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ÿ
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D
ω
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k
ÿ
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ω q d p

k
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εkGkA
D
ω qq11T q.
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›

›

›
ADω1 ´ A

D
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k“1 εkGkA

D
ω

›

›

›
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D
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D
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h
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GkA
D
ω 11T q

¸

“ 2 Tr
`
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D
ω d pA

D
ω ´ A

D
ω1q11T

˘

` 2
h
ÿ

k“1

εk Tr
`

pGjA
D
ω dGkA

D
ω q11T

˘

,

setting
δ}ADω1´A

D
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řh
k“1 εkGkA

D
ω }

2

F

δεj
“ 0 for all j and rearranging in matrix form gives

ε˚ “

¨
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D
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.
.
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.

.

.
ř
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2

˛

‚

´1 ¨
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ω s.,iq

.

.

.
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D
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D
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D
ω s.,iq

˛
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and we have that
¨
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D
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2
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.

.
.
. .

.

.

.
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D
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D
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2
2

˛

‚“
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»

–

G1rA
D
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.

.
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D
ω s.,i

fi
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T »
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.

.
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fi

fl,

therefore it is the sum of positive definite matrices.

For the case h=1, we have that

›

›aDω1 ´ a
D
ω ´ εGa

D
ω

›

›

2
“
@

aDω1 , a
D
ω1

D

´ 2
@

aDω1 , a
D
ω

D

`
@

aDω , a
D
ω

D

` 2
@

εGaDω , a
D
ω ´ a

D
ω1

D

`
@

εGaDω , εGa
D
ω

D

,
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thus,

δ
›

›aDω1 ´ a
D
ω ´ εGa

D
ω

›

›

2

δε
“ aD

T

ω GT
paDω ´ a

D
ω1q ` εa

DT

ω GTGaDω

Let us now provide interpretations regarding the Lie group regularizations we

developed. While the first-order regularization constrains the AE mapping, the second-

order constrains the AE’s tangent plane of each region. In the first-order case the

distance between pI `
řh
k“1 εkGkqDpθ

1q, which corresponds to small transformations

of the sample generated by the decoder, and Dpθq is minimized. Thus, such a

regularization constrains the AE mapping to approximate the orbit induced by the

infinitesimal generators. Then, the second-order regularization aims at minimizing

the distance between pI `
řh
k“1 εkGkqJω1rDs, which is the small transformation of the

tangent plane of region ω1, and JωrDs. This means that the second-order regularization

constrains the Hessian of the decoder, which defines the angle between neighboring

piecewise linear maps, to approximating the angle of the data manifold. Therefore,

this penalization enforces the curvature of the piecewise linear map to fit the curvature

of the orbit. Besides, as opposed to the Higher-Order Contractive AE [203], these

regularizations constrain all the piecewise affine regions whether they contain training

data or not as they do not rely on samples from the dataset. This is crucial to provide

generalization guarantees in a finite data regime.

vi Manifold Approximation Error In Sec. 6.4 iv, we showed that if the reg-

ularization defined in Eq. 6.10 is equal to zero for any given k P t1, 2u, and if the

interpolation function f coincides with the data manifold defined by x on k points,

then f coincides with x. We now derive the generalization guarantees in the particular

case where f is a CPA approximant.
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Based on the assumption that piq a region of the real manifold is correctly approx-

imated, piiq one of the regularizations defined in Eq. 6.12, 6.13 is minimized, and that

piiiq the infinitesimal operator G obtained from the regularization coincides with the

infinitesimal operator of the group governing the data, we obtain the following bound

on the approximation of the data manifold.

Theorem 3. If on a region ω1 P ΩD the matrix ADω1 forms a basis of the manifold

tangent space on this region, and it exists k P t1, 2u such that RkpDq “ 0 then for all

regions ω P ΩD the basis vectors of ADω are the basis vector of the tangent of the data

manifold and the distance between the continuous piecewise affine map and the data

manifold is upper bounded by the radius of the regions as per

d pYωPΩDTAEpωq,Xq ď
ÿ

ωiPΩD

Radpωiq,

where TAEpωq the tangent space of the AE for the region ω, X denotes the data

manifold, d defines the 2-norm distance,and Radpωiq the radius of the region ωi.

For the following proofs, we will denote by T : Rd ˆ Rh Ñ Rd, the transformation

operator taking as input a datum and a group parameter, and giving as output the

transformed datum. As we used a Lie group, we can define this operator analytically

as T px, θq “ exppθGqx. We will use the notation TXpωq as the tangent space of the

manifold described by the data X for the data in the region ω, and by TAEpωq the

tangent space of the AE for the region ω. We show that if these two tangent space

coincides for a given region, i.e., if the tangent space of the AE coincides with the

tangent space of the manifold for a specific position, then they coincide everywhere.

Proof. By assumption, we know that
 

aD1 pω
1q, . . . , aDh rω

1s
(

form a basis of TXrω
1s. If

the regularization is satisfied, we also know that the tangent induced by the AE at

position ω, denoted by TAEpωq, is equal to T pTXpω
1q, θq. In fact, for the order k “ 2
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the regularization imposes that the tangent (induced by the AE) of the different

regions are transformed version of each other by the transformation operator T . Now

for the order one, we know that if dfpθq
dθ

“ Gfpθq, then d2fpθq
dθ2

“ Gdfpθq
dθ

. Which means

that if the outputs of the interpolant f are connected by the transformation group

T , then the tangents of such interpolant are also connected by the same group of

transformation.

Note that the operator T forms a Lie group action operator, it is a diffeomorphism

from the orbit of the group to the orbit of the group. Therefore, @ω, it exists θ such

that T pTXpω
1q, θq “ TXpωq. Per assumption, the tangent of the region ω1,i.e. TAEpω

1q is

actually tangent to X as its basis coincides with TXpω
1q. Denote by x P X the point at

which TXpω
1q and X intersects. Let’s first first prove that for ε1 “ arg maxε x` εh P ω,

where h P TXpω
1q, that is, x ` ε1h lies at the boundary of the region ω1. We further

assume that }h} “ 1 such that ε1 “ Radpω1q. Let’s define a smooth curve on the

manifold γ : RÑ X such that γp0q “ x and γ1p0q “ h. Now,

dpx` ε1h,Xq ď dpx` ε1h, γpε1qq

“ }γpε1q ´ γp0q ´ ε1γ1p0q} .

Since, limε1Ñ0
γpε1q´γp0q

ε1
“ γ1p0q, we have that dpx`ε1h,γpε1qq

ε1
“ opRadpω1qq. Then, since

the ωi@i P t1, . . . , |Ω|u form a partition of Ω and that by Proposition 3 we know that

since one tangent of the AE coincides with the tangent of the manifold at the point x

then any tangent of the AE coincides with a tangent of the manifold. Thus, we have

that d pYωPΩTAEpωq,Xq “
ř|Ω|
i“1 d pTAEpωiq,Xq ď

ř|Ω|
i“1 Radpωiq.

The previous statement shows that if the number of pieces of the piecewise affine

map, which depends on the number of neurons in the DN architecture (see Fig. 6.3

and refer to [211] for more details) and the type of nonlinearity, goes to infinity, then
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the decoder would coincide with the data manifold. In a practical setting, it tells us

that the higher the number of regions is, the higher is the degrees of freedom of the

CPA, and that under this regularization, these degrees of freedom are controlled while

not requiring more training points.

vii Complexity & Parameters Recall that in the proposed second-order regu-

larization, one should have the knowledge of the decoder latent space partition. In

practice, and for large networks, the discovery of the partition would not be feasible.

We thus propose to approximate the regularization by only sampling some of the

regions and some of their respective neighbors. This sampling is done by first randomly

sampling some vectors in the AE latent space. As for each sample, the associated

per region map is automatically formed during the foward pass of the decoder, the

per region parameters can be obtained by computing the affine mapping induced by

the samples. To compute the neighbors of those sample regions, we use a simple

dichotomic search. That is, for each of the sampled regions, we sample another

(nearby) vector and keep pushing this new sample toward the first sample until one

obtains the closest sample that remains in a different region. With the above, one

now has the knowledge of some regions and one neighboring region for each of those

regions. We leverage this approach and perform the search of a single neighbor; for a

better approximation of the regularization, one can repeat this sampling process and

accumulate the obtained regions and neighbors. For the first-order term, we propose a

similar approximation where we approximate the integral by sampling a latent space

vector θ (at each mini-batch).

Let us now consider the computational complexity induced by the regularizations

omitting the computational cost of a pass through the AE as it is shared across
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Figure 6.4 : Test set reconstruction error on the SyntheticControl dataset evaluated
on the best set of parameters for different AEs (from left to right): AE, Higher
Order Contractive AE, Denoising AE, Lie Group AE (first-order), and Lie Group
AE (second-order). For each model, the mean over 10 runs is reported in black, and
the gray area corresponds to its standard deviation. We observe that the first order
regularization performs much better than the second order one, which is close to
the higher-order contactive AE error. In fact, this dataset contains six classes of
time-series trends (upward, downward, normal,...), which can be easily related by a
linear transformations, that is, the first order regularization can be easily optimized.
The second order is harder to train and is more sensitive to the sampling of the regions,
therefore is less reliable and harder to interpret.

all techniques. The optimal coordinates ε˚ are obtained by solving a linear system

of h equations in both cases for each sampled datum (first-order) or each sampled

region (second-order). This equation has to be solved for each sample region or latent

space vector; we denote this by N as in our case, we sample in each mini-batch as

many vectors/regions as the size of the mini-batch. We obtain the time complexity

Oph2N ` d2hNq for the first-order, and Oph2N ` d2h2Nq for the second-order, and
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a space complexity of Opd2hq in both cases being driven by the need to retain the

matrices G1, . . . , Gh. The current bottleneck is the storage of those matrices, which

limits the size of the AE bottleneck and output dimension.

6.5 Experiments

In this section, we discuss some practical aspects of the proposed regularizations as

well as provide the experimental validations. In particular, how the parameters of the

regularizations are learned as well as how the sampling required in both regularizations

is performed along with their parameters, and finally the experimental validations.

i Parameters The degrees of freedom of our regularized AE comprise the usual AE

parameters (per layer affine transformations) and the parameters of each regularization.

The ε values are found from the analytical form given by Propositions 9 and 10. We

learn the matrices Gk, @k P t1, . . . , hu with gradient descent based optimizer [150] and

thus our method introduces hd2 additional parameters, where d is the dimension of the

input data. Note that a priori knowledge on the structure of the Gk such as low-rank

or skew-symmetric, i.e., Lie algebra of the special orthogonal group, can be imposed to

reduce the number of parameters; we do not explore this in our study while it could be

considered to speed up the computations and improve the regularization tractability.

The regularizations themselves depend on the AE to find the optimal ε and adapt the

matrices Gk. The dimension of each Gk is quadratic in the dimension of the data. As

such, for a high-dimensional datasets, the number of learnable parameters is large.

Hence the optimization of the Gk matrices remains the current bottleneck of the

method. We propose to apply the regularization term during training starting from

the random initialization. More advanced strategies such as scheduled alternating
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Table 6.1 : Comparison of the testing reconstruction errors (ˆ10´2˘ std ˆ 10´2q for
each AE (columns) and dataset (rows). The methods denoted by Lie G. (1th) and
Lie G. (2nd) correspond respectively to the first-order and second-order Lie group
regularizations we developed. H.O.C. AE denotes the Higher-Order contractive AE,
and Den. AE denoising AE.

Data\Model AE Den. AE H.O.C. AE Lie G. (1th) Lie G. (2nd)

CIFAR10 5.6˘ 0.05 5.0˘ 0.05 - 4.9˘ 0.07 -

MNIST 12.01˘ 0.003 12.01˘ 0.004 12.01˘ 0.004 6.3˘ 0.1 10.13˘ 0.1

CBF 62.38˘ 0.74 52.66˘ 0.76 51.09˘ 0.54 43.99˘ 1.2 49.73˘ 0.31

Yoga 33.76˘ 0.81 33.29˘ 0.72 32.08˘ 0.42 20.28˘ 1.1 30.78˘ 1.2

Trace 13.95˘ 0.45 11.28˘ 0.57 12.57˘ 0.21 13.23˘ 0.4 10.91˘ 0.45

Wine 63.06˘ 0.02 59.34˘ 0.02 49.94˘ 0.02 19.01˘ 0.02 49.94˘ 0.01

ShapesAll 67.98˘ 3.0 58.67˘ 1.4 61.42˘ 5.5 52.97˘ 1.9 57.80˘ 1.2

FiftyWords 64.91˘ 1.7 60.91˘ 1.0 60.92˘ 0.7 71.84˘ 3.4 57.89˘ 1.0

WordSyn 70.95˘ 1.5 66.02˘ 0.8 66.52˘ 0.5 68.21˘ 2.7 62.22˘ 1.1

Insect 51.86˘ 0.6 40.24˘ 0.8 41.93˘ 0.6 38.11˘ 0.9 38.22˘ 0.3

ECG5000 21.92˘ 0.75 20.31˘ 0.39 20.31˘ 0.36 18.06˘ 0.9 20.29˘ 0.4

Earthquakes 56.23˘ 4.1 54.62˘ 4.1 51.79˘ 1.0 99.41˘ 0.2 50.20˘ 0.5

Haptics 37.25˘ 0.2 36.02˘ 1.8 27.21˘ 0.5 16.94˘ 3.4 26.06˘ 0.9

FaceFour 49.82˘ 1.0 48.51˘ 0.8 48.52˘ 0.7 48.60˘ 1.9 46.00˘ 0.6

Synthetic 95.61˘ 1.3 89.37˘ 1.0 88.47˘ 0.9 55.87˘ 0.8 86.83˘ 0.6

minimization or employing a warm-up phase could be leveraged and result in further

improvement in performance.
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ii Results We evaluate our framework on diverse datasets, including images and

time-series data including speech, medical as well a seismic recordings. For each model

and each hyperparameter, we perform 10 runs for 125 epochs with batch size 16. The

results are reported in Table 6.1. In this table, the statistics reported correspond to

the average over the 10 runs, each run using the test set performances based on the

best validation set measure. Note that for CIFAR10, the computational burden of

both the second-order Lie group regularization and the higher-order contractive one is

too high. Thus only the AE, denoising AE and the first-order Lie group regularization

are evaluated.

We propose, in particular, to visualize the test set reconstruction for the different

AE models during training in Fig. 6.4, where we can see that both Lie Group AEs are

robust to the DN initialization and do not overfit. Besides, we can observe that while

the first order on this dataset outperforms all the other regularizations, its variance at

the begining of the learning phase is more volatile than other approaches.

The hyperparameter responsible for the variance of the noise added to the data in

the Denoising AE case also corresponding to the noise added to the data to sample

Jacobian of nearby regions in Higher-Order Contractive AE parameter is evaluated for

the values t0.001, 0.01, 0.1, 1u. Another hyperparameter is the regularization trade-off

parameter for both the Higher-Order Contractive AE and Lie Group AEs, the following

values are tested for both models t0.001, 0.01, 0.1, 1, 10, 100, 1000u. All the models

were trained using the same AE with 3 fully connected encoder layers with ReLU with

bottleneck dimension h “ 10, and 3 fully connected decoder layer with ReLU and 1

linear fully connected output layer.

We can observe in Table 6.1 that the Lie group regularizations are usually outper-

forming the other methods the different datasets we evaluated. While the second-order
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Figure 6.5 : Visualisation of the value (after learning) of the group strength parameter
,ε, for the (Top left) SyntheticControl, (Top right) Haptics, and (Bottom) FaceFour
datasets, in the case of the first order regularization. For each row, we observe the
value of the the parameter εi for a given sample, Dpθq and its neigbhor Dpθ1q as
per Eq. 6.12, that is, what is the amplitude of the transformation associated to the
generator Gi needed to map one onto the other. Note that we display the epsilons for
16 sampled neighboring pairs.

regularization is more computationally demanding, it appears to be more stable and

robust to the change of parameters. Besides, we can see that the first-order regulariza-

tion might be more sensitive to how close to a Lie group the dataset under evaluation is.

In fact, both the first and second-order depends on the learned infinitesimal operator,

however, while the second-order use such matrix to constrain the overall curvature of

the CPA the first-order use it to constrains its mapping.
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In Fig. 6.5, we show, for three datasets, the value of the parameters εi, @i P

t1, . . . , hu obtained by minimizing Eq. 6.12. This observation is important as the

framework we propose assumes that the dimension of the orbit, hence the number of

group transformations, is the same as the dimension of the bottleneck layer of the

autoencoder. In particular, we propose to highlight the sparsity of the parameters, i.e.,

if for various sampled pairs, the value a particular strength parameter, εi, is close to 0.

If it is, then the associated group of transformation is not being used to map any Dpθq

to a close sample Dpθ1q. Therefore, the number of group of transformations selected

is too large, e.g., in the top right subplot, corresponding to the Haptics dataset, we

observe that, the 10 transformations are not required.

6.6 Conclusion

We analyzed AEs from a geometrical standpoint and provided insights into how AEs

are approximating the data manifold. In particular, we provided analytical formulas

of the per region map that AEs are performing using its continuous piecewise affine

formulation. This approach’s strength lies in its interpretability power, as for a given

region in the input space, the DN mapping is a simple affine map. Leveraging these

key features, we proposed to enhance and guarantee the generalization capability of

AEs by proposing two regularizations that capture the symmetry in the data. These

regularizations constrain the piecewise continuous surface spanned by the decoder to

approximate the orbit of a Lie group. Besides, inspired by the theory of learning Lie

group transformations, we alleviated the need to explicitly define a group of symmetry

underlying the data and propose to learn the group’s generator. In fact, the generator

of a Lie group lives in a vector space, thus enabling common matrix manipulations

required to perform its update.
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7

Discussion & Conclusion

7.1 Discussion

We recall that this thesis aimed to evaluate the possibility of providing suitable and

interpretable data embeddings by taking inspiration from the success of DNNs. The

first part of this work was particularly inscribed in the field of time series analysis and

addressed the possibility of learning and generalizing wavelet transform. Then, we

proposed approaching the problem of designing adaptive metrics that take into account

the image manifold. Finally, we considered how to provide a manifold approximator

with generalization guarantees. In the following, we propose to discuss the answer to

each specific question and the limitations of our approaches.

Learnable Wavelet Transform In this work, the mother wavelet is learned,

thus replacing the need of expert knowledge on the data to pick the appropriate mother

wavelet. An essential aspect of our contribution is the efficient parametrization of
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functions based on Hermite cubic splines. In particular, our construction of an appro-

priate space leads to localized filters that integrate to zeros. Such a parametrization

drastically reduces the number of samples that the first layer of the convolutional neu-

ral network filters require to converge to a local minimum and provide state-of-the-art

results.

Limitations of the Proposed Approach While the adaptivity of the filter

and generalization of the mother wavelet has been tackled, the problem lies in the

computational complexity. In fact, as opposed to DNN filters used on images of size

5ˆ5 or 3ˆ3, the wavelet 1-dimensional filters can be large. By construction, the more

the filter is low frequency, the larger its size will be. Therefore, the cost computation

of the convolution and the back-propagation can be large. Now, given this information

and the effectiveness of the method, it appears that the expressive power of DNN can

cope with an inappropriate choice of mother wavelet. We believe that this type of

filter can provide flexible and efficient shallow models, but in conjunction of a deep

network, the computational cost is usually not worth the marginal accuracy gain.

Learnable Group Transform The understanding and decomposition of the

wavelet transform via the group transform allow for a nice generalization. One

can, in fact, replace the affine group currently used by the wavelet transform with

another group to reflect the symmetry in the data. To provide a generalization of

the wavelet transform, we opted for the diffeomorphism group. An important part

of the contribution was finding an efficient parametrization of this group, which was

achieved exploiting 1-hidden layer ReLU network. This type of filter can also replace

the first layer of DNN. We obtained state-of-the-art results on various applications

and allowed to find a new type of filter adapted to Haptics data.
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Limitations of the Proposed Approach As we mentioned for the learnable

wavelet transform, the complexity is an issue, and it takes a substantial amount of

time to train a DNN with this type of filter bank in the first layer. Another aspect

here is how to constrain the diffeomorphic transformations such that the training is

stable and no artifacts are introduced in the filter bank. Overall, this approach could

be advantageous in an exploratory setting or for shallow models.

Learning Invariant Distances Understanding the topology of the data in an

unsupervised manner is a crucial problem that, even with the advances in DNNs the

last decade, remains open. Our approach takes advantage of the Thin-plate-spline

model that can capture diffeomorphic transformations. The generalization of affine

invariant distance and the learnability of the diffeomorphism are crucial, and a large

improvement over other approaches is noticed. The full interpretability of the model

is a crucial advantage for various applications.

Limitations of the Proposed Approach The major difficulty when working

with transformations, and in particular non-rigid transformations in the data space, is

the requirement of background removal. In our approach, we selected data without

background as not to complicate the approach. Another difficulty is the control over

the diffeomorphism as the intensity of the transformation should be tied to the data.

In our approach, the Thin-plate-spline allows this parametrization, but its per-data

adaptation was not explored.

Learnable Lie Group for Manifold Approximation Understanding and

proving the generalization guarantee of an algorithm is one of the milestones of

machine learning research. In this work, we propose a regularization that encodes
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the notion of equivariance with respect to learnable transformations in the very

definition of autoencoders. To do so, we attempted to describe the inner mechanisms

of autoencoders as well as how they approximate manifolds. The understanding and

interpretability of commonly used variants of autoencoder have been provided. The

generalization guarantee has been proven and a generalization bound has been derived,

expressing the link between approximation and the region of the piecewise linear

autoencoder surface.

Limitations of the Proposed Approach One of the major limitations of the

group is the assumption that the data space is homogeneous; that is, the data lie on

the orbit of a group. A more realistic approach would consider different orbits, as the

data manifold is, almost surely, a collection of “pancakes”. Another consideration is

the sampling of the region and the learnability of the Lie algebra basis, both presenting

challenges that have not been adequately explored in the literature.

7.2 Conclusion & Future work

This section presents the summary of the main results and future work.

7.2.1 Conclusion

Overall, we shown that it is possible to provide suitable and interpretable data

representations based upon the projection onto carefully designed spaces that can

compete with Deep Learning methods. To achieve this, we exploited tools from

harmonic analysis allowing us to inject prior knowledge into the data representations.

Representation of Time Series The problem of time series representation has

been tackled under the frame of time-frequency analysis. While large numbers of ap-
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proaches are possible to represent time series efficiently, time-frequency representations

appeared to be close to optimal from an empirical standpoint. In fact, when trained

on a large number of signals, the first layer of convolutional neural networks converge

toward Gabor-like filters. The localization of particular patterns in the time-frequency

plane is both particularly interpretable and has been used by engineers and scientists

for decades to understand our world better. This representation has been driving

the first part of this thesis, as our aim was to provide their modernization. The

wavelet transform can be divided into two building blocks, using the group transform

formulation, which enables us to understand how we can provide its generalization

and learnability. Our approach to achieving these objectives considers the sampling of

both the mother wavelet and the group by appropriately sampling carefully designed

functional spaces. In both cases, we reach state-of-the-art performances, and our

approach can provide insights into the data at hand because of its interpretability. We

believe these tools can help scientists extract meaningful information from their time-

series data as the learning of their parameters can be combined with any differentiable

loss function.

Manifold Interpolation & Quantization In order to provide novel approaches

to manifold interpolation and their quantization, we started by exploiting the capability

of the K-means algorithm, known for its ”simplicity” and efficiency. While the

current form of K-means algorithms usually adopts pre-defined metrics, we attempt to

modernize it by bringing some flavor of Deep Learning. In fact, we exploited the Thin-

plate-spline as a transformation framework that can be learned by back-propagating

an error induced by our metric. Together with its particular update rule, our novel

approach to K-means is particularly effective for images and can, in fact, characterize
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the data manifold and quantize it efficiently. Key results are the tiling of the manifold

via orbits and not via convex regions and the understanding of the convergence of the

algorithm.

From the image manifold, we extended our characterization of data orbit to any

data manifold via the Lie group autoencoder proposed. Enforcing the structure of an

orbit to the manifold as well as learning its underlying group was shown to be one

way to guarantee generalization. Being capable of learning the symmetry of the data

as well as imposing this structural constraint on manifold learning algorithm is key

to future manifold approximation work. In particular, to provide more robust and

stable algorithms. In fact, this approach replaces the traditional data augmentation

techniques, which require lots of design, knowledge on the data and often blur the

understanding of the algorithm. In our work, the regularization is explicit and part of

the training; thus can be analyzed as part of the entire learning framework.

7.2.2 Future Work

Representation of Time Series We believe that our work was achieved par-

allelly to other approaches having the same goal and that the limitations have been

partially achieved. In particular, the accuracy and predictive power reached their

maximum capability given the current methods, and the main contribution would be

to reduce the computational burden. We also believe that the variety of time series

and their different statistics can hardly be described by a single framework, while in

the case of computer vision, most images share the same statistics, particularly their

decay in the frequency spectrum. This difference and variety in the data require the

development of specialized solutions, which are usually in the hand of the expert of

datasets.
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Now, a lot remains to be done on irregular domains like graphs. The same approach

can be considered to replace the graph convolution used in deep networks by carefully

designed learnable wavelet graph filters. Again, this would fit the specific application

that appropriately resonates with wavelet analysis.

Manifold Interpolation & Quantization This idea that the data lies on a

low-dimensional space and that our high-dimensional observations are the result of

nuisances is a powerful idea that can help further improve manifold learning algorithms.

Our approach that focuses on the learnability of the group underlying the entire data

manifold is just at its first fruits, and there is a lot to be done. The learnability of the

group underlying the data needs to be improved from all aspects, and a formulation

that assumes multiple orbits within the data is required. Also, a parametrization

of diffeomorphism and its theoretical analysis needs to be developed. While GAN

provided a fantastic toolbox to be trained on a huge quantity of dataset, we believe

that its lack of stability, guarantee, and interpretability create the needs for approaches

like ours that describe the data more analytically. This part of our work requires the

development of theoretical and practical tools that can help us create a novel type of

interpretable, guaranteed, and efficient algorithm.
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