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ABSTRACT

AmbianceCount: An Objective Social Ambiance Measure from Unconstrained

Day-long Audio Recordings

by

Wenwan Chen

Measuring social ambiance in unconstrained environments is of significant impor-

tance in mental health due to the association between sociability and psychological

outcome. However, it has been challenging to quantify social ambiance since existing

objective methods fail to capture the transient ambiance patterns in unconstrained

environments. In this thesis, I present AmbianceCount, an automatic and objective

method that extracts social ambiance from unconstrained audio recordings by esti-

mating the number of concurrent speakers. AmbianceCount consists of a supervised

deep neural network (DNN) embedding extractor to di↵erentiate speech mixtures,

and a scoring system for estimation and improving generalization. The performance

of AmbianceCount is compared with baseline and evaluated on several synthesized

datasets. Lastly, I utilize AmbianceCount to evaluate data from a sociability pilot,

with audio data from depression and psychosis patients as well as age-matched healthy

controls. Our analysis shows that extracted social ambiance patterns are significantly

di↵erent across three groups. Besides, it is observed that captured social ambiance

patterns are associated with psychometric and personality scores, which is consistent

with clinical diagnosis.
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Chapter 1

Introduction

Ambiance, defined as “the character and atmosphere of a place” [1], is a construct that

describes our perception of an environment. Social ambiance, in this context, is our

perception of the social environment, characterized by social interactions happening

around us. Social ambiance is believed to influence mental health and well-being of

individuals [2, 3].

Despite its importance, the measurement of social ambiance has been a challenging

for two reasons. First, to my best knowledge, there are no self-report measures that

can capture social ambiance throughout the day, especially since social ambiance

is constantly changing and it is not practical to ask participants report often in a

day. Second, existing objective methods fail to capture transient social ambiance

patterns since they only provide coarse-scale and aggregate information e.g., ambient

volume [4], chatter and noise levels [5]. Therefore, an objective and fine-scale measure

to quantifying social ambiance is required.

In this thesis, I propose AmbianceCount, which measures social ambiance by es-

timating the number of concurrent speakers from unconstrained audio recordings.

Di↵erent from speaker diarization [6] that counts speakers after identification, Am-

bianceCount directly estimates the number of concurrent speakers without identifi-

cation. This also mimics the process of how humans perceive an overlapped speech.

Note that I use audio recordings as data source because they capture an audio en-

vironment continuously and participants are generally more comfortable with audio
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recording compared to videos/images recording. Besides, conversations, as important

signs for nearby social interactions, create a type of sound texture that represents the

social ambiance of a place.

The AmbianceCount consists of a front-end embedding extractor to di↵erentiate

speech mixtures, followed by a back-end scoring system that output the estimation

result and to improve generalization. The deep neural network (DNN) embedding

extractor is based on x-vectors [7] architecture, which retains the relevant sequential

information of input speech mixtures, and has great performance for similar tasks like

age estimation [8] and spoken language recognition [9]. To explore the best architec-

ture for the embedding extractor, several candidate neural networks are investigated

and compared. Besides, to mimic humans perception of speech mixtures, I define the

task to as a classification-regression that jointly optimize jointly minimizing cross-

entropy and Mean Square Percentage Error (MSPE) loss [10]. Evaluation results

show that AmbianceCount performs well in noisy and reverberant environments, and

is able to generalizes well to unseen data.

To demonstrate the utility of AmbianceCount in mental health, I apply Am-

bianceCount to data from a Sociability pilot, an IRB-approved dataset that captured

multi-modal social interactions from three cohorts: depression patients, psychosis pa-

tients and age-matched control subjects. Results show that social ambiance patterns

captured by our algorithm are significantly di↵erent across three groups, which is con-

sistent with clinical observations. The social ambiance patterns are also associated

with psychometric and personality scores.

The contributions of this thesis can be listed as follows:

1. I propose AmbianceCount, an objective method that measure social ambiance

from unconstrained audio recordings by estimating the number of concurrent
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speakers.

2. I evaluate the performance on di↵erent social scenarios and di↵erent synthe-

sized datasets. Results show that AmbianceCount is robust against noise and

reverberation, and is able to generalize well on unseen data.

3. I apply AmbianceCount to Sociability trial and observed that extracted social

ambiance patterns are significantly di↵erent across three groups. Besides, it is

observed that captured social ambiance patterns are associated with psychome-

tric and personality scores.
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Chapter 2

Related Work

2.1 Objective Ambiance Measurement

A majority of existing work extract acoustic or visual cues to infer ambiance. To

improve local search experience, [5] investigates the recognition of physical ambiance

categories (occupancy, human chatter, noise and music levels) using audio features

collected in-situ by users. To predict human perceptions of outdoor places, [11, 12, 13]

predict human perceptions of wealth, uniqueness and safety using geo-tagged images.

Despite the influence of ambiance on mental health and well-being, [2, 3], to the best of

our knowledge, there is no objective measure for social ambiance that is characterized

by social interactions happening nearby.

Intuitively, real-world audio recordings can be good data sources for social am-

biance study, since they capture nearby social interactions continuously and people are

generally more comfortable with recording audio compared to recording videos/images.

One possible avenue is to use speaker diarization [14], that can be used to reconstruct

the social ambiance from audio recordings by detecting nearby speakers. However,

current diarization systems work under an assumption that only one speaker is active

at a time. Existing methods thus fail when applied to real-world scenarios where

multiple overlapping events active at the same time.

The fact is, speaker overlaps, prevalent in most social scenarios, create a type

of sound texture that represent social ambiance. Instead of discarding all the in-
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formation in the overlaps, AmbianceCount aims to utilize the number of concurrent

speakers estimated from a speech mixture as proxy for social ambiance.

2.2 Concurrent Speaker Count Estimation

It is challenging to estimate the number of sources in a speech mixture. An intuitive

idea would be to use several microphones and to fully utilize the space informa-

tion [15]. However, this is not applicable for social ambiance measurement, where

long-term continuous data is collected from participants with unrestricted mobility.

Consequently, counting from the single-channel has been considered in many stud-

ies [16, 17, 18, 19]. In [18], single-channel overlapping speech is exploited to estimate

the indoor occupancy level. A novel entropy-based method is proposed for room oc-

cupancy in both small and large crowd configurations. The influence of room setting,

speaker position are also investigated.

E↵orts have been made to understand the underlying challenges to pave an oper-

ational strategy. In [16], the authors explore several neural network architectures to

find the best strategy for speaker count estimation. They generalize the problem by

fusing classification and regression and later prove that classification outperforms re-

gression for all network architectures. Furthermore, factors that influence the perfor-

mance are assessed, including reverberation, segment duration and volume di↵erences

between utterances. These preliminary results provided key insights into the making

of a robust count estimation system. Work in [19] addresses the underlying model

and establishes a working foundation for further analysis. The authors describe that

with an increasing number of speakers overlapped, the speech mixture is less time

varying in the long term, but more chaotic in the short term.

All the prior methods, however, define the task as a classification problem where
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the relations between di↵erent possible values are lost. The network outputs the es-

timates by picking the most likely class, without considering the deviations of wrong

estimates from ground truth. There are two observations in terms of how humans

estimates the number of concurrent speakers: (i) most errors we make fall into adja-

cent classes, and (ii) humans are in general more discriminative when there are fewer

sources in the mixture. Inspired by above observations, our proposed AmbianceCount

aims to mimic how humans process the information by penalizing the network based

on their percentage deviation from ground truth. Specifically, the ordering of di↵erent

classes are kept by defining the task as a classification-regression problem. Besides,

for the same absolute error, the algorithm is stricter when the ground truth number

of speakers is smaller.
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Chapter 3

Mixture Dataset Preparation

To develop an algorithm for the speaker count estimation and to ensure the training

convergence, the first step is to tag the training and evaluation datasets correctly

with the speaker count. Given that a realistic dataset of fully overlapped speakers is

not available, I synthesized a dataset with speech mixtures.

The main idea is to create speech mixtures from monologue speech, then tune it

with sound e↵ect libraries to simulate ambient sounds and reverberation. Thousands

of realistic variations can be created by adjusting speech audio properties such as

amplitude and rate, as well mixing sounds with di↵erent sound e↵ects libraries, e.g.,

MUSAN [20] and RIR-NOISE [21].

Following sections describe our process of preparing the mixture dataset.

3.1 Mixture Creation

Since our model should be speaker independent, monologue speech corpus with a

higher number of di↵erent speakers is preferred. Therefore, we utilize LibriSpeech

corpus, a speech data set based on LibriVox’s audio books. By combining three

LibriSpeech subsets, clean-360, clean-100 and other-500, I get 960 hours of speech

in utterances from 2338 speakers (1228 female speakers and 1210 male speakers),

sampled at 16 kHz. Utterances were segmented when the silence intervals were longer

than 0.3 seconds or coincided with sentence breaks in the reference text, so it is
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assumed that a speaker is continuously active within each monologue utterance.

Figure 3.1 : An example of creating K -speakers mixtures.

Figure 3.1 describes, for example, how to create a K -speakers mixture from Lib-

riSpeech utterances.

3.1.1 Utterances to recordings

For each speaker, a 15-30 min recording is generated by concatenating LibriSpeech

utterances of that speaker. By doing so, I will later be able to select a random

excerpt from each speaker and investigate the influence of duration T regardless of

the various lengths of the original utterances. To this end, silence is removed at the

beginning and the end of the utterances, concatenate them into a recording of that

specific speaker.
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3.1.2 Selecting segments

Next, an audio segment is randomly selected from each recording. It is necessary

for developing a content-independent algorithm since in most speech corpus, people

are required to read the same material. By randomly selecting segments from the

concatenated recording, it is more likely that everyone in the mixture is reading

di↵erent content.

3.1.3 Adjusting segment

The mean amplitude of selected segments is normalized, which is analogue to an

ideal scenario where speakers are equally distanced from a single microphone and are

talking in the same volume. Next, segments are randomly adjusted in volume and

speed to simulate how people speak in real-world scenarios. Consider the influence

of microphone locations as well as people speaking in di↵erent volumes and speeds, I

randomly apply to the mixture a volume factor between -3 dB to +3 dB and a speed

factor ranging from -0.9 dB to +0.8 dB.

Amplitude
Louder

Amplitude
Quieter

 Speed perturbation
Faster

 Speed perturbation
Slower

Figure 3.2 : Audio Properties adjustment

3.1.4 Clean speech mixture

Finally, adjusted segments from K speakers are trimmed to T seconds and overlapped

with each other to generate a speech mixture, labelled with speaker count of two. At
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this point, we have what we call a clean speech mixture, in which at any given time,

K speakers are simultaneously active, without noise and reverberation.

The same mixing approach is also applied for TIMIT [22] and THCHS [23] speech

corpus respectively, which are later used for classifier training and testing. I stan-

dardize all sounds into a single format, as monologue speech and sound e↵ects come

in di↵erent file formats (e.g., WAVs, FLACs) and I use 16 kHz as our sample rate.

3.2 Creating scenarios

To cover di↵erent acoustic scenarios, I add three categories of sound e↵ects: back-

ground noises, foreground noises and reverberation.

In any sound, some elements seem more prominent while others will seem to

recede. In real-world recordings, non-speech sounds can be either background sound,

foreground sound or a combination of both [24]. Usually, background noises either

sound weaker or are continuous enough to make up the background texture of a

soundscape. So in our process, background noises are added to the entire recording,

and repeated as necessary to cover the full length. Multiple overlapping background

noises are sometimes added. On the contrary, foreground noises, standing out against

the background, are added sequentially, according to a specified interval, and do not

overlap. To build a diverse background or foreground noise, I combine MUSAN-

NOISE and MUSAN-MUSIC [20], and get a sound e↵ect dataset that covers sound of

things (e.g., dialtones, fax machine noises), natural sounds (e.g., thunder, wind), and

music without vocal(e.g., Western art music and popular genres ). Finally, the speech

mixtures are reverberated via convolution with simulated room impulse responses

(RIRs) described in [21], which is to simulate how the mixtures sound like in di↵erent

room settings. As is summarized in Table 3.1, thousands of realistic scenarios are
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simulated by combining all the sound e↵ects above.

Table 3.1 : Sound e↵ects for creating scenarios

Sound e↵ects Parameters Sound E↵ect Library

Background noise SNR:0-18 dB MUSAN-NOISE, MUSAN-MUSIC

Foreground noise SNR:0-18 dB MUSAN-NOISE, MUSAN-MUSIC

Reverberation Small/Median/Large room Simulated room impulse responses (RIRs)
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Chapter 4

Speaker Count Estimation

In this chapter, I present AmbianceCount, an objective method to measure social

ambiance by estimating the number of concurrent speakers.

Consider a scenario in which K people are co-located and are talking in pairs or in

sub-groups. AmbianceCount is designed to estimate the number of concurrent speak-

ers for each segment as belonging to one of 11 classes {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, other}.

Given that our system is designed to be text-independent and there is no prior

information about speakers, the performance highly depends on the ability of the

neural networks to capture speech mixture characteristics.

While existing work [16, 17] developed end-to-end neural networks, I split the

end-to-end approach into two parts: a DNN to produce embeddings and a separately

trained classifier to compare them, which facilitates the use of backend methods to

improve generalization. Di↵erent from the task-oriented style of end-to-end method,

our method can work well in out-of-domain data, and has outperformed end-to-end

methods in tasks like speaker verification [25].

As shown in Figure 4.1, the system consists of a front-end utterance embedding

extractor and a back-end classifier. s(t) denotes the input speech mixtures of du-

ration T. In the following sections, I will explain the basic steps of the algorithm:

Acoustic feature extraction (Section 4.1), utterance-level embedding extraction (Sec-

tion 4.2), back-end scoring and domain adaptation (Section 4.3).
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Acoustic Feature 
Extraction

Voice Activity 
Detection

Utterance Embedding
Extraction

Linear Discriminant 
Analysis

Length 
Norm Classifiers

s(t)

Front-End: Utterance Embedding Extractor

Back-End

Output

Figure 4.1 : The overview of AmbianceCount

4.1 Acoustic Features Extraction

Acoustic features, as input representations to neural networks, is a critical step to

capture the characteristics of overlapped speech. Such representations can reduce

redundancy of signals and capture significant sound characteristics, like phase infor-

mation or periodicity.

Two types of features are explored and combined for experiments: Time-frequency

features and low level pitch features.

4.1.1 Time-Frequency Representation

Time-frequency features are commonly used to represent speech signals due to their

periodicity. The most commonly used time-frequency acoustic features in speech pro-

cessing are Short-Time Fourier Transform (STFT), Filter Banks and Mel Frequency

Cepstral Coe�cients (MFCC). Computing these three involve the same pre-processing

and framing procedures.

• STFT Speech signals change over time, but it is safe to assume that they

are quasi-stationary within a short period of time. As a result, signals are

split into 25 ms frames and a STFT is conducted over the short-time frame
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using Hamming windows. After that, the power spectrum of the transform is

computed, which is squared magnitude of the STFT of the signal

• Filter Banks Filter Banks are generated by applying 40 triangular filters to

STFT on a Mel-scale to extract frequency bands. The Mel-scale aims to mimic

the non-linear human perception of sound, by being more discriminative at

lower frequencies and less discriminative at higher frequencies.

• MFCC MFCC is a compressed representation of Filter Banks by applying Dis-

crete Cosine Transform (DCT) to Filter Banks and keeping only 23 cepstral

coe�cients. The reason for compression is to decorrelate the filter bank coe�-

cients since some algorithms are not susceptible to highly correlated input.

Note that both Filter Banks and MFCC involve computing STFT. The extra step

for Filter Banks is to mimic human perception of sound, and the extra steps for

MFCC are motivated by the susceptibility of some machine learning algorithms to

highly correlated input. It is worth exploring all above time-frequency representations

to get more domain information about overlapped speech and to see how di↵erent

neural networks react to correlated input.

4.1.2 Pitch

Pitch, also referred as fundamental frequency, is another good measure of speech

periodicity. It is defined as the lowest frequency of a periodic waveform, and the ear

identifies it as the specific pitch of the sound.

Figure 4.2(a), 4.2(b) and 4.2(c) show the spectrogram and pitch of di↵erent speech

mixtures. It is observed that pitches become more discontinuous with an increasing

number of speakers talking simultaneously. It seems that pitch is able to capture some
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(a) One speaker (b) Five speakers

(c) Nine speakers

Figure 4.2 : Spectrogram and Pitch of di↵erent speech mixtures

short-term characteristics from speech mixtures. Above observation is consistent with

[19] where they describe that with an increasing number of speakers overlapped, the

speech mixture is less time varying in the long term, but more chaotic in the short

term.
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4.2 Utterance Embedding Extraction

The Utterance Embedding Extraction can be considered as a neural network based

front-end that maps sequences of acoustic features into utterance embedding vectors.

As is shown in Figure 4.3, the framework architecture consists of three blocks. The

first block is to extract frame-level features using neural networks, e.g. Time-Delay

Neural Network (TDNN), Convolutional Neural Network (CNN) or Recurrent Neural

Network (RNN). The second block is a pooling layer that converts frame-level features

to utterance vectors. The third block is to extract utterance-level embeddings before

output layers. Di↵erent from basic x-vector extractor, an attention mechanism [26] is

added to give di↵erent frame-level weights in order to capture long-term variations of

speech mixture. To generate additional training data, SpecAugment [27] is utilized

which applies directly to the acoustic frame vectors. Moreover, I propose a combined

classification-regression objective function that help the computer estimate speaker

count in a human’s perspective, which will be covered in the following section.

4.2.1 Frame-level Feature Extractor

Usually data augmentation plays an important role in developing a robust algorithm

by add noise to raw audio and enlarge the training data. Given that real-life scenarios

are noisy and unpredictable, I need to explore other methods of generating additional

noisy samples. SpecAugment [27] is gaining increasing attention recently because it

is cheap to apply and does not require any additional data. Di↵erent from traditional

data augmentation methods that apply on raw audio, SpecAugment operates directly

on the spectrogram features of the input audio, as if it were an image. Specifically, it

consists of three types of deformations of the spectrogram: time warping, frequency

masking and time masking.
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Audio Segments
(T seconds) 

…

…

…

Attentive 
Statistics Pooling

Hidden Layers

SoftMax Layer
MSPE Layer

# of active speakers

Encoder Networks
SpecAug

Acoustic Features

 Frame-level 
Features

Utterance-level 
Embeddings

Encoder Networks
SpecAug

…
Encoder Networks

SpecAug Frame-Level 
Extractor

Utterance-Level 
Extractor

Figure 4.3 : Architecture of extracting utterance-level embeddings

Augmented acoustic features are then fed into an deep encoder network to extract

frame-level embeddings. The DNN is leveraged to find a representation that can best

discriminate di↵erent speech mixtures. I am going to explore five di↵erent network

architectures: TDNN, Extended TDNN (E-TDNN), Factorized-TDNN (F-TDNN)

and ResNet, which achieve great performance either in speaker count task or some

other related field like speaker diariazation [6], speaker recognition [28, 29], age esti-

mation [8] and spoken language recognition [9]. All architectures under investigation

are summarized in Figure 4.4. Note that in this section I give basic topology of DNN

architectures. Dimensions, normalization and dropout information will be finalized

in the experiment section.

• TDNN : Time Delay Neural Networks (TDNNs) [7], also known as one dimen-

sional Convolutional Neural Networks (1-d CNNs), are an e�cient and well-

performing neural network architecture for speech recognition. It is composed
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Figure 4.4 : Architectures of Encoder Networks

of three Time Delay layers, followed by two Fully Connected layers.

• E-TDNN : The Extended TDNN architecture (E-TDNN) is an extention of

TDNN, with slightly wider temporal context and interleaves dense layers in

between the Time Delay layers. Embeddings extracted from such architecture

are very e↵ective in both speaker recognition and speaker diarization [29].

• F-TDNN : F-TDNN [30] is a factored form of TDNN, with the same structure

of Time Delay layers followed by Fully Connected layers. The di↵erence is

that the Time Delay layers in F-TDNN are compressed using Singular Value

Decomposition (SVD) to reduce the number of parameters. The architecture

gives substantial improvements over TDNNs in the area of speech recognition.
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• ResNet : The ResNet Encoder Network is a variant of the x-vector system where

the Time Delay layers are replaced by a residual network with 2D convolutions

[?].

4.2.2 Utterance-Level Embedding Extractor

Frame-level features extracted from neural networks are concatenated and processed

to form an utterance-level feature. Instead of averaging all frames equally, the atten-

tive statistics pooling proposed by [26] is utilized to enable embeddings to focus on

important frames and to obtain utterance-level representations with higher discrim-

inative power. This is accomplished by giving di↵erent weights to di↵erent frames

and generates not only weighted means but also weighted standard deviations.

Predicting discrete values is typically considered as classification problems with

cross-entropy objective. However, the major drawback is that every class is penalized

equally during classification and the relations between di↵erent estimates are lost.

Since this is also a cardinality estimation task, regression based objective functions

are also considered. For a similar task of age estimation [8], a combined classification-

regression objective function is utilized by minimizing cross-entropy and mean squared

error (MSE). By introducing MSE, the relations between di↵erent categories are kept

and the penalization is conducted based on the deviation from ground truth. While

the method works well for age estimation, it is not in line with our task based on

the observation that humans are more discriminative when a speech overlaps on an

“smaller” speech mixture. Adding a speaker to a big crowd, on the other hand, makes

little di↵erence since the background is already blurred.

Above example indicates that relative error is what matters in estimating how hu-

man perceive a speech mixture. To this end, I use a classification-regression objective
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that jointly minimizes cross-entropy and Mean Square Percentage Error (MSPE) loss

[10], where MSPE is to capture the relative deviation from ground truth.

LCross Entropy = � 1

n

nX

i=1

ti · log(yi) (4.1)

LMSPE =
1

n

nX

i=1

✓
|zi � ti|
|ti|

◆2

(4.2)

Loss = ↵ · LCross Entropy + � · LMSPE +
�

2
kWk2

2
(4.3)

where ↵, � 2 [0, 1] represent weights of classification and regression objectives, ti is

the ground truth, yi and zi the output of classification layer and regression layer

respectively, W denotes all trainable network parameters, and � is the weight decay,

which is applied to avoid over-fitting.

4.3 Back-end scoring and domain adaptation

To develop a system that works in unconstrained scenarios, the requirement is that

unseen samples should be recognized without having to redesign the system. As men-

tioned in above sections, the embedding extractor is trained on a synthesized dataset,

there must be a significant mismatch between the development dataset and applica-

tion dataset in terms of speaker characteristics and channel conditions. Therefore,

in this section, a back-end system is introduced to output the estimation result and

generalize the algorithm.

As shown in Figure 4.5, the back-end system consists of three blocks, Correla-

tion Alignment (CORAL) [31], Linear Discriminant Analysis (LDA) and Interpolated

Probabilistic LDA. For scoring, a similarity score between embedding pairs is com-
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Figure 4.5 : Overview of the backend system

puted to determine whether an embedding belongs to class i or not. The key is

to find a subspace to maximize inter-class di↵erences and minimize the intra-class

di↵erences, which is accomplished by Linear Discriminant Analysis (LDA) and In-

terpolated Probabilistic LDA. For domain adaptation, a recently introduced domain

adaptation algorithm called CORAL [31] is leveraged to align the distributions of

out-of-domain and in-domain features in an unsupervised way.

4.4 Evaluation Metrics

Mean Percentage Error (MPE) is utilized to evaluate the performance to capture

the relative deviation from ground truth, which is in line with the loss function I

leveraged in the embedding extractor. Di↵erent from commonly used metrics like

Mean Absolute Errors or Equal Error Rate, MPE is a better choice for our problem

given two reasons below: Firstly, it is able to reflect the relative error, which keeps

the relations between di↵erent class. Secondly, MPE in some way mimics humans

perception system that are more capable of di↵erentiate smaller mixtures. MPE for

class k is calculated as:

MPE(k) =
1

nk

nkX

i=1

��t̂i � ti
��

|ti|
(4.4)
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where nk is the number of testing samples for class k, t̂i and ti are the prediction

and the ground truth respectively.

Therefore the averaged MPE is:

MPE =
1

N

NX

k=0

MPE(k) (4.5)
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Chapter 5

Performance Evaluation

In this section, the performance of AmbianceCount is assessed. First, the best model

is selected with the combination of features and network architectures. Next, several

experiments are conducted on the selected model to obtain results on LibriSpeech-

test-clean, under di↵erent scenarios and on additional datasets.

5.1 Procedures and Experimental Settings

Pydub [32] is leveraged to synthesize the dataset and to pre-process the audio. The

same data mixture strategy is applied to LibriSpeech [33], TIMIT [22], Voxceleb [34]

and THCHS [23] for model development and validation. For model development, I

combined three LibriSpeech subsets, clean-360, clean-100 and other-500, and get 960

hours of speech in utterances from 2338 speakers (1228 female speakers and 1210

male speakers). So under di↵erent scenario settings I have a training dataset of

k 2 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, others} forming a total of 462,000 mixtures, with the

duration of T = 5 seconds. In addition to the training dataset, I generated several

fully separated validation dataset of 79,098 samples using a di↵erent set of speakers

from LibriSpeech dataset. Similarly, I synthesize 22,000 mixture samples using TIMIT

dataset, 16,000 samples using Voxceleb speakers and 10,800 mitures from THCHS for

back-end training and evaluation.

I standardize all data into WAVs format and choose 16 kHz as our sample rate.
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Voice Activity Detection is then applied using [35] and Kaldi toolkit [36]. Our models

are developed based on asv-subtools [37] and Backends-for-SRE19 [38], which lever-

age Kaldi for acoustic feature extraction and back-end scoring, PyTorch for building

neural networks and model training. The model is trained using the AdamW [39]

(learning rate=0.0001, �1 = 0.9, �2 = 0.99) with WarmRestarts [40], using a batch-

size of 128. The training takes 20 epochs with the help of several NVIDIA 2080 Ti

GPUs to accelerate the process.

5.2 Model Comparison

In this chapter, I intend to finalize the model by exploring di↵erent network architec-

tures as well as acoustic features introduced in Chapter 4. The decision is determined

based on performances of di↵erent configurations on a subset of the LibriSpeech test-

ing data. As there are many combinations for selecting di↵erent features and embed-

ding extractor, only top 3 models are listed as well as a baseline algorithm proposed

in [16].

Table 5.1 : Model Comparison

Models Acoustic Features Pooling Layer Evaluation Metrics (MPE)

ResNet34 FBANK+Pitch Attentive Statistics 5.2%

F-TDNN MFCC+Pitch Attentive Statistics 8.9%

ResNet34 FBANK+Pitch Statistics 9.6%

Baseline [16] STFT NA 10.7%

As listed in Table 5.1, pitch information and attentive pooling layer prove to

boost the performance. As pitch information is able to catch the chaotic level in
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the mixture, which is a very important clue to di↵erentiate classes, and the attentive

pooling layer can help capture long-term information of the mixture. From the top

3 models I can see FBANK seems to go well with ResNet while MFCC works better

with F-TDNN. One possible reason is, ResNet is less susceptible to highly correlated

input and is able to capture the information from FBANK without the compression

process of MFCC. Remember the extra step it takes from FBANK to MFCC is to

decorrelate the coe�cients between FBANK.

Additionally, all the top3 models outperform our baseline algorithm [16] when

applied to our testing data that mimics an unconstrained environment with di↵erent

levels of reverberation and noise. Note that the baseline system is developed to

distinguish from 0 to 10 speakers, I evaluate its performance within their defined

classes. Though the goal of our baseline system is not entirely the same with our

task, it is close to our novel task and also the state-of-the-art algorithm in estimating

between up to 10 speakers.

5.3 Evaluation Results

In this section, the selected model is first evaluated on LibriSpeech-test under di↵er-

ent settings. Then extensive experiments are conducted on two additional datasets,

TIMIT and THCHS-30, which consist of new sets of speakers and di↵erent speech

content.

5.3.1 Results on LibriSpeech-test-clean

The confusion matrices for the selected model is illustrated in Figure 5.1. It is ob-

served that the model is able to give accurate count estimation when speaker count is

smaller than 5. The accuracy drops to 56%-69% for speaker count from 6 to 10, and
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increases to 98% when larger than 10. One possible reason is that, the classification

part of the objective function tend to contribute to the result in a ”one or many”

way [17]. Moreover, it is shown that most of the errors locate in the adjacent classes

of ground truth, which indicates that the regression part of the objective function

enables the model to keep the relations between di↵erent classes during prediction.

Overall, the model is more accurate for smaller speaker counts due to the percentage

error penalty introduced. By penalizing more strictly on smaller speaker counts, the

algorithm is able to mimic humans perception that is more discriminative when there

are fewer sources in a mixture.

Figure 5.1 : Confusion matrices on LibriSpeech-test-clean

5.3.2 Results under di↵erent scenarios

Next, the model is evaluated on speech mixture combined with sound e↵ects like noise

and reverberation.
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Previous works [41] [42] have reported noise and reverberation levels for specific

scenarios, which provides an idea for us to simulate real-world scenarios. In this sec-

tion, I evaluate the performance of our selected model under 10 categories(see Figure

5.2), from clean to noisy as 0 dB, and from no reverberation to high reverberation.

Note that signal means the overlapped speech I intend to estimate, and category

0 represents the ideal situation where no noise and reverberation are added to the

overlapped speech.

Figure 5.2 : Categories and real-world scenario examples

The detailed breakdown of the error counts for each category is illustrated in

Figure 5.3. Results are averaged over five repeated experiments. AmbianceCount

outperforms the baseline by a large margin, which illustrates that by introducing

attentive pooling layer and an e↵ective back-end, our model is able to capture the

important information from the mixture and is robust in noisy environments. The
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e↵ect of noise and reverberation is also shown in Figure 5.3. MPE drops when SNR is

smaller and when reverberation is higher, which means the algorithm is more accurate

in scenarios like meeting rooms, o�ces compared with kitchens and bars. I also notice

that reverberation seems to have a stronger influence on the performance than noise

does. One possible reason is that reverberation creates a time-delayed speech signal

so the system tends to overestimate the number of speakers in the mixture, as the

number of over-estimated samples increases 22% from low to high reverberation.

Figure 5.3 : Mean Percentage Error for overlapped speech synthesized from Lib-

riSpeech under di↵erent scenario categories (averaged over five repeated experiments)

5.3.3 Results on additional datasets

To explore whether our speaker count algorithm is able to generalize from training

data to unseen data, I test on speech mixtures created from TIMIT corpus and a

Mandarin language THCHS-30 dataset. The results under di↵erent scenario cate-

gories are shown in Figure 5.4(a) and Figure 5.4(b). Mean percentage error increases

slightly on TIMIT and THCHS-30, but overall, the algorithm is able to generalize

well on datasets with di↵erent speakers, speech content and even in language. The

result is consistent with [16] which suggests that the trained model is speaker and
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language independent.

(a)

(b)

Figure 5.4 : (a) Mean Percentage Error for overlapped speech synthesized from TIMIT

under di↵erent scenario categories (averaged over five repeated experiments). (b)

Mean Percentage Error for overlapped speech synthesized from THCHS-30 under

di↵erent scenario categories (averaged over five repeated experiments).
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Chapter 6

Mental Health and Social Ambiance

To demonstrate the utility of our speaker count estimation in mental health, we apply

AmbianceCount to explore the relation between social ambiance and mental status

as well as personality traits. Three social ambiance levels are extracted from audio

recordings, as shown in Figure 6.1:

Figure 6.1 : An example of tagging social ambiance levels on day long audio recordings

While level 1 represents the participant is either involved in or around a conver-

sation or monologue without interference, level 2 shows the participant is around a

medium size crowd and level 3 captures those when one is around a bigger crowd of

people.

Moreover, social ambiance patterns can be observed by calculating the distribution

and variance of these levels throughout a day.

6.1 Dataset

I apply AmbianceCount to a sociability pilot, which captures multi-modal social in-

teractions from depression and psychosis patients as well as age-matched healthy
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controls. As shown in Figure 6.2, three types of data were collected using Health-

Sense [43]: (i) day-long audio recordings under unconstrained environments collected

from wristband audio recorders, (ii) GPS locations and remote social interactions, i.e.,

phone calls and text message via continuous phone logging, and (iii) participants’ re-

sponses to daily EMA questions, e.g.mood and sociability level, through HealthSense

[43]. Besides, psychometric scores and personality measures were collected before the

trial using Patient Health Questionnaire (PHQ-9) [44], General Anxiety Disorder-7

(GAD-7) [45], and Mini-IPIP Personality [46].

With multi-modal data collected from a clinical population, I am able to explore

group level di↵erences in terms of social ambiance patterns, as well as its association

with psychometric scores and diverse personalities. In the following sections, I am

going to introduce (i) the pipeline of extracting social ambiance patterns from un-

constrained audio recordings, (ii) group-level di↵erences in terms of social ambiance

patterns and its correlation with clinical observations, (iii) association between social

ambiance patterns and psychometric scores as well as personality traits.

PHQ-9, Gad-7, Big-Five

Day-long 
audio 

recordings

Day-long 
audio 

recordings

Daily EMA questions:
What was your overall mood today?

How social were you today?
How many people did you interact with?

Continuous phone loggings:
call logs, SMS logs, GPS

Day 0 Day 1 Day 2

…
Day-long 

audio 
recordings

Day 7

Control
13 subjects

Depression
11 subjects

Psychosis
11 subjects

Psychometric & 
personality measures

Daily EMA questions:

Continuous phone loggings

Figure 6.2 : Data and timeline of Sociability trial
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6.2 Extract social ambiance patterns from audio

Social ambiance patterns are captured from unconstrained day-long audio with three

steps. First, speech clips are extracted from unconstrained audio recordings using

voice activity detection [35]. Next, the number of concurrent speakers in each clip

is estimated using AmbianceCount. Finally, with the number of speakers mapped to

three levels defined above, social ambiance pattern is estimated by calculating the

distribution and variance of the levels.

While phone calls conversations were also recorded by the wristbands, the duration

of phone calls makes only 15.8% of the recording for the control group, 10.2% for

depression group and 16.4% for psychosis group. It should be safe to assume that what

I captured from the recordings represents the perceived social ambiance patterns.

6.3 Correlation between group-level social ambiance patterns

and clinical observations

Apart from above three social ambiance levels, consider no speech detected as social

ambiance level 0. Entropy of social ambiance per day can be utilized as a proxy for

environment variance. the Figure 6.3 shows the results for participants from three

groups. It is observed that most psychosis patients have very small variance compared

to other two groups, which is consistent with clinical observation.

Next, I compare across groups and analyze the di↵erence in terms of the frequency

of social ambiance levels.

By conducting one-way ANOVA test for the percentage of speech detected, I

observe that there is a significant di↵erence between three groups (p <0.1). It is

shown in Figure 6.4(a) that the depression and psychosis patients have significantly
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(a)

(b)

(c)

Figure 6.3 : Variation of social ambiance levels per day from (a) control group, (b)

depression group, and (c) psychosis group.

reduced percentage of speech compared to the control subjects, which is consistent

with clinical observations.

(a) (b) (c)

Figure 6.4 : One-way ANOVA test for (a) the percentage of speech detected, (b) the

percentage of Level 1 , and (c) the percentage of Level 3

Also, the percentage of level 1 is compared across three groups. Note that level 1

represents there is only one active speaker detected, which means in these clips the

participant is either in or around the conversation/monologue without interference.

Results are shown in Figure 6.4(b). There are two observations that are consistent
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with clinical observations. Firstly, depression patients tend to have a wide span

over the percentage of Level 1. Compared to control subjects, individual di↵erences

play an important role in depression group. Secondly, participants from psychosis

group have a small range in terms of Level 1 compared to other two groups. One-

way ANOVA tests are conducted for three groups and results show that there is a

significant di↵erence between control group and psychosis group (p <0.1).

Another factor that di↵erentiate three groups is the percentage of Level 3. Since

Level 3 represents that there are more than five concurrent speakers detected in

the audio, it represents how often our subjects were exposed to big and socially

active crowds. The result of one-way ANOVA test shows that there is a significant

di↵erence between three groups (p <0.05). It is observed that the depression and

psychosis patients have significantly reduced percentage of Level 3 compared to the

control subjects, and psychosis group has the smallest chance to be exposed in bigger

crowds.

6.4 Correlation between social ambiance patterns and per-

sonality scores

In section 6.3, it is observed that social ambiance patterns are significantly di↵erent

across three groups, which is consistent with clinical observations. Meanwhile, in-

dividual di↵erences are noticed within each group, which might reflect their mental

status and diverse personalities.

IPHQ-9 [44], GAD-7 [45] are used as our psychometric and personality ground

truth, which objectifies and assesses degree of depression and anxiety severity via

questionnaire respectively.
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Figure 6.5 shows the distribution of the PHQ-9 and GAD-7 scores across three

groups. I conduct ANOVA tests and find that there are significant di↵erences between

three groups in terms of PHQ-9 (p <0.01) as well as GAD-7 (p <0.01).

(a) (b)

Figure 6.5 : Distribution of psychometric scores across control, depression and psy-

chosis group: (a) PHQ-9 (p= 2.13e-5), (b) GAD-7 (p=2.98e-5)

Mini-IPIP Personality is utilized to measure [46] as our personality ground truth,

which has five personality traits: extraversion, agreeableness, conscientiousness, neu-

roticism and intellect or imagination. Figure 6.6 shows the distributions of the five

personality traits of participants from three groups. The distribution illustrates that

there are significant di↵erences across three groups in terms of Agreeableness, Con-

scientiousness and Neuroticism.

To investigate the association with ambiance patterns and above factors, for each

group, I conduct multiple linear regression analyses of social ambiance patterns with

psychometric scores and personality measures. The value of the coe�cient indicates

the direction and the strength of the association and the p-value indicates the prob-

ability that the coe�cient is statistically significant.
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(a) (b) (c)

(d) (e)

Figure 6.6 : Distribution of personality traits across control, depression and psychosis

group: (a) Extraversion (p=0.152), (b) Agreeableness (p= 0.032) (c) Conscientious-

ness (p= 7e-4) (d) Neuroticism (p= 8e-4) and (e) Intellect or Imagination (p= 0.578)

The results in 6.4 indicate that participants who are more depressed are less likely

to be around larger crowds, reflected by the negative coe�cient between ’Percent-

age of level 3’ and ’PHQ-9’ (p <0.1). Compared to personality traits, the degree

of depression severity seems to be more associated with the manifestation of social

ambiance patterns, which suggests that sociability of depression patients is strongly

a↵ected by the severity of the depression symptoms.

Table 6.2 shows the multiple linear regression results for the psychosis group. It is

observed that there is a positive association (p <0.01) between percentage of speech

and Neuroticism, one of the personality traits. The results suggest that psychosis
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Table 6.1 : Multiple linear regression analyses of social ambiance patterns with psy-

chometric scores and personality measures from Depression group.

PHQ-9 GAD-7
mini-IPIP

Extraversion Agreeableness Conscientiousness Neuroticism Imagination

Percentage of speech -0.51 0.10 -0.44 -0.33 0.23 -0.05 -0.11

Percentage of level 1 0.37 0.04 0.19 0.14 -0.02 -0.02 0.12

Percentage of level 3 -19.84* -5.42 3.46 0.60 -7.47 6.43 1.63

Figures are unstandardized regression coe�cients. * p <0.1, **p <0.05, and ***p <0.01.

Table 6.2 : Multiple linear regression analyses of social ambiance patterns with psy-

chometric scores and personality measures for Psychosis group

PHQ-9 GAD-7
mini-IPIP

Extraversion Agreeableness Conscientiousness Neuroticism Imagination

Percentage of speech 1.47 1.37 0.02 -0.05 -0.43 0.74*** -0.23

Percentage of level 1 0.17 0.79 0.73 0.31 0.04 0.17 -0.11

Percentage of level 3 -14.35 -1.55 -5.12 3.26 0.04 -0.85 -12.26

Figures are unstandardized regression coe�cients. * p <0.1, **p <0.05, and ***p <0.01.

patients who are more neurotic are more likely to be around people, where higher

percentage of speech can be detected.

For control group, I also conduct a multiple linear regression and find a positive

relation between social ambiance patterns and Agreeableness, one of the personality

traits. Results in Table 6.3 indicate that more agreeable participants are more likely

to be around bigger crowds (p <0.1).
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Table 6.3 : Multiple linear regression analyses of social ambiance patterns with psy-

chometric scores and personality measures for Control group.

PHQ-9 GAD-7
mini-IPIP

Extraversion Agreeableness Conscientiousness Neuroticism Imagination

Percentage of speech 0.21 0.10 -0.24 0.11 -0.21 -0.04 0.21

Percentage of level 1 0.06 -0.04 0.11 0.09 0.26 -0.04 0.68

Percentage of level 3 47.7 2.69 -6.84 10.92* 1.55 -8.18 3.99

Figures are unstandardized regression coe�cients. * p <0.1, **p <0.05, and ***p <0.01.

Table 6.4 : Multiple linear regression analyses of social ambiance patterns with psy-

chometric scores and personality measures from all participants.

PHQ-9 GAD-7
mini-IPIP

Extraversion Agreeableness Conscientiousness Neuroticism Imagination

Percentage of speech -0.29 -0.27 -0.32 -0.01 0.03 -0.01 0.01

Percentage of level 1 -0.027 0.01 0.17 0.15 0.06 -0.04 0.08

Percentage of level 3 -8.91 -1.33 -0.72 5.21** -1.64 0.68 1.63

Figures are unstandardized regression coe�cients. * p <0.1, **p <0.05, and ***p <0.01.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, I propose AmbianceCount to objective measure social ambiance by

estimating the number of concurrent speakers from unconstrained audio recordings.

The proposed AmbianceCount is robust against noise and reverberation, and is able

to generalize well on unseen data. To simulate human perception in terms of speech

mixtures, I devise a classification-regression objective function which keeps the order-

ing information and conducts penalty based on percentage deviation. Finally, I apply

the algorithm to Sociability pilot, which captures multi-modal social interactions from

a clinical population. The result shows that participants from three groups exhibits

significant di↵erences in social ambiance patterns. Additionally, the correlation be-

tween objectively captured social ambiance with personality measure is consistent

with clinical observations.

7.2 Discussion

7.2.1 Adapting AmbianceCount across devices

Given that a realistic dataset of fully overlapped speakers is not available, Ambiance-

Count now is developed and evaluated on speech mixtures synthesized from Lib-

riSpeech, TIMIT and THCHS-30, which are all read speech datasets based on audio

books. Next I will adapt the model across di↵erence devices in order to improve the
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robustness of AmbianceCount,

7.2.2 Jointly analyzing social ambiance patterns with smartphone data

Currently, I extract social ambiance patterns from unconstrained audio recordings and

explore their correlation with psychometric scores and personality measures. In the

Sociability pilot, smartphone loggings and phone usage patterns are also collected to

track remote social interactions and mobility patterns. Next step I will jointly analyze

extracted social ambiance patterns with smartphone data, e.g., GPS location, call

and text logs. smartphone. By combining both smartphone sensor data and audio

recordings, I will have a better understanding of social ambiance and its impact on

mental health.
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