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Abstract
Realized covariance estimation for large dimension problems is little explored and
poses challenges in terms of computational burden and estimation error. In a global
minimum volatility setting, we investigate the performance of covariance condition-
ing techniques applied to the realized covariance matrices of the 30 DJIA stocks.
We find that not only is matrix conditioning necessary to deliver the benefits of high
frequency data, but a single factor model, with a smoothed covariance estimate,
outperforms the fully estimated realized covariance in one-step ahead forecasts.
Furthermore, a mixed-frequency single-factor model - with factor coefficients esti-
mated using low-frequency data and variances estimated using high-frequency data
- performs better than the realized single-factor estimator. The mixed-frequency
model is not only parsimonious but it also avoids estimation of high-frequency
covariances, an attractive feature for less frequently traded assets. Volatility di-
mension curves reveal that it is difficult to distinguish among estimators at low
portfolio dimensions, but for well-conditioned estimators the performance gain rel-
ative to the benchmark 1

N portfolio increases with N .
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1 Introduction

Realized covariance estimation employs high-frequency asset price data to approximate

the integrated covariance of asset returns. The Theory of Quadratic Variation developed

in Andersen and Bollerslev (1998) implies that with more frequent observation of the price

process the actual (co)variance over a given period of time can be precisely measured. In

the decade following this research, the literature has focused on refinements that address

practical estimation issues, including market microstructure effects and nonsynchroneity

of price observations. Empirical analysis has been largely confined to variance estimation

and covariance estimation at small dimensions.

We investigate realized covariance estimation in a 30 asset universe and offer three

primary contributions. First, we examine the performance of a realized single factor esti-

mator for a high-dimensional covariance matrix. Second, we consider a mixed-frequency

single factor estimator with factor coefficients estimated using low-frequency data and

variance elements estimated using high-frequency data. We compare these estimators

to low- and high-frequency sample estimators and to alternative shrinkage estimators.

We find that forecasts based on the parsimonious realized single-factor estimators match

the best – and substantially outperform many – of the alternative forecasts. Finally,

we examine the importance of matrix dimensions in the covariance estimation problem.

We find that some realized covariance estimators exhibit signs of ill-conditioning at low

dimensions and that with a well-conditioned matrix the relative gain to forecast quality

increases with the number of dimensions.

In general, covariance estimation precision decreases as the dimensions of the matrix

increases relative to the number of observations used in estimation. One solution to

reducing estimation error for large matrices is to increase the number of observations.

For covariance estimation this requires either extending the estimation window or sam-

pling more intensely within a window. Neither approach is without cost. Extending the

window, the standard approach with low-frequency data, risks loss in precision as the
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estimator incorporates less informative historical observations. Increasing the sampling

intensity, made possible with high-frequency data, risks both increased bias and loss in

precision resulting from market microstructure effects. Covariance estimates, in particu-

lar, are sensitive to the Epps (1979) effect, the downward bias induced by nonsynchroneity

of observed prices. The bias increases with increased sampling intensity.

Even with the thousands of intraday transaction and quote observations available for

many traded assets, sampling strategies designed to account for market-microstructure

effects and nonsynchroneity effects in realized variance and covariance estimates can

quickly limit the effective sample size of even ultra-high frequency data. For example,

in the case of “classic” five-minute previous-tick realized covariance estimation only 78

observations are used each day. To decrease nonsynchroneity, researchers have considered

less frequent intraday sampling. With the 30-minute sampling frequency there are only

13 observations, making ill-conditioning a likely problem for realized covariance estimates

at even small dimensions.

Imposing additional structure on the sample covariance matrix to directly condition

the estimate can reduce sampling error. Several variants of shrinkage - shrinking the

most extreme estimates toward more central values - are used in the literature.1 Fan,

Fan, and Lv (2008) consider factor models as a conditioning approach and demonstrate

that this model provides a better conditioned alternative to the fully-estimated covari-

ance matrix of daily returns. We examine the performance of a single-factor estimator

for a large-dimensional covariance matrix in a high-frequency setting. Using volatility

timing strategies, we compare the realized single-factor covariance estimator based on

five-minute returns to alternative high- and low-frequency sample and shrinkage estima-

tors. Using forecasts generated with naive exponential smoothing, the computationally

efficient single-factor high-frequency estimator provides better forecast performance than

1See Fleming, Kirby, and Ostdiek (2003), de Pooter, Martens, and van Dijk (2008), and Liu (2009)
for examples in a high-frequency setting and Ledoit and Wolf (2003), Ledoit and Wolf (2004b), and
Jagannathan and Ma (2003) for recent examples in a low-frequency setting.
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both low-frequency estimators and alternative high-frequency shrinkage estimators, and

matches the performance of a fully-estimated, sub-sampled matrix.

In addition, motivated by the lower persistence of the high-frequency beta esti-

mates relative to the corresponding variance and covariance estimates, we estimate low-

frequency factor coefficients in a mixed-frequency single-factor model. This approach

reduces sampling error in the covariance elements while preserving the precision offered

by the high-frequency variance estimates. The hybrid model provides forecast perfor-

mance better than the realized single-factor model and comparable to the smoothed

single-factor and smoothed fully-estimated models. In addition to the decreased compu-

tational burden offered by the factor structure, the mixed-frequency estimator, relying on

high-frequency sampling for realized variance estimation only, avoids the more complex,

and more restrictive, sampling techniques suggested for realized covariance estimation.

This feature may be important for estimating covariances for assets with low liquidity

and estimating covariances over non-trading periods.

To directly investigate the importance of matrix dimensions in the covariance esti-

mation problem, we examine the performance of the alternative estimators for portfolios

ranging from two to 30 assets. Sparsely sampled realized covariance estimators exhibit

signs of ill-conditioning at small dimensions. Even the popular five-minute previous-tick

realized covariance estimator exhibits increasing estimation error at 30 assets. Further-

more, we find that with a well-conditioned matrix, the relative gain to forecast quality

increases with the number of dimensions. This effect is a function of the scope over which

the forecast information can be used: the greater the investment opportunity set, the

greater the benefit offered by high-quality forecasts.

The remainder of the paper is organized as follows. Section 2 provides the single

factor realized covariance estimators and traditional shrinkage estimators. In Section 3

we present the data and the empirical analysis. Section 4 offers concluding remarks and

suggestions for future research.
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2 Estimators

Many applied problems in finance require a covariance matrix estimator that is accu-

rate, well-conditioned and, in some cases, invertible. While the true covariance matrix

is guaranteed to have all of these characteristics, estimated matrices may not due to

measurement and sampling error. Stein (1956) proposed shrinkage estimators to reduce

the most extreme estimation error by shrinking the sample matrix eigenvalues towards a

more central value. The general linear shrinkage model can be written as

Σ̃t(αt) = αtGt + (1− αt)Σ̂t, αt ∈ [0, 1] (1)

where Σ̂t is the sample estimate of Σt, the covariance matrix of returns, and Gt is an

idealized covariance structure. To ensure positive definiteness, the target matrix Gt is

chosen to be positive definite and the shrinkage factor αt is chosen to optimize a criteria,

such as MSE, which imposes positive definiteness on the resulting estimator Σ̃t.

If the extreme elements in the covariance matrix are the result of sampling error,

shrinkage leads to more precise estimates. If, however, the true covariance element is

extreme, shrinkage introduces specification error. Even a miss-specified shrinkage model

can yield more accurate estimates when sampling error is large compared to specification

error. We consider three shrinkage-related covariance estimators: the single-factor model,

the rolling estimator, and the Ledoit-Wolf estimator.

2.1 Single Factor Models

A factor model can be thought of as an extreme form of shrinkage that puts all of the

weight on the target matrix and none on the sample estimate; i.e. αt = 1 ∀ t in (1).

Fan, Fan, and Lv (2008) show that when the number of factors is small relative to the

matrix dimension, the inverse of the factor model covariance matrix converges to the true

inverse covariance faster than the inverse of the sample covariance matrix, implying that
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the factor model yields a covariance matrix with less sampling error than the sample

estimate. Factor models simplify estimation of the covariance matrix by greatly reducing

the number of parameters estimated, a particularly attractive feature when estimating

large realized covariance matrices. Finally, single-factor covariance estimates are strictly

positive definite, guaranteeing invertible matrices.

In a low frequency setting, Chan, Karceski, and Lakonishok (1999) and Jagannathan

and Ma (2003) show that factor models can reduce the variance of optimal mean-variance

portfolios and, out-of-sample, can out-perform strategies employing full sample covari-

ance matrices. Jagannathan and Ma (2003) find that the single-factor model performs

well even when the number of observation is not much greater than the number of dimen-

sions. Bollerslev and Zhang (2003) employ high-frequency data in a multi-factor model

and find improved asset pricing predictions when compared with conventional monthly

rolling estimates.

We consider a realized single-factor model:

rati = βR
atrMti + εati , (2)

where rati is the ith-sampled intra-day return on day t for asset a, rMti is the corresponding

intra-day return of the market proxy asset (the factor), and βR
at is the realized market

beta of the asset. We assume that the residuals εati are uncorrelated with factor returns

and that εati ∼ N(0, σ2
at). The corresponding realized covariance matrix for p assets is

ΣSF
t = σ2

Mtβ
R
t βR′

t + DR
t , (3)

where βR
t is the p×1 vector of realized factor loadings, σ2

Mt is the realized factor variance

and DR
t is the diagonal matrix of residual realized sample variances. The elements of
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ΣSF
t (with daily time-subscripts suppressed) are estimated as

σ̂SF
ab

=


(sR

M)2β̂R
a β̂R

a + d̂R
aa if a=b

(sR
M)2β̂R

a β̂R
b if a 6= b,

(4)

where β̂R
at is the sample realized factor coefficient and the diagonal elements of D̂R

t are

estimated as d̂R
aat =

∑m
i=1(rati − β̂R

atrMti)
2.

Applying a single-factor model to high-frequency data is particularly appealing, since

this form of shrinkage avoids over-fitting sample realized covariance estimates that may

be noisy due to nonsynchroneity and other market microstructure effects. Estimating co-

dependence through the market model has the advantage of matching each asset with the

active index asset, potentially reducing the market microstructure noise in each factor-

implied covariance estimate relative to the noise in each sample realized covariance.

Motivated by further reducing forecast error in the covariance estimates, we consider

a mixed-frequency single-factor model with asset betas estimated using low-frequency

returns but with market variance and residual variances estimated using high-frequency

returns. This formulation is similar in spirit to the MIDAS (mixed data sampling regres-

sion models) developed in Ghysels, Santa-Clara, and Valkanov (2006). The elements of

the mixed-frequency single-factor covariance matrix are estimated as in (3) and (4) above

but with the vector of factor coefficients replaced by a low-frequency estimate, β̂LF
t , and

the residual variances estimated as d̂MF
aat =

∑m
i=1(rati − β̂LF

at rMti)
2. This hybrid estimator

combines the advantages of estimating market and residual risk with high-frequency data

while avoiding the complexity of optimal realized covariance estimation in the presence

of market microstructure noise.

This mixed-frequency single-factor estimator is a specialized case of the mixed-frequency

factor model contemporaneously developed in Bannouh, Martens, Oomen, and van Dijk

(2009). They present a multi-factor model relying on high-frequency observations to es-

timate the factor variances and low-frequency observations to estimate factor betas and
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the idiosyncratic component of asset variances for vast dimensional covariance matri-

ces.2 In this analysis, we estimate a modest-sized covariance matrix using a single-factor

variation of this approach that relies on low-frequency data to estimate the factor coeffi-

cients, retaining high-frequency estimation for the factor variance and the idiosyncratic

component of asset variances.

We also consider forecasting realized betas. Andersen, Bollerslev, Diebold, and Wu

(2006) assess the dynamics and predictability of realized betas and conclude that although

they display less persistence than realized variances or covariances, realized betas can be

modeled well as stationary I(0) processes. Similar to Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2008b), we consider the performance of a simple ARMA(1,1) forecast of

the realized betas and realized variances.

2.2 Rolling Estimators

Rolling realized covariance estimation, motivated by the conditional heteroskedasticity of

financial time series, attempts to balance the statistical power of a large sample against

loss of precision from including stale information.3 It is easy to see that

ΣRM
t = αΣRM

t−1 + (1− α)Σ̂t, α ∈ [0, 1] (5)

is a variant of shrinkage estimation where the current realized covariance estimate is

shrunk toward a function of past estimates. The target matrix possesses the desirable

properties of the true covariance matrix: positive definite and well-conditioned. Based

on the work of Foster and Nelson (1996) and Andreou and Ghysels (2002) we use an

exponentially weighted rolling scheme which provides MSE efficiency gains for realized

2In an extensive simulation exercise Bannouh et al. (2009) show that this estimator is more efficient
than the sample realized covariance estimator. The estimator also exhibits superior empirical perfor-
mance in applications in the S&P 500, S&P 400, and S&P 600 stock universes.

3See Fleming, Kirby, and Ostdiek (2003), Bandi, Russell, and Zhu (2008), de Pooter, Martens, and
van Dijk (2008), and Bandi and Russell (2006) for examples in the realized covariance literature.
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covariance estimators. We do not estimate an optimal α for our dataset but instead

set α = 0.94, which RiskMetrics (1996) found produces the best backtesting results for

volatility estimates using daily stock returns. This is the RiskMetrics EWMA volatility

model commonly used by practitioners for daily data.

2.3 Ledoit-Wolf Estimators

In a low-frequency setting, Ledoit and Wolf (2003, 2004b) introduce an estimator that

is an optimal linear combination of a target matrix and the sample covariance matrix

under squared error loss:

E[‖ΣLW
t − Σt‖2], (6)

where ΣLW
t (α) = αGt +(1−α)Σ̂t, α ∈ [0, 1], and Gt is the target matrix. This approach

is equivalent to finding the optimal linear shrinkage of the sample eigenvalues.

To implement (6) we use the equicorrelated matrix, suggested by Ledoit and Wolf

(2004a) and used by Voev (2008), as our target matrix. All the off-diagonal elements

of the equicorrelated matrix are set to the covariance that, in combination with the

estimated variances, results in all correlations equaling the average sample correlation. To

estimate α within the high-frequency data setting, we exploit the long memory property

of realized covariance (see Tables 1 and 2 below) and assume that the covariance process

is locally constant. Appendix A provides the details of our approach and the results of

parameter sensitivity analysis.

3 Empirical Analysis

We implement volatility timing strategies for a large dimension portfolio using daily

covariance estimates based on high-frequency returns. We consider realized and mixed-

frequency single-factor models in addition to traditional shrinkage estimators. We com-

pare the performance of these approaches to high-frequency and low-frequency sample
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estimators. We assess the performance of the estimators based on the volatility of the

dynamic minimum variance portfolios. We also examine the effect of portfolio dimensions

on the forecast quality of the estimators. For robustness, we conduct sub-period analysis

and Mincer and Zarnowitz (1969) forecast evaluations.

3.1 Data and Sample Realized Covariance Estimates

We estimate the time-varying covariance structure of the stocks in the Dow Jones Indus-

trial Average (DJIA) from January 1, 2003 to December 31, 2006. For rolling estimators,

we use returns proceeding January 1, 2003 to initialize the estimates. For the single

factor models, we use the SPDR S&P 500 exchange traded fund (ETF) (SPY). Filtered

price observations are sampled from TAQ quote records for the primary exchange for each

security. Returns are calculated as the log-price-difference of the midpoints of quotes.

See Appendix B for details.

The calendar-time realized covariance sample estimator for assets a and b, first pro-

posed by Andersen, Bollerslev, Diebold, and Labys (2001), is

ΣR
t (m) =

m∑
i=1

rati × rbti (7)

where m is the number of equally spaced intraday observations. m is chosen to maximize

observations while minimizing market microstructure effects due to bid-ask bounce and

price discreteness. For covariance estimation the Epps (1979) effect, a downward bias

in the magnitude of the covariance estimates that increases as the sampling frequency

increases, is of particular concern. The bias is the result of observed returns for one asset

being paired with returns for the other that are measured as zero due to asynchroneity.

As documented in Hansen and Lunde (2006b), the frequency of quote revisions for liquid

stocks in the post-decimalization period reduces market microstructure biases for both

realized variance and covariance estimates and reduces asynchroneity of observations
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across assets. We confine our analysis to a post-decimalization sample of liquid stocks

and, for our primary analysis, estimate (7) with five-minute returns (m = 78).4

Zhang, Mykland, and Ait-Sahalia (2005) advocate sub-sampling as a technique to

further reduce the influence of market microstructure effects and sampling error. Sub-

sampling requires sparsely sampling the observations into multiple overlapping grids,

estimating the realized covariance matrix for each sub-sample, then averaging the sub-

estimates to generate the final estimate. The sub-sampled estimator over K sub-grids

is

Σ̂
R(K)
t (m) =

K∑
k=1

Σ̂
R(k)
t (m), (8)

where Σ̂
R(k)
t (m) is the sample realized covariance for the kth grid. Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2008a) point out that in the realized kernel framework

Σ̂
R(K)
t (m) has the same asymptotic distribution as the Bartlett kernel. We implement

(8) with K = 5 to generate the realized covariance estimates for our primary analysis.5

Tables 1 and 2 provide summary variance and covariance statistics for our sam-

ple. The daily high-frequency estimates are calculated according to (8). The daily

low-frequency variance estimates are squared open-to-close returns and the covariance

estimates are the corresponding cross-products. For both estimators, the tables report

the average, standard deviation (both ×1000) and autocorrelation for 1, 15, and 30 lags

of the daily variance and covariance estimates.

4Barndorff-Nielsen et al. (2008b) propose refresh-time tick-matching to align observations across
assets and minimize the Epps effect. In this procedure, the most recent observation of each asset is used
each time the price of all N assets in the chosen set have been “refreshed” with at least one new quote.
2x2 refresh-time tick-matching allows for maximal alignment of observations for each pair of assets, using
a different set of price observations for a given asset for the N − 1 associated covariance elements. For a
set of liquid assets similar to the stocks considered in this study, Barndorff-Nielsen et al. (2008b) report
that the “classic” realized five-minute previous-tick covariance estimate behaves in a manner similar to
the 2x2 refresh-time realized kernel covariance estimator.

5Alternative methods for estimating realized covariance in the presence of market microstructure
effects and asychronous observations are numerous, but are beyond the scope of this paper. In particular,
the literature investigates sampling based on dynamically optimized rules (Bandi and Russell, 2006;
Bandi, Russell, and Zhu, 2008), cross-market tick-matching (Corsi, 2006; Hayashi and Yoshida, 2005),
and refresh-time sampling (Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2008b). See McAleer and
Medeiros (2008) for a comprehensive review.

10



The cross-sectional mean and median of the high-frequency and low-frequency vari-

ance estimates are similar but the realized volatility estimates are less volatile and display

greater autocorrelation than the estimates based on open-to-close returns. The 0.05 vari-

ance (x1000) for SPY corresponds to an 11% annualized open-to-close volatility and the

average annualized open-to-close volatility for the stocks is 20%. For comparison, the

corresponding close-to-close volatilities are 12% and 26% respectively.

For the covariance estimates, the table provides the average of the time-series statis-

tics for all covariance pairs for the indicated stock. As with the variance estimates, the

average realized covariance estimates have lower standard deviations and higher autocor-

relations than the low-frequency estimates. The SPY autocovariance structure exhibits

strong persistence, supporting consideration of a realized factor model for the covariance

forecasts.

3.2 Model Parameter Estimates

To implement the single-factor and shrinkage covariance estimators we fit the market

model to the data each day for the former and estimate the optimal shrinkage parameters

for the latter. We use the RiskMetrics industry standard decay rate of 0.94 for the EWMA

rolling estimator. For the Ledoit-Wolf estimator we estimate the shrinkage parameter

daily based on a lagged one-year rolling window and, for simplicity, use the mean of these

estimates, 0.4636.

In Table 3 we provide summary statistics for the coefficient estimates for the fac-

tor model applied to each stock using high-frequency and low-frequency returns. The

realized betas (βR
t ) are estimated from sub-sampled realized variance and realized co-

variance estimates. The low-frequency betas (βLF
t ) are estimated using the variance and

covariances calculated for a rolling 250-day window of open-to-close returns. The cross-

sectional average of the realized betas is 0.84, ranging from a time-series average of 0.61

for JNJ to 1.35 for INTC. The corresponding average R2 is 0.23 with values ranging from
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0.08 for HP to 0.35 for C. The average standard deviation of the betas is 0.27 and the

average autocorrelation is 0.33 at lag one, dropping to 0.19 at lag 15 and to 0.15 at lag

30. The realized betas, then, exhibit less serial correlation than do the realized variances

and covariance.6 Compared to the realized beta estimates, the average βLF
t is higher at

0.95 with less time-series variation, and the average R2 is 50% higher at 0.35, ranging

from a low of 0.14 for HP and MO to a high of 0.55 for JPM.7

3.3 Volatility Timing

3.3.1 GMV Portfolio Optimization Problem

We compare the covariance estimators in terms of the ex post volatility of the dynamic

global minimum variance portfolios (GMV) determined by optimizing portfolio weights

with respect to each covariance estimate. Chan, Karceski, and Lakonishok (1999) and

Jagannathan and Ma (2003) advocate focusing on this particular optimal allocation to

avoid estimating the vector of expected returns. Patton and Sheppard (2008) show that

the GMV portfolio constructed using the true covariance matrix has lower volatility

than the corresponding portfolio for any other forecast.8 The GMV portfolio solves the

following constrained optimization problem:

minwt w
′
tΣtwt

s.t. w
′
tι = 1

(9)

where Σ is the p× p covariance matrix and ι is the unit vector. The GMV weights are

wt,GMV =
Σ−1

t ι

ι′Σ−1
t ι

. (10)

6These statistics are consistent with those reported in Barndorff-Nielsen et al. (2008b).
7We do not report the autocorrelation estimates for βLF

t since the 250-day moving average approach
results in predictably high statistics.

8In terms of general mean-variance portfolio optimization, Engle and Colacito (2006) show that for
any assumed vector of constant expected returns the true covariance matrix results in a lower ex post
portfolio volatility than any other covariance forecast.
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At the end of day t we generate several covariance estimates using either day t intra-

day returns or historical open-to-close returns. We use these covariance estimates to

determine GMV portfolio weights. We then compare the covariance estimators on the

basis of the volatility of the resulting time series of portfolio open-to-close returns earned

by the portfolio on day t+1. By confining our analysis to open-to-close returns, we avoid

the additional model specification error introduced by overnight returns.9

3.3.2 Performance of the Estimators

In Table 4 we report the performance characteristics of dynamic GMV portfolios con-

structed based on the realized single factor covariance estimators, sample high-frequency

and low-frequency estimators, and traditional shrinkage estimators. We evaluate the

one-step ahead forecast performance of the estimators based on the volatility of the

open-to-close returns of the optimal portfolios. We report the out-of-sample portfolio

volatility and the 0.025 and 0.975 bootstrapped confidence intervals. The volatility of

the equally-weighted portfolio, reported in the first row of the table, serves as a bench-

mark reflecting a naive asset allocation strategy.10 We provide the in-sample results with

portfolio returns evaluated at time t as an indication of estimation precision. For both

sets of results we report the ratio of the dynamic portfolio volatility relative to the volatil-

ity of the equally-weighted portfolio and the maximum open-to-close loss experienced by

the strategy. We report portfolio weight characteristics including the median minimum

and maximum weights across the time series, the cross-sectional median of the standard

deviation of the time-series of weights in each stock, and the median number of short

portions.

9Hansen and Lunde (2005), Gallo (2001) and others address overnight returns by comparing a number
of additive and scaling models.

10DeMiguel, Garlappi, and Uppal (2009) study the naive “ 1
N ” diversification strategy in a low-

frequency setting. They find that parameter estimation error makes it difficult for dynamic asset allo-
cation strategies to generate higher Sharpe ratios than the 1

N portfolio over reasonable sample periods.
This equally-weighted portfolio is equivalent to an extreme form of shrinkage that, under the assumption
that expected returns are equal across the assets, places all of the weight on an identity matrix.
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Before considering the single factor and shrinkage approaches, we present in Panel A

the results for several sample covariance estimates using both high-frequency and low-

frequency returns. RC78, the estimate based on one sample of five-minute intra-day

returns, yields volatility that is nearly equivalent to the benchmark. The sub-sampled

realized covariance estimator, however, yields a volatility 120 basis points lower than

the benchmark. With somewhat less extreme weights, less variable weights, and fewer

short positions, the RC78s dynamic portfolio reflects a less noisy estimate than RC78.

Both sample realized estimators deliver good performance in-sample, with GMV portfolio

volatility at about 50% of the benchmark level. The contrast between the in-sample and

out-of-sample performance indicates that, consistent with the literature, smoothing the

daily estimates should be beneficial.

For comparison, we also consider rolling-window low-frequency estimators. OC78,

the low-frequency estimator that uses the same number of observations in the daily

estimation as RC78, outperforms the naive strategy and performs slightly better than

the high-frequency estimator. The portfolio characteristics for OC78 are quite simi-

lar to those for RC78, with the exception of somewhat smoother weights. OC78 does

not outperform RC78s, the sub-sampled high-frequency estimator. OC250, based on a

calendar-year of open-to-close returns, performs substantially worse than the other sam-

ple covariance estimators in sample, but provides the best forecast performance. Note

that the out-of-sample volatility for OC250 is only 12% greater than the corresponding

in-sample volatility, reflecting the extent of the smoothing in this estimator. The OC250

portfolio weights are 50% to 60% less variable than the weights associated with the other

sample estimators, again indicating that smoothing the high-frequency estimates should

be beneficial.

In Panel B we report the volatility timing results for several single factor models.

RCSF
78s, which applies the single-factor model to the sub-sampled high-frequency estimator,

shows some loss of precision in-sample, as expected, but out-of-sample the estimator
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performs better than RC78s, reducing volatility by 55 basis points relative to the sub-

sampled estimator. The portfolio weights associated with RCSF
78s are 30% less variable

than the RC78s weights but 35% more variable than the weights for OC250, the sample

estimate with the best forecast performance. This indicates that additional shrinkage, in

particular smoothing, may further improve forecast quality of RCSF
78s. We consider three

approaches to generating smoother single-factor forecasts.

First we apply the EWMA RiskMetrics estimator (α = 0.94) to the RCSF
78s estimates.

The resulting estimator, RCSF,RM
78s , yields a GMV volatility of 8.50%, over a 70 basis

point drop from the volatility delivered by RCSF
78s. While the extreme characteristics of

the portfolio weights are quite similar for the two estimators, the weights associated with

the smoothed single-factor model are about 40% less variable than those associated with

RCSF
78s. Next we consider a less naive forecast method, fitting an ARMA(1,1) model to the

time series of RCSF
78s to forecast the realized variances and realized betas. This forecast,

RCSF,ARMA
78s , yields portfolio volatility of 8.72%, 50 basis points lower than for RCSF

78s but

22 basis points higher than the simpler rolling estimate reflected in RCSF,RM
78s .

Our third approach is motivated by the time series characteristics of the realized

variance, covariance, and beta estimates provided in Tables 1 through 3. These sum-

mary statistics indicate that the realized beta estimates are much less persistent than

either the realized variances or covariances. Hence, we consider smoothing the single-

factor estimates by directly introducing low-frequency beta estimates in conjunction with

high-frequency variance estimates in a mixed-frequency single-factor model. Specifically,

RCMF
78s combines betas estimated daily using a 250-day window of open-to-close returns

with high-frequency factor variance estimates and high-frequency residuals. Both in-

sample and out-of-sample, this estimator performs well, with an out-of-sample volatility

23 basis points higher than RCSF,RM
78s , the best performing model. Variability of the

RCMF
78s weights is about 33% less than it is for RCSF

78s, reflecting the effect of smoothing

the covariance elements via the low-frequency beta.
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In Panel C we provide the results for the two alternative shrinkage approaches applied

to the sub-sampled realized covariance: the RiskMetrics EWMA model (RCRM
78s ) and

the Ledoit-Wolf optimal shrinkage estimator (RCLW
78s ). Both estimators improve out-of-

sample performance relative to the sample estimators. The reduction of estimation noise

is evident in the portfolio characteristics.

We are interested in the performance of these estimators relative to the parsimonious

single-factor models. RCLW
78s performs in line with RCSF

78s but substantially worse than

RCSF,RM
78s . RCRM

78s , on the other hand, with a volatility nearly 140 basis points lower than

the RC78s volatility, matches the performance of RCSF,RM
78s , the best performing single-

factor model. The 70 basis point performance advantage of RCRM
78s over RCSF

78s highlights

the importance of smoothing the daily estimates. While the extreme weights and the

short positions are nearly matched for the two estimators, the RCRM
78s portfolio weights

are 45% less variable.11

The performance of the smoothed, realized single-factor models indicates that the

reduction in estimation noise as the covariance estimates are shrunk to the factor covari-

ances is greater than the loss in precision due to model misspecification. Our findings

indicate that this trade-off in favor of structure holds even for a covariance matrix of

modest dimension and for a portfolio of highly active stocks where sampling error in the

covariance elements may be expected to be minimized. Furthermore, the precision of-

fered by high-frequency variance estimates is maintained after introducing low-frequency

factor coefficients in a mixed-frequency model. An advantage of the mixed-frequency

estimator, which relies on high-frequency estimates for the variances only, is avoiding the

need to estimate the realized covariances via computationally complex and data inten-

11We also consider the ad hoc approach of applying a nonnegative weight constraint on the portfolio
optimization. Jagannathan and Ma (2003) demonstrate that this common practice can be viewed as
a form of shrinkage on the covariance matrix estimate. The effect is the equivalent of shrinking the
larger covariance matrix elements towards zero. In constrast to the results reported by Jagannathan and
Ma (2003) in a low-frequency application, applying this constraint to dynamic portfolios based on the
sub-sampled realized covariance estimate offers little benefit over the unconstrained optimization. The
out-of-sample GMV volatility for the constrained portfolio is 0.0980.
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sive procedures. A second advantage of the estimator is that low frequency betas can

be estimated even for less liquid assets where non-synchronous observations and, hence,

the Epps effect may be a more severe problem. Finally, given the structure imposed by

the factor model, a third advantage is that the estimator is scalable to large dimension

matrices.12

3.3.3 Portfolio Dimension Analysis

To further investigate the interplay of estimation error and portfolio dimensions, we

consider the GMV volatility timing strategies across portfolios ranging from 2 to 30

assets. For each portfolio dimension N , we draw 500 random portfolios from the 30

DJIA stocks. For each of these portfolios, we execute the volatility timing strategies over

the entire sample period and we track the volatility of the benchmark equally-weighted

portfolio. We execute the portfolio bootstrap for N = 2, 3, 5, 7, 10, 15, 20, 25, and 27

stocks and we include the previously reported volatilities for the full 30-stock portfolio.

The results of this analysis are summarized in the volatility dimension curves in Figure 1.

The solid line in each panel is the mean volatility, at each dimension, for the equally-

weighted portfolios of the sampled assets. This curve provides a benchmark for volatility

reduction resulting from a pure diversification effect.

The curves in Panels A and B show little difference in the volatilities for the various

dynamic strategies when the number of assets is small. For two, three, and five assets,

they perform quite similarly. This indicates that the volatility timing assessment criteria

may have little power to distinguish among estimators when the ratio of observations to

dimensions is high for all candidates. Correspondingly, with a few exceptions, across the

volatility dimension curves the performance differentials relative to the benchmark port-

folio are greater as the number of assets increases. A larger N offers a larger investment

opportunity set over which to use the information. If an estimator remains informative

12See Bannouh et al. (2009) for estimation of a mixed-frequency multi-factor model for vast dimensional
covariance matrices for low-liquidity stocks.
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as N increases, this greater scope can translate into relatively greater volatility reduction

as the set of possible portfolios increases.

The results for the sample covariance estimators are provided in Panel A. We have

added a 30-day rolling window low-frequency estimator, OC30, to highlight the effect

of the number of observations at increasing matrix dimensions. At seven assets the

OC30 volatility dimension curve begins to diverge sharply upward. OC30 yields positive

definite matrices across all dimensions but at 25 (30) assets the average volatility has

reached 93% (147%), reflecting an ill-conditioned matrix. OC78, on the other hand,

provides performance consistent with the better performing sample estimators through

20 assets before estimation error begins to overwhelm the diversification effect. OC250

performs well through-out, with volatility falling at each increment of portfolio size.

The RC78 volatility dimension curve reflects worse performance than OC78 and OC250

throughout. Estimation error for the single-sample five minute estimator begins to offset

the diversification effect by 20 assets. The sub-sampled variant, RC78s, provides lower

volatility than RC78 throughout and shows no sign of increasing noise but performs the

same or worse than OC250 at all dimensions.

Panel B provides the volatility dimension curves for the single-factor models, the

equally-weighted portfolio, and RCRM
78s , the best-performing shrinkage estimator. The

realized single-factor model performs well throughout, even at smaller N where the factor

model is not expected to fit the sampled portfolios as well as it does at higher dimensions.

The mixed-frequency model dominates at all dimensions and performs closely in-line with

the smoothed, fully-estimated model, RCRM
78s .

To investigate the conditioning benefits of sub-sampling the high-frequency estima-

tors, we also consider realized covariance estimates based on returns sampled every 30

minutes, a common sampling frequency in the realized volatility literature. The estima-

tor, RC13, uses 13 intra-day return observations and RC13s, the sub-sampled counter-

part, is the average of five estimated matrices with observation grids shifted forward by
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five minutes for each subsequent sample. As a robustness check on the high-frequency

single-factor model, we consider a single factor model based on 30-minute returns, RCSF
13s.

Panel C provides the volatility dimension curves for these estimators.

With volatilities greater than the benchmark, RC13 is revealed as a noisy estimator at

only two and three assets and the estimator is not positive definite above 10 dimensions.

The curve for the sub-sampled variant, RC13s, is consistently high throughout, reflecting

substantial estimation error. It is, however, positive definite for all dimensions considered,

revealing the conditioning power of sub-sampling. For less active assets where intra-day

sampling frequency is limited, these results indicate that better-conditioned and invertible

covariance matrices can still be obtained through sub-sampled estimates. Furthermore,

applying the single-factor structure to this estimator sharply reduces estimation error.

The volatility curve for RCSF
13s falls below the benchmark curve by 15 assets and continues

to fall through 30 assets.13

Finally, the volatility dimension curves allow us to quantify forecast quality com-

parisons in terms of the corresponding pure diversification benefit captured in the 1
N

portfolio. Switching from the single-sample five-minute high-frequency estimator, RC78,

to the corresponding sub-sampled estimator, RC78s, for example, reduces GMV portfolio

volatility for the 30-asset portfolio by 100 basis points. This is equivalent to the pure

diversification benefit of increasing from holding seven to holding 25 of this universe of

30 stocks. Switching from RC78s to the smoothed single-factor model, RCSF,RM
78s , reduces

GMV volatility a further 140 basis points, equivalent to the diversification benefit of

increasing from six to 25 stocks.

13A comparison of the results for RC13s to those for the high frequency estimators based on five-minute
returns, indicates that for active stocks in our sample period the 30-minute sampling frequency is not
optimal. This contrasts with the results reported by Liu (2009) and de Pooter et al. (2008) for similar
samples of stocks but for pre-decimalization sample periods where trade and quote activity were much
less than in the post-decimalization period.
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3.3.4 Subperiod Robustness Analysis

Table 5 provides a summary of the robustness of the performance of these estimators over

different sample periods and for different market conditions. We report the volatility for

the dynamic GMV and the EW benchmark portfolios for the four calendar years in our

sample and for trading days marked by high and low volatility. We define low (high)

volatility days as those days with an absolute return on the equally-weighted benchmark

portfolio that is less (greater) than the median absolute return on the portfolio over the

sample period. The relative performance of these estimators is robust to all sub-periods

(with benchmark volatility ranging from 9% to over 15%) and to high and low volatility

periods specifically. In particular, in each sub-sample, the smoothed realized covariance

estimator and the realized single-factor models perform well relative to the alternative

estimators.

3.4 Mincer-Zarnowitz Forecast Evaluation

Following Briner and Connor (2008), we employ the Mincer and Zarnowitz (1969) fore-

cast evaluation framework to test the performance of the covariance estimators via the

resulting portfolio volatility forecasts. To give equal weight to the accuracy of each el-

ement of the covariance matrix, portfolio volatility is assessed for an equally-weighted

portfolio: σ̂2
EW = w

′
Σ̂w, where w is a vector of equally-weighted positions. With this

approach, select assets - or elements of the estimated covariance matrix - do not dominate

the analysis.

For each covariance forecast we regress a proxy for ex post volatility of the equally-

weighted portfolio on an intercept and the candidate portfolio volatility forecast:

σ̂EW (t) = b0 + b1σ̃EW (t− 1) + ε(t).

σ̂EW (t) is the portfolio volatility proxy at time t and σ̃EW (t−1) is the candidate forecast
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of portfolio volatility. The joint null hypothesis is H0 : b0 = 0 and b1 = 1.

We also consider encompassing forecast quality regressions to test the hypothesis

that a given forecast provides incremental value over another. We estimate the following

regression:

σ̂EW (t) = b0 + b1σ̃
(1)
EW (t− 1) + b2σ̃

(2)
EW (t− 1) + ε(t)

where σ̃
(1)
EW (t − 1) and σ̃

(2)
EW (t − 1) are candidate forecasts of portfolio volatility. The

joint null hypothesis is H0 : b0 = 0 and b1 + b2 = 1. If either b1 or b2 equal zero, the

corresponding forecast is encompassed by the other.

We perform the Mincer-Zarnowitz regressions directly on the volatility levels. In

simulation and empirical analysis, Hansen and Lunde (2006a) find this specification pro-

vides consistent ranking of forecast models and is more robust than the log-volatility

formulation. In addition, they find that while the Mincer-Zarnowitz regressions have

heteroskedastic error terms when applied to variances this is not the case for volatility

regressions. We report robust Newey-West standard errors for our parameter estimates

to account for autocorrelated errors. The proxy for the unobservable ex post portfo-

lio volatility is the sub-sampled realized portfolio volatility for day t. The regression

statistics are reported in Table 6.

The statistical forecast quality results confirm the inference from the volatility timing

analysis: the smoothed high-frequency forecasts, RCRM
78s and RCSF,RM

78s , exhibit less bias

and are more efficient than the high- and low-frequency sample estimators. Of the sample

estimators, RC78s has the highest R2 at 0.57, a considerable margin over the R2 of 0.45

for the long-horizon low-frequency estimator, OC250. The Ledoit-Wolf optimally condi-

tioned estimate, RCLW
78s , performs quite similar to RC78s in terms of bias, efficiency, and

explanatory power. The single-factor models, RCSF
78s and RCMF

78s , provide forecast quality

equivalent to the fully-estimated realized covariance matrix, RC78s. With the EWMA

shrinkage model applied to RC78s and RCSF
78s, their performance is equivalent with nearly

the same R2 and neither smoothed estimator exhibiting significant bias or significant
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inefficiency. In terms of goodness of fit, incorporating ARMA forecasts offers improved

explanatory power (R2 = 0.66) but this comes with increased bias and inefficiency.

In the final column of Table 6, we report the R2 of the Mincer-Zarnwitz encompassing

regressions with RC78s as the candidate encompassing forecast. The results indicate that

the addition of the sub-sampled high-frequency estimator substantially improves the

explanatory power of the forecast regressions for the low-frequency sample estimators

and somewhat increases the R2 for the single-sample high-frequency estimator. The R2

increases for the smoothed estimators, RCRM
78s and RCSF,RM

78s , but there is no evidence

that RC78s provides additional forecast information to the other single-factor models or

to the Ledoit-Wolf estimator.

The Mincer-Zarnowitz forecast quality results indicate that high-frequency shrinkage

estimates provide greater forecast predictability than forecasts based on either low- or

high-frequency sample estimates. The results also confirm that the parsimonious high-

frequency and mixed-frequency single-factor models provide good forecast quality and

are not encompassed by the high-frequency sample estimator, RC78s. The statistical

assessment indicates that the RCSF,ARMA
78s is a more promising forecast than was indicated

by the volatility timing assessment.

4 Future Work and Conclusion

Based on the volatility timing and Mincer-Zarnowitz forecast quality evaluation results

for a post-decimalization sample of 30 DJIA stocks we conclude that sub-sampling is very

effective in reducing estimation error in large realized covariance matrices; that further

matrix conditioning is important for forecast quality; and, for fully-estimated matrices,

a naive EWMA shrinkage approach works well. Our analysis of single factor models

indicates that the structure provided by this model substantially reduces estimation noise

and that smoothing these estimates yields performance equivalent to the smoothed fully-
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estimated realized covariance. Furthermore, using low-frequency betas as a smoothing

technique in a mixed-frequency estimate provides performance close to the smoothed

high-frequency single factor model. The parsimony of the factor model, in general, is

attractive for large-dimension applications and the additional estimation simplification

offered by the mixed-frequency model may be particularly important when considering

less-liquid assets where nonsynchroneity becomes a greater problem.

Volatility timing bootstrap experiments at dimensions ranging from 2 to 27 provide

additional insight on assessing covariance forecast quality. We find, not surprisingly, that

the ability to discriminate across estimators in a portfolio optimization setting depends

on portfolio dimensions. This dependence, however, is not simply a function of estimation

noise but is also driven by a scope effect; i.e., with more assets there is greater opportunity

to take advantage of a forecast signal.

There are many avenues for additional research. Of particular importance for general

applicability of realized covariance estimation is developing additional techniques for the

inclusion of overnight returns into these estimates. Estimating the covariance matrix

for non-trading periods presents additional challenges but is necessary to accommodate

varying forecast horizons and to consider more practitioner-oriented dynamic strategies.

The success of the mixed-frequency factor model in estimating trading-period covariances

suggests this approach for reducing noise in estimates based on observed overnight re-

turns. In addition, the performance of the mixed-frequency model should be investigated

using low-frequency betas estimated over shorter windows than the 250 days used in this

analysis. Where more sophisticated forecasting techniques are appropriate, the results

for the ARMA(1,1) forecast model in conjunction with the single factor model suggest

that such techniques can add value at high dimensions. Finally, in terms of forecast

assessment methodology, our dimensional analysis indicates the need for a more robust

understanding of the choice of “N” on volatility timing experiments as well as on portfolio

optimization experiments more generally.
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APPENDIX

A Implementation of Ledoit-Wolf Estimator

Φ, with elements φij, denotes the unobserved true equicorrelated covariance matrix and

F , with elements fij, is the corresponding estimate. The diagonal elements are the

variance elements of the sample covariance matrix. The optimal shrinkage parameter α

is estimated according to the method outlined in Ledoit and Wolf (2003), where sij are

the elements of Σ̂:

α =

∑p
i=1

∑p
j=1 V ar(sij)− Cov(fij, sij)∑p

i=1

∑
V ar(fij − sij) + (φij − σij)2

s.t. α ∈ [0, 1]. (11)

For implementation within the high-frequency data setting, we exploit the long mem-

ory property of realized covariance and assume that the covariance process is locally

constant. For a window of length l, we estimate α by assuming that E[sij,τ−l] = σij,t

where τ ∈ [t− l, t]. The quantities V ar(sij), Cov(fij, sij), V ar(fij − sij), and (φij − σij)
2

are estimated using the daily time series of realized covariance estimates. σij is esti-

mated as the sample average of sij,t over the l-day window and φij is the corresponding

equicorrelated matrix.14

Sensitivity analysis validates the approach of assuming a locally constant covariance

structure. Table 7 reports the GMV volatility associated with the Ledoit-Wolf shrinkage

approach over a large range of values for the shrinkage parameter, α. The variation in

volatility is quite modest. Therefore we conclude that misspecification does not have a

substantial impact on the performance of the shrinkage estimator.

14Voev (2008) outlines an alternative adaptation of the Ledoit-Wolf estimator for realized covariance
estimators that exploits the asymptotic variance and covariance results derived in Barndorff-Nielsen and
Shephard (2004).

28



B High Frequency Data Filtering and Sampling

We filter the quote data as follows: eliminate quotes 1) not from primary exchange; 2)

with a time stamp outside the 9:30 a.m. and 4:00 p.m. window; 3) with bid or offer

prices less than or equal to zero; 4) with TAQ-identified errors (“mode” equals 4, 7, 9,

11, 13, 14, 15, 19, 20, 27, or 28); 5) not matched to a trade using the Lee and Ready

(1991) algorithm with a 1 second lag on reported trades (Henker and Wang (2006)); 6)

that duplicate a previous record (same time stamp, same bid, same ask); 7) reflecting a

10% move from the previous quote midpoint; 8) with a spread greater than 10% of the

midpoint price; and 9) that are “redundant,” i.e., reflecting no revision to the bid or ask

from the most recent quote.

To facilitate sub-sampling across calendar-time returns, we generate five five-minute

log-price sample grids with the starting time for each grid shifted forward one minute.

Returns are calculated as the log-price-difference of the midpoints of the quotes that are

closest to, but not past, the grid endpoints. Open-to-close returns are calculated from

the quotes recorded for the 9:30:00 and 16:00:00 grid points.
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Panel A. Sample Estimators vs. EW Benchmark Portfolio

Panel B.  HF Single Factor Models vs. EW and RC78sRM

Figure1: Average GMV Volatility Across Bootstrapped Portfolios of N Assets
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Panel C.  RC13 Estimators vs. EW and RC78sRM
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Table 1: Summary Statistics for Daily Variance Estimates

“Mean,” “StDev,” and “ρl” are the average (×1000), the standard deviation (×1000), and
autocorrelation for l = 1, 15, and 30 lags, of daily variance estimates for the DJIA stocks and
the S&P500 ETF (SPY). Using high(low)-frequency data, daily variance is the sum of squared
five-minute returns averaged over five sub-samples (squared open-to-close returns). The sample
period is January 1, 2003 to December 31, 2006. Superscripts denote sub-periods for inclusion
of the stock in the index: †(4/8/2004–12/31/2006), §(1/1/2003–4/7/2004 and 11/22/2005–
12/31/2006), ∗(1/1/2003–4/7/2004), and ‡(1/1/2003–12/21/2005).

High Frequency Estimator Low Frequency Estimator
Ticker Mean StDev ρ1 ρ15 ρ30 Mean StDev ρ1 ρ15 ρ30

(x1000) (x1000) (x1000) (x1000)

AA 0.24 0.15 0.52 0.29 0.16 0.21 0.31 0.16 0.16 0.10
AIG† 0.15 0.18 0.54 0.21 0.17 0.15 0.47 0.24 0.13 0.08
AXP 0.10 0.10 0.68 0.53 0.55 0.11 0.23 0.17 0.15 0.13
BA 0.17 0.12 0.63 0.51 0.46 0.16 0.26 0.10 0.08 0.02
C 0.11 0.09 0.75 0.59 0.58 0.09 0.17 0.45 0.12 0.03
CAT 0.18 0.11 0.50 0.17 0.20 0.19 0.35 0.03 0.00 0.03
DD 0.13 0.07 0.52 0.25 0.20 0.10 0.16 0.06 0.07 0.08
DIS 0.17 0.15 0.70 0.51 0.52 0.16 0.32 0.21 0.19 0.22
EK∗ 0.24 0.25 0.27 -0.01 0.00 0.26 0.79 0.04 0.00 0.01
GE 0.10 0.08 0.71 0.57 0.56 0.09 0.18 0.25 0.18 0.15
GM 0.29 0.32 0.47 0.26 0.27 0.33 0.74 0.18 0.10 0.08
HD 0.17 0.11 0.50 0.30 0.24 0.16 0.34 0.15 0.21 0.10
HON 0.20 0.17 0.55 0.28 0.30 0.15 0.29 0.11 0.11 0.03
HP 0.34 0.20 0.53 0.26 0.16 0.35 0.56 0.04 0.03 0.02
IBM 0.10 0.06 0.56 0.28 0.22 0.09 0.19 0.12 0.22 0.16
INTC 0.24 0.19 0.46 0.24 0.28 0.24 0.38 0.30 0.30 0.17
IP∗ 0.16 0.10 0.53 0.30 0.31 0.15 0.29 0.10 0.04 0.05
JNJ 0.09 0.09 0.55 0.44 0.39 0.08 0.17 0.16 0.22 0.06
JPM 0.13 0.12 0.73 0.51 0.55 0.13 0.31 0.37 0.08 0.02
KO 0.09 0.06 0.69 0.47 0.48 0.07 0.14 0.15 0.16 0.08
MCD 0.18 0.17 0.40 0.26 0.32 0.17 0.35 0.17 0.04 0.10
MMM 0.10 0.06 0.39 0.04 0.00 0.09 0.19 0.02 0.03 0.02
MO 0.16 0.32 0.20 0.12 0.04 0.14 0.53 0.09 0.01 0.02
MRK 0.16 0.25 0.13 0.18 0.03 0.17 0.59 0.12 0.30 0.03
MSFT 0.13 0.18 0.20 0.16 0.14 0.12 0.24 0.45 0.20 0.15
PFE† 0.14 0.15 0.19 0.06 0.06 0.13 0.28 0.10 0.19 0.09
PG 0.08 0.05 0.47 0.08 0.11 0.06 0.10 0.14 0.10 0.05
SBC‡ 0.19 0.20 0.69 0.55 0.58 0.17 0.38 0.15 0.24 0.10
T§ 0.18 0.20 0.44 0.33 0.34 0.18 0.40 0.32 0.18 0.19
UTX 0.13 0.08 0.60 0.32 0.21 0.11 0.21 0.12 0.14 0.13
V Z† 0.15 0.13 0.63 0.55 0.44 0.12 0.25 0.26 0.32 0.14
WMT 0.11 0.07 0.47 0.27 0.24 0.09 0.16 0.16 0.27 0.10
XOM 0.12 0.08 0.61 0.29 0.14 0.12 0.18 0.07 0.08 0.04

Mean 0.16 0.14 0.51 0.31 0.28 0.15 0.32 0.17 0.14 0.08
Median 0.15 0.12 0.53 0.28 0.24 0.14 0.29 0.15 0.14 0.08

SPY 0.05 0.04 0.68 0.51 0.49 0.05 0.10 0.14 0.24 0.06
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Table 2: Summary Statistics for Daily Covariance Estimates

“Mean,” “StDev,” and “ρl” are the cross-sectional average of the time-series average (×1000),
standard deviation (×1000), and autocorrelation for l = 1, 15, and 30 lags, of daily covariance
estimates for each DJIA stock and for the S&P500 ETF (SPY) with DJIA stocks. Using
high(low)-frequency data, daily covariance is the sum of the cross-product of five-minute returns
averaged over five sub-samples (cross-product of open-to-close returns). The sample period is
January 1, 2003 to December 31, 2006.

High Frequency Estimator Low Frequency Estimator
Cross-Sectional Mean Cross-Sectional Mean

Ticker Mean StDev ρ1 ρ15 ρ30 Mean StDev ρ1 ρ15 ρ30
(x1000) (x1000) (x1000) (x1000)

AA 0.05 0.05 0.48 0.33 0.27 0.06 0.20 0.02 0.08 0.02
AIG 0.04 0.05 0.62 0.48 0.48 0.05 0.20 0.02 0.12 0.11
AXP 0.04 0.05 0.66 0.53 0.53 0.05 0.18 0.00 0.09 0.11
BA 0.04 0.04 0.57 0.44 0.39 0.05 0.18 0.03 0.05 0.05
C 0.04 0.05 0.67 0.52 0.51 0.05 0.15 0.03 0.10 0.08
CAT 0.05 0.05 0.55 0.37 0.37 0.06 0.21 0.02 0.06 0.07
DD 0.04 0.04 0.57 0.40 0.39 0.05 0.15 0.05 0.05 0.08
DIS 0.04 0.05 0.68 0.51 0.54 0.05 0.20 0.03 0.09 0.11
EK 0.04 0.04 0.53 0.41 0.41 0.05 0.22 0.00 0.05 0.03
GE 0.04 0.05 0.66 0.51 0.51 0.05 0.16 0.03 0.10 0.09
GM 0.04 0.04 0.50 0.38 0.37 0.06 0.23 0.02 0.05 0.01
HD 0.04 0.04 0.55 0.38 0.36 0.06 0.21 0.00 0.09 0.05
HON 0.05 0.05 0.59 0.44 0.41 0.06 0.19 0.01 0.11 0.04
HP 0.03 0.04 0.30 0.20 0.13 0.04 0.23 0.01 0.01 0.01
IBM 0.04 0.04 0.61 0.46 0.44 0.04 0.16 0.01 0.09 0.05
INTC 0.06 0.05 0.62 0.46 0.47 0.07 0.23 0.00 0.08 0.04
IP 0.04 0.05 0.58 0.44 0.42 0.05 0.17 0.03 0.05 0.07
JNJ 0.03 0.03 0.57 0.49 0.44 0.03 0.14 0.04 0.10 0.10
JPM 0.04 0.05 0.62 0.45 0.45 0.06 0.20 0.00 0.10 0.10
KO 0.03 0.03 0.60 0.48 0.44 0.03 0.12 0.04 0.12 0.08
MCD 0.04 0.04 0.52 0.38 0.35 0.04 0.18 0.03 -0.01 -0.02
MMM 0.04 0.03 0.53 0.37 0.31 0.04 0.14 0.00 0.06 0.05
MO 0.03 0.04 0.51 0.39 0.35 0.03 0.16 -0.0 0.00 0.02
MRK 0.04 0.04 0.56 0.43 0.39 0.04 0.17 0.03 0.06 0.04
MSFT 0.04 0.05 0.68 0.53 0.48 0.05 0.18 0.04 0.15 0.05
PFE 0.04 0.04 0.55 0.40 0.35 0.04 0.16 0.02 0.07 0.03
PG 0.03 0.03 0.53 0.35 0.31 0.03 0.11 0.00 0.06 0.04
SBC 0.05 0.06 0.65 0.49 0.53 0.06 0.21 0.02 0.14 0.11
T 0.03 0.04 0.49 0.36 0.40 0.04 0.21 0.03 0.10 0.11
UTX 0.04 0.04 0.55 0.38 0.34 0.05 0.17 0.01 0.09 0.06
VZ 0.04 0.05 0.62 0.50 0.47 0.05 0.17 0.03 0.11 0.08
WMT 0.04 0.04 0.60 0.46 0.44 0.04 0.15 0.03 0.10 0.06
XOM 0.04 0.04 0.58 0.39 0.35 0.04 0.14 0.05 0.04 0.05

Mean 0.04 0.04 0.57 0.43 0.41 0.05 0.18 0.02 0.08 0.06
Median 0.04 0.04 0.57 0.44 0.41 0.05 0.18 0.02 0.09 0.05

SPY 0.04 0.04 0.68 0.51 0.48 0.05 0.12 0.03 0.12 0.10
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Table 3: S&P 500 Factor Model Estimates
The table provides the means and standard deviations for βR

t , the daily sub-sampled realized
market factor coefficient estimate using five minute returns, and βLF

t , the daily low-frequency
factor coefficient estimate using the past 250 open-to-close returns. ρl, the autocorrelation for
l = 1, 15, 30 lags, is reported for the realized beta estimates. The average of the daily R2

t are
reported for each model. The sample period is January 2, 2003 to December 31, 2006.

High Frequency Betas Low Frequency Betas
Mean StDev Mean Mean StDev Mean

Ticker βR
t βR

t ρ1 ρ15 ρ30 R2
t βLF

t βLF
t R2

t

AA 1.01 0.35 0.39 0.17 0.15 0.18 1.22 0.11 0.37
AIG 0.89 0.30 0.37 0.25 0.29 0.26 1.08 0.12 0.40
AXP 0.77 0.24 0.45 0.29 0.26 0.28 1.06 0.15 0.50
BA 0.90 0.25 0.17 0.06 0.05 0.22 0.98 0.10 0.31
C 0.88 0.22 0.41 0.26 0.29 0.35 1.03 0.20 0.54
CAT 1.04 0.30 0.41 0.19 0.13 0.27 1.22 0.14 0.43
DD 0.89 0.23 0.33 0.09 0.05 0.28 0.95 0.09 0.43
DIS 0.81 0.30 0.50 0.34 0.29 0.19 1.01 0.18 0.34
EK 0.73 0.32 0.16 0.05 0.07 0.11 0.98 0.16 0.22
GE 0.84 0.23 0.50 0.39 0.35 0.33 0.99 0.16 0.52
GM 0.82 0.34 0.11 0.08 0.00 0.14 1.12 0.07 0.28
HD 0.95 0.27 0.27 0.06 0.09 0.24 1.14 0.08 0.42
HON 1.06 0.27 0.21 0.04 0.04 0.26 1.12 0.10 0.39
HP 0.83 0.54 0.55 0.47 0.39 0.08 0.97 0.47 0.14
IBM 0.83 0.19 0.17 0.06 0.00 0.32 0.88 0.12 0.42
INTC 1.35 0.37 0.46 0.26 0.11 0.33 1.47 0.15 0.44
IP 0.85 0.26 0.26 0.10 0.10 0.21 1.06 0.13 0.39
JNJ 0.61 0.21 0.43 0.33 0.26 0.22 0.64 0.10 0.27
JPM 0.91 0.24 0.33 0.17 0.14 0.30 1.23 0.23 0.55
KO 0.66 0.20 0.37 0.29 0.28 0.22 0.64 0.09 0.30
MCD 0.82 0.24 0.17 0.05 -0.0 0.19 0.80 0.16 0.19
MMM 0.80 0.20 0.28 0.14 0.03 0.28 0.83 0.14 0.37
MO 0.67 0.29 0.24 0.12 0.03 0.17 0.64 0.18 0.14
MRK 0.73 0.31 0.18 0.08 -0.0 0.17 0.79 0.10 0.23
MSFT 0.91 0.28 0.52 0.37 0.32 0.30 0.98 0.19 0.43
PFE 0.78 0.28 0.21 0.10 0.00 0.20 0.86 0.08 0.30
PG 0.66 0.20 0.31 0.17 0.13 0.24 0.63 0.10 0.30
SBC 0.83 0.30 0.47 0.31 0.34 0.21 0.91 0.23 0.33
T 0.67 0.28 0.29 0.16 0.16 0.13 0.83 0.16 0.21
UTX 0.90 0.23 0.30 0.06 0.02 0.28 0.96 0.07 0.41
VZ 0.78 0.27 0.41 0.29 0.26 0.20 0.85 0.18 0.31
WMT 0.81 0.22 0.26 0.12 0.12 0.27 0.81 0.09 0.36
XOM 0.86 0.27 0.40 0.28 0.23 0.27 0.94 0.20 0.40

Mean 0.84 0.27 0.33 0.19 0.15 0.23 0.96 0.15 0.35
Median 0.83 0.27 0.33 0.17 0.13 0.24 0.97 0.14 0.37
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Table 5: Dynamic GMV Portfolio Sub-Period Performance
The out-of-sample (day t+1) annualized portfolio volatility (σP ) is reported for the benchmark
equally-weighted portfolio and for the dynamic GMV portfolios optimized each day t using
the covariance estimator indicated in the first column. The volatility is provided for the full
sample period and for each of the four calendar years in the sample, as indicated, and for
market volatility level sub-samples with “Low” (“High”) volatility days defined as days with
an absolute return less (greater) than the median absolute return on the equally-weighted
benchmark portfolio. The full sample period is January 2, 2003 - December 31, 2006.

Full Volatility Level
Model Sample 2003 2004 2005 2006 Low High

EW 0.1107 0.1534 0.0965 0.0912 0.0897 0.0365 0.1523

Panel A: Sample Estimators
RC78 0.1091 0.1376 0.1061 0.0980 0.0857 0.0806 0.1316

RC78s 0.0987 0.1246 0.0989 0.0868 0.0766 0.0679 0.1220

OC78 0.1075 0.1350 0.1051 0.0998 0.0835 0.0821 0.1278

OC250 0.0959 0.1218 0.0932 0.0866 0.0764 0.0673 0.1180

Panel B: High Frequency Single Factor Models
RCSF

78s 0.0922 0.1140 0.0927 0.0843 0.0708 0.0580 0.1168

RCSF,RM
78s 0.0850 0.1020 0.0857 0.0798 0.0680 0.0548 0.1071

RCSF,ARMA
78s 0.0872 0.1096 0.0866 0.0792 0.0668 0.0551 0.1102

RCMF
78s 0.0872 0.1041 0.0871 0.0826 0.0714 0.0631 0.1061

Panel C: High Frequency Shrinkage Estimators
RCRM

78s 0.0849 0.1033 0.0851 0.0791 0.0671 0.0525 0.1080

RCLW
78s 0.0933 0.1170 0.0945 0.0834 0.0715 0.0601 0.1176
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Table 6: Mincer-Zarnowitz Forecast Quality Regressions
Statistics are reported for the regression of the sub-sampled realized equally-weighted portfolio
volatility for day t on the forecast generated on day t − 1 for the same portfolio using the
estimator indicated in the first column. For each single forecast regression the estimates and
the robust Newey-West standard errors (“s.e.”) are provided for the intercept (b0) and the slope
coefficient (b1) along with the R2. The R2 for an encompassing Mincer-Zarnowitz regression
with RC78s as the encompassing forecast is reported in the final column. The sample period is
January 2, 2003 - December 31, 2006. There are 997 observations.

RC78s Encomp.
Single Forecast Regressions Regressions

Model b0 s.e. b1 s.e. R2 R2

Panel A: Sample Estimators

RC78 0.001647 0.000241 0.736537 0.043551 0.54 0.57

RC78s 0.001522 0.000220 0.754240 0.039952 0.57 -

OC78 0.001663 0.000379 0.643869 0.055473 0.52 0.63

OC250 0.002708 0.000387 0.430082 0.052002 0.45 0.62

Panel B: High Frequency Single Factor Models

RCSF
78s 0.001633 0.000225 0.767534 0.042758 0.57 0.57

RCSF,ARMA
78s 0.000663 0.000172 0.883619 0.028845 0.66 0.66

RCMF
78s 0.001417 0.000223 0.734793 0.037532 0.57 0.58

RCSF,RM
78s 0.000261 0.000320 0.958125 0.054590 0.60 0.65

Panel C: High Frequency Shrinkage Estimators

RCRM
78s 0.000180 0.000323 0.933463 0.052788 0.60 0.65

RCLW
78s 0.001460 0.000224 0.754383 0.040152 0.57 0.57

36



Table 7: Robustness Analysis of Ledoit-Wolf Smoothing Parameters
Volatility and portfolio weight statistics are reported for the dynamic GMV portfolios
based on Ledoit-Wolf covariance estimators using the smoothing parameter, α, indicated
in the first column. The out-of-sample (“Out”) and in-sample (“In”) volatilities (σP )
are the annualized standard deviation of the open-to-close day t + 1 and day t returns,
respectively, for the portfolio. “Med. Min” (“Med. Max”) is the median minimum (max-
imum) weight across the time series. The sample period is January 2, 2003 - December
31, 2006.

Weights
σP Med. Med.

α Out In Min Max
.1 0.0964 0.0807 -0.04 0.26
.2 0.0958 0.0791 -0.04 0.26
.3 0.0955 0.0781 -0.05 0.27
.4 0.0956 0.0774 -0.05 0.27
.5 0.0960 0.0772 -0.06 0.27
.6 0.0968 0.0773 -0.07 0.28
.7 0.0983 0.0779 -0.08 0.28
.8 0.1020 0.0805 -0.10 0.29
.9 0.1441 0.0849 -0.12 0.30
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