

RICE UNIVERSITY

By

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

APPROVED, THESIS COMMITTEE

HOUSTON, TEXAS

Adrianna Gillman

Doctor of Philosophy

Jesse Chan

Ilinca Stanciulescu

Beatrice Riviere

Yabin Zhang

May 2020

Jesse Chan (May 12, 2020)

Ilinca Stanciulescu (May 13, 2020)
Ilinca Stanciulescu

Beatrice Riviere (May 13, 2020)
Beatrice Riviere

Assistant Professor of Computational and
Applied Mathematics

Numerical methods for boundary integral equations

Associate Professor of Civil Engineering

Assistant Professor of Computational and
Applied Mathematics

Noah Harding Chair and Professor of
Computational and Applied Mathematics

ABSTRACT

Numerical methods for boundary integral equations

by

Yabin Zhang

This thesis focuses on numerical methods for boundary integral equation (BIE)

formulations of partial differential equations (PDEs). The work contains three parts:

the first two consider numerical solution methods for boundary integral equations in

wave scattering and Stokes flow, respectively. The last part proposes an adaptive

discretization technique for BIEs in 2D.

The proposed work is based on previous developments in fast direct solution tech-

niques for BIEs. Such methods exploit the rank deficiency in the off-diagonal blocks

of the discretized system and build an approximation to the inverse with linear cost

with respect to the number of unknowns on the domain boundary for two-dimensional

problems. Once the approximation of the inverse is constructed, applying it to any

given vector is very cheap, making the methods ideal for problems with lots of right-

hand-sides. The two direct solvers presented in this thesis are driven by applications.

The scattering solver is built to assist practitioners in designing acoustic and optic

devices to manipulate waves. Its efficiency in handling multiple incident angles and

minor modifications in the scatterer’s structure will be handy in an optimal design

setting. The Stokes solver helps practitioners to simulate objects such as bacteria and

vesicles in viscous flow. To accurately capture the interaction between the objects

and the confining wall, the discretization of the wall often needs to be locally refined

in the region approached by the objects. This makes standard fast direct solvers too

expensive to be useful, as the linear system changes for each time step. The proposed

approach avoids this by pre-constructing an fast direct solver for the wall indepen-

dently of time and updating the original solver to accommodate any refinements in

discretization.

The last part of the thesis presents an adaptive discretization technique for two-

dimensional BIEs. Standard adaptive discretization method often requires a sequence

of global boundary density solves each on a finer mesh and terminates with the final

mesh which resolves the boundary density to the user prescribed tolerance. The

global density solves make the cost of the standard approach relatively high. The

proposed alternative reduces the cost by replacing global solves with local solves for

an approximate of the true density.

iv

Acknowledgements

I would like to express my gratitude to people who supported and helped me com-

pleting this piece of work as well as my graduate studies.

First of all, I would like to thank my PhD advisor, Adrianna Gillman, for her

patient and insightful guidance in the last five years and her great support for my

pursuing an academic career. I would also like to thank my other committee members,

Jesse Chan, Beatrice Riviere, and Ilinca Stanciulescu for their support and valuable

feedback on the presented thesis work. Preparing and defending a thesis in this

pandemic was a challenge, but their quick replies and understanding made this much

easier.

I would also want to given special thanks to Alex Barnett and Manas Rachh for

the fruitful conversations on the research projects and Shravan Veerapaneni, Hanliang

Guo and Hai Zhu for the collaboration on the Stokes project.

Additionally, I would like to thank the administration staff at CAAM and the

applied mathematics department at CU Boulder who helped me with my 6-month

stay at Boulder as a visiting graduate student.

Finally, I would like to give my personal thanks to my friends and family members

for their love and support.

Contents

Abstract ii

List of Illustrations ix

List of Tables xv

1 Introduction 1

1.1 Thesis outline . 2

1.2 BIE formulation for elliptic BVPs . 2

1.3 Discretization and fast solvers for BIE 4

1.4 Use BIE to simulate applications . 10

1.4.1 Quasi-periodic scattering in layered media 11

1.4.2 Stokes flow in confined geometry 12

1.5 An adaptive discretization strategy 13

2 Tools and solvers in literature 14

2.1 Interpolative decomposition (ID) for rank-deficient matrices 14

2.2 Far-field and near-field separation for boundary integral operator . . 16

2.3 Hierarchically block-separable (HBS) solver for BIEs 19

2.3.1 Block-separable matrix . 19

2.3.2 Hierarchically block-separable matrix 22

2.3.3 HBS representation for the coefficient matrix 24

2.4 A fast direct solver for locally-perturbed geometry 25

2.4.1 Locally perturbed geometry and extended linear system 26

vi

2.4.2 A fast direct solver . 28

3 A fast direct solver for quasi-periodic scattering in lay-

ered media 30

3.1 Introduction . 31

3.1.1 Related work . 33

3.1.2 High level view of the solution technique 34

3.1.3 Outline . 36

3.2 Periodizing scheme . 36

3.2.1 Integral operators . 37

3.2.2 Integral formulation . 41

3.2.3 The linear system . 44

3.3 The fast direct solver . 49

3.3.1 Fast inversion of A . 51

3.3.2 Low rank factorization of Â 53

3.3.3 The Bloch phase and incident angle dependence 59

3.3.4 Extensions . 60

3.4 Numerical examples . 61

3.4.1 Scaling experiment . 63

3.4.2 Sweep over multiple incident angles 64

3.4.3 Local change to the geometry 67

3.5 Summary . 68

4 A fast direct solver for modeling Stokes flow in confined

geometry 72

4.1 Boundary integral formulation . 74

vii

4.1.1 The steady-state problem . 75

4.1.2 Time-dependent problem formulation 79

4.1.3 Numerical simulation and local discretization refinements . . . 80

4.2 A fast direct solver for BIEs with locally refined discretization 81

4.2.1 An alternative extended system formulation 82

4.2.2 Low-rank approximation for the update matrix 84

4.2.3 Solution evaluation . 86

4.3 Numerical experiments . 88

4.3.1 Scaling test . 90

4.3.2 Complex geometry test . 92

4.3.3 Other tests . 92

4.4 Summary . 94

5 An adaptive discretization technique for BIEs on the

plane 95

5.1 Introduction . 96

5.1.1 Existing adaptive discretization strategies in literature 97

5.2 An adaptive scheme based on the true boundary density 103

5.2.1 Initialization . 103

5.2.2 Refining and coarsening condition 104

5.2.3 Convergence error and exit condition 106

5.2.4 Full Algorithm and cost analysis 108

5.3 A new adaptive scheme . 110

5.3.1 Locally updated artificial density 110

5.3.2 Exit condition . 111

5.3.3 Full algorithm and efficient implementation 112

viii

5.4 Numerical results . 116

5.4.1 Comparison with the true density guided algorithm 117

5.4.2 Same geometry with different right-hand-side functions 118

5.4.3 Complex geometry . 120

5.5 Summary . 123

6 Conclusions 124

Bibliography 126

A Appendix 142

A.1 Efficient construction of S2. 142

A.2 Definitions for the Stokes boundary integral operators 144

A.3 Numerical tests for Laplace and Helmholtz BVPs on locally

perturbed geometries . 145

A.3.1 A local change in the geometry 147

A.3.2 A Laplace problem with a locally refined discretization 148

A.3.3 A Helmholtz problem with a locally refined discretization . . . 149

A.4 Definition of matrix Mn . 153

Illustrations

1.2.1 Model geometry for the Laplace boundary value problem example. . . 3

1.3.1 Example of a geometrically ill-conditioned problem. 9

2.2.1 An illustration of near-field and far-field separation. (a) The

boundary geometry with Γb in bold line. (b) The proxy circle (

dotted blue line) that separates Γ\Γb into the far-field Γfar(b) and the

near-field Γnear(b) with respect to b. 17

2.3.1 Illustration of a block-separable factorization as in (2.3.3) . Matrix A

is a block-separable matrix with 4× 4 = 16 sub-blocks. U, V, and D

are all block-diagonal matrices. Matrix Â has zero blocks on the

diagonal. 21

2.3.2 Illustration of the inverse factorization of a block separable matrix A

(2.3.5) . Matrix A is a block-separable matrix with 4× 4 = 16

sub-blocks and can be factored as (2.3.3). E, D̃,F, and G are all

block-diagonal matrices. Matrix (Ã+ D̂)−1 is the only dense matrix

remained. 22

2.3.3 Numbering of box nodes in a fully populated binary tree with L = 3

levels. The root is the original index vector I = I1 = [1, 2, . . . , 400]

of the discretization points in the parameter space of Γ. 23

x

2.3.4 Illustration of the block structure of the telescoping factors for a

3-level HBS representation. The telescoping factorization is given in

(2.3.9). 24

2.4.1 A sample locally perturbed geometry where the original boundary is

Γo = Γk ∪ Γc, the portion of the boundary being removed is Γc, the

portion of the original boundary remaining is Γk and the newly added

boundary piece is Γp. 26

2.4.2 (a) The star geometry with the portion of the boundary to be refined

boxed. (b) The three Gaussian panels in the boxed region from the

original discretization. (c) The six Gaussian panels that replaced the

original three panels. 29

3.1.1 A five layered periodic geometry. 7 periods are shown. 32

3.2.1 This figure illustrates a five layered periodic geometry with artificial

walls and proxy circles. Only three periods of the infinite periodic

geometry are shown. The period contained within the unit cell is in

black while the other two periods are in blue. Figure (a) illustrates

the notation for the unit cell with left, right, upper, and lower

boundary L, R, U , and D shown in red lines. Figure (b) illustrates

the proxy circles Pi for each layer. The color of the proxy circles

alternates between green and magenta. 38

3.3.1 Illustration of the dyadic refinement partitioning of Γi with 5 levels of

refinement and geometries for compressing Am
ii . (a) Illustration of the

proxy surface (dashed circle) used to compress neighbor interactions

when γl is far from Γm
i . (c) Illustration of the proxy surface (dashed

circle) and near points (bold blue curve on Γm
i) when γl is touching Γm

i . 55

xi

3.3.2 Illustration of the proxy surface for compressing Ai,i+1. 59

3.4.1 Three periods of the interface geometries γ1 and γ2 as defined in

equation (3.4.1). 65

3.4.2 Illustration of the real part of the total field of the solution to (3.1.1)

for a geometry with 10 interfaces where the wave number alternates

between 40 and 40
√
2. The shown solution is for θinc = −0.845π. The

total number of discretization points was set to N = 121, 136,

resulting in a flux error estimate of 2.3e− 8. Seven periods in the

geometry are shown. 70

3.4.3 The three different “corner” geometries in the 11-layer structure.

Three periods are shown. See Figure 3.4.2 for the full structure. . . . 71

3.4.4 Illustration of 5 periods of (a) the original 11-layer structure and (b)

the new structure obtained from replacing the fourth interface with a

different geometry. The modified interface is in red box. 71

4.0.1 Example of a complex confining wall geometry from [1]. The

geometry is extracted from a generic microscopic image of the

cross-section of a Fallopian tube. 73

4.1.1 Model geometry for the Stokes BVP. 76

4.2.1 (a) The proxy circle for Γp shown in dash blue line divides Γk into far

(in green) and near (in red) with respect to Γp (b) The interaction

between the far-filed part of Γk and Γp can be captured by the

interaction between Γfar
k and a smaller proxy circle for Γp shown in

dash green. 86

4.2.2 Dyadic partition for Γfar
k used in the compression of Afar

kp 87

xii

4.3.1 (a) The pipe geometry with the portion of the boundary to be refined

boxed. The coordinates of the four sharp corners of the pipe is also

shown. (b) The two Gaussian panels in the boxed region from the

original discretization. (c) The four Gaussian panels that replaced

the original two panels. 91

4.3.2 (a) The bumpy pipe geometry with the portion of the boundary to be

refined highlighted in red. (b) The two Gaussian panels to be

removed from the original discretization. (c) The four Gaussian

panels to be added to replace the original two panels. 93

5.1.1 An example where the geometric approach leads to

under-discretization. The boundary geometry and the location of the

exterior source are given in (a). (b) and (d) plot the arc length

function and the boundary density on a reference grid with 300

Gaussian panels against parameterization variable t. The relative

errors for the arc length, curvature, and boundary density for

discretization with different number of panels are plotted on a log

scale in (c). The errors of the density in (c) are evaluated by

comparing the solved density to the density solved from the reference

grid. 99

xiii

5.1.2 An example where the geometric approach leads to

over-discretization. The boundary geometry and the location of the

exterior source are given in (a). (b) and (d) plot the arc length

function and the boundary density on a reference grid with 300

Gaussian panels against parameterization variable t. The relative

errors for the arc length, curvature, and boundary density for

discretization with different number of panels are plotted on a log

scale in (c). The errors of the density in (c) are evaluated by

comparing the solved density to the density solved from the reference

grid. 100

5.1.3 Double disc geometry hit by plane wave with incident angle

θinc = −π
2
. The discs have radius equal to 1, and the minimum

distance between the two is chosen to be 0.05. 101

5.1.4 The boundary density and real part of the scatter field for solving the

Helmholtz BVP with the different wave numbers: (a-b) – ω = 5, (c-d)

– ω = 10, (e-f) – ω = 20. The boundary data is due to a plane wave

with incident angle θinc = −π
2
. The boundary is discretized with 100

uniformly distributed 10th order Gaussian panels. 102

5.4.1 (a) A butterfly geometry with interior target locations and exterior

source locations. The geometry is generated by applying a corner

smoothing scheme present in [2] to a butterfly shaped polygon. (b)

zooms in the circled region in (a) to show that there is no sharp

corners for this geometry. 119

xiv

5.4.2 (a) A fish geometry with interior target locations and two choices of

exterior source locations (i) and (ii) for the right-hand-side function

f(x). (b) The right-hand-side function f(x(t)) plotted against

parameterization variable t for the two choices of exterior source

locations (i) and (ii). 121

5.4.3 The final mesh produced by the new algorithm for f(x) generated by

choices of exterior source locations (i) and (ii). More panels are

placed at the fish head (circled region) for (ii). Desired accuracy is

set to � = 10−8, and the initial mesh integrates the arc length

function to �init = 10−1. 121

5.4.4 The “Fallopian tube piece” geometry. 122

A.3.1The square with nose geometry. A nose of height d is smoothly

attached to the a square. 148

A.3.2(a) The sunflower geometry with the portion of the boundary to be

refined in red. (b) The three Gaussian panels in the boxed region

from the original discretization. (c) Six Gaussian panels replacing the

original three panels. 149

Tables

3.1 Time in seconds and flux error estimates for applying the direct

solver to a 3- and 9-layer geometry where the interfaces alternate

between γ1 and γ2 defined in (3.4.1). Ni denotes the number of

discretization points for each boundary charge density on the

interface. The wave number alternates between 10 and 10
√
2. 66

3.2 Time in seconds for solving 287 incident angles and 24 distinct Bloch

phases on an 11-layer geometry shown in Figure 3.4.2. The incident

angles are sampled from [−0.89π,−0.11π]. 67

3.3 Time in seconds for constructing and applying the fast direct solver

to an 11-layer geometry (first column), a geometry that has the

fourth interface changed (second column) and the wave number for

the second layer changed from 40
√
2 to 30 (third column). Ntotal is

the number of discretization points on the interfaces in the unit cell. 68

4.1 Timing results for Stokes boundary value problem on the pipe with

refined panel geometry. A separate HBS for Γp is constructed for test

values with Np > 2000, shown in bold font. 91

4.2 Timing results for applying the solver to the Stokes BVP on the

bumpy pipe geometry. Nk = 2528, Nc = 32, and App is evaluated

and inverted via dense linear algebra for all test cases. 93

xvi

5.1 Results for applying (a) the artificial density algorithm and (b) the

true density algorithm to a Laplace BVP defined on the butterfly

geometry given in Figure 5.4.1. All tests start with a two-panel initial

mesh which integrates the arc length function to one digit of accuracy. 119

5.2 Results for solving a Laplace BVP defined on the butterfly geometry

by uniform Gaussian panel quadrature. 120

5.3 Results for applying the artificial density guided adaptive

discretization algorithm to the “Fallopian tube piece” geometry. . . . 122

A.1 Times for applying the solution techniques to (A.3.2) on the

geometry in Figure A.3.2 with local refinement. 151

A.2 Times for applying the solution technique to an interior

Laplace-Dirichlet BVP on the square with thinning nose geometry. . 152

A.3 Times for applying the solution techniques to an interior

Laplace-Dirichlet BVP on the square with fixed nose geometry. . . . 152

A.4 Times for applying the solution techniques to an interior

Laplace-Dirichlet BVP on the sunflower geometry in Figure A.3.2

with local refinement. 152

1

Chapter 1

Introduction

This thesis presents numerical methods for solving two-dimensional elliptic boundary

value problems (BVPs) recast as boundary integral equations (BIEs). The BIE for-

mulation of a BVP involves only unknowns defined on the boundary of the domain,

often referred to as the boundary density, thus reducing the dimension of the prob-

lem by one. Upon discretization, one is left with a dense linear system to solve. To

obtain an accurate solution with acceptable computational cost, a good BIE formu-

lation, an appropriate discretization, and an efficient numerical method for solving

the linear system are all necessary. The first two parts of the proposed work adopt

existing BIE formulation for BVP problems in wave scattering and Stokes flow, re-

spectively, and construct fast solvers for the linear systems. The solvers are direct in

the sense that they build an approximation to the inverse operator. Different from

traditional inversion algorithms, such as Gauss elimination, which may be as expen-

sive as O(N3) for dense systems with N unknowns, the solvers presented in this thesis

are “fast” and scale linearly with respect to N . The last part of the thesis presents a

new adaptive discretization technique for BIEs. The current standard technique for

discretizing BIEs on complex geometries is to use an adaptive panel-based quadra-

ture, where more panels are placed near the complex part of the geometry, such as

high-curvature or sharp corners, to obtain accurate solution. The major novelty of

the proposed scheme is that it does not require any global solves for the boundary

density on any intermediate mesh.

2

1.1 Thesis outline

This thesis is organized as follows. The current chapter (chapter 1) introduces the

basic idea and notations for BIE formulations and motivates the three projects. Sec-

tion 1.2 briefly summarizes how to re-formulate a BVP as a BIE. Section 1.3 discusses

the Nyström discretization for the boundary integral operator and solution methods

for the resulting linear system. Section 1.4 motivates and introduces two applica-

tions: quasi-periodic scattering in layered media and simulation of bodies in confined

Stokes flow. Finally, Section 1.5 elaborates on how an adaptive discretization tech-

nique would be useful for numerical solutions to BIEs.

Chapter 2 reviews some concepts and tools in literature, which are used in the

new work presented in the later chapters. The following three chapters focus on

the projects that comprise the thesis: chapter 3 presents a fast direct solver for

quasi-periodic scattering in multilayer media; chapter 4 presents a fast direct solver

for simulating confined Stokes flow which requires time-dependent local refinements

to the confining wall discretization; chapter 5 presents an adaptive discretization

technique for two-dimensional BIEs. Finally, chapter 6 concludes the thesis and

discusses future directions.

1.2 BIE formulation for elliptic BVPs

A variety of problems in science and engineering can be formulated as BIEs. Examples

include constant coefficient Laplace equation, Helmholtz equation, and Stokes flow.

Since the unknown is only defined on the boundary of the domain, often referred to as

the boundary (charge) density, the formulation reduces the dimension of the problem

by one. Figure 1.2.1 gives an example for a 2D domain Ω enclosed by a simple curve

3

Γ. The unknown is the boundary charge density defined on Γ, which is an 1D object.

The integral formulation for a given elliptic BVP is not unique. In fact, different

formulations for classic problems can be found in literature. Two kinds of BIE formu-

lation for the Laplace problem with Dirichlet boundary condition are derived below

as an example. The derivation applies to other equations as well. More complete

theory can be found in standard text such as [3] and [4].

Consider the following BVP defined on the geometry given in Figure 1.2.1:




−Δu(x) = 0 for x ∈ Ω

u(x) = f(x) for x ∈ Γ,

(1.2.1)

(1.2.2)

where Ω ⊂ Rn and Γ = ∂Ω.

Ω

Γ = ∂Ω

x0

ν(x0)

Figure 1.2.1 : Model geometry for the Laplace boundary value problem example.

� Single-layer formulation The solution can be represented as a single-layer po-

tential

u(x) =

�

Γ

G(x,y)τ(y)dl(y), (1.2.3)

where τ(x) is some unknown boundary charge density, and G(x,y) is the

Green’s function G(x,y) = − 1
2π

log
�

1
|x−y|

�
.

This representation naturally satisfies the PDE (1.2.1). To ensure the solution

(1.2.3) also satisfies the boundary condition (1.2.2), one takes the limit of u(x)

4

as x approaches the boundary Γ and sets the limit to be f(x). This leads to

the following BIE

�

Γ

G(x,y)τ(y)dl(y) = f(x), for x ∈ Γ. (1.2.4)

� Double-layer formulation The solution can also be represented as a double-layer

potential

u(x) =

�

Γ

∂G(x,y)

∂ν(y)
σ(y)dl(y), (1.2.5)

and by taking the limit as x approaches the boundary, one ends up with a

different BIE

−1

2
σ(x) +

�

Γ

∂G(x,y))

∂ν(y)
σ(y)dl(y) = f(x), for x ∈ Γ. (1.2.6)

The term −1/2σ(x) comes from the jump condition, which can be found in

[5, 3] and many other texts on Laplace equation.

In the example above, the single-layer formulation leads to an integral operator

of the first-kind. The double-layer formulation, on the other hand, gives a second-

kind Fredholm operator, provided the boundary geometry is smooth. A second-kind

integral operator is favorable, since theoretical results including solution existence

and computational stability often exist for the second kind [3, 6, 4].

1.3 Discretization and fast solvers for BIE

The first step towards a numerical solution to a BIE is to discretize the boundary

integral equation. The work in this thesis adopts the Nyström method [3, 4, 7], while

other methods such as the boundary element method [8, 9, 10], which discretizes

5

the weak form of the problem, are also available but are not discussed in this text.

The basic idea for the Nyström method is to use quadrature to approximate the

integral in the given integral equation. Let λ denote a scalar and K(x,y) denote a

kernel function, consider a general form of integral equation defined on a closed and

bounded set D ⊂ Rm for some m ≥ 1.

λσ(x) +

�

D

K(x,y)σ(y) dy = f(x). (1.3.1)

The integral on Γ in (1.3.1) can be approximated by a quadrature rule with weights

{ωj}Nj=1 and nodes {zj}Nj=1. The quadrature approximation leads to an equation for

the density approximation σN

λσN(x) +
N�

j=1

ωjK(x, zj)σN(zj) = f(x). (1.3.2)

Seeking the solution to (1.3.2) at the quadrature nodes yields the linear system

λσN(zi) +
N�

j=1

ωjK(zi, zj)σN(zj) = f(zi), for i = 1, . . . , N, (1.3.3)

of which the unknown is a vector σN = [σN(z1), . . . , σN(zN)]
T . Then σN(x) defined

by

σN(x) =
1

λ

�
f(x)−

N�

j=1

ωjK(x, zj)σN(zj)

�
(1.3.4)

is a solution to (1.3.2). Comprehensive error analysis and convergence theorems of

the Nyström method can be found in chapter 4 of [4].

For BIEs, D is the boundary of the problem domain D = ∂Ω = Γ. In this

thesis, the boundaries are parameterized closed curves of the form x = γ(t), where

6

the parameterization variable t lives in [0, T] and γ(0) = γ(T). Then the BIE

λσ(x) +

�

Γ

K(x,y)σ(y)dl(y) = f(x)

can be written as

λσ(t) +

� T

0

K(t, s)σ(s)|γ̇(s)| ds = f(t),

where σ(t) = σ(γ(t)), K(t, s) = K(γ(t), γ(s)), and f(t) = f(γ(t)). The dot notation

is used to denote the derivative with respect to t: γ̇(t) =
�

dγ1
dt
(t), dγ2

dt
(t)
�
. Let {tj}Nj=1

and {wj}Nj=1 be a quadrature rule for integrating functions defined on [0, T]. The

corresponding linear system is

λσi +
N�

j=1

ωjK(ti, tj)σj|γ̇j| = fi, for i = 1, . . . , N, (1.3.5)

where σi = σ(ti), |γ̇i| = |γ̇(ti)|, and fi = f(t(i))

The linear system (1.3.5) can be written more compactly as

Aσ = (λI+K) σ = f . (1.3.6)

The matrix K ∈ RN×N with entry Kij = K(ti, tj)|γ̇j| comes directly from the dis-

cretization of the boundary integral operator scaled by the arc-length evaluation, and

I ∈ RN×N is the identity matrix. The matrix A ∈ RN×N is often referred to as the

coefficient matrix.

The integral operator in the BIE may be weakly singular or singular. The kernel

K(x,y) may not be absolutely integrable, and the integral may need to be defined in

the limit sense as |x−y| → 0+. Special quadrature rules have been developed to deal

7

with such complexity. Some examples are high-order quadrature schemes for singular

integral developed in [11, 12] and quadrature schemes for boundaries with corners in

[13, 14, 15, 16, 17]. This remains an active area of research.

The linear system arising from the discretization of BIEs is dense. This stopped

the BIE formulation from being widely used for approximating solutions to PDEs until

the 1980s, when the fast summation technique called the fast multipole method (FMM)

[18] was developed. This thesis describes a method as “fast” if its complexity is

asymptotically less than traditional methods. For example, given a desired tolerance

�, the cost of FMM is O(N log 1/�) for a matrix-vector product, while dense linear

algebra matrix-vector multiplication is O(N2). The huge reduction in cost is obtained

by exploiting the fact that the off-diagonal blocks of the coefficient matrix is rank-

deficient. The FMM can be used to accelerate the matrix -vector multiplications for

an iterative solver to obtain a solution to the discretized BIE. Work by by Hackbusch

et al. at the end of the twentieth century, introduced the concept of data-sparse

matrix [19, 20, 21, 22] and made the observation that the off-diagonal deficiency

property can be used to build fast matrix factorizations and inversions. The cost

of early implementation of the inversion scheme is O(N(logN)p), for some small

integer p. This is significantly faster than traditional inversion schemes for general

dense matrices, such as Gaussian elimination. Work by Martinsson and Rokhlin [23]

reduced the cost to O(N) by separating the forward “compression” and inversion into

individual steps. This enables other algorithms to be incorporated into the solution

algorithm for BIEs: for example, randomized linear algebra based matrix factorization

methods can be used to aid the forward compression[24, 25]. Later work on fast

inversion methods, such as the hierarchically semi-separable(HSS) matrix method

[26, 27, 28, 29], the hierarchically block-separable (HBS) matrix method [30], and

8

the HODLR method [31] took advantage of the earlier development and managed to

obtain solution with O(N) or O(N logN) cost for BIEs defined on planar curves.

Generally speaking, the fast solution techniques for BIEs mentioned above belong

to one of the two categories:

(i). A fast matrix-vector multiplication scheme coupled with an iterative solver.

Examples of fast matrix-vector multiplication schemes include the FMM [18]

and hierarchical matrix method [19, 21, 22]. A popular choice of iterative

solver is GMRES, with or without generic or problem-specific preconditioner

[32, 33, 34, 35, 36].

(ii). A fast direct solver. Most common examples are hierarchical matrices whose

inverse operator can be constructed in a fast manner [23, 26, 30, 37].

The iterative approach (i) is ideal for problems of which the coefficient matrix

has a clustered spectrum. For other problems, the method may have convergence

issue or converges slowly. For example, Figure 1.3.1 from [38] gives an example of

a problem, of which the singular values of the coefficient matrix lies on the circle of

radius one in the complex plane but not clustered . The problem is well-conditioned

but a FMM accelerated GMRES takes 248 iterations to reach an accuracy of 10−8 for

each incident wave. Complex geometries may also lead to ill-conditioned problems.

Method (i) often performs poorly for such problems, as well as problems that are

physically ill-conditioned, e.g. the Helmholtz equation with a wave number close to

an eigenvalue of the Laplacian.

The direct approach (ii) is an ideal alternative for these problems. Direct solvers

allow for highly accurate solutions even when the conditioning of the problem is

bad. In addition, fast direct solvers are also very efficient in handling problems

9

with multiple right-hand-sides. The approximate inverse needs to be constructed

once. Then solutions to each different right-hand-side can be obtained by inexpensive

matrix-vector multiplications.

Figure 1.3.1 : Example of a geometrically ill-conditioned problem.

Plot of the total scatter field off an infinite array of objects (in dark blue), which
is solved as a test problem in [38]. The geometric complexity of the surface causes
the spectrum of the discretized integral operator to be scattered around the origin.
Iterative methods converge slowly.

The fast direct solvers presented in this manuscript are based upon previous work

on hierarchical matrix methods, for example the H matrix and H2− matrix ap-

proaches such as HSS and HBS [26, 30, 37]. These methods are related to each

other and share the same steps for obtaining a solution to a discretized BIE. Let � be

a user prescribed tolerance. A fast direct solver obtains the solution to (1.3.6) by

(1) constructing a compressed representation of the coefficient matrix Ã with �Ã−

A� < �;

(2) constructing an approximate inverse B̃ with �B̃− Ã−1� < �;

(3) applying the approximate inverse B̃ to the right-hand-side vector.

In order to be useful, the operator B̃ is constructed so that it can be applied rapidly,

i.e. with O(N) cost.

10

Steps (1) and (2) are both independent of the right-hand-side vector f , and they

constitute the precomputation of the solver. Step (3) depends on the right-hand-side

vector and is referred to as the solve step.

Once the boundary density is found, solution at any point in the domain can be

evaluated via a convolution. For the Laplace Dirichlet BVP example, this is given

by equation(1.2.3) or (1.2.5), depending on which BIE formulation is used. Fast

summation methods can be used to reduce the cost of evaluating the convolution. If

the location of the target point is close to or on the boundary, near-field evaluation

schemes are necessary to obtain accurate solution[39, 40, 41].

1.4 Use BIE to simulate applications

The major goal of the presented work is to extend the range of applications that

can be modeled via the boundary integral approach. Two particular applications are

considered. Section 1.4.1 discusses wave scattering off a layered structure that models

the optical devices specially designed for wave manipulation. Section 1.4.2 focuses on

modeling Stokes flow in confined geometry, which often plays a key role in numerical

simulations of bacteria or micro-swimmers in biology and fluid mechanics.

The author is interested in these two problems for the following reasons. First

of all, both problems raise lots of interest in their respective research community as

these problems are bottlenecks in simulations run by practitioners and engineers. For

both problems, nice boundary integral formulations exit, but fast algorithms working

with these formulations remain to be developed. The proposed fast direct solvers

will allow the practitioners to actually exploit the nice properties of the existing BIE

formulations to run large size simulations with manageable cost.

11

1.4.1 Quasi-periodic scattering in layered media

Wave scattering off multilayered quasi-periodic structures arises in the design of op-

tical and electromagnetic devices. Practitioners combine different materials, metal or

non-metal, together into a layered structure to manipulate waves. Examples include

solar cells and dielectric gratings [42, 43, 44, 45, 46, 47]. To study the wave diffraction

from these structures, one often needs to solve the Helmholtz equation with different

wave numbers for each of the layers.

In [48], Cho and Barnett construct a BIE formulation that is robust even at so-

called Wood’s anomalies. The proposed work adopts this formulation and constructs

a new fast direct solution technique, whose computational cost scales linearly with

respect to the number of points on the layer interfaces. For many of the applications,

multiple incident waves need to be solved for the same structure. For example, a

Bragg diagram created from the solution of 200 incident angles is desirable in many

engineering applications. A fast direct solver is ideal in this setting, since once the

approximate inverse is constructed, solving extra right-hand-sides will be cheap.

The direct solver is built in a way that local changes in the multilayer structure

lead to local changes in the solver as well. For example, if the shape of one interface

between two layers is changed or the material property of one particular layer becomes

different, one can easily redefine the corresponding parts of the solver and reuses the

rest of it instead of building a new solver from scratch. This feature becomes very

handy in the optimal design setting: when the geometry and material properties are

close to the optimal choice, the changes in the scattering problem are localized to a

few layer.

Chapter 3 discusses the physical problem, BIE formulation, and solution technique

in detail.

12

1.4.2 Stokes flow in confined geometry

An interesting problem in biology is to study the dynamics of objects inside a con-

fined region. Particular applications include modeling blood coagulation, developing

microfluidic devices, and understanding the behavior of bacteria and other swimmers.

For such problems, the confining wall is static while the interior bodies (bateria, swim-

mers, etc.) evolve in time. These problems can be formulated as BIE defined on the

static wall coupled with extra equations modeling the dynamics of the bodies. And

a time-stepping scheme is used to evolve the bodies in time.

One particular interesting case is when the geometry of the confining wall is com-

plicated and the swimmers appear only in certain region of the enclosed domain for

each time step. The motivating example in [49] simulates a group of bacteria swim-

ming through a complicated microfluidic device. The swimmers cumulate in several

clusters and only appear in a few regions of the device for each time step. The shape

of the device is complicated and requires a large number of discretization points to

resolve. If a cluster of swimmers get close to a part of the device’s boundary, extra

refinement becomes necessary on this part of the boundary to capture the density’s

behavior. As the swimmers moving though the device in time, the regions that need

extra refinement change. Chapter 4 proposes a solution technique built specially

to accommodate such time-evolving discretization refinement: a fast direct solver is

built for the static wall geometry where no swimmers exist, and then for each future

time step the changes due to refinements in the regions approached by swimmers

are captured via a low-rank update, which allows the solver for the discretization

at this particular time step to be applied with linear cost. The proposed work is

an extension of the previous work by the author on building a fast direct solver for

locally-perturbed geometry [50] and a collaboration with the authors of [49].

13

1.5 An adaptive discretization strategy

As briefly mentioned in section 1.2, finding the appropriate quadrature rule for the

boundary curve Γ is among the numerical challenges when approximating solutions to

PDEs using BIEs. The geometry needs to be resolved well enough to obtain desired

accuracy; however, over-resolution should be avoided for computational efficiency.

Global quadrature schemes such as (composite) Trapezoidal rule often struggle to

handle complex geometries and are hard to generalize to higher dimensions. Panel-

based quadratures, such as Gaussian quadrature, offer more flexibility and generalize

to higher dimensions easily. Particularly for complex geometries, the balance point

between solution accuracy and computational efficiency may be found by coupling

panel based quadrature with an adaptive scheme that identifies and refines the parts

of the boundary as needed.

Chapter 5 presents a panel-based adaptive discretization technique for two-dimensional

BIEs. The proposed technique solves small local systems to update a quantity called

the artificial density and uses it to choose which part of the boundary to refine.

The technique is more efficient compared to approaches which identify the relative

complex parts of the boundary by looking at the globally solved boundary density.

14

Chapter 2

Tools and solvers in literature

The fast direct solvers and discretization technique proposed in this thesis build upon

previous work on numerical solutions for BIE and other numerical methods such as

random linear algebra based matrix factorization. This chapter goes through some

tools and ideas that are used repeatedly in the development of the new solvers and

discretization scheme.

The chapter is organized as follows. Section 2.1 reviews the definition of in-

terpolative decomposition, which is used in compressing the low-rank subblocks of

the coefficient matrix and other rank-deficient matrices. Section 2.2 summarizes a

commonly used idea in potential theory, the separation of near-field and far-field in-

teraction. Section 2.3 reviews a particular fast direct solver, the HBS solver [30],

since it is used to build the proposed new solvers in both Chapter 3 and 4. Finally,

Section 2.4 reviews the author’s previous work on solving BIEs with locally perturbed

geometry [50]. The Stokes solver in Chapter 4 builds upon the idea presented in this

section and extends the technique to accelerate numerical simulation of Stokes flow.

2.1 Interpolative decomposition (ID) for rank-deficient ma-

trices

Fast numerical solution techniques for BIE, both iterative and direct, are based on

the rank-deficiency of the off-diagonal blocks of the coefficient matrix. Given a user-

15

specified tolerance �, these off-diagonal blocks can be compressed, i.e. approximated

by a low-rank factorization. This will be referred to as the �-rank factorization for

the rest of the thesis. The formal definition is as follows.

Definition 2.1 LR is an �-rank factorization of matrix S ∈ RM×N with rank k = k(�),

if L ∈ RM×k and R ∈ Rk×N satisfy �S− LR� < ��S�.

Examples of �-rank factorization techniques include truncated singular value decom-

position (SVD) [51], rank revealing QR factorizations [52], CUR decompositions [53],

and interpolative decompositions (ID). Both the HBS solver by Gillman et al. in [30]

and the new solvers presented in this thesis use the ID approach. Thereby, the formal

definition of ID is given below.

Definition 2.2 Given a tolerance �, a matrix S of dimension M ×N can be approxi-

mated by a interpolative decomposition (ID) of the form

S ≈ PS(J, :), (2.1.1)

where J = (J1, . . . , Jk) is a reordering of a size-k sub-collection of the row indices of

S, and P is a matrix of dimension M × k that contains an identity matrix of size

k×k. The value of k depends on the user-specified tolerance �, and the approximation

satisfies �S−PS(J, :)� < ��S�.

The matrix P is referred to as the interpolation matrix, and the vector J is called

the row index vector. Analogously, S can have an ID decomposition of the form

S ≈ S(:, J)P, where the column index vector J is a sub-collection of the column

indices of S. When applied to the coefficient matrix in (1.3.6), the row or column

index corresponds to discretization point on the boundary. The discretization points

16

selected by J are called the skeleton points.

A complete theory and an O(N logN) technique for obtaining the ID for a N×N

matrix is presented in Cheng et al. [54]. The HBS solver and the new solver both

adopt the randomized algorithm by in Martinsson et al. [55].

2.2 Far-field and near-field separation for boundary integral

operator

This section discusses a commonly used idea in fast algorithms for BIEs: the sep-

aration of self, near-field, and far-field interaction. Consider subinterval b � [0, 2π]

with corresponding boundary segment Γb � Γ as illustrated in Figure 2.2.1(a). The

rest of the boundary geometry Γ\Γb can be classified into two categories based on the

distance to Γb. One way to do this is to draw a circle centered at Γb and with radius

rrel > 1 times larger than the smallest circle enclosing Γb. This circle is referred to

as the proxy circle. rrel = 1.75 is often a good choice in practice. The near-field of

b Γnear(b) is defined as the part of the boundary that lies within the circle minus b

itself, and the far-field of b Γfar(b) is the part outside of the circle. Figure 2.2.1 (b)

illustrates the proxy circle as well as the near-field and far-field of b for a sample

geometry.

Recall the double layer Laplace BIE from section 1.2, the row equation for x is

−1

2
σ(x) +

�

Γ

∂G(x,y)

∂ν(y)
σ(y) dl(y) = f(x).

The integral with respect to y can be broken into an integral on Γb plus the integral

17

Γb

(a)

Γb

Γfar(b)

Γnear(b)

✁
✁
✁☛

❇
❇
❇
❇
❇◆

(b)

Figure 2.2.1 : An illustration of near-field and far-field separation. (a) The boundary
geometry with Γb in bold line. (b) The proxy circle (dotted blue line) that separates
Γ\Γb into the far-field Γfar(b) and the near-field Γnear(b) with respect to b.

on the near-field and the far-field of b

−1

2
σ(x) +

�

Γb

∂G(x,y)

∂ν(y)
σ(y) dl(y)

� �� �
self

+

�

Γnear(b)

∂G(x,y)

∂ν(y)
σ(y) dl(y)

� �� �
near-field

+

�

Γfar(b)

∂G(x,y)

∂ν(y)
σ(y) dl(y)

� �� �
far-field

= f(x).

The corresponding block row equation in the linear system will be of the format

Ab,bσb +Ab,near(b)σnear(b) +Ab,far(b)σfar(b) = fb.

Here Ab,b is a diagonal subblock of the coefficient matrix, while Ab,near(b) and Ab,far(b)

are off-diagonal subblocks. This separation is very useful from the following perspec-

tives:

� The low-rank off-diagonal blocks are separated from the full-rank diagonal

blocks, which allows the off-diagonal blocks corresponding to the near- and

far-field interaction to be approximated by �-rank factorizations.

18

� The further separation of “non-self” interactions into near-field and far- field is

also significant. Although both the near-field and the far-field interactions are

low-rank, the far-field interaction has even lower ranks compared to the near-

field, as the far-field is shielded away from Γb by a nontrivial distance. From

potential theory, the potential at points on Γb due to the far-field Γfar(b) can

be represented as a linear combination of basis functions defined on the proxy

circle.

The separation and using basis functions on the proxy circle to represent far-

field interactions are often exploited in both building BIE formulation for problems

as well as fast solution methods for BIEs. For example, in the periodizing scheme

for the multilayer scattering problem (Chapter 3 section 3.2.1), basis functions on

the proxy circle are defined to capture the contribution from non-neighbor copies of

the periodic scatterer. As for fast solvers, the near-field and far-field separation can

be used to reduce the cost of compressing the off-diagonal blocks. Let subscript c

denote the collection of points on Γc := Γ\Γb, the coefficient matrix contains the off-

diagonal block Abc = [Ab,near(b) |Ab,far(b)]. One way to obtain a low-rank factorization

of Abc is to first evaluate the matrix and then apply ID to find the skeleton row

index Jb and interpolation matrix Pb so that Abc ≈ PbAbc(Jb, :). This approach

is numerically expensive, since (row-based) ID is applied to a matrix with lots of

columns. A lower cost approach is available from the potential theory for far-field

interactions mentioned above. Recall that the far-field interaction can be written

in terms of a linear combination of basis function defined on the proxy circle. For

a Laplace problem, the basis functions can be defined as the potential due to a

collection of point charges placed on the proxy circle. In practice, 75 points uniformly

sampled on the proxy circle is sufficient. Let Ab,proxy denote the interaction between

19

points on Γb and the point charges on the proxy. One can obtain the skeleton points

skel(b) and interpolation matrix P̂b by applying ID to compress the rows of Âbc =

[Ab,near(b) |Ab,proxy] . Once skel(b) is determined, one only needs to evaluate Askel(b),c

the interaction between the skeleton points on Γb and points on Γc to have the low-

rank approximation Abc ≈ P̂bAskel(b),c.

2.3 Hierarchically block-separable (HBS) solver for BIEs

The work presented in Chapter 3 and Chapter 4 is based on a fast direct solution

technique, the Hierarchically block-separable (HBS) method [23, 30]. This section

briefly reviews the method and prepares the reader for the two later chapters.

The data structure used for storing the matrices in the HBS solver is very similar

to that in the well-known Hierarchically semi-separable (HSS) method [26]. The

terminology is adopted mainly because it clarifies the matrix property used for the

compression and inversion schemes.

2.3.1 Block-separable matrix

The data-sparse representation of the coefficient matrix in the HBS method starts

with the following definition of a block-separable matrix [30]:

Definition 2.3 Assume A is an np× np matrix of the form

A =




D1 A1,2 A1,3 · · · A1,p

A2,1 D2 A2,3 · · · A2,p

...
...

...
...

Ap,1 Ap,2 Ap,3 · · · Dp



, (2.3.1)

20

where each of the sub-blocks has dimension n×n. A is block-separable with block-rank

k if, for α, β = 1, 2, . . . , p, there exist matrices Uα, Vβ, and Âα,β such that

Aα,β = UαÂα,βV
∗
β. (2.3.2)

The dimension of the factor matrices depends on k: Uα and Vβ has dimension n×k,

and Âα,β has dimension k × k.

Let A be a block-separable matrix as defined above, the off-diagonal sub-block

factorizations (2.3.2) can be combined together to form a factorization of A

A = UÂV∗ +D, (2.3.3)

where

U = diag (U1,U2, . . . ,Up),

V = diag (V1,V2, . . . ,Vp),

D = diag (D1,D2, . . . ,Dp), and

A =




0 Â1,2 Â1,3 · · · Â1,p

Â2,1 0 Â2,3 · · · Â2,p

...
...

...
...

Âp,1 Âp,2 Âp,3 · · · 0



.

(2.3.4)

Figure 2.3.1 demonstrates the sparsity pattern of this decomposition for the case of

p = 4.

21

A = U Â V∗ + D

Figure 2.3.1 : Illustration of a block-separable factorization as in (2.3.3) . Matrix
A is a block-separable matrix with 4 × 4 = 16 sub-blocks. U, V, and D are all
block-diagonal matrices. Matrix Â has zero blocks on the diagonal.

The factorization (2.3.3) allows matrix A to be inverted via a variant of the

Sherman-Morrison-Woodbury formula:

Lemma 2.1

Suppose that A is an np × np invertible block-separable matrix that admits the

decomposition in (2.3.3). Furthermore, assume that matrix D, (V∗D−1)U, and (Â+

(V∗D−1U)−1) are all invertible, then

A−1 = E(Â+ D̃)−1F∗ +G, (2.3.5)

where

D̃ = (V∗D−1U)−1,

E = D−1UD̃,

F = (D̃V∗D−1)∗, and

G = D−1 −D−1UD̃V∗D−1.

Figure 2.3.2 demonstrates the sparsity pattern of this factorization of A−1.

22

A−1 = E (Ã+ D̂)−1 F∗ + G

Figure 2.3.2 : Illustration of the inverse factorization of a block separable matrix A
(2.3.5) . Matrix A is a block-separable matrix with 4× 4 = 16 sub-blocks and can be
factored as (2.3.3). E, D̃,F, and G are all block-diagonal matrices. Matrix (Ã+D̂)−1

is the only dense matrix remained.

For a block-separable matrix A, Lemma 2.1 reduces dense inversion of A, which

scales O(n3p3), to the inversion of a much smaller matrix Ã+D̂, which scales O(k3p3),

plus multiplication with block diagonal matrices, which scales O(pn3). In the case

where Ã+ D̂ is also block-separable, one can apply Lemma 2.1 to Ã+ D̂ as well and

obtain a nested factorization of A−1 with a even smaller dense matrix to be inverted

directly. This motivates the definition of the hierarchically block-separable matrix in

[30].

2.3.2 Hierarchically block-separable matrix

The block-separable matrix definition in the previous section can be coupled with a

tree structure for the row index of the matrix to define a hierarchically block-separable

matrix factorization. For simple demonstration, Figure 2.3.3 visualizes a three-level

binary tree for a matrix with 400 rows in total, which corresponds to a 400 point

discretization for the boundary Γ in a Laplace problem.

23

Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 2.3.3 : Numbering of box nodes in a fully populated binary tree with L = 3 lev-
els. The root is the original index vector I = I1 = [1, 2, . . . , 400] of the discretization
points in the parameter space of Γ.

For a given binary tree structure for the row index, [30] defines a hierarchically

block-separable matrix as follows.

Definition 2.4 Suppose T is a given binary tree with L fully-populated levels and

that for each leaf node τ , the index vector Iτ holds precisely n points. A matrix A of

dimension N ×N is hierarchically block-separable with block rank k and with respect

to T if the following conditions hold:

(1) (Leaf level) For any pair of distinct leaf nodes τ and τ �, let Aτ,τ � := A(Iτ , Iτ �),

whose dimension is n×n, then there must exist matrices Uτ , Vτ � , and Âτ,τ � such

that

Aτ,τ � = UτÂτ,τ �V
∗
τ � , (2.3.6)

where Âτ,τ � is of dimension k × k.

(2) (Non-leaf level) On level l = L−1, L−2, . . . , 1, for any pair of distinct box nodes

τ and τ � with children σ1, σ2 and σ�
1, σ

�
2 respectively, define

Aτ,τ � :=



Âσ1,σ�

1
Âσ1,σ�

2

Âσ2,σ�
1

Âσ2,σ�
2


 , (2.3.7)

24

where Aτ,τ � is of dimension 2k × 2k. Then there must exist matrices Uτ , Vτ � ,

and Âτ,τ � such that

Aτ,τ � = UτÂτ,τ �V
∗
τ � , (2.3.8)

where dimension of Âτ,τ � equals to k × k.

For the three level tree structure shown in Figure 2.3.3, a hierarchically block-

separable matrix A can be factored as

A = Ū(3)
�
Ū(2)

�
Ū(1) B̄(0) (V̄(1))∗ + B̄(1)

�
(V̄(2))∗ + B̄(2)

�
(V̄(3))∗ + D̄(3), (2.3.9)

with sparsity pattern shown in Figure 2.3.4.

Ū(3) Ū(2) Ū(1) B̄(0) (V̄(1))∗ B̄(1) (V̄(2))∗ B̄(2) (V̄(3))∗ D̄(3)

Figure 2.3.4 : Illustration of the block structure of the telescoping factors for a 3-level
HBS representation. The telescoping factorization is given in (2.3.9).

Lemma 2.1 can then be applied in a nested fashion to invert the telescoping

factorization (2.3.9).

2.3.3 HBS representation for the coefficient matrix

With the Nyström discretization, the rows and columns in the coefficient matrix cor-

responds to quadrature points on the boundary of the domain. By the rank-deficient

nature of the off-diagonal blocks, an HBS representation for the coefficient matrix can

25

be built with a binary tree structure for the discretization points in parameterization

space. However, directly constructing the factors via applying matrix factorization

methods, such as ID, to the off-diagonal blocks is very expensive, since the block

has either lots of rows or lots of columns. To further reduce the cost, [30] uses the

separation of near-field and far-field idea covered in section 2.2 and replaces explicit

sub-block evaluation corresponding to far-field interactions with proxy circle inter-

actions. The resulting algorithm is linear with respect to the number of quadrature

points on the boundary, and, once the forward HBS representation and the inversion

are completed, solving one new right-hand-side is extremely cheap.

2.4 A fast direct solver for locally-perturbed geometry

This section reviews the author’s previous work on building a fast direct solver for

BVPs defined on locally perturbed geometries in 2D [50]. A locally perturbed geom-

etry is a geometry that is the same as the original geometry except in small (or local)

portion of the geometry. Such problems arise in applications such as optimal shape

design. In each iteration or optimization cycle the changes to the object shape often

stay local to certain parts of the object.

The basic idea of the solver, as first proposed in [56], is to recast the BVP as a

BIE and formulate an extended linear system that allows for the BIE on the new

geometry to be expressed in terms of a linear system on the original geometry plus

a correction to account for the local perturbation. The fast direct solver reviewed in

this section follows this idea.

26

Γk

Γp

Γc

Figure 2.4.1 : A sample locally perturbed geometry where the original boundary is
Γo = Γk ∪ Γc, the portion of the boundary being removed is Γc, the portion of the
original boundary remaining is Γk and the newly added boundary piece is Γp.

2.4.1 Locally perturbed geometry and extended linear system

Consider a boundary value problem on a geometry with a local perturbation as il-

lustrated in Figure 2.4.1. Let Γo denote the boundary of the original geometry, Γk

denote the portion of the boundary that is not changing and Γc denote the portion

that is cut or removed. So Γo = Γc ∪ Γk. Let Γp denote the new portion of the

boundary. Then the new geometry has a boundary Γn defined by Γn = Γk ∪ Γp.

The discretized linear systems (1.3.6) can be partitioned according to this nota-

tion. In other words, the original system can be expressed as

Aooσo =



Akk Akc

Ack Acc






σk

σc


 =



fk

fc


 = fo, (2.4.1)

and the linear system for the perturbed geometry can be expressed as

Annσn =



Akk Akp

Apk App






σk

σp


 =



fk

fp


 = fn (2.4.2)

where σk denotes the vector whose entries are the approximate solution at the dis-

cretization points on Γk, σc denotes the vector whose entries are the approximate

27

solution at the discretization points on Γc, etc. Likewise Akk is the submatrix of the

discretized integral equation corresponding to the interaction of Γk with itself, Akc is

the submatrix of the discretized integral equation corresponding to the interaction of

Γk with Γc, etc.

The discretized problem on Γn can be expressed as an extended linear system [56]

by 





Aoo 0

0 App




� �� �
Ã

+




0



−Akc

−Bcc


 Aop

Apk 0 0




� �� �
Qorig







σk

σc

σp




� �� �
σext

=




fk

0

fp




� �� �
fext

(2.4.3)

where Akc denotes the submatrix of Aoo corresponding to the interaction between

Γk and Γc, Aop denotes the discretization of the double layer integral operator on Γp

evaluated on Γo, Apk denotes the discretization of the double layer integral operator

on Γk evaluated on Γp, and Bcc denotes the sub-matrix of Aoo corresponding to the

interaction of Γc with itself but the diagonal entries are set to zero. The matrix Qorig

is called the update matrix. The extended system (2.4.3) is obtained by subtracting

the contributions from Γc in Aoo and adding the contributions from Γp. Upon solving

(2.4.3), only σk and σp are used to evaluate the solution inside of Γn. Effectively σc

is a dummy vector. Details of the derivation of (2.4.3) are provided in [56, 50].

The subscript notation “orig” stands for original, indicating that this update

matrix formulation is the original formulation used in [50]. Chapter 4 defines a new

formulation for the update matrix Qnew and extended system.

28

2.4.2 A fast direct solver

When constructing the fast direct solver for the locally perturbed boundary value

problem, there are advantages to writing the system in the form of (2.4.3). Since the

matrix Aoo is the system resulting from the discretization of the integral equation

on the original geometry, we assume that a fast direct solver was already computed

for it. Any fast direct solver such as the HBS solver can be used. Additionally, the

update matrix Qorig is low rank. This allows for the inverse of the extended systems

to be applied rapidly via a Sherman-Morrison-Woodbury formula

σext =
�
Ã+Qorig

�−1

gext

≈
�
Ã+ LR

�−1

gext

≈ Ã−1gext − Ã−1L
�
I+RÃ−1L

�−1

RÃ−1gext,

(2.4.4)

where I is an identity matrix, and LR denotes the low rank factorization of the update

matrix Qorig.

The low rank property of the update matrix Qorig can be observed by noting that

the matricesAkc, Apk andAop are low rank. The low-rank approximationQorig ≈ LR

can be obtained efficiently via techniques similar to that for compressing off-diagonal

blocks in the HBS method. The details can be found in [50].

The solver would also work for the situation where the changes or perturbations

are not for the boundary but the discretization of the boundary. One example of this

shown in Figure 2.4.2 is solving the problem with a new discretization obtained by

locally refining the original one. The Stokes solution scheme proposed in chapter 4

falls in this category and uses this algorithm for handling the refinements added to

the boundary wall in the region approached by swimmers.

29

Γk

(a) (b) (c)

Γc Γp

Figure 2.4.2 : (a) The star geometry with the portion of the boundary to be re-
fined boxed. (b) The three Gaussian panels in the boxed region from the original
discretization. (c) The six Gaussian panels that replaced the original three panels.

30

Chapter 3

A fast direct solver for quasi-periodic scattering in

layered media

Periodic layered structures are important in designing optical and electromagnetic

devices. Some specific examples are solar cells (thin-filmed photovoltaic cells [42,

43] and solar thermal power units [44]), dielectric gratings for high-powered laser

[45, 46] and wideband [47] applications. Most of these applications require solving

a scattering problem for a large number of incident angles. For example, in many

engineering applications, a Bragg diagram created from the solution of 200 boundary

value problems is desired. In optimal design setting, a scattering problem is nested

inside of an optimization loop. When the geometry and material properties are close

to the optimal choice, the changes in the scattering problem are often localized to

a few layers. This chapter presents a fast direct solution technique for solving two

dimensional wave scattering problems from periodic multilayered structures. When

the interface geometries are complex, the dominant term in the computational cost of

creating the direct solver scales O(NI) where N is the number discretization points

on each interface and I is the number of interfaces. The bulk of the precomputation

can be re-used for any choice of incident wave. An added benefit of the presented

solver is that building an updated solver for a new structure with a replaced interface

or change in material property in a layer is inexpensive compared to building a new

fast direct solver from scratch.

31

3.1 Introduction

This chapter considers the I + 1 layered scattering problem defined by

(Δ+ ω2
i)ui(x) = 0 x ∈ Ωi

u1 − u2 = −uinc(x) x ∈ Γ1

∂u1

∂ν
− ∂u2

∂ν
= −∂uinc

∂ν
x ∈ Γ1

ui − ui+1 = 0 x ∈ Γi, 1 < i < I + 1

∂ui

∂ν
− ∂ui+1

∂ν
= 0 x ∈ Γi, 1 < i < I + 1

(3.1.1)

where ui is the unknown solution in the region Ωi ∈ R2, the wave number in Ωi is

given by ωi for i = 1, . . . , I + 1, and ν(x) is the normal vector at x. The interface

Γi for i = 1, . . . , I between each layer is periodic with period d. The boundary

conditions enforce continuity of the solution and its flux through the interfaces Γi.

The incident wave uinc is defined by uinc(x) = eik·x where the incident vector is

k = (ω1 cos θ
inc,ω1 sin θ

inc) and the incident angle is −π < θinc < 0. Figure 3.1.1

illustrates a five layered periodic geometry. The incident wave uinc is quasi-periodic

up to a phase, i.e. uinc(x + d, y) = αuinc(x, y) for (x, y) ∈ R2, where α is the Bloch

phase defined by

α := eiω1d cos θinc .

In the top and bottom layer, the solution satisfies a radiation condition that is char-

acterized by the uniform convergence of the Rayleigh-Bloch expansions (see section

3.2 of [57].)

This chapter presents a fast direct solver for the multilayered media integral equa-

32

❅
❅❘

��

uinc

Ω1

Ω2

Ω3

Ω4

Ω5

Γ1

Γ2

Γ3

Γ4

✛ ✲d

✛ ✲d

Figure 3.1.1 : A five layered periodic geometry. 7 periods are shown.

tion formulation presented in [48]. This integral formulation is robust even at the so-

called Wood’s anomalies. The computational cost of the proposed fast direct solver

scales linearly with respect to the number of discretization points on the interfaces.

When a layer is changed with new material properties and/or a new interface geom-

etry, the cost of updating the direct solver scales linearly with respect to the number

of discretization points affected by the modification. For changing an interface, up-

dating the direct solver has a cost that scales linearly with respect to the number

of discretization points on the new interface. For updating a wave number in Ωi,

the cost scales linearly with respect to the number of discretization points on the

interfaces bounding Ωi. This makes the solution technique a good option for optimal

design and inverse scattering applications.

33

3.1.1 Related work

Direct discretization of (3.1.1) is possible via finite difference or finite element methods

[58] but it faces two challenges, (i) meshing to the interfaces to maintain accuracy

and (ii) enforcing the radiation condition. Meshing to the interfaces can be effec-

tively handled using mesh generation software such as GMSH [59]. Techniques such

as perfectly matched layers [60] can artificially enforce radiation conditions but can

introduce artificial reflections and suffer from high condition numbers. Another chal-

lenging aspect of using finite element methods is that there is a loss in accuracy if

the points per wavelength remains fixed (the so-called pollution effect) [61]. Another

alternative method for directly discretizing (3.1.1) is the rigorous-coupled wave anal-

ysis (RCWA) or Fourier Modal Method. It is designed for multilayer gratings [62]

and it depends on an iterative solve. While a Fourier factorization method [63, 64]

can be used to accelerate convergence of an iterative solver, this solution approach is

not ideal for problems with many right hand sides that arise in applications. RCWA

also has difficulty solving problems with interfaces that cannot be defined as a graph

of a function of the x-coordinate such as the “hedgehog” interfaces in Figure 3.4.4(b).

Most often RCWA is used for geometries like cones and pillars. There is a concern

that the method is too simplified to capture complex structures[65, 66, 67, 68].

When each layer is comprised of constant coefficient (not heterogeneous) medium,

it is possible to recast (3.1.1) as a collection of boundary integral equations where the

unknowns lie on the interfaces between layers. There has been much work towards the

use of boundary integral equations for quasi-periodic scattering problems including

[69, 70, 71, 72, 73]. Reviews of boundary integral equation techniques for scattering

off a quasi-periodic array of obstacles are presented in [48, 74, 38]. The review in this

paper focuses on techniques for layered media. A boundary integral technique utilizing

34

a fast direct solver for two layered media with periodic structures was presented in

[75]. The integral formulation utilized the quasi-periodic Green’s function which is

defined as an infinite series. For some choices of boundary data, this series does not

converge even though the problem is well posed. An incident angle θinc that causes

the quasi-periodic Green’s function not to converge is called aWood’s anomaly. There

have been many techniques suggested to avoid these anomalies (such as [74, 76]). A

fast direct solver was constructed for quasi-periodic scattering off an infinite array of

scatterers in [38] for the robust integral formulation presented in [74]. The work in this

chapter is an extension of that work to multilayered media problems. It builds on the

robust integral formulation in [48] though it is likely possible to build similar direct

solvers for other formulations that are robust at Wood’s anomalies. The integral

formulation in [48] makes use of the free space Helmholtz Green’s function, avoids

the infinite sum and uses auxiliary unknowns to enforce periodicity. The radiation

condition is satisfied by enforcing continuity of the integral equation solution with

the Rayleigh-Bloch expansions.

Recently, [77] replaced the boundary integral formulation in this approach to a

technique based on the method of fundamental solutions. This exchanges a second

kind integral equation for a formulation that results in a system that is exponentially

ill-conditioned.

3.1.2 High level view of the solution technique

Due to the problems associated with the quasi-periodic Green’s function and a desire

to exploit the constant coefficient medium, the fast direct solver is built for the

robust boundary integral formulation proposed in [48]. Each interface has a boundary

integral equation that has “structural” similarities to a boundary integral equation

35

for scattering off a single closed curve. The structural similarity is that a block

matrix in the discretized boundary integral equation is amenable to fast direct solution

techniques such as HBS method (section 2.3). Recall from section 1.3 these fast direct

solvers utilize the fact that the off-diagonal blocks of the discretized integral equation

are low rank to create compressed representations of the matrix and its inverse.

The linear system resulting from the discretization of the integral formulation in

[48] is rectangular where the principle sub-block is a block tridiagonal matrix. Each

block in this tridiagonal matrix corresponds to a discretized boundary integral oper-

ator that (in the low frequency regime) is amenable to compression techniques such

as those in fast direct solvers. Utilizing this and separating the matrices that depend

on Bloch phase allows for the precomputation of the direct solver to be utilized for

all choices of incident angle. The Bloch phase dependence of many of the other block

matrices in the rectangular system can be separated out in a similar manner allowing

them to be reused for multiple solves. Further acceleration is gained by exploiting

the block diagonal or nearly block diagonal sparsity pattern of all the matrices. The

combination of all these efforts dramatically reduces the cost of processing the many

solves needed in applications.

The fast direct solver presented in this chapter is ideally suited for applications

that require many solves per geometry, involve solving problems where there are

changes in a subset of the layers (material properties and/or interface geometries), or

a combination of many solves per geometry and changes in the geometry. Applications

where the solver can be of benefit include optimal design of layered materials and

inverse scattering problems where the goal is to recover the thickness and/or the

material properties of intermediate layers. While the problems under consideration

are acoustic scattering, the solution technique can be extended to transverse electric

36

(TE) and transverse magnetic (TM) wave problems.

The direct solver presented in this chapter is built for the robust boundary integral

formulation proposed in [48] which enforces continuity of the solution and flux through

interfaces. The integral formulation can be extended to problems where there are

jumps in the solution and flux as long as these jumps are consistent with the quasi-

periodicity conditions.

3.1.3 Outline

The chapter begins by reviewing the integral formulation from [48] in section 3.2.

Next, section 3.3 presents the proposed fast direct solver. Numerical results in section

5.4 illustrate the performance of the direct solver. Section 5.5 summarizes and reviews

the key features of the presented work.

3.2 Periodizing scheme

This section provides a review of the boundary integral formulation presented in [48].

The necessary integral operators are presented in 3.2.1. Then the full representation is

presented in 3.2.2. Finally, the linear system resulting from enforcing continuity and

quasi-periodicity of the solution is presented in section 3.2.3. The integral formulation

proposed in [48] solves (3.1.1) in an infinite vertical unit strip of width d. Because

the solution is known to be quasi-periodic, the solution outside of the unit strip can

be found by scaling the solution by the appropriate Bloch phase factor. Let x = L

and x = R denote the left and right bounds for the unit strip. The solution technique

further partitions space by introducing artificial top and bottom walls to the unit

strip at y = yU and y = yD respectively. Figure 3.2.1(a) illustrates this partitioning.

The box bounded by these artificial boundaries is called the unit cell. Inside the unit

37

cell the solution is represented via an integral formulation. Above and below the unit

cell, (i.e. for points in the unit strip where y > yU and y < yD), the solution is given

by Rayleigh-Bloch expansions. Specifically, for x = (x, y) in the unit strip where

y > yU , the solution is given by

u(x, y) =
�

n∈Z
aUn e

iκnxeik
U
n (y−yU) (3.2.1)

and, for x = (x, y) in the unit strip where y < yD, the solution is given by

u(x, y) =
�

n∈Z
aDn e

iκnxeik
D
n (−y+yD) (3.2.2)

where κn := ω1 cos θ
inc + 2πn

d
, kU

n =
�
ω2
1 − κ2

n, k
D
n =

�
ω2
I+1 − κ2

n and the sets

{aUn } and {aDn } are coefficients to be determined. The square root can be either a

positive real or positive imaginary number.

3.2.1 Integral operators

This section presents the integral operators needed to represent the solution inside

the unit cell.

Let Γi for i = 1, . . . , I denote the interfaces inside the unit cell and Ωi denote the

regions between for each layer in the unit cell. Both are numbered from the top to

the bottom. Figure 3.2.1(a) illustrates the numbering of the five layered geometry

within the unit cell.

Let Gω(x,y) =
i
4
H

(1)
0 (ω�x − y�) denote the two dimensional free space Green’s

function for the Helmholtz equation with wave number ω where H1
0 is the Hankel

function of zeroth order [78].

The standard Helmholtz single and double layer integral operators defined on a

38

(a)

L R

y = yU

y = yD

Γ1

Γ2

Γ3

Γ4

(b)

Ω1

Ω2

Ω3

Ω4

Ω5

P1

P2

P3

P4

P5

Figure 3.2.1 : This figure illustrates a five layered periodic geometry with artificial
walls and proxy circles. Only three periods of the infinite periodic geometry are
shown. The period contained within the unit cell is in black while the other two
periods are in blue. Figure (a) illustrates the notation for the unit cell with left,
right, upper, and lower boundary L, R, U , and D shown in red lines. Figure (b)
illustrates the proxy circles Pi for each layer. The color of the proxy circles alternates
between green and magenta.

39

curve W [79] are

(Sω
Wρ)(x) =

�

W

Gω(x,y)ρ(y)dl(y) and (Dω
Wρ)(x) =

�

W

∂νyGω(x,y)ρ(y)dl(y),

respectively, where νy denotes the normal vector at the point y ∈ W .

For the periodizing scheme, integral operators involving the unit cell and its neigh-

bors (left and right) are needed.

These operators, denoted with tilde, are defined as follows

(S̃ω
Wρ)(x) =

1�

l=−1

αl

�

W

Gω(x,y + ld)ρ(y)dl(y)

= (Sω
Wρ)(x) + (Sω,pm

W ρ)(x)

(3.2.3)

and

(D̃ω
Wρ)(x) =

1�

l=−1

αl

�

W

∂νyGω(x,y + ld)ρ(y)dl(y)

= (Dω
Wρ)(x) + (Dω,pm

W ρ)(x)

(3.2.4)

where

(Sω,pm
W ρ)(x) =

1�

l=−1,l �=0

αl

�

W

Gω(x,y + ld)ρ(y)dl(y) (3.2.5)

and

(Dω,pm
W ρ)(x) =

1�

l=−1,l �=0

αl

�

W

∂νyGω(x,y + ld)ρ(y)dl(y). (3.2.6)

The notation pm stands for plus-minus referring to the right and left neighboring

copies of the W .

These integral operators are not sufficient to enforce quasi-periodicity. They are

missing information from the infinite copies that are “far” from the unit cell. A proxy

40

basis is used to capture the missing information. For simplicity, consider a layer Ωl.

Let {yj}Pj=1 denote a collection of uniformly distributed points on a circle Pl of radius

2d that is centered in Ωl. The proxy circle needs to be large enough to shield the

interface in the unit cell from its far-field copies, which are more than 3d
2
away from

the center of Γi in the horizontal direction. It is proved in [80] that larger proxy

radius leads to higher order convergence rate with respect to the number of basis

functions P . However, the radius cannot be arbitrarily large, as the magnitude of the

coefficients grows exponentially with respect to the ratio between the proxy radius

and 3d
2
. We set the radius of the proxy circle to be Rproxy ∈

�
3d
2
, 2d
�
as in [48]. The

elements of the proxy basis used to capture the far field information are defined by

φωl
j =

∂Gωl

∂nj

(x,yj) + iωlGωl
(x,yj) (3.2.7)

where nj is the normal vector at yj on Pl. This choice of basis results in smaller

coefficients when compared to using just the single or double layer potential as a

basis [48]. If the layer has a high aspect ratio (i.e. much taller than d), the proxy

surface should be taken to be an ellipse; see page 8 of [48]. Figure 3.2.1(b) illustrates

the proxy circles for a five layered geometry.

The boundary integral equations involve additional integral operators which we

define in this section for simplicity of presentation. Specifically, an integral operator

defined on an interface W will need to be evaluated at x ∈ V where V is an interface

(the same or a vertical neighbor of W). For x ∈ V where V is an interface, let (S̃ω
V,Wρ)

denote the evaluation of (3.2.3) at x, i.e.

(S̃ω
V,Wρ)(x) =

1�

l=−1

αl

�

W

Gω(x,y + ld)ρ(y)dl(y).

41

Likewise, let (D̃ω
V,Wρ) denote the evaluation of (3.2.4) at x ∈ V , i.e.

(D̃ω
V,Wρ)(x) =

1�

l=−1

αl

�

W

∂νyGω(x,y + ld)ρ(y)dl(y).

The pm notation for the neighbor interactions follows in a similar fashion. For exam-

ple, the operator (S̃ω
V,Wρ)(x) can be written as the following sum

(S̃ω
V,Wρ)(x) = (Sω

V,Wρ)(x) + (Sω,pm
V,W ρ)(x),

where

(Sω,pm
V,W ρ)(x) =

1�

l=−1, l �=0

αl

�

W

Gω(x,y + ld)ρ(y)dl(y).

In order to enforce continuity of the fluxes, the normal derivatives of these integral

operators are required. For x ∈ V where V is an interface, let (D̃∗,ω
W,V ρ) denote the

evaluation of the normal derivative of the single layer operator (3.2.3) at x, i.e.

(D̃∗,ω
W,V ρ)(x) =

1�

l=−1

αl

�

W

∂νxGω(x,y + ld)ρ(y)dl(y)

where νx is the normal vector at x ∈ V . Similarly, let (T̃ ω
W,V ρ) denote the evaluation

of the normal derivative of the double layer operator (3.2.4) at x, i.e.

(T̃ ω
W,V ρ)(x) =

1�

l=−1

αl

�

W

∂νx∂νyGω(x,y + ld)ρ(y)dl(y).

3.2.2 Integral formulation

The periodizing scheme within the unit cell is based on a modified version of the

combined field boundary integral formulation [81, 82]. Specifically, the solution in

42

the unit cell is expressed as

u1(x) = (S̃ω1
Γ1
σ1)(x) + (D̃ω1

Γ1
τ1)(x) +

P�

j=1

c1jφ
ω1
j (x) for x ∈ Ω1, (3.2.8)

uI+1(x) = (S̃ωI+1

ΓI
σI)(x) + (D̃ωI+1

ΓI
τI)(x) +

P�

j=1

cI+1
j φ

ωI+1

j (x) for x ∈ ΩI+1, and

(3.2.9)

ui(x) = (S̃ωi
Γi−1

σi−1)(x) + (D̃ωi
Γi−1

τi−1)(x) + (S̃ωi
Γi
σi)(x) + (D̃ωi

Γi
τi)(x) +

P�

j=1

cijφ
ωi
j (x)

(3.2.10)

for x ∈ Ωi, 2 ≤ i ≤ I where σi and τi are unknown boundary charge distributions

and {cij}Pj=1 are unknown constants , for i = 1, . . . , I.

Enforcing the transmission condition in equation (3.1.1) corresponding to conti-

nuity of the solution through the interfaces results in the following integral equations:

−τ1 + (D̃ω1
Γ1,Γ1

− D̃ω2
Γ1,Γ1

)τ1 + (S̃ω1
Γ1,Γ1

− S̃ω2
Γ1,Γ1

)σ1 − D̃ω2
Γ1,Γ2

τ2 − S̃ω2
Γ1,Γ2

σ2

+
P�

p=1

(c1pφ
ω1
p − c2pφ

ω2
p)|Γ1 = −uinc on Γ1,

(3.2.11)

−τI + (D̃ωI
ΓI ,ΓI

− D̃
ωI+1

ΓI ,ΓI
)τI + (S̃ωI

ΓI ,ΓI
− S̃ωI

ΓI ,ΓI
)σI − D̃

ωI+1

ΓI ,ΓI−1
τI−1 − S̃

ωI−1

ΓI ,ΓI−1
σI−1

+
P�

p=1

(cIpφ
ωI
p − cI+1

p φωI+1
p)|ΓI

= 0 on ΓI ,

(3.2.12)

and

43

−τi + (D̃ωi
Γi,Γi

− D̃
ωi+1

Γi,Γi
)τi + (S̃ωi

Γi,Γi
− S̃ωi

Γi,Γi
)σi + D̃ωi

Γi,Γi−1
τi−1 + D̃

ωi+1

Γi,Γi+1
τi+1+

S̃ωi
Γi,Γi−1

σi−1 + S̃
ωi+1

Γi,Γi+1
σi+1 +

P�

p=1

(cipφ
ωi
p − ci+1

p φωi+1
p)|Γi

= 0 on Γi for 1 < i < I

(3.2.13)

where S̃ωi
Γi+1,Γi

denotes the periodized single layer integral operator (3.2.3) defined on

Γi evaluated on Γi+1, etc.

Likewise, enforcing the transmission condition in equation (3.1.1) corresponding

to continuity of the flux through the interfaces results in the following boundary

integral equations:

−σ1+(T̃ ω1
Γ1,Γ1

− T̃ ω2
Γ1,Γ1

)τ1 + (D̃∗,ω1

Γ1,Γ1
− D̃∗,ω2

Γ1,Γ1
)σ1 − T̃ ω2

Γ1,Γ2
τ2 − D̃∗,ω2

Γ1,Γ2
σ2

+
P�

p=1

�
c1p
∂φω1

p

∂ν
− c2p

∂φω2
p

∂ν

�
|Γ1 = −∂uinc

∂ν
on Γ1,

(3.2.14)

−σI + (T̃ ωI
ΓI ,ΓI

− T̃
ωI+1

ΓI ,ΓI
)τI + (D̃∗,ωI

ΓI ,ΓI
− D̃∗,ωI

ΓI ,ΓI
)σI − T̃

ωI+1

ΓI ,ΓI−1
τI−1 − D̃

∗ωI−1

ΓI ,ΓI−1
σI−1

+
P�

p=1

�
cIp
∂φωI

p

∂ν
− cI+1

p

∂φ
ωI+1
p

∂ν

�
|ΓI

= 0 on ΓI ,

(3.2.15)

and

44

−σi + (T̃ ωi
Γi,Γi

− T̃
ωi+1

Γi,Γi
)τi + (D̃∗,ωi

Γi,Γi
− D̃∗,ωi

Γi,Γi
)σi ++T̃ ωi

Γi,Γi−1
τi−1 + T̃

ωi+1

Γi,Γi+1
τi+1

+ D̃∗,ωi

Γi,Γi−1
σi−1 + D̃

∗,ωi+1

Γi,Γi+1
σi+1 +

P�

p=1

�
cip
∂φωi

p

∂ν
− ci+1

p

∂φ
ωi+1
p

∂ν

�
|Γi

= 0 on Γi for 1 < i < I.

(3.2.16)

3.2.3 The linear system

Once the representation of the solution has been determined and the boundary inte-

gral equations derived, the unknown densities, periodicity constants cij for the proxy

surfaces and the coefficients of the Rayleigh-Bloch expansion need to be approxi-

mated. This is done by approximating the boundary integral equations, enforcing

the quasi-periodicity of the solution and its flux on the left and right walls, and

enforcing the continuity of the solution through the top and bottom of the unit cell.

In this chapter, the boundary integral equations are discretized via a Nyström

method but the fast direct solver can be applied to the linear system arising from

other discretizations. Let Nl denote the number of discretization points on interface

Γl. As in [48], the quasi-periodicity is enforced at points that lie on Gaussian panels

between each interface on the left and right walls of the unit cell. Let Mw denote the

number of points used to enforce periodicity in a layer. (For simplicity of presentation,

we assume this number is the same for all the layers.) Lastly, the continuity of the

integral representation and the Rayleigh-Bloch expansions is enforced at collection

of M uniformly distributed points on the top and bottom of the unit cell. The

Rayleigh-Bloch expansions are truncated at ±K.

45

The rectangular linear system that arises from these choices has the form




A B 0

C Q 0

Z V W







σ̂

c

a



=




f

0

0




(3.2.17)

where A is a matrix of size 2N ×2N with N =
�I

l=1 Nl, B is a matrix of size 2N ×P

with P =
�I+1

l=1 Pl, C is a matrix of size 2(I + 1)Mw × 2N , Q is a matrix of size

2(I + 1)Mw × P , Z is a matrix of size 4M × 2N , V is a matrix of size 4M × P , and

W is a matrix of size 4M × 2(2K+1). The first row equation enforces the continuity

of the scattered field and its flux through the interfaces. The second row equation

enforces the quasi-periodicity of the solution and the flux. The last row equation

enforces continuity of the integral representation and the Rayleigh-Bloch expansions.

When the interface geometries are complex, a large number of discretization points

N are needed to achieve a desired accuracy. Because the number of discretization

points on an interface Ni is significantly larger than M , K, and P in this scenario,

the cost of inverting a matrix the size of A dominates the cost of building a direct

solver. For this reason, it is best to build the direct solver in a manner that allows for

the bulk of the computational cost associated with matrices of the size 2N × 2N to

be reused. We choose to build a fast direct solver for (3.2.17) via the following block

46

solve:

σ̂ = −A−1


[B 0]




c

a


+A−1f


 (3.2.18)




c

a


 = −







Q 0

V W


−




C

Z


A−1[B 0]




† 


C

Z


A−1f (3.2.19)

where † denotes the Penrose pseudo-inverse.

Remark 3.2.1 A linear scaling direct solver can be built by processing the block solve

in the same order as in [48]; i.e. solving for [c a]T first. The matrix that needs to

be inverted in order to solve for σ̂ is an approximation of the quasi-periodic Green’s

function and thus can be ill-conditioned when the incident angle is a Wood’s anomaly.

Each of the matrices in (3.2.17) has a sparsity pattern that can be used to accel-

erate the block solve. The bulk of the acceleration comes from a fast direct solver for

the matrix A (see section 3.3.1).

The matrix A is block tridiagonal. The diagonal blocks of A denoted by Aii can

be written as the sum of two matrices As
ii and Apm

ii where As
ii corresponds to the

integral operator on Γi in the unit cell evaluated on Γi, i.e.

As
ii =




−I +Dωi
Γi,Γi

−D
ωi+1

Γi,Γi
Sωi
Γi,Γi

− S
ωi+1

Γi,Γi

T ωi
Γi,Γi

− T
ωi+1

Γi,Γi
I +D∗,ωi

Γi,Γi
−D

∗,ωi+1

Γi,Γi


 ,

where I denotes the identity operator, and Apm
ii is the contributions from the left and

47

right neighboring copies, i.e.

Apm
ii =




Dωi,pm
Γi,Γi

−D
ωi+1,pm
Γi,Γi

Sωi,pm
Γi,{Γi} − S

ωi+1,pm
Γi,Γi

T ωi,pm
Γi,Γi

− T
ωi+1,pm
Γi,Γi

D∗,ωi,pm
Γi,Γi

−D
∗,ωi+1,pm
Γi,Γi


 ,

for i = 1, . . . , I. The upper diagonal blockAi,i+1 corresponds to the integral operators

on Γi+1 being evaluated on Γi, i.e.

mtxAi,i+1 =




−D̃
ωi+1

Γi,Γi+1
−S̃

ωi+1

Γi,Γi+1

−T̃
ωi+1

Γi,Γi+1
−D̃

∗,ωi+1

Γi,Γi+1


 ,

for i = 1, . . . , I − 1. The lower diagonal blocks Ai,i−1 correspond to the integral

operators on Γi−1 being evaluated on Γi, i.e.

Ai,i−1 =




D̃ωi
Γi,Γi−1

S̃ωi
Γi,Γi−1

T̃ ωi
Γi,Γi−1

D̃∗,ωi

Γi,Γi−1


 ,

for i = 2, . . . , I.

The matrix B is upper block diagonal with block defined by

Bi,i =




φωi
1 |Γi

· · · φωi
P |Γi

∂φ
ωi
1

∂n
|Γi

· · · ∂φωi

∂n P
|Γi


 and Bi,i+1 =




−φ
ωi+1

1 |Γi
· · · −φ

ωi+1

P |Γi

−∂φ
ωi+1
1

∂n
|Γi

· · · −∂φωi+1

∂n P
|Γi




(3.2.20)

for i = 1, . . . , I. The matrix C is lower block diagonal with blocks defined by

Ci,i =




α−2Dωi
Ri+d,Γi

− αDωi
Li−d,Γi

α−2Sωi
Ri+d,Γi

− αSωi
Li−d,Γi

α−2T ωi
Ri+d,Γi

− αT ωi
Li−d,Γi

α−2D∗,ωi

Ri+d,Γi
− αD∗,ωi

Li−d,Γi


 and (3.2.21)

48

Ci,i−1 =




α−2Dωi
Ri+d,Γi−1

− αDωi
Li−d,Γi−1

α−2Sωi
Ri+d,Γi−1

− αSωi
Li−d,Γi−1

α−2T ωi
Ri+d,Γi−1

− αT ωi
Li−d,Γi−1

α−2D∗,ωi

Ri+d,Γi−1
− αD∗,ωi

Li−d,Γi−1


 (3.2.22)

for i = 1, . . . , I and i = 2, . . . , I + 1, respectively. The matrix Q is block diagonal

with blocks given by

Qii =




α−1φωi
1 |Ri

− φωi
1 |Li

· · · α−1φωi
P |Ri

− φωi
P |Li

α−1 ∂φ
ωi
1

∂n
|Ri

− ∂φ
ωi
1

∂n
|Li

· · · α−1 ∂φ
ωi
P

∂n
|Ri

− ∂φ
ωi
P

∂n
|Li


 (3.2.23)

for i = 1, . . . , I + 1.

The matrices Z, V, and W are sparse matrices of the form

Z =




ZU 0 · · · 0

0 · · · 0 ZD


 , V =




VU 0 · · · 0

0 · · · 0 VD


 , andW =




WU 0

0 WD




where

ZU =




D̃ω1
U,Γ1

S̃ω1
U,Γ1

T̃ ω1
U,Γ1

D̃∗,ω1

U,Γ1


 , ZD =




D̃
ωI+1

D,ΓI
S̃
ωI+1

D,ΓI

T̃
ωI+1

U,ΓI
D̃

∗,ωI+1

U,ΓI


 , (3.2.24)

VU =




φω1
1 |U · · · φω1

P |U
φ
ω1
1

∂ν
|U · · · φ

ω1
P

∂ν
|U


 , VD =




φ
ωI+1

1 |D · · · φ
ωI+1

P |D
φ
ωI+1
1

∂ν
|D · · · φ

ωI+1
P

∂ν
|U


 , (3.2.25)

WU =




−eiκ−Kx|U · · · −eiκKx|U
−ikU

−Ke
iκ−Kx|U · · · −ikU

Ke
iκKx|U


 , andWD =




−eiκ−Kx|D · · · −eiκKx|D
ikD

−Ke
iκ−Kx|D · · · ikD

Ke
iκKx|D


 .

(3.2.26)

The matrices WU and WD correspond to the evaluation of the terms in the

49

Rayleigh-Bloch expansions at points on the top and bottom of the unit cell where

continuity of the solution is enforced.

3.3 The fast direct solver

While exploiting the sparsity of the matrices can accelerate the construction of a direct

solver, the speed gains are not sufficient for applications when the interface geometries

are complex. When the interface geometries are complex, the cost of building a direct

solver for the rectangular system is dominated by the cost of inverting A. The fast

direct solver proposed in this section exploits not only the sparsity but also the data

sparse nature of the matrix A.

The foundation of the fast direct solver is a fast inversion technique forA presented

in section 3.3.1. The fast inversion of A allows for σ̂ to be computed for a cost that

scales linearly with respect to N via equation (3.2.18). Constructing and applying an

approximation of the pseudo-inverse of the Schur complement

S = −







Q 0

V W


−




C

Z


A−1[B 0]


 . (3.3.1)

is needed to find c and a via (3.2.19). The approximate pseudo-inverse is created

by first computing an �Schur-truncated singular value decomposition (SVD) and then

applying the pseudo-inverse of this factorization.

Definition 3.3.1 Let UΣT∗ be the SVD of the Schur complement matrix S of size

(2(I +1)Mw +4M)× (P +2(2K +1)) where Σ is a diagonal rectangular matrix with

entries of the singular values of S and matrices U and T are unitary matrices of size

(2(I + 1)Mw + 4M)× (2(I + 1)Mw + 4M) and (P + 2(2K + 1))× (P + 2(2K + 1)),

50

respectively. Then the �Schur -truncated SVD is

ÛΣ̂T̂∗

where Σ̂ is a diagonal square matrix of size l × l where l is the number of singular

values of S that are larger than �Schur, Û is an (2(I + 1)Mw + 4M)× l matrix and T̂

is an (P + 2(2K + 1))× l matrix.

In practice, we found �Schur = 10−13 is a good choice when the desired accuracy for

the solution is 10−10.

Then c and a can be approximated by




c

a


 ≈ T̂Σ̂−1Û∗




C

Z


A−1f .

The most efficient way to find c and a is to apply the matrices from right to left

in this equation meaning that the vectors are found via a collection of matrix vector

multiplies.

Remark 3.3.1 The cost of constructing the truncated SVD for S scales cubically with

respect to the number of interfaces I, if done via dense linear algebra, but is constant

with respect to the number of points per interface.

Combining the fact that many of the matrices (less scalar factors) in (3.2.17) can

be re-used for multiple incident angles (see section 3.3.3) and the fast direct solver

for A results in a fast direct solver that is ideal for problems where many solves are

required. An additional key feature of the fast direct solver is that the bulk of the

precomputation can be re-used if an interface Γj or a wave speed ωj is changed (see

51

Section 3.3.4).

3.3.1 Fast inversion of A

The key to building the fast direct solver for the block system (3.2.17) is having a

fast way of inverting A. This technique is designed to make solves for different Bloch

phases as efficient as possible.

The solver considers the matrix A written as the sum of two matrices

A =




As
11 0 0 0 0

0 As
22 0 0 0

0 0
. . . 0 0

0 0 0 As
I−1,I−1 0

0 0 0 0 As
II




� �� �
A0

+




Apm
11 A12 0 0 0

A21 Apm
22 A23 0 0

0 0
. 0

0 0 AI−1,I−2 Apm
I−1,I−1 AI−1,I

0 0 0 AI,I−1 Apm
II




� �� �
Â

(3.3.2)

where the block diagonal matrix A0 contains all the self-interaction matrices and the

block tridiagonal matrix Â contains diagonal blocks corresponding to the interaction

of an interface with its left and right neighbors and off-diagonal blocks corresponding

to the interactions between the interfaces directly above and below each other. Since

the submatrices in Â correspond to “far” interactions, they are numerically low rank.

52

Let LR denote the low rank factorization of Â where L and RT are 2N×ktot matrices

and ktot is the numerical rank of Â. Section 3.3.2 presents a technique for constructing

this factorization. Then A can be approximated by

A ≈ A0 + LR.

The advantage of this representation is that the factors L and R can be computed in

a way that is independent of Bloch phase as presented in section 3.3.2. Additionally,

the inverse can be formulated via a Woodbury formula [83]

A−1 ≈ (A0 + LR)−1 = A−1
0 −A−1

0 L
�
I+RA−1

0 L
�−1

RA−1
0 . (3.3.3)

Not only is the matrix A0 block diagonal but each of the diagonal blocks is

amenable to a fast direct solver such as the HBS method in section 2.3. Thus an

approximate inverse of A0 can be constructed and applied for a cost that scales lin-

early with respect to the number of discretization points on the interfaces. This

computation is independent of Bloch phase. The condition number of (I +RA−1
0 L)

is bounded above by the product of the condition number of A0 and (A0 + LR)

[84]. Since both A and A0 result from the discretization of second kind boundary

integral equations, they are well-conditioned. Thus applying the Woodbury formula

is numerically stable.

It is never necessary to construct the approximation of A−1. It is only necessary

to have a fast algorithm for applying it to a vector f ∈ C2N×1, i.e. a fast algorithm is

needed for evaluating

A−1f ≈ A−1
0 f −A−1

0 L
�
I+RA−1

0 L
�−1

RA−1
0 f . (3.3.4)

53

The fast direct solver for A0 and the block structure of the matrices L and R allow

for A−1
0 L and RA−1

0 f to be evaluated for a cost that scales linearly with N . Thanks

to the sparsity pattern of the matrices, the intermediate matrix S2 = I +RA−1
0 L of

size ktot × ktot that needs to be inverted is block tridiagonal. Appendix A.1 reports

on the construction of S2. Since ktot is much smaller than N in practice, the inverse

of S2 can be applied rapidly using a block variant of the Thomas algorithm. This

computation needs to be done for each new Bloch phase since L and R are dependent

on Bloch phase.

Remark 3.3.2 To achieve nearly optimal ranks in the construction of the fast direct

solver, it is advantageous to reorder the matrices in A according to the physical

location of the unknowns. For example, if there are N1 discretization points on Γ1,

the unknowns are σ1,1, . . . , σ1,N1 and τ1,1, . . . , τ1,N1 , etc. Then the matrices should be

ordered so σ̂ is as follows

σ̂T = [σ1,1, τ1,1, · · · , σ1,N1 , τ1,N1 , · · · , σI,1, τI,1, · · · , σI,NI
, τI,NI

] .

3.3.2 Low rank factorization of Â

The technique for creating the low rank factorizations of the blocks in Â is slightly

different depending on whether or not the block is on the diagonal. This section begins

by presenting the technique for creating low rank factorizations of the diagonal blocks.

Then the technique for creating the low rank factorizations of the off-diagonal blocks

is presented.

Recall the diagonal blocks of Â are Apm
ii corresponding to the discretized version

54

of

(Sω,pm
Γi,Γi

ρ)(x) = α

�

Γi

Gω(x,y + d)ρ(y)dl(y)

� �� �
right copy: (Sω,p

Γi,Γi
ρ)(x)

+α−1

�

Γi

Gω(x,y − d)ρ(y)dl(y)

� �� �
left copy: (Sω,m

Γi,Γi
ρ)(x)

.

The matrix Apm
ii can be written as the sum of two matrices that are independent of

Bloch phase; Apm
ii = αAp

ii + α−1Am
ii . Thus by creating low rank factorizations of Ap

ii

and Am
ii independently, the factorizations can be used for any Bloch phase α. Let

Lp
iR

p
i and Lm

i R
m
i denote the low rank approximations of Ap

ii and Am
ii respectively.

These two approximations are combined to create a low rank approximation of Apm
ii

as follows:

Apm
ii ≈ [Lp

i , L
m
i]� �� �

Lpm
ii




αRp
i

α−1Rm
i




� �� �
Rpm

ii

The technique used to create the low rank factorizations is similar to the one used

in [85]. The new technique has an extra step to keep the rank ktot small.

For brevity, this chapter only presents the technique for compressing the interac-

tion with the left neighbor (i.e. computing the low rank factorization of Am
ii). The

technique for compressing the interaction with the right neighbor follows directly.

We choose to build the factorization via the interpolatory decomposition [86, 87]

defined as in section 2.1.

Creating the low rank factorization of Am
ii by directly plugging it into the interpo-

latory decomposition has a computational cost of O(N2
i ki) where ki is the numerical

rank of Am
ii . This would result in a solution technique that has a computational

cost that scales quadratically, not linearly, with respect to N . To achieve the linear

computational complexity, we utilize potential theory.

55

Recall Γi denotes the part of the ith interface in the unit cell. Let Γm
i denote

the part of the ith interface in the left neighboring cell. First Γi is partitioned into

a collection of S segments γj via dyadic refinement where the segments get smaller

as they approach Γm
i so that Γi = ∪S

j=1γj. Figure 3.3.1 illustrates a partitioning

when compressing the interaction of Γi with Γm
i . The refinement is stopped when the

segment closest to Γm
i has less than nmax points on it. Typically, nmax = 45 is a good

choice.

Γm
i

γ1

(a)

Γm
i

γ5

(b)

Figure 3.3.1 : Illustration of the dyadic refinement partitioning of Γi with 5 levels of
refinement and geometries for compressing Am

ii . (a) Illustration of the proxy surface
(dashed circle) used to compress neighbor interactions when γl is far from Γm

i . (c)
Illustration of the proxy surface (dashed circle) and near points (bold blue curve on
Γm
i) when γl is touching Γm

i .

56

For each segment γj not touching Γm
i , consider a circle concentric with the bound-

ing box containing γj with a radius slightly less than the distance from the center

of the bounding box to Γm
i . Figure 3.3.1(a) illustrates the proxy surface for γ1 when

there are 5 levels of dyadic refinement toward Γm
i . From potential theory, we know

that any field generated by sources outside of this circle can be approximated to high

accuracy by placing enough equivalent charges on the circle. In practice, it is enough

to place a small number of proxy points evenly on the circle. Let nproxy denote the

number of proxy points on the circle. For problems where the direct solver scales

linearly, nproxy is small and chosen to be a constant independent of ωi. For the exper-

iments in this chapter, it is sufficient to set nproxy = 80. Let nj denote the number

of points on γj. An interpolatory decomposition can be constructed for the matrix

Aproxy capturing the interaction between γj and the proxy points. The result is an

index vector Jj and an interpolation matrix Pj of size nj × kj where kj is the numer-

ical rank of Aproxy. For γS (the segment touching Γm
i), nproxy proxy points are placed

uniformly on a circle of radius 1.75 times larger than the radius of the smallest circle

containing all the points on γS. All the points on Γm
i inside the circle are labeled near

points and indexed Inear. Figure 3.3.1(b) illustrates the proxy circle and near points

for γ5 when there are 5 levels of dyadic refinement toward Γm
i . An interpolatory

decomposition is then performed on [Am
ii (γS, Inear) | Aproxy]. The result is an index

vector JS and an interpolation matrix PS of size nS × kS.

The low rank factorization of the matrix Am
ii can be constructed with the result

of this compression procedure. Let J = [J1(1 : k1), . . . , JS(1 : kS)] denote an index

vector consisting of the index vectors for each segment. Then Lm
i is a block diagonal

matrix with block entries Pj for J = 1, . . . , S and Rm
i = Am

ii (J, :). The points on Γi

corresponding to the index vector J are called the the skeleton points.

57

The rank of this factorization is far from optimal and will result in an excessively

large constant prefactor in the application of the Woodbury formula (3.3.3). A re-

compression step is necessary to resolve this problem. Let korig denote the rank of

the original approximate factorization, i.e. the length of J . If korig is small enough,

applying the interpolatory decomposition to Am
ii (J, :) can be done efficiently result-

ing in an index vector Jup and an interpolation matrix Pup of size korig × kup. Let

Lup = Pup. Otherwise, the interpolatory decomposition can be applied to the subma-

trices corresponding to a lump of the segments at a time. For example, suppose S is

even, then the segments can bunched two at a time. The interpolatory decomposition

can be applied to Am
ii ([Jj(1 : kj), Jj+1(1 : kj+1)], :) for odd values of j. The resulting

interpolation matrices are the block diagonal entries for the block diagonal matrix

Lup. The corresponding index vector Jup is formed in a similar manner to the vector

J . Finally the low rank factorization of Am
ii can be formed by multiplying Lm

i from

before by Lup and using the updated skeleton of J(Jup). In other words, Lm
i = Lm

i Lup

and Rm
i = Am

ii (J(Jup), :).

The technique for constructing the low rank factorization of the off-diagonal blocks

of Â is similar. Recall that each off-diagonal block Aij, for i �= j, corresponds to the

discretization of the following integral operator where x ∈ Γi:

(S̃ω
Γi,{Γj}ρ)(x) =

�

Γj

Gω(x,y)ρ(y)dl(y) + α

�

Γj

Gω(x,y + d)ρ(y)dl(y)

+ α−1

�

Γj

Gω(x,y − d)ρ(y)dl(y).

It is natural to write Aij as the summation of three parts,

Aij = A0,ij + αAp
ij + α−1Am

ij ,

58

whereA0,ij ,A
p
ij, andAm

ij are the discrete approximations of the corresponding integral

operators.

While the actual matrix entries of Aij are dependent on α, the low rank factoriza-

tion can be computed independent of α since the matrices need only be scaled by α.

As with the diagonal blocks, building the factorization of Aij directly is computation-

ally prohibitive. (The computational cost of the direct factorization is O(NiNjkij)

where kij is the numerical rank of Aij.) Potential theory is again utilized to decrease

the computational cost. Consider an ellipse horizontally large enough to enclose Γi

and vertically shields Γi from its top and bottom neighbor interface. A collection

of nproxy equivalent charges are evenly distributed on the ellipse in parameter space.

Figure 3.3.2 illustrates a proxy surface used for compressing Ai,i+1. The interpolatory

decomposition is applied to the matrix characterizing the interactions between the

points on Γi and the proxy surface, Aproxy. The index vector Ji and the Ni × kproxy

interpolation matrix Porig,ij are returned. Let Jorig = Ji(1 : kproxy).

As with the diagonal block factorization, kproxy is far from the optimal rank. To

reduce the rank, we apply the interpolatory decomposition to [A0,ij|Ap
ij|Am

ij](Jorig, :).

A kproxy × knew interpolation matrix Pnew,ij and an index vector Jnew are returned.

Then the low rank factorization is complete. One factor can be used for all Bloch

phases; Lij = Porig,ijPnew,ij. The other factor is simply a matrix evaluation; Rij =

Aij(Jij, :) where Jij = Jorig(Jnew). It is important to note that the matrices A0,ij(Jij, :

), Ap
ij(Jij, :) andAm

ij (Jij, :) are computed once as they are independent of Bloch phase.

Thus Rij is formed simply by matrix addition for each new Bloch phase.

Remark 3.3.3 The rank of the factorizations of Aij will depend on the distance be-

tween the interfaces. If the interfaces are space filling, the interaction between the

interfaces is not low rank.

59

Γi

Γi+1 Γp
i+1Γm

i+1

Figure 3.3.2 : Illustration of the proxy surface for compressing Ai,i+1.

3.3.3 The Bloch phase and incident angle dependence

Beyond the matrix A and exploiting the sparsity of the other matrices in (3.2.17),

additional acceleration can be gained for problems where the solution is desired for

multiple incident angles.

The matrix B has block entries (3.2.20) that are independent of Bloch phase and

thus only needs to be computed once. This is also the case for V. The non-zero block

matrices in C in (3.2.21) and (3.2.22) are dependent on α but only as a constant

multiple. Thus the submatrices of C can be precomputed and used for all incident

angles. The same statement is true for Q and Z.

The only matrix that has entries dependent on incident angle is W. In fact, the

matrix W is only dependent on the Bloch phase α. Recall that the Bloch phase is

defined as α = eidω1 cos θinc . This means that for all incident angles that share a Bloch

phase, there exist a representative angle θ̂ such that ω1 cos θ
inc = θ̂ + 2πm

d
for m ∈ Z.

60

Since the entries of W involve

eiκjx = ei(ω1 cos θinc+
2πj
d

)x

for j = −K, . . . ,K, for angles with a shared Bloch phase, the entries of W are

the same up to a shift in the index. For example, suppose that we know that 12

incident angles {θinc1 , . . . , θinc12 } share a Bloch phase and ω1 cos θ
inc
j = θ̂ + 2π(j−1)

d
for

j = 1, . . . , 12. The matrix W is constructed so that it has entries with κj indexed

from −K to K+12. This allows the singular value decomposition of S to be used for

all angles that share a Bloch phase which results in substantial savings. To evaluate

the solution using the resulting coefficients for the Rayleigh-Bloch expansion above or

below the unit cell, it is only necessary to use the terms that correspond to −K, . . . ,K

for that incident angle.

3.3.4 Extensions

Many applications consider boundary value problem (3.1.1) for a collection of ge-

ometries where the variation is in a single interface or wave number in a layer. The

proposed direct solver can efficiently update an existing fast direct solver for these

localized changes in the geometry.

For example, if a user wants to replace Γi, only the matrices corresponding to that

interface need to be recomputed. This includes: the parts of the fast direct solver for

A corresponding to that block row and column, the corresponding block columns of

C and the corresponding block rows of B. If the replaced layer is either the top or

the bottom, then sub-blocks in V and Z need to be updated as well. Independent of

the interface changed, the cost of creating a new direct solver is linear with respect

61

to the number of discretization points on the new interface.

If a user wants to change the wave number ωi in Ωi where 1 < i < I, there are two

interfaces affected Γi and Γi+1. The corresponding block rows and columns of the fast

direct solver of A need to be recomputed. In addition to updating those matrices,

the corresponding blocks in B, C and Q need to be updated. If the wave number is

changed in the top or bottom layer, then the corresponding blocks in Z and V need

to be updated as well. The cost of the update is O(Ni +Ni+1), which is linear with

respect to the number of discretization points on the affected interfaces.

3.4 Numerical examples

This section illustrates the performance of the fast direct solver for several geometries

with up to 11 layers, though the solution technique can be applied to geometries

of arbitrary number of layers. Section 3.4.1 demonstrates the scaling of the fast

direct solver for 3-layer and 9-layer geometries where the wave number alternates

between 10 and 10
√
2 in the layers. The ability for the solution technique to efficiently

solve (3.1.1) for hundreds of incident waves is demonstrated in section 3.4.2. Section

3.4.3 illustrates the performance of the solution technique when the problem has: an

interface geometry that is changed or a wave number that is changed in one of the

layers.

All the geometries considered in this section have period fixed of d = 1. The

vertical separation between the neighbor interfaces is roughly 1 for the geometries

considered in section 3.4.1 and roughly 1.5 for the rest of the experiments. The in-

terfaces are discretized via the Nyström method with a 16-point composite Gaussian

quadrature. The diagonal blocks require specialized quadrature to handle the weakly

singular kernels. For the experiments presented in this section generalized Gaussian

62

[88] quadrature was utilized, but the fast direct solver is compatible with other spe-

cialized quadrature including Alpert [89], Helsing [90], Kapur–Rokhlin [91], and QBX

[92]. The geometries under consideration involve both smooth interfaces and inter-

faces that have corners. In order to achieve high accuracy without over-discretizing,

each corner is discretized with five levels of dyadic refinement. Additionally, the in-

tegral operators are discretized in L2 [93]. The artificial separation walls and proxy

circles are discretized with parameter choices similar to those in [48]. Specifically,

the left and right (vertical) artificial walls for each layer are discretized by Mw = 120

nodes Gauss-Legendre quadrature, the (horizontal) upper and lower walls of the unit

cell are sampled at M = 60 equi-spaced nodes and P = 160 equi-spaced nodes are

chosen on the proxy circle for each layer. For the wave numbers under consideration

in these experiments, it is sufficient to truncate the Rayleigh-Bloch expansions at

K = 20.

For all experiments, a HBS fast direct solver with tolerance � = 10−12 was used to

construct the approximation of A−1
0 in (3.3.3). The tolerance for all of the low rank

factorizations is set to 10−12. The singular value decomposition of S was truncated

at �Schur = 10−13.

All experiments were run on a dual 2.3 GHz Intel Xeon Processor E5-2695 v3

desktop workstation with 256 GB of RAM. The code was implemented in MATLAB,

apart from the interpolatory decomposition, which uses Fortran.

The computational cost of the direct solution technique is broken into four parts:

� Precomputation I: This consists of all computations for the fast linear algebra

that are independent of Bloch phase. This includes the fast application of A−1
0 ,

and the low rank factors Lij and Rij needed to make L and R as presented in

section 3.3.1). The computational cost of this step is O(N) where N =
�I

l=1 Nl,

63

and Nl denotes the number of discertization points on interface l.

� Precomputation II: This consists of the remainder of the precomputation that

is independent of Bloch phase as presented in section 3.3.3. The computational

cost of this step is O(N).

� Precomputation III: This consists of all the precomputation that can be used

for incident angles that share a Bloch phase α, including scaling matrices by α,

constructing the matrix W as explained in section 3.3.3, constructing the fast

apply ofA−1, evaluating the Schur complement matrix S (3.3.1), and computing

the �Schur SVD of S. The computational cost of this step is O(N). For a fixed

number of discretization points on an interface, the computational cost is O(I3).

� Solve: This consists of the application of the precomputed solver to the right

hand side of (3.2.17) via (3.2.18) and (3.2.19). The computational cost of the

solve is O(N). For a fixed number of discretization points on an interface, the

computational cost is O(I2).

The error is approximated via an flux error estimate as in [48] which measures

conservation of energy. This has been demonstrated to agree with the relative error

at any point in the domain.

3.4.1 Scaling experiment

This section illustrates the scaling of the fast direct solver for problems with 3- and

9-layers corresponding to two and eight interface geometries. The wave number in

the layers remains fixed (alternating between 10 and 10
√
2) while the number of

discretization points per layer increases. The geometry consists of alternating two

64

interface geometriesγ1 = (x1(t), y1(t)) and γ2 = (x2(t), y2(t)), which are defined as

γ1 :





x1(t) = t− 0.5

y1(t) =
1
60

�30
j=1 aj sin(2πjt)

and γ2 :





x2(t) = t− 0.5

y2(t) =
1
60

�30
j=1 bj cos(2πjt)

(3.4.1)

for t ∈ [0, 1], where {aj}30j=1 and {bj}30j=1 are random numbers in [0, 1) sorted in

descending order. Figure 3.4.1 illustrates the two interface geometries. In each ex-

periment, γ1 and γ2 are discretized with the same number of points Ni. The run time

in seconds and flux error estimates are reported in Table 3.1.

Each part of the solution technique scales linearly with respect to Ni. The factor

of four increase in time for Precomputation I is expected since the cost scales linearly

with the number of interfaces. Precomputation II should scale linearly with the

number of layers and this is observed with a factor three increase in the timings

for this portion of the solver. Precomputation III is expected to observe a factor

nine increase in the computational cost as this step scales cubically with the number

of layers. A factor of six is observed. This is likely because the problems under

consideration are sub-asymptotic in the number of layers. The same statement is true

for the solve step. As expected the precomputation dominates the cost of the solver

for both experiments. Precomputation parts I, II and III account for approximately

90%, 3%, and 7% of the precomputation time, respectively. Thus the Bloch phase

independent parts of the direct solver dominate the computational cost.

3.4.2 Sweep over multiple incident angles

Many applications require solving (3.1.1) for many incident angles (as discussed in

section 3.1). In this setting, Precomputation I and II only need to be done once.

65

γ1

γ2

Figure 3.4.1 : Three periods of the interface geometries γ1 and γ2 as defined in
equation (3.4.1).

Precomputation III can be utilized for all incident angles that share a Bloch phase α.

This section demonstrates the efficiency of the fast direct solver for handling scattering

problems involving many incident angles. Specifically, we consider the geometry in

Figure 3.4.2 which has eleven layers. The interfaces consist of three different corner

geometries repeated in order. Each of the interfaces contains 40 to 50 right-angle

corners. With the five levels of dyadic refinement into each corner there are 10,000 to

15,000 discretization points per interface. Figure 3.4.3 provides more details about

the corner geometries including how many discretization points were used on each

geometry. The wave number in the layers alternates between 40 and 40
√
2. Equation

(3.1.1) was solved for 287 incident angles between [−0.89π,−0.11π]. This corresponds

to 24 different Bloch phases.

The average flux error estimate over the 287 incident angles is 2.4e − 8. Figure

3.4.2 illustrates the real part of the total field for the incident angle θinc = −0.845π.

The time for constructing and applying the fast direct solver for one incident angle

66

Ni 1280 2560 5120 10240 20480

Precomp I
3-layer 50 100 185 337 569
9-layer 201 407 768 1390 2360

Precomp II
3-layer 1.3 2.4 4.5 8.2 15.8
9-layer 3.8 7.6 13.4 26.1 51.4

Precomp III
3-layer 2.5 5.9 10.6 21.4 41.9
9-layer 14.9 31.5 61.5 117.1 231.2

Solve
3-layer 0.1 0.2 0.8 1.6 3.4
9-layer 0.6 2.5 4.9 13.5 27.9

Flux error
3-layer 4.2e-5 6.9e-6 2.3e-8 3.8e-10 4.5e-10
9-layer 2.1e-4 1.2e-5 1.5e-7 4.6e-11 4.6e-10

Table 3.1 : Time in seconds and flux error estimates for applying the direct solver to
a 3- and 9-layer geometry where the interfaces alternate between γ1 and γ2 defined
in (3.4.1). Ni denotes the number of discretization points for each boundary charge
density on the interface. The wave number alternates between 10 and 10

√
2.

is reported in the column labeled Original Problem in Table 3.3. Table 3.2 reports

the time for applying the proposed solution technique to the 287 boundary value

problems using the same Precomputation I and II for all solves and exploiting the

shared Bloch phase accelerations.

Since the first two parts of the precomputation dominate the computational cost

for this geometry, significant speed up over building the direct solver for each angle

independently is observed. For this problem, the proposed solution technique is 100

times faster than building a fast direct solver from scratch for each incident angle.

There is a 10 times speed up in the time for applying the solver for the multiple

incident angles. This results from the fact that angles that share a Bloch phase are

processed together.

67

Ntotal Precomp I Precomp II Precomp III Solve
121136 2369.3 32.3 4517.4 482.2

(188.2 per Bloch phase) (1.7 per incident angle)

Table 3.2 : Time in seconds for solving 287 incident angles and 24 distinct Bloch
phases on an 11-layer geometry shown in Figure 3.4.2. The incident angles are sam-
pled from [−0.89π,−0.11π].

3.4.3 Local change to the geometry

This section illustrates the performance of the direct solver when there is a change in

one layer of the geometry for the boundary value problem. Either there is a change

in an interface geometry or the wave number has been changed in a layer.

We consider an 11-layer geometry where the original set of interfaces are as illus-

trated in Figure 3.4.2. As in the last section, the wave number alternates between

40 and 40
√
2 in the layers of the original geometry. The incident angle for these

experiments is fixed at θinc = −π
5
. In the first experiment, the fourth interface in the

original geometry is changed to the “hedgehog” interface. Figure 3.4.4 illustrates the

original and new geometries. The hedgehog geometry consists of 17 sharp corners

and cannot be written as the graph of a function defined on the x-axis. The number

of discretization points needed on the new interface to maintain the same accuracy as

the original problem is N4 = 14, 496. In the second experiment, the wave number for

the second layer is changed from 40
√
2 to 30 but the interfaces are kept fixed with the

geometry illustrated in Figure 3.4.4(a). As presented in section 3.3.3, only a small

number of the matrices in each step of the precomputation need to be recomputed.

Table 3.3 reports time in seconds for building a direct solver from scratch for

the original problem, updating the solver when the fourth interface is replaced and

updating the direct solver when there is a change in wave number in the second

layer. The parts of Precomputation I and II that are needed in the updating scheme

68

are smaller than building them from scratch. Precomputation I is approximately

twice as expensive for the problem with the changed wave number because it requires

updating matrices for two interfaces while the changed interface problem only involves

one interface. Precomputation III needs to be redone for the new problem. This is

why it is nearly as expensive as it is for the original problem. There is slight cost

savings because the ranks related to the replaced wave number are lower since the

new wave number is smaller than the original. The cost savings for updating the

solver is greater for the changed interface problem since more existing operators of

the original solver can be re-used.

When an application requires many solves per new geometry and many new ge-

ometries (with local changes) need to be considered, the speed gains over building a

solver from scratch for each new geometry will be significant.

Original Replace Change wave
problem interface Γ4 number ω2 = 30

Ntotal 121,136 125,184 121,136
Precomp I 2369.3 237 433
Precomp II 32.3 11.7 3.5
Precomp III 174.1 41.7 109.2

Solve 18.8 15.7 13.6

Table 3.3 : Time in seconds for constructing and applying the fast direct solver to an
11-layer geometry (first column), a geometry that has the fourth interface changed
(second column) and the wave number for the second layer changed from 40

√
2 to 30

(third column). Ntotal is the number of discretization points on the interfaces in the
unit cell.

3.5 Summary

This chapter presents a fast direct solution technique for multilayered media quasi-

periodic scattering problem. For low frequency problems, the computational cost of

69

the direct solver scales linearly with respect to the number of discretization points.

The bulk of the precomputation can be used for all solves independent of incident

angle and Bloch phase α. For a problem where over 200 hundred incident angles are

considered, the proposed fast direct solver is 100 times faster than building a direct

solver from scratch for each incident angle.

An additional benefit of this solution technique is that modifications in the wave

number of a layer or an interface geometry result in only local updates to the solver

corresponding to that layer or interface. The cost of updating the precomputation

part scales linearly with the number of points on that interface. For a problem with a

changed interface, the constant associated with the linear scaling is very small for the

precomputation (relative to building a new direct solver from scratch). In optimal

design and inverse scattering applications where the geometry will be changed many

times and for each geometry many solves are required, the fast direct solver will have

significant savings.

Two dimensional geometries have to be complex in order to justify the need for

the fast direct solver. For three dimensional problems, a fast direct solver will be

necessary for most geometries of interest in applications. The extension to three

dimensional problems is not trivial but the work presented in this chapter provides

the foundations for that work.

70

Figure 3.4.2 : Illustration of the real part of the total field of the solution to (3.1.1)
for a geometry with 10 interfaces where the wave number alternates between 40 and
40
√
2. The shown solution is for θinc = −0.845π. The total number of discretization

points was set to N = 121, 136, resulting in a flux error estimate of 2.3e − 8. Seven
periods in the geometry are shown.

71

‘corner-1’ geometry, 42 corners, 10,448 discretization points

‘corner-2’ geometry, 58 corners, 15,104 discretization points

‘corner-3’ geometry, 42 corners, 11,344 discretization points

Figure 3.4.3 : The three different “corner” geometries in the 11-layer structure. Three
periods are shown. See Figure 3.4.2 for the full structure.

Figure 3.4.4 : Illustration of 5 periods of (a) the original 11-layer structure and (b) the
new structure obtained from replacing the fourth interface with a different geometry.
The modified interface is in red box.

72

Chapter 4

A fast direct solver for modeling Stokes flow in

confined geometry

The numerical simulation of objects in viscous flow within confined geometries arises

in many applications. Examples include modeling blood coagulation [94] (away

from the heart), developing microfluidic devices [95, 96], and simulating bacteria

[97] and other micro-swimmers [98]. As an alternative to traditional methods, the

boundary integral formulation defines unknowns only on the surface of the swim-

mers/bacteria/blood cells and the confining wall geometry, reducing the dimensional-

ity of the problem by one. For simplicity, the swimmers/bacteria/vesicles are referred

to as bodies in this chapter. Other examples of bodies in fluid include cilia and flagella

structures on the surface of cells or microfluidic devices, which are attached to the

confining wall and not “suspending in” or “flowing through” the domain channel [1].

The location and/or shape of the bodies evolve in time, while the confining wall is

static. Previous developments on BIE formulations [99, 100, 101, 102, 103, 104] and

fast methods [105, 106, 107, 108, 109] have enabled practitioners to simulate large

crowds of bodies and study the collective behavior for various applications.

The proposed work focus on simulating bodies in complicated confining geome-

tries. Examples include simulation of bacteria motion and cilia beating dynamics

in channel structures, cytoplasmic streaming for movements of nutrient in cells, and

optimal design for microfluidic devices[110, 1, 97, 111, 112, 113]. Such problems are

often multi-scale by nature. The wall geometry may be complex and requires lots of

73

discretization points to resolve when no bodies exist. For example, [1] simulates the

flow due to cilia beating inside a geometry extracted from a generic microscopic image

of the cross-section of a Fallopian tube shown in Figure 4.0.1. Microfluidic devices for

transporting fluid or particles are often designed to have complex geometries as well

[114, 49]. As bodies get close to the wall, the discretization of the wall often needs to

be refined locally to capture the behavior in the density. As the bodies travel to new

locations for each time step, the part of the boundary that is approached by bod-

ies often change. Thereby, out-of-box fast direct solution techniques, such the HBS

method, is too expensive to be helpful if applied directly, as the discretized linear

system changes for each time step. The proposed fast direct solver is designed to be

coupled with such “time-evolving” discretization refinement.

Figure 4.0.1 : Example of a complex confining wall geometry from [1]. The geometry
is extracted from a generic microscopic image of the cross-section of a Fallopian tube.

The work is based on the author’s previous work on solving BIEs with locally

perturbed geometry [50] reviewed in section 2.4. The proposed work includes an

improved version of the solver in [50] and an extension of the algorithm to handle the

74

time-evolving discretization refinement for confined Stokes flow. The general idea is

to precompute a fast direct solver for the original wall discretization independently of

time and then update the original solver to handle the extra refinements introduced

for later time steps.

This chapter is organized as follows. Section 4.1 gives the BIE formulation for

modeling bodies in confined Stokes flow and an example time stepping scheme for

evolving the bodies. The time stepping scheme decouples the problem into BIEs

defined on the confining wall and a linear system for variables defined on the surface

of the bodies. The decoupling allows separate quadratures and solution techniques

to be used on the two parts to obtain better accuracy and efficiency. The geometry

of the bodies are often very simple and can be resolved to high accuracy with small

number of points. Thus, the major computational cost comes from solving the BIE

defined on the confining wall. Section 4.2 presents on a fast solution technique for

BIEs with local discretization refinement. This solver can be coupled with a local

refinement strategy, which specifies the region to be refined and generates the new

discretization, to efficiently obtain an accurate solution to the BIE on the confining

wall. Section 5.4 illustrates the performance of the solver with numerical examples,

and section 4.4 summarizes the chapter and gives future research directions.

4.1 Boundary integral formulation

This section first presents the BIE formulation for the steady-state problem and

then the time-stepping scheme for simulating the bodies. The complete formulation

depends on the kind of bodies studied. For example, deformable vesicles can be

modeled by tracking the surface positions and surface tension while rigid-bodies can

often be modeled with much less degrees of freedom, such as tangential and rotational

75

velocity of the centroid [103, 104]. Even for non-deformable bodies, different types

often satisfy different governing equations. Although the body type may be different,

the boundary integral formulations of the problems share similar format, especially

in terms of how the effect of the confining wall is incorporated into the dynamics of

the bodies. For illustrative purposes, section 4.1.1 derives a BIE formulation for a

single vesicle in confined Stokes flow, and section 4.1.2 presents the semi-implicit time

stepping scheme for evolving the vesicle from [85]. This specific example demonstrates

how a time stepping scheme decouples the problem into two separate problems at

each time step: one for the confining wall and one for the vesicle. Section 4.1.3 then

briefly discusses the key parts of the numerical simulation and explains the difficulty

associated with handling local refinement for the confining wall.

4.1.1 The steady-state problem

This section describes a BIE method for the steady-state problem for modeling single

vesicle in confined Stokes flow. First, assume no vesicle exists and consider the pipe

geometry shown in Figure 4.1.1. Let µ denote the fluid viscosity, the velocity field

and pressure (u, p) satisfies the BVP

−µ∇2u(x) +∇p(x) = 0, for x ∈ Ω

∇ · u(x) = 0, for x ∈ Ω

u(x) = g(x), for x ∈ Γ,

(4.1.1)

where u(x) and g(x) are vector-valued functions, and p(x) is scalar-valued. Let nu(x)

be the outward pointing normal vector at x. The Dirichlet boundary data needs to

76

satisfy the consistency condition

�

Γ

g(x) · nu(x) dl(x) = 0. (4.1.2)

Ω

Γ

x

ν(x)

Figure 4.1.1 : Model geometry for the Stokes BVP.

Remark 4.1.1 Domain Ω may be multiply connected, i.e. Ω may have “holes”. The

normal vector on the boundary of the hole should be defined to point to the fluid

domain.

The BIE formulation for (4.1.1) can be derived following the same procedure for

the Laplace problem in section 1.2. The velocity field in Ω can be represented as a

layer potential of the format

u(x) = (Kτ)(x), (4.1.3)

where τ is some unknown vector-valued boundary density function. Here, the notation

for kernel K is intentionally left to be general. Two options are the double layer kernel

77

K = D and the combined field kernel K = S + D, where S denotes the single layer

kernel for Stokes. Section A.2 gives a list of kernel definitions for completeness.

The pressure is given by a similar format

p(x) = (KP τ)(x), (4.1.4)

where KP denotes the corresponding pressure kernel operator.

The kernel functions guarantee that the (u, p) pair defined by (4.1.3) and (4.1.4)

will automatically satisfy the first two equations in (4.1.1). The BIE

λτ(x) + (Kτ)(x) = g(x) (4.1.5)

results from taking the limit of (4.1.3) as x → Γ and enforcing the Dirichlet boundary

condition. The term λτ(x) comes from the jump condition of the kernel function,

where λ is a scalar. For example, λ = −1
2
if the double layer or the combined field

kernel is used.

Now, consider the flow due to the deformation of a single vesicle in free space.

Let γ denote the boundary of the vesicle and assume it is parameterized by x(s)

where s is the arc-length. The membrane exerts force f = −κBxssss + (σxs)s on the

fluid, where κB is the bending modulus, σ is the tension, and xssss denotes the forth

derivative of x with respect to s. Assuming the force is known, it can be shown that

the representation

u(x) = (Sγf)(x), and p(x) = (SP
γ f)(x) (4.1.6)

satisfies the required jump conditions on the membrane surface as well as the Stokes

equation in the vesicle domain [85]. The subscript notation is introduced to differen-

78

tiate the solution representation in (4.1.3) and (4.1.4). For the rest of this chapter,

(4.1.5) is written as

λτ(x) + (KΓτ)(x) = g(x).

The fluid flow generated by the vesicle in the confined domain can be written as

u(x) = ui(x)+ur(x), where ui(x) is the imposed flow due to the vesicle in free space

and ur(x) is the response flow due to the wall. This is similar to the idea of incident

and scatter field in wave scattering problems. If the force f is known, the imposed

flow is given in (4.1.6), and the response flow can be evaluated via solving (4.1.5)

with the right-hand-side set to be the negative imposed flow velocity. Namely,

ur(x) = (KΓτf)(x), (4.1.7)

where τf is the solution to

λτf (x) + (KΓτf)(x) = −(Sγf)(x). (4.1.8)

The formulation can be easily extended to the multiple-vesicle case. The idea of

the imposed and response flow can be extended to modeling other kinds of bodies.

The major difference between the formulations of different kinds of bodies is how the

imposed flow is modeled and evaluated. The BIE operator (left-hand-side operator

in (4.1.8)) for evaluating the response flow will be the same, but the right-hand-side

to be plugged into the BIE will be different.

79

4.1.2 Time-dependent problem formulation

This section presents the semi-implicit time-stepping scheme for evolving vesicles in

confined Stokes flow from [85], which is a slightly modified version of the time stepping

scheme in [115]. The dynamics of the vesicle is modeled by location and tension pair

(x, σ) satisfying

ẋ = (Sγf)(x) + ur(x)

0 = xs · (ẋ)s,
(4.1.9)

where f depends on (x, σ) as f = −κBxssss+(σxs)s and ur depends on (x, σ) through

its dependence on f in (4.1.7) and (4.1.8). The first equation comes from setting

the time derivative of the location of points on the vesicle boundary to be the fluid

velocity evaluated on the boundary, and the second equation results from enforcing

the surface divergence of the membrane velocity to be zero.

Numerically, the fourth order derivate with respect to arc-length s leads to stiff-

ness. Explicit method, such as forward Euler, needs to have very small time step size

and is thus too expensive for numerical simulations. Instead, a semi-implicit time

stepping scheme is used to evolve (x, σ). Let Δt be the time step size, the method

solves the following system for the unknown vk+1 := xk+1−xk

Δt
and σk+1

vk+1 − Sγ[−ΔtκBvssss + (σk+1xk
s)s] = Sγ[−κBx

k
ssss] + uk

r

xk
s · vk+1

s = 0.

(4.1.10)

Note that the response flow is treated explicitly: uk
r = KΓτk, where τk is the solution

to

λτk +KΓτk = −Sγ[−κBx
k
ssss + (σkxk

s)s].

80

Once vk+1 and σk+1 are solved from (4.1.10), the membrane positions can be updated

as xk+1 = xk +Δtvk+1.

The semi-implicit time-stepping scheme decouples the problem into a BIE defined

on the confining wall geometry and a linear system for vk+1 and σk+1, which evolve

the membrane’s location/shape in time. For simulating other kind of bodies, the same

idea of writing the field velocity as u = ui + ur can be used. Then time-stepping

schemes with an explicit treatment of the response flow will decouple the problem

into a confining wall BIE and a linear system for updating the location of the bodies

similar to (4.1.10). Information transfers between the two decoupled problems in the

form of potential evaluations. Thus, an efficient solver for the BIE defined on the

confining wall geometry will be useful for numerical simulations for various bodies.

4.1.3 Numerical simulation and local discretization refinements

In practice, the vesicle geometry is often simple and can be discretized with small

number of discretization points. For example, only 64 points per vesicle are used in

[115]. The major cost of one time step is solving the BIE defined on the confining

wall and evaluating the potential of the form ur|γ = (KΓτ)|γ (wall-to-vesicle) and

ui|Γ = (Sγf)|Γ (vesicle-to-wall). When the bodies get close to the wall, special near-

field evaluations are necessary to evaluate the potentials accurately [116, 40, 117].

The “not-so-close” potential evaluations can be accelerated by FMM, leaving the

BIE solve to be the major cost concern. Since the wall is static, a direct solver for the

wall geometry is ideal for this problem. The forward representation and the inversion

only need to be constructed once (independently of the time steps), and each time

step only involves applying the inverse to a new right-hand-side. In [115], speed-ups

are observed by using a fast direct solver for the wall geometry instead of an FMM

81

accelerated iterative solver for each time step.

When simulating bodies in complex confining wall geometries such as the simulat-

ing cilia motion in the Fallopian tube example in [1], the wall geometry itself requires

lots of discretization points when no bodies exit. Difficulty arises when the bodies are

close to the boundary: the wall may need to be refined locally to capture the density

accurately. Roughly speaking, if the boundary wall is discretized in panel quadrature,

then local refinement is often necessary if the distance between the bodies and the

wall is smaller than the panel width of the wall discretization. For simulating the

bodies’ dynamics in time, the location of the bodies evolve and the region on the wall

subject to local refinements changes. It is not possible to predict which region to re-

fine a priori. Due to the complexity of the boundary wall, a priori uniform refinement

is not practical. Time dependent local discretization refinement should be adopted.

If the wall discretization is locally refined in different regions for each time step,

out-of-the-box fast direct solvers, such as HBS, are too expensive since a new in-

verse needs to be constructed for each time step. Section 4.2 presents a fast direct

solver which avoids the new forward and inversion when handling local refinements

in discretization. This solver can be coupled with a local refinement strategy, which

determines the region to be refined and generates the new discretization, and a time

stepping scheme to numerically simulate the bodies’ dynamics in confined Stokes flow.

4.2 A fast direct solver for BIEs with locally refined dis-

cretization

The section presents a fast direct solver for BIEs with locally-refined discretization.

It is an improved version of the fast direct solver in [50], which is reviewed in section

82

2.4. The algorithm in [50] is originally designed to handle BIEs defined on locally

perturbed geometries. With the Nyström discretization, the row and columns of the

coefficient matrix corresponds to discretization points on the boundary. Thus, the

local-perturbation changes to the discretized linear system correspond to physically

adding and deleting discretization points. This allows the method to be naturally

extended to handle local discretization refinements, which can also be regarded as

adding and deleting discretization points on the boundary. Unfortunately, the fast

direct solver for the original extended system as in section 2.4 required inverting

a matrix the size of the number of discretization points removed from the original

geometry which is expensive if the removed portion is large. Another difficulty of

the original extended system is that care is required when the technique is applied

to systems discretized using quadrature for weakly singular kernels, e.g. the single

layer Laplace or Stokes kernel. This section proposes an alternative extended system

formulation which overcomes these two difficulties. Additionally, a fast direct solver

for the new extended system can be constructed from the tools presented in [50] but

is more efficient than the original fast direct solver.

4.2.1 An alternative extended system formulation

Assume that the original problem (2.4.1) is solved via a fast direct solver, i.e. an

approximate inverse Ainv
oo ≈ A−1

oo is available. This section presents an alternative

extended system formulation, which is equivalent to the linear system for the locally

refined discretization (2.4.2).

Recall from section 2.4, in the original extended system formulation, σc is not used

to find the solution inside of Γn, thus we introduce the vector σdum
c fully knowing a

priori that it will contain useless information. Then solving (2.4.2) is equivalent to

83

solving the following




Akk 0 Akp

Ack Acc 0

Apk 0 App







σk

σdum
c

σp




=




gk

0

gp




. (4.2.1)

The expanded form of (4.2.1) is






Aoo 0

0 App




� �� �
Ã

+




0 −Akc Akp

0 0 0

Apk 0 0




� �� �
Qnew







σk

σdum
c

σp




� �� �
σext

=




gk

0

gp




� �� �
gext

. (4.2.2)

Here Qnew is the new update matrix. Notice that Qnew has a zero row.

Since the three non-trivial subblocks in the update matrix Qnew are all rank-

deficient, Qnew can be approximated by

Qnew = L R

Next ×Next Next × k k ×Next

(4.2.3)

where

L =




0 −Lkc Lkp

0 0 0

Lpk 0 0



, R =




Rpk 0 0

0 Rkc 0

0 0 Rkp



,

84

and

Akc ≈ Lkc Rkc, Akp ≈ Lkp Rkp, and

Nk ×Nc Nk × kkc kkc ×Nc Nk ×Np Nk × kkp kkp ×Np

Apk ≈ Lpk Rpk.

Np ×Nk Np × kpk kpk ×Nk

(4.2.4)

Here k = kpk + kkc + kkp and Next = Nk +Nc +Np.

4.2.2 Low-rank approximation for the update matrix

For simplicity of presentation, this section details the technique for compressing the

subblock Akp in the update matrix Qnew. The technique is used to compress the

subblock Akc, and with minor modifications, it is applied to compress Apk as well.

The algorithm starts with a proxy circle for Γp, the part of the boundary gets refined.

Figure 4.2.1 (a) plots the proxy circle. For clarity, let P div
p denote this proxy circle, and

superscript notation “far” and “near” is used to denote the far- and near- field. The

far-field interaction Afar
kp and near-field interaction Anear

kp are compressed separately

and then combined together to form an ID for the subblock Akp.

For the far-field compression, the potential due to Γp evaluated on Γfar
k can be

approximated by a linear combination of basis functions defined on any proxy surface

that shields Γp away from Γfar
k . Let P bas

p denote this “shielding” proxy circle for

Γp. The proxy circle P bas
p is typically choose to have the same center as P div

p but

smaller radius as shown in Figure 4.2.1 (b). A ID approximation for Afar
kp can then

be obtained by constructing an ID approximation for the interaction between Γfar
k

and P bas
p . However, due to the large number of discretization points on Γfar

k , directly

building an ID can be very expensive. Thus, a dyadic partition to group points in

85

Γfar
k together base on their distance to Γp is used. For simple illustration, assume the

boundary curve Γ is parameterized as Γ = {γ(t) : t ∈ [ta, tc]} with tc = ta + 2π. And

Γfar
k = {γ(t) : t ∈ [ta, tb]}. Figure 4.2.2 shows a dyadic partition in parameterization

space of Γfar
k . ID approximations are constructed first for blocks of rows corresponding

to each box in the partition and then combined together to form the ID for Afar
kp .

The near field part Anear
kp is compressed similarly to the compression of an off-

diagonal block shown in section 2.2, but with an underlying dyadic partition for the

rows similar to the dyadic partition for Γfar
k in compressing Afar

kp . For each box b in

the partition, a proxy circle is determined for Γb � Γk. Two scenarios are possible:

the first scenario is that the proxy circle does not enclose any part of of Γp; the

other scenario is that the proxy circle enclose certain parts of Γp, which is denoted by

Γ
near(b)
p . Let matrix Aproxy

b be the interaction between Γb and the proxy circle, and

let Ab be the submatrix of Anear
kp with rows corresponding to discretization points in

b. For the first scenario, it is sufficient to build a row-based ID for Aproxy
b to obtain a

row skeleton index Jb and an interpolation matrix Pb. Then Ab can be approximated

as Ab = PbAb(Jb, :). For the second scenario, a low-rank factorization for Ab can be

obtained by constructing a row-based ID for

Âb = [Anear
b |Aproxy

b],

where matrix Anear
b is interaction between Γb and Γ

near(b)
p . The factorizations for each

of the box b in the partition are then combined together to form an ID for Anear
kp .

Remark 4.2.1 For both Afar
kp and Anear

kp , combining the individual box’s ID together

by simply concatenating the resulting low-rank factors together can lead to an ap-

proximation with very high total rank numbers Thereby, an extra re-compression step

86

from [38] is used for merging the individual box compressions.

Ω

Γ

(a)

Γfar
k

Γnear
k

Γp

P div
p

P bas
p

(b)

Figure 4.2.1 : (a) The proxy circle for Γp shown in dash blue line divides Γk into
far (in green) and near (in red) with respect to Γp (b) The interaction between the

far-filed part of Γk and Γp can be captured by the interaction between Γfar
k and a

smaller proxy circle for Γp shown in dash green.

The low-rank approximation algorithm applies to the compression of the subblock

Akc as well. Since the removed points and added points discretize the same boundary

curve segment Γc = Γp, the far-filed part of the low-rank approximation for Akp and

Akc can be merged into one. The compression for Apk is similar to that for Anear
kp .

4.2.3 Solution evaluation

Once a low-rank approximation for the update matrix Qnew is constructed, the solu-

tion to the extended system can be evaluated via the Sherman-Morrison-Woodbury

formula (2.4.4). Note that the new update matrix Qnew does not contain any full-rank

subblock and has lower rank numbers when compared to the original update matrix

Qorig in section 2.4. Thus, the Sherman-Morrison-Woodbury formula can be applied

more rapidly.

87

γ(ta)

γ(tb)

Γfar
k = {γ(t) : t ∈ [ta, tb]}

ta tb
ta+tb

2
ta+tb

4
3(ta+tb)

4
· · · · · ·

(a)

Figure 4.2.2 : Dyadic partition for Γfar
k used in the compression of Afar

kp .

Evaluating the solution σext (2.4.4) requires matrix-matrix multiplication, matrix-

vector multiplication, and solving a linear system of the form
�
I+RÃ−1L

�
�x =

�b. For efficiency, the sparsity pattern in the operators should be exploited and the

matrix-matrix multiplication should be done block-wise. For example, let

L̃ =



−Lkc Lkp

0 0


 ,

then Ã−1L should be evaluated as

Ã−1L ≈



Ainv

oo 0

0 A−1
pp







0 L̃

Lpk 0


 =




0 Ainv
oo L̃

A−1
pp Lpk 0




88

and RÃ−1L as

RÃ−1L ≈




0



Rpk 0

0 Rkc


Ainv

oo L̃

RkpA
−1
pp Lpk 0



.

The repeated terms in (2.4.4) should be only computed once. The self operator defined

for the locally refined region App can be inverted densely if the region contains small

number of points or via a separate HBS if it contains large number of points. For

the targeted applications, the Sherman-Morrison-Woodbury operator(of size k × k)

is usually small enough for a dense inversion.

The cost of the presented solver contains two parts: precomputation, which is inde-

pendent of the right-hand-side, and the solve, which depends on the right-hand-side.

The precomputation includes low-rank approximation for subblocks in the update

matrix Qnew, evaluating terms such as Ã−1L and RÃ−1L in (2.4.4), and the eval-

uation and inversion of the Sherman-Morrison-Woodbury operator
�
I+RÃ−1L

�
.

The precomputation part dominates the total cost but only needs to be done once

for problems with multiple right-hand-sides. Both precomputation and solve scales

linearly with respect to Nk, Nc and Np, provided that a separate HBS is constructed

for Γp.

4.3 Numerical experiments

This section demonstrates the performance of the fast direct solver by an example.

To validate the accuracy of the solution approximation, the solver is applied to two

89

test problems with known solution

uext(x) =



−x2

2 + x2

0


 .

Then the solution approximation uapp is evaluated at a collection of interior target

points {ti}Ntrg

i=1 . The average relative error over the target locations given by

E =
1

Ntrg

Ntrg�

i=1

|uapp (ti)− uext (ti)|
|uext (ti)|

(4.3.1)

is reported as a measure of accuracy.

The algorithm is implemented in Matlab, except that the random sampling based

ID is in Fortran. All tests are run on a dual 2.3 GHz Intel Xeon Processor E5-2695

v3 desktop workstation with 256GB RAM.

The following values are reported:

� Nk, Nc, and Np, number of discretization points kept the same, removed, and

added for the refinement.

� Tnew,p: time in seconds for the precomputation of the proposed solver.

� Thbs,p: time in seconds for the precomputation of HBS from scratch.

� rp: the ratio between Thbs,p and Tnew,p .

� Tnew,s: time in seconds for one right-hand-side solve of the proposed solver.

� Thbs,s: time in seconds for one right-hand-side solve of HBS from scratch.

� rs: the ratio between Thbs,s and Tnew,s.

90

The ratios rp and rs are measures for the speed-up (or slow-down) by using the

proposed solver versus building a new fast direct solver from scratch for the new

geometry. If rp is greater than 1, the precomputation of the proposed solver is faster

than building a fast direct solver from scratch. If rp is less than 1, the precomputation

of the proposed solver is slower than building a fast direct solver from scratch, etc.

For all tests, the tolerance for HBS compression and low-rank approximation is set

to � = 10−10.

4.3.1 Scaling test

Consider a Stokes boundary value problem defined on a locally-refined pipe shown in

Figure 4.3.1. Assume that the pipe is originally discretized with No many points, and

local refinements occurs in the boxed region in Figure 4.3.1. This results in a new

discretization with Nn = Nk + Np many points. The errors for both the new solver

and HBS from scratch are about 10−9 since the tolerance for compression is set to be

� = 10−10.

Table 4.1 summarizes the timings for the test. When the number of unknown on

Γp exceeds 4000, i.e. Np > 2000, an HBS solver is built for App. Table 4.1 shows that

the cost of the precomputation and solve step both scales linearly with respect to Nk,

Nc, and Np for the new solver and HBS from scratch. The cost of precomputation

for the new solver is about 5 times faster than that for building an HBS solver from

scratch, while the solve step for the new solver is about 1.5 times slower than applying

an HBS solver. Since the precomputation is much more expensive than one right-

hand-side solve, it takes at least 600 right-hand-sides to justify building an HBS solver

from scratch rather than using the new solver for the test problem.

91

(0,0) (2,0)

(0,1) (2,1)

Γk

(a)

(b)

(c)

Γc

Γp

Figure 4.3.1 : (a) The pipe geometry with the portion of the boundary to be refined
boxed. The coordinates of the four sharp corners of the pipe is also shown. (b) The
two Gaussian panels in the boxed region from the original discretization. (c) The four
Gaussian panels that replaced the original two panels.

Nk, Nc, Np Tnew,p Thbs,p rp Tnew,s Thbs,s rs
3744, 128, 512 0.75 4.98 6.67 0.04 0.01 0.30
7392, 256, 1024 1.38 8.47 6.25 0.03 0.02 0.72
14816, 512, 2048 3.59 15.79 4.35 0.06 0.04 0.65
29728, 992, 3968 6.38 34.32 5.26 0.13 0.09 0.65
59456, 1984, 7936 13.90 75.17 5.56 0.26 0.18 0.67

Table 4.1 : Timing results for Stokes boundary value problem on the pipe with refined
panel geometry. A separate HBS for Γp is constructed for test values with Np > 2000,
shown in bold font.

92

4.3.2 Complex geometry test

This section applies the solver to a more realistic problem. Consider the “bumpy

pipe” geometry shown in Figure 4.3.2 (a), which is generated by applying the corner

smoothing technique in [2] to a polygonal pipe. For the initial discretization more

panels are placed near the corners of the bumps and the straight line segments are

discretized with few panels to resolve the geometry. The error E for the initial

discretizaztion is about 10−9 when the tolerance of HBS compression is set to � =

10−10.

Assume that at a future time step k ≥ 1, vesicles or other type of bodies pass

through the narrow part of the pipe and approaches the boundary in the region

highlighted in red in Figure 4.3.2(a). Panels in the red region get refined as shown in

Figure 4.3.2(c) in order to capture the density. Table 4.2 reports the the solver’s cost

as the number of panels added to the red region increases. For the test cases where

Np ≤ 96Nc , a two to five times speed up is observed. Thus, the solver is very efficient

in handling local refinements even if the refinement adds large number of new panels

when compared to the original discretization.

4.3.3 Other tests

In section A.3 in the Appendix, the new solver is applied to a collection of Laplace

and Helmholtz BVPs. The results show that the new extended system formulation

leads to better efficiency compared to the version in [50].

93

Γk

(a)

(b)

Γc

(c)

Γp

Figure 4.3.2 : (a) The bumpy pipe geometry with the portion of the boundary to
be refined highlighted in red. (b) The two Gaussian panels to be removed from
the original discretization. (c) The four Gaussian panels to be added to replace the
original two panels.

Np Tnew,p Thbs,p rp Tnew,s Thbs,s rs
96 1.61 7.42 4.61 0.02 0.01 0.78
192 1.32 7.11 5.39 0.02 0.01 0.66
384 1.44 7.51 5.22 0.02 0.01 0.58
768 1.73 9.81 5.67 0.02 0.02 1.09
1536 2.83 11.16 3.84 0.02 0.03 1.23
3072 5.62 13.12 2.33 0.03 0.03 0.90
6144 22.42 20.15 0.90 0.05 0.05 0.81
12288 112.27 32.24 0.29 0.12 0.07 0.53

Table 4.2 : Timing results for applying the solver to the Stokes BVP on the bumpy
pipe geometry. Nk = 2528, Nc = 32, and App is evaluated and inverted via dense
linear algebra for all test cases.

94

4.4 Summary

This chapter presents a fast direct solution technique for BIEs on locally-refined

discretization, which is an critical component of numerical simulation of bodies in

confined Stokes flow. The solver is an improved version of the authors’ previous work

in [50]. The major novelty is the new extended system formulation, of which the

update matrix no longer contains any full-rank subblock of size Nc × Nc. Thereby,

the solver scales linearly with respect to both Nk and Nc. If App is compressed and

inverted via a separate HBS, the solver also scales linearly with respect to Np. When

the part of the boundary refined is relatively small compared to the total size of the

problem, the precomputation of the solver is much smaller than that of constructing

an HBS solver for the new discretization from scratch. Another advantage of the new

solver is that it can be easily applied to discretizations utilizing quadrature for weakly

singular kernels, which allows single layer or combined field solution representation

to be used for formulating the BIE.

Extending the solution technique to fast simulation of bodies in confined Stokes

flow is an on-going project.

95

Chapter 5

An adaptive discretization technique for BIEs on

the plane

The discretization of BIEs is one of the major difficulties for numerical solution to

BIEs. This thesis considers the Nyström method, which uses quadrature to approx-

imate the integral in the integral equation. This chapter constructs a panel-based

adaptive discretization algorithm which returns a Gaussian panel quadrature that

resolves the boundary density to an accuracy level specified by the user.

For BIEs defined on complex boundary geometries, the boundary density often

requires lots of panels to resolve. However, this may still be the case even when the

boundary geometry is simple. The source of the complexity may be the boundary

conditions or the underlying physics. Thus, adaptive discretization techniques that

focus only on resolving the geometric features such as arc length and corners may not

capture the density well enough to reach the user desired tolerance.

A standard adaptive discretization algorithm for resolving the boundary density

is an iterative process of solving a sequence of boundary densities on finer and finer

mesh. Each new mesh is obtained by refining the previous one locally in the region

where the boundary density is under-resolved. The process will terminate when the

boundary density is resolved to the prescribed tolerance. Since each refinement level

involves one global solve for the boundary density, the computational cost of the

standard approach is too high to be practical. The adaptive discretization scheme

presented in this chapter replaces the global solves of the true density with local

96

updates of a new quantity that we call the artificial density. The new scheme is

less expensive compared to the standard true density guided adaptive discretization

but still maintains the nice properties for using the density rather than geometric

quantities as the guiding function for the adaption.

This chapter is organized as follows. Section 5.1 introduces notation and motivates

the technique. Section 5.2 describes a standard adaptive discretization algorithm

which solves for the true boundary density on each intermediate mesh. Section 5.3 is

dedicated to the new adaptive algorithm which uses the artificial density defined in

Section 5.3.1. Section 5.4 applies both the standard algorithm and the new algorithm

to a collection of boundary geometries to show performance. Finally, section 5.5

concludes the chapter.

5.1 Introduction

To introduce notation, consider the BIE

λσ(x) +

�

Γ

K(x,y)σ(y) dy = f(x), (5.1.1)

where λ denotes a scalar and K(x,y) denotes a kernel function. Γ is a simple closed

curve, f is the given boundary data, and σ is the unknown boundary charge density.

In this chapter, we assume the boundary curve Γ is parameterized by γ(t) for t ∈ [0, T]

and {ωj, tj}Nj=1 gives a quadrature rule (weights and nodes) for integrating functions

on [0, T]. The BIE (5.1.1) can then be approximated via the Nyström method

λσ(x) +
N�

j=1

ωjK(x, γ(tj)) σ(γ(tj)) |γ�(tj)| = f(x). (5.1.2)

97

Seeking the solution to (5.1.2) at the quadrature nodes {γ(tj)}Nj=1 yields the linear

system

Aσ =
�
λI+ K̂

�
σ = f , (5.1.3)

where I is the identity matrix, σ is the unknown boundary density evaluated at the

quadrature nodes, K̂ is a matrix with entry K̂ij = ωjK(γ(ti), γ(tj)) |γ�(tj)| , and f is

the given boundary data evaluated at the quadrature nodes.

5.1.1 Existing adaptive discretization strategies in literature

To motivate the proposed algorithm, this section discusses two common types of

adaptive discretization strategies for BIEs and their advantages and shortcomings.

Generally speaking, there are two different approaches to adaptively determine a

discretization based on the quantity used to guide the adaptive process:

� The purely geometric approach that adaptively refines the discretization until

geometric properties such as arc length and curvature are resolved to a pre-

scribed tolerance.

� The boundary density based approach that solves for the boundary density and

adaptively refine the discretization until the boundary density is resolved to a

prescribed tolerance.

The purely geometric approach is simple and numerically efficient, since the ge-

ometric properties are often easy to evaluate and compare on different meshes. One

example of such algorithms is the adaptive discretization given in [49] for handling

multi-connected geometries. However, for certain problems where the boundary ge-

ometry is simple but the boundary density is more complex due to the boundary

data or underlying physics, resolving geometric properties to high accuracy does not

98

guarantee the solution to the problem reaches the user desired accuracy level. Let’s

look at two examples to illustrate the disadvantages of using purely geometric quan-

tities to guide an adaptive discretization. Consider the Laplace-Dirichlet problem

with the second kind BIE formulation on two different ellipse geometries shown in

Figure 5.1.1 (a) and 5.1.2 (a) with different boundary conditions due to a point source

charge placed at different locations. The boundary of each ellipse is discretized with

16th order Gaussian panel quadrature. The accuracy of the arc length, curvature,

and boundary density are plotted against the number of panels in Figure 5.1.1 (c)

and 5.1.2 (c). The panels are uniformly refined in these two examples for simplicity

of demonstration. For the ellipse that is close to a circle in Figure 5.1.1(a), the arc

length and curvature can be resolved with relatively small number of Gaussian pan-

els. An exterior source charge is placed relatively close to the boundary of the ellipse.

The boundary density plotted in Figure 5.1.1 (d) has a (negative) peak in the region

close to the source charge, roughly at t ≈ π/2 ≈ 1.57 in parameterization space.

More panels are needed to resolve the boundary density than are needed to resolve

the arc length and curvature for a given tolerance because of this peak behavior. For

the ellipse with high eccentricity in Figure 5.1.2(a), the arc length and curvature are

more complicated than that for the first ellipse example and require more panels to

resolve. An exterior source charge is placed very far away from the ellipse, and the

boundary density is rather simple and can be resolved with less number of panels

than the arc length or the curvature.

Consider another more realistic example in the context of acoustic scattering. The

double-disc geometry illustrated in Figure 5.1.3 is hit with a plane wave with incident

angle θinc = −π
2
. Figure 5.1.4 shows the boundary density (a, c, and e) and the

real part of the scatter field (b, d, and f) solved for different wave number ω. While

99

-6 -4 -2 0 2 4 6

-4

-3

-2

-1

0

1

2

3

4

5

6

boundary

source charge

x-coordinate

y
-c
o
o
rd
in
at
e

0 1 2 3 4 5 6

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

t ∈ [0, 2π]
ar
c
le
n
gt
h

(a) (b)

10
0

10
1

10
2

10
3

10
-15

10
-10

10
-5

10
0

arc length

curvature

density

number of panels m

re
la
ti
ve

er
ro
r

0 1 2 3 4 5 6 7

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

t ∈ [0, 2π]

b
ou

n
d
ar
y
d
en
si
ty

(c) (d)

Figure 5.1.1 : An example where the geometric approach leads to under-discretization.
The boundary geometry and the location of the exterior source are given in (a). (b)
and (d) plot the arc length function and the boundary density on a reference grid
with 300 Gaussian panels against parameterization variable t. The relative errors
for the arc length, curvature, and boundary density for discretization with different
number of panels are plotted on a log scale in (c). The errors of the density in (c) are
evaluated by comparing the solved density to the density solved from the reference
grid.

100

-15 -10 -5 0 5 10 15

0

5

10

15

20

25

boundary

source charge

x-coordinate

y
-c
o
o
rd
in
at
e

0 1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

4.5

5

t ∈ [0, 2π]
ar
c
le
n
gt
h

(a) (b)

10
0

10
1

10
2

10
3

10
-15

10
-10

10
-5

10
0

arc length

curvature

density

number of panels m

re
la
ti
ve

er
ro
r

0 1 2 3 4 5 6

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

t ∈ [0, 2π]

b
ou

n
d
ar
y
d
en
si
ty

(c) (d)

Figure 5.1.2 : An example where the geometric approach leads to over-discretization.
The boundary geometry and the location of the exterior source are given in (a). (b)
and (d) plot the arc length function and the boundary density on a reference grid
with 300 Gaussian panels against parameterization variable t. The relative errors
for the arc length, curvature, and boundary density for discretization with different
number of panels are plotted on a log scale in (c). The errors of the density in (c) are
evaluated by comparing the solved density to the density solved from the reference
grid.

101

the boundary geometry is simple enough to be resolved with a few Gaussian panels,

higher resolution is needed for capturing the density for larger wave numbers.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x-coordinate

-1.5

-1

-0.5

0

0.5

1

1.5
y
-c

o
o

rd
in

a
te

disk 1

disk2

Ω

Figure 5.1.3 : Double disc geometry hit by plane wave with incident angle θinc = −π
2
.

The discs have radius equal to 1, and the minimum distance between the two is chosen
to be 0.05.

These simple demonstrations show that there is no guarantee on the accuracy of

the density based upon how accurate the geometric property evaluations are. The

density based approach, on the other hand, checks the density’s resolution directly

and ensures the user given tolerance is reached. [118] presents an adaptive algorithm

which automatically resolves the density to the desired tolerance for an integral for-

mulation of a stiff two-point boundary value problem. For each intermediate mesh,

the algorithm looks at the coefficients of the local Chebyshev expansion of the density

for each panel to determine which panels to be refined in the next level. The major

drawback of the density based approach when applied to a BIE on the plane is that

solving for the density on a collection of meshes could be costly.

102

-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

-1

-0.5

0

0.5

1

1.5

(a) (b)

-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

-2

-1

0

1

2

(c) (d)

-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

-1

0

1

2

3

(e) (f)

Figure 5.1.4 : The boundary density and real part of the scatter field for solving the
Helmholtz BVP with the different wave numbers: (a-b) – ω = 5, (c-d) – ω = 10,
(e-f) – ω = 20. The boundary data is due to a plane wave with incident angle
θinc = −π

2
. The boundary is discretized with 100 uniformly distributed 10th order

Gaussian panels.

103

5.2 An adaptive scheme based on the true boundary density

This section introduces notation and presents a Gaussian panel based adaptive dis-

cretization technique which requires global solves for the boundary density for each

intermediate mesh. The adaptive algorithm considered in this chapter is adaptive

only in panel distributions, meaning that the number of panels m increases but the

order of Gaussian quadrature on each panel n remains fixed. Given a user prescribed

tolerance �, the algorithm solves for the density σ(0) for the initial mesh L(0) and

calculates a convergence error. If the convergence error does not meet the tolerance

�, the algorithm picks out the under-resolved and over-resolved panels by looking at

the panel-wise Legendre expansions of the density. The algorithm moves on to the

next refinement level k = 1 by refining the under-resolved panels and merging the

over-resolved panels. The whole process gets repeated until the tolerance � is met

for some refinement level kfinal, then the corresponding mesh is returned as the final

mesh, i.e. Lfinal = L(k∗).

For the rest of this chapter, let k denote the refinement level. For each k ≥ 0, let

m(k), L(k), L(k)
refine and L(k)

merge denote the number of panels, the list of panels and the

sublist of panels chosen to be refined or merged for the next refinement level.

5.2.1 Initialization

Since the true density is solved for each intermediate mesh, the algorithm can be

initialized with simple discretization such as a single panel. However, this is not

desirable, as the algorithm is very likely to refine almost all panels for the first several

refinement levels, thus the total number of refinement levels required to reach the

tolerance � may be very large. Large number of refinement levels means lots of global

solves for the true density and high numerical cost. One way to avoid this is to

104

add a initialization step and require the initial mesh to satisfy certain conditions.

One option is to let the initial mesh be determined by applying adaptive Gaussian

quadrature to integrate the arc length function to a tolerance �init >> �. In practice,

we set �init to be 10
−1. The cost of this initialization step is minor, since the arc length

function is very cheap to evaluate and integrate numerically. For complex geometries,

the number of levels required to reach the tolerance � in the main adaptive algorithm

may be reduced greatly due to the initialization step.

5.2.2 Refining and coarsening condition

The adaptive scheme requires a refining condition and a coarsening condition to deter-

mine whether panels should be picked to be refined or merged in the next refinement

level. We consider a panel-picking strategy which looks at the panel-wise Legendre

expansions of the density and defines a refining and a coarsening condition based

on the decay in the expansion coefficients for all panels in the current refinement

level. This strategy is a generalization of the panel-picking strategy used in [118] to

two-dimensional BIEs.

The idea behind this strategy is that if the density approximation converges,

its local polynomial expansions on each panel should also converge. Thus, higher

order coefficients of the expansions should be small in magnitude. For a two-point

boundary value problem, it is shown in [118] that the converse of the idea is also

true: if the local expansions of the density all decays enough, then the global solution

converges. The proposed strategy generalizes the panel-picking method in [118] to

handle BIEs on planar curves. In particular, Legendre expansions are used, since the

BIE is discretized with Gaussian Legendre panels and the Legendre coefficients can

be calculated from the point-wise density values easily.

105

Let panel b ∈ L(k) and σ
(k)
b be the density approximation restricted to b. Consider

the (n− 1)th order local Legendre expansion of σ
(k)
b

σ
(k)
b (t) ≈

n−1�

l=0

α
(k)
b,l P

(k)
b,l (t)

where P
(k)
b,l (t) denotes the lth order Legendre polynomial defined on panel b, and

α
(k)
b,l denotes the corresponding Legendre coefficient. The local Legendre coefficients

α
(k)
b = [α

(k)
b,0 , . . . ,α

(k)
b,n−1]

T can be evaluated as

α
(k)
b = Mnσ

(k)
b , (5.2.1)

where the operator Mn is the linear map that takes function values at Legendre nodes

to Legendre expansion coefficients. The formal definition of Mn is given in section

A.4 of the Appendix. Note that Mn ∈ Rn×n only depends on the order of the local

quadrature/expansion and can be precomputed independent of the panel distribution.

The value

φ
(k)
b := |α(k)

b,n−2|+ |α(k)
b,n−1 − α

(k)
b,n−3| (5.2.2)

is introduced to quantify the decay of the tail of the Legendre interpolant. A threshold

value

φ
(k)
threshold = max

b∈L(k)

�
φ
(k)
b

2C

�

is chosen based on a user specified value for the positive scalar C. Any panels in L(k)

satisfying the condition

φ
(k)
b ≥ φ

(k)
threshold

is picked to be refined in the next level. Note that, for each level k, L(k)
refine contains

106

at least one panel b∗ = argmax

�
φ
(k)
b

2C

�
. A larger value of C results in more pan-

els in L(k)
refine. In practice, we set C = 4. The value of the threshold function will

monotonically decrease as k increases.

To avoid over-discretization, a coarsening condition is used to merge panels. A

pair of panels b1 and b2 is called a sibling pair if they come from bisecting the same

parent panel from a previous level. A sibling panel pair b1 and b2 is merged into one

panel if

φb1 + φb2 <
φ
(k)
threshold

2n
, for k ≥ 1. (5.2.3)

The coarsening condition for the initial mesh L(0) is slightly more general: we do not

assume the panels in the initial mesh form any “sibling” relationship and any pair of

adjacent panels with equal panel size b1 and b2 are merged into one if the inequality

in (5.2.3) is satisfied.

Algorithm 1 provides the pseudocode for the panel-picking algorithm. In practice,

the coarsening condition is rarely satisfied for k ≥ 1, i.e. L(k)
merge is mostly empty for

k ≥ 1.

5.2.3 Convergence error and exit condition

Given a refinement level k and the corresponding panel list L(k), a convergence error

is defined to check if the density is already well-resolved by the current mesh. Let

A(k)σ(k) = f (k) be the linear system of the density for the kth level. In addition, define

a doubly-refined reference discretization L(k,double) by refining every panels in L(k) into

two, and let A(k,double)σ(k,double) = f (k,double) be the corresponding linear system. The

107

Algorithm 1 (Local Legendre expansion based panel-picking)

Given a scalar C, the panel list L(k) for the kth refinement level, and the
corresponding density approximation σ(k), this algorithm determines L(k)

refine,

the list of under-resolved panels in L(k), and L(k)
merge, the list of over-resolved

panels in L(k).

Evaluate operator Mn in equation (5.2.1)
loop over panels b in L(k),

Compute Legendre coefficients α
(k)
b = Mnσ

(k)
b .

Evaluate φ
(k)
b as in (5.2.2).

end loop

Set φ
(k)
threshold = maxb∈L(k)

�
φ
(k)
b

2C

�
.

Initialize L(k)
refine and L(k)

merge to be empty lists.
loop over panels b in L(k),

if φ
(k)
b ≥ φ

(k)
threshold ,

Add b to L(k)
refine .

end if
end loop
loop over sibling pairs b1 and b2 in L(k),
% if k = 0, then loop over all pairs of consecutive panels same in size

if φ
(k)
b1

+ φ
(k)
b1

<
φ
(k)
threshold

2n
,

Add b1 and b2 to L(k)
merge .

end if
end loop

108

convergence error is defined as

e(k) =
�σ(k) − L(k)σ(k,double)�
�σ(k) + L(k)σ(k,double)� , (5.2.4)

where L(k) is a block-diagonal interpolation operator. For each panel b ∈ L(k), let b1

and b2 denote the two children panels of b in L(k,double). A local Lagrange interpolation

operator from the two children panels to the parent panel, which interpolates the

values σ
(k,double)
b1

and σ
(k,double)
b2

to quadrature points in b, constitutes one diagonal

block of L(k). Note that there is no need to explicitly form the global interpolation

operator L(k). Instead, the local interpolation operator can be pre-computed for the

reference interval [−1, 1] and applied to the corresponding sub-vectors of σ(k,double)

panel-wise.

The cost of evaluating e(k) is dominated by the two linear system solves for ob-

taining σ(k) and σ(k,double). The adaptive process stops when the convergence error is

smaller than the user prescribed tolerance. Namely, if e(k
∗) ≤ �, then L(k∗) is the final

discretization and the algorithm terminates.

5.2.4 Full Algorithm and cost analysis

Algorithm 2 gives a pseudocode for the full algorithm. For each refinement level

k, let m(k) denote the number of panels in L(k). The cost of the algorithm per

refinement level is dominated by the two linear system solves for evaluating e(k), which

is O([m(k)n]3) if done via dense linear algebra. As k increases, m(k) also increases.

Thus the total cost of the algorithm is very high for problems that require many levels

of refinement.

109

Algorithm 2 (Globally solved boundary density guided adaptive
discretization)

Given a user prescribed tolerance �, the max number of refinement level
MaxLevel, and the initial discretization L(0), this algorithm adaptively re-
fines the discretization to resolve the boundary density to �.

Initialize mesh k = 0 .
Solve A(0)σ(0) = f (0).
Solve A(0,double)σ(0,double) = f (0,double).

e(0) = �σ(0)−L(0)σ(0,double)�
�σ(0)+L(0)σ(0,double)� .

if e(0) ≤ �
Return with Lfinal = L(0). Success.

else

Determine L(0)
refine and L(0)

merge by Algorithm 1.

Bisect panels in L(0)
refine and merge pairs of panels in L(0)

merge to get L(1).
end if
while k < MaxLevel

k = k + 1.
Solve A(k)σ(k) = f (k).
Solve A(k,double)σ(k,double) = f (k,double).

e(k) = �σ(k)−L(k)σ(k,double)�
�σ(k)+L(k)σ(k,double)� .

if e(k) ≤ �
Return with Lfinal = L(k). Success.

else

Determine L(k)
refine and L(k)

merge by Algorithm 1.

Bisect panels in L(k)
refine and merge pairs of panels in L(k)

merge to get L(k+1).
end if

end while loop
Return with MaxLevel reached. Fail.

110

5.3 A new adaptive scheme

The density guided adaption in Algorithm 2 is numerically expensive for practical

problems, since it requires a sequence of global density solves with growing number

of unknowns as more and more panels get refined. This section proposes an adaptive

discretization that replaces the global solves for the true density by local solves for

an artificial density as defined in Section 5.3.1.

5.3.1 Locally updated artificial density

For the initial mesh, L(0), the artificial density ρ(0) is simply defined to be equal to

the globally solved boundary density, i.e. ρ(0) = σ(0). Now we define the artificial

density for k ≥ 1 by giving the steps for updating ρ(k−1) to get ρ(k).

The artificial density will be updated in two rounds, and the updates for the first

round are only for the entries that correspond to the panels chosen to be refined or

merged. The first round sweeps through all panels in L(k−1)
refine ∪L(k−1)

merge. For each panel

b ∈ L(k−1)
refine , let C(b) = {l ∈ L(k−1) : l �= b} denote the complement of b and let b1 and

b2 denote the two children panels of b in L(k). The artificial density restricted to b1

and b2 gets updated by solving the following 2n× 2n local system


λI+



K̂b1,b1 K̂b1,b2

K̂b2,b1 K̂b2,b2









ρ
(k,temp)
b1

ρ
(k,temp)
b2


 =



fb1

fb2


−



K̂b1,C(b)

K̂b2,C(b)


 ρ

(k−1)
C(b) , (5.3.1)

where matrix notation K̂b1,b2 denotes the subblock of matrix K̂ in equation (5.1.3)

with rows corresponding to points in b1 and columns corresponding to points in b2,

etc.

For each pair of panels b and c in L(k−1)
merge, let a be the panel formed by merging

111

b and c. The artificial density restricted to a gets updated by solving the following

n× n local system

�
λI+ K̂a,a

�
ρ(k,temp)
a = fa − K̂a,C(b∪c)ρ

(k−1)
C(b∪c), (5.3.2)

where C(b ∪ c) = {l ∈ L(k−1) : l �= b and l �= c} is the complement of b ∪ c. The

superscript notation “temp” means temporary, indicating this value for the artificial

density is not final and will be updated in a second round.

Once all panels in L(k−1)
refine ∪ L(k−1)

merge are processed in the first round, the resulting

artificial density ρ(k,temp) is updated again to account for the fact that more than one

panels get updated and that the updated artificial density on one panel affects the

artificial density on a different panel. For each panel p ∈ L(k), let C(p) = {l ∈ L(k) :

l �= p} be the complement. The updated artificial density restricted to panel p is

defined to be the solution of

�
λI+ K̂p,p

�
ρ(k)p = fp − K̂p,C(p)ρ

(k,temp)
C(p) . (5.3.3)

5.3.2 Exit condition

The collection of local solves for updating the artificial density replaces the global

solves for the true boundary density A(k)σ(k) = f (k) for k ≥ 1 in Algorithm 2. The

next question is how to remove the global solves on the doubly refined reference

mesh, i.e. A(k,double)σ(k,double) = f (k,double) for k ≥ 1, which is required for evaluating

the convergence error defined by (5.2.4). This is done by introducing a new definition

for ρ(k,double) similar to the updating scheme for ρ(k) and a new exit condition. For

the initial mesh, let ρ(0,double) = σ(0,double) be obtained from a global solve. Then for

112

each refinement level k ≥ 1, we can assume both ρ(k−1) and ρ(k−1,double) are available.

We then use the results from (5.3.1) and (5.3.2) to update the value of ρ(k−1,double)

to obtain ρ(k,double). For each panel p ∈ L(k), let p1 and p2 ∈ L(k,double) be the two

children panels resulted from bisecting p. Let the restriction of ρ(k,double) on p1 and

p2 be updated by solving the following 2n× 2n linear system


λI+



K̂p1,p1 K̂p1,p2

K̂p2,p1 K̂p2,p2









ρ
(k,double)
p1

ρ
(k,double)
p2


 =



fp1

fp2


−



K̂p1,C(p)

K̂p2,C(p)


 ρ

(k,temp)
C(p) . (5.3.4)

We introduce a new quantity η(k) which measure the relative improvement in the

artificial density

η(k) =
�ρ(k) − L(k)ρ(k,double)�
�ρ(k) + L(k)ρ(k,double)� . (5.3.5)

It is used in place of e(k) in the adaptive process for determining when the adaptive

process terminates. The algorithm terminates with L(k∗) as the final mesh if η(k
∗) ≤ �.

5.3.3 Full algorithm and efficient implementation

The pseudocode for the new algorithm is given in Algorithm 3. Unlike the adaptive

algorithm which solves for the true density σ(k) for each refinement level, the artificial

density approach requires only one global solve for the initial mesh and updates locally

for k ≥ 1. Thus the initial mesh must be reasonable and a nontrivial initialization

step, such as the arc length approach described in Section 5.2.1, is recommended.

Remark 5.3.1 Algorithm 3 only produces the mesh. The linear system for the final

mesh Lfinal needs to be constructed and solved to obtain a solution to the BIE.

For problems defined on complex geometries, fast solution algorithm, such as FMM

accelerated iterative solvers, should be used, since the global systems might be too

113

large to solve densely.

Dense evaluation and inversion of the local systems in equation (5.3.1), (5.3.2),

(5.3.3), and (5.3.4) for updating ρ(k) and ρ(k,double) is efficient, since the matrices are

small. Many of the local inverses can be reused for consecutive refinement levels, i.e.

k and k + 1. This fact is exploited in the implementation. New matrix evaluation

and inversion is only done when new panels get refined.

In the efficient implementation, we construct a collection of local inverses of size

n × n for each panel in L(0)\L(0)
refine and local operators and inverses of size 2n × 2n

for each sibling pair of panels in L(0,double) as an extra step for the initial mesh L(0).

For each refinement level k ≥ 1, the local inverses in equation (5.3.1) are available

from the local inverses stored for L(k−1,double). The inverses of the local operator in

equation (5.3.2) are available from the stored information for L(k−2) if k ≥ 2. The

local inverses in (5.3.3) are available either from the size n×n local inverses for L(k−1)

and L(k−2) or can be obtained by inverting submatrices from the 2n×2n self operators

stored for L(k−1,double). New local operator construction and/or inversion is required

only for the following three scenarios:

(1) New operators of size n× n are constructed and inverted for panels in L(0)
merge to

solve (5.3.2).

(2) Submatrices of size n×n are extracted and inverted when solving (5.3.3) for each

p ∈ L(k)\L(k−1).

(3) New operators of size 2n × 2n are constructed and inverted for each panel in

L(k)\L(k−1) for k ≥ 1 on the doubly refined reference mesh.

Thus the cost of evaluating and inverting the local systems is O([m(k)−m(k−1)]n3) for

114

each level k ≥ 1. The total amount of memory required for storing the local operators

is O(mn2), where m = maxk m
(k).

The major remaining cost of the new algorithm is evaluating the right-hand-side

potential of the form K̂p,C(p) in equation (5.3.1), (5.3.2), (5.3.3), and (5.3.4). When

memory is not a major concern, it is worthwhile to store and update the right-hand-

side operator K̂p,C(p) for each panel p in the current mesh L(k). The operator is

first used to solve equation (5.3.3) for the kth level. Let L
(k)
p be a local Lagrange

interpolation operator mapping values at points in p to points in the two children

panels p1 and p2 of p on the doubly refined reference mesh Lk,double. Then K̂p,C(p) is

reused to approximate the right-hand-side potential for equation (5.3.4)



K̂p1,C(p)

K̂p2,C(p)


 ρ

(k,temp)
C(p) ≈ L(k)

p K̂p,C(p)ρ
(k,temp)
C(p) .

The right-hand-side potential in (5.3.1) for the (k + 1)th level can be approximated

similarly by reusing K̂p,C(p) stored for the kth level. The memory cost for storing the

off-diagonal operators is O(m2n2), and the computational complexity per refinement

level for evaluating the right-hand-side potential is O(
�
m(k)n

�2
).

Remark 5.3.2 The right-hand-side potential evaluation can be accelerated by an FMM.

The memory cost drops down to O(mn) and the computational cost drops down to

O(m(k)n). This acceleration is not included in the current implementation.

The cost of the initial refinement level is O([m(0)n]3). Let kfinal be the last re-

finement level, the total cost per level of the new algorithm is O(
�
m(k)n

�2
+ [m(k) −

m(k−1)]n3) for intermediate level 0 < k < kfinal, which is much smaller than the cost

of the true density guided algorithm in section 5.2.

115

Algorithm 3 (Locally updated artificial density guided adaptive
discretization)

Given a user prescribed tolerance �, the max number of refinement level
MaxLevel, and the initial discretization L(0), this algorithm adaptively re-
fines the discretization and produces a final discretization which resolves the
true boundary density to �.

Initialize mesh k = 0.
Solve A(0)σ(0) = f (0).
Solve A(0,double)σ(0,double) = f (0,double).

e(0) = �σ(0)−L(0)σ(0,double)�
�σ(0)+L(0)σ(0,double)� .

if e(0) ≤ �
Return with Lfinal = L(0). Success.

else

Determine L(0)
refine and L(0)

merge by Algorithm 1.

Bisect panels in L(0)
refine and merge pairs of panels in L(0)

merge to get L(1).
Set ρ(0) = σ(0) and ρ(0,double) = σ(0,double).

end if
while k < MaxLevel

k = k + 1.

loop over b ∈ L(k−1)
refine

Let b1 and b2 ∈ L(k) be the two children panel for b.

Solve (5.3.1) to update ρ
(k,temp)
b1

and ρ
(k,temp)
b2

.
end loop

loop over sibling pair b and c in L(k−1)
merge

Let a be the panel created by merging b and c.

Solve (5.3.2) to update ρ
(k,temp)
a .

end loop
loop over p ∈ L(k)

Solve (5.3.3) for ρ
(k)
p .

Let p1 and p2 ∈ L(k,double) be the two children panel for p.

Solve (5.3.4) for ρ
(k,double)
p1 and ρ

(k,double)
p2 .

end loop

η(k) = �ρ(k)−L(k)ρ(k,double)�
�ρ(k)+L(k)ρ(k,double)� .

if η(k) ≤ �
Return with Lfinal = L(k).

else

Determine L(k)
refine and L(k)

merge by Algorithm 1.

Bisect panels in L(k)
refine and merge pairs of panels in L(k)

merge to get L(k+1).
end if
end while loop
Return with MaxLevel reached. Fail.

116

5.4 Numerical results

This section illustrates the performance of the artificial density guided adaptive dis-

cretization algorithm when applied to BIEs defined on planar curves. The current

implementation for both the new algorithm and the true denstiy algorithm is in MAT-

LAB and uses dense linear algebra (MATLAB’s built-in backslash) for global density

solves. All experiments were run on a dual 2.3 GHz Intel Xeon Processor E5-2695 v3

desktop workstation with 256 GB of RAM.

The following values are defined and reported to help analyze the results of the

algorithms:

� kfinal: total number of refinement levels, i.e. refinement levels, required to reach

Lfinal.

� m(kfinal): number of panels in Lfinal.

� T : total time in seconds used by the algorithms to generate the final mesh.

� Einterior: the relative error in solution to the BVP evaluated at the interior

target locations. In the case of multiple interior target locations, the average is

reported.

� η(kfinal): the artificial density convergence measure as defined in (5.3.5) for the

final refinement level. This value is only reported for the artificial density ap-

proach.

� e(kfinal): the convergence error as defined in (5.2.4) for the final refinement level.

For the new algorithm, this is not part of the algorithm and is calculated as an

extra step once the algorithm terminates.

117

5.4.1 Comparison with the true density guided algorithm

To demonstrate the efficiency of the new algorithm, we first compare the algorithm

with the true density approach by applying the two algorithms to an interior Laplace

problem with Dirichlet boundary conditions.

Consider the butterfly geometry shown in Figure 5.4.1(a), which is created by

smoothing a butterfly shaped polygon via the technique in [2]. We consider a test

BVP with a known solution given by

uext(x)
Nsrc�

i=1

G(x,yi)qi,

where {yi, qi}Nsrc
i=1 gives the location and charge value of a collection of exterior source

charges.

A mesh with two equal size panels that integrates the arc length function to �init =

10−1 is chosen to be the initial mesh. Several different values for � are considered to

verify the correctness of the new algorithms and compare its efficiency against the

true density approach.

The results are reported in Table 5.1. For all tested values of �, the final mesh

produced by the artificial density approach resolves the true density to more digits

than the desired accuracy. For example, the � = 10−6 row in Table 5.1(a) shows that

the final mesh has e(kfinal) = 2.5 × 10−9 << � = 10−6. This indicates the resulting

mesh meets the user-prescribed tolerance but is not optimal. For all test cases, the T

column shows that the computational cost of the new algorithm is much smaller than

that of the true density approach. When high accuracy is desired, the new algorithm

cuts done the cost of generating the mesh by a factor of 7.

As a reference, we also solve the same BVP by uniform panel distribution with

118

increasing number of panels. The idea here is to show that uniform panel distribution

is not efficient in resolving the boundary density for complex geometries. The number

of panels required for a uniform panel distribution to reach a comparable level of

accuracy as the adaptive algorithms is much larger, and thus uniformly refining every

existing panels to reach the desired tolerance is not practical for most problems.

We report the number of panels m, the convergence error e as defined in (5.3.5),

and the solution error at interior target locations Einterior in Table 5.2. The results

show that the uniform mesh does a poor job in resolving the density when compared

to the adaptive algorithms. With about 400 panels, the adaptive algorithms gives

convergence error smaller than 1.0 × 10−12 and interior solution error smaller than

1.0× 10−14, while the uniform mesh results in a convergence error of 3.9× 10−8 and

interior solution error of 1.7× 10−9. The inefficiency of uniform panel distribution in

resolving the boundary density will be even more significant if the geometry is more

challenging, e.g. the Fallopian tube piece geometry in Figure 5.4.4.

5.4.2 Same geometry with different right-hand-side functions

Special care may be required to resolve the boundary density even though the bound-

ary geometry is simple. One possible source of the complexity is the right-hand-side

function. In this section, we consider two Laplace problems defined on the same fish

geometry shown in Figure 5.4.2 (a) but with Dirichlet data generated by a collection

of exterior source charges placed at different locations indicated by (i) and (ii) in

Figure 5.4.2 (a). The right-hand-side function f(x) corresponding to case (i) and (ii)

is plotted in Figure 5.4.2 (b). The right-hand-side function f(x) for case (ii) has a

sharper peak near t = π
2
than that for case (i). Thus, we expect more panels are

needed in the peak region for case (ii), which corresponds to the fish head on the

119

-5 0 5 10 15

0

5

10

15

20

25 boundary

interior targets

exterior sources

7 8 9 10 11

12

13

14

15

16

17

18

(a) (b)

Figure 5.4.1 : (a) A butterfly geometry with interior target locations and exterior
source locations. The geometry is generated by applying a corner smoothing scheme
present in [2] to a butterfly shaped polygon. (b) zooms in the circled region in (a) to
show that there is no sharp corners for this geometry.

� kfinal m(kfinal) η(kfinal) e(kfinal) Einterior T
1e-6 12 194 1.0e-7 2.5e-9 5.1e-14 1.9
1e-8 14 254 3.3e-10 2.5e-12 1.0e-14 2.4
1e-10 15 312 5.4e-11 2.4e-13 2.0e-15 3.3
1e-12 17 404 7.8e-13 4.8e-14 2.2e-15 4.6

(a) new algorithm

� kfinal m(kfinal) e(kfinal) Einterior T
1e-6 13 172 3.0e-7 3.3e-9 7.0
1e-8 16 256 1.3e-9 2.5e-14 16.7
1e-10 18 368 5.0e-13 7.9e-15 35.7
1e-12 18 368 5.0e-13 7.9e-15 35.7

(b) true density guided algorithm

Table 5.1 : Results for applying (a) the artificial density algorithm and (b) the true
density algorithm to a Laplace BVP defined on the butterfly geometry given in Figure
5.4.1. All tests start with a two-panel initial mesh which integrates the arc length
function to one digit of accuracy.

120

m e Einterior

100 6.2e-3 3.4e-4
200 8.0e-6 8.1e-7
400 3.9e-8 1.7e-9
800 3.1e-11 5.3e-14
1000 1.2e-12 2.6e-15

Table 5.2 : Results for solving a Laplace BVP defined on the butterfly geometry by
uniform Gaussian panel quadrature.

boundary geometry. The tolerance is set to be � = 10−8 and the initial mesh contains

only two panels of equal size which integrates the arc length function to �init = 10−1.

The final mesh for the two cases presented in Figure 5.4.3 matches our expectation:

the final meshes are the same except that the mesh for case (ii) has more panels near

the fish head.

5.4.3 Complex geometry

This section applies the new algorithm to a Laplace BVP defined on a more chal-

lenging geometry shown in Figure 5.4.4. This geometry is created by applying the

corner smoothing scheme in [2] to a polygon formed by a collection of 621 data points

sampled from the Fallopian tube cross section image (Figure 4.0.1) provided in [1].

We apply the new algorithm with two choices of desired tolerance: � = 10−6 and

� = 10−8. The initial mesh contains 737 panels and integrates the arc length function

to �init = 10−1. The time and error results are reported in Table 5.3. It takes the new

algorithm 231.5 seconds to produce a mesh which resolves the true boundary density

to e(kfinal) = 1.2× 10−10 when the desired tolerance is set to � = 10−8.

121

-0.2 -0.1 0 0.1 0.2 0.3
-0.15

-0.1

-0.05

0

0.05

0.1

boundary

interior targets

exterior sources (i)

exterior sources (ii)

0 2 4 6
0.2

0.4

0.6

0.8

1

1.2

1.4

(i)

(ii)

t ∈ [0, 2π]

f
(x
(t
))

(a) (b)

Figure 5.4.2 : (a) A fish geometry with interior target locations and two choices of
exterior source locations (i) and (ii) for the right-hand-side function f(x). (b) The
right-hand-side function f(x(t)) plotted against parameterization variable t for the
two choices of exterior source locations (i) and (ii).

kfinal m(kfinal) η(kfinal) e(kfinal)

7 41 5.5e-9 1.6e-11
kfinal m(kfinal) η(kfinal) e(kfinal)

7 43 4.4e-9 1.3e-11
(i) (ii)

Figure 5.4.3 : The final mesh produced by the new algorithm for f(x) generated by
choices of exterior source locations (i) and (ii). More panels are placed at the fish
head (circled region) for (ii). Desired accuracy is set to � = 10−8, and the initial mesh
integrates the arc length function to �init = 10−1.

122

50 100 150 200 250 300

100

150

200

250

exterior sources

interior targets

boundary

Figure 5.4.4 : The “Fallopian tube piece” geometry.

� kfinal m(kfinal) η(kfinal) e(kfinal) Einterior T
1e-6 15 2155 3.9e-7 5.2e-8 1.1e-9 150.4
1e-8 18 2701 7.9e-9 1.2e-10 4.9e-13 231.5

Table 5.3 : Results for applying the artificial density guided adaptive discretization
algorithm to the “Fallopian tube piece” geometry.

123

5.5 Summary

This chapter presents a panel-based adaptive discretization technique for two-dimensional

BIEs. The method introduces a new quantity, the artificial density, to guide the

adaptive process. Small local linear systems are solved for each intermediate mesh

to update the artificial density. Thus, the method is much less expensive than the

standard true density guided adaptive discretization which requires global solves for

the boundary density for each intermediate mesh.

124

Chapter 6

Conclusions

The goal of the proposed work is to build tools to expand the applicability of BIE

formulations and fast direct solution techniques to a broader range of applications.

The fast direct solver for quasi-periodic scattering in layered media and the fast

direct solver for confined Stokes flow with locally refined discretization are driven

by applications and tackle the bottleneck problems encountered by practitioners in

the respective research fields. The last project addresses the difficulty associated

with discretizing BIEs on complex boundary geometries and introduces an adaptive

discretization scheme as a way to deal with this difficulty. The adaptive discretization

scheme is not designed for a particular application and can be applied to lots of

problems so that the resulting discretization achieves the user prescribed tolerance.

This section highlights the work from each of the projects and concludes the thesis.

The first project considers the quasi-periodic scattering problem in layered media.

The proposed solution technique uses an existing BIE formulation from [48] and solves

a block tridiagonal linear system, of which the major block is inverted via a collection

of fast direct solvers each for an individual layer interface. The resulting solver for the

entire scatterer structure scales linearly with respect to the number of unknowns on

the interfaces, and can be modified with a small cost if a few layers change in shape or

material property. This piece of work is published in [119] and has peaked the interest

of people in a variety of communities. Currently, Owen Miller at Yale is integrating

this solver into his optimal design framework for developing composite materials. The

125

solver can easily handle interfaces with corners and high contrast media, both of these

are challenging for existing numerical methods, making it difficult for practitioners

to model composite materials.

The second project focuses on the numerical simulation of bodies in confined

Stokes flow. The major bottleneck for a BIE formulation based simulation is solving

the BIE on the confining wall. Existing out-of-box fast direct solvers are efficient

for this problem only if the discretization of the confining wall does not change over

time, while the proposed fast direct solver is designed to work with time-evolving

discretization refinements. Preliminary experiments show that for one time step local

refinement and one right-hand-side solve, the new solver can be 4-5 times faster than

building an HBS solver for the new discretization from scratch. This will result in

hundreds times speed-up for simulations with multiple time steps and/or multiple

right-hand-sides. Part of the work shown for the project is published in [120]. An

on-going project is to incorporate the solver into a time stepping scheme for modeling

the dynamics of cilia structures in complex geometries. This is a collaboration with

the authors of [1].

Finally, the last project develops a panel based adaptive disretization technique for

two-dimensional BIEs. The proposed algorithm introduces the idea of artificial den-

sity to guide the adaptive procedure. This prevents the potential over-discretiation or

under-discretization when compared to adaptive discretization algorithms guided by

purely geometric quantities such as arc length and curvature and avoids the expensive

global solves when compared to the standard density guided adaptive discretization.

Future work includes extending the algorithm to more complicated two-dimensional

BIEs, such as the Helmholtz equations on complex geometries.

126

Bibliography

[1] H. Guo, H. Zhu, and S. Veerapaneni, “Simulating cilia-driven mixing and trans-

port in complex geometries,” Physical Review Fluids, vol. 5, p. 053103, May

2020.

[2] C. L. Epstein and M. O’Neil, “Smoothed corners and scattered waves,” SIAM

Journal on Scientific Computing, vol. 38, no. 5, pp. A2665–A2698, 2016.

[3] R. Kress, Linear Integral Equations, vol. 82. Springer-Verlag New York, 3 ed.,

2014.

[4] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second

Kind. Cambridge Monographs on Applied and Computational Mathematics,

Cambridge University Press, 1997.

[5] D. Colton, Partial Differential Equations: An Introduction. Random House,

1988.

[6] G. Hsial and W. L. Wendland, Boundary Integral Equations, vol. 164 of 0066-

5452. Springer-Verlag Berlin Heidelberg, 1 ed., 2008.

[7] K. E. Atkinson, “The numerical solution of fredholm integral equations of the

second kind with singular kernels,” Numerische Mathematik, vol. 19, no. 3,

pp. 248–259, 1972.

127

[8] W. Ang, A Beginner’s Course in Boundary Element Methods. Universal Pub-

lishers, 2007.

[9] J. Katsikadelis, Boundary Elements: Theory and Applications. Elsevier Science,

2002.

[10] J. Katsikadelis, The Boundary Element Method for Engineers and Scientists:

Theory and Applications. Elsevier Science, 2016.

[11] S. Kapur and V. Rokhlin, “High-order corrected trapezoidal quadrature rules

for singular functions,” SIAM Journal on Numerical Analysis, vol. 34, pp. 1331

– 1356, 8 1997.

[12] R. Duan and V. Rokhlin, “High-order quadratures for the solution of scattering

problems in two dimensions,” Journal of Computational Physics, vol. 228, no. 6,

pp. 2152 – 2174, 2009.

[13] J. Bremer, “On the nyström discretization of integral equations on planar curves

with corners,” Applied and Computational Harmonic Analysis, vol. 32, no. 1,

pp. 45 – 64, 2012.

[14] J. Bremer, V. Rokhlin, and I. Sammis, “Universal quadratures for boundary

integral equations on two-dimensional domains with corners,” Journal of Com-

putational Physics, vol. 229, no. 22, pp. 8259 – 8280, 2010.

[15] J. Helsing, “Corner singularities for elliptic problems: special basis functions

versus “brute force”,” Communications in Numerical Methods in Engineering,

vol. 16, no. 1, pp. 37–46, 2000.

128

[16] A. Gillman, S. Hao, and P.-G. Martinsson, “A simplified technique for the

efficient and highly accurate discretization of boundary integral equations in 2d

on domains with corners,” Journal of Computational Physics, vol. 256, pp. 214

– 219, 2014.

[17] K. Serkh and V. Rokhlin, “On the solution of elliptic partial differential equa-

tions on regions with corners,” Journal of Computational Physics, vol. 305,

pp. 150 – 171, 2016.

[18] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” Jour-

nal of Computational Physics, vol. 73, no. 2, pp. 325 – 348, 1987.

[19] W. Hackbusch, “A sparse matrix arithmetic based on H-matrices. I. Introduc-

tion to H-matrices,” Computing, vol. 62, no. 2, pp. 89–108, 1999.

[20] W. Hackbusch and B. N. Khoromskij, “A sparse H-matrix arithmetic : gen-

eral complexity estimates,” Journal of computational and applied mathematics,

vol. 125, no. 1-2, pp. 479–501, 2000.

[21] W. Hackbusch and B. N. Khoromskij, “A sparse H-matrix arithmetic. part ii.

application to multi-dimensional problems,” Computing, vol. 64, no. 1, pp. 21–

47, 2000.

[22] S. Börm and W. Hackbusch, “A short overview of H2-matrices,” Proceedings in

applied mathematics and mechanics, vol. 2, no. 1, pp. 33–36, 2003.

[23] P.-G. Martinsson and V. Rokhlin, “A fast direct solver for boundary integral

equations in two dimensions,” Journal of Computational Physics, vol. 205, no. 1,

pp. 1 – 23, 2005.

129

[24] P.-G. Martinsson, “A fast randomized algorithm for computing a hierarchically

semiseparable representation of a matrix,” SIAM Journal on Matrix Analysis

and Applications, vol. 32, no. 4, pp. 1251–1274, 2011.

[25] X. Liu, J. Xia, and M. V. de Hoop, “Parallel randomized and matrix-free direct

solvers for large structured dense linear systems,” SIAM Journal on Scientific

Computing, vol. 38, no. 5, pp. S508–S538, 2016.

[26] Z. Sheng, P. Dewilde, and S. Chandrasekaran, Algorithms to Solve Hierarchi-

cally Semi-separable Systems, pp. 255–294. Basel: Birkhäuser Basel, 2007.

[27] J. Xia, S. Chandrasekaran, M. Gu, and X. Li, “Fast algorithms for hierarchically

semiseparable matrices,” Numerical Linear Algebra with Applications, vol. 17,

no. 6, pp. 953–976, 2010.

[28] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, “Superfast multifrontal method

for large structured linear systems of equations,” SIAM Journal on Matrix Anal-

ysis and Applications, vol. 31, no. 3, pp. 1382–1411, 2009.

[29] S. Chandrasekaran, M. Gu, and W. Lyons, “A fast adaptive solver for hierar-

chically semiseparable representations,” Calcolo, vol. 42, no. 3-4, pp. 171–185,

2005.

[30] A. Gillman, P. M. Young, and P.-G. Martinsson, “A direct solver with O(n)

complexity for integral equations on one-dimensional domains,” Frontiers of

Mathematics in China, vol. 7, no. 2, pp. 217–247, 2012.

[31] S. Ambikasaran and E. Darve, “An o(n log n) fast direct solver for partial hi-

erarchically semi-separable matrices,” Journal of Scientific Computing, vol. 57,

no. 3, pp. 477–501, 2013.

130

[32] B. Carpentieri, “Fast preconditioned krylov methods for boundary integral

equations in electromagnetic scattering,” 2012.

[33] K. Chen and P. J. Harris, “Efficient preconditioners for iterative solution of

the boundary element equations for the three-dimensional helmholtz equation,”

Applied Numerical Mathematics, vol. 36, no. 4, pp. 475 – 489, 2001.

[34] B. Carpentieri, “Preconditioning for large-scale boundary integral equations in

electromagnetics [open problems in cem],” IEEE Antennas and Propagation

Magazine, vol. 56, pp. 338–345, Dec 2014.

[35] S. C. Hawkins and K. Chen, “New wavelet preconditioner for solving bound-

ary integral equations over nonsmooth boundaries,” International Journal of

Computer Mathematics, vol. 81, no. 3, pp. 353–360, 2004.

[36] X. Antoine, A. Bendali, and M. Darbas, “Analytic preconditioners for the

boundary integral solution of the scattering of acoustic waves by open surfaces,”

Journal of Computational Acoustics, vol. 13, no. 03, pp. 477–498, 2005.

[37] S. Ambikasaran and E. Darve, “An O(n log n) fast direct solver for partial hi-

erarchically semi-separable matrices,” Journal of Scientific Computing, vol. 57,

pp. 477–501, December 2013.

[38] A. Gillman and A. Barnett, “A fast direct solver for quasi-periodic scattering

problems,” Journal of Computational Physics, vol. 248, pp. 309 – 322, 2013.

[39] A. Barnett, B. Wu, and S. Veerapaneni, “Spectrally accurate quadratures for

evaluation of layer potentials close to the boundary for the 2d stokes and laplace

equations,” SIAM Journal on Scientific Computing, vol. 37, 10 2014.

131

[40] J. Helsing and R. Ojala, “On the evaluation of layer potentials close to their

sources,” Journal of Computational Physics, vol. 227, no. 5, pp. 2899 – 2921,

2008.

[41] A. Klöckner, A. Barnett, L. Greengard, and M. O?Neil, “Quadrature by ex-

pansion: A new method for the evaluation of layer potentials,” Journal of

Computational Physics, vol. 252, pp. 332 – 349, 2013.

[42] H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,”

Nature Materials, vol. 9, pp. 205– 213, 2010.

[43] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans,

M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and

H. A. Atwater, “Enhanced absorption and carrier collection in si wire arrays

for photovoltaic applications,” Nature Materials, vol. 9, pp. 239–244, 2010.

[44] N. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective

absorbers using coated sub-wavelength gratings,” Optics Express, vol. 18, no. 6,

pp. 5525–5540, 2010.

[45] M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon,

and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Optics

Letters, vol. 20, pp. 940–942, 1995.

[46] C. Barty, M. Key, J. Britten, R. Beach, G. Beer, C. Brown, S. Bryan, J. Caird,

T. Carlson, J. Crane, J. Dawson, A. Erlandson, D. Fittinghoff, M. Hermann,

C. Hoaglan, A. Iyer, L. J. II, I. Jovanovic, A. Komashko, O. Landen, Z. Liao,

W. Molander, S. Mitchell, E. Moses, N. Nielsen, H.-H. Nguyen, J. Nissen,

S. Payne, D. Pennington, L. Risinger, M. Rushford, K. Skulina, M. Spaeth,

132

B. Stuart, G. Tietbohl, and B. Wattellier, “An overview of llnl high-energy

short-pulse technology for advanced radiography of laser fusion experiments,”

Nuclear Fusion, vol. 44, no. 12, p. S266, 2004.

[47] G. A. Kalinchenko and A. M. Lerer, “Wideband all-dielectric diffraction grating

on chirped mirror,” Journal of Lightwave Technology, vol. 28, pp. 2743–2749,

2010.

[48] M. Cho and A. Barnett, “Robust fast direct integral equation solver for quasi-

periodic scattering problems with a large number of layers,” Optics Express,

vol. 23, no. 2, pp. 1775–1799, 2015.

[49] B. Wu, H. Zhu, A. Barnett, and S. Veerapaneni, “Solution of stokes flow in

complex nonsmooth 2d geometries via a linear-scaling high-order adaptive inte-

gral equation scheme,” Journal of Computational Physics, vol. 410, p. 109361,

2020.

[50] Y. Zhang and A. Gillman, “A fast direct solver for boundary value problems

on locally perturbed geometries,” Journal of Computational Physics, vol. 356,

pp. 356 – 371, 2018.

[51] G. H. Golub and C. F. V. Loan, Matrix Computations. Johns Hopkins Univer-

sity Press, Fourth 2013.

[52] T. F. Chan, “Rank revealing qr factorizations,” Linear Algebra and its Appli-

cations, vol. 88, pp. 67 – 82, 1987.

[53] D. C. Sorensen and M. Embree, “A deim induced cur factorization,” SIAM

Journal on Scientific Computing, vol. 38, no. 3, pp. A1454–A1482, 2016.

133

[54] H. Cheng, Z. Gimbutas, P.-G. Martinsson, and V. Rokhlin, “On the compression

of low rank matrices,” SIAM Journal on Scientific Computing, vol. 26, no. 4,

pp. 1389–1404, 2005.

[55] P.-G. Martinsson, V. Rokhlin, and M. Tygert, “A randomized algorithm for the

decomposition of matrices,” Applied and Computational Harmonic Analysis,

vol. 30, no. 1, pp. 47 – 68, 2011.

[56] L. Greengard, D. Gueyffier, P.-G. Martinsson, and V. Rokhlin, “Fast direct

solvers for integral equations in complex three-dimensional domains,” Acta Nu-

mer., vol. 18, pp. 243–275, 2009.

[57] A.-S. Bonnet-Bendhia and F. Starling, “Guided waves by electromagnetic grat-

ings and non-uniqueness examples for the diffraction problem,” Mathematical

Methods in the Applied Sciences, vol. 17, no. 5, pp. 305–338, 1994.

[58] T. Hughes, The Finite Element Method: Linear Static and Dynamic Finite

Element Analysis. Dover Publications, 2000.

[59] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-d finite element mesh genera-

tor with built-in pre- and post-processing facilities,” International Journal for

Numerical Methods in Engineering, vol. 79, pp. 1309 – 1331, 09 2009.

[60] D. Komatitsch and J. Tromp, “A perfectly matched layer absorbing bound-

ary condition for the second-order seismic wave equation,” Geophysical Journal

International, vol. 154, pp. 146 – 153, 07 2003.

[61] I. M. Babuska and S. A. Sauter, “Is the pollution effect of the FEM avoidable

for the Helmholtz equation considering high wave numbers?,” SIAM Journal of

Numerical Analysis, vol. 34, no. 6, pp. 2392–2423, 1997.

134

[62] M. G. Moharam and T. G. Gaylord, “Rigorous coupled-wave analysis of planar-

grating diffraction,” Journal of the Optical Society of America, vol. 71, pp. 811–

818, 1981.

[63] L. Li, “Use of fourier series in the analysis of discontinuous periodic structures,”

Journal of the Optical Society of America A, vol. 13, pp. 1870–1876, 1996.

[64] L. Li, “Formulation and comparison of two recursive matrix algorithms for

modeling layered diffraction gratings,” Journal of the Optical Society of America

A, vol. 13, pp. 1024–1035, 1996.

[65] K. Han and C.-H. Chang, “Numerical modeling of sub-wavelength anti-reflective

structures for solar module applications,” Nanomaterials, vol. 4, pp. 87–128, 01

2014.

[66] H.-Y. Tsai, “Finite difference time domain analysis of three-dimensional sub-

wavelength structured arrays,” Japanese Journal of Applied Physics, vol. 47,

p. 5007, 05 2008.

[67] C.-J. Ting, C.-F. Chen, and C. Chou, “Antireflection subwavelength structures

analyzed by using the finite difference time domain method,” Optik, vol. 120,

no. 16, pp. 814 – 817, 2009.

[68] T.-H. Chou, K.-Y. Cheng, T.-L. Chang, C.-J. Ting, H.-C. Hsu, C.-J. Wu, J.-

H. Tsai, and T.-Y. Huang, “Fabrication of antireflection structures on tco film

for reflective liquid crystal display,” Microelectronic Engineering, vol. 86, no. 4,

pp. 628 – 631, 2009. MNE ’08.

[69] O. Bruno and M. Haslam, “Efficient high-order evaluation of scattering by

periodic surfaces: Deep gratings, high frequencies, and glancing incidences,”

135

Journal of the Optical Society of America. A, Optics, image science, and vision,

vol. 26, pp. 658–68, 04 2009.

[70] K. Horoshenkov and S. Chandler-Wilde, “Efficient calculation of two-

dimensional periodic and waveguide acoustic green’s functions,” The Journal

of the Acoustical Society of America, vol. 111, pp. 1610–22, 05 2002.

[71] T. Arens, “Scattering by biperiodic layered media: The integral equation ap-

proach,” Habilitation thesis, 2010.

[72] T. Arens, S. Chandler-Wilde, and J. Desanto, “On integral equation and least

squares methods for scattering by diffraction gratings,” Communications in

Computational Physics, vol. 1, pp. 1010–1042, 12 2006.

[73] M. Nicholas, “A higher order numerical method for 3-d doubly periodic elec-

tromagnetic scattering problems,” Communications in Mathematical Sciences,

vol. 6, 09 2008.

[74] A. Barnett and L. Greengard, “A new integral representation for quasi-periodic

fields and its application to two-dimensional band structure calculations,” Jour-

nal of Computational Physics, vol. 229, pp. 6898–6914, 01 2010.

[75] L. Greengard, K. Ho, and J.-Y. Lee, “A fast direct solver for scattering from pe-

riodic structures with multiple material interfaces in two dimensions,” Journal

of Computational Physics, vol. 258, pp. 738–751., 2014.

[76] O. P. Bruno and A. G. Fernandez-Lado, “Rapidly convergent quasi-periodic

green functions for scattering by arrays of cylinders—including wood anoma-

lies,” Proceedings of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences, vol. 473, no. 2199, 2017.

136

[77] M. H. Cho, “Spectrally-accurate numerical method for acoustic scattering from

doubly-periodic 3d multilayered media,” Journal of Computational Physics,

vol. 393, pp. 46 – 58, 2019.

[78] M. Abramowitz, Handbook of Mathematical Functions, With Formulas, Graphs,

and Mathematical Tables,. New York, NY, USA: Dover Publications, Inc., 1974.

[79] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory,

vol. 93 of Applied Mathematical Sciences. Berlin: Springer-Verlag, second ed.,

1998.

[80] A. Barnett and T. Betcke, “Stability and convergence of the method of fun-

damental solutions for helmholtz problems on analytic domains,” Journal of

Computational Physics, vol. 227, no. 14, pp. 7003 – 7026, 2008.

[81] R. H. Torres and G. V. Welland, “The helmholtz equation and transmission

problems with lipschitz interfaces,” Indiana University Mathematics Journal,

vol. 42, no. 4, pp. 1457–1485, 1993.

[82] V. Rokhlin, “Solution of acoustic scattering problems by means of second kind

integral equations,” Wave Motion, vol. 5, pp. 257–272, 1983.

[83] G. H. Golub and C. F. Van Loan, Matrix computations. Johns Hopkins Studies

in the Mathematical Sciences, Baltimore, MD: Johns Hopkins University Press,

third ed., 1996.

[84] E. L. Yip, “A note on the stability of solving a rank-p modification of a lin-

ear system by the sherman–morrison–woodbury formula,” SIAM Journal on

Scientific and Statistical Computing, vol. 7, no. 2, pp. 507–513, 1986.

137

[85] G. Marple, A. Barnett, A. Gillman, and S. Veerapaneni, “A fast algorithm for

simulating multiphase flows through periodic geometries of arbitrary shape,”

SIAM Journal of Scientific Computing, vol. 38, no. 5, pp. B740–B772, 2016.

[86] M. Gu and S. C. Eisenstat, “Efficient algorithms for computing a strong rank-

revealing qr factorization,” SIAM Journal on Scientific Computing, vol. 17,

no. 4, pp. 848–869, 1996.

[87] H. Cheng, Z. Gimbutas, P. Martinsson, and V. Rokhlin, “On the compression

of low rank matrices,” SIAM J. Scientific Computing, vol. 26, pp. 1389–1404,

01 2005.

[88] S. Hao, A. H. Barnett, P. G. Martinsson, and P. Young, “High-order accurate

nystrom discretization of integral equations with weakly singular kernels on

smooth curves in the plane,” Advances in Computational Mathematics, vol. 40,

pp. 245 – 272, 2014.

[89] B. Alpert, “Hybrid gauss-trapezoidal quadrature rules,” SIAM Journal on Sci-

entific Computing, vol. 20, no. 5, pp. 1551–1584, 1999.

[90] J. Helsing and R. Ojala, “Corner singularities for elliptic problems: Integral

equations, graded meshes, quadrature, and compressed inverse precondition-

ing,” Journal of Computational Physics, vol. 227, no. 20, pp. 8820 – 8840, 2008.

[91] J. Aguilar and Y. Chen, “High-order corrected trapezoidal quadrature rules

for functions with a logarithmic singularity in 2-d,” Computers & Mathematics

with Applications, vol. 44, no. 8, pp. 1031 – 1039, 2002.

[92] A. Klöckner, A. Barnett, L. Greengard, and M. O’Neil, “Quadrature by ex-

pansion: A new method for the evaluation of layer potentials,” Journal of

138

Computational Physics, vol. 252, pp. 332 – 349, 2013.

[93] J. Bremer, “On the nyström discretization of integral equations on planar curves

with corners,” Applied and Computational Harmonic Analysis, vol. 32, 01 2012.

[94] R. Schoeman, K. Rana, N. Danes, M. Lehmann, J. Paola, A. Fogelson, K. Lei-

derman, and K. Neeves, “A microfluidic model of hemostasis sensitive to platelet

function and coagulation,” Cellular and Molecular Bioengineering, vol. 10,

pp. 1–13, 10 2016.

[95] A. A. Kayani, K. Khoshmanesh, S. A. Ward, A. Mitchell, and K. Kalantar-

zadeh, “Optofluidics incorporating actively controlled micro- and nano-

particles,” Biomicrofluidics, vol. 6, no. 3, p. 031501, 2012.

[96] T. Salafi and K. Kwek, “Advancements in microfluidics for nanoparticle sepa-

ration,” Lab Chip, vol. 17, 11 2016.

[97] H. Wioland, E. Lushi, and R. E. Goldstein, “Directed collective motion of bac-

teria under channel confinement,” New Journal of Physics, vol. 18, p. 075002,

jul 2016.

[98] J. Elgeti, R. G. Winkler, and G. Gompper, “Physics of microswimmers—single

particle motion and collective behavior: a review,” Reports on Progress in

Physics, vol. 78, p. 056601, apr 2015.

[99] G. K. Youngren and A. Acrivos, “Stokes flow past a particle of arbitrary shape:

a numerical method of solution,” Journal of Fluid Mechanics, vol. 69, no. 2,

p. 377–403, 1975.

139

[100] G. K. Youngren and A. Acrivos, “On the shape of a gas bubble in a viscous

extensional flow,” Journal of Fluid Mechanics, vol. 76, no. 3, p. 433–442, 1976.

[101] C. Sorgentone and A.-K. Tornberg, “A highly accurate boundary integral

equation method for surfactant-laden drops in 3d,” Journal of Computational

Physics, vol. 360, pp. 167 – 191, 2018.

[102] A. Rahimian, S. Veerapaneni, D. Zorin, and G. Biros, “Boundary integral

method for the flow of vesicles with viscosity contrast in three dimensions,”

Journal of Computational Physics, vol. 298, pp. 766–786, 10 2015.

[103] E. Corona, L. Greengard, M. Rachh, and S. Veerapaneni, “An integral equation

formulation for rigid bodies in stokes flow in three dimensions,” Journal of

Computational Physics, vol. 332, pp. 504 – 519, 2017.

[104] M. Rachh and L. Greengard, “Integral equation methods for elastance and

mobility problems in two dimensions,” SIAM Journal on Numerical Analysis,

vol. 54, 07 2015.

[105] A.-K. Tornberg and L. Greengard, “A fast multipole method for the three-

dimensional stokes equations,” Journal of Computational Physics, vol. 227,

no. 3, pp. 1613 – 1619, 2008.

[106] A. Rahimian, I. Lashuk, S. Veerapaneni, A. Chandramowlishwaran, D. Malho-

tra, L. Moon, R. Sampath, A. Shringarpure, J. Vetter, R. Vuduc, D. Zorin, and

G. Biros, “Petascale direct numerical simulation of blood flow on 200k cores and

heterogeneous architectures,” in SC ’10: Proceedings of the 2010 ACM/IEEE

International Conference for High Performance Computing, Networking, Stor-

age and Analysis, pp. 1–11, Nov 2010.

140

[107] A. Kumar and M. D. Graham, “Accelerated boundary integral method for

multiphase flow in non-periodic geometries,” Journal of Computational Physics,

vol. 231, no. 20, pp. 6682 – 6713, 2012.

[108] S. K. Veerapaneni, A. Rahimian, G. Biros, and D. Zorin, “A fast algorithm for

simulating vesicle flows in three dimensions,” Journal of Computational Physics,

vol. 230, no. 14, pp. 5610 – 5634, 2011.

[109] Y. Fu and R. G.J., “Fast solution method for threedimensional stokesian many-

particle problems,” Communications in Numerical Methods in Engineering,

vol. 16, pp. 145–149, 2000.

[110] E. Lushi, H. Wioland, and R. E. Goldstein, “Fluid flows created by swimming

bacteria drive self-organization in confined suspensions,” Proceedings of the Na-

tional Academy of Sciences, vol. 111, no. 27, pp. 9733–9738, 2014.

[111] R. Voituriez, J. F. Joanny, and J. Prost, “Spontaneous flow transition in active

polar gels,” Europhysics Letters, vol. 70, pp. 404–410, may 2005.

[112] F. G. Woodhouse and R. E. Goldstein, “Spontaneous circulation of confined

active suspensions,” Physical Review Letters, vol. 109, p. 168105, Oct 2012.

[113] S. E. Hulme, S. S. Shevkoplyas, J. Apfeld, W. Fontana, and G. M. Whitesides,

“A microfabricated array of clamps for immobilizing and imaging c. elegans,”

Lab on a Chip, vol. 7, p. 1515–1523, 2007.

[114] S. Khaderi, C. Craus, J. Hussong, N. Schorr, J. Belardi, J. Westerweel,

O. Prucker, J. Ruehe, J. Toonder, den, and P. Onck, “Magnetically-actuated ar-

tificial cilia for microfluidic propulsion,” Lab on a Chip, vol. 11, no. 12, pp. 2002–

2010, 2011.

141

[115] S. K. Veerapaneni, D. Gueyffier, D. Zorin, and G. Biros, “A boundary integral

method for simulating the dynamics of inextensible vesicles suspended in a

viscous fluid in 2d,” Journal of Computational Physics, vol. 228, no. 7, pp. 2334

– 2353, 2009.

[116] A. Barnett, B. Wu, and S. Veerapaneni, “Spectrally accurate quadratures for

evaluation of layer potentials close to the boundary for the 2d stokes and laplace

equations,” SIAM Journal on Scientific Computing, vol. 37, 10 2014.

[117] R. Ojala and A.-K. Tornberg, “An accurate integral equation method for sim-

ulating multi-phase stokes flow,” Journal of Computational Physics, vol. 298,

pp. 145 – 160, 2015.

[118] J.-Y. Lee and L. Greengard, “A fast adaptive numerical method for stiff

two-point boundary value problems,” SIAM Journal on Scientific Computing,

vol. 18, no. 2, pp. 403–429, 1997.

[119] Y. Zhang and A. Gillman, “A fast direct solver for two dimensional quasi-

periodic multilayered media scattering problems,” BIT Numerical Mathematics,

pp. 1–31, 2019.

[120] Y. Zhang and A. Gillman, “An alternative extended linear system for boundary

value problems on locally perturbed geometries,” 2020.

[121] P. Kolm and V. Rokhlin, “Numerical quadratures for singular and hypersingular

integrals,” Comput. Math. Appl., vol. 41, pp. 327–352, 2001.

142

Appendix A

Appendix

A.1 Efficient construction of S2.

This section presents an efficient technique for constructing the tridiagonal matrix

S2 = I + RA−1
0 L in the fast direct solver for quasi-periodic scattering in layered

media presented in Chapter 3.

For simplicity of presentation, let the blocks of S2 be denoted as follows

Xi for 1 ≤ i ≤ I denotes the diagonal blocks,

Yi for 2 ≤ i ≤ I denotes the lower diagonal blocks, and

Zi for 1 ≤ i ≤ I − 1 denotes the upper diagonal blocks.

The diagonal blocks are given by

X1 =



I+Rpm

11 A
−1
0,11L

pm
11 Rpm

11 A
−1
0,11L12

0 I


 ,

XI =




I 0

Rpm
II A

−1
0,IILI,I−1 I+Rpm

II A
−1
0,IIL

pm
II


 ,

143

and, for 2 ≤ i ≤ (I − 1),

Xi =




I 0 0

Rpm
ii A−1

0,iiLi,i−1 I+Rpm
ii A−1

0,iiL
pm
ii Rpm

ii A−1
0,iiLi,i+1

0 0 I



.

The lower diagonal blocks are given by

Y2 =



R21A

−1
0,11L

pm
11 R21A

−1
0,11L12

0 0


 ,

and, for 3 ≤ i ≤ I,

Yi =



Ri,i−1A

−1
0,(i−1)(i−1)Li−1,i−2 Ri,i−1A

−1
0,(i−1)(i−1)L

pm
(i−1)(i−1) Ri,i−1A

−1
0,(i−1)(i−1)Li−1,i

0 0 0


 .

Finally the upper diagonal blocks are defined by

Zi =




0 0 0

Ri,i+1A
−1
0,(i+1)(i+1)Li+1,i Ri,i+1A

−1
0,(i+1)(i+1)L

pm
(i+1)(i+1) Ri,i+1A

−1
0,(i+1)(i+1)Li+1,i+2




for 1 ≤ i ≤ (I − 2), and

ZI−1 =




0 0

RI−1,IA
−1
0,IILI,I−1 RI−1,IA

−1
0,IIL

pm
II


 .

The matrix S2 can be inverted via a block variant of the Thomas algorithm.

Let the sum of the ranks of the low-rank approximations be defined as N block
i =

144

kpm,ii+ki,i−1+ki,i+1 for 2 ≤ i ≤ I−1, N block
1 = kpm,11+k1,2 and N block

I = kpm,II+kI,I−1.

The diagonal block Xi is of size N
block
i ×N block

i . The upper diagonal block Zi has size

N block
i ×N block

i+1 . The lower diagonal block Yi has size N block
i ×N block

i−1 .

For the tested geometries and wave numbers, N block
i is only several hundreds and

the diagonal blocks can be inverted rapidly via dense linear algebra. If all of the

blocks are of similar size N block
i ≈ N block, then the cost of inverting S2 via the block

Thomas algorithm is O([N block]3I), which is linear with respect to the number of

interfaces.

A.2 Definitions for the Stokes boundary integral operators

This section defines the different Stokes potentials, which is used in the BIE formu-

lation for confined Stokes flow in section 4.1 of chapter 4. Let τ be the boundary

density on the boundary Γ, and, for simplicity, let r = x − y. I is a 2 × 2 identity

matrix.

� The single-layer velocity potential is

(Sτ)(x) = 1

4πµ

�

Γ

�
I log

�
1

�r�

�
+

r ⊗ r

�r�2
�
τ(y)dl(y),

where I is a 2× 2 identity matrix.

� The double-layer velocity potential is

(Dτ)(x) =
1

π

�

Γ

�
(r · νy)(r ⊗ r)

�r�4
�
τ(y)dl(y).

145

� The single-layer pressure potential is

(SP τ)(x) =
1

2π

�

Γ

r · τ(y)
�r�2 dl(y).

� The double-layer pressure potential is

(DP τ)(x) =
µ

π

�

Γ

�
−νy · τ(y)

�r�2 +
2(r · τ(y))(r · νy)

�r�4
�
dl(y).

A.3 Numerical tests for Laplace and Helmholtz BVPs on

locally perturbed geometries

This section reports the numerical test results from applying the fast direct solver in

section 4.2 to solve a collection of problems. The integral equations are discretized

via the Nyström method with a 16th order composite Gaussian quadrature. For all

problems, the original geometry is discretized with enough points in order for the

boundary value problem to be solved to 10 digits of accuracy. The HBS direct solver

was used in all tests. The tolerance for HBS compression and low-rank approximation

is set to � = 10−10.

To illustrate the efficiency of the proposed technique, we compare the performance

of the new solution technique with the fast solver developed for the original extended

system in section 2.4 and building an HBS solver from scratch for the new geometry.

We report the following:

� No: the number of discretization points on the original geometry;

� Nc: the number of discretization points cut from the original geometry;

� Np: the number of discretization points added;

146

� Tnew,p: the time in seconds for the precomputation of the proposed solver;

� Torig,p: the time in seconds for the precomputation of the original fast solver;

� Thbs,p: the time in seconds for the precomputation of HBS from scratch for the

new geometry;

� rp =
Thbs,p

Tnew,p
;

� Tnew,s: the time in seconds for applying the proposed solver to one right-hand-

side;

� Torig,s: the time in seconds for applying the original solver to one right-hand-

side;

� Thbs,s: the time in seconds for applying the HBS inverse to one right-hand-side;

� rs =
Thbs,s

Tnew,s
.

For Laplace problems, we consider a problem with known solution: the exact

solution is defined as the potential due to Nsrc charges with location and charge value

{(sj, qj)}Nsrc

i=1 placed at the exterior of domain Ω,

uext(x) =
Nsrc�

j=1

qjG(x, sj).

To check the solution’s accuracy, the approximate solution uapp evaluated at a col-

lection of interior target points {ti}Ntrg

i=1 is compared with exact solution uext, and the

average relative error over the target locations

E =
1

Ntrg

Ntrg�

i=1

|uapp (ti)− uext (ti)|
|uext (ti)|

(A.3.1)

147

is reported as a measure of solution accuracy.

The tested geometries are simple enough that all tested discretization fully resolves

the problem, and the error in the solution approximation E reaches � = 10−10 for all

test cases. .

A.3.1 A local change in the geometry

Consider the interior Laplace-Dirichlet BVP on the geometry illustrated in Figure

A.3.1. The corners are smoothed via the scheme in [2]. A detailed description of this

geometry is given in [50].

In the first experiment, the number of points cut remains fixed, Nc = 16, while

the number of discretization points on Γk grows. In Figure A.3.1, this corresponds

to the nose height d decreasing as Nk grows. The results are reported in Table A.2.

All three solution techniques are linear with respect to No and the precomputation

time for the new solution technique is about the same as the original extended system

solver. It is roughly 3.5 times faster than building a new direct solver from scratch for

the new geometry. The cost of applying the proposed solver is almost as fast applying

the HBS approximate inverse.

In the next example, Nc grows by the same factor as Nk. The nose height d

in Figure A.3.1 remains fixed. Table A.3 reports on the performance of all three

solvers for this geometry. The proposed solution technique is the fastest for the

precomputation step. It is much faster than the solver based on the original extended

system formulation, especially for the case where Nc is large. A factor of roughly 2.9

speed up in the precomputation is observed. Again applying the proposed solver is

slightly slower than applying the HBS approximate inverse.

148

Ω

Γk

Γc
Γc

Γp

Γp

d
❡ ❘

✫✪
✬✩

Figure A.3.1 : The square with nose geometry. A nose of height d is smoothly attached
to the a square.

A.3.2 A Laplace problem with a locally refined discretization

Next the proposed solution technique is applied to the interior Laplace-Dirichlet BVP

where the local perturbation is a refinement in a portion of the geometry. Figure

A.3.2(a) illustrates the geometry under consideration. It is given by the following

parameterization:

x(t) =



r(t) cos(t)

r(t) sin(t)


 , with r(t) = 1 + 0.3 sin(30t) for t ∈ [0, 2π].

The portion of the boundary being refined is highlighted in red. Figure A.3.2(b) is a

zoomed in illustration of that region. Figure A.3.2(c) illustrates the local refinement.

Three Gaussian panels (Nc = 48) are replaced with Np discretization points (Np/16

Gaussian panels). The number of discretization points on Γk remains fixed; Nk =

6352.

Table A.4 reports on the performance of all three solution techniques for this

problem. The proposed solution technique is 13 to 21 times faster than building a

new solver from scratch while applying the solver is less than a factor two slower than

149

applying the HBS approximate inverse.

Γk

(a) (b) (c)

Γc Γp

Figure A.3.2 : (a) The sunflower geometry with the portion of the boundary to be
refined in red. (b) The three Gaussian panels in the boxed region from the original
discretization. (c) Six Gaussian panels replacing the original three panels.

A.3.3 A Helmholtz problem with a locally refined discretization

Besides being faster than the solver for the original extended system, the proposed

solver has the advantage that it can easily handle problems that are using specialized

quadrature for weakly singular kernels. The issue that arises for the original extended

system is that it would be cumbersome to evaluate the entries of the matrix Aop

corresponding to the interaction of Γc with Γp. This matrix does not arise in the new

extended system.

To illustrate the efficiency of the solver for systems that involve specialized quadra-

ture we consider the following exterior Dirichlet Helmholtz boundary value problem

−Δu(x) + ω2u = 0 for x ∈ Ωc,

u(x) = g(x) for x ∈ Γ
(A.3.2)

150

with Sommerfeld radiation condition on the sunflower geometry illustrated in Figure

A.3.2 where ω denotes the wave number. We chose to represent the solution with the

following combined field

u(x) =

�

Γ

Dω(x,y)σ(y) ds(y)− iω

�

Γ

Sω(x,y)σ(y) ds(y), (A.3.3)

where Dω and Sω denote the double and single layer Helmholtz kernel and σ(x) is

the unknown boundary charge distribution.

The integral equation that results from enforcing the Dirichlet boundary condition

is

1

2
σ(x) +

�

Γ

Dω(x,y)σ(y) ds(y)− iω

�

Γ

Sω(x,y)σ(y) ds(y) = g(x). (A.3.4)

We discretize the operator via Nyström with a composite generalized Gaussian

quadrature [121]. The wave number is set to ω = 20 which corresponds to the ge-

ometry being approximately 8.3 wavelengths in size. Again, we consider the local

refinement problem. Table A.1 reports on the performance of the proposed solution

technique and building a fast direct solver from scratch. For this problem, the pro-

posed solver is anywhere from 15 to 35 times faster than building the fast direct

solver from scratch. This speed up is the result of the increased ranks associated with

Helmholtz problems. Applying the proposed solver to a right-hand-side is roughly

1.5 times slower than applying the HBS solver.

151

Np
Np

No
Tnew,p Thbs,p rp Tnew,s Thbs,s rs

96 0.015 1.13e+00 3.97e+01 35.2 4.06e-02 2.86e-02 0.71
192 0.03 1.36e+00 4.08e+01 29.9 4.64e-02 2.93e-02 0.63
384 0.06 1.44e+00 4.08e+01 28.4 3.91e-02 2.54e-02 0.65
768 0.12 1.64e+00 4.17e+01 25.4 3.69e-02 2.70e-02 0.73
1536 0.24 2.64e+00 4.08e+01 15.4 4.39e-02 3.33e-02 0.76

Table A.1 : Times for applying the solution techniques to (A.3.2) on the geometry in
Figure A.3.2 with local refinement.

152

No Torig,p Tnew,p Thbs,p rp Torig,s Tnew,s Thbs,s rs
9232 3.69e-01 4.83e-01 1.57e+00 3.25 1.99e-02 1.12e-02 1.32e-02 1.18
18448 5.60e-01 6.50e-01 2.38e+00 3.66 2.76e-02 1.74e-02 1.46e-02 0.84
36880 1.11e+00 1.11e+00 3.79e+00 3.42 5.49e-02 4.00e-02 3.33e-02 0.83
73744 2.25e+00 1.84e+00 6.38e+00 3.47 9.79e-02 8.06e-02 7.04e-02 0.87
147472 3.87e+00 3.56e+00 1.18e+01 3.33 1.95e-01 1.71e-01 1.52e-01 0.89

Table A.2 : Times for applying the solution technique to an interior Laplace-Dirichlet BVP on the square with thinning
nose geometry.

No Nc Torig,p Tnew,p Thbs,p rp Torig,s Tnew,s Thbs,s rs
9344 128 5.01e-01 5.10e-01 1.28e+00 2.50 2.08e-02 1.02e-02 7.92e-03 0.77
18688 256 1.08e+00 9.25e-01 2.18e+00 2.36 3.44e-02 2.15e-02 1.59e-02 0.74
37376 512 2.67e+00 1.30e+00 3.49e+00 2.69 5.64e-02 3.97e-02 3.00e-02 0.76
74752 1024 7.76e+00 2.31e+00 6.63e+00 2.87 1.16e-01 8.67e-02 6.40e-02 0.74
149504 2048 2.48e+01 4.06e+00 1.19e+01 2.92 2.34e-01 1.71e-01 1.61e-01 0.94

Table A.3 : Times for applying the solution techniques to an interior Laplace-Dirichlet BVP on the square with fixed
nose geometry.

Np
Np

No
Torig,p Tnew,p Thbs,p rp Torig,s Tnew,s Thbs,s rs

96 0.015 6.06e-01 5.03e-01 7.52e+00 14.9 1.10e-02 1.30e-02 1.32e-02 1.02
192 0.03 6.16e-01 3.62e-01 7.77e+00 21.4 1.17e-02 1.25e-02 9.30e-03 0.74
384 0.06 6.83e-01 3.90e-01 7.72e+00 19.8 1.36e-02 1.42e-02 9.13e-03 0.64
768 0.12 7.60e-01 4.11e-01 7.78e+00 18.9 2.01e-02 1.20e-02 9.06e-03 0.76
1536 0.24 1.01e+00 6.09e-01 8.03e+00 13.2 4.72e-02 1.66e-02 1.00e-02 0.60

Table A.4 : Times for applying the solution techniques to an interior Laplace-Dirichlet BVP on the sunflower geometry
in Figure A.3.2 with local refinement.

153

A.4 Definition of matrix Mn

This section defines the matrix Mn, which maps function values at Gauss-Legendre

quadrature points to the coefficients for Legendre expansion. This is used in the

local expansion based panel-picking strategy in section 5.2.2 of chapter 5. For sim-

plicity of illustration, the matrix is defined for the interval [−1, 1]. The definition

can be extended to arbitrary interval [a, b] in a straightforward manner. Consider

g : [−1, 1] �→ R. Let Pj(x) for j = 0, 1, . . . , (n − 1) denote the nth order Legendre

polynomial defined on (−1, 1) and g(x) =
�∞

j=0 αjPj(x) be the Legendre expansion

for g(x) on (−1, 1). By linearity and orthogonality of Legendre polynomials,

� 1

−1

g(x)Pl(x) dx =
∞�

j=0

αj

� 1

−1

Pl(x)Pj(x) dx = αl
2

2l + 1

and thus

αl =
2l + 1

2

� 1

−1

g(x)Pl(x) dx (A.4.1)

for l = 0, 1,

Recall the recurrence relation for Legendre polynomials

P0(x) = 1

P1(x) = x

Pl(x) =
2l − 1

l
xPl−1(x)−

l − 1

l
Pl−2(x), for l ≥ 2.

154

Plugging the recurrence relation into (A.4.1) yields

α0 =
1

2

� 1

−1

g(x)dx

α1 =
3

2

� 1

−1

g(x)x dx

αl =
2l + 1

2

� 1

−1

g(x)

�
2l − 1

l
xPl−1(x)−

l − 1

l
Pl−2(x)

�
dx, for l ≥ 2.

(A.4.2)

Using the nth order Gauss-Legendre quadrature to approximate the integrals in

(A.4.2) gives

α0 ≈
1

2

n�

j=1

g(tj)wj

α1 ≈
3

2

n�

j=1

tjg(tj)wj

αl ≈
2l + 1

2

n�

j=1

�
2l − 1

l
tjPl−1(tj)−

l − 1

l
Pl−2(tj)

�
g(tj)wj, for l ≥ 2.

Define the matrix Mn entry-wise as

(Mn)1,j =
1

2
wj, for j = 1, . . . , n

(Mn)2,j =
3

2
tjwj, for j = 1, . . . , n

(Mn)l,j =
2l + 1

2

�
2l − 1

l
tjPl−1(tj)−

l − 1

l
Pl−2(tj)

�
wj, for l ≥ 2 and j = 1, . . . , n

and let g = [g(t1), . . . , g(tn)]
T . Then the first n coefficients α = [α0, . . . ,αn−1] can be

numerically approximated as

α ≈ Mng.

