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ABSTRACT

3D sensing by optics and algorithm co-design

by

Yicheng Wu

3D sensing provides the full spatial context of the world, which is important

for applications such as augmented reality, virtual reality, and autonomous driving.

Unfortunately, conventional cameras only capture a 2D projection of a 3D scene,

while depth information is lost. In my research, I propose 3D sensors by jointly

designing optics and algorithms. The key idea is to optically encode depth on the

sensor measurement, and digitally decode depth using computational solvers. This

allows us to recover depth accurately and robustly.

In the first part of my thesis, I explore depth estimation using wavefront sensing,

which is useful for scientific systems. Depth is encoded in the phase of a wavefront.

I build a novel wavefront imaging sensor with high resolution (a.k.a. WISH), using a

programmable spatial light modulator (SLM) and a phase retrieval algorithm. WISH

offers fine phase estimation with significantly better spatial resolution as compared to

currently available wavefront sensors. However, WISH only provides a micron-scale

depth range limited by the optical wavelength. To work for macroscopic objects,

I propose WISHED, which increases the depth range by more than 1,000×. It is

achieved based on the idea of wavelength diversity by combining the estimated phase

at two close optical wavelengths. WISHED is capable of measuring transparent,

translucent, and opaque 3D objects with smooth and rough surfaces.



In the second part of my thesis, I study depth recovery with 3D point spread func-

tion (PSF) engineering, which has wide applications for commercial devices. Depth is

encoded into the blurriness of the image. To increase the PSF variation over depth, I

propose to insert a phase mask on the lens aperture. Then, a deep learning-based al-

gorithm is used to predict depth from the sensor image. To optimize the entire system,

I developed an end-to-end optimization pipeline. The key insight is to incorporate

the learning of hardware parameters by building a differentiable physics simulator

that maps the scene to a sensor image. This simulator represents the optical layer of

the deep neural network, followed by digital layers that represent the computational

algorithm. This network is trained by datasets with a task-specific loss and outputs

optimal parameters for both hardware and algorithms. Based on this idea, I develop

two prototypes: PhaseCam3D – a passive single view depth sensor, and FreeCam3D

– a structured light framework for scene depth estimation and localization with freely

moving cameras.

In summary, this thesis provides two 3D-sensing solutions with the idea of op-

tical/digital co-design. I envision different modalities of 3D imaging to be widely

adopted in the near future, enabling improved capabilities in many existing applica-

tions while revealing entirely new, hitherto unexplored application areas.
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Chapter 1

Introduction

We live in a 3D world. 3D sensing provides the full spatial context of natural scenes,

which is one of the core technologies in many systems. One hot topic is autonomous

driving. The accurate perception of the surrounding environment is the foundation

of any high-level tasks (e.g., route planning). Besides the high spatial resolution in

2D, it is important to know how far the buildings and pedestrians are related to

the car. As a result, 3D sensing plays a crucial role. Another active field in recent

years is augmented reality (AR) and virtual reality (VR). To create realism when a

virtual object is placed into a real (or virtual) scene, it is important to know accurate

3D geometry. Otherwise, there is no way to render correct foreground-background

occlusion, or perspective effect when the viewer is moving.

However, most camera sensors can only capture a 2D projection from the 3D

scene. Limited by the physics law, we can only store the camera measurement on a

2D matrix. Given this constraint, how to decide the information to be stored? For

our daily usage in photography, the goal is to capture an accurate representation (i.e.,

2D location and color) of the scene. As a result, the camera is designed to create

3D to 2D mapping by recording the relative position in x and y, and integrating the

depth along the same viewing angle into a pixel. Since the depth information is lost

during the acquisition, there is no way to recover it accurately afterward.

To measure the depth, the camera system needs to be modified. Can we build

hardware to store depth-dependent information on the sensor, and recover depth using
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Figure 1.1 : Encoder-decoder pipeline for 3D sensing. The hardware is an
optical encoder to store the 3D scene into a 2D matrix. The software is a digital
decoder to recover the 3D estimation from the measurement. The scene is from [1].

computational algorithms? From a mathematical perspective, we can regard it as an

encoder-decoder pipeline for 3D sensing, as shown in Fig. 1.1. The hardware (i.e., the

camera) is designed to modulate the light from the 3D scene, so that the measurement

will have a unique response dependent on the depth. Then the software (i.e., the

computational algorithm) extracts the information from the 2D matrix and recovers

the 3D estimation.

The current 3D system can also be explained using this pipeline. In a stereo

system [3], depth is encoded in the disparity from two images captured at different

viewpoints, and decoded by algorithms using feature matching. In a continuous-wave

time-of-flight system [4], depth is encoded in the difference between the emission of a

signal and its return to the sensor, and decoded based on the correlation theory. In

my thesis, I study two approaches using the encoder-decoder pipeline for 3D sensing.

In Chapter 2, I estimate depth from the phase of a wavefront front. Current

imaging sensors such as complementary metal oxide semiconductor (CMOS) sensors

cannot measure phase since the optical frequency is several orders of magnitude higher

than the sensor frame rate. The goal of wavefront sensing is to simultaneously mea-
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sure the amplitude and phase of an incoming optical field. Traditional wavefront

sensors such as the Shack-Hartmann wavefront sensor (SHWFS) [5] have a very low

spatial resolution. I develop a novel computational imaging-based wavefront sensor,

named WISH. It consists of a spatial light modulator (SLM), a CMOS image sensor,

and a computational phase-retrieval algorithm. The optical field is modulated by a

series of random phase patterns generated by the SLM. And a series of corresponding

spatial intensity measurements are recorded on the CMOS sensor. The data is then

processed by a phase-retrieval algorithm to generate the incident wavefront. The

WISH system provides phase reconstruction with a 10-megapixel resolution, several

orders of magnitude better than commercial Shack-Hartmann sensors.

Although WISH can measure the 3D geometry of microscopic objects, it cannot

be used for macroscopic objects. The reason is its limited unambiguous depth range,

which is in the hundreds of nanometers (one optical wavelength). As a consequence, I

propose WISHED, which has a much larger unambiguous imaging range while keeping

a high spatial resolution. The key idea is to combine WISH with a tunable laser (the

wavelength can be altered in a controlled manner). First, two object wavefronts are

recovered given two close wavelengths. Second, the depth related to a large synthetic

wavelength can be calculated based on the difference in phase between these two

wavefronts. The experimental prototype shows an unambiguous range of more than

1,000× larger compared with the optical wavelengths, while the depth precision is

up to 9µm for smooth objects and up to 69µm for rough objects. I experimentally

demonstrate 3D reconstructions for transparent, translucent, and opaque objects with

smooth or rough surfaces.

In Chapter 3 and Chapter 4, I explore 3D point spread function (PSF) engineering

to estimate depth from defocus. When we take an image with a large-aperture camera,
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the objects at the focal plane look sharp, while the rest gets blurred. In other words,

depth is encoded into the PSF. In principle, depth can be recovered if we estimate the

PSF correctly. But given that most lenses are symmetric, the PSF can be identical at

both sides of the focal plane, which makes it impossible to tell which depth the PSF

corresponds to. Also, it is hard to deconvolve an image with disk-shaped blur. To

improve the depth estimation, PSF is engineered by inserting a mask on the aperture

plane. Comparing with amplitude masks, phase masks provide higher PSF variability

and light throughput.

How to design the phase mask and the depth reconstruction algorithm? I re-

gard the entire system as a neural network, which contains an optical layer (i.e.,

modulation from the phase mask) and a digital network (i.e., depth reconstruction

algorithm). And the system can be optimized end-to-end with the exclusive goal of

maximizing depth estimation performance. Using the optimization framework, I de-

sign PhaseCam3D, a passive single-view 3D sensor that performs significantly better

than existing approaches. I build a prototype by inserting a phase mask fabricated

using photolithography into the aperture plane of a conventional camera and show

compelling performance in 3D imaging.

I further explore the idea of inserting an optimized phase mask on the aperture

of the projector. In this way, I transform the projector pattern to encode depth in

its defocus robustly; this allows a camera to estimate depth, in projector coordinates,

using local information. Additionally, I project a Kronecker-multiplexed pattern that

provides global context to establish correspondence between camera and projector

pixels. Together with aperture coding and projected pattern, the projector offers

a unique 3D labeling for every location of the scene. The projected pattern can

be observed in part or full by any camera, to reconstruct both the 3D map of the
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scene and the camera pose in the projector coordinates. This system is optimized

using a fully differentiable rendering model and a CNN-based reconstruction. I build

a prototype and demonstrate high-quality 3D reconstruction with an unconstrained

camera, for both dynamic scenes and multi-camera systems.

The idea of jointly optimizing the phase mask with the reconstruction algorithms

in an end-to-end manner has also been explored in my other projects during my

Ph.D. In DeepDOF [6], a high-resolution, large depth-of-field (DOF) microscope is

developed to offer an inexpensive means for fast and slide-free histology, suited for im-

proving tissue sampling during intraoperative assessment and in resource-constrained

settings. CodedStereo [7] achieves high-quality texture and depth reconstruction for

large depth-of-field in light-limited environments.

The content of this thesis is mainly adapted from the following publications and

patents:

[8] Yicheng Wu, Manoj Kumar Sharma, Ashok Veeraraghavan. “WISH: Wave-

front imaging sensor with high resolution.” Light: Science & Applications. (2019)

[9] Yicheng Wu, Manoj Kumar Sharma, Ashok Veeraraghavan. “Wish: wave-

front imaging sensor with high resolution.” U.S. Patent Application No. 16/863,621.

(2020)

[10] Yicheng Wu, Fengqiang Li, Florian Willomitzer, Ashok Veeraraghavan, Oliver

Cossairt. “WISHED: Wavefront imaging sensor with high resolution and depth rang-

ing.” IEEE International Conference on Computational Photography. (2020)

[11] Yicheng Wu, Fengqiang Li, Florian Willomitzer, Ashok Veeraraghavan, Oliver

Cossairt. “Wavefront sensing based depth sensor for macroscopic objects.” Compu-

tational Optical Sensing and Imaging. (2020)

[12] Yicheng Wu, Vivek Boominathan, Huaijin Chen, Aswin Sankaranarayanan,
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Ashok Veeraraghavan. “PhaseCam3D – Learning phase masks for passive single view

depth estimation.” IEEE International Conference on Computational Photography.

(2019)

[13] Yicheng Wu, Vivek Boominathan, Huaijin Chen, Aswin Sankaranarayanan,

Ashok Veeraraghavan. “Passive and single-viewpoint 3d imaging system.” U.S. Patent

Application No. 16/865,229. (2020)

[14] Yicheng Wu, Vivek Boominathan, Xuan Zhao, Jacob T. Robinson, Hiroshi

Kawasaki, Aswin Sankaranarayanan, Ashok Veeraraghavan. “FreeCam3D: Snapshot

structured light 3D with freely-moving cameras.” European Conference on Computer

Vision. (2020)
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Chapter 2

WISHED: Wavefront imaging sensor with high

resolution and depth ranging

2.1 Introduction

Optical fields from an object contain information about both albedo and depth. How-

ever, intensity-based CCD/CMOS sensors can only record the amplitude of a complex

optical field.

We introduce a wavefront imaging sensor with high resolution (WISH) [8], which

recovers both the amplitude and phase of a wavefront front with multi-megapixel

resolution. WISH consists of an SLM, a CMOS sensor, and a processor. WISH imag-

ing works by first modulating the optical field with multiple random SLM patterns

and capturing the corresponding intensity-only measurements using a CMOS sensor.

Then, the acquired data are processed using a computational phase-retrieval algo-

rithm, which estimates the complex optical field incident on the SLM. The spatial

resolution of the recovered field is larger than 10 megapixels. In comparison with

the traditional SHFWS, this is more than 1000× improvement in spatial resolution.

Compared with other recent designs of wavefront sensors [15–19], WISH achieves

more than 10× improvement in spatial resolution. Although multiple shots are nec-

essary to recover one complex field, WISH can record dynamic scenes with a frame

rate of up to 10 Hz. Last but not least, because the design is reference-free, WISH is

robust to environmental noise and motion, which broadens the variety of application
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domains where this technology can be integrated.

Such high-resolution wavefront sensors can be used to recover high lateral spatial

resolution, but depth information is encoded in phase relative to optical wavelengths,

producing an unambiguous depth range in the hundreds of nanometers (one optical

wavelength). Phase unwrapping algorithms may help alleviate this issue, but typically

fail for objects with discontinuities. The problem of phase wrapping gets even more

severe for optically rough surfaces since it results in a speckle pattern that has random

phase distribution. The speckle problem manifests for any wavefront sensing technique

so that none can be used as a general purpose.

The goal is to develop a wavefront sensor capable of measuring the depth of objects

with large surface variations (orders of magnitude larger than optical wavelengths)

and objects with rough surfaces. Our approach is inspired by interferometry. Op-

tical interferometry is a wavefront sensing technique that uses a reference beam to

record the complex field, which suffers from a similar limitation on the unambigu-

ous depth range. To circumvent this limitation, multi-wavelength interferometry is

proposed [20–22]. For example, two wavelengths (λ1, λ2) are used to record a com-

plex field, and a complex field with the synthetic wavelength (Λ = λ1 · λ2/|λ1 − λ2|)

can be then calculated. Since the synthetic wavelength is much larger than optical

wavelengths, multi-wavelength interferometry can provide several orders of magnitude

improvement in the unambiguous depth range that can be recovered.

We introduce a wavefront imaging sensor with high resolution and depth rang-

ing (WISHED) [8] which allows us to achieve tens of micron lateral resolution and

an unambiguous range more than 1,000× larger than the optical wavelengths. Our

WISHED prototype utilizes a tunable laser to provide wavelength diversity and a

programmable synthetic wavelength. To reconstruct the depth information, first a
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wavefront from the object is reconstructed for each wavelength. Then, the differ-

ence in phase between these two measured wavefronts is calculated, and the depth is

computed relative to the resulting synthetic wavelength.

2.2 Related work

2.2.1 Wavefront sensing

In order to reconstruct a complex-valued optical field that contains both amplitude

and phase information, wavefront sensors can be used. Traditional wavefront sen-

sors fall into two groups. The first group is based on geometrical optics [5, 23, 24].

SHWFS [5] is the most frequently used geometric design, which builds an array of

lenses in front of a CMOS sensor. Each lens provides measurements of the average

phase slope (over the lensed area) based on the location of the focal spot on the sen-

sor. To achieve high phase accuracy, many pixels are required per lens to precisely

localize the spot. Thus, although the CMOS sensor has millions of pixels, the spatial

resolution of the measured complex field is very low. Currently, commercial SHWFSs

offer up to 73×45 measurement points, which is useful to estimate only smooth phase

profiles such as air turbulence. The second group is designed based on diffractive

optics [25,26]. The phase information is encoded into interferometric fringes by intro-

ducing a reference beam. However, these interferometric systems have the following

two limitations: (a) the systems are bulky and heavy due to the increased optical

complexity, and (b) the systems are highly sensitive to micrometer-scale vibrations.
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2.2.2 Optical interferometry

In optical interferometry, the detector compares the phase delay in the optical field

between sample and reference arms to measure the surface variations of an object.

For example, the widely used white light interferometry (WLI) can provide very high

depth resolution, and optical coherence tomography is one example of white light in-

terferometry [27]. Focal plane sensors can be used to record a WLI interferogram [28],

or a single pixel can be used together with mechanical scanning to record the whole

object [29]. Detection can be broadly separated into homodyne and heterodyne tech-

niques. In homodyne detection, the carrier frequencies in two arms are the same.

In heterodyne interferometry, the carrier frequencies in two arms are different, which

helps with the phase estimation [30]. Single-shot heterodyne interferometry has been

proposed with a polarized camera [31]. Kadambi et al. [32] also use heterodyne in-

terferometry to build a GHz time-of-flight imager with micron depth resolution.

Although interferometry with a single wavelength provides extremely high depth

resolution, it can not measure objects with rough surfaces since speckles destroy

the depth measurement [33]. To measure optically rough objects, multiple phase-

wrapped measurements can be made sequentially using different optical wavelengths,

then phase unwrapping algorithms can be used to recover the depth of the object [34].

On the other hand, Dändliker et al. [22] propose superheterodyne interferometry

(SH) to measure objects with two closely spaced wavelengths simultaneously. Li et

al. [35] further demonstrate that SH can be used to measure depth for objects with

an optically rough surface, and demonstrate the use of tunable lasers to provide a

trade-off between range and resolution. The implementation of SH using a focal plane

sensor has also been proposed to remove the need for mechanical scanning [36].

Distinctions between multi-wavelength interferometry and WISHED: Both
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methods can provide high-resolution wavefront sensing. The main difference is that

multi-wavelength interferometry needs a reference arm to coherently interfere with

the sample beam. However, this results in several limitations. First, the camera es-

sentially records the phase delay caused by the optical path difference (OPD) between

the sample and reference beams. Since these two arms are physically separated, even

micrometer level object movement (e.g., due to vibrations) may introduce significant

phase delays in these two arms, which totally destroys the measurement. Second, to

generate a high contrast interferogram on the sensor plane, the power of the sam-

ple and reference beams must be matched. This means that a careful calibration of

power matching between object and reference beams needs to be performed. Third,

the phase of the reference must be calibrated so that its effect can be factored out

of the recovered wavefront. Moreover, most current SH systems are implemented

with single-pixel detectors or low-resolution lock-in sensors, while WISHED can use

megapixel CCD/CMOS sensors. This means that the spatial resolution of WISHED

is much higher.

2.2.3 Phase retrieval

Since optical frequencies (e.g., 400THz) are much higher than the frame rate of a focal

plane detector or the sampling frequency of a single-pixel detector, it is generally only

possible to record the amplitude of an optical field, but not the phase information [37].

As mentioned above, interferometry can be used to recover the phase directly with the

help of a reference beam. On the other hand, non-linear phase retrieval algorithms can

be used to estimate the phase (or the complex field) from only intensity measurements.

In general, this reconstruction is an ill-posed problem and it is difficult to guarantee

uniqueness in reconstructed results.



12

The most popular phase retrieval algorithm was introduced by Gerchberg and

Saxton (GS) [38], which iteratively imposes sensor-plane and object-plane constraints.

Although it is not guaranteed to recover to the true solution, the GS algorithm works

well in practice provided sufficiently strong constraints. Researchers have proposed

a number of techniques to improve the convergence of the initial GS algorithm. Sev-

eral methods focus on increasing the number of uncorrelated measurements (stronger

constraints), including adding measurements at different propagation planes [39, 40]

or with different phase modulations [8, 15]. More sophisticated phase retrieval algo-

rithms have also been introduced using new ideas such as convex relaxations [41,42],

approximate message passing [43,44], and deep learning [45].

Non-linear phase retrieval algorithms have been a key component for many imag-

ing techniques, such as wavefront sensing [8,15,19,46], Ptychography [47,48], Fourier

Ptychography [49–51], and long-distance imaging [52].

2.3 Wavefront sensing pipeline

2.3.1 Forward model

The WISH system is shown in Fig. 2.1(a). During the acquisition, multiple phase

modulation patterns are projected on the SLM. The SLM patterns modulate the in-

coming optical field before propagating towards the sensor. The sensor captures 2D

images that correspond to the intensity of the field. Multiple uncorrelated measure-

ments are recorded with different SLM patterns to enable the algorithm to retrieve

the phase. In an ideal setting, the SLM pattern should be fully random to diffract

the light to all pixels of the sensor to improve the convergence and accuracy of the

iterative retrieval algorithm [15,16]. However, the cross-talk effect from the SLM be-
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Figure 2.1 : WISH setup and algorithm. (a) The experimental setup of WISH.
The green arrow indicates how the field propagates inside the sensor. (b) The high-
resolution estimate of field u is recovered by iteratively enforcing the intensity mea-
surement constraints on the sensor plane and averaging estimates from multiple pat-
terns on the SLM plane.

comes a serious issue, especially for high-frequency patterns, which deteriorates the

quality of the recovered image [16,17]. Moreover, due to the finite size of the sensor,

the SLM should only diffract light to the level that the sensor can capture most of

the signal. In our experiment, the SLM patterns are first generated by low-resolution

random matrices and subsequently interpolated to match the SLM resolution.

Mathematically, for each measurement I i captured with the corresponding random

phase modulation Φi
SLM , the forward model is as follows:

√
I i = |Pz(Φi

SLMu)| (2.1)

where u is the unknown field that falls on the SLM. Pz is the propagation operator

(at the propagating distance z).
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2.3.2 Numerical propagation

The numerical propagation is modeled as a Fresnel propagation (FP) [53] as follows:

U(r2) = Pz{U(r1)} = Q[1/z, r2]V [1/λz, r2]F [r1, f1]Q[1/z, r1]U(r1) (2.2)

The output field U(r2) is computed (from right to left) by multiplying the input

field by a quadratic phase (Q), Fourier transforming (F ), scaling by a constant phase

(V ) and multiplying by another quadratic phase factor (Q). Although the angular-

spectrum propagation (ASP) is more accurate in theory, both FP and ASP gave

nearly the same result in our current setup. Additionally, FP has two advantages:

(1) there is only one Fourier transformation (FT) instead of two in ASP, which reduces

the computation in the iterative algorithm, and (2) the grid spacing in the input and

output planes must be identical for ASP, while FP can have different spacings in the

input and output planes. Thus, FP can save unnecessary sampling for the case when

the input and output fields have notably different sizes (e.g., recovering the wavefront

of a large-aperture Fresnel lens from WISH).

2.3.3 Wavefront recovery using phase retrieval

To estimate field u from K measurements, we form the following optimization prob-

lem:

û = arg min
K∑
i

∥∥∥√I i − |PzΦi
SLMu|

∥∥∥ (2.3)

This is a phase-retrieval problem, which is nonlinear and nonconvex. There are

many quality algorithms to solve this problem [38, 42, 54]. Here, we apply GS algo-

rithm [38] to recover the field u by alternating projections between the SLM and the

sensor plane, as illustrated in Fig. 2.1. Once u is converged, we can calculate the field
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on the sensor plane Pzu using numerical propagation.

To correctly recover the unknown field, a minimum number of measurements K is

required for the algorithm to converge. Intuitively, a more complicated field u requires

more measurements as an input. When the prior information of the unknown object

is available, such as the sparsity or support, potentially far fewer measurements are

required [46, 55, 56]. In our work, no constraint is applied to the unknown field to

make our sensor valid for objects with an arbitrary phase distribution.

2.3.4 Results demonstration

To experimentally demonstrate how WISH works, we image a fingerprint on a glass

microscope slide with dusting powder, which is placed 76 mm from the sensor. As

shown in Fig. 2.2, eight random patterns are sequentially projected on the SLM, and

the corresponding images are captured by the CMOS sensor. Based on the introduced

WISH algorithm, both amplitude and phase are retrieved with high resolution. The

phase distribution of the ridge patterns significantly varies because the fingerprint

powder randomly scatters light.

2.4 Depth estimation algorithm

2.4.1 Phase-based depth estimation

We can estimate depth based on the recovered phase. Fig. 2.3 gives one simulation

example. It is a disk with quadratic phase distribution (Fig. 2.3a). Based on the

phase distribution, we can calculate the 3D map of the object (Fig. 2.3 b).
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Figure 2.2 : WISH demonstration. To recover the incident wavefront from a dusted
fingerprint, we projected eight random phase patterns on the SLM and captured the
corresponding images. After the WISH algorithm has been performed, the high-
resolution amplitude and phase reconstructions are recovered.

Figure 2.3 : Depth estimation for a depth-varying object based on the re-
covered phase. (a) The amplitude is a disk function and the phase is a quadratic
function. (b) The estimated depth map of the object.
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2.4.2 Depth estimation with multiple wavelengths

Due to phase wrapping, the depth range is limited to half of the wavelength. By

exploiting wavelength diversity, we can achieve a large unambiguous depth range in

recovery.

The optical field Oλi(x, y) recorded on the sensor plane encodes the surface vari-

ation of the object d(x, y) and albedo aλi(x, y) as:

Oλi(x, y) = aλi(x, y)exp
{i2π d(x,y)+δd(x,y)

λi
}

(2.4)

where δd(x, y) is the roughness of point (x, y) on the object.

For an optically smooth object (δd(x, y)=0), we can estimate the phase with only

one wavelength. However, for macroscopic objects (d� λi) with discontinuities, it is

challenging to unwrap the phase and convert it into depth. On the other hand, for

rough surfaces (δd(x, y) 6=0), it introduces a speckle pattern that has random phase

distribution, which fails the depth measurement.

To decode the depth for objects with discontinuities or rough surfaces, we combine

the optical fields with two close wavelengths to estimate the depth information. The

phase difference or depth can be calculated by pointwise multiplication between the

field of λ1 and the conjugate field of λ2.

Oλ1 � (Oλ2)
∗ = (aλ1exp

{i2π d
λ1
}
)� (aλ2exp

{i2π d
λ2
}
)∗ (2.5)

d = ∠ (Oλ1 � (Oλ2)
∗) · 1

2π
· λ1λ2
|λ1 − λ2|

(2.6)

where λ1 and λ2 are the two wavelengths to estimate the depth or phase of the



18

object. Synthetic wavelength is defined as Λ = λ1λ2
|λ1−λ2| . � represents the point-

wise multiplication, and ()∗ represents the conjugate of the complex value. The

micro surface roughness δd(x, y) is far smaller than the macro surface height d(x, y).

Therefore, the WISHED reconstructed depth represents the macro surface height of

the object.

During the experiment, the values of these two wavelengths are chosen very close

(<0.2nm) to produce a large synthetic wavelength Λ (>5mm), which helps measure

the surface with large height variation.

2.4.3 Phase unwrapping

To achieve both high depth resolution and large imaging range, we can utilize two

measurements: one with a small synthetic wavelength and the other with a large

synthetic wavelength. The small synthetic wavelength provides high depth resolution,

but the overall measurement can be wrapped. We can use a depth measurement with a

large synthetic wavelength and no phase wrapping as a guide to unwrap measurements

with the smaller synthetic wavelength as below [57]:

Φ2
uw(Λ2) = Φw(Λ2) + 2π · round

(
M · Φ1

uw(Λ1)− Φw(Λ2)

2π

)
(2.7)

where M equals to Λ1/Λ2. Φ1
uw is the phase measurement of the large synthetic wave-

length Λ1 without wrapping. Φw is the wrapped phase measurement using the small

synthetic wavelength Λ2. Φ2
uw is the unwrapped phase that needs to be estimated.

Once we estimate Φ2
uw, we can convert it into depth with Eq. 2.6.

For simple objects such as a planar surface, we can also directly use a fast two-

dimensional phase-unwrapping algorithm by adding integer times of 2π at the phase

jump regions [58] to unwrap phase measurements with small synthetic wavelengths.
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Figure 2.4 : Simulation setup. The laser beam with a tunable wavelength is first
scattered by the object and then collected by the lens. The complex field is recorded
by the WISH sensor.

2.5 Simulation results

In this section, we show simulation results based on the proposed WISHED. Without

loss of generality, we demonstrate simulations estimating the depth of an opaque

object with rough surfaces in reflective mode.

2.5.1 Simulation settings

The setup for our simulation is shown in Fig. 2.4. We pick the Stanford Bunny [59]

as our object. To model the rough surface, we add a height variation following a

Gaussian distribution on the top of the height map of the bunny. The final height

map is h = hbunny + N (0, 1µm). The maximum height difference for the bunny is

10mm.

The two wavelengths used here are λa = 854.985nm and λb = 855.015nm. The

synthetic wavelength is Λ = 24.4mm. The bunny is illuminated by the laser beam

with each wavelength sequentially. The scattering light is collected by a 15-mm

diameter lens at distance z1 = 600mm with 85.7mm focal length. The light is focused
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at z2 = 100mm away from the lens. Since the sensor is on the conjugate plane of the

object plane, usensor can be directly calculated based on Fourier optics theory [37],

usensor = Q
[z1 + z2

z22

]
V
[
− z1
z2

]
uobj (2.8)

Q represents multiplication by a quadratic-phase exponential and V represents scaling

by a constant. Based on this equation, once we recover usensor, uobj can be calculated

accordingly. Then the depth map can be recovered based on Eq. 2.6.

2.5.2 Depth estimation

In the simulation, we generate 16 random SLM patterns and calculate the correspond-

ing intensity images on the sensor. To mimic noise in the real experiment, we add a

Gaussian noise with σ = 0.2 into the measurement. Fig. 2.5 shows several simulated

sensor measurements for two wavelengths.

Based on the phase retrieval algorithm mentioned in Sec. 2.3.3, the reconstructed

field on the sensor is shown in Fig. 2.6(a). Because of the roughness of the bunny,

the amplitude contains speckle patterns, and the phase looks random. Based on the

Eq. 2.6, we recover the heightmap of the object. Due to the slight difference of the Airy

disk diameters between two wavelengths, the recovered depth map contains artifacts

near the boundary of the speckle pattern. To reduce such artifacts, a Gaussian kernel

with the size of the averaged Airy disk is applied to smooth the depth map. The

result is shown in Fig. 2.6(b), which is quite close to the ground truth (RMSE =

85µm for Λ = 24.4mm). Note that the surface roughness (1µm) is much smaller than

the RMSE (85µm). Therefore, the recovered macroscopic heightmap is not affected

by the surface roughness.
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Figure 2.5 : Simulated sensor measurements with different SLM patterns
and optical wavelengths. For each SLM pattern, the speckle patterns are close for
two similar wavelengths. For different SLM patterns, the speckle patterns are totally
distinct to make sure these measurements are uncorrelated.



22

(a) (b)

854. m5n98aλ =

855. m5n01bλ =

DepthAmplitude Phase

Estimated

Ground truth
0

2.5

5

7.5

10

D
ep

th
 [m

m
]

0

2.5

5

7.5

10

D
ep

th
 [m

m
]

5mm

RMSE=85μm 

Figure 2.6 : Simulation reconstruction. (a) Recovered object fields for two wave-
lengths. (b) Comparison between ground truth and WISHED estimated depth using
a synthetic wavelength of 24.4mm (RMSE = 85µm).
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2.6 Experiment results

In this section, we report experimental measurements using our prototype WISHED

sensor for transparent, translucent, and opaque objects. The optical configuration is

identical to the one used for simulations, as illustrated in Fig. 2.4. A tunable laser

(Toptica DLC pro850) with a center wavelength of 850nm is used as the light source.

We image the object with multiple wavelengths by tuning the frequency of the laser

emission. The laser emission is collimated and then illuminates the object either in

transmissive or reflective mode. A linear polarizer is used to match the polarization

of the SLM (HOLOEYE LETO, 1920 × 1080 resolution, 6.4µm pitch size) since SLM

is only sensitive to a specific polarization direction. The focusing lens (Thorlabs

AC508-075-B-ML) has a focal length of 75mm and is placed about 50cm away from

the object. A 25.4-mm beam splitter is inserted between the SLM and the sensor to

guide the field into the sensor since the SLM operates in the reflective mode. The

distance between the SLM and the sensor is 25 mm. The sensor is a 10-bit Basler

Ace camera (acA4024-29um) equipped with a Sony IMX-226 CMOS sensor (1.85 µm

pixel pitch, 4024 × 3036 resolution).

2.6.1 Transmissive based 3D imaging

To verify the optimal performance and depth resolution with the prototype, we first

image different transmissive objects with optically smooth and rough surfaces.

Imaging an optically smooth planar object

As shown in Fig. 2.7(a), the beam is collimated and then illuminates the object – a

letter mask with a glass plate stack in front as shown in Fig. 2.7(b). There are zero,

one, two, and three glass plates on top of the letter ’I’, ’C’, ’C’, and ’P’, respectively.
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Figure 2.7 : Experiment on optical smooth objects in transmissive mode.
(a) Setup illustration. (b) The object: a letter mask with a glass stack in front.
(c) Amplitude measurement. (d) WISH reconstruction: phase maps with one opti-
cal wavelength. (e-g) WISHED reconstruction: phase maps with different synthetic
wavelengths. (h-j) OPD with different synthetic wavelengths. Smaller synthetic wave-
length provides higher depth precision.
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The surface of the glass plates is optically smooth, and each glass plate introduces

an optical path difference of 0.5mm. 16 random SLM patterns are used to modulate

the optical field.

Since the surface of the glass plates is smooth, there is no speckle pattern ob-

served as shown in Fig. 2.7(c). We image the object with an optical wavelength of

854.31nm, 854.43nm, 854.71nm, and 855.73nm, which leads to six different synthetic

wavelengths. Here, we show three examples in Fig. 2.7, corresponding to the syn-

thetic wavelength of 6.44mm, 1.84mm, and 0.52mm. The phase and depth values are

estimated with the method described in Sec. 2.4.2.

As we can see, WISH measurement with one wavelength has severe phase wrapping

as shown in Fig. 2.7(d). It is very challenging to recover the overall phase of the glass

stack if we do not know the discontinuities ahead. On the other hand, WISHED with

the larger synthetic wavelengths produces an unambiguous depth range significantly

greater than the optical wavelengths, and we can clearly separate these four letters,

which have different phases as shown in Fig. 2.7(e,f). Since the total optical depth of

the glass stack is larger than the synthetic wavelength of 0.52mm, we observe phase

wrapping in Fig. 2.7(g). We use the phase unwrapping algorithm of Eq. 2.7 and

the measurement of the synthetic wavelength of 1.84mm as a guide to unwrap. The

unwrapped phase of Fig. 2.7(g) is then converted into depth as shown in Fig. 2.7(j).

The smaller synthetic wavelength provides better depth resolution as shown in

Fig. 2.7(j) compared to the larger synthetic wavelength shown in Fig. 2.7(h, i). The

same phenomena can be observed in an optical depth profile along with a line cut

(marked as a dashed line in Fig. 2.7j) through the glass plate stack as shown in

Fig. 2.8. We further quantify the root mean square errors (RMSE) for the optical

depth profile as shown in Fig. 2.8. We define RMSE as the standard deviation away



26

Pixel No.

O
PD

 [m
m

]

100 200 300 400 500 600 700 800 900 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 = 6.44 mm
 = 1.84 mm
 = 0.52 mm

Figure 2.8 : OPD profile along one line on the plate stack as shown in
Fig 2.7(h-j). The x-axis marks the different pixels along the line, and y axis is the
OPD. Note: each glass plate introduces an OPD of 0.5mm. The RMSEs of this OPD
profile for the synthetic wavelengths of 6.44mm, 1.84mm and 0.52mm are 130µm,
56µm and 9µm.

from the assumed step heights. The RMSEs for the synthetic wavelengths of 6.44mm,

1.84mm, and 0.52mm are 130µm, 56µm and 9µm, which demonstrates the very high

depth precision of the prototype. The observation of measurements with different

synthetic wavelengths also aligns with our intuitive expectation that a smaller wave-

length provides finer depth resolution given the same to noise ratio (SNR) in the

sensor. Since our prototype is built with a tunable source, it provides a trade-off for

different applications requiring different imaging ranges and depth resolutions.
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Imaging an optically rough object

We then increase the complexity of the experiment by adding a diffuser behind the

glass stack to emulate an optically rough surface as shown in Fig. 2.9(a). If we look

at the images recorded by the sensor without SLM modulation, the speckle pattern is

clearly observed as shown in Fig. 2.9(b,c). Two different wavelengths of 854.31nm and

854.48nm are used, which produces a synthetic wavelength of 4.3mm. The speckle

pattern with different wavelengths is slightly different. Although the speckle pattern

is present, we can still reconstruct the optical depth, which we can convert into a

true optical depth map given knowledge of the index of refraction of the transparent

object (in this case n=1.5), as shown in Fig. 2.9. Each glass plate introduces an

optical path difference of 0.5mm. The glass plates are clearly separated according

to their thickness. A line profile is also plotted across these different glass plates as

shown in Fig. 2.10, demonstrating that we can still achieve a high depth resolution

despite the presence of speckle. We quantify the RMSE for the optical depth along

with this line profile as 69 µm.

In Fig. 2.8 and Fig. 2.10, we did not obtain a ground truth measurement of glass

thickness (or OPD), but rather assume a ‘ground truth’, following the manufacturing

specifications - that each glass plate introduces an OPD of 0.5mm. Therefore, in

our assumed ground truth, the steps for the glass plate in Fig. 2.8 are 0mm, 0.5mm,

1mm, 1,5mm. In Fig. 2.10, they are 0mm, 0.5mm, 1mm, 1.5mm, 2mm. Our assumed

ground truth may have small errors due to manufacturing tolerances.

Imaging a transparent object with complex geometry

Measuring the OPD of a transparent object with complex geometry (containing heavy

refractive phenomena) is a challenging problem. The reason is that the light illumi-
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Figure 2.9 : Experiment on optical rough objects in transmissive mode. (a)
Setup illustration. (b,c) Amplitude measurement (no SLM modulation) with two
close wavelengths 854.22nm (b) and 854.38nm (c). These two speckle patterns are
similar since their wavelengths are close. (d) phase map from WISH reconstruction.
The 3D information is totally lost due to the speckle pattern. (e) phase map from the
WISHED reconstruction. The synthetic wavelength is 4.3mm. (f) Estimated OPD,
where glass layers are clearly visualized.
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Figure 2.10 : OPD profile along one line on the plate stack as shown in
Fig. 2.9(f). The x-axis marks the different points along the line, and y axis is the
OPD value. Note: each glass plate introduces an OPD of 0.5mm. The RMSE in
optical depth for the measurement is 69µm.
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Figure 2.11 : Experiment on a transparent object with complex geometry.
(a) Experimental setup for imaging the glass prism. A diffuser is used for scattering
the light into the sensor. (b) Amplitude recorded on the sensor plane with one
wavelength. (c) The wrapped phase measured with a synthetic wavelength of 1.29mm.
(d) The depth converted from the unwrapped phase. (e) A line profile across the
object. The RMSE for optical depth along this line profile is 61µm
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nated on the object is redirected due to the refraction on the surface, which means

that light from some regions of the object may not reach the sensor. As a result, it

is impossible to measure OPD for these regions.

Our WISHED system can offer a new direction to tackle this problem. The key

idea is to insert a diffuser right after (or before) the object. On the one hand,

light from all regions of the object gets scattered by the diffuser, which ensures that

the sensor can gather light from the entire object. On the other hand, the overall

OPD from the object is recovered with WISHED since the synthetic wavelength is

much larger than the height variation (similar to the roughness of opaque surfaces)

introduced by the diffuser.

As shown in Fig. 2.11(a), we image a triangular prism as a proof-of-concept. The

beam is not directed to the detector due to the refraction, and a diffuser (Thorlabs

220 Grit) is used to scatter light to the detector. There are speckles in the sensed

image as shown in Fig. 2.11(b). Wavelengths of 854.31nm and 854.88nm are used,

which corresponds to a synthetic wavelength of 1.29mm. The phase with the synthetic

wavelength is shown in Fig. 2.11(c), and a phase unwrapping algorithm [30] is used to

unwrap the phase and convert to optical path difference as shown in Fig. 2.11(d). A

line profile across the optical depth map is shown in Fig. 2.11(e), which demonstrates

a 61µm depth resolution.

2.6.2 Reflective based 3D imaging

Most macroscopic objects are not transparent, so we test our proposed method to

image some non-transparent objects as shown in Fig. 2.12. We note that for reflective

geometries, the depth calculated is physical (not optical) since light is assumed to

propagate through air, and reflect at the surface boundary (subsurface scattering is
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Figure 2.12 : Experiment schematics for reflective 3D objects. The object is
illuminated by the tunable laser. And the scattering light is collected by a focusing
lens to our wavefront sensors.

discussed in Sec. 2.7).

We first image a metal plate stack including two planar metal plates with rough

surfaces. The two metal plates are separated by 6mm. 24 random patterns are dis-

played on the SLM to modulate the incoming optical field for each wavelength. We im-

age with four different wavelengths (854.22nm, 854.27nm, 854.38nm, and 854.49nm),

which gives six different synthetic wavelengths. Since multiple measurements are

made, we can use the measurement with the large synthetic wavelength as a guide to

unwrap the depth measured with small synthetic wavelengths. In Fig. 2.13, we show

the recovered depth map with a large synthetic wavelength of 13.2mm and the un-

wrapped depth map with a small synthetic wavelength of 2.6mm. Both these results

provide similar measurements showing that the height difference for the left and right

regions is about 6mm. For a smaller synthetic wavelength, the measurement is less

noisy with a smaller RMSE, as long as the phase unwrapping is correct.

We also image a penny as shown in Fig. 2.14(b). 40 random patterns are displayed
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Figure 2.13 : Experiment on a metal plate stack in reflective mode. Speckles
are observed in (b) due to the surface roughness of the metal plates. The results
(c,d) show the depth map from two synthetic wavelengths. The estimation from the
smaller synthetic wavelength has less height variation.
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Figure 2.14 : Experimental results of the penny. (a) Picture of the penny to
measure. (b) Captured amplitude without the SLM modulation. The speckle pattern
is observed due to the surface roughness. (c) Recovered depth map using the proposed
WISHED method. (d) Recovered depth map using the SH-ToF with a lock-in camera.
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on the SLM to modulate the incoming optical field for each wavelength. The stand-off

distance is about 0.5 meters between the object and the sensor. Two wavelengths

of 854.22nm and 854.49nm are used to estimate the depth map, which corresponds

to a synthetic wavelength of 2.63mm. The depth map estimated with the proposed

method is shown in Fig. 2.14(c) where we can observe many details of the coin surface.

For example, the ’shield’ layer is clearly observed. Even the letter ‘C’ in ‘CENT’ is

recognized from the depth map. The thickness of the shield is a couple of hundreds of

micrometers. According to the result in the metal plate stack (Fig. 2.13), the RMSE

is about 60-80µm. We expect the RMSE for the penny is in a similar range since

we use the same synthetic wavelength for both experiments, and the penny has a

similar rough appearance to the metal plate. In Fig. 2.14(c), we can see the letters

‘UNITED’ separately from the background, corresponding to a depth difference of

about 100µm. The image shown in Fig. 2.14(c) has 2100 × 2100 pixels. We provide an

experimental comparison using the SH-ToF technique [35] using a lock-in camera [60]

with a synthetic wavelength of 1.73mm as shown in Fig. 2.14(d) (155×155 pixels).

The stand-off distance is the same as the measurement using WISHED. Although the

depth precision is comparable to our WISHED prototype, lateral spatial resolution is

significantly reduced due to the low resolution of the lock-in focal plane array.

2.7 Discussion and conclusion

We propose a high lateral and depth resolution sensor with a large depth range based

on wavefront sensing. We first develop a high resolution wavefront sensor (a.k.a.

WISH) by optically modulating the complex field using a SLM, and digitally recov-

ering the wavefront by the phase retrieval algorithm. To increase the unambiguous

depth range, we replace the standard laser (with a fixed wavelength) by the tunable



36

laser (the wavelength can be adjusted). By measuring the wavefronts using two close

wavelengths, we create a new wavefront with a large synthetic wavelength, and in-

crease the depth range by several orders of magnitude comparing with the optical

wavelength.

We demonstrate that the proposed method is able to measure accurate 3D profiles

for both optically smooth and rough objects in both transmissive and reflective ge-

ometries. We believe our system can be developed into a robust 3D imaging technique

for high-precision applications in metrology and biomedical imaging. The proposed

system also has the potential for some extreme imaging scenarios such as non-line-of-

sight imaging and 3D imaging of complex transparent objects.

Effect of subjective speckle size: We experimentally verify the effect of sub-

jective speckle size as shown in Fig. 2.15(a). The setup is exactly the same as that

in Sec. 2.6.1, with the only difference being that aperture size is increased by three

times so that several subjective speckles are averaged at each pixel (approximately

two speckles per pixel in this experiment). In contrast, all the previous experiments

used a smaller aperture size so that subjective speckles were larger than a pixel. The

wrapped phase image for each wavelength is reconstructed separately, and the syn-

thetic wavelength phase is generated from these two wrapped phase images as shown

in Fig. 2.15(b).

As we can see, there are errors in the reconstruction using the synthetic wave-

length. Moreover, the reconstruction of measurements with smaller subjective speckle

sizes takes much longer to converge. This is most likely due to the fact that the phase

retrieval algorithm does not sufficiently model the effects of speckle averaging, which

can severely reduce speckle contrast and generally make the phase retrieval problem

much more difficult to solve robustly.
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Figure 2.15 : Failure case with WISHED: Imaging the glass stack with a diffuser
as shown in Fig. 2.9 with speckles averaged on the sensor plane. (a) Amplitude with
speckles averaged on the sensor plane. (b) Reconstructed depth profile with the same
synthetic wavelength using the proposed method.

The size of the speckles depends on the aperture of the imaging system:

∆speckle = λ/NA (2.9)

where λ is the wavelength of the illumination and NA is the numerical aperture of

the objective lens. To avoid the averaging of speckles on the sensor plane, the pixel

size should be smaller than the subjective speckle size. Therefore, the aperture of the

system is recommended to satisfy the condition shown below

NA < λ/p (2.10)

where p is the pixel size.

Limitation of the prototype: A reflective SLM is used in our current prototype,

and a one-inch beam splitter has to be inserted between the SLM and the sensor. This
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setup limits the field of view (FOV) of the current prototype. In order to increase

the FOV and image large objects, a transmissive SLM can be used with a small focal

length objective lens.

In our current prototype, both the acquisition speed and reconstruction are not

optimized for moving objects in real-time. We believe this can be addressed based on

the recent development in deep learning. For the current acquisition, multiple mea-

surements with different SLM patterns are required to reconstruct the wavefront. We

can constraint our reconstruction space by enforcing prior learned from a network [61],

which can reduce the number of measurements dramatically. For the reconstruction,

our current iterative algorithm can be unrolled to be a neural network [45], which

outputs the reconstructed field much faster.

Limitation of this principle: As we mentioned previously, a tunable source is

used to produce different synthetic wavelengths. Small synthetic wavelengths provide

very high depth resolution. However, if multiple scattering is present (i.e., subsur-

face scattering, surface inter-reflections) [62], the optical path length recovered using

WISHED (or any other interferometry technique) will not correspond directly to sur-

face height. Furthermore, even in the absence of multi-path interference, the upper

bound performance of the proposed method is surface roughness. In other words, the

depth resolution can not be less than the peak-to-valley surface variation with the

lateral resolution of the imager.

For smooth objects, the lateral resolution is limited by the Airy disk size and the

sensor pixel size. For rough objects, since we need to resolve the subjective speckle

size in the sensor plane (as discussed previously), the lateral resolution of this method

is limited by the subjective speckle size.
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Chapter 3

PhaseCam3D: Learning phase masks for passive

single view depth estimation

3.1 Introduction

3D imaging is critical for a myriad of applications such as autonomous driving,

robotics, virtual reality, and surveillance. The current state of the art relies on ac-

tive illumination based techniques such as LIDAR, radar, structured illumination or

continuous-wave time-of-flight. However, many emerging applications, especially on

mobile platforms, are severely power and energy constrained. Active approaches are

unlikely to scale well for these applications and hence, there is a pressing need for

robust passive 3D imaging technologies.

Multi-camera systems provide state-of-the-art performance for passive 3D imag-

ing. In these systems, triangulation between corresponding points on multiple views

of the scene allows for 3D estimation. Stereo and multi-view stereo approaches meet

some of the needs mentioned above, and an increasing number of mobile platforms

have been adopting such technology. Unfortunately, having multiple cameras within a

single platform results in increased system cost as well as implementation complexity.

The principal goal of this work is to develop a passive, single-viewpoint 3D imaging

system. We exploit the emerging computational imaging paradigm, wherein the optics

and the computational algorithm are co-designed to maximize performance within

operational constraints.
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Figure 3.1 : Framework overview. Our proposed end-to-end architecture con-
sists of two parts. In the optical layer, a physics-based model first simulates depth-
dependent PSFs given a learnable phase mask, and then applies these PSFs to RGB-D
input to formulate the coded image on the sensor. In the reconstruction network, a
U-Net-based network estimates the depth from the coded image. Both parameters in
the optical layer, as well as the reconstruction network, are optimized based on the
loss defined between the estimated depth and ground truth depth.
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3.1.1 Key idea

We rely on a bevy of existing literature on coded aperture [2,63–65]. It is well known

that the depth-dependent defocus ‘bokeh’ (point spread function) depends on the

amplitude and phase of the aperture used. Is it possible to optimize a mask on the

aperture plane with the exclusive goal of maximizing depth estimation performance?

We exploit recent advances in deep learning [66, 67] to develop an end-to-end

optimization technique. Our proposed framework is shown in Figure 3.1, wherein the

aperture mask and the reconstruction algorithm (in terms of the network parameters)

for depth estimation are simultaneously optimized. To accomplish this, we model

light propagation from the scene to the sensor, including the modulation by the

mask as front-end layers of a deep neural network. Thus in our system, the first

layer corresponds to physical optical elements. All subsequent layers of our network

are digital layers and represent the computational algorithm that reconstructs depth

images. We run the back-propagation algorithm to update this network, including

the physical mask, end-to-end.

Once the network is trained, the parameters of the front-end provide us with the

optimized phase mask. We fabricate this optimized phase mask and place it in the

aperture plane of a conventional camera (Figure 3.2) to realize our 3D imaging system.

The parameters of the back-end provide us with a highly accurate reconstruction

algorithm, allowing us to recover the depth image from the captured data.

3.1.2 Contributions

The main technical contributions of our work are as follows.

• We propose PhaseCam3D, a passive, single-viewpoint 3D imaging system that
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100µm

Figure 3.2 : Fabricated phase mask. A 2.835mm diameter phase mask is fabricated
by photolithography and attached to the back side of the lens aperture. The image
on the right shows a close-up image of the fabricated phase mask taken using a 2.5×
microscope objective.

jointly optimizes the front-end optics (phase mask) and the back-end recon-

struction algorithm.

• Using end-to-end optimization, we obtain a novel phase mask that provides

superior depth estimation performance compared to existing approaches.

• We fabricate the optimized phase mask and build a coded aperture camera by

integrating the phase mask into the aperture plane of the lens. We demonstrate

compelling 3D imaging performance using our prototype.

Our current prototype system consists of a phase mask inserted into the aperture

plane of a conventional imaging lens. In practice, it might be more efficient to fabricate

a single optical element that accomplishes the task of both the main lens and the phase

mask simultaneously. This would especially be the case for mobile platforms, where

custom-fabricated plastic lenses are the de-facto norm.
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3.2 Related work

Image sensors capture 2D intensity information. Therefore, estimating the 3D ge-

ometry of the actual world from one or multiple 2D images is an essential problem

in optics and computer vision. Over the last decades, numerous approaches were

proposed for 3D imaging.

3.2.1 Active depth estimation

When a coherent light source is available, holography is an ideal approach for 3D

imaging. Holography [68] encodes the phase of the light in intensity based on the

principle of wave interference. Once the interference image is recorded, the phase

and therefore the 3D information can be derived [69, 70]. However, even though

analog recording and reconstruction are straightforward (with even educational toy

kits available now [71, 72]), the digital reconstruction process can be computation-

ally expensive, and the requirement of the coherent light source and precise optical

interference setup largely limited its usage in microscopy imaging [73]. With a more

accessible incoherent light source, structured light [74] and time-of-flight (ToF) 3D

imagers [75] became popular and made their way to commercialized products, such

as the Microsoft Kinect [76]. However, when lighting conditions are complex (i.e.

outdoors under sunlight), given that both methods rely on active light sources, the

performance of depth estimation can be poor. Therefore specialty hardware setup

or additional computations are needed [77–79]. With a passive depth estimation

method, such as the proposed PhaseCam3D, this problem can be avoided.
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3.2.2 Passive depth estimation

Stereo vision One of the most widely used passive depth estimation methods is

binocular or multi-view stereo (MVS). MVS is based on the principle that, if two or

more cameras see the same point in the 3D scene from different viewpoints, granted

the geometry and the location of the cameras, one can triangulate the location of the

point in the 3D space [80]. Stereo vision can generate high-quality depth maps [81],

and is deployed in many commercialized systems [82] and even the Mars Express

Mission [83]. Similarly, structure from motion (SfM) uses multiple images from a

moving camera to reconstruct the 3D scene and estimate the trajectory and pose of

the camera simultaneously [84]. However, both SfM and stereo 3D are fundamentally

prone to occlusion [85–87] and texture-less areas [88, 89] in the scene; thus special

handling of those cases has to be taken. Moreover, stereo vision requires multiple

calibrated cameras in the setup, and SfM requires a sequence of input images, resulting

in increased cost and power consumption and reduced robustness. In comparison, the

proposed PhaseCam3D is single-view and single-shot, therefore, has much lower cost

and energy consumption. Moreover, even though phase mask-based depth estimation

relies on textures in the scene for depth estimation as well, PhaseCam3D’s use of

the data-driven reconstruction network can help to provide depth estimation with

implicit prior statistics and interpolation from the deep neural networks.

Coded aperture Previously, amplitude mask designs have demonstrated applica-

tions in depth estimation [63, 64] and light-field imaging [65]. PhaseCam3D uses a

novel phase mask to help with the depth estimation, and the phase mask-based ap-

proach provides several advantages compared to amplitude maks: First, unlike the

amplitude masks that block the light, phase masks bend light, thus has much higher
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light throughput, consequently delivers lower noise level. Secondly, the goal of de-

signing the mask-based imaging system for depth estimation is to make the point

spread functions (PSFs) of different depths have maximum variability. Even though

the PSFs of amplitude mask-based systems are depth-dependent, the difference in

PSFs across depth is only in scale. On the contrary, phase masks produce PSFs with

much higher depth-dependent variability. As a result, the phase mask should help dis-

tinguish the depth better in theory and the feature size can be made smaller. Lastly,

the phase mask also preserves cross-channel color information, which could be useful

for reconstruction algorithms. Recently, Haim et al. [2] demonstrate to use a phase

mask for depth estimation. However, they only explore a two-ring structure, which

constrains the design space with limited PSF shapes, whereas our PhaseCam3D has

a degree of freedom (DoF) of 55 given the Zernike basis we choose to use, described

in Section 3.3.4(a).

3.2.3 Semantics-based single image depth estimation

More recently, deep learning-based single-image depth estimation methods demon-

strated that high-level semantics itself can be useful enough for depth estimation

without any physics-based models [90–96]. However, while those results sometimes

appear visually pleasing, they might deviate from reality and usually have a low spa-

tial resolution, thus getting the precise absolution depth is difficult. Some recent work

suggested adding physics-based constraints elevated the problems [97–100], but extra

inputs such as multiple viewpoints were required. In addition, many of those methods

focus and work very well on certain benchmark datasets, such as NYU Depth [101],

KITTI [102], but the generalization to scenes in the wild beyond the datasets is

unknown.
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3.2.4 End-to-end optimization of optics and algorithms

Deep learning has now been used as a tool for end-to-end optimization of the imaging

system. The key idea is to model the optical imaging formation models as parametric

neural network layers, connect those layers with the application layers (i.e., image

recognition, reconstruction, etc.) and finally use back-propagation to train on a large

dataset to update the parameters in optics design. An earlier example is designing the

optimal Bayer color filter array pattern of the image sensor [66]. More recently, [67]

shows that the learned diffractive optical element achieves a good result for achromatic

extended depth of field. Haim et al. [2] learned the phase mask and reconstruction

algorithm for depth estimation using Deep learning. However, their framework is not

entirely end-to-end, since their phase mask is learned by a separate depth classification

algorithm besides the reconstruction network, and the gradient back-propagation is

performed individually for each network. Such a framework limits their ability to find

the optimal mask for depth estimation.

3.3 PhaseCam3D framework

We consider a phase mask-based imaging system capable of reproducing the 3D scenes

with single image capture. Our goal is to achieve state-of-the-art single image depth

estimation results with jointly optimized front-end optics along with the back-end

reconstruction algorithm. We achieve this via end-to-end training of a neural network

for the joint optimization problem. As shown in Figure 3.1, our proposed solution

network consists of two major components: 1) a differentiable optical layer, whose

learnable parameter is the height map of the phase mask, that takes in as input an

all-in-focus image and a corresponding depth map and outputs a physically-accurate
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coded intensity image; and 2) a U-Net based deep network to reconstruct the depth

map from the coded image.

During the training, the RGB all-in-focus image and the corresponding ground

truth depth are provided. The optical layer takes this RGB-D input and generates the

simulated sensor image. This phase-modulated image is then provided as input to the

reconstruction network, which outputs the estimated depth. Finally, the loss between

the estimated depth and ground truth depth is calculated. From the calculated loss,

we back-propagate the gradient to update both the reconstruction network and the

optical networks. As a result, the parameters in the reconstruction network, as well

as the phase mask design, are updated.

We next describe our proposed system components in detail.

3.3.1 Optical layer

To simulate the system accurately, we model our system based on Fourier optics

theory [37], which takes account for diffraction and wavelength dependence. To keep

the consistency with natural lighting conditions, we assume that the light source is

incoherent.

The optical layer simulates the working of a camera with a phase mask in its

aperture plane. Given the phase mask, described as a height map, we can first define

the pupil function induced by it, calculate the point spread function on the image

plane and render the coded image produced by it given an RGBD image input.

Pupil function Since the phase mask is placed on the aperture plane, the pupil

function is the direct way to describe the forward model. The pupil function is a
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complex-valued function of the 2D coordinates (x1, y1) describing the aperture plane.

P (x1, y1) = A(x1, y1) exp[iφ(x1, y1)] (3.1)

The amplitude A(·, ·) is constant within the disk aperture and zero outside since

there is no amplitude attenuation for phase masks. The phase φ has two components

from the phase mask and defocus.

φ(x1, y1) = φM(x1, y1) + φDF (x1, y1) (3.2)

φM(x1, y1) is the phase modulation caused by height variation on the mask.

φM(x1, y1) = kλ∆n h(x1, y1) (3.3)

λ is the wavelength, kλ = 2π
λ

is the wave vector, and ∆n is the reflective index

difference between air and the material of the phase mask. The material used for our

phase mask has small refractive index variation in the visible spectrum [103]; so, we

keep ∆n as a constant. h denotes the height map of the mask, which is what we need

to learn in the optical layer.

The term φDF (x1, y1) is the defocus aberration due to the mismatch between in-

focus depth z0 and the actual depth z of a scene point. The analytical expression for

φDF (x1, y1) is given as [37]

φDF (x1, y1) = kλ
x21 + y21

2

(
1

z
− 1

z0

)
= kλWmr(x1, y1)

2, (3.4)

where r(x1, y1) =
√
x21 + y21/R is the relative displacement, R is the radius of the lens
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aperture, and Wm is defined as

Wm =
R2

2

(
1

z
− 1

z0

)
. (3.5)

Wm combines the effect from the aperture size and the depth range, which is a con-

venient indication of the severity of the focusing error. For depths that are closer to

the camera than the focal plane, Wm is positive. For depths that are further than

the focal plane, Wm is negative.

PSF induced by the phase mask For an incoherent system, the PSF is the

squared magnitude of the Fourier transform of the pupil function.

PSFλ,Wm(x2, y2) = |F{Pλ,Wm(x1, y1)}|2 (3.6)

The PSF is dependent on the wavelength of the light source and defocus. In the

numerical simulations, the broadband color information in the training datasets —

characterized as red (R), blue (B) and green (G) channels — are approximated by

three discrete wavelengths, 610 nm (R), 530 nm (G) and 470 nm (B), respectively.

Note that a physics-based forward model is important because the network is learned

purely from the synthetic data. Similar pipelines have been used in other tasks as

such flare removal [104] and extended depth-of-field [6].

Coded image formulation If the scene consists of a planar object at a constant

depth from the camera, the PSF is uniform over the image, and the image rendering

process is just a simple convolution for each of the color channels. However, most

real-world scenes contain depth variations, and the ensuing PSF is spatially varying.
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While there are plenty of algorithms to simulate the depth-of-field effect [105–107],

we require four fundamental properties to be satisfied. First, the rendering process

has to be physically accurate and not just photo-realistic. Second, it should have

the ability to model arbitrary phase masks and the PSF induced by them, rather

than assuming a specific model on the PSF (e.g., Gaussian distribution). Third,

since the blurring process will be one part of the end-to-end framework, it has to

be differentiable. Fourth, this step should be computationally efficient because the

rendering process needs to be done for each iteration with updated PSFs.

Our method is based on the layered depth of field model [106]. The continuous

depth map is discretized based on Wm. Each layer is blurred by its corresponding PSF

calculated from (3.6) with a convolution. Then, the blurred layers are composited

together to form the image.

IBλ (x2, y2) =
∑
Wm

ISλ,Wm
(x2, y2)⊗ PSFλ,Wm(x2, y2) (3.7)

This approach does not model the occlusion and hence, the rendered image is not

accurate near the depth boundaries due to intensity leakage; however, for the most

part, it does capture the out-of-focus effect correctly. We will discuss fine-tuning of

this model to reduce the error at boundaries in Section 3.5.4.

To mimic noise during the capture, we apply Gaussian noise to the image. A

smaller noise level will improve the performance during the reconstruction but also

makes the model to be more sensitive to noise. In our simulation, we set the standard

deviation σ = 0.01.
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3.3.2 Depth reconstruction network

There are a variety of networks to be applied for our depth estimation task. Here, we

adopt the U-Net [108] since it is widely used for pixel-wise prediction.

The network is illustrated in Figure 3.1, which is an encoder-decoder architecture.

The input to the network is the coded image with three color channels. The encoder

part consists of the repeated application of two 3 × 3 convolutions, each followed

by a rectified linear unit (ReLU) and a batch normalization (BN) [109]. At each

downsampling step, we halve the resolution using a 2×2 max pooling operation with

stride 2 and double the number of feature channels. The decoder part consists of an

upsampling of the feature map followed by a 2×2 convolution that halves the number

of feature channels and two 3× 3 convolutions, each followed by a ReLU and a BN.

Concatenation is applied between the encoder and decoder to avoid the vanishing

gradient problem. At the final layer, a 1x1 convolution is used with a sigmoid to map

each pixel to the given depth range.

During the training, the input image size is 256× 256. But the depth estimation

network can be run fully-convolutionally for images size of any multiple of 16 at test

time.

3.3.3 Loss function

Instead of optimizing depth z directly, we optimize Wm which is linear to the inverse

of the depth. Intuitively, since defocus blur is proportional to the inverse of the depth,

estimating depth directly would be highly unstable since even a small perturbation in

defocus blur estimation could potentially lead to an arbitrarily large change in depth.

Further, since Wm is relative to the depth of the focus plane, it removes an additional

degree of freedom that would otherwise need to be estimated. Once we estimate Wm,
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the depth map can be calculated using (3.5).

We use a combination of multiple loss functions

Ltotal = λRMSLRMS + λgradLgrad + λCRLBLCRLB (3.8)

Empirically, we found that setting the weights of the respective loss functions (if

included) as λRMS = 1, λgrad = 1, and λCRLB = 1e−4 generates good results. We

describe each loss function in detail.

• Root Mean Square (RMS). In order to force the estimated Ŵm to be similar to

the ground truth Wm, we define a loss term using the RMS error.

LRMS =
1√
N
‖Wm − Ŵm‖2, (3.9)

where N is the number of pixels.

• Gradient. In a natural scene, it is common to have multiple objects located at

different depths, which creates sharp boundaries in the depth map. To empha-

size the network to learn these boundaries, we introduce an RMS loss on the

gradient along with both x and y directions.

Lgrad =
1√
N

(∥∥∥∥∥∂Wm

∂x
− ∂Ŵm

∂x

∥∥∥∥∥+

∥∥∥∥∥∂Wm

∂y
− ∂Ŵm

∂y

∥∥∥∥∥
)

(3.10)

• Cramér-Rao Lower Bound (CRLB). The effectiveness of depth-varying PSF to

capture the depth information can be expressed using a statistical information

theory measure called the Fisher information. Fisher information provides a
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measure of the sensitivity of the PSF to changes in the 3D location of the scene

point [110]. Using the Fisher information function, we can compute CRLB,

which provides the fundamental bound on how accurately a parameter (3D

location) can be estimated given the noisy measurements. In our problem set-

ting, the CRLB provides a scene-independent characterization of our ability to

estimate the depth map. Prior work on 3D microscopy [110] has shown that

optimizing a phase mask using CRLB as the loss function provides diverse PSFs

for different depths.

The Fisher information matrix, which is a 3 × 3 matrix in our application, is

given as

Iij(θ) =

Np∑
t=1

1

PSFθ(t) + β

(
∂PSFθ(t)

∂θi

)(
∂PSFθ(t)

∂θj

)
, (3.11)

where PSFθ(t) is the PSF intensity value at pixel t, Np is the number of pixels

in the PSF, and θ = (x, y, z) corresponds to the 3D location.

The diagonal of the inverse of the Fisher information matrix yields the CRLB

vector, which bounds the variance of the 3D location.

CRLBi ≡ σi
2 = E(θ̂i − θi)2 ≥

[
(I(θ))−1

]
ii

(3.12)

Finally, the loss is a summation of CRLB for different directions, different

depths, and different colors.

LCRLB =
∑
i=x̂,ŷ,ẑ

∑
z∈Z

∑
c=R,G,B

√
CRLBi(z, c) (3.13)
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In theory, smaller LCRLB indicates better 3D localization.

3.3.4 Training / implementation details

We describe key elements of the training procedure used to perform the end-to-end

optimization of the phase mask and reconstruction algorithm.

Basis for height maps Recall that the phase mask is described in terms of a height

map. We describe the height map at a resolution of 23× 23 pixels. To speed up the

optimization convergence, we constrain the height map further by modeling it using

the basis of Zernike polynomials [111]; this approach was used previously by [110].

Specifically, we constrain the height map to the form of

h(x, y) =
55∑
j=1

ajZj(x, y) (3.14)

where {Zj(x, y)} is the set of Zernike polynomials. The goal now is to find the optimal

coefficient vector a1×55 that represents the height map of the phase mask.

Depth range We choose the range of kGWm to be [−10.5, 10.5]. The term kG is the

wave vector for green wavelength (kG = 2π
λG

; λG = 530nm) and we choose the range

of kGWm so that the defocus phase φDF is within a practical range, as calculated by

(3.4). For the remainder of the chapter, we will refer to kGWm as the normalized Wm.

During the image rendering process, Wm needs to be discretized so that the clean

image is blurred layer by layer. There is a tradeoff between rendering accuracy and

speed. For the training, we discretize normalized Wm to [−10 : 1 : 10], so that it has

21 distinct values.
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Datasets As discussed in the framework, our input data requires both texture and

depth information. The NYU Depth dataset [112] is a commonly used RGBD dataset

for depth-related problems. However, since Kinect captures the ground-truth depth

map, the dataset has issues in boundary mismatch and missing depth. Recently, syn-

thetic data has been applied to geometric learning tasks because it is fast and cheap to

produce and contains precise texture and depth. We use FlyingThings3D from Scene

Flow Datasets [101], which includes both all-in-focus RGB images and corresponding

disparity map for 2247 training scenes. Each scene contains ten successive frames.

We used the first and last frames in each sequence to avoid redundancies.

To accurately generate 256× 256 coded images using PSFs of size 23× 23 pixels,

we need all-in-focus images at a resolution 278 × 278 pixels. We generate such data

by cropping patches of appropriate size from the original images (whose resolution

is 960 × 540) with a sliding window of 200 pixels. We only select the image whose

disparity map ranges from 3 to 66 pixels and convert them to Wm linearly.

With this pre-processing, we obtain 5077 training patches, 553 validation patches,

and 419 test patches. The data is augmented with rotation and flip, as well as

brightness scaling randomly between 0.8 to 1.1.

Training process Given the forward model and the loss function, the back-propagation

error can be derived using the chain rule. In our system, the back-propagation is ob-

tained by the automatic differentiation implemented in TensorFlow [113]. During

the training, we use Adam [114] optimizer with parameters β1 = 0.99 and β2 = 0.999.

Empirically, we found that using different learning rates for the phase mask and

depth reconstruction improves the performance. We suspect this is due to the large

influence that the phase mask has on the U-Net given that even small changes to
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Ground truth
Random initialized mask

RMS loss (B)
Fisher fixed mask

RMS loss (C)
Random initialized mask

RMS+CRLB loss (D)
Fisher initialized mask

RMS loss (E)
Fisher initialized mask

RMS+grad loss (G)
No mask

RMS loss (A)
Fisher initialized mask
RMS+CRLB loss (F)

Avg. RMS error: 2.69 1.07 0.97 0.88 0.74 0.85 0.56

Figure 3.3 : Qualitative results from our ablation studies. Across the columns,
we show the inputs to the reconstruction network and the depth estimation results
from the network. The numbering A-G here corresponds to the experiment setup
A-G in Table 3.1. The best result is achieved when we initialize the optical layer with
the phase mask derived using Fisher information and then letting the CNN further
optimize the phase mask. The last column (G) shows the results from our best phase
mask.
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Table 3.1 : Quantitative Evaluation of Ablation studies
Exp. Learn mask Initialization Loss Error (RMS)

A No No mask RMS 2.69
B Yes Random RMS 1.07
C No Fisher mask RMS 0.97
D Yes Random RMS+CRLB 0.88
E Yes Fisher mask RMS 0.74
F Yes Fisher mask RMS+CRLB 0.85
G Yes Fisher mask RMS+gradient 0.56

the mask produce large changes in the coded image. In our simulation, the learning

rates for phase mask and depth reconstruction were 10−8 and 10−4, respectively. A

learning rate decay of 0.1 was applied at 10K and 20K iterations. We observed that

the training converges after about 30K iterations. We used a training mini-batch size

to be 40. Finally, the training and testing were performed on NVIDIA Tesla K80

GPUs.

3.4 Simulation results

The end-to-end framework learns the phase mask design and reconstruction algorithm

in the simulation. In this section, We perform ablation studies to identify elements

that contribute most to the overall performance as well as identify the best operating

point. Finally, we provide comparisons with other depth estimation methods using

simulations.

3.4.1 Ablation studies

To clearly understand our end-to-end system as well as choosing the correct param-

eters in our design space, we carry out several ablation experiments. We discuss our
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findings below, provide quantitative results in Table 3.1 and the qualitative visual-

izations in Figure 3.3. For convenience, we use the numbering in the first column of

Table 3.1 when referring to the experiment performed and the corresponding models

acquired in the ablation study. For all the experiments here, we use the same U-Net

architecture as discussed in Section 3.3.2 for depth reconstruction. The baseline is

model (A), a depth-reconstruction-only network trained with a fixed open aperture

and RMS loss.

Learned vs. fixed mask In this first experiment, we use our end-to-end framework

to learn both the phase mask and the reconstruction layer parameters from randomly

initialized values (Exp. B). For comparison, we have Exp. C where the phase mask is

fixed to the Fisher mask, which is designed by minimizing LCRLB in our depth range,

and we learn only the reconstruction layer from random initialization.

To our surprise, shown in Table 3.1 and Figure 3.3 (Exp. B vs. C), when learning

from scratch (random phase mask parameters), our end-to-end learned masks (B)

underperforms the Fisher mask that was designed using a model-based approach (C).

We believe that there are two insights to be gained from this observation. First, the

CRLB cost is very powerful by itself and leads to a phase mask that is well suited for

depth estimation; this is expected given the performance of prior work that exploits

the CRLB cost. Second, a random initialization fails to converge to the desired

solution in part due to the highly non-convex nature of the optimization problem and

the undue influence of the initialization. We visualize the corresponding phase mask

height map in Figure 3.4, where 3.4(a) is the mask learned from scratch in Exp. B,

and 3.4(b) is the fixed Fisher in Exp. C.
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(a) (b) (c)

Figure 3.4 : Phase mask height maps from ablation studies. (a) Trained from
random initialization with RMS loss. (b) Fisher initialized mask. (c) Trained from
Fisher initialization with RMS and gradient loss.

Effect of initialization conditions With our hypothesis drawn from the previous

experiment, we explore if careful initialization would help in improving overall perfor-

mance. Instead of initializing with random values in Exp. B, we initialize the mask

as a Fisher mask in Exp. E, and perform end-to-end optimization of both the mask

design and the reconstruction network (there is no constraint forcing the optical net-

work to generate masks that are close to the Fisher mask). Interestingly, under such

an initialization, the end-to-end optimization improves the performance compared to

the randomly initialized mask (B) by a significant margin (1.07 vs. 0.74 in RMS),

and it also out-performs the fixed Fisher mask (Exp. C) noticeably (0.97 vs. 0.74 in

RMS), suggesting the CRLB-model-based mask design can be further improved by

data-driven fine-tuning. This is reasonable given that the model-based mask design

does not optimize directly on the end objective – namely, a high-quality precise depth

map that can capture both depth discontinuities and smooth depth variations accu-

rately. The Fisher mask is the optimal solution for 3D localization when the scene

is sparse [110]. However, most real-world scenes are not sparse and hence optimizing

for the actual depth map allows us to beat the performance of the Fisher mask.
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-3 -2 -1 0 1 2 3

4 5 6 7 8 9 10 (near)

Figure 3.5 : Simulated PSFs of our optimal phase mask. The PSFs are labeled
in terms of Wm. Range −10 to 10 corresponds to the depth plane from far to near.

The use of the Fisher mask to initialize the network might raise the concern of

whether the proposed approach is still end-to-end. We believe the answer is positive,

because initializing a network from designed weights instead of from scratch is a

common practice in deep learning (i.e., the Xavier approach [115] and the He approach

[116]). Likewise, here we incorporate our domain knowledge and use a model-based

approach in designing the initialization condition of our optical layers.

Effect of loss functions Finally, we also test different combinations of losses dis-

cussed in Section 3.3.3 with the Fisher mask as the initialization (E, F, and G). We

found that RMS with gradient loss (G) gives the best results. For completeness, we

also show the performance of a randomly initialized mask with RMS and CRLB loss

in D.
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Figure 3.6 : Simulation results with our best phase mask. The reconstructed
disparity maps closely match the ground truth disparity maps. The scaled disparity
map has units in terms of normalized Wm.
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3.4.2 Operating point with best performance

Figure 3.4(c) shows the best phase mask design based on our ablation study. It shares

some similarity with the Fisher mask since we take the Fisher mask as our initial-

ization. But our mask is further optimized based on the depth map from our data.

Figure 3.5 displays depth-dependent PSFs in the range [−10 : 1 : 10] of normalized

Wm. These PSFs have large variability across different depths for improving the

performance of depth estimation. More simulation results are shown in Figure 3.6.

3.4.3 Comparisons with the state-of-the-art

We compare our result with state-of-the-art passive, single viewpoint depth estimation

methods.

Coded amplitude masks There are two well-known amplitude masks for depth es-

timation. Levin et al. [63] design a mask by maximizing the blurry image distributions

from different depths using Kullback-Leibler divergence. Veeraraghavan et al. [65] se-

lect the best mask by maximizing the minimum of the discrete Fourier transformation

magnitudes of the zero padded code. To make a fair comparison between their masks

and our proposed mask, we render blurry image datasets based on each mask with the

same noise level (σ = 0.01). Since U-Net is a general pixel-wise estimation network,

we use it with the same architecture introduced in 3.3.2 for depth reconstruction.

Parameters in the U-Net are learned for each dataset using RMS and gradient loss.

The quantitative results are shown in Table 3.2 and qualitative results are shown

in Figure 3.7. Our proposed mask offers the best result with the smallest RMS error.

One key reason is that these amplitude masks only change the scaling factor of PSF

at different depths, while our mask creates a more dramatic difference in PSF at
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Table 3.2 : Comparison with Amplitude Mask design
Mask design LRMS

Levin et al. [63] 1.04
Veeraraghavan et al. [65] 1.08

Ours 0.56

different depths.
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Ground truth Levin et al.
[1]

Veeraraghavan et al.
[3]
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Figure 3.7 : Depth estimation comparing with coded amplitude masks. Our
reconstructed disparity map achieves the best performance. Also, our system has
higher light efficiency by using the phase mask. The scaled disparity map has units
in terms of normalized Wm.

Two-ring phase mask Recently, Haim et al. [2] propose a two-ring phase mask for

depth estimation. To compare the performance, we use their dataset “TAU-Agent”

and the same parameters described in their paper. Performance is evaluated by the

L1 loss of Wm. As shown in Table 3.3, both our reconstruction network and our phase
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Table 3.3 : Comparison with the two-ring phase mask [2]

Method |Wm − Ŵm|
Two-ring mask + Haim’s network 0.6

Two-ring mask + U-Net 0.51
Our Optimized Mask + U-Net 0.42

mask contribute to achieving the smallest estimation error.

Semantics-based single image depth estimation To compare the performance

of our proposed methods with other deep-learning-based depth estimation methods

using a single all-focus image, we run evaluation experiments on standard NYU

Depth V2 datasets [112]. We used the default training/testing splits provided by

the datasets. The size of training and testing images are re-sized from 640 × 480

to 320 × 240 following the data augmentations the common practice [90]. We show

the comparison of our proposed methods with other state-of-the-art passive single

image depth estimation results [90–96] in Table 3.4. We use the standard perfor-

mance metrics used by all the aforementioned works for comparison, including linear

root mean square error (RMS), absolution relative error (REL), logarithm-scale root

mean square error (Log10) and depth estimation accuracy within a threshold margin

(δ within 1.25, 1.252 and 1.253 away from the ground truth). We refer the readers

to [90] for the detailed definitions of the metrics. As one can see, we achieve bet-

ter performance in every metrics category for depth estimation error and accuracy,

which suggests that the added end-to-end optimized phase mask does help improve

the depth estimation. Moreover, we don’t have the issue of scaling ambiguity in depth

like those semantics-based single-image depth estimation methods since our PSFs are

based on absolute depth values.
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Table 3.4 : Comparison with semantics-based single image depth estimation methods
on NYU Depth V2 datasets.

Method Error Accuracy, δ <

RMS REL Log10 1.25 1.252 1.253

Make3D [90] 1.214 0.349 0.447 0.745 0.897
Eigen [90] 0.907 0.215 - 0.611 0.887 0.971
Liu [91] 0.824 0.23 0.095 0.614 0.883 0.971
Cao [93] 0.819 0.232 0.091 0.646 0.892 0.968
Chakrabarti [92] 0.620 0.149 - 0.806 0.958 0.987
Qi [94] 0.569 0.128 0.057 0.834 0.96 0.99
Laina [95] 0.573 0.127 0.055 0.811 0.953 0.988
Hu [96] 0.530 0.115 0.050 0.866 0.975 0.993
Ours 0.382 0.093 0.050 0.932 0.989 0.997

3.5 Experiment results

We fabricate the phase mask learned through our end-to-end optimization, and eval-

uated its performance on a range of real-world scenes. The experiment details are

discussed below, and the qualitative results are shown in Figure 3.11.

3.5.1 Experiment setup

In the experiment, we use a Yongnuo 50mm f/1.8 standard prime lens, which is easy

to access the aperture plane. The sensor is a 5472×3648 machine vision color camera

(BFS-PGE-200S6C-C) with 2.4 µm pixel size. We set the diameter of the mask phase

to be 2.835 mm. Thus, the simulated pixel size is about 9.4 µm for the green channel,

which corresponds to 4 pixels in our actual camera. For each 4× 4 region, we group

it to be one pixel with RGB channels by averaging each color channel based on the

Bayer pattern, therefore the final output resolution of our system is 1344× 894.



66

In-focus image with clean aperture Image with phase mask

Figure 3.8 : Calibration target for PSF estimation. An example of a sharp image
(left) taken using a camera lens without the phase mask and a coded image (right)
taken through the phase mask. The checkerboard pattern around the calibration
target is used for the alignment of the image pairs.

3.5.2 Phase mask fabrication

The size of the designed phase mask is 21×21, with each grid corresponding to a size

of 135 µm × 135 µm. The full size of the phase mask is 2.835 mm × 2.835 mm.

The phase mask was fabricated using a two-photon lithography 3D printer (Pho-

tonic Professional GT, Nanoscribe GmbH [117]). For a reliable print, the height map

of the designed phase mask was discretized into steps of 200 nm. The phase mask

was printed on a 170 µm thick, 30 mm diameter glass substrate using Nanoscribe’s

IP-L 780 photoresist in a direct laser writing configuration with a 63× microscope

objective lens. The glass substrate was then cut to a smaller size to fit into the camera

lens’s aperture. A close-up of the phase mask in the camera lens aperture is shown

in Figure 3.2.

3.5.3 PSF calibration

Although the depth-dependant PSF response of the phase mask is known from sim-

ulation, we calibrate our prototype camera to account for any mismatch born out
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Figure 3.9 : Calibrated PSFs of the fabricated phase mask. The camera lens
with the phase mask in its aperture is calibrated for depths 0.4 m to 1 m, which
corresponds to the normalized Wm range for an aperture size of 2.835 mm.

of physical implementation such as aberrations in fabricated phase mask and phase

mask aperture alignment. We adopt an optimization-based approach where we esti-

mate the PSFs from a set of sharp and coded image pairs [118, 119] of a calibration

pattern.

Estimating the PSF can be posed as a deconvolution problem, where both a sharp

image and a coded image of the same calibration target are given. The calibration

target we used is a random binary pattern that is laser-printed on paper. We use two

identical camera lenses, one without the phase mask to capture the sharp image and

the other with the phase mask in the aperture to capture the coded image. Image

pairs are then obtained for each depth plane of interest. The lens focus is adjusted at

every depth plane to capture sharp images while the focus of the camera lens with the

phase mask is kept fixed. The checkerboard pattern is used around the calibration

pattern to assist in correcting for any misalignment between the sharp and the coded
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Figure 3.10 : Fine-tune digital network with matting-based rendering. (Left)
Example comparison between naive rendering and matting-based rendering. With-
out blending between the depth layers, the naive rendering shows artifacts on depth
boundaries as shown in the insets. The matting-based rendering is more realistic
throughout the image. (Right) Improvement in depth estimation of real experimental
data is observed when the digital network is fine-tuned with matting-based rendered
training data. The improvement is visible along the edges of the leaf.

image.

For a particular depth plane, let I be the sharp image and J be the coded image

taken using the phase mask. We can estimate the PSF popt by solving the following

convex optimization problem

popt = argmin
p
‖I ∗ p− s · J‖22 + λ ‖∇p‖1 + µ

∥∥1Tp− 1
∥∥2
2

(3.15)

where the first term is a least-squares data fitting term (‘∗’ denotes convolution),

and the scalar s =
∑

m,n I(m,n)/
∑

m,n J(m,n) normalizes the difference in exposure

between the image pairs. The second term constrains the gradients of the PSF to be

sparse and the third term enforces an energy conservation constraint. The above op-

timization problem can be solved using a first-order primal-dual algorithm presented

in [119,120]. The PSF estimation is performed for each color channel and each depth

plane independently.
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3.5.4 Fine-tuning the digital network

When training for phase mask profile using our framework, we used naive rendering

to simulate the coded image as described in Section 3.3.1(c). Such a rendering process

is fast, allowing for multiple cycles of rendering and sufficient to explain most out-of-

focus regions of the scene. However, without blending between the depth layers, the

naive rendering is not realistic at depth boundaries. Hence, the digital reconstruction

network trained using naive rendering shows artifacts at object boundaries as shown

in Figure 3.10.

To improve the performance of the depth reconstruction network, we fix the op-

timized phase mask and retrain the digital network with a matting-based rendering

technique [121]. Matting for each depth layer was computed by convolving the cor-

responding PSF with the depth layer mask. The coded image was then composited,

ordered from farther blurred layers to nearer blurred layers. The layers were linearly

blended using the normalized matting weights [122]. Since the PSFs are fixed, ren-

dering of all the coded images can be created apriori and fed into the training of the

depth reconstruction network. The use of closer-to-reality matting-based rendering

improved our experimental reconstructions significantly at the object boundaries, as

shown in Figure 3.10.

3.5.5 Real-world results

Using the hardware prototype, we acquire the depth of the real-world scenes. We

show the results in Figure 3.11. As one can observe, our system is robust to lighting

conditions as reasonable depth estimation for both indoor scenes (A, B, E, and F)

and outdoor scenes (C, D, G, and H) are produced. Both smoothly changing surface

(A, D and F) and sharp object boundaries (B, C, E, G, and H) are nicely portrayed.
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Figure 3.11 : Real-world results. Results of various scenario are shown and com-
pared: Indoor scenes (A, B, E, and F) are shown on the left and outdoor scenes (C,
D, G, and H) are on the right; Smoothly changing surfaces are presented in (A, D and
F) and sharp object boundaries in (B, C, E, G, and H); Special cases of a transparent
object (B) and texture-less areas (E and F) are also included.
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Figure 3.12 : Validation experiments. (a) Comparison with the Microsoft Kinect
V2. (b) Depth accuracy evaluation of PhaseCam3D by capturing targets at known
depths. The actual depth is measured by a tape measure.

Special cases of a transparent object (B) and texture-less areas (E and F) are also

nicely handled.

In addition, given the Microsoft Kinect V2 [76] is one of the best ToF-based depth

cameras available on the mainstream market, we show our depth estimation results

against the Kinect results in Figure 3.12(a). As one can see, the Kinect indeed output

smoother depth on flat surfaces than our system, however, our method handles the

depth near the object boundary better than Kinect.

To validate the depth-reconstruction accuracy of our prototype, we capture a

planar target placed at various known depths. We compute the depth of the target

and then compare it against the known depths. As shown in Figure 3.12(b), we

reliably estimate the depth throughout the entire range.
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3.6 Discussion and conclusion

In this work, we apply a phase mask to the aperture plane of a camera to help estimate

the depth of the scene and use a novel end-to-end approach to design the phase mask

and the reconstruction algorithm jointly. The phase mask is able to offer large PSF

variation over depth. In our end-to-end framework, we model the optics as learnable

neural network layers and connect them to the consequent reconstruction layers for

depth estimation. As a result, we are able to use back-propagation to optimize

the reconstruction layers and the optics layers end-to-end. Compared to existing

depth estimation methods, such as stereo vision and ToF sensors, our phase mask-

based approach uses only single-shot, single-viewpoint and requires no specialty light

source, making it easy to set up, suitable for dynamic scenes, consumes less energy

and robust to any lighting condition. Following our proposed framework, we build a

prototype depth estimation camera using the end-to-end optimized phase mask and

reconstruction network. The fabrication of the phase mask is low-cost and can be

easily scaled up for mass production. Looking into the future, we hope to extend

our framework to more applications, such as microscopy. We also are interested in

modeling other components in the imaging system (i.e. ISP pipeline, lenses, and

spectral filters) in our end-to-end framework, so as to aim for a more completely

optimized camera for higher-level computer vision tasks.

Limitations. PhaseCam3D relies on the defocus cue which is not available in re-

gions without texture. As a consequence, depth estimates obtained in texture-less

regions are mainly through prior statistics and interpolation, both of which are im-

plicitly learned by the deep neural network. Our results seem to indicate that the

network has been able to successfully learn sufficient prior statistics to provide rea-
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sonable depth estimates even in texture-less regions. Nevertheless, large texture-less

regions will certainly challenge our approach. Unlike most active approaches that

provide per-pixel independent depth estimates, PhaseCam3D utilizes spatial blur to

estimate depth and therefore will likely have a lower spatial resolution.
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Chapter 4

FreeCam3D: Snapshot structured light 3D with

freely-moving cameras

4.1 Introduction

3D scanning is one of the core technologies in many systems. For many upcoming

applications, a depth map of the scene in the camera’s viewpoint is not sufficient and

it is equally important to localize the camera in a world-coordinate system. This

problem gets all the more important when we have multiple cameras roaming in a

shared space, as is the case in augmented reality, free-viewpoint videos, and indoor

localization applications.

This work provides an approach to obtain depth maps and localize one or many

cameras, operating in a shared space, in a world coordinate system. Our technique

relies on a structured light system with a static projector that is decoupled from

the camera(s); this projector, hence, provides a fixed (world) coordinate system for

the scene against which cameras localize themselves. The projector displays a single

static pattern, which is observed in part or full by any camera in the scene. Each

camera decodes this image and localizes itself in the world coordinate system and,

further, estimates a 3D map of the scene in its field of view. Since this is achieved

with a single image, we enable a novel framework for single-shot self-localization and

3D estimation.

The advances made in this work rely on three key ideas. First, to permit depth
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Figure 4.1 : Overview. (Left) Illustration of our system. An optimized phase
mask is placed on the aperture of the projector to generate depth-dependent blur.
The 2D pattern provides unique spatial features. (Center) Experimentally captured
single-shot image by a freeform camera and the regions showing projected patterns
at different 3D locations. (Right) Depth map and the camera (red) pose recovered
with respect to the projector (gray) coordinates. Our system allows for multiple
unconstrained participants/cameras to interact within the common world coordinate.

estimation without relying on triangulation, we use a projector that induces a depth-

dependent defocus blur on the pattern projected on the scene. To further improve

our ability to decode depth from the defocus blurs, we use an optimized phase mask

on the pupil plane of the projection optics. Second, we design a projector pattern

to help solve the correspondence problem between the projected pattern and the

imaged pattern, especially in the presence of the defocus blur. The designed pattern

is a Kronecker product between a random binary image, that provides global context,

along with a textured local pattern that allows for local depth estimation via defocus.

Third, we use a learning-based formulate that takes in the input image and predicts

the X/Y correspondence as well as depth in the world coordinate system. The camera

pose is estimated from this depth map using Perspective-n-Point (PnP) algorithms.

The proposed technique offers numerous advantages against traditional structured

light and SLAM techniques. First, we can handle dynamic scenes since, at any time

instant, only a single captured image is used for 3D estimation and self-localization.
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Second, the estimated 3D scan is in the world coordinate system as defined by the

projector; this allows multiple cameras to share the same space seamlessly — a fea-

ture that is unique to our approach. Third, unlike structured light where the relative

geometry between the camera and projector is known, our technique is uncalibrated

and estimates the camera’s extrinsic parameters with respect to the projector auto-

matically.

We summarize our contributions as follows:

• We propose a novel system for single-shot 3D reconstruction that relies on a

fixed projector and freely-moving camera(s).

• Our system relies on an optimized phase mask in the projection optics. To

perform this optimization, we build a fully differential model that contains the

physical rendering (e.g., depth-dependent blurring and image warping) for end-

to-end training, where the goal is to decode the image acquired by a camera.

This simulation pipeline is directly applied to real experimental data without

any finetuning.

• We build a prototype and demonstrate compelling 3D imaging performance

using our prototype.

It is worth mentioning that, like other structured light techniques, scene textures

can reduce the performance of our method by corrupting the projected pattern. This

can be reduced by operating in near-infrared wavelengths, similar to the Kinect sys-

tem, as well as training our models with textured scenes.
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4.2 Related work

4.2.1 Active depth sensing techniques

Active methods recover depth information by illuminating the scene with a coded

light signal. Here, we provide three examples.

Time-of-flight (ToF). ToF cameras measure the depth based on the round trip

time of a modulated light signal reflecting from the object [123]. While ToF cameras

do provide single-shot depth estimates with little post-processing, both LIDAR and

correlation-based approaches require a strong coupling between the sensor and the

active illuminant. When operating in a shared space, the devices tend to interfere with

each other which causes artifacts in their reconstructions [124]. Further, the estimated

depth maps are typically in a local coordinate system, which is not desirable for many

applications.

Structured light (SL). SL is a triangulation-based method. The correspondence

can be obtained by temporal coding or spatial coding [125]. Temporal coding meth-

ods are superior in spatial resolutions, but not suitable for dynamic scenes. For spa-

tial coding, researchers have explored recovering depth from a snapshot based on the

color [126–129] or geometry [130–132] of the projected patterns. A recent class of tech-

niques aims to enable 3D scanning using smartphones; since SL systems are usually

fixed and static, whereas smartphones are mobile, there is a need for self-calibration.

However, current approaches in this space either require additional information about

the scene [133], or heavy computational cost for bundle adjustment [134].
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Projection-based depth from defocus (DfD). There have been many approaches

that use DfD using projectors [135–139]; a key advantage of such techniques is that

we do not need to estimate correspondences. However, for a traditional lens-based

system, the encoding of depth in defocus is not robust. This problem can be ad-

dressed by introducing a coded aperture in the projection optics [63, 65, 140–142].

These methods prevent the significant loss of information during defocus, as well as

making it possible to decompose the overlapping pattern to obtain higher density and

precision. It is worth pointing out that while our hardware is similar to those DfD

systems, our novel algorithm allows the camera to be unconstrained while a standard

DfD system requires the camera to be pre-calibrated and fixed.

4.2.2 Indoor localization

The goal of indoor localization is to obtain a device or user location in an indoor

setting or environment. For a vision system, the camera pose consists of 6 degrees-

of-freedom (DOF). A standard way to estimate camera pose is based on PnP algo-

rithms [143, 144], which rely on a set of 3D points in the world coordinate and their

corresponding 2D locations in the image. However, requiring known 3D points in

world coordinates an unreasonable burden in many applications.

On the other hand, SLAM aims for estimating a map of an unknown environment

while simultaneously keeping track of the location of the sensor. One key assumption

is that the environment remains static when multiple frames are captured from the

sensor. It means that SLAM has difficulty handling dynamic scenes. In comparison,

our proposed method only requires a single image to recover the 3D environment as

well as the camera pose.
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Figure 4.2 : System pipeline. (Left) The forward rendering part builds a physics-
based model to simulate the captured camera image for any 3D scene and camera
pose. (Right) From the single-shot image Ic, we first predict the 3D location in the
projector coordinate. We then estimate the camera pose with a PnP solver. The
pipeline is fully-differentiable, and can be trained end-to-end.

4.2.3 Deep Optics

Recently, researchers have integrated deep learning algorithms to optimize computa-

tional imaging systems. The key idea is to treat the optical system as the first layer of

a deep neural network. During the training, the free parameters of the optics as well

as the deep networks are optimized end-to-end. This concept, often termed “deep

optics”, has found applications in demosaicing [66], depth estimation [12, 145, 146],

extended depth of field [147], and high dynamic range [148, 149]. Our work follows

the same spirit to optimize the phase mask design as well as the neural network.

4.3 Forward model

The goal of this section is to derive a differentiable physical model to simulate the

captured camera image for any 3D scene and camera pose. As shown in Fig. 4.2,

there are three main steps in the forward model: generating the 2D pattern that is
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projected, rendering the image in the projector’s viewpoint with its depth-dependent

defocus blur, and warping the pattern to create the captured image from the camera

view.

4.3.1 Projector 2D pattern design

There are two requirements for the projected pattern. First, to enable lateral (or

x/y) localization, the pattern should contain unique local textures. Second, to enable

axial (or z) localization, the pattern contains rich local textures to facilitate decoding

of the defocus blur.

We propose to generate the pattern from a Kronecker product ⊗ between a global

pattern Iglobal and two local patterns I local1 and I local2 . The final projected pattern ISp

can be represented as

ISp = Iglobal ⊗ I local1 + (1− Iglobal)⊗ I local2 (4.1)

We set Iglobal as a random binary pattern. I local1 and I local2 are cross and square, re-

spectively. As we see from Fig. 4.2, the overall pattern still preserves a grid structure,

which can be a useful clue for the reconstruction algorithm to estimate depth from

the distorted image in the camera view.

4.3.2 Depth encoding with the phase mask

For a conventional lens-based SL system, the working depth range is limited by the

depth of field, because the pattern has to be sharp for stereo matching algorithms.

Instead, we estimate depth based on the defocus effect. Thus, the working depth range

is increased significantly. To amplify the defocus effect for higher depth estimation,
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we insert a phase mask on the aperture plane so that the point spread function

(PSF) varies rapidly over depth while the PSF size remains small. This approach

follows a rich body of literature that improves depth resolution using specialized

phase masks [12,150,151].

Point spread functions. For an incoherent system, the PSF is the squared mag-

nitude of the Fourier transform of the pupil function [37].

PSF (h, z) =
∣∣F{A exp[φM(h) + φDF (z)]}

∣∣2 (4.2)

The amplitude part A is a constant to maximize light throughput. The phase part of

the pupil function consists of two components. φM(h) is from the phase mask, which

is a function of the mask height map h. φDF (z) is from depth defocus, which is a

function of the scene depth z.

Coded pattern formulation. To simulate the coded pattern in the projector view

IBp (h), we separate the sharp pattern ISp based on the discretized the depth map zp (21

layers in this work), convolve with corresponding PSFs, and combine them together.

The formula is written as follows.

IBp (h) =
∑
zp

ISp (zp) ∗ PSF (h, zp) (4.3)

As a consequence, the final image is a differentiable function with respect to the phase

height map h, which is the optical parameter that we need to optimize during the

training stage.
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Geometry dependence. The intensity of the coded pattern is also affected by the

scene geometry. Assuming the scene is Lambertian, the reflected intensity depends

on the orientation of the surface with respect to the projector θ as well as the distance

to the scene d =
√
x2 + y2 + z2. The final intensity should be scaled as follows,

IBp (x, y) ∼ cos(θ(x, y))

d(x, y)2
(4.4)

4.3.3 Image warping

Once we have the image in the projector view IBp , we can synthesize the corresponding

image in the camera view Ic. This geometry-based image warping has been widely ap-

plied for unsupervised depth estimation from stereo pairs [98] and video sequences [99]

in a fully differentiable manner.

There are two warping strategies that we can consider:s forward warpingWF and

inverse warping WI . Forward warping is defined as the mapping from the projector

view to the camera view, which requires the depth map in the projector view zp and

the relative pose Tpc. Inverse warping is defined as the mapping from the camera view

to the projector view, which requires the depth map in the camera view zc and the

relative pose Tcp. The intrinsic matrices of the projector and the camera are required

for both methods. But these two matrices are fixed and can be calibrated beforehand.

We generate the projector view using inverse warping by adopting the bilinear

sampling mechanism proposed in [152]. However, this technique does not correctly

render occluded regions. Thus, we separately generate an occlusion mask using for-

ward warping. Specifically, we warp an all-ones matrix from the projector view to

the camera view in the forward mode, and label zero-value pixels as black since there
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is no light projected on those pixels. The final warping formula is as follows.

Ic =WI(IBp , zc, Tcp) · (WF (1, zp, Tpc) > ε) + U(0, Im) +N (0, σ2) (4.5)

To mimic the noise present in real experiments, we add in uniform distribution

between 0 and Im = 0.05 and a Gaussian random variable with σ = 0.005 to model

ambient/global light and read noise, respectively.

4.3.4 Dataset generation

As discussed in the above sections, to simulate the coded image in camera view Ic

accurately, there are three inputs required for a given scene: the depth map from

the projector view zp, the depth map from the camera view zc, and the relative pose

from the projector view to the camera view Tpc (Tcp is the inverse of Tpc). Besides,

Tpc should be different for different scenes since the camera is freely moving. The

most related datasets are for indoor localization or SLAM [153,154]. However, these

datasets are either low resolution, or lack of complex geometries in the foreground,

which are not suitable for our task.

Instead, we use the open-source 3D creation suite Blender to generate our dataset.

Different geometric objects with various scales and orientations are randomly placed

in the scene. Given a fixed scene, two depth maps are exported as zp and zc, along

with the random relative camera pose Tpc. The synthetic camera has a 50-mm focal

length and a 24mm×36mm sensor. The output depth map is an 800 × 1200 matrix

ranging from 0.7m to 0.95m. And the output camera pose is a 4 × 4 matrix. The

numbers of scenes that we generate for training, validation, and testing elements are

4850, 900, and 200, respectively.
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4.4 Reconstruction algorithm

Given a single captured image in the camera view Ic, the goal is to recover both the

3D point cloud of the scene as well as the camera pose in the projector coordinates.

This enables unconstrained and freeform users (cameras) to perform self-localization

as well as estimate 3D shape under common coordinates.

The reconstruction pipeline is shown in the right part of Fig. 4.2. First, we design

convolutional neural networks to predict pixel-wise 3D map (xcV iewp , ycV iewp , zcV iewp ).

Although the image is captured from the camera view, the output 3D location should

be in the projector coordinate since the pattern is based on the projector. As a

result, the 3D map is with respect to the projector but in the camera view. Then, we

estimate the camera pose using PnP algorithms based on the correspondence between

the estimated 3D map and the captured 2D map.

4.4.1 Image preprocessing

To mitigate the intensity dependency of the surface normal and depth, we apply local

normalization (LN) as suggested in [155]:

ILNc = LN(Ic, x, y) =
Ic(x, y)

µI(x, y) + ε
(4.6)

µI(x, y) denotes the mean in a small region (17×17 in our simulation) around (x, y),

and ε is a constant to avoid numerical instabilities.

4.4.2 Reconstruction network

Empirically, we observe that having one network for x, y estimation (XYNet), and one

network for z estimation (ZNet) provide the best performance. The main reason is
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that x, y localization focuses on global features, while z localization is based on local

blur and distortion. ZNet directly outputs the absolute depth values, and XYNet

first outputs the relative angles (i.e., x/z and y/z) and then converts them to the

absolute x, y position by multiplying the ground truth depth. In this way, XYNet

only needs to predict a relative 2D position without the dependency on depth. Both

XYNet and ZNet are similar to UNet [108], which is designed as an encoder-decoder

architecture with skip connections.

4.4.3 Loss function

In the input image Ic, there are occluded regions containing no information about

the scene. Those regions are masked out from the loss to force the networks to learn

only from the patterns.

Our loss function is composed of three individual losses: a root-mean-square (rms)

Lrms on x, y, z, a gradient loss Lgrad and a reprojection loss Lrp.

L = λ1Lrms + λ2L
z
grad + λ3Lrp (4.7)

Lrms is a combination of Lxrms, L
y
rms, L

z
rms to directly force the networks to learn the

correct estimation. The gradient loss Lzgrad is applied on the depth map to emphasize

the network to learn sharp depth boundaries which is common in the natural scene.

Lzgrad =
1√
N

(∥∥∥∥∥∂zcV iewp

∂x
−
∂ẑcV iewp

∂x

∥∥∥∥∥
2

+

∥∥∥∥∥∂zcV iewp

∂y
−
∂ẑcV iewp

∂y

∥∥∥∥∥
2

)
(4.8)

In our system, the depth information can be extracted from not only the pattern

defocus, but also the pattern perspective distortion since the camera and the project

are not co-located. To unitize the perspective distortion for depth estimation, we add
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the reprojection loss Lrp between the actual image Ic and the predicted image Îc from

ẑcV iewp .

Lrp =
1

N

∥∥∥Ic − Îc(ẑcV iewp )
∥∥∥
1

(4.9)

Here, `1-norm is used since Ic is sparse.

4.4.4 Training details

During the training, the input image patch has a size 256×256 px, which is randomly

cropped from our dataset mentioned in Sec. 4.3.4. At test time, since our networks

are fully-convolutional, image size can be any multiple of 16. We train the parameters

of the optical system (i.e., the mask height map) jointly with the digital convolutional

layers. Empirically, we find that the result converges better by training in two stages.

First, we pre-train the mask height map and ZNet with Lzrms and Lgrad in a colocated

setting where Tpc is identity. Second, we train the entire model using all losses end-

to-end.

4.4.5 Camera pose estimation

Our networks output the 3D coordinates of the scene from the camera’s point of

view. We can then calculate the camera pose by passing the 3D coordinates and the

corresponding 2D local image coordinates to a PnP solver. We use OpenCV [143]

implementation of PnP solver [156] made robust with RANSAC [157].

Conceptually, the (x, y) locations provided by XYNet rely on analyzing the spatial

distribution of the Kronecker multiplexed pattern. This means that a sufficiently large

receptive field is required to estimate (x, y) accurately. However, in regions with small

features and significant depth variations, the projected pattern is highly distorted,

yielding erroneous (x, y) estimates. Assuming that the majority of the scene is smooth
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Figure 4.3 : Simulation results. (Left) The learned phase mask and its corre-
sponding PSFs at different depths. Ic is an example of the input image in simulation.
(Center) The output of XYNet and ZNet, containing the 3D map in the projector co-
ordinate. (Right) The estimated point cloud of the scene in the projector coordinate.
The estimated camera pose (white) is close to the ground truth (green).

without rapid depth variations, a robust PnP solver can estimate the camera pose

accurately.

Refinement of (x, y). While the estimation of (x, y) might not be good for specific

regions with small features and large depth variations, the z estimation is less affected

since ZNet extracts local blurring information. Thus, (x, y) is further refined using

the z estimation and the robustly estimated camera pose.

4.5 Simulation results

4.5.1 Optimized mask design and testing results

The top left of Fig. 4.3 shows the optimized phase mask height map that we obtain

from the training procedure. The corresponding PSFs at different depth ranges are
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shown below. At the focused depth (0.8m), the PSF is a dot. As the depth reduces,

it splits into two dots vertically. As the depth increases, it splits into two dots

horizontally. This variation makes robust depth estimation possible.

To evaluate the performance in simulation, we show the reconstruction results of a

testing scene - a cup and a handbag on a tilted floor (Fig. 4.3). The camera captures

the scene with the projector pattern as Ic. The trained networks output the 3D

location in the project coordinate for each pixel. Compared with the ground truth,

the error is mainly near the depth boundary. The 3D point cloud is shown in the right

part of Fig.. 4.3. The estimated camera pose (color in white) is also shown in the

figure, which is close to the ground truth (color in green). The error in translation

is (0.013, 0.009, 0.016) meters, and the error in the rotation is (0.013, 0.013, 0.002)

radians for pitch, yaw and roll. This example demonstrates that we are able to

accurately output the 3D scene as well as the camera pose from just a single shot.

4.5.2 Ablation study and comparisons

There are two important components in our projector system, the projector pattern

and the inserted phase mask. The results of the ablation study are shown in Table 4.1.

Although there are various single-shot patterns, many are not suitable for comparison

because our system requires the pattern to contain global context with dense local

features. For example, test A shows that a uniform grid pattern is not able to provide

the spatial uniqueness to give the x and y locations. And the results from Kinect [158]

and M-array [159] patterns are still worse than our proposed Kronecker-multiplexed

pattern. On the other hand, test D shows that the depth estimation error increases

dramatically when there is no mask. In this case, the PSF becomes a disk function,

and is identical at both sides of the focal plane, which is hard to estimate depth from
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Test Projector pattern Phase mask Lx Ly Lz

A Grid Optimized 52.1 50.6 8.7
B Kinect Optimized 15.8 18.1 9.2
C M-array Optimized 12.9 15.4 15.5
D Kronecker-multiplexed No mask 8.8 10.3 90.3
E Kronecker-multiplexed Optimized 8.3 10.1 6.1

Table 4.1 : Ablation study (the unit of all the losses is mm)

Model Projector pattern Lzc Lzc with camera misalignment

A FreeCam3D 7.6 7.8
B Kinect + UNet 7.8 15.7
C Kinect + DispNet 7.4 14.8

Table 4.2 : Model comparison (the unit of all the losses is mm)

the pattern.

We further compare our method with recent deep learning-based algorithms for

the SL system. Since these algorithms require the camera to be pre-calibrated and

fixed, we generate another dataset with a fixed camera pose (10 cm baseline). Model

B is trained with UNet [108] and Kinect pattern, and model C is trained with Disp-

Net [101, 155] and Kinect pattern. Lzc is the rms loss on recovered depth in camera

coordinate. As shown in the Table 4.2, our system has a similar performance when

the camera is well-calibrated and is more robust when the camera pose is misaligned

(12cm baseline).



90

4.6 Experiment results

4.6.1 Experimental setup

A picture of the setup is shown in the left part of Fig. 4.4. We use an Epson VS355

LCD Projector (1280×800, 10µm pixel size) with a 50-mm f/1.8 standard prime

lens. The phase mask is fabricated by the Reactive Ion Etching (RIE) process. The

diameter of the mask is 10.5mm with 70-µm pixel size. The projector only projects

green patterns, which mitigates the PSFs’ dependence on wavelength. The projec-

tor PSFs are calibrated experimentally for any fabrication imperfection and system

misalignment. The networks are fine-tuned based on the experimental PSFs.

At the camera side, our sensor is a 5472×3648 machine vision color camera

(BFSPGE-200S6C-C) with 2.4µm pixel size. To match the pixel size of the pro-

jector, the captured image is rescaled to the resolution of 1312×864. The imaging

lens is a 50-mm f/16 lens. The use of a small aperture in the camera makes its depth

field very large, and hence its PSF is near-invariant in our operating depth range.

4.6.2 Static scenes

We demonstrate the results for static scenes with a fixed camera pose. Fig. 4.4 shows

the recovered depth maps ẑcV iewp . Our algorithm recovers depth for both textureless

scene and textured scene (with finetuning using the same dataset with random tex-

ture). By combining with the estimated (x̂cV iewp , ŷcV iewp ), we show an example of the

recovered 3D point cloud and camera pose in Fig. 4.1.
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Figure 4.4 : Experimental setup and results for static scenes. (upper row)
complicated scene and (bottom row) texture scene.

Misalgined spatial SLScene Spatial SL Self-calibrated SL Proposed

Figure 4.5 : Comparison. Experimental depthmap comparisons with single-shot
structured light methods.

4.6.3 Comparisons with related SL systems

To confirm the effectiveness of our method, we compare our technique to related

single-shot SL methods (Fig. 4.5). The baseline for all the methods is 10 cm. For

spatial-coding SL, we use a pseudo-random dot pattern with the Kinect v1 stereo

matching algorithm [158]. To further test the sensitivity of this method to calibration,

we recover the shape after adding a slight error in the rotation angle between the

projector and the camera (0.2 degrees). As we can see, even a small misalignment

affects the result significantly. On the other hand, there are self-calibrating single-
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Figure 4.6 : 3D reconstruction from two cameras. Each camera only sees a part
of the scene. Since our system estimates the 3D map in world coordinates, those two
point clouds can be combined seamlessly. The height along the dashed scanline is
plotted.

shot scanning techniques. Here we implement one using markers [133]. Although the

3D shape is recovered, the resolution is extremely low. This is because the pattern

for self-calibrating SL is sparse in order to find correspondences in a practical manner

without the help of the epipolar constraint. Since only low resolution is recovered, all

the high-frequency shapes such as the horn of the unicorn object cannot be recovered

and surfaces are all smoothed out.

Overall, our proposed method provides comparable depth resolution with the spa-

tial SL and better shape boundaries. While the spatial SL is sensitive to the calibra-

tion misalignment, our technique does not require calibration, which is one important

strength of our algorithm.

4.6.4 Multi-camera systems

One advantage of our method is that the output 3D point cloud is in world coordi-

nates. If multiple cameras are looking at the same scene from different perspectives,

their results can be directly combined to create a complete reconstruction of the scene.
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Frame 57 Frame 65
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Frame 1 Frame 101

Figure 4.7 : 3D reconstruction with dynamic scenes.

Fig. 4.6 gives a sample scene with three cubes on a table. Each camera only a part

of the scene. However, we can observe the similarity in the 3D map in regions that

are in both views. All three cubes are visible in the combined 3D map as shown

on the right side of the figure. As a byproduct, the left and right camera poses are

estimated. This example demonstrates interesting applications that involve multiple

participants in a shared scene.

4.6.5 Dynamic scene and moving camera

Since our method is single-shot, it offers the ability to work for dynamic scenes with

moving cameras. In Fig. 4.7, the first row shows hand gestures captured from a fixed

camera. The second row shows a paper stripe is swiped from the bottom to the top,

while the camera is shifted to the left. All videos are recorded in a 30Hz frame rate.

4.7 Discussion and conclusion

In this chapter, we demonstrate FreeCam3D for 3D imaging of the scene where the

camera is not constrained to a rigid position relative to the projector. The key idea is

to build a projector system that is able to provide both depth and spatial encoding.
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For depth encoding, we insert an optimized phase mask on the aperture of the project

to provide a defocus cue. For the spatial encoding, we propose Kronecker-multiplexed

projecting pattern, which contains a global random grid for spatial localization.

From a single image captured by the camera, we estimate the 3D map of the scene

and the camera pose. This is achieved by using the neural networks trained on syn-

thetic data with a physics-based simulator. We build a prototype and demonstrated

high-quality 3D reconstruction with an unconstrained camera.

Practically, we envision that our system will be implemented using NIR lighting,

like the Microsoft Kinect, so as to not interfere with human vision. Most visible-

light textures, which are from dyes, are practically transparent in NIR, and are low-

contrast. In such a case, the texture on the scene will be dominated by the structured

light. Therefore, we focus most of our results on texture-less scenes. Finally, texture

dependency can be mitigated by enhancing the training pipeline to include textures.

Limitations. The advances made by the proposed system come with certain limi-

tations.

First, the 3D estimates of our technique are of lower spatial resolution than what

can be obtained with traditional structured light systems with a similar camera and

projector; this can be attributed to many sources including the use of defocus blur for

depth, the loss in resolution due to the design of the projected pattern and, finally,

the lack of knowledge of the pose of the camera.

Second, the intended applications of our system are in enabling shared spaces that

facilitate interaction of multiple participants in an AR/VR setting. To ultimately

realize such an environment, we also need to increase the field-of-view (FoV) of the

system. Our work can be extended to an increased FoV by installing multiple fixed
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projectors, each with its optimized phase mask. The projectors can be pre-calibrated

with respect to each other, while the participants with cameras can move around in an

unconstrained fashion. Regions of occlusions can also be dealt with a multi-projector

system.

Third, our design relies on an assumption that the blurriness is only introduced

from the projector. This might not be valid if the scene contains strong sub-surface

scattering. In this case, the captured pattern will be dependent on the material

property of the scene. Note that this limitation is not unique for FreeCam3D, but

general for structured light systems. As a result, we can borrow ideas from other

related work (e.g., [160]) into our system.

Finally, our experimental results are captured in the visible light with texture-

less objects. When using this technique in a real application, the system can be

implemented using near-infrared (NIR) light and reap the dual benefits of being non-

intrusive to human vision and making most objects texture-less.
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Chapter 5

Conclusion

Looking into the future, there is no doubt that 3D sensors will be adopted widely. For

example, in spatial computing, accurate 3D environment mapping is the cornerstone

to integrate real and virtual environments together seamlessly. In neuroimaging,

3D brain imaging helps researchers understand how the signal is communicated in

different brain origins. In this thesis, I introduce two novel computational imaging-

based solutions, by combining optical encoding and digital decoding.

To make our system applicable in daily life, there are practical challenges to be

solved. For WISHED, the current system requires a coherent light source (e.g., laser).

It means that this system should be mainly used in a controlled environment. One

interesting direction to explore is to build a system with incoherent light sources or

in a passive way. In this case, the phase retrieval algorithm can not be used. One

promising method is to combine physics-based forward models with data-driven re-

construction algorithms. For PhaseCam3D and FreeCam3D, since they only require

a small modification (e.g., inserting a phase mask into the imaging system) on the

off-the-shelf devices, they are good for applications in consumer platforms (e.g., smart-

phone, drone, and car). Due to the computation constraint on mobile platforms, how

to make our reconstruction algorithm more efficient? Besides, for mass production, it

is important to understand how robust the system is given the manufacturing error.

Moreover, the techniques proposed in the thesis have other potential applications

beyond 3D sensing. The WISH system recovers a high-resolution wavefront. In
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microscopy, the recovered phase information is important for the analysis of bio-

samples. And the lens can be removed given that the refocus can be done using

numerical propagation. In long-distance imaging, combining WISH with a Fresnel lens

provides one solution to achieve diffraction-limited resolution with a large aperture.

For imaging through scattering media, WISH is able to computationally remove the

scattering effect and recover the hidden scene. In PhaseCam3D and FreeCam3D, I

introduce a learning-based method to optimize the optics and algorithm in an end-

to-end manner. Such technique can be used not only for 3D sensor design, but also

in other applications, including low-level imaging tasks such as low-light imaging and

extended depth-of-field microscopy, and high-level semantic tasks such as privacy

preserving and object detection.
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