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ABSTRACT

Quantum criticality of strongly correlated systems

by

Chia-Chuan Liu

Quantum criticality has been an active research topic in condensed matter physics,

with major efforts being devoted to the heavy fermion material in which local moments

are coupled with itinerant electrons through an antiferromagnetic Kondo coupling.

The competition between the Kondo coupling and antiferromagnetic Ruderman–

Kittel–Kasuya–Yosida(RKKY) interaction between local moments leads to a rich

global phase diagram for these systems. It is a fundamentally important but chal-

lenging problem to develop a unified theoretical approach to understand this global

phase diagram.

We approach this issue from the magnetically ordered side by using a quantum

non-linear sigma model (QNLσM) to represent the local moments. We firstly study

the consequence of skyrmion defects of antiferromagnetism on a honeycomb lattice.

We solve the low energy effective Dirac Hamiltonian in the skyrmion background, and

then identify the singlet orders through an enhanced correlations in the corresponding

channels. In addition, we perform a renormalization group (RG) analysis of the

QNLσM with a Kondo coupling by treating both bosonic and fermionic degrees of

freedom on an equal footing. These results shed new insight into the global phase

diagram of the heavy fermion systems.

Recent evidence of two consecutive Kondo destruction quantum critical points(QCPs)



in Ce3Pd20Si6 also provides an interesting extension of the global phase diagram.

Motivated by this development, we study a spin-orbital coupled Bose-Fermi Kondo

model. By performing a Coulomb-gas based RG calculation of this model with Ising

anisotropy, we show that a generic trajectory in the parameter space contains two

QCPs associated with the destruction of the orbital and spin Kondo effects, respec-

tively.

Not only the heavy fermion systems, iron pnictides also provide a platform to study

quantum criticality. The new ingredient here is that the quantum critical singularities

in the nematic and magnetic channels are concurrent, and their relationship has yet

to be clarified. Here we study this problem within an effective Ginzburg-Landau

theory for both channels in the presence of a small external uniaxial potential that

breaks the lattice C4 symmetry. We establish an identity that connects the spin

excitation anisotropy, which is the difference of the dynamical spin susceptibilities at

two ordering wave vectors Q⃗1 = (π, 0) and Q⃗2 = (0, π), with the dynamical magnetic

susceptibility and static nematic susceptibility. Using this identity, we introduce a

scaling procedure to determine the dynamical nematic susceptibility in the quantum

critical regime, and illustrate the procedure in the case of the optimally Ni-doped

BaFe2As2.
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Chapter 1

Overview

Critical phenomenon occurs when a physical system undergoes a continuous phase

transition. Such phenomenon is ubiquitous in natural world, which is one of the

reasons why the physics of critical phenomena is an important area at the crossroads

of many different fields. The quest to understand it in a general and organized way

has motived physicists to develop lots of universal concepts and techniques[15].

There are many reasons that make the physics of critical phenomena as an im-

portant and interesting subject. One of them is its elegance. At a critical point, the

correlation length is divergent; there is then no characteristic length scale. Therefore,

the system is scale invariant, and in turn physical quantities exhibit power law behav-

ior. Moreover, the critical exponents of these power law functions near a critical point

depend only on overall properties, such as the dimensionality and the symmetry, but

not the microscopic details of the system, which means that many systems that look

very different in detail actually share the same critical exponents. Such concept is

called the universality[16, 17].

Another reason for the importance of the critical phenomena as a subject is that

it is relevant to the understanding of other kinds of physical phenomena. Near a

critical point, the system undergoes severe fluctuation. These critical fluctuations can

interplay with other ingredients of the system, and cause some dramatic consequences

in the end.

Depending on the nature of the fluctuations that drive the phase transition, one
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can classify the critical phenomena into two classes: the classical and quantum crit-

icality, driven by thermal and quantum fluctuations, respectively. Quantum phase

transition arises between two different quantum phases at zero temperature[18, 19].

As we will see in chapter 2, near a quantum critical point(QCP), there is a region

with non-zero temperature where both the quantum and thermal fluctuations are im-

portant. Within this region, the conventional quasiparticle description of low energy

excitations of system fails, while many physical properties still exhibit some kinds of

universal behavior that are hard to be explained within the conventional quasiparticle

picture[20].

In recent years, quantum criticality in strongly correlated system has become an

active research topic[21, 22, 23]. In such systems, the electron-electron interactions

are large compared to the width of the relevant electronic band(s), the interaction

could change the ground state, as well as the nature of the low-energy excitations.

Finding unifying principles for how the electrons are organized in these systems, is a

challenging but promising research topic. Empirically, quantum criticality appears to

be important to many of such strongly correlated systems. Theoretically, there are a

variety of correlated electron and quantum spin models in which quantum criticality

can be examined. Therefore, studying quantum criticality in strongly correlated

systems promises to lead us to some central unifying or guiding principles of strongly

correlated systems and beyond.

The first successful unifying paradigm of interacting fermions is Landau Fermi liq-

uid theory[24], where the interaction is regarded as “weak”, in the sense that there is a

one-to-one correspondence between the elementary excitations of the interacting sys-

tem and a non-interacting one. The momentum distribution nkσ at low temperature

still shows a sudden jump at the Fermi momentum kF , and the spectral function still
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retains a sharp peak. All of these suggest that the concepts of Fermi surface and the

quasiparticle are still well-defined. What interaction does is only renormalizing the

parameters that characterrize the quasiparticles, such as the effective mass. Following

the Fermi liquid theory, one can easily derive the leading temperature dependences

of the electrical resistivity ρ ∼ T 2 and specific heat C ∼ T .

However, as the interaction grows stronger, at some point the ground state would

suddenly change to a completely different one. In other words, a the quantum phase

transition happens, and thus the one-to-one correspondence between the spectrum of

interacting and non-interacting system could fail. One famous example is the Mott

transition[25], where the strong on-site Colomb repulsion can change the system from

a metal into a insulator. Other examples are unconventional superconductors, where

the term “unconventional” means that their superconductivity can not be explained

by the conventional BCS theory.

In cuprate materials, the parent state is an antiferromagnetic Mott insulator.

Upon doping with hole or electron, the antiferromagnetism is suppressed, while the su-

perconductivity with high critical temperature emerges. Besides antiferromagnetism,

other exotic phase, such as a pseudogap phase where the Fermi surface possesses

a partial energy gap, also arises in the phase diagram of the cuprates. Since the

quantum critical points of antiferromagnetic and pseudogap phases seem to lie close

to or within the superconducting dome[26], it is reasonable to ask if the quantum

critical fluctuations associated with these QCPs help develop the unconventional su-

perconductivity. Moreover, above the optimal doping in the phase diagram there is

a quantum critical region, in which the resistivity exhibits non-Fermi liquid(NFL)

but universal temperature dependence ρ = ρ0 + AT [27]. Remarkably, other kinds of

unconventional superconductors, like heavy fermions[28] or iron-based materials[29],
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also possess pretty similar overall phase diagrams. The schematic phase diagram of

various strongly correlated systems are summarized in Fig. 1.1. These features sug-

gest that quantum criticality is a candidate unifying concept in the understanding

of the strongly correlated systems. This thesis is dedicated to deepening our under-

standing of this topic. In chapter 2, we will introduce the basic preliminary knowledge

for the research presented in this thesis.

Figure 1.1 : Schematic phase diagram of various strongly correlated systems. Black
and blue solid lines denote the antiferromagnetic(AF) and superconducting(SC) tran-
sitions, respectively. The blue dot is the presumable quantum critical point inside
the SC dome, and above it there is a quantum critical regime in which the resistivity
exhibits universal non-Fermi liquid(NFL) behavior.

Due to their high-tunability, heavy fermion compounds have been prototypical

systems to study the quantum criticality. In these systems, the local moments are

coupled with itinerant electrons through a Kondo coupling, which competes with
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an antiferromagnetic Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction between

the local moments. When Kondo coupling is small, the local moments are decoupled

from conduction electrons, and the RKKY interaction drives the system into antifer-

romagnetism. On the other hand, in the strong Kondo coupling regime, the ground

state is a paramagnetic Kondo-screened phase where the Kondo singlets between the

conduction electrons and f-electrons of local moments are formed, and the Fermi sur-

face is enlarged due to the contribution from the f-electrons. In addition, strong

frustration in the interactions between the local moments can also lead to another

kind of paramagnetic state where the Kondo entanglement is absent and the Fermi

surface remains small[1, 2, 30]. The competition between antiferromagnetism and a

variety of proximate paramagnetic spin-singlet states is a common feature for many

heavy fermion compounds, and has been discussed in the proposed global phase dia-

gram as shown in Fig. 1.2.

From a theoretical perspective, the intricate interplay between different kinds of

degrees of freedom makes it challenging to develop a unified framework for the quan-

tum criticality of heavy fermion systems, even though it is fundamentally important.

Most of previous studies only focused on single phase transition path by taking some

specific theoretical approaches. In chapter 3, we approach this problem from the

magnetically ordered side by using a quantum non-linear sigma model(QNLσM) to

represent the local moments. We consider the consequence of skyrmion defects of an-

tiferromagnetism. These topological defects are known to induce singlet orders based

on a perturbative gradient expansion[31, 32]. By starting from antiferromagnetic

Kondo honeycomb lattice model, we are able to solve the low energy effective Dirac

Hamiltonian in the skyrmion background, and then identify the singlet orders non-

perturbatively through an enhanced correlations in the corresponding channels[33].
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Figure 1.2 : Proposed global phase diagram for heavy fermion materials, where G
is the degree of magnetic frustration and JK is the Kondo coupling. Here, P and
AF denote paramagnetic and antiferromagnetic phases, respectively. In the Kondo-
screened phases where Kondo singlets are formed, the f-electron will also contribute to
the Fermi surface so that the Fermi volume will be enlarged. The sub-indices S and L,
which means small and large Fermi surfaces, respectively, mark the Kondo-destroyed
and Kondo-screened phases, respectively. There are three types of transition between
P and AF . The green line is a Hertz’s type spin density wave transition, in which
the Kondo destruction is inside the ordered part of the phase diagram. The blue line
corresponds to the transition caused by Kondo destruction, while the red line denotes
the transition caused by magnetic fluctuations alone. Adapted from Refs.[1, 2]
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In the Kondo lattice model, we find two leading singlet channels, one in the spin

Peierls and the other in the Kondo singlet. The relative stability of the Kondo singlet

and spin Peierls channels is tuned by varying the Kondo coupling.

Motivated by the recent experimental result in geometrically frustrated heavy

fermion metal CePdAl[34], in chapter 4, we study the RG calculation of QNLσM

with a Kondo coupling. By treating both bosonic and fermionic degree in a equal

footing, we perform a RG analysis of this model. Our RG analysis shows that Kondo

coupling is irrelevant around the QCP of QNLSM. As a result, the phase transition

between antiferromagnetism and paramagnetism should be stable against weak Kondo

coupling. According to our calculation of the electronic self-energy induced by Kondo

coupling around the QCP, we conclude that the Fermi surface also remains small

against Kondo coupling. Together with chapter 3, our results shed new light on the

global phase diagram of the heavy fermion systems.

Recent experimental results in Ce3Pd20Si6 also provides an exciting extension

of the global phase diagram to the heavy fermion materials with local multipolar

levels[13]. In this coupound, the ground state of the local levels has a four-fold de-

generacy, containing not only dipolar magnetic moments but also multipolar moments

such as quadruple. Such four-fold dgeneracy can be expressed in therm of spin and

orbital degree of freedom. This compound shows evidence of two consecutive Fermi

surface collapsing QCPs as it is tuned from a paramagnetic to an antiferroquadrupo-

lar and then to an antiferromagnetic state [13]. A theory was advanced[13] for a

sequential destruction of Kondo entanglement in an spin-orbital-coupled Bose-Fermi

Kondo(BFK) model, an effective model for a multipolar Kondo lattice. In chapter

5 we report an analytical renormalization group calculation of this spin-orbital BFK

model with Ising anisotropy on bosonic bath, using a Coulomb-gas representation. We
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show that a generic trajectory in the parameter space contains two QCPs associated

with the destruction of the orbital and spin Kondo effects, respectively. Our work

establishes a firm theoretical ground for the notion of sequential Kondo destruction.

Not only the heavy fermion systems, iron pnictides also provide a platform to study

quantum criticality. The new ingredient here is that the quantum critical singularities

in the nematic and magnetic channels are concurrent, and their relationship has yet to

be clarified. In chapter 6, we study this problem within an effective Ginzburg-Landau

theory for both channels in the presence of a small external uniaxial potential that

breaks the lattice C4 symmetry. We establish an identity that connects the spin

excitation anisotropy, which is the difference of the dynamical spin susceptibilities at

two ordering wave vectors Q⃗1 = (π, 0) and Q⃗2 = (0, π), with the dynamical magnetic

susceptibility and static nematic susceptibility[35]. Using this identity, we introduce a

scaling procedure to determine the dynamical nematic susceptibility in the quantum

critical regime, and illustrate the procedure in the case of the optimally Ni-doped

BaFe2As2[14]. Our analysis suggests that the singular energy dependences of spin

excitation anisotropy and dynamical magnetic susceptibility observed in the optimally

Ni-doped BaFe2As2 leads to the existence of non-trivial dynamical term |ω|/q2 in

nematic susceptibility.
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Chapter 2

Introduction

2.1 Landau-Ginzburg theory of classical phase transition

In the conventional Landau theory of phase transition, a phase of matter is related

to a global symmetry and its spontaneous breaking. For instance, ferromagnetism

breaks rotational symmetry, while paramagnetism preserves it, which is why the two

represent distinct phases of matter. In the ordered phase the order parameter is

non-vanishing and the symmetry is broken, while in the disordered phase, the order

parameter vanishes and the symmetry is preserved. Phase transition happens when

the system transforms between the ordered and disordered phases.

The basic idea of Landau-Ginzburg theory is that the free energy of the system can

be expressed in terms of the order parameter and its fluctuations. We use a magnetic

transition as an example, where the free energy functional F can be expressed in

terms of the magnetic order parameter field ϕ (x):

F =

∫
dDx

[
t

2
ϕ2 (x) +K (∇ϕ (x))2 + u

4!
ϕ4 (x)− hϕ (x)

]
=

∫
dDpϕ (p)

(
t

2
+Kp2

)
ϕ (−p)

+
u

4!

∫
dDp1d

Dp2d
Dp3d

Dp4ϕ (p1)ϕ (p2)ϕ (p3)ϕ (p4) δ (p1 + p2 + p3 + p4)

+ hϕ (p = 0)

(2.1)

which is also called ϕ4 theory, where u > 0 to ensure stability. The partition function
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is:

Z =

∫
Dϕe−F (2.2)

where Dϕ ≡ limN→∞
∏N

i=1 dϕ (xi) is the measure of the path integral functional.

Without considering the spatial fluctuation and the external magnetic field, that

is, K = 0 and h = 0, we can derive the mean-field solution of order parameter ϕ from

the requirement that the solution minimizes the free energy functional F :

∂F

∂ϕ
= 0 ⇒ ϕ

(
t+

u

6
ϕ2
)
= 0 (2.3)

One can check that when t < 0 , the solution is ϕ = ±
√

−6t
u

, that is, the ordered

phase. On the other hand, when t > 0 one get solution ϕ = 0 corresponding to the

disordered phase. At t = 0, the phase transition happens continuously.

Therefore, the parameter t measures the distance from the critical point. Without

loss of generality, one can absorb the prefactor so that t = T−Tc
Tc

, where Tc is crit-

ical temperature. Near a critical point, many physical quantities exhibit power-law

behavior. The associated critical exponents are defined as:

C (t) ∝ t∂2t f |h=0 ∼ |t|−α

ϕ (t) ∝ ∂hf |h=0 ∼ |t|β

χ (t) ∝ ∂2hf |h=0 ∼ |t|−γ

ϕ (h) ∝ ∂hf |t=0 ∼ (h)
1
δ

(2.4)

where f = − 1
β
lnZ is the free energy density, C is the specific heat, and χ is the

susceptibility. One can verify that the saddle point mean-field solution of Landau-

Ginzberg model gives α = 0, β = 1/2, γ = 1, and δ = 3.
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Fisher ν (2− η) = γ

Rushbrooke α + 2β + γ = 2

Widom β (δ − 1) = γ

Josephson 2− α = νD

Table 2.1 : Scaling relations for critical exponents

On the other hand, if the fluctuation effect is incorporated, then there are two

other critical exponents associated with the correlation function:

G (x) ≡ ⟨ϕ (x)ϕ (0)⟩ ∼


x−D+2−η, x≪ ξ

exp
(
−x
ξ

)
, x≫ ξ

(2.5)

where η is called anomalous dimension, and ξ is the correlation length, which diverges

in a power law manner near a critical point:

ξ ∼ |t|−ν (2.6)

One of the most incredible thing about critical phenomena is that these critical

exponents actually are universal, in the sense that they are actually independent to

the microscopic details of the model, but only dependent on the macroscopic prop-

erties, such as dimensionality and symmetry of the model, which means that many

models that are different microscopically can in fact belong to the same universal-

ity class with the same critical exponents. Moreover, critical exponents are actually

not independent of each other. They are satisfied the so-called scaling relations, as

summarized in the table (2.1).

Since there are six critical exponents, while we have four constraints, the number
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of real independent parameters should only be two. These scaling relations can be

understood by scaling hypothesis[36]. The spirit is that near a critical point, the

correlation length ξ is the only length scale and is divergent at a critical point, and

hence the system should exhibit some sort of self-similarity and scale invariance.

Under the rescale of length scale ξ → bξ, parameters t and h rescale as t→ bytt, and

h→ byhh, and the free energy density f satisfies the scaling form:

f (t, h) = b−Df (tbyt , hbyh) (2.7)

for every b. Once we choose tbyt = 1, then

f (t, h) = t
D
yt f̃

(
h

tyh/yt

)
(2.8)

Following this form and the definition of critical exponents in Eq. (2.4), (2.5) and

(2.6), one can check that:

α = 2− D

yt
, β =

D − yh
yt

, γ =
2yh −D

yt

δ =
yh

D − yh
, ν =

1

yt
, η = 2 +D − 2yh

(2.9)

We see that the two independent parameters yt and yh define the six critical

exponents, and more remarkably, the Eq. (2.9) indeed satisfy the scaling relations in

Table. (2.1). As a result, by deriving scaling factors yt and yh we can derive other

critical exponents.

The success of applying scaling theory to understand the critical phenomena help

to the development of renormalization group(RG). By performing RG calculation,

one can not only identify different phases or critical points hidden in a model but also

derive the critical exponents from the first principle. The procedure of RG consists

of the following steps[37]:
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1.Coarse-Grain: The first step of the RG is to decrease the resolution of the length

scale. For the ϕ4 theory (2.1) as an example, this is usually achieved by divided the

fields ϕ (q) into fast and slow modes:

ϕ (q⃗) =


ϕ< (q) , 0 < |q⃗| < Λ

b

ϕ> (q) , Λ
b
< |q⃗| < Λ

(2.10)

where b > 1 and Λ is the momentum cut-off of the model, and then integrate out the

fast-mode ϕ>.

2. Rescale After integrate out the fast modes, we need to restore the length scale

to the original one, which is achieved by rescaling the position:

x→ x

b
(2.11)

or equivalently, in the momentum space:

p→ bp (2.12)

and the fields also need to be rescaled so that the leading term that governs the

behavior of free theory(in this case, the K (∇ϕ)2) should be invariant:

ϕ (q) → bdϕϕ (2.13)

3. Renromalize:

In the end, the action retains its original form, but with a different set of param-

eters:

F =

∫
dDx

[
t′

2
ϕ2 (x) +K (∇ϕ (x))2 + u′

4!
ϕ4 (x)− h′ϕ (x)

]
(2.14)
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Let G = {gα} denotes the set of parameters of the model gα. In this case, G =

(t, u, h). After a RG procedure R, it transform to G′ = {g′α}:

G′ = R̃ (G) (2.15)

where the operation R̃ (G) describes the effects of the RG procedure of the system.

Iterate the RG procedure can generate the flow of parameters along with each RG

procedure, which is also called RG flow. By setting the parameter l = ln b and taking

it as infinitesimal value, one can derive the RG flow:

dG

dl
= β (G) (2.16)

where β (G) = liml→0 l
−1
(
R̃ (G)−G

)
is called β functions.

For the ϕ4 theory, up to the second order, the β functions are:

dt

dl
= 2t+

u2

16π2
− tu

16π2

du

dl
= ϵu− 3u2

16π2

dh

dl
=

6− ϵ

2
h

(2.17)

where ϵ = 4−D.

As we discussed, a characteristic of a critical point is the self-similarity. Any self-

similar configurations must correspond to a fixed point G∗ satisfying G∗ = R̃ (G∗),

that is:

dG

dl

∣∣∣∣
G=G∗

= β (G∗) = 0 (2.18)

The RG flow near the vicinity of a fixed point can be further explored by linearizing

the β functions:
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dG

dl
= β (G) ∼= W (G−G∗) (2.19)

where Wab =
∂βa
∂gb

∣∣∣
G=G∗

. One can diagonalize matrix W and identify its left eigenvec-

tors ϕα with associated eigenvalues λα:

ϕTαW = λαϕ
T
α (2.20)

and then the RG flow near the vicinity of fixed point G∗ can be expressed in a more

suitable basis set {vα}:

vα = ϕTα (G−G∗) (2.21)

It is easy to check that:

dvα
dl

= λαvα → vα (l) = exp (lλα) (2.22)

Therefore, for λα > 0, the trajectory of RG procedure flows away from the critical

point G∗, while for λα < 0 it flows toward G∗. The associated scaling field for the

former case is said to be relevant, in the sense that it forcefully drives the system

away from the critical point, and for the latter case irrelevant. For the case λα = 0,

we call the associated fields marginal.

A Stable fixed point is a point where all associated scaling fields are all irrelevant or

exactly marginal. In RG language, these points correspond to a “phases of matter”,

since when one start initial parameters somewhere in the parameter space surrounding

any of these attractors, the RG trajectory will flow towards one of these points and

eventually arrive it, i.e. it is not only self-similar but also stable against any small

perturbation, and thus genuinely represents what we call a state of matter.
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On the other hand, a critical point is a fixed point where there are both relevant

and irrelevant scaling fields. These points correspond to a continuous phase transi-

tions, since tuning a relevant parameter around it can change the final destination of

the RG flow trajectory, and thus change the state of matter.

For the ϕ4 theory (2.1), one can identify the critical points from its β functions

(2.17):

(t∗1, u
∗
1, h

∗) = (0, 0, 0) , (t∗2, u
∗
2, h

∗) =

(
−1

6
ϵ,
16π2

3
ϵ, 0

)
(2.23)

where the first one is called the Gaussian fixed point, and the second one is called

the Wilson-Fisher fixed point.

The Wilson-Fisher fixed point only exists at ϵ > 0, that is, D < 4, since u must be

positive. However, since it has less relevant operator than the Gaussian fixed point,

at D < 4 it should be the fixed point that control the critical behaviors. On the other

hand, at D > 4 the critical phenomenon of ϕ4 theory is described by the Gaussian

fixed point. To understand the full RG flow diagram at D < 4, one can linearize the

β functions (2.17) around the Gaussian and the Wilson-Fisher fixed point. Denoting

the linearized mappings by W1 and W2 for the Gaussian and the Wilson-Fisher fixed

point, respectively, we have:

W1 =


2 1

16π2 0

0 ϵ 0

0 0 6−ϵ
2

 , W2 =


2− 1

3
ϵ 1

16π2 0

0 −ϵ 0

0 0 6−ϵ
2

 (2.24)

by which the associated critical exponents can be derived:

1. For the Gaussian fixed point, yt = 2 and yh = 6−ϵ
2

= 1 + D
2

. Compare these

with Eq. (2.9), we have:

α = 2− D

2
, β = −1

2
+
D

4
, γ = 1, δ =

D + 2

D − 2
, ν = 1, η = 0 (2.25)
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2. For the Wilson-Fisher fixed point, yt = 2− 1
3
ϵ and yh = 6−ϵ

2
= 1+ D

2
, and hence

the critical exponents are:

α =
ϵ

6
, β =

1

2
− ϵ

6
, γ = 1 +

ϵ

6
, δ = 3 + ϵ, ν =

1

2
+

ϵ

12
, η = 0 (2.26)

Figure 2.1 : The RG flow of ϕ4 theory (2.1) at D < 4 obtained from the ϵ-expansion,
where the FM and PM denote paramagnetic and ferromagnetic phase, respectively.

2.2 Quantum phase transition

The quantum phase transition is driven by quantum fluctuations. In the classical

phase transition driven by thermal fluctuations, the spatial and temporal fluctuations

are essentially decoupled. On the other hand, for quantum phase transitions, they
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are generically intertwined[18, 19]. Therefore, the correlation time ξτ is related to the

correlation length ξ:

ξτ ∼ ξz (2.27)

where z is called dynamical exponent.

The energy scale of quantum fluctuation can be estimated through ~ωc, where

ωc ∼ 1
ξτ

is the characteristic frequency of the system. Since near a thermal-driven

transition with critical temperature Tc, the correlation length scales as ξ ∼ |t|−ν ,

where t = T−Tc
Tc

, the energy scale of quantum fluctuation hence is:

~ωc ∝ |t|νz (2.28)

On the other hand, the energy scale of thermal fluctuations is kBT , where kB

is the Boltzmann constant. The quantum fluctuations will be important as long as

their energy scale is larger than the thermal one, that is, ~ωc > kBT . However,

from Eq. (2.28), we see that if T ̸= 0, then at a temperature close enough to the

critical temperature Tc, one must have ~ωc < kBT . In other words, it is always the

thermal fluctuations that dominate the critical behaviors of phase transition in the

end. Following this simple estimation, one can conclude that the quantum phase

transition can only happen at zero temperature.

Therefore, a quantum critical point(QCP) must be approached by a non-thermal

tuning variable r. Near a QCP, the interplay of quantum and thermal fluctuations

leads to a very rich phase diagram. Depending on the strength of quantum and

thermal fluctuations, the phase diagram can be divided into different regions. To

elucidate it, again we rely on the comparison between the energy scale of quantum

and thermal fluctuations. Suppose a quantum phase transition takes place at r = rc,
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then similar as thermal-driven phase transition Eq.(2.28), we have ξ ∼ |r− rc|−ν and:

~ωc ∝ |r − rc|νz = ∆ (2.29)

where we define ∆ ≡ |r − rc|νz. As shown in Fig. 2.2, the regions where kBT < ∆

corresponds to quantum ordered or disordered phases, and the conventional quasipar-

ticle paradigm is applicable. On the other hand, within kBT > ∆, the thermal and

quantum fluctuations interplay with each other, and drastically influence the thermal

excitation of the system. The quasiparticle paradigm thus becomes invalid.

Figure 2.2 : A schematic overall phase diagram of quantum phase transition.

Similar to the classical critical point, near a QCP, lots of physical quantities

also obey scaling behavior. The quantum scaling hypothesis assumes that under the
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rescale of parameters, the free energy density satisfies the scaling form:

f (r − rc, T, h) = b−(D+z)f (byr (r − rc) , b
zT, byhh) (2.30)

Compare it with the scaling hypothesis of classical phase transition (2.7), we can see

that it implies that the effective dimension of a quantum phase transition Deff = D+z.

There are many interesting models exhibiting quantum phase transition. In the

following, we would like to introduce two essential toy models describing different

kinds of magnetic phase transitions.

2.2.1 Hertz-Millis theory

Hertz-Millis theory aims to study the itinerant magnetic phase transition, where the

magnetism is mainly induced by the Fermi surface instability of itinerant electron[38,

39]. The starting microscopic Hamiltonian is the Hubbard model[40]:

H = −
∑
⟨ij⟩σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ (2.31)

where c†iσ and ciσ creates and destroys a electron on site i with spin σ, respectively,

and niσ = c†iσciσ is the number of electron on site i with spin σ.

The on-site Coulomb interaction can be expressed as ni↑ni↓ = 1/4
[
(ni↑ + ni↓)

2 +

(ni↑ − ni↓)
2]. Since we aim to study the magnetic phase transition, we ignore the

charge density fluctuation (ni↑ + ni↓)
2. By using the Hubbard-Stratonovich trans-

formation with the field ϕ conjugating with spin density fluctuation ni↑ − ni↓, the

Hubbard interaction can be decoupled. After integrating out the fermionic degree of

freedom, and express the effective action in terms of the power series of ϕ field, the

resulting Hertz-Millis model is:
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S =
∑
iωn,q⃗

(
r + q2 + γ

|ωn|
qa

)
|ϕ (iω, q⃗) |2 + u

4

∫
dτdDx|ϕ (τ, x⃗) |4 (2.32)

The Hertz-Millis theory (2.32) can be regarded as a quantum generalization of the

classical ϕ4 theory (2.1). The difference is that, in the Hertz-Millis theory, the tem-

poral fluctuations also interplay with spacial fluctuations, and influence the critical

behaviors. Note that in the quadratic term of the action (2.32), there is a non-trivial

dynamical term γ|ωn|/qa called Landau damping, which results from the particle-

hole polarization of electron near Fermi surface, and a = 1(a = 0) for spin density

wave(ferromagnetic) transition. Therefore, to assure that the action (2.32) is invari-

ant under rescaling q → bq, ω → bzω, we must have:

z = 2 + a (2.33)

and hence the effective dimension of Hetz-Millis theory is Deff = D + z = D + 2 + a.

After performing RG procedure up to one-loop level, the β functions of the Hertz-

Millis theory (2.32) are:

dT

dl
= zT

dr

dl
= 2r + u2f2 (T, r)

du

dl
= (4−D − z)u− u2f4 (T, r)

(2.34)

As we said, the Herz-Millis model is like a generalization of ϕ4 theory but only with

effective dimension Deff = D+z modified due to the temporal fluctuation. Therefore,

at Deff = D + z > 4, coupling constant u should be irrelevant, and hence the QCP

should correspond to a Gaussian fixed point. After solving these β functions, one

can even derive the RG flow and the scaling behaviors. In the end, according to the
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scaling behaviors, the whole phase diagram can be divided into different regions, as

summarized in Fig. 2.3.

Figure 2.3 : The schematic phase diagram of the Hertz-Millis theory. Regime I is a
magnetic disorederd Fermi liquid. II and III are quatum critical regime, with different
scaling behavior of correlation length. IV is a Non-Gausssian classical crtical regime.
V is a magnetic ordered phase. Figure adapted from reference [3].

Note that in the derivation of action (2.32) from the Hubbard model, we actu-

ally assume that except the quadratic term from fermionic particle-hole polarization,

other higher-order terms resulting from integrating out fermionic modes is constant

and independent of the external momentum and frequency. This assumption, how-

ever, can actually fail, and it turns out dramatically changing the nature of itinerant

magnetic phase transition[41, 42, 43]. Nonetheless, due to its simplicity and ability

to demonstrate lots of general features of the quantum criticality, the Hertz-Millis

model is still regarded as one of the most important prototype to study quantum

phase transitions.
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2.2.2 Quantum Non-Linear Sigma model

The Hertz-Millis theory addresses the quantum criticality of itinerant magnetism.

Its microscopic origin is the Hubbard model (2.31). At the strong on-site Coulomb

interaction limit U → ∞, since any double occupancy of electrons at each site cost

much more energy, the electrons would like to avoid this circumstance and tend to stay

at each site. Therefore, the electrons are localized, and the picture of the itinerant

electrons is no longer a good starting point. The transition from itinerant metal to

localized insulator due to strong Coulomb interaction is called the Mott transition[25].

This kind of insulator is also called the Mott insulator and is different from the

conventional band insulator which can be understood within the non-interacting band

theory.

For the single band Hubbard model at half-filling case, each site is occupied by

a localized single electron. Because of the hopping term t, these localized electrons

can still interact with each other through the super-exchange mechanism[44], and the

final effective Hamiltonian is:

H = JH
∑
ij

S⃗i · S⃗j (2.35)

where JH ∼ t2/U , and S⃗i is the local moment spin operator of a localized electron on

site i.

The model (2.35) is also called the Heisenberg model, which is a quantum general-

ization of the classical Ising model. Even though it is hard to derive the exact solution

of the Heisenberg model, some of progress can still be made. By starting from an anti-

ferromagnetic(AF) ordered phase, D. Haldane developed a way to semi-classically ap-

proximate the Heisenberg model (2.35) into a continuum field theory[45, 46], in which

the local moment operator S⃗i is represented by the non-linear sigma field n⃗ (x⃗, τ) char-
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actering the classical Neel order of AF ordered phase, and the canting field L⃗ (x⃗, τ)

describing the fluctuation around the non-linear sigma field n⃗ (x⃗, τ):

2S⃗i → eiQ⃗·x⃗n⃗ (x⃗, τ)

√
1−

(
2aDL⃗ (x⃗, τ)

)2
+ 2aDL⃗ (x⃗, τ) (2.36)

where Q⃗ is the ordering wave vector, x⃗ labels the position, a is the lattice constant,

n⃗ (x⃗, τ) · L⃗ (x⃗, τ) = 0, and |n⃗ (x⃗, τ) | = 1. For the sake of simplicity, in the following,

we take the square lattice with ordering wave vector Q⃗ =
(
π
a
, π
a

)
as an example. All

of the results can be easily generalized in other cases.

After putting (2.36) into the Heisenberg model (2.35), and taking the continuum

limit, one will end up with a continuum field theory SH :

SH = Sn + SB

Sn =
1

2g

∫
dτdDx

(
1

c2
(∂τ n⃗)

2 + (∇n⃗)2
) (2.37)

where g = aD−2

S2
J1

J1−2J2
, c = 2aSJ1

√
D
√

J1−2J2
J1

(J1 and J2 is the nearest-neighbor and

next-nearest-neighbor interaction, respectively). The topological term SB results from

the Berry phase effect of path integral, and is vanishing inside the AF ordered phase.

Because of the non-linear constraint |n⃗ (x⃗, τ) | = 1, the QNLσM (2.37) actually

contains infinite number of local interaction. However, due to the O (N) symmetry,

the QNLσM (2.37) is still renormalizable[47, 48, 49]. The RG flow of the temperature

T and the coupling constant g can be explored through the following β functions[50]:

dt̃

dl
= − (D − 2) t̃+ (N − 2)

KD

2
g̃t̃ coth

(
g̃

2t̃

)
dg̃

dl
= −ϵg̃ + (N − 2)

KD

2
g̃2 coth

(
g̃

2t̃

) (2.38)

where ϵ = D + z − 2 = D − 1, g̃ = cΛD−1g, and t̃ = ΛD−2gT .
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Figure 2.4 : RG flow diagram of the quantum non-linear sigma model for 1 < D ≤
2(Up) and D > 2(Down). At D > 1, there is a QCP g̃ = g̃∗ separating the quantum
ordered and disordered phase. Thick lines are the phase boundary. At 1 < D ≤ 2,
such ordered phase only exists at zero temperature.
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From these β functions (2.38), one can see that at D = 1, the coupling constant g

is relevant, which indicates that the ground state should be AF disordered. Large-N

mean-field solution also predicts that there is a massive gap dynamically generated

due to quantum fluctuation[51]. The whole RG flow at D > 1 are plotted in Fig. 2.4.

At T = 0, there is a QCP separating the AF ordered and disordered phase.

Until now, we have not yet considered the influence of the topological term SB. It

is vanishing inside the AF ordered phase. However, at D = 1, the coupling constant is

relevant and flows to the AF disordered fixed point. The influence of the topological

term SB should also be incorporated[45]. Such topological term has a local expression:

SB (n⃗) =
iS

2

∫
dτdxn⃗ · (∂xn⃗× ∂τ n⃗) = 2iπSQ (2.39)

where Q is an integer since the non-linear sigma field n⃗ is a mapping from S2 to S2

if we assign n⃗
(√

x2 + τ 2 → ∞
)
= 1, and the homotopy group Π2 (S

2) = Z. The

configurations of n⃗ that give non-vanishing Q is called skyrmion. Fig. (2.5) shows

the profile of a skyrmion with Q = −1.

From the relation (2.39), we see that if S is an integer, then the influence of the

topological term should be irrelevant since eSB = 1. However, if S is a half-integer,

then this term eSB = (−1)Q depends on the integer Q. Following all of these analyses,

Haldane conjectured that D = 1 spin chain should be an gapped AF disordered phase

and gapless ordered phase if S is an integer and half-integer, respectively[45].

At D = 2, as we have seen, there is a QCP separating AF ordered and disordered

phase, and the topological term is vanishing inside the ordered phase. However, it is

still useful to consider the consequence of topological defects, since by which one can

infer the physics on the disordered side. At D = 2, it turns out that the skyrmion

defects do not contribute to the partition function[52]. However, aother kind of defect

called hedgehog, which can be regarded as a skyrmion number changing event in the
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Figure 2.5 : Profile of a skyrmion with Q = −1.

space-time(see Fig. 2.6), can still dramatically changes the nature of the QCP and

the ground state of the AF disordered phase. As a result, once they proliferate, these

defects can cause some exotic phase transitions that are forbidden in the Landa-

Ginzburg paradigm [53, 54, 55, 56].

2.3 Heavy Fermions

We have introduced two prototypical models for different kinds of magnetic quantum

criticality. One is Herz-Millis model that aims to address itinerant spin density wave

or ferromagnetic quantum phase transitions, and the other is quantum non-linear

sigma model that comes from localized magnetism. The itinerant and localized picture

seems to be quite opposite and hard to be reconciled. One way to make progress is

to consider the interplay of these two seeming opposite pictures. Heavy fermion

materials is an ideal system for such study.
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Figure 2.6 : Profile of a hedgehog defect in the space-time.

Heavy fermion systems refer to the intermetallic compounds that involve rare-

earth or actinide elements, which contribute 4f or 5f electrons. The on-site Coulomb

interaction is strong in the f-orbitals so that the f-electrons are highly localized and

form local moments on each site. These local moments interact with itinerant con-

duction electrons through the antiferromagnetic Kondo coupling, and also interact

with each other through the so called Ruderman–Kittel–Kasuya–Yosida(RKKY) in-

teraction mediated by conduction electrons[57, 58, 59]. The effective Hamiltonian

describing heavy fermion systems is Kondo lattice model HK :
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HK = Hc +Hf +HK

Hc =
∑
k⃗σ

ϵk⃗c
†
k⃗σ
ck⃗σ

Hf =
∑
ij

JH,ijS⃗i · S⃗j

HK =
∑
i

JKS⃗i · s⃗c,i

(2.40)

where s⃗c,i =
∑

αβ c
†
iα
σ⃗αβ
2
ciβ is the spin of conduction electron on site i.

Since the RKKY interaction is generated by coupling with conduction electron, its

strength depends on the Kondo coupling as JH,ij ∝ ρ0J
2
K . On the other hand, below

the Kondo temperature scale TK ∝ exp (−1/ (ρ0JK)), the conduction electrons and

f-electrons should form singlets called Kondo singlet. These two energy scale compete

with each other. At weak Kondo coupling JK → 0, the RKKY coupling JH,ij ≫ TK .

Therefore, the conduction electrons and the local moments are essentially decoupled,

and the magnetism of the is dominant by the RKKY interaction Hf , which usually

prefer AF ordered phase formed by local moments.

On the other hand, at strong Kondo coupling limit JK → ∞, we have JH,ij ≪ TK .

Consequently, it should be the Kondo coupling that dominates, and thus the Kondo

singlets between conduction and f-electrons are formed, which breaks the antiferro-

magnetic orders formed between the local moments and lead the system into param-

agnetism. To explore the nature of the ground state in this case, we use the pseudo-

fermion representation to represent the local moment operator S⃗i[60]:

S⃗i =
1

2

∑
αβ

f †
iα

σ⃗αβ
2
fiβ (2.41)

with the constraint
∑

σ f
†
iσfiσ = 1, which is usually satisfied at the mean-field level
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by introducing new variable λi

∑
iα

λi

(
f †
iαfiα − 1

)
(2.42)

into the action.

By using this pseudo-fermion representation, one can decouple the Kondo coupling

into Kondo hybridization channel through Hubbard-Stratonovich transformation:

∑
i

JKS⃗i · s⃗c,i →
∑
iσ

(
Vic

†
iσfiσ + h.c

)
+
∑
i

|Vi|2

JK
(2.43)

When Kondo coupling dominates and Kondo singlet is formed, both Vi and λi

will acquire non-vanishing static expectation value. Therefore, we can replace these

dynamical variables with their static saddle-point value Vi → V and λi → λ , and

the resulting mean-field Kondo lattice model HKMF is:

HKMF =
∑
kσ

ϵkc
†
kσckσ + λ

∑
iα

(
f †
iαfiα − 1

)
+ V

∑
iσ

(
c†iσfiσ + h.c

)
+
∑
i

|V |2

JK

(2.44)

This mean-field Kondo lattice model (2.44) can be diagonalized. Because of the

Kondo hybridization V , the elementary quasi-particle consists of both conduction

electron and f-electron. As a result, under the global U (1) gauge transformation,

not only the conduction electron but also f-electron will also transform, and hence

the f-electron should also contribute to the electronic transport properties so that the

Fermi surface become much larger. This feature can been seen in the band structure

of quasi-particle plotted in Fig. 2.7, where there are two bands separated by a gap

called hybridization gap. The lower band is drastically flatten, so that the effective

mass of quasi-particle and the Fermi surface become much larger if the Fermi energy
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lies around the lower band, which is why these systems are called heavy fermion.

Figure 2.7 : Band structure of the mean-field Kondo lattice model (2.44). Thin solid
lines denote the conduction electron band and the local f electron levels before the
hybridization. Thick solid lines are the renormalized band of the heavy-quasiparticles
composed of conduction electrons and f-electrons. Figure adapted from reference [4].

For these paramagnetic heavy quasi-particle systems, the conventional Fermi liq-

uid theory is sufficient to explain lots of physical properties. In the Fermi liquid

theory, the interactions only dress up the quasi-particles and change their parame-

ters such as effective mass m∗, but do not break them. From quasi-particles picture

one can derive the temperature T dependences of the specific heat C ∼ γT , the resis-

tivity ρ ∼ ρ0+AT 2, and the static spin susceptibility χ ∼ Const at low temperature,

where γ ∼ m∗, A ∼ (m∗)2, and χ ∼ m∗. The Wilson ratio W = χ/γ[61] and Kad-

owaki Woods ratio αKW = A/γ2[62] in Fermi liquid theory should thus independent

of effective mass m∗. Fig. 2.8 are the plots of for γ versus χ and A versus γ2 of many

heavy fermion compounds. The fact that they almost fit in with linear relations is

a proof that the Fermi liquid description works pretty well for these heavy fermion

systems.
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Figure 2.8 : Wilson ratio χ/γ(Left) and Kadowaki Woods ratio A/γ2(Right) for a
wide range of heavy fermion systems with different effective mass. Figures adapted
from references [5](Left) and [6](Right).

Now we have explored the Kondo lattice model (2.40) in weak and strong Kondo

limits JK → 0 and JK → ∞, and found that it corresponds to a antiferromagnetic

Kondo-destroyed phase with small Fermi surface and paramagnetic Kondo-screened

phase with large Fermi surface, respectively. As a result, there must be a phase

transition between these two phases. In conventional Hert-Millis theory, the Kondo

singlet destruction and the magnetic phase transition are treated as separated issues.

However, experimental discoveries of ω/T scaling of spin suceptibility in CeCu6−xAux

at x = xc ≈ 0.1[63] and YbRh2Si2[64] imply the inapplicability of Hertz-Millis the-

ory to this transition, and it is believed that the Kondo singlet destruction and the

magnetic phase transition take place simultaneously at such critical point.

A new concept called local quantum criticality has been proven successful to un-

derstand the ω/T scaling of spin suceptibility[65, 66]. In the local quantum criticality,
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the breakdown of Kondo singlet is concurrent with the magnetic phase transition si-

multaneously. Since the breakdown of the Kondo singlet involves both the spin and

charge degree of freedom, in the local quantum criticality scenerio, not only the the

spin fluctuations but also the charge fluctuations should be singular around the mag-

netic quantum critical point[67, 68, 69, 70]. The correspondent ω/T scaling of optical

conductivity has been already observed in the YbRh2Si2[71].

Because the Kondo destruction is local in space, a QCP like this violates the con-

ventional Landau-Ginzburg paradigm. To demonstrate the local quantum criticality

in Kondo lattice model (2.40), the extended dynamical mean field theory(EDMF) is

used to self-consistently map the Kondo lattice model (2.40) to the Bose-Fermi Kondo

model HBFK [65]:

HBFK = H0 +HB +HK

H0 =
∑
k⃗σ

ϵk⃗c
†
k⃗σ
ck⃗σ +

∑
q⃗

ωq⃗ϕ⃗
†
q⃗ · ϕ⃗q⃗

HB = gS⃗ ·
∑
q⃗

(
ϕ⃗†
q⃗ + ϕ⃗−q⃗

)
HK = JKS⃗ · s⃗c

(2.45)

where ϕ⃗ is a vector bosonic field, and the fermioninc and bosonic dispersion ϵk⃗ and ωq⃗

are determined self-consistently. The Bose-Fermi Kondo model HBFK (2.45) describe

a local impurity with spin S⃗ couples with itinerant electron ck⃗σ and dissipative bosonic

bath ϕ⃗, as shown in Fig. 2.9. This impurity model is related to the original Kondo

lattice model through the self-consistent condition:
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Figure 2.9 : Schematic diagram of Bose-Fermi Kondo model (2.45).

Gloc,σ (iωn) =
∑
k⃗

Gσ

(
k⃗, iωn

)
=
∑
k⃗

1

iωn − ϵk⃗ − Σ (ωn)

χloc,σ (iνn) =
∑
q⃗

χ (q⃗, iνn) =
∑
q⃗

1

Iq⃗ +M (iνn)

(2.46)

where Gσ

(
k⃗, iωn

)
and χ (q⃗, iνn) is fermionic Green’s function and spin susceptibility

on lattice, respectively.

For Bose-Fermi Kondo models HBFK with various different spin symmetries, lo-

cal quantum critical points have been identified by both numerical[72, 73, 74] and

analytical[75, 76, 77] way. For spin SU (2) symmetry case, one can perform a con-

trollable ϵ-expansion RG calculation of the Bose-Fermi Kondo model HBFK (2.45),

where ϵ = 1 − s and s is the exponent of bosonic spectral function ρb ∝ ω2 with

s < 1[75]. The resulting β functions are:

dJK
dl

= JK

(
JK − g2 − J2

K

2
+ g4

)
dg

dl
= g

(
ϵ

2
− g2 − J2

K

2
+ g4

) (2.47)

Fig. 2.10 shows the RG flow diagram of these β functions. The ω/T scaling

around the local quantum critical point of spin SU (N) symmetric Bose-Fermi Kondo
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Figure 2.10 : The RG flow diagram for the Bose-Fermi Kondo model (2.45), where
the blue dot C denotes the quantum critical point of the local quantum criticality,
and red dot L is the local moment fixed point for a Kondo-destroyed phase. At large
Kondo coupling, the RG trajectory flows toward the strong coupling Kondo-screened
fixe point K.

model (2.45) has also been verified by dynamical large-N method[67], where N is the

number of spin indices of conduction electron.

2.4 Iron Pnictides

The discovery of high-temperature superconductivity in iron-based materials has

brought lots of surprises to physicist[78, 79]. The parent state of these materials

are antiferromagnetism. For the iron pnictides, many evidences of bad-metal be-

havior have been found. One of them is from the Mott-Ioffe-Regel criterion, which

compares the electron mean free path l with the Fermi wavelength 1/kF . For a good

metal, their ratio kF l, which is dimensionless, is much larger than unity. The fact
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that, at room temperature, kF l ≈ 1 for the iron pnictides indicates that they are

bad metals. Other evidences for the bad metal behavior, from optical conductivity

measurement, are summarized in Fig. 2.12.

Figure 2.11 : Left: The optical conductivity σ (ω) versus frequency ω for the
interacting(U ̸= 0) and non-interacting(U = 0) case. Kexp and Kband is the mea-
sured Drude weight of σ (ω) for interacting and non-interacting case, respectively.
Adapted from Ref. [7]. Right: The ratio of Kexp to Kband for various superconduc-
tors, including cuprate and iron pnictides. Adapted from Ref. [8].

Motivated by these evidences of bad metal behavior, it has been proposed that the

electronic correlation in the parent state of iron pnictides is strong enough that the

parent state can be regarded as “incipient Mott state”[80, 9]. In other words, they are

metallic state but very close to the edge of the Mott transition. The electron spectral

function versus energy is illustrated in Fig. 2.12, where the middle peak at the Fermi

energy EF is the coherent part which is responsible for the metallic behavior, and the

other two peaks are the incoherent parts that are precursors of Hubbard bands in a

Mott insulator. The ratio of the coherent part to the whole spectral weight is denoted

as w, which is 0 for a Mott insulator since, here, there is no coherent part. For an
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incipient Mott state, w should be very small. By using it as a control parameter, one

can derive, at the zeroth order in w, the effective magnetic Hamiltonian so-called the

J1-J2 model[81]:

H = J1
∑
⟨ij⟩

S⃗i · S⃗j + J2
∑
⟨⟨ij⟩⟩

S⃗i · S⃗j (2.48)

where J1 and J2 is the nearest-neighbor and next-nearest-neighbor coupling, respec-

tively.

Figure 2.12 : Single-electron spectral function versus energy. Adapted from Ref.[9]

For the iron pnictides, the first-principle calculation suggests that J1 ∼ 2J2[82]

and both are antiferromagnetic[83]. When J1 < 2J2, the ground state of the classical

limit of the J1-J2 model (2.48) is known to have the O (3)×O (3) symmetry consisting

of two interpenetrating Neel lattices with independent Neel order parameter m⃗A, and

m⃗B, as shown in Fig. 2.13, and the ground state energy is independent of the relative

angle ϕ between m⃗A and m⃗B. Such a huge degeneracy of the ground state can be

broken by the quantum or thermal fluctuations, which pick the ϕ = 0 or ϕ = π as

the true ground state. As a result, the ground state possess not only the magnetic
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order m⃗A,B · m⃗A,B ̸= 0 but also the Ising-nematic order m⃗A · m⃗B ̸= 0[84]. At higher

temperatures, there is a window within which the magnetic order is vanishing, but

the Ising-nematic order is still non-vanishing[85, 86]. Such a phase is called a nematic

phase, and is related to the structural transition observed in the iron pnictides[87, 88].

Figure 2.13 : Illustration of the J1-J2 model on a square lattice. The staggered
magnetizations m⃗A and m⃗B are defined on two interpenetrating Neel square lattices.
Adapted from Ref.[10].

In order to understand the phase diagram of the system that starts at the w0

order with the J1-J2 model (2.48), one then study the Ginzburg-Landau description

that incorporates the w-expansion (2.48)[80, 9] :

S0 = S2 + S4

S2 =
∑

q=q⃗,iωn

{
G−1

0 (q)
(
|m⃗A (q) |2 + |m⃗B (q) |2

)
+ v

(
q2x − q2y

)
m⃗A (q) · m⃗B (−q)

}
S4 =

∫ β

0

dτ

∫
d2x

[
u1
(
m⃗2
A + m⃗2

B

)2 − uI (m⃗A · m⃗B)
2 − u2

(
m⃗2
A − m⃗2

B

)2]
(2.49)



39

where u1, u2, uI are all positive, and:

G−1
0 (q⃗, iωn) = r (w) + ω2

n + cq⃗2 + γ|ω| (2.50)

with r (w) = r0 + wAQ⃗. We choose r0 < 0 so that at w = 0 the system is at the

AF phase. Critical point can be reached by tuning w at critical value wc such that

r = r0 + wcAQ⃗ = 0.

Because of the Landau damping term γ|ω|, which comes from the particle-hole

polarization of the high energy itinerant electrons, the dynamical exponent z = 2.

Consequently, the system (2.49) is at the critical dimension Deff = D + z = 4, and

the Ising-nematic coupling −uI < 0 is a marginally relevant operator. Therefore,

there are two relevant operators, one is the magnetic mass term r and the other

is the Ising-nematic coupling −uI . From the RG perspective, it suggests that the

magnetic and the Ising-nematic phase transitions should be either concurrent in a

first-order manner, or split into two continuous transitions. Either effect is expected

weak because of the marginal nature of the coupling −uI , so that there must be a

large parameter range in which the critical phenomenon can be observed. According

to this RG argument, we have the schematic phase diagram in Fig. 2.14, which has

been supported theoretically by the large-N calculation[10] and experimentally by

the P for As doped BaFe2As2[89, 90, 91]. The quantum critical regime with strange

metal behavior has also been observed in the P for As doped BaFe2As2[92], as shown

in Fig. 2.15.
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Figure 2.14 : Schematic phase diagram of iron-pnictides, where solid and dashed
blure line denote antiferromagnetic and Ising-nematic phase transition, respectively.
Adapted from Ref.[9].

Figure 2.15 : Phase diagram for BaFe2(As1−xPx)2. The color shading represents
the value of the resistivity exponent in the relation ρ = ρ0 + ATα. The inverted
triangles, black dots and squares denote the structural, magnetic (gray region) and
superconducting (brown region) transitions, respectively. Adapted from Ref. [9].
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Chapter 3

Skyrmion defects of antiferromagnet and
competing singlet orders of a Kondo-Heisenberg

model on honeycomb lattice

3.1 Introduction

Competing orders and quantum criticality are two generic features of the rich phase

diagrams displayed by several strongly correlated materials, including heavy fermion

systems [66, 77, 93, 3, 2]. Of particular significance are the antiferromagnetic phase

and competing spin-singlet phases such as charge and bond density waves and un-

conventional pairings. Therefore, for a comprehensive understanding of the global

phase diagrams of many strongly correlated materials, it is essential to gain insights

into the relationship among different competing orders, which spontaneously break

distinct global symmetries. Within the conventional theme of Landau theory of local

order parameters, describing smooth fluctuations or collective modes, order param-

eters breaking distinct symmetries do not seem to bear any specific relationship.

However, the nonperturbative topological defects of order parameters such as do-

main walls, vortices, skyrmions and hedgehogs can support competing orders as fluc-

tuating objects and thereby contain information about apparently distinct ordered

states[55, 56, 94, 31, 32, 95, 96, 97, 98, 99]. In addition, the interaction between

fermions and topological defects can be important in strongly correlated electronic

systems such as heavy fermion compounds, generically described by effective Kondo-
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Heisenberg models. The strong competition among antiferromagnetism and Kondo

singlet formation in addition to spin-singlet superconductivity are essential features

of many heavy fermion compounds, and a global phase diagram has been theoreti-

cally proposed [2] which features the transitions between an antiferromagnetic order

and a variety of spin-singlet paramagnetic phases. This global phase diagram has

been studied in the Kondo-Heisenberg models using various microscopic methods

[100], and has motivated experimental investigations in a number of heavy fermion

materials[34, 101, 102, 103, 104]. However, it remains a theoretical challenge to con-

cretely access the spin-singlet orders (e.g., the heavy fermi liquid phase due to static

Kondo singlets) of the paramagnetic phases starting from the antiferromagnetically

ordered side. In this work, we are interested in addressing the fluctuating spin-singlet

orders supported by gapped skyrmion excitations inside an antiferromagnetically or-

dered phase of a Kondo-Heisenberg model. We are also interested in identifying the

most dominant singlet orders which can be nucleated when the antiferromagnet order

is destroyed by quantum fluctuations, causing the collapse of skyrmion excitation gap

inside the paramagnetic phase.

The general problem of interaction between fermions and topological defects is of-

ten intractable. But valuable insights can be gained by studying specific toy models

where fermionic degrees of freedom are modeled by Dirac fermions. In this regard,

a Kondo-Heisenberg model defined on the honeycomb lattice plays a very instructive

role, as the coupling between Dirac fermions and antiferromagnetic order parameter

can be addressed employing diverse analytical and numerical methods. Some previous

works have addressed the interaction between Dirac fermions and topologically non-

trivial skyrmion configuration of antiferromagnetic order parameter, by employing

perturbative gradient expansion scheme[31, 32]. Within such scheme the calculations
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of triangle diagram for Goldstone-Wilczek current are controlled by the inverse of

Dirac mass (caused by uniform amplitude of antiferromagnetic order) and rely upon

adiabatic principle.

3.1.1 Competition between spin Peierls and antiferromagnetic orders

The simplest situation involves a doublet (two inequivalent valleys or nodes) of spinful

Dirac fermions coupled to antiferromagnetic order that simultaneously breaks time

reversal and spatial inversion symmetries. The corresponding low energy theory can

be described by the effective action

S1 =

∫
d2xdτψ̄[γµ∂µ + gψ1⊗ η · n]ψ, (3.1)

where ψ is a eight-component spinor (incorporating two sublattice, two nodal and

two spin degrees of freedom), γµ are three mutually anticommuting 4 × 4 Hermi-

tian matrices operating on sublattice and valley indices, 1 is 4 × 4 identity matrix

that operates on sublattice and valley indices, and Pauli matrices η act on spin com-

ponents. The coupling between fermion and the O(3) vector order parameter n is

denoted by gψ. Inside the antiferromagnetically ordered phase Dirac fermions possess

excitation or mass gap 2gψ⟨ψ̄1 ⊗ η · nψ⟩. The gradient expansion analysis (con-

trolled by the mass gap) shows that a skyrmion acquires an induced chiral charge

Q5 = ⟨ψ̄γ0γ5ψ⟩ = 2Qtop, where Qtop is the topological invariant or Pontryagin index

for skyrmion configuratio[105, 106, 107, 108, 109]. Within the continuum descrip-

tion, the chiral charge acts as the generator of translational symmetry (an emergent

U(1) symmetry when higher gradient kinetic terms are ignored). Inside the antiferro-

magnetically ordered phase, the skyrmion number and consequently the chiral charge

Q5 act as conserved quantities, thus freely mixing two bilinears ψ̄M̂ψ and ψ̄M̂γ5ψ,



44

where [M̂, γ5] = 0, which cause hybridization between two inequivalent nodes. Con-

sequently, skyrmion core supports translational symmetry breaking orders ψ̄M̂ψ and

ψ̄M̂γ5ψ as fluctuating quantities. The specific choice M̂ = 1 corresponds to spin

Peierls order, while other choices for M̂ represent charge and current density wave

orders. All of these singlet orders mix two valleys, and naturally break chiral or

translational symmetry [31, 32].

3.1.2 Competition between Kondo singlets, spin Peierls and antiferro-

magnetic orders

For the Kondo-Heisenberg model defined on the honeycomb lattice, we have to ac-

count for two species of eight-component fermions corresponding to conduction and

f-electrons. Inside the antiferromagnetically ordered phase the low energy theory can

be qualitatively understood in terms of the effective action

S2 =

∫
d2xdτψ̄[γµ∂µ + gψ1⊗ η · n]ψ +

∫
d2xdτχ̄[γµ∂µ + gχ1⊗ η · n]χ,

where ψ and χ capture two distinct eight-component Dirac fermions [32, 99]. Cru-

cially, the antiferrormagnetic sign of Kondo coupling is described by the condition

gψgχ < 0 (same sign would represent Hund’s coupling and describe spin-1 system).

For simplicity all additional couplings between two species of fermions (residual quar-

tic interactions) are being ignored. Both species of fermions give rise to induced

chiral charges, while their sum vanishes. Interestingly, the difference between two

types of induced chiral charge equals 4Qtop, i.e., Q5,+ = ⟨ψ̄γ0γ5ψ⟩ + ⟨χ̄γ0γ5χ⟩ = 0

and Q5,− = ⟨ψ̄γ0γ5ψ⟩ − ⟨χ̄γ0γ5χ⟩ = 4Qtop. It has been shown that the relative chiral

charge Q5,− (hence the skyrmion number) causes free rotation among several transla-

tional symmetry preserving Kondo singlet operators (mixing ψ and χ at same valley)
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in addition to conventional translational symmetry breaking density wave operators.

Therefore gradient expansion scheme provided important insight that the skyrmion

texture supports several competing Kondo singlet operators, spin Peierls (bond den-

sity) as well as charge and current density wave orders inside the antiferromagnetic

insulating phase [32].

3.1.3 One dimensional Kondo-Heisenberg model

A similar issue of interaction between Dirac fermions and topological defects of anti-

ferromagnetic order has also been emphasized in one spatial dimension [110, 111]. In

one dimension the relevant topological defects are instantons or tunneling events for

O(3) quantum nonlinear sigma model. However these instantons in two-dimensional

Euclidean space, and static skyrmions of (2+1)-dimensional model have identical

forms. By employing different field theoretic methods (direct gradient expansion

and chiral anomaly), it has been found that the instanton number is directly related

to the expectation value of bilinear ψ̄γ5ψ (which represents translational symmetry

breaking, Ising spin-Peierls order). In the presence of Kondo coupling, one finds

the competition between Kondo singlet formation and spin-Peierls order[111]. This

picture is also qualitatively supported by bosonization analysis.

3.1.4 Accomplishments of the present work

However, the gradient expansion scheme only employs scattered states of Dirac fermions,

while completely ignoring the effects of low energy bound states. How do these non-

perturbative eigenstates affect the predictions of gradient expansion? Which are the

most dominant singlet orders which can be nucleated after the antiferromagnetic or-

der is destroyed by quantum fluctuations, causing a collapse of skyrmion excitation
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gap? In the present work we answer these important physical and technical questions.

We first solve for the exact fermion eigenfunctions in the presence of topologically

nontrivial skyrmion background to establish the induced chiral charge of skyrmion

texture. Subsequently by employing these nonperturbative eigenstates, we evaluate

the susceptibilities of different competing orders. Based on the susceptibilities, we

demonstrate spin Peierls to be the most dominant translational symmetry breaking

singlet order, which strongly competes against the static Kondo singlet formation.

We also substantiate our results obtained in the continuum limit by calculations

performed with lattice regularizations. Intriguingly, we find remarkable agreement

between the analysis of this work and the predictions of perturbative field theory[32]

and more recent nonperturbative analysis of hedgehog-fermion interactions inside the

paramagnetic phase[99].

Since the two dimensional skyrmion texture describes the instanton or tunnel-

ing event of nonlinear sigma model in one spatial dimension, our methodology can

be directly applied to the one dimensional problem (1+1-dimensional space-time)

for computing the fermion determinant in the presence of topologically nontrivial dy-

namic background (it is equivalent to solving a fictitious two dimensional Hamiltonian

defined in Euclidean space). Therefore, we can also extract the dynamic information

regarding destruction of algebraic spin liquid in favor of competing Kondo singlet

and spin Peierls phases for one dimensional Kondo-Heisenberg chain. Similarly, our

methodology can be applied for many two and also three dimensional systems, sup-

porting competition between spin-triplet and spin-singlet orders.
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3.2 Kondo lattice model on honeycomb lattice

The Hamiltonian for Kondo-Heisenberg model on a honeycomb lattice is given by

H =
∑
ri∈A

3∑
j=1

[
−tc c†A,α (ri) cB,α (ri + δj) + h.c+ JH SA (ri) · SB (ri + δj)

+ JK c
†
A,α (ri)

ηαβ
2
cA,β (ri) · SA (ri) +

JK
3
c†B,α (ri + δj)

ηαβ
2
cB,β (ri + δj) · SB (ri + δj)

]
,

(3.2)

where c†A/B,α/β is the conduction electron creation operator, and A, B denote two

interpenetrating triangular sublattices, and Pauli matrices η operate on spin indices

α and β, and δj are three coordination vectors connecting two sublattices, as shown

in Fig. 3.1. The explicit form of these vectors are δ1 =
(
−a

2
,
√
3a
2

)
, δ2 = (a, 0) and

δ3 =
(
−a

2
,−

√
3a
2

)
, where a is the lattice spacing. The local moments on sublattice A

and B are represented by SA (ri) and SB (ri + δj), respectively. The RKKY coupling

between local moment is modeled by nearest neighbor Heisenberg interaction with

strength JH , and JK is the Kondo coupling between conduction electron and local

moment. We will consider both JH and JK to be antiferromagnetic, i.e., JH > 0 and

JK > 0.

Figure 3.1 : The structure of honeycomb lattice, where the red and the black circles,
respectively, denote two interpenetrating triangular sublattices A and B. Coordinate
vectors δi are shown as solid line with arrows.
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After linearizing the dispersion relation for fermions around two inequivalent nodal

points of the hexagonal Brillouin zone (located at K±) and analytically continuing

real time to imaginary time by setting τ = it, the low energy effective physics of free

conduction electron can be described by the imaginary time action:

S0 =

∫
dx2dτψα (γ0 ⊗ η0∂t + vψγj ⊗ η0∂j)ψα, (3.3)

where vψ =
√
3tca
3

is the Fermi velocity, spinor ψTα = (c+,A,α, c+,B,α, c−,B,α, c−,A,α),

ψα = ψαγ0, ± is index for two valleys K±, and α is spin index. The gamma matrices

are defined as:

γ0 = τ1 ⊗ σ0 =

 0 σ0

σ0 0

 , γj = iτ2 ⊗ σj =

 0 σj

−σj 0

 ,

γ5 = τ3 ⊗ σ0 =

σ0 0

0 −σ0


(3.4)

where the Pauli matrices σ, τ respectively operate on the sublattice and valley indices.

Inside the antiferromagnetically ordered phase, the low energy physics of local

moments can be described by QNLσM [45, 46]:

Sn =
1

2cg

∫
d2xdτ

[
c2 (∂xn)

2 + (∂τn)
2]+ iSB [n] (3.5)

The coupling constant g has the dimension of length, and the antiferromagnetically

ordered phase exists for g smaller than a critical strength gc[50]. The last term SB [n]

corresponds to Berry phase, which vanishes inside the ordered phase. The Berry

phase can be finite inside the paramagnetic phase, but it does not possess a simple

continuum limit in (2+1) dimensions[52, 54].

Now we incorporate the Kondo coupling, which captures the scattering between

conduction electron spinor ψ and the QNLσM field n representing the local moment:

SK = gK

∫
d2xdτψαγ3n · ηαβψβ (3.6)
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Therefore, the low energy theory of antiferromagnetic phase for the Kondo-Heisenberg

model can be described by:

S = S0 + Sn + SK (3.7)

The lack of continuum representation for Berry’s phase in (2+1)-dimensions makes

it hard to analyze its consequence inside the paramagnetic phase based on the coarse

grained representation. However, this can be circumvented by introducing auxiliary

f-fermions for describing the local moments [32]. We assume that the auxiliary f-

fermions only hop to the nearest neighbor sites like the conduction fermions, with

a hopping strength tf . At low energies, these f-fermions can also be described by

the Dirac equation with a new spinor χTα = (f+,A,α, f+,B,α, f−,B,α, f−,A,α). Thus, the

resulting low energy effective action for f-fermion inside AF phase is:

Sf =

∫
dx2dτχα [γ0 ⊗ η0∂t + vχγj ⊗ η0∂j + gχγ3n · η]αβ χβ (3.8)

where vχ =
√
3tfa

2
. In fact, after integrating out the f-fermion degrees of freedom,

this action will return to the same form of QNLσM of Eq. (3.5) [112, 113, 106]. We

again remind the reader that the Berry phase vanishes inside the antiferromagnetically

ordered phase and only becomes important for addressing the nature of paramagnetic

phase. The Hamiltonian operator from Eq. (3.6) involving only f-electrons would be:

Hf = τ3 [−ivχ (σ1∂1 + σ2∂2) + gχn · ησ3] . (3.9)

Usually the introduction of auxiliary fermion description requires the introduction

of Lagrange multiplier or constraint gauge fields. Since in this work we would be

dealing with confined phases of matter such as antiferromagnet, spin Peierls or Kondo

singlets, the constraint gauge field does not affect any of our conclusions regarding the

competing order. For this reason we follow Ref.[114] and use an alternative method
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that avoids introduction of any constraint gauge fields. Within this method one

considers actual f electrons in the presence of sufficiently strong Hubbard interaction,

which gives rise to an antiferromagnetic phase. The relevant steps are described in

the Appendix A.1.

Therefore, the Hamiltonian operator for the combined problem described by S =

S0 + Sf + SK is given by

HΨ = τ3 [−iv+ (σ1∂1 + σ2∂2)− iv− (σ1∂1 + σ2∂2) ρ3 + g+n · ησ3 + g−n · ησ3ρ3] ,

(3.10)

which operates on the spinor Ψ = (ψ, χ) = (cAα+, cBα+, cBα−, cAα−, fAα+, fBα+, fBα−, fAα−)

where v± =
vc±vf

2
and g± = gK±gχ

2
, and new Pauli matrices ρi act on the flavor index

representing conduction and f-electrons, (ψ, χ). Inside AF phase, we expect that the

staggered magnetic moments of conduction electron ψ and f-electron χ anti-align to

each other. Therefore, we have gKgχ < 0 [32] .

3.3 Skyrmion, induced chiral charge and competing orders:

perturbative argument

The static nonsingular topological defect of QNLσM in 2 + 1 dimensions is called

skyrmion, which satisfies the boundary condition n (r → ∞) = n0, where r =√
x2 + y2 and n0 is a constant unit vector. Therefore, the two-dimensional space

is compactified onto a two sphere S2 and the skyrmion configurations are defined

by an integer topological charge also known as skyrmion number, since the homo-

topy group Π2 (S
2) = Z. The skyrmion with topological charge Qtop ∈ Z can have

arbitrary profile function, provided it satisfies the boundary condition and the re-

quirement that 1
4π

∫
d2xn · ∂1n× ∂2n = Qtop. Fig. 3.2 illustrates a real space profile
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for single skyrmion with Qtop = 1.

Figure 3.2 : Illustration of single skyrmion. The red dot denotes the origin of skyrmion
core, and blue arrow is the direction of staggered magnetization or antiferromagnetic
order parameter n.

It is well known, when Dirac fermions are coupled to QNLσM, the skyrmion tex-

tures will acquire induced fermion number [108, 109, 115, 116, 106]. For Hamiltonian

of Eq. (3.9), due to the overall matrix τ3 (appearing odd number of times) operating

on two inequivalent valleys, the total induced fermionic charge vanishes. But the

chiral charge, defined as the difference of fermion densities at two valleys, will be

proportional to the topological charge of skyrmion:

Q± ≡
∫
d2x⟨:f †

±f±:⟩ = ± sign (gχ)Qtop,

Q5 ≡
∫
d2x⟨:χ†τ3χ:⟩ =

∫
d2x

(
⟨:f †

+f+:⟩ − ⟨:f †
−f−:⟩

)
,

= 2 sign (gχ)Qtop,

(3.11)

Q± are the charges for ± valleys, and :: denotes normal ordering operation. These re-

lations can be proven by gradient expansion method [106], and the detailed derivation

is provided in Appendix A.2. We can also verify this result numerically by solving
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for the spectral flow during adiabatic formation of skyrmion, as shown in Fig. 3.3.

We can simulate the formation of single (anti)skyrmion without loss of generality by

assuming

n (r⃗, t) = (sin tf (r) cos θ, sin tf (r) sin θ, cos tf (r)) , (3.12)

where f (r) = πe−
r
2 . One can easily verify that Qtop = 0 at t = 0 and Qtop = −1

at t = 1, and the definition of (anti)skyrmion does not depend on the precise form

of profile function. For + valley, as shown in Fig. 3.3, we find there is precisely one

state that crosses zero energy (flowing out of negative energy states or filled Dirac

sea) during the formation of skyrmion. Therefore, the induced charge is −1, just as

Eq. (3.11) suggests∗. The relation among the induced fermionic chiral charge of the

system, the spectrum flow, and the topological charge of skyrmion, is a consequence

of index theorem [117, 118].

Since gKgχ < 0, the induced chiral charges for conduction and f-electrons have

opposite signs [electron Q5,ψ = 2 sign (gK)Qtop and f-electron Q5,χ = 2 sign (gχ)Qtop].

This means if one state for conduction fermion sinks into the Dirac sea, there will

be a state for f-electrons which will emerge out of the Dirac sea. Therefore, the net

chiral charge of two species vanishes. Nonetheless, the difference between two chiral

charges is quantized:

Q−,Ψ ≡
∫
d2x⟨:Ψ†ρ3τ3Ψ:⟩ = Q5,ψ −Q5,χ = 4 sign (gK)Qtop (3.13)

∗Note that in the intermediate stage of the skyrmion formation (3.12) 0 < t < 1, there is a

discontinuity of the skyrmion profile at the origin. The derivate near the orign is huge and thus

the gradient expansion and Eq. (3.11) might no longer be valid. Nonetheless, at t = 0, 1, the

discontinuity is absent and, correspondingly, the gradient expansion and the Eq. (3.11) are well-

defined.
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Figure 3.3 : The spectral flow for + valley during the adiabatic formation of skyrmion.
Here we choose coupling constant gχ = 2

Inside the AF ordered phase, the tunneling events described by singular hedge-

hog and antihedgehog configurations (space-time singularities) are linearly confined,

leading to the conservation of skyrmion number. When the AF order is gradually

suppressed by quantum fluctuations, the spin stiffness of the sigma model and the

skyrmion energy cost decrease. On the paramagnetic side, the skyrmions excita-

tion energy vanishes, and all topologically distinct skyrmion configurations become

energetically degenerate. Hence, the tunneling events between different skyrmion con-

figurations become important for determining how ground state degeneracy is lifted.

Since Q5 and Q−,Ψ are proportional to the topological charge Qtop [as in Eq. (3.11)

and Eq. (3.13)], Q5 and Q−,Ψ would also be changed via tunneling events. Thus Q5

and Q−,Ψ would act as fast variables inside paramagnetic phase, and their conjugate

operators will serve as the appropriate slow variables or competing order parame-

ters [31, 32].
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Competing order Matrix form M̂ anticommute with HΨ?

Valence bond solid τ1, τ2 Yes

Charge density wave τ1σ1, τ1σ2 No

Current density wave τ1σ3 No

Table 3.1 : Competing orders for one species of fermion coupled to antiferromagnetic
order parameter.

Based on this argument, for one species of Dirac fermions [e.g., for Hamiltonian

Hf of Eq. (3.9)], the corresponding spin-singlet competing orders in the particle-hole

channel are found to be

QM = χ†M̂eiϕτ3χ. (3.14)

Here M̂ is a 4 × 4 matrix operating on sublattice and valley indices, and there are

five distinct order parameters OM , which are conjugate to chiral charge operator

Q̂5 = χ†τ3χ , i.e.,
[
Q̂5, OM

]
∝ χ†M̂ei(

π
2
+ϕ)τ3χ, as indicated in TABLE 3.1. The

first two correspond to components of the valence bond solid(VBS), which is also

called Kekule bond density wave order or spin Peierls order breaking the translation

symmetry unlike the usual AKLT state resulting from spin-1 model, and the final

three correspond to different kinds of charge or current density wave orders [31, 32].

However, only the components of VBS order anticommute with the whole Hamiltonian

operator Hf of Eq. (3.9), thus maximizing the energy gap inside the skyrmion core.

Therefore, from a weak coupling perspective, the VBS order should be the most

dominant competing order of antiferromagnetism.

For the Kondo-Heisenberg model with two species of eight component Dirac

fermions [see Eq. (3.10)], Q−,Ψ is proportional to the skyrmion number. Therefore,

the conjugate operators of Q−,Ψ would serve as competing orders in the presence of
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Competing order Matrix form M̂ anticommute with HΨ?

Valence bond solid τ1, τ2 Yes

Charge density wave τ1σ1, τ1σ2 No

Current density wave τ1σ3 No

Kondo singlet ρ1, ρ2, τ3ρ1, τ3ρ2 Yes iff v+ = 0 and g+ = 0

Kondo singlet σ3ρ1, σ3ρ2, τ3σ3ρ1, τ3σ3ρ2 Yes iff v− = 0 and g+ = 0

Table 3.2 : Competing spin-singlet orders in the presence of Kondo coupling

antiferromagnetic Kondo coupling, and they are listed in TABLE 3.2. Besides VBS,

charge and current density orders already found in TABLE 3.1, the presence of ρ3 in

Q̂−,Ψ gives rise to additional competing orders involving ρ1 or ρ2, corresponding to

hybridization of two species or Kondo singlet formation [32]. While the VBS orders

(with τ1, τ2) always anticommute with the combined Hamiltonian, the Kondo singlet

operators do not generically anticommute with the combined Hamiltonian. Hence

from the weak coupling perspective, they may not be dominant competing orders

inside the skyrmion core. Only for some special choice of parameters, some Kondo

singlet operators can anticommute with the effective Hamiltonian. Therefore, the

gradient-expansion based results may not always predict the correct competing or-

ders. In the following section, we circumvent this shortcoming of gradient-expansion

scheme, by evaluating the exact eigenstates of Dirac Hamiltonian and subsequently

computing the susceptibilities of different competing orders.



56

3.4 Beyond pertubative argument

The eigenstates of Dirac fermions in the presence of skyrmion configurations of O(3)

nonlinear sigma model have been previously discussed in Ref. [116]. The main goal

was to establish the induced fermion number due to spectral flow. But, the physical

role of fermion doublers (present for any lattice model) and competing orders has not

been addressed. By contrast, we would deal with fermion doublers arising from the

underlying lattice model, and focus on identifying dominant competing orders residing

in the skyrmion core. Therefore, we would compute susceptibilities of competing spin

singlet order parameters, by using the exact eigenstates of Dirac fermions. This is

a new development for the problem of interaction between Dirac fermions and O(3)

skyrmion configurations.

3.4.1 Without Kondo coupling

To calculate the local susceptibility of predicted competing orders in TABLE 3.1, we

solve (
Hf +∆M̂

)
χ = Eχ (3.15)

on a finite disk of radius R by performing exact diagonalization. We denote the

Hamiltonian Eq. (3.9) with or without single skyrmion as Hf,S and Hf,0, respectively.

For single skyrmion, we choose the profile function of skyrmion n as

n = (sin f (r) cos θ, sin f (r) sin θ, cos f (r)) (3.16)

where f (r) = πe−
r
λ and λ is the length scale for skyrmion. One can easily verify

that in this case we have 1
4π

∫
d2xn · ∂1n× ∂2n = −1.

The eigenstates of Hf,0 constitute a suitable basis for performing exact diagonal-
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ization. We choose the background field n = (0, 0, 1), such that:

Hf,0 = τ3 [vχ (σ1k1 + σ2k2) + gχη3σ3] . (3.17)

Since Hamiltonian Hf,0 commutes with grand spin operator M̂3 = −i∂θ + σ3
2
+ η3

2
,

Hf,0 and M̂3 can be simultaneoulsy diagonalized. The solutions for Hf,0χ = Eχ with

fixed grand spin m consist of the following linearly independent states:

χ+,m,j,n,η=1(r, θ) = eimθ


Cη=1

vχkm,j
nEm,j−gχJm−1 (km,jr) e

−iθ

iCη=1Jm (km,jr)

06×1



χ+,m,j,n,η=−1(r, θ) = eimθ



02×1

Cη=−1
vχkm,j

nEm,j+gχ
Jm (km,jr)

iCη=−1Jm+1 (km,jr) e
+iθ

04×1



χ−,m,j,n,η=1(r, θ) = eimθ



04×1

Cη=1
vχkm,j

nEm,j−gχJm−1 (km,jr) e
−iθ

iCη=1Jm (km,jr)

02×1



χ−,m,j,n,η=−1(r, θ) = eimθ


06×1

Cη=−1
vχkm,j

nEm,j+gχ
Jm (km,jr)

iCη=−1Jm+1 (km,jr) e
+iθ



(3.18)

where the fist index ± means the ± valley, index n = ±1 denotes the solution

with energy ±Em,j , and η is the spin index. We have chosen the boundary condition

Jm (km,jR) = 0, with index j denoting the j-th zero of Bessel function Jm (r) , so that

the momentum km,j and energy Em,j =
√
v2χk

2
m,j + g2χ are quantized. The coefficient
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Figure 3.4 : The local susceptibility of VBS order M̂ = τ1, τ2 versus radial distance.
The blue line and red line corresponds to the presence and the absence of skyrmion
on origin, respectively. Once the skyrmion is present, the susceptibility of VBS order
will gain obvious enhancement near the core of skyrmion defect.

Cη is determined by the normalization condition ∥χ±,m,j,n,η∥2 ≡
∫
d2x⟨χ±,m,j,n,η|χ±,m,j,n,η⟩ =

1.

We then solve the equation Eq. (3.15) by diagonalizing the matrix with elements∫
d2x⟨χ±,m,j,n,η|Hf+∆M̂ |χ±,m′,j′,n′,η⟩. Besides the real space cut-off (i.e, the radius of

disk R), we also impose a large momentum cut-off Λ, and the large grand spin cut-off

M . We choose our basis set spanning from grand spin −M to M . For M̂ = τ1, τ2, τ1σ3,

the Hamiltonian Hf + ∆M̂ commutes with the grand spin M̂3. Therefore, we can

diagonalize the matrix in diagonal block with fixed value of grand spin m. While

for M̂ = τ1σ1, τ1σ2 (which do not commute with M̂3), we have block off-diagonal

elements and need to diagonalize the whole matrix at once.

After finding the solutions for Eq. (3.15), we compute the local susceptibility for
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Figure 3.5 : The local susceptibility of charge density wave order M̂ = τ1σ1, τ1σ2 ver-
sus radial distance. Now the presence of skyrmion can still enhance the susceptibility,
but the amount is smaller than VBS order.

each candidate competing order by using

χM (r) = lim
∆→0

|⟨χ†M̂χ⟩|
∆

. (3.19)

The local susceptibility diverges with momentum cut-off Λ in two dimensions, but

once we choose a finite momentum cut-off Λ, it converges with radius of disk R and

the maximum of grand spin M . In this paper, we choose R = 8, Λ = 8, M = 30, the

length scale of skyrmion λ = 2, and the coupling constant gχ = 2.
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We have found that the local susceptibilities for VBS orders M̂ = τ1 or τ2 gain

expected enhancement near the core of skyrmion, as shown in Fig. 3.4 †. On the

other hand, for other candidate competing orders like charge density wave (with τ1σ1

and τ1σ2), the enhancement is less prominent, as shown in Fig. 3.5. Moreover, for

current density wave τ1σ3, the presence of skyrmion even suppresses the susceptibility,

like Fig. 3.6. The suppression of the susceptibility for current density wave τ1σ3

demonstrates that the pertubative arguments of gradient-expansion scheme are not

always sufficient.

†Actually, local susceptibility of τ1 and τ2 are exactly the same, since τ1 and τ2 can be transformed

to each other by transforming the basis and the Hamiltonian Eq. (3.15) is invariant under such basis

transformation. The same conclusion holds for the charge density wave orders τ1σ1 and τ1σ2, and

different Kondo singlet orders in next section.

Figure 3.6 : The local susceptibility of current density wave order M̂ = τ1σ3 versus
radial distance. Instead of enhancement, the presence of skyrmion now suppresses
the susceptibility of M̂ = τ1σ3 near the core of skyrmion.



61

3.4.2 With Kondo coupling

In the presence of Kondo coupling, we have to account two types of fermion fields

ψ and χ, and the pertubative argument predicts that the VBS and Kondo singlet

orders are important competing orders of antiferromagnetism [see TABLE 3.2]. We

want to establish the validity of this prediction by using exact eigenstates of Dirac

Hamiltonian. This is particularly important, since Kondo singlet operators do not

generically anticommute with the Hamiltonian, and within the weak coupling picture

fully anticommuting VBS would seem to be the dominant competing order. Whether

the Kondo singlet orders can be favored over fully anticommuting VBS over a wide

range of microscopic parameter regime is not clear from the weak coupling arguments.

By contrast, our physical intuition suggests that the Kondo singlets should be sta-

bilized over a finite parameter region [2]. Here we address this issue by solving the

eigenstates of (
HΨ +∆M̂

)
Ψ = EΨ, (3.20)

for each M̂ identified in TABLE 3.2, and then computing the local susceptibility by

employing

χM (r) = lim
∆→0

|⟨Ψ†M̂Ψ⟩|
∆

. (3.21)

For diagonalizing this Hamiltonian we use the basis set: Ψ±,m,j,n,η = (ψ±,m,j,n,η, χ±,m,j,n,η),

where χ±,m,j,n,η’s have been already defined in Eq. (3.18) and ψ±,m,j,n,η’s are defined

as:
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ψ+,m,j,n,η=1(r, θ) = eimθ


Dη=1

vψkm,j
nE′

m,j−gK
Jm−1 (km,jr) e

−iθ

iDη=1Jm (km,jr)

06×1



ψ+,m,j,n,η=−1(r, θ) = eimθ



02×1

Dη=−1
vψkm,j

nE′
m,j+gK

Jm (km,jr)

iDη=−1Jm+1 (km,jr) e
+iθ

04×1



ψ−,m,j,n,η=1(r, θ) = eimθ



04×1

Dη=1
vψkm,j

nE′
m,j−gK

Jm−1 (km,jr) e
−iθ

iDη=1Jm (km,jr)

02×1



ψ−,m,j,n,η=−1(r, θ) = eimθ


06×1

Dη=−1
vψkm,j

nE′
m,j+gK

Jm (km,jr)

iDη=−1Jm+1 (km,jr) e
+iθ

 .

(3.22)

Figure 3.7 : The local susceptibility of Kondo singlet orders M̂ = ρ1, ρ2, τ3ρ1, τ3ρ2
(M̂ = σ3ρ1, σ3ρ2, σ3τ3ρ1, σ3τ3ρ2) with vψ = 1, vχ = −1, gψ = 2, and gχ = −3 (vψ = 1,
vχ = 1, gψ = 2, and gχ = −3). The enhancement of susceptibility of these Kondo
singlet order by skyrmion can still sustain obviously, even with parameters beyond
where perturbative argument can be applied. The enhancement of susceptibility of
Kondo orders in fact can sustain to very broad parameter space.
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Here E ′
m,j =

√
v2ψk

2
m,j + g2ψ and the coefficient Dη is obtained from the normalization

condition ∥ψ±,m,j,n,η∥2 ≡
∫
d2x⟨ψ±,m,j,n,η⌊ψ±,m,j,n,η⟩ = 1. We diagonalize the matrix

with elements ⟨Ψ±,m,j,n,η|Hf +∆M̂ |Ψ±,m′,j′,n′,η⟩.

As shown in Fig. 3.7, we have found that the enhancement of these Kondo singlet

orders by skyrmion is comparable with the enhancement of VBS orders. Moreover,

the enhancement of Kondo singlets is also sustained over a broad parameter space,

including the regime where perturbative arguments may not be applicable. Therefore,

we conclude that the Kondo singlet and VBS orders act as the dominant competing

orders inside a skyrmion core. Therefore, the paramagnetic phase in the global phase

diagram can support both of these competing singlet orders.

Figure 3.8 : The difference of Kondo singlet order ⟨ρ1⟩ between the presence and
the absence of the skyrmion on origin for different fluctuation strength b. We choose
vψ = 1, vχ= = −1, gψ = 2, and gχ = −3 and Q = 0 here. ∆|⟨Ψ†ρ1Ψ⟩| is defined
as ∆|⟨Ψ†ρ1Ψ⟩| ≡ |⟨Ψ†ρ1Ψ⟩|1 − |⟨Ψ†ρ1Ψ⟩|0, where |⟨Ψ†ρ1Ψ⟩|1 and |⟨Ψ†ρ1Ψ⟩|0 means
|⟨Ψ†ρ1Ψ⟩| calculated in the background with and without single skyrmion, respec-
tively.
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3.4.3 Crossover between VBS and Kondo order

The Hamiltonian of Eq. (3.10) is only useful for describing low energy physics in-

side the antiferromagnetic phase. In the vicinity of a magnet to paramagnet phase

transition, such description is not sufficient to capture all features of the Kondo lat-

tice model, since the fluctuations for competing channels and residual interactions

in those channels can become important. The effective Hamiltonian describing the

competition among VBS, Kondo singlet, and AF phases for a Kondo lattice model

can be postulated to have the form

H = HΨ + bρ1 +Qτ1
ρ0 − ρ3

2
, (3.23)

where b and Q capture the fluctuations for Kondo and VBS channels and increase with

JK , JH respectively [97, 100]. The presence of ρ0−ρ3
2

reflects that the VBS order in a

Kondo lattice model can only be generated through the frustrated RKKY interactions

between local moments.

From the perspective of AF Hamiltonian HΨ, the fluctuations of VBS and Kondo

channels serve as external perturbation, and thus induce the corresponding order

parameters approximately as:

⟨χ†τ1χ⟩ ∼= QχV BS (r)

⟨Ψ†ρ1Ψ⟩ ∼= bχKondo (r)

(3.24)

where χV BS (r) and χKondo (r) are the local susceptibilities of VBS and Kondo orders,

respectively.

Since we have already observed that the skyrmion defect of AF order can en-

hance the susceptibility of VBS and Kondo order inside AF phase, we expect that

the VBS and Kondo order parameters induced by these fluctuations will also be en-

hanced by skyrmion. Moreover, once the JK(JH) is enlarged, that is, the fluctuation
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into Kondo(VBS) channel is larger, from Eq. (3.24), the resulting enhancement of

Kondo(VBS) order parameter by skyrmion should also be enlarged.

This behavior actually is also manifested by solving the Hamiltonian of Eq. (3.23)

directly and computing the resulting order parameters, as shown in Fig. 3.8. There-

fore, once we increase the Kondo coupling in microscopic Kondo lattice model, the

skyrmion will eventually favor Kondo order over the VBS order, causing the tran-

sition from VBS to Kondo phases. This result gives us a unifying point of view to

understand the crossover between VBS and Kondo orders in a Kondo lattice model,

beginning from the antiferromagnetic phase.

3.5 Justification by lattice models

So far, the model we relied on are different kinds of low energy effective Dirac-type

Hamiltonian. In these models, the presence of large momentum cut-off is practically

inevitable, even though all of our conclusions hold regardless of cut-offs. In order to

further justify these results, we have also solved the lattices models in the presence

of skyrmion defect (whose low energy effective theory is equivalent to HΨ +∆M̂ for

different candidate competing orders in TABLE 3.1 and Table 3.2) through exact

diagonalization. For example, the VBS order M̂ = τ1 can be generated through the

lattice model:

H =
∑
⟨ij⟩α

[
−tff †

i,αfj,α − tcc
†
i,αcj,α + h.c

]
+
∑
iαβ

[
JH (−1)A=0,B=1 f †

i,α

(n · η)αβ
2

fi,β

+ JK (−1)A=1,B=0 c†i,α
(n · η)αβ

2
ci,β

]
(3.25)

if we replace tf → tf +δtr,r+si and tc → tc+δtr,r+si , where δtr,r+si = ∆eiK⃗+·s⃗ieiG⃗·r⃗/3+

h.c and G = K+ −K−, as Fig. 3.9. The resulting low energy effective Hamiltonian
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of this model is exactly the same as HΨ + ∆τ1 [119]. By assigning the skyrmion

configuration for local moment field n, we can explore its influence on VBS order pa-

rameter in a lattice model. The presence of skyrmion in the lattice model also causes

spectral flow events as in Fig. 3.10, which is consistent with the low energy contin-

uum theory. The VBS order parameter in lattice model can be extracted through the

nearest-neighbor hopping amplitude. After solving the lattice model, we can see that

the presence of skyrmion enhances the VBS order parameter as shown in Fig. 3.11(a).

Similar results for other competing orders are presented in Fig. 3.11. All of the results

are consistent with our previous findings based on low energy Dirac theory.

Figure 3.9 : The VBS pattern with δtr,r+si = ∆eiK⃗+·s⃗ieiG⃗·r⃗/3 + h.c . The blue
thick(black thin) lines indicate hopping amplitude is increased(decreased) by 2∆

3
(∆
3

).

3.6 Discussion

In the field theory literature, the nonperturbative eigenstates of Dirac fermions have

been already employed for computation of induced fermion numbers [120, 121, 122,

123, 108, 124, 99]. Some famous examples are the induced chiral charge of a domain

wall in one dimension, and baryon number of O(4) skyrmions in three dimensions. A

similar analysis has also been performed for O(3) skyrmions in two spatial dimensions.
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Figure 3.10 : The spectrum flow during the formation of skyrmion for lat-
tice Hamiltonian 3.25 involving f-electron only. We choose coupling constant
JH = 5, tf = 10 and simulate the formation of skyrmion by n (r⃗i, t) =

(sin tf (ri) cos θ, sin tf (ri) sin θ, cos tf (ri)), where f (ri) = πe−
ri
2 and ri is the radial

position of the site i. There is one state flowing from negative state to positive state,
and precisely one state flowing oppositely. This is just a reflection of relation 3.11,
since the spectrum here consists of + and - valley.

However, the physical issue of competing orders and the determination of dominant

fluctuating order based on nonperturbative eigenbasis are new aspects of the present

work. To the best of our knowledge previous analysis along this direction has been

restricted to competing orders in a vortex core (defects of Abelian theory).

Since we are explicitly solving for the eigenstates of the Dirac Hamiltonian, we can

also employ these states for computing the competing orders away from half-filling.

Not much is known for such a situation from perturbative field theory. Th chiral

charge also acts as the generators for translational symmetry breaking paired states
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(a) VBS order M̂ = τ1 (b) charge density wave order M̂ =

τ1σ1

(c) current density wave order M̂ = τ1σ3 (d) Kondo singlet order M̂ = ρ1

Figure 3.11 : The difference between distinct order parameters in the presence and
absence of a skyrmion at the origin. Here we solve the lattice Hamiltonian whose
low energy effective model is HΨ + ∆M̂ . The blue circle means the difference is
positive, and the bigger circle indicates the difference is larger. We can see obviously
that VBS, charge density wave, and Kondo singlet order gain enhancement near the
core of skyrmion, while the current density wave is suppressed due to the presence of
skyrmion, which is consistent with the results from low energy Hamiltonian in last
section. Similar conclusions hold for other order parameters listed in TABLE 3.1 and
3.2.

(FFLO states). At half-filling they do not produce fully gapped states and are less

favorable compared to spin-Peierls order (causing Dirac mass gap). However, when

we move away from the special case of half-filling, the paired states are more effective
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in gap formation. Therefore, we expect FFLO phases to become more important in

the generic situation of finite carrier density. Even current and charge density wave

orders which were earlier disfavored compared to spin-Peierls order can become more

important (as none of them are able to effectively gap out the Fermi surface). Such

intriguing competition among particle-hole and particle-particle channel condensates

are germane to understanding the generic global phase diagrams of correlated metals,

and will be elucidated in a future publication.

Our methodology can be easily adapted for both higher and lower dimensional

problems. Specifically, the computed energy-eigenstates for two dimensional model

in the presence of skyrmion configuration can be directly taken over as the complete

eigenbasis for evaluating the fermion determinant in one dimension in the presence

of dynamic instanton background. Such calculations can again be performed both at

and away from half-filled limit to unveil the competition among spin-Peierls, Kondo

singlets and paired states, which have been suggested by different perturbative cal-

culations as well as some density matrix renormalization group analysis.

3.7 Conclusion

We addressed the nonperturbative aspects of interaction between topological defects

and fermions, and how it can give rise to competition among different order param-

eters. Specifically, we considered the interaction between topologically nontrivial

skyrmion configurations of antiferromagnetic phase and fermionic quasiparticles in

two spatial dimensions. To make progress we have modeled the fermionic excita-

tions by Dirac fermions. Beginning with a half-filled Kondo-Heisenberg model on

a honeycomb lattice, we investigated fluctuating orders that can be supported by

skyrmion core inside the antiferromagnetically ordered insulating phase. Inside this
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ordered state, we have considered the coupling between conduction and f-electrons

to the collective mode, described in terms of an O(3) quantum nonlinear sigma

model(QNLσM). By employing perturbative field theory, exact numerical and analyt-

ical solutions for eigenfunctions of Dirac fermions in the presence of a single skyrmion

we have established the competition between magnetism, Kondo singlet formation

and spin Peierls order. Our specific goal was to establish a framework for finding

dominant order parameter, which can be adapted for many other problems involving

the interaction between fermion and topological defects. The perturbative field theory

calculation of Goldstone-Wilczek current for our model suggests the presence of sev-

eral translational symmetry breaking orders such as charge, bond and current density

waves as well as translational symmetry preserving Kondo singlet formation. How-

ever, this method does not clearly specify the dominant incipient order. Therefore, we

have explicitly computed the susceptibilities for all possible local Dirac bilinears by

using nonperturbatively determined eigenfunctions. Our analysis thus provides strong

evidence that the global phase diagram of Kondo-Heisenberg can support a variety

of competing singlet orders from skyrmion condensation (violation of skyrmion num-

ber) on the paramagnetic side. All of our results from continuum model have been

consistently justified by analysis performed on suitable lattice model. This general

strategy for identifying dominant competing orders mediated by topological defects

can be useful in both one and three spatial dimensions.
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Chapter 4

Quantum criticality of a quantum nonlinear sigma
model with Kondo coupling: A renormalization

group study

4.1 Introduction

Quantum criticality is ubiquitous in many strongly correlated systems, and believed

to play an essential role in the electronic or magnetic properties of these systems[21, 3].

For a long time, the paradigmatic Hertz-Millis theory of magnetic quantum criticality

had only focused on the fluctuations of the order parameter alone[38, 39]. In recent

years, both experimental and theoretical works have challenged such paradigm[65,

81, 55, 56].

Some of the important progress comes from the heavy fermion systems. As we

have introduced in Chapter 2, the Hertz-Millis paradigm fails to explain the ω/T

scaling in CeCu6−xAux at x = xc ≈ 0.1[63] and YbRh2Si2[64].

Moreover, in heavy fermion systems, not only the Kondo coupling but also the

frustration of the local moments could cause the AF phase into another kind of

paramagnetism[1, 30, 2]. Since the Kondo singlet formation is absent in such tran-

sition, the Fermi surface of this paramagnetism should still remain small, and thus

such paramagnetism is usually denoted as PS. The proposed global phase was summa-

rized in Fig. (1.2). Recent experimental result in the geometrically frustrated heavy

fermion metal CePdAl has demonstrated that such frustration-driven transition is
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realistically possible in heavy fermion systems[34].

Motivated by these developments, in this work, we start from an AF ordered

Kondo lattice model. Because of the Kondo coupling, the AF order parameter,

which should be a bosonic degree of freedom, also couples with the conduction elec-

trons. From the theoretical point of view, the interplay between the bosonic degree

of freedom and the itinerant fermion with the Fermi surface pose a difficulty for

the theorist to deal with. Even though some progress has been made in the last

decade[125, 126, 127, 128], how to deal with the Kondo lattice model and the local

moment physics still remains a challenge.

Here, we show that by using a quantum non-linear sigma model to represent

the local moments, some progress can still be made. The validity of the QNLσM

representation to the AF Kondo lattice model has been established in the previous

work[129]. However, previous studies of similar models either follow the spirit of

conventional Hertz-Millis theory by integrating out the conduction electrons[130], or

only focus on the role of the Kondo coupling inside the AF ordered phase[129].

In this work, we treat the bosonic and fermionic degree of equal footing, and

perform a renormalization group calculation beyond the AF ordered phase. Without

the Kondo coupling, such QNLσM is known to have a quantum phase transition from

AFS to PS at D > 1[50]. We are especially interested in the influence of the Kondo

coupling to this QCP, and whether the small Fermi surface nature would be destroyed

by the Kondo coupling or not.
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4.2 Model

The Kondo lattice model is:

H =
∑
k,σ

ϵkψ
†
k,σψk,σ + JH

∑
⟨ij⟩

S⃗i · S⃗j + JK
∑
i

S⃗i · s⃗i (4.1)

where S⃗i and s⃗i =
∑

αβ ψ
†
i,α

σ⃗αβ
2
ψi,β is the spin operator of the local moment and

conduction electron, respectively, and both the RKKY JH the Kondo coupling JK

are positive.

Here, we start from the antiferromagnetic(AF) region, i.e. JK ≪ JH ≪ W , where

W is the bandwidth of the electron spectrum. Inside the AF phase, the local mo-

ments and the conduction electrons are essentially decoupled, the quantum non-linear

sigma model(QNLSM) representation of the local moments thus is applicable[129],

where the local moment S⃗i can be approximated by the non-linear sigma field n⃗ (x⃗, τ)

charactering the Neel order of the AF phase [129, 45, 46, 131], and the canting field

L⃗ (x⃗, τ) describing the fluctuation around the non-linear sigma field n⃗ (x⃗, τ):

2S⃗i → eiQ⃗·x⃗n⃗ (x⃗, τ)

√
1−

(
2aDL⃗ (x⃗, τ)

)2
+ 2aDL⃗ (x⃗, τ) (4.2)

where Q⃗ is the ordering wave vector, x⃗ labels the position, ηx⃗ = ±1 on even and odd

sites, a is the lattice constant, n⃗ (x⃗, τ) · L⃗ (x⃗, τ) = 0, and |n⃗ (x⃗, τ) | = 1. For the sake of

simplicity, in the following, in the following we take the square lattice with ordering

wave vector Q⃗ =
(
π
a
, π
a

)
as an example. All of the results can be easily generalized in

other lattice structures.

Even though such QNLSM description of quantum magnetism was originally in-

vented inside the AF ordered phase, its power to infer some properties of critical

point or even the physics of the AF disordered side have been demonstrated in lots

of different works[55, 56, 50, 132, 133]. Now we are going to incorporate the Kondo
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coupling. We focus on the case in which there is no Fermi surface nesting and hence

no hot-spots. The linear coupling n⃗ · s⃗c thus cannot connect any two points on the

Fermi surface and is unimportant for the low energy physics. The Kondo coupling is

thus replaced by L⃗ · s⃗c. After integrating out the fluctuating canting field L⃗ (x⃗, τ),

the resulting QNLσM representation of the Kondo lattice model (4.1) is[129]:

S = Sf + Sn + SK

Sf =
∑
σ

∫
dDKdΩψ†

K⃗Ω,σ
(iΩ− ϵK⃗)ψK⃗Ω,σ

Sn =
1

2g

∫
dτdDx

(
1

c2
(∂τ n⃗)

2 + (∇n⃗)2
)

SK = λK

∫
dτdDx (s⃗c · (n⃗× i∂τ n⃗))

(4.3)

where g = aD−2

S2
I1

I1−2I2
, c = 2aSI1

√
D
√

I1−2I2
I1

, λK = JK
4DI1aD

. We ignore the Berry

phase term in action (4.1) since our analysis starts from an AF ordered phase, in

which the the Berry phase term vanishes.

To impose the non-linear constraint |n⃗ (x⃗, τ) | = 1, we introduce π⃗ = (π+, π−) to

represent the NLS field n⃗ as:

n⃗ = (π⃗, σ) (4.4)

where π⃗ = (π+, π−) is a two components vector, and σ =
√
1− π⃗2 ∼= 1− 1

2

(
π2
+ + π2

−
)
+

· · · . Therefore,

∂τ n⃗ =

(
π̇+, π̇−,

−π̇+π+ − π̇−π−
σ

)

n⃗× ∂τ n⃗ =


1
σ
(−π̇− − π̇+π+π− + π+π+π̇−)

1
σ
(π̇+ + π̇−π−π+ − π−π−π̇+)

π̇−π+ − π−π̇+


(4.5)

To simplify the later RG analysis, in the following part, we rescale the fields π⃗ → √
gπ⃗.
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Consequently, the propagator of the π⃗ fields is:

Gπ (p⃗, iω) =
1

ω2

c2
+ p2

(4.6)

Because of the non-linear constraint |n⃗ (x⃗, τ) | = 1, the model (4.3) actually pos-

sesses infinite numbers of local interaction. To our concern in this paper, we only

need to consider some leading orders of them, and the relevant Feynman rules are

shown in Fig. (4.1).

Figure 4.1 : The Feynman rules of the action (4.3) after rescaling π⃗ → √
gπ⃗, where

∂µ =
(

1
c
∂τ , ∂⃗

)
. The solid arrow line and the curve line are the propagator of the

fermionic and bosonic field, respectively. The bar on the bosonic propagator denotes
both the time and space derivatives, while the dot on the bosonic propagator refer to
the time derivative merely.
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4.3 Renormalization group with Fermi surface

Our next step is to carry out the renormalization group(RG) analysis of the action

(4.3) by the ϵ expansion, where ϵ = D − 1 and D is the spatial dimensions. Our

analysis involves the combination of both the bosonic and fermionic degree of freedom.

In this section, we firstly derive the beta functions at the tree level, which can be done

by simple dimensional counting.

For the bosonic degree of freedom with the propagator (4.6), if we count the

dimension by assigning [p] = 1, [ω] = 1, then the scaling dimension of the bosonic

field π⃗ is:

[π] = −D + 3

2
(4.7)

which means after the rescaling q → bq, ω → bω, the bosonic field rescales as π →

b−
D+3
2 π in order to keep the the propagator (4.6) invariant. By the scaling dimension

(4.7), one can easily check that:

[g] = −ϵ = − (D − 1) (4.8)

However, for the fermionic part, things become subtle. It has been recognized

that the presence of the Fermi surface can influence the RG analysis in a dramatic

manner[134]. To demonstrate that, let us firstly linearize the dispersion ϵK⃗ = vFk,

where k = |K⃗| −KF is the momentum relative to the Fermi momentum KF , and vF

is the Fermi velocity. Therefore, the fermionic propagator is:

Gψ

(
K⃗, iΩ

)
=

1

iΩ− vFk
(4.9)

Since the fermionic excitations lie within the vicinity of Fermi surface, after in-

tegrating out the fast modes whose momentum lying within
[
Λ
s
,Λ
]
, where Λ is the
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momentum cut-off, the integral
∫ Λ

dDK becomes:∫ Λ/s

dDK ≡
∫
dD−1ΩK⃗

∫ KF+
Λ
s

KF−Λ
s

KD−1dK (4.10)

However, one can easily see that no simple rescaling of K can restore the integral

back to the original form. This difficulty results from the constraint that the momen-

tum of the original fermionic theory is defined within the vicinity shell of the Fermi

surface, so that simple rescaling of K would break this momentum constraint. To

overcome this difficulty, it was pointed out that only the momentum perpendicular

to Fermi surface should be rescaled[134], since∫ Λ/s

dDK ≡
∫
dD−1ΩK⃗

∫ KF+
Λ
s

KF−Λ
s

KD−1dK

=

∫
dD−1ΩK⃗

∫ Λ
s

−Λ
s

(k +KF )
D−1 dk

∼= KD−1
F

∫
dD−1ΩK⃗

∫ Λ
s

−Λ
s

dk

(4.11)

Therefore, we have
[
dDK

]
= [dk] = 1, and the scaling dimension of the fermionic

field ψ thus is:

[ψ] = −3

2
(4.12)

where we count [k] = 1, [Ω] = z = 1, and the dynamical exponent z = 1 since

there is no Fermi surface nesting, and hence no extra damping effect. Following these

manners, one can easily count the dimension of the the unrescaled Kondo coupling

λK . Use the Ising Kondo vertex λ = gλK in Fig.(4.2) as an example, since∗

∗Reader might note that there are different choices to label the momentum, and the dimension

of the coupling constant λ naively seems to depend on the choice. However , in order for the boson-

fermion coupling term to satisfy momentum conservation, it turns out the relative angle (which does

not appear in the measure) between the incoming fermion K⃗ and outgoing fermion K⃗+p⃗+q⃗ must also
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[
dDKdΩdDpdωdDqdνωπ−π+ψ

†
σψσ
]

= 1 + 1 +D + 1 +D + 1 + 1 + 2

(
−3

2

)
+ 2

(
−D + 3

2

)
= D − 1

(4.13)

we thus have:

[λ] = [gλK ] = −ϵ = − (D − 1) ⇒ [λK ] = 0 (4.14)

Figure 4.2 : Ising component of Kondo coupling λ = gλK .

That is, the Kondo coupling λK is marginal at the tree level and any dimension.

As we have seen, this is closely related to the momentum constraint due to the

presence of the Fermi surface discussed above. Such momentum constraint actually

causes much more dramatic consequence. As discussed by S. Yamamoto and Q. Si in

Ref.[129], inside the AF ordered phase, the Kondo coupling λK is exactly marginal

because of the huge constraint on the momentum phase space. Take Fig. (4.3)

need to scale, otherwise the momentum of bosonic fields can not be rescaled homogeneously[129].

Consequently, our choice of labelling here in Fig. (4.2) is the most convenient one to count the

dimension of coupling constants.
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as an example. Because of the momentum constraint, the phase space of the loop

correction is severely limited, and hence this loop correction does not contribute to

the Beta function of λK . As a result, the Kondo coupling λK is exactly marginal

inside AF ordered phase.

Figure 4.3 : One loop correction to λ = gλK inside the AF phase.

4.4 Renormalization group analysis of Kondo coupling at the

critical point

The previous conclusion that the Kondo coupling λK is exactly marginal holds only

inside the AF ordered phase. In this work, we want to study the influence of the

Kondo coupling outside the AF ordered phase through the renormalization group(RG)

analysis, as shown in the schematic diagram in Fig. (4.4). As we will see, beyond the

AF ordered phase, other loop corrections which are vanishing inside the AF ordered

phase, can make contribution to the Beta function of λK . We are especially interested

in the role of the Kondo coupling to the original quantum critical point(QCP) of the

QNLSM[50]. Such QCP describes a phase transition between the AF ordered phase



80

and and a paramagnetic phase. It is interesting to see whether the presence of a

Kondo coupling would modify such paradigm.

Figure 4.4 : The schematic RG flow diagram. The red dot is the QCP of QNLSM,
and the RG flow in the question mark region is what we would like to explore in this
work.

4.4.1 Beta functions of Kondo coupling

We perform the RG calculation in the momentum shell scheme[129, 50, 49, 135]. The

first step is to decompose both the bosonic and fermionic fields into fast and slow

modes as:

πν (iω, q⃗) =


πν,< (iω, q⃗) , 0 < |q⃗| < Λ

b

πν,> (iω, q⃗) , Λ
b
< |q⃗| < Λ

(4.15)
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and

ψσ

(
iΩ, K⃗

)
=


ψσ,<

(
iΩ, K⃗

)
, 0 < ||K⃗| −KF | < Λ

b

ψσ,>

(
iΩ, K⃗

)
, Λ

b
< ||K⃗| −KF | < Λ

(4.16)

where b > 1.

After integrating out the fast modes πν,> (q⃗) and ψσ,>
(
K⃗
)

, in order to restore the

resulting action back to its original form, one also needs to do the rescaling q → bq,

ω → bω, π → ξ−1
π π, and ψ → ξ−1

ψ ψ. The loop correction to the bosonic propagator

shown in Fig. 4.5(a) gives:

1 =

(
1 +

KDΛ
D−1

2c
g

)
ξ−2
π b(D+3) (4.17)

and the loop correction to the coupling g and λ = gλK in Fig. 4.5(b) and 4.5(c)

respectively give:

g′ = g

(
1 +

3KDΛ
D−1

2c
g

)
ξ−4
π b(3D+5) (4.18)

and

λ′ = λ

(
1 +

KDΛ
D−1

2c
g

)
ξ−2
π ξ−2

ψ b(2D+5) (4.19)

Here we calculate the renormalization of the coupling constant g by considering the

loop correction to the vertex g
2
(π⃗ · ∂µπ⃗)2, which involves numerous Feynman diagrams

as listed in Fig. (4.5)(b). Actually, there is a much less tedious way to do so. Conven-

tionally, the renormalization g of the QNLSM part Sn is derived by adding a magnetic

field term Sh =
h
g

∫
dτdDxσ = h

g

∫
dτdDx

√
1− π⃗2 = h

g

∫
dτdDx

(
1− 1

2
π⃗2 + · · ·

)
to Sn,

and then require that after intergrating out the fast mode, the whole form of Sh still

preserve but with a renormalzied overall factor h′

g′
[47, 48]. The validity of this method

relies on the fact that the QNLSM Sn preserves the O (3) symmetry. Even with the

presence of a non-vanishing Kondo coupling λK , one can still use this method to

derive the coupling constant g, since under the O (3) rotation, n⃗ → Rn⃗, and thus
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n⃗× i∂τ n⃗→ R (n⃗× i∂τ n⃗), which can be compensated by a suitable SU (2) transform

U on the fermionic field ψ → Uψ. As the result, the action (4.3) still preserves the

O (3) symmetry even with the Kondo coupling λK .

In Fig. 4.5(c) , we ignore the one-loop correction shown in Fig. (4.3), since as

discussed in the last section, it does not contribute to the Beta function. Moreover,

the one-loop diagrams in Fig. 4.5(d) are vanishing, since the two conduction electron

poles are located on the same side of the real axis[134].

Finally, as we have seen in last section, since [ψ] = −3
2

the rescaling factor ξψ is:

ξψ = b
3
2 (4.20)

By Eq. (4.17)-(4.20), we can derive the Beta functions up to one-loop level:

β (g) = −ϵg + g2

β (λ) = −ϵλ
(4.21)

where we have made a harmless rescaling g → KDΛD−1

2c
g.

From the Beta function β (g), one can see that there is indeed a critical point at

g = g∗ = ϵ when D > 1. Also note that even though the Beta function β (λ) seems

to be only at tree-level, we actually perform the calculation up to the order of gλ as

indicated in the Eq. (4.17), and find the coefficient of this order in the β (λ) actually

gets cancelled in the end. Since in this work, we mainly concern about the role of

Kondo coupling near the QCP of the QNLSM g = g∗ = ϵ, other higher-order terms

are unnecessary for such purpose.

Now we are at the stage to analyse the role of the Kondo coupling λK near the

QCP g = g∗ = ϵ. Since the rescaled Kondo coupling λ = gλK , one has:

β (λ) = gβ (λK) + λKβ (g) (4.22)
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(a)

(b)

(c)

(d)

Figure 4.5 : (a) One-loop correction diagrams for the bosonic propagator (b) for the
coupling constant g. (c) for the Ising Kondo coupling. (d) Diagrams involve the
electronic particle-hole polarization are vanishing.
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By combining this relation and the Beta functions (4.21) , one can derive the Beta

function of the original unrescaled Kondo coupling λK :

β (λK) = −gλK (4.23)

In the Eq. (4.23), we derive the Beta function of the Kondo coupling λK from

the Ising Kondo vertex in Fig. (4.1). As we have proven, since the action (4.3) is

invariant under O (3) rotation, one should be able to derive the consistent result of the

Beta function of the Kondo coupling λK from both the Ising and XY Kondo vertices.

We demonstrate how to derive such consistent result from XY Kondo vertices in the

Appendix (B.1).

Figure 4.6 : RG flow of g and λK , where the red dot denotes the QCP of QNLSM
g = g∗ = ϵ.

We see from Eq. (4.22) that at the AF fixed point g = 0, the Kondo coupling λK

is indeed marginal. On the other hand, around the QCP of the QNLSM g = g∗ = ϵ,

λK is irrelevant. Moreover, Eq. (4.22) also implies that at AF disordered phase
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g > g∗ = ϵ, the Kondo coupling should be irrelevant, at least in the weak-coupling

region. As a result, the AF to PS transition should be stable against a weak Kondo

coupling. The RG flow is shown in Fig. (4.6).

4.4.2 Electronic self-energy around the QCP

To verify explicitly that the Fermi surface indeed remains small even beyond the AF

ordered phase, we turn to a large N generalization of the action (4.3). The N → ∞

limit is taken with the spin symmetry of the conduction electrons enlarged from

SU (2) to SU (N), and the symmetry of the bosonic field π⃗ from O (2) to O (N2 − 2).

The Kondo coupling is rescaled to λK/
√
N . As shown in Fig. (4.7), the leading order

correction to the electronic self-energy is:

Figure 4.7 : Electronic self-energy induced by Kondo coupling, where double curve
line is the bosonic propagator at QCP

Σ
(
K⃗, iΩ

)
=
gλ2K
N

∫
dDqdωω2Gπ,∗ (q⃗, iω)Gψ

(
K⃗ + q⃗, iΩ + iω

)
(4.24)

At the QCP of the QNLSM g = g∗, since there is an anomalous dimension of the

π⃗ field, the bosonic propagator thus takes the form:

Gπ,∗ (p⃗, iω) =
1(

ω2

c2
+ p2

)1− η
2

(4.25)
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where η = ϵ
N−2

is the anomalous dimension of π⃗ field at the QCP[49, 47, 48].

To calculate the electronic self-energy Σ
(
K⃗, iΩ

)
(4.24), it is more convenient to

use the spectral representation for the bosonic propagator Gπ,∗ (p⃗, iω):

Gπ,∗ (p⃗, iω) =

∫
dω′A (p⃗, ω′)

ω − iω′ (4.26)

where the spectral function A (p⃗, ω′) = ImG (p⃗, iω′ → ω + i0+) is

A (p⃗, ω′) = C
Θ
(
ω′2

c2
− p2

)
(
ω′2

c2
− p2

)1− η
2

(4.27)

Following these, one can do the calculation and then derive[129, 136] that

Σ
(
K⃗F , ω

)
= aω + ib|ω|D+η (4.28)

Since the imaginary part ImΣ
(
K⃗F , ω

)
∼ |ω|D+η, at D ≥ 2 the Fermi surface is

thus still robust and small around the QCP of the QNLSM.

4.5 Discussion and Conclusion

In this section, we study the quantum non-linear sigma model with a Kondo coupling,

which describes the antiferromagnetic Kodno lattice model. By treating both the

bosonic and fermionic degrees on an equal footing, we perform an RG analysis of this

model. Our RG analysis shows that the Kondo coupling is irrelevant around the QCP

of the QNLσM. Therefore, the phase transition between the antiferromagnetism and

the paramagnetism is stable against the weak Kondo coupling. By calculating the

electronic self-energy induced by the Kondo coupling around the QCP, we conclude

that the Fermi surface also remains small across the phase transition.

As a result, we are able to access and establish the transition between AFS and PS

phases in the proposed global phase diagram of heavy fermion systems. The precise
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nature of the small Fermi surface paramagnetic phase PS requires further analysis.

However, as we have discussed and demonstrated in chapter 3, if one also considers

the influence of the topological defects and the Berry phase term, the small Fermi

surface paramagnetic phase PS for typical types of lattices should be the valence bond

solid(VBS)[31, 32, 33, 53, 54, 55, 56]. The results in chapter 3 and 4 thus provide a

firm theoretical basis to the understanding of the proposed global phase diagram of

heavy fermion systems.
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Chapter 5

Quantum Criticality from Sequential Destruction
of SU(4) Spin-Orbital-coupled Kondo Effect

5.1 Introduction

In the previous chapters, we have considered the standard Kondo lattice model, in

which the f-electrons form local dipolar moments and couple with the spin of a conduc-

tion electron band through the Kondo coupling. As the Kondo coupling dominates,

the Kondo singlets are formed and the local moments are completely quenched. Re-

cent experimental results in the cubic Ce3Pd20Si6 provide an interesting extension

of this paradigm to a multipolar Kondo lattice system, in which the f-electrons form

local “levels” that possess much richer structure than the spin degree of freedom, and

thus could allow for new types of phases and phase transitions.

In Ce3Pd20Si6, every Ce3+ ion contributes one localized 4f electron. Because of the

strong spin-orbit coupling, the spin and orbital degree of freedom of the 4f electron

are coupled to each other, and thus are combined into a total angular momentum

J = 5/2 state. Each local level of such J = 5/2 system has six-fold degeneracy, and

hence supports not only dipole moment but also higher-order multipolar moments.

Such six-fold degeneracy is split into a Γ8 quartet and a Γ7 doublet due to the crystal

field effect[137]. The analysis of temperature dependent inelastic neutron scattering

and entropy data also revealed that the Γ8 quartet is the true ground state for the

local levels[138]. As shown in Fig. 5.1, since the Γ8 quartet has four-fold degeneracy,
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orbital !

c

Figure 5.1 : Schematic diagrammatic representation of the 4-fold degeneracy of the
Γ8 ground state.

one can use the pseudo-spin σ⃗ and pseudo-orbital τ⃗ to represent the ground state of

local level as:

|τz = 1; σz = 1⟩ =

√
5

6
|Jz =

5

2
⟩+

√
1

6
|Jz = −3

2
⟩

|τz = 1; σz = −1⟩ =

√
1

6
|Jz =

5

2
⟩+

√
5

6
|Jz = −3

2
⟩

|τz = −1;σz = 1⟩ =|Jz =
1

2
⟩

|τz = −1;σz = −1⟩ =|Jz = −1

2
⟩

(5.1)

The Γ8 systems comprise dipoles, quadrupoles, and octupoles, all of which are irre-

ducible representations of the Oh group of the cubic lattice. Both dipolar (magnetic)

and quadrupolar order (and likely even octupolar order) may arise via the RKKY in-

teraction between the local multipolar moments[137]. At zero external field, neutron

scattering experiments [139] show that the quadrupolar moments first order into an

antiferroquadrupolar (AFQ) phase at TQ ∼ 0.4K, and with further decreasing tem-

perature, the dipolar (magnetic) moments develop antiferromagnetic (AFM) order at

TN ∼ 0.25K.

Once the external field is applied, the antiferromagnetic transition temperature is

firstly suppressed and then goes to zero at some critical field BN . Unlike AFM order,
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AFQ order is sensitive to field orientations. Along [0 0 1] direction, the AFQ phase

can be suppressed at a relatively small magnetic field [11]. The temperature-magnetic

field phase diagram versus the applied magnetic field along this direction is shown

in Fig. 5.2. We see that the AFM phase (phase III) is suppressed at BN ∼ 0.8T,

whereas the AFQ phase (phase II) is suppressed at a slightly larger field BQ ∼ 2T.

Both transitions have been found to be continuous from experiments [139, 11, 12],

and thus there are two QCPs. The strange-metal behaviors associated with each

QCP were also observed as shown in Fig. 5.3. More astonishing, across both BN and

BQ, the measurements of magnetotransport revealed jumps of the Hall coefficient and

magetoresistance in the zero-temperature, which implicates sudden reconstruction of

Fermi surface for both QCPs. These results are summarized in the phase diagram

Fig. 5.4[140, 13].

Since the concurrence of the Fermi surface reconstruction and the phase transition

is a key signature of a Kondo destruction QCP, by combining all experimental data,

we conclude that tuning the external field in the Ce3Pd20Si6 can induce sequential

Kondo destruction QCPs. Such consecutive Kondo destruction should be related to

the multipolar nature of the local levels in Ce3Pd20Si6. With the multipolar degree

of freedom, in principle the Kondo entanglement between the local levels and the

conduction electrons could break just partially at different stages. In the following,

we are going to provide a firm theoretical ground for the notion of such sequential

Kondo destruction in a multipolar heavy fermion system.
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Figure 5.2 : Ordered phases in a temperature-magnetic field phase diagram for fields
applied along [0 0 1], as identified from specific heat data by Ono et al. [11], and
magnetostriction and thermal expansion data in Ref. [12]. The paramagnetic phase
is denoted as phase I, the AFQ phase as phase II, and the AFM phase as phase III.
The microscopic origin of phase II’ remains to be identified.
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Figure 5.3 : Contour plot of the resistivity exponent a of ρ = ρ0 + A′ · T a in the
temperature-magnetic field phase diagram. The transition points at BN and BQ are
marked by red square and red stars on the horizontal axis. From Ref. [13].
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Figure 5.4 : Experimental temperature-magnetic field phase diagram, with T ∗ scales
across which the Kondo entanglement in the spin and orbital channel breaks up at
two consecutive QCPs, marked by the red square (at BN) and the red star (at BQ),
respectively. From Ref. [13].
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5.2 Model

To understand how multiple stages of Kondo destruction can arise without fine-tuning

the parameters, we consider a multipolar Kondo lattice model that contains a lattice

of local levels with a four-fold degeneracy which can be expressed in term of spin σ⃗

and orbital τ⃗ operators:

HKL = Hc +Hf +HK . (5.2)

The first part Hc =
∑

kστ ϵkστc
†
kστckστ defines the kinetic energy of the conduction

electrons, and the second part Hf describes the RKKY interaction among the Γ8 local

levels. For the purpose of convenience and demonstration, we choose Hf as the Ising

type:

Hf =
∑
ij

[
Iσijσ

z
i σ

z
j + Iτijτ

z
i τ

z
j + Imij (σ

z
i ⊗ τ zi )

(
σzj ⊗ τ zj

)]
(5.3)

where, σ⃗, τ⃗ , and σ⃗⊗ τ⃗ express the spin and orbital operators and their tensor product,

respectively, and Iσij, I
τ
ij, I

m
ij are the corresponding coupling constant. The Hamilto-

nian is essentially the Ising anisotropic version of the Kugel-Khomskii model.

The final part HK is the Kondo coupling between the local levels and their

conduction-electron counterparts:

HK =
∑
i

Jσσ⃗i · σ⃗i,c +
∑
i

Jτ τ⃗i · τ⃗i,c +
∑
i

4JM (σ⃗i ⊗ τ⃗i) · (σ⃗i,c ⊗ τ⃗i,c) (5.4)

where the Kondo coupling Jκ with κ = σ, τ,M , respectively, describe the interaction

of the local levels σ⃗, τ⃗ , and σ⃗ ⊗ τ⃗ with the conduction-electron counterparts.
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The different components of the conduction electrons are defined as

σ⃗i,c =
1

2

∑
σσ′,τ

c†iστ s⃗σσ′ciσ′τ

τ⃗i,c =
1

2

∑
σ,ττ ′

c†iστ t⃗ττ ′ciστ ′

σ⃗i,c ⊗ τ⃗i,c =
1

4

∑
σσ′ττ ′

c†iστ s⃗σσ′ ⊗ t⃗ττ ′ciσ′τ ′

(5.5)

where s⃗σσ′ and t⃗ττ ′ are Pauli matrices in the spin and orbital subspaces, respectively,

and c†iστ creates a conduction electron at site i and with spin component σ and orbital

component τ .

The Kondo Hamiltonian HK (5.4) in general case respects the SU(2)⊗SU(2) sym-

metry but breaks the SU(4) symmetry, which is restored only when Jσ = Jτ = JM .

Without incorporating the RKKY interaction (5.3), it has been known that the RG

flow trajectories of the Kondo Hamiltonian (5.4) flow toward the SU(4) strong Kondo

coupling fixed point regardless of the initial parameters[141, 142]. In other words,

there is no other phase and phase transition. In the following, we are going to

demonstrate that with the RKKY interaction (5.3), the thing becomes dramatically

different, and the sequential Kondo destruction phase transition is possible.

To do so, we use the scheme of extended dynamical mean field theory [143, 144],

to map the multipolar Kondo lattice model HKL into a spin-orbital coupled Bose-

Fermi Kondo model(BFK) describing an single impurity model coupling with self-

consistently determined fermionic and bosonic baths as illustrated in Fig. 5.5:

HBFK = H0 +HK +HBK . (5.6)

Here, H0 = Hc0 + HB0 is the non-interacting part for the conduction electron

and the bosonic baths, and is given by Hc0 =
∑

κ=σ,τ

∑
q ϵκ,qc

†
κ,qcκ,q and HB0 =∑

κ=σ,τ

∑
qWκ,qϕ

†
κ,qϕκ,q, respectively. HK describes the local level at a single site
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Figure 5.5 : schematic diagram of the spin-orbital coupled Bose-Fermi Kondo model
(5.6).

0 being Kondo-coupled to the conduction electrons. In addition, HBK describes the

Bose-Kondo coupling between the local impurity and the bosonic baths, with coupling

constants gκz. It is given by

HBK = gσzσzϕσz + gτzτzϕτz (5.7)

with ϕκ =
∑

q

(
ϕ†
κ,q + ϕκ,−q

)
for κ = σ, τ . The sign of gκ is immaterial and, for

definiteness, each will be chosen to be positive. The coupling to bosonic baths reflects

the magnetic fluctuation on site 0 induced by the inter-site RKKY interactions.

For the model (5.6) at Jσ = Jτ = JM , the phase diagram of the correspondent

multipolar Bose-Fermi Anderson model, where theHK is replaced by the hybridization

of a localized two-orbital spin-1/2 f electron to theconduction electrons, has been

studied through a numerical Quantum Monte Carlo(QMC) method[13]. The phase

diagram is shown in Fig. 5.6, from which one can see that the sequential breakdown

of Kondo entanglement is indeed generally possible.
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Figure 5.6 : Phase diagram (at T = 0) of the multipolar Bose Fermi Kondo model in
the g1–g2 plane by a QMC study[13]. Here Kondo denotes Kondo-screened, and KD
refer to Kondo-destroyed. Red squares and stars mark the spin and orbital Kondo
destruction QCPs, respectively. The thick black arrow represents a generic trajectory
in the parameter space. The orange triangle represents the special case g2 = 0, where
gτz = gσz and the two transitions occur simultaneously. Adapted from Ref. [13]

5.3 RG analysis and the generic phase diagram

Now the concept of the sequential Kondo destruction transition in a multipolar Kondo

lattice model has been proven possible through a numerical QMC calculation. How-

ever, even the numerical results have their own value, any good combination of the

analytical demonstrations is always necessary and can extend the understanding of

the problem to a deeper level. Especially, the QMC calculation only scanned the

whole phase diagram at the parameter case where the Kondo Hamiltonian HK is

SU(4) symmetric, and instead of solving the Bose-Fermi Kondo model, it solved a

correspondent Bose-Fermi Anderson model. In this regard, in this section, we are

going to perform an RG calculation of the spin-orbital coupled Bose-Fermi Kondo

model (5.6):
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HBFK = H0 +HK +HBK (5.8)

Note that since the BFK model is a local impurity model, there is no site depen-

dence. For the latter convenience, now we change the spin indices into Greek letters

like α, and orbital indices into English letters such as i. One should not mix up with

the site indices in the previous multipolar Kondo lattice model HKL (5.2). Our next

step is to use the pseudo-fermion representation for the spin and orbital operators of

the local impurity:
σ⃗ =

1

2

∑
i,αβ

f †
iασ⃗αβfiβ

τ⃗ =
1

2

∑
ij,α

f †
iατ⃗ijfjα

σ⃗ ⊗ τ⃗ =
1

4

∑
ij,αβ

f †
iασ⃗αβ ⊗ τ⃗ijfjβ

(5.9)

and the constraint term
∑

iα λf
†
iαfiα is also imposed into the action. As a result, the

non-interacting part H0 is:

H0 =
∑
iα

λf †
iαfiα +

∑
p,iα

ϵpc
†
p,iαcp,iα +

∑
q

Wq

(
ϕ⃗†
σ,q · ϕ⃗σ,q + ϕ⃗†

τ,q · ϕ⃗τ,q
)

(5.10)

In order to perform a controllable RG calculation, we also need to introduce a

control parameter ϵ which is defined through the bosonic spectral function:

∑
p

[δ (ω − ωp) + δ (ω + ωp)] =

(
K2

0

π

)
|ω|γ sgnω (5.11)

with

0 < γ ≡ 1− ϵ < 1 (5.12)

for |ω| < Λ.
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On the other hand, the coupling between the local impurity and the bosonic baths

again is given by:

HBK = gσzσzϕσz + gτzτzϕτz (5.13)

and the Kondo coupling at the SU(2)⊗SU(2) symmetric case is:

HK =
∑
i

Jσσ⃗i · σ⃗i,c +
∑
i

Jτ τ⃗i · τ⃗i,c +
∑
i

4JM (σ⃗i ⊗ τ⃗i) · (σ⃗i,c ⊗ τ⃗i,c) (5.14)

The spin and orbital Ising-type couplings in HBK (5.13) actually cause some

difficulties for the RG calculation. Firstly, unlike the Bose-Fermi Kondo model with

an SU(2) spin rotational symmetry, in which the RG calculation can be done in a

standard way[75], for the Ising case some extra effort is required[75]. One way to

proceed is to use a so-called bosonization approach to map the BFK model (5.8) into

a Colomb-gas type model, from which a controlled RG calculation is possible[75, 145].

Moreover, because the Ising couplings of HBK (5.13) break not only the SU(4)

symmetry but also the smaller SU(2)×SU(2) symmetry, in order to perform the RG

calculation of the Kondo couplings in HK which respect the SU(2)×SU(2) symme-

try, one actually needs to reduce the symmetry of HK , and thus inevitably need to

introduce more Kondo couplings. It turns out that one needs to consider five types

of Kondo couplings. Together with the spin and orbital Ising couplings gσz and gτz

of HBK (5.13), the total number of coupling constants is seven.

We leave the full RG calculation and the detailed analysis in appendix C. Instead,

here we summarize the results directly, and then illustrate how these results come

about. The phase diagram based on the RG analysis is summarized in Fig 5.7, where

the spin and orbital Kondo-destroyed(KD) phase can transit to the spin or orbital

Kondo-screened(KS) phase, or to the SU(4) KS phase.
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Figure 5.7 : The generic phase diagram based on the RG analysis, where KD and KS
refer to Kondo-destroyed and Kondo-screened phases, respectively.
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5.3.1 Transition to the SU(4) Kondo-screened phase

Now we briefly illustrate the transition from the spin and orbital KD phase to the

SU(4) KS phase. We scan the RG flow structure by taking gσz = gτz = g, which

corresponds to the trajectory denoted as the dashed arrow in Fig. 5.8∗.

Figure 5.8 : Phase diagram trajectory of gσz = gτz = g is denoted by the dashed
arrow.

As we have mentioned, generally the total number of coupling constants is seven.

However, under the trajectory gσz = gτz = g, some of the coupling constants are

irrelevant, or can be combined due to the symmetry constraint, and thus the numbers

of relevant RG equations (the β functions) can be substantially reduced. We leave

∗One can verify from the RG equations (the β functions) that any small deviation from this

trajectory actually is irrelevant in the RG sense.
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Figure 5.9 : RG flow diagram of the reduced β functions (5.15).

the details in appendix C.2.2, and only show the final reduced β functions:

dy1
dl

= (1− 2M) y1 + 2y2

dy

dl
= (1−M) y + 2y1y

dM

dl
=
(
ϵ− 4y21 − 4y2

)
M

(5.15)

where y = Jσ⊥ = Jτ⊥ flips either spin or orbital indices, M ∝ g2σz = g2τz = g2, and

y = JM1 is the part of the Kondo coupling JM that flips both the spin and orbital

indices. Note that we can set Jσ⊥ = Jτ⊥ since we choose to scan phase diagram in a

path that preserves the symmetry σ ↔ τ .

By these reduced β functions (5.15), one identifies a critical point (y∗1, y
∗,M∗) =(√

ϵ
2
, 0, 1

2

)
separating the spin and orbital KD phase (y1 → 0, y → 0,M → ∞) from

the SU(4) KS phase (y1 → ∞, y → ∞,M → 0). The RG flow structure of the reduced

β functions (5.15) is plotted in Fig. 5.9. Consequently, we establish the transition

between the spin and orbital KD phase and the SU(4) KS phase in the phase diagram
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Fig. 5.8.

5.3.2 Transition to spin or orbital Kondo-screened phase

Our next step is to illustrate the transition between the spin and orbital KD phase and

the σ or τ KS phase. We scan the RG flow structure by either taking gσz → ∞ and

varying the gτz, or taking gτz → ∞ and varying gσz. The corresponding trajectories

in phase diagram are denoted as the dashed arrow lines in Fig. 5.10†.

Figure 5.10 : Phase diagram trajectory of varying gτz(gσz), and taking gσz (gτz) → ∞,
is denoted as either of the two dashed arrows.

Without loss of generality, here we choose to take gσz → ∞. In this case, the final

†Again, from the β functions, one can check that any small deviation from these trajectories

actually is also irrelevant in the RG sense.
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reduced β functions are:
dy2
dl

= (1−Mσ) y2

dMσ

dl
=
(
ϵ− 4y22

)
Mσ

(5.16)

where y2 = Jσ⊥ flips only the orbital indices, and Mσ ∝ g2σz. Again, we leave the

derivation details in appendix C.2.3.

The RG flow of the reduced β functions (5.16) is plotted in Fig. 5.11. One can find

a critical point (y∗2,Mσ∗) =
(√

ϵ
2
, 1
)

separating the spin KS phase (y2 → ∞,Mσ → 0)

from the spin and orbital KD phase (y2 → 0,Mσ → ∞). Therefore, based on this

RG structure, we establish the transition between the spin and orbital KD phase and

the spin KS phase. For the other trajectory, the analysis is precisely parallel, and

the transition between the spin and orbital KD phase and the orbital KS phase can

likewise be established.

Figure 5.11 : RG flow diagram of the reduced β functions (5.16) on the Jσ⊥ − gσz
plane.
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5.4 Conclusion: Phase diagram and the sequential Kondo

destruction

Up to now, we have shown that a spin and orbital KD phase can transit into different

types of strong Kondo coupling fixed points corresponding to the spin, orbital, and

SU(4) KS phases without fine-tuning the parameters. Consequently, there must be

a phase transition between the spin or orbital KS phase and the SU(4) KS phase, as

indicated in Fig. 5.12. The whole phase diagram in Fig. 5.7, then, is established.

For this phase diagram, the sequential Kondo destruction is robust, in the sense

that there is no need to fine-tune the parameters in order to reach the quantum

phase transitions that involve two-stages of Kondo destruction. These results provide

a firm theoretical basis for the earlier numerical QMC results in a related Kondo

model, and to the understanding of the quantum criticality in spin-orbital-coupled

heavy fermion systems. Furthur comparison of the phase diagram based on our

RG analysis, with those from the earlier numerical QMC result[13] and from the

experimental measurements in the heavy fermion metal Ce3Pd20Si6[13] is summarized

in Fig. 5.13.
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Figure 5.12 : The generic phase diagram based on our RG analysis. Solid arrows
denote the phase transitions that we have established from our analysis. Since the
spin and orbital KD phase can transit to the three distinct KS phases, there must be
phase transitions between these KS phases, which are denoted by the dashed arrows.
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Figure 5.13 : Comparison of (a) phase diagram based on our RG analysis with (b)
earlier numerical QMC result in Fig 5.6, and (c) the experimental phase diagram of
Ce3Pd20Si6 in Fig. 5.4. The solid arrows in (a) correspond to trajectories for the
quantum phase transitions of the sequential Kondo destruction.
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Chapter 6

Quantum critical nematic fluctuations and spin
excitation anisotropy in iron pnictides

6.1 Introduction

As described earlier, quantum criticality also operates in other classes of strongly cor-

related electron systems. Iron-based superconductors have presented many intriguing

and often puzzling properties [78, 79, 146, 147, 29, 148]. Among these is the onset

of the tetragonal-to-orthorhombic structural phase transition at a temperature just

above or at the antiferromagnetic (AF) phase transition [87]. When they are split, the

region between the two transitions is called a nematic phase, where the C4 tetragonal

symmetry is broken while the O (3) spin rotational symmetry is preserved. It has been

well established that the nematic transition is driven by electron correlations, with

B1g anisotropies in electronic, orbital and magnetic properties [149, 150, 151]. Several

channels are entwined in the nematic correlations, including spin [80, 85, 86, 152],

electronic [153, 154] and orbital[155, 156] degrees of freedom.

One way to make progress is to consider the quantum critical regime, where the

criticality singularities can be isolated from regular contributions. This facilitates the

study of the relationship between the responses in the nematic and other channels.

Our strategy in this paper is to assume that the magnetic fluctuations drive nematic

correlations, establish a precise relationship between the singular responses in the

magnetic and nematic sectors, and uses this relationship to assess the underlying
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assumption and determine the critical properties. The parent ground state of the

iron-pnictide superconductors is an AF state with the ordering wave vector Q⃗1 =

(π, 0) or Q⃗2 = (0, π). Their spatial patterns are shown in Fig. 6.1(a) and 6.1(b).

The AF state breaks not only the usual O (3) spin rotational symmetry, but also a

Z2 symmetry between the Q⃗1 and Q⃗2 magnetic state. In iron pnictides, the bad-

metal behavior [81, 8] motivated a theoretical proposal for the electronic excitations

into coherent and incoherent parts. The tuning of the coherent electron weight was

proposed to give rise to concurrent quantum criticality in both the (π, 0) AF and

Ising-nematic channels∗ [80]. The existence of quantum criticality has been most

extensively evidenced by experiments in BaFe2As2 with P-for-As doping to the regime

of optimal superconductivity [89, 159, 92, 90, 160].

A defining characteristic of quantum criticality is the inherent mixing of statics

and dynamics. Singular magnetic responses in the quantum critical regime have been

observed through dynamical measurements at both the optimally P-for-As- and Ni-

for-Fe-doped BaFe2As2 [161, 14]. Singular nematic responses in the quantum critical

regime have also been observed over a variety of optimally doped iron pnictides [91],

albeit in DC measurements. The comparison already demonstrates the concurrent

nature of the quantum criticality in the magnetic and nematic channels †. However,

∗In the theoretical analysis, the magnetic and nematic quantum phase transitions are concurrent

and very weakly first-order, with a jump of both order parameters that are nonzero but very small.

The first order nature is driven by a relevant coupling; its weakness is dictated by the marginal

nature of this coupling [80, 10], and has been confirmed in experiments [157]. The weakness of

the first order transition dictates that there is an extended dynamical range over which criticality

operates [158]
†While this is certainly true over an extended range of temperatures, we caution that quantum

criticality may not extend all the way to zero temperature, and this was already indicated in the
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to elucidate the relationship between the singular nematic and magnetic responses, it

would be desirable to determine the dynamical nematic susceptibility in the quantum

critical regime. In general, the low-energy dynamical nematic susceptibility in the

quantum critical regime is not readily accessible experimentally.

In this work, we elucidate the relation between the singular dynamical magnetic

and nematic responses by exploiting the relationship between the dynamical nematic

susceptibility and spin excitation anisotropy. The latter, defined as the difference of

the dynamical spin susceptibilities at Q⃗1 = (π, 0) and Q⃗2 = (0, π), under a uniaxial

strain that breaks the C4 symmetry in B1g channel, has been measured by inelastic

neutron scattering experiments in the optimally doped iron pnictides [14, 151, 163].

We analyze the singular part of the dynamical responses in both the O(3) AF and

Z2 Ising-nematic sectors. Within an effective Ginzburg-Landau theory involving both

the AF and nematic degrees of freedom, we establish a general identity [Eq. (6.6)]

among the spin excitation anisotropy, the dynamical magnetic susceptibility, and the

nematic susceptibility. Based on a scaling analysis, we further show how this identity

can be used to explore the properties of a quantum critical point (QCP), where both

the magnetic and nematic channels are concurrently critical. Through the scaling

procedure, we extract the dynamical nematic susceptibility from the spin excitation

anisotropy, and also determine the dynamic exponent z and the scaling dimension

of the nematic order parameter d∆. The procedure is illustrated in the context of

the inelastic neutron scattering results for the optimally Ni-doped BaFe2Si2 under an

external stress [14], which are summarized in Figs. 6.2(a) and 6.2(b).

P-doped BaFe2As2 [90, 160]. In addition, further studies are needed to determine whether he zero-

temperature phase transitions are concurrent in all the doped iron pnictides [162].
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6.2 Effective model

We start from an effective field theory for the magnetism of iron pnictides [80, 9]

S0 = S2 + S4

S2 =
∑

q=q⃗,iωn

{
G−1

0 (q)
(
|m⃗A (q) |2 + |m⃗B (q) |2

)
S4 =

∫ β

0

dτ

∫
d2x

[
u1
(
m⃗2
A + m⃗2

B

)2 − uI (m⃗A · m⃗B)
2
] (6.1)

where m⃗A and m⃗B are the Neel order parameter fields on the sublattices A and B,

respectively, and G−1
0 (q⃗, iωn) = r + ω2

n + cq⃗2 + γ|ωn| with the mass term r and Lan-

dau damping term γ|ωn| resulting from the coherent electronic excitations [80]. For

convenience, we neglect the interaction −u2 (m⃗2
A − m⃗2

B)
2 and the spatial anisotropy

term v
(
q2x − q2y

)
m⃗A (q) · m⃗B (−q), which do not affect our scaling analysis.

We consider the problem in the presence of an external uniaxial stress, and focus

on the effect of the induced strain in the B1g channel, which couples linearly to the

quantity m⃗A · m⃗B. Absorbing this coupling into a Hubbard-Stratonovich transforma-

tion, it leads to a coupling Sλ,∆ = λ
∫ β
0
dτ
∫
d2x∆ after integrating the strain degree

of freedom, where λ is the strength of the external stress. Leaving details to the

Supplementary Material (SM) (where additional terms that do not affect our scaling

analysis are also described), we arrive at the following effective action:

S = S̃2 + S3 + . . .+ Sλ,∆

S̃2 =
∑

q=q⃗,iωn

{
χ−1
0 (q)

(
|m⃗A (q) |2 + |m⃗B (q) |2

)
+∆(q)χ−1

∆ (q)∆ (−q)
}

S3 =

∫ β

0

dτ

∫
d2x2∆m⃗A · m⃗B

Sλ,∆ = λ

∫ β

0

dτ

∫
d2x∆

(6.2)
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where we have absorbed the mass term into the field conjugate to m⃗2
A+ m⃗

2
B (see SM)

so that now χ−1
0 (q⃗, iωn) = G−1

0 (q⃗, iωn)− r = ω2
n + cq⃗2 + γ|ω|, and χ−1

∆ (q⃗, iωn) is the

bare magnetic and nematic propagator, respectively. The ellipsis denotes the terms

that are not essential to our scaling analysis (see SM).

The spin excitation anisotropy χd (ω) and the dynamical magnetic susceptibility

χs (ω) are defined as the difference and summation of the dynamical spin suscepti-

bility χ (q⃗, ω) between the two ordering wave vector Q⃗1 = (π, 0) and Q⃗2 = (0, π),

respectively:

χs (ω) ≡ χ
(
Q⃗1, ω

)
+ χ

(
Q⃗2, ω

)
(6.3)

χd (ω) ≡ χ
(
Q⃗1, ω

)
− χ

(
Q⃗2, ω

)
(6.4)

(a) Q⃗1 = (π, 0) (b) Q⃗2 = (0, π)

Figure 6.1 : (a) The spin configurations of the ground state of the parent iron-based
superconductors with ordering wave vector Q⃗1 = (π, 0) or (b) Q⃗2 = (0, π). The
blue and red arrows denote the spins forming the staggered magnetizations on the
sublattices A and B, respectively.
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6.3 Connecting the spin excitation anisotropy to nematic sus-

ceptibility

On symmetry grounds, the spin excitation anisotropy χd (ω) should be related to

the Ising-nematic fluctuations, since it measures the degree of the asymmetry of the

magnetic fluctuations between the two wave vectors Q⃗1 and Q⃗2. However, the precise

(a)

(b)

Figure 6.2 : The energy dependences of (a) the imaginary part of the spin excitation
anisotropy χ′′

d = χ′′
(
Q⃗1

)
− χ′′

(
Q⃗2

)
vs. energy and (b) the dynamical magnetic sus-

ceptibility χ′′
s = χ′′

(
Q⃗1

)
+χ′′

(
Q⃗2

)
in BaFe2−xNixAs2 measured by inelastic neutron

scattering experiments at T = 5K < TS[14] near the optimal doping x = xc ≈ 0.1;
the former(latter) is fit in the power law form E−α(E−β) with the exponent α ∼= 1.0
(β ∼= 0.5).
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relation has not been considered before. A detailed analysis, given in SM, shows that:

χs (ω) ≡ χ
(
Q⃗1, ω

)
+ χ

(
Q⃗2, ω

)
= χm (0, ω) +O

(
λ2
) (6.5)

and
χd (ω) ≡ χ

(
Q⃗1, ω

)
− χ

(
Q⃗2, ω

)
= λV (0, ω)χ2

m (0, ω)χ∆ (0, 0) +O
(
λ2
) (6.6)

where χm (q, ω) ≡ χmA (q, ω) = χmB (q, ω) is the magnetic propagator, χ∆ (q, ω) is the

nematic propagator, and V is the irreducible vertex function involving two external

magnetic order parameter fields m⃗A and m⃗B and one nematic order parameter field

∆. For both of the Eq.(6.5) and Eq.(6.6), we use the symmetry m⃗A ↔ m⃗B respected

by the action (6.2), as discuss in the SM.

The identity, Eq. (6.6), will play a central role in the following analysis. The

diagrammatic representation of this identity is shown in Fig. 6.3.

Figure 6.3 : The diagrammatic representation of the identity Eq. (6.6). The double
black line and double cyan dashed line denote the renormalized magnetic propagator
χm and nematic propagator χ∆, respectively. The blue circle is the vertex function
V , and the red cross small circle is the external C4 symmetry breaking potential.
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6.4 Scaling analysis

We now apply the identity, Eq. (6.6), to extract the nematic susceptibility from the

spin excitation anisotropy. Our focus is on the singular parts of these quantities in

the quantum critical regime.

Due to the scale invariance in the quantum critical regime, the irreducible two-

point correlation function χm (0, ω) and the irreducible vertex function V (0, ω) should

obey a power law form with specific exponents Therefore, we expect the spin excita-

tion anisotropy χd (ω) to also obey the power law form with a specific exponent.

To derive these exponents, we carry out a scaling analysis of the irreducible vertex

functions, using the generating functional Γ (m,∆) [164, 165]:

Γ (m,∆) =
∑
nm,n∆

1

nm!n∆!

∫
{q},{p}

∫
{ω},{ν}

×

(
nm∏
i=1

mi

n∆∏
j=1

∆j

)
Γnm,n∆ ({q}, {p}, {ω}, {ν})

(6.7)

where we define
∫
{q},{p} ≡

∫ ∏nm
i=1 d

Dqi
∏n∆

j=1 d
Dpjδ

(∑nm
i qi +

∑n∆

j pj

)
and

∫
{ω},{ν} ≡∫ ∏nm

i=1 dωi
∏n∆

j=1 dνjδ
(∑nm

i ωi +
∑n∆

j νj

)
, with D being the spatial dimensionality.

In addition, we have introduced Γnm,n∆ to represent an irreducible vertex function

with nm and n∆ external magnetic and nematic order parameter fields, respectively.

In the quantum critical regime, under the rescaling q → e−lq, ω → e−zlω, the

magnetic and nematic order parameter fields transform according to m → e−dmlm,

∆ → e−d∆l∆, where dm and d∆ are their respective scaling dimensions. Since Γ (m,∆)

is a dimensionless quantity, the irreducible vertex function Γnm,n∆ must satisfy [165,

166, 126]:

Γnm,n∆ (q, ω) =

e−dΓlΓnm,n∆
(
qe−l, ωe−zl

) (6.8)

where dΓ = nm (dm +D + z) + n∆ (d∆ +D + z) − (D + z), and z is the dynamic
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exponent‡.

From the action, Eq. 6.2, it is straightforward to specify the scaling dimension §

of the magnetic order parameter m⃗:

dm = −D + z + 2− η

2
. (6.9)

Because η, the anomalous dimension, is typically small, we will carry out our analysis

assuming η ∼= 0; what happens when η ̸= 0 is shown in the SM. It then follows from

Eq. (6.8) that:

Γnm,n∆ (q, ω) =

e[nm−n∆(d∆+D+z)−(D+z)(nm2 −1)]lΓnm,n∆
(
qe−l, ωe−zl

) (6.10)

The magnetic propagator is determined by a two-point irreducible vertex function:

χ−1
m (q, ω) ≡ Γnm=2,n∆=0 (q, ω) = e2(l)χ−1

m

(
qe−l, ωe−zl

)
= q2χ−1

m

(
1, ωq−z

) (6.11)

where in the last step we choose l such that qe−l = 1. This, in turn, implies:

χm (0, ω) = χs (ω) ∼ ω− 2
z (6.12)

The function V appearing in Eq. (6.6) (and Fig. 6.3) is a three-point irreducible

vertex function. The scaling procedure leads to:

V (q, ω) ≡ Γnm=2,n∆=1 (q, ω)

= e[2−d∆−(D+z)]lV
(
qe−l, ωe−zl

)
= q(2−d∆−(D+z))V

(
1, ωq−z

) (6.13)

‡Note that in Eqs. (Here, the scaling analysis is carried out in the quantum critical regime.
§Note that in Eqs. (6.8) and (6.9), we choose to count the dimension from the momentum space

action.
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In turn, this gives rise to the following frequency dependence:

V (0, ω) ∼ ω
2−d∆−(D+z)

z (6.14)

Collecting all these, we can now determine from Eq. (6.6) the scaling form for the

spin excitation anisotropy:

χd (ω) ∼ ω
−2−d∆−(D+z)

z (6.15)

Conversely, by measuring the singular parts in the energy dependence of the spin

excitation anisotropy χd (ω) and dynamical magnetic susceptibility χs (ω) in the quan-

tum critical regime, we can determine the dynamical exponent z and the scaling

dimension of the nematic order parameter d∆ through the following relations:

−2

z
=
∂ lnχs (ω)

∂ lnω
−d∆ − (D + z)− 2

z
=
∂ lnχd (ω)

∂ lnω

(6.16)

The above determine d∆ and z for a given spatial dimensionality D. In turn, we can

determine the singular dynamical properties of the nematic degree of freedom, which

we now turn to.

6.4.1 Dynamical nematic susceptibility

We now turn to the analysis of the dynamical nematic susceptibility, χ∆ (0, ω), a

task that seems impossible given that the identity Eq. (6.6) involves only the static

nematic susceptibility χ∆ (0, 0). The key point is that the irreducible vertex function

V (0, ω) couples the nematic and magnetic order parameter fields, and captures the

critical singularity in the dynamical nematic correlations.

To make this point clear, we note that, according to the scaling analysis, the

critical part of the dynamical nematic susceptibility χ∆ (q, ω) obeys the following
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form:
χ−1
∆ (q, ω) ≡ Γnm=0,n∆=2 (q⃗, ω)

= e−[2d∆+(D+z)]lχ−1
∆

(
qe−l, ωe−zl

)
= q−(2d∆+(D+z))χ−1

∆

(
1, ωq−z

) (6.17)

This, in turn, implies the following result for the dynamical nematic susceptibility

χ∆ (0, ω):

χ∆ (0, ω) ∼ ω
(2d∆+(D+z))

z (6.18)

6.4.2 The case of quantum criticality in BaFe2As2 with optimal Ni-doping

In the Ni-doped BaFe2−xNixAs2, the singular energy dependences of the spin excita-

tion anisotropy and magnetic susceptibility were observed near the optimal doping

x = xc ≈ 0.1 by inelastic neutron scattering experiments [14] as shown in the Figs.

6.2(a) and 6.2(b) (where T = 5K < TS only affects the results at the lowest mea-

sured frequencies). The experimental data suggest that the spin excitation anisotropy

χd (ω) and dynamical magnetic susceptibility χs (ω) are best-fitted in power laws with

different exponents α and β, respectively:

χd (ω) ∼ ω−α

χs (ω) = χm (0, ω) ∼ ω−β
(6.19)

with α ∼= 1.0 and β ∼= 0.50.

While there can be different physical reasons that could alter the values of the

exponents α and β, it is intriguing that

α ∼= 2β . (6.20)

We demonstrate that the identity Eq. (6.6) we established earlier serves as a natural

way to explore the physics behind the relation (6.20).
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By the identity Eq. (6.6), we see that the relation (6.20) implies:

V (0, ω) ∼ χd (ω)

χ2
m (0, ω)

∼ ω0 . (6.21)

Following the scaling analysis of the irreducible vertex function, Eq. (6.14), we con-

clude that these power law forms are associated with an underlying QCP at which

the scaling dimension of the nematic order parameter d∆ is:

d∆ = 2−D − z (6.22)

In other words, the relation (6.20) implies a specific link between the the scaling

dimension of the nematic order parameter d∆ and dynamic exponent z.

This relation contains non-trivial information about the nematic degree of free-

dom. To see this further, consider a general form of the nematic propagator suitable

for the quantum critical regime:

χ−1
∆ (q, ω) = b1q

n + b2
|ω|
qa

(6.23)

For this propagator, we must have:

z = n+ a (6.24)

and

d∆ = −D + z + n

2
= −D + 2n+ a

2
(6.25)

On the other hand, according to Eqs. (6.22) and (6.24):

d∆ = 2−D − z = 2−D − n− a (6.26)

Compare Eqs. (6.25) and (6.26), we can derive:

a = 4−D = 2 (6.27)
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when the spatial dimensionality D = 2.

The above result follows from α ∼= 2β (Eq. (6.20)). Further using α ∼= 1.0 (and

β ∼= 0.50), we find that n = 2. Thus, the quantum-critical nematic susceptibility is

found to be:

χ−1
∆ (q, ω) = b1q

2 + b2
|ω|
q2

(6.28)

To reiterate, the relation (6.20) suggests the presence of a non-trivial critical dynam-

ical term |ω|/q2 in the nematic propagator. The origin of such dynamical term in the

nematic sector and its relation with the microscopic physics of the iron pnictides will

be investigated in a separate work.

6.5 Discussion and Conclusion

To summarize, we have shown how the singular component of the spin excitation

anisotropy connects with its counterparts in both the nematic and dynamical mag-

netic susceptibilities. The derived identity has allowed us to extract the critical

properties from the experiments in an optimally doped iron pnictides under a uniax-

ial strain, including several critical exponents and a singular nematic susceptibility

as a function of both frequency and wavevector. Our results demonstrate the suc-

cess of the spin-driven nematicity for understanding the measured responses in the

magnetic and nematic channels. Our approach allows us to determine the dynamical

nematic susceptibility, which is difficult to directly measure experimentally. The sin-

gular fluctuations in both the nematic and magnetic channels appear in the regime

of optimized superconductivity within the iron-pnictide phase diagram. Thus, both

are expected to influence the development of the superconductivity.
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Chapter 7

Summary

In this thesis, we have studied the quantum criticality in heavy fermion systems and

iron pnictides in terms of several theoretical approaches ranging from numerical to

analytical methods. We have used the QNLσM to represent the local moments in a

Kondo lattice model, and developed a numerical way to non-perturbatively solve the

low energy effective Dirac Hamiltonian in a skyrmion background. This has allowed

us to study the correlation of various competing order parameters influenced by the

skyrmion defects of antiferromagnetism. For the Kondo lattice model on a honeycomb

lattice, we have identified both the valence bond solid and Kondo singlet as the leading

competing orders to the antiferromagnetism, and their relative stability is tunable

by varying the Kondo coupling. These results provide a new unified framework for

elucidating the proposed global phase diagram of heavy fermion systems.

In a similar spirit, and motivated by a recent experiment on the geometrically

frustrated heavy fermion metal CePdAl, we have performed an RG analysis to explore

the role of the Kondo coupling to the QCP of the QNLσM. We have gone beyond the

traditional Hert-Millis paradigm by treating both the bosonic and fermionic degrees

of freedom on an equal footing. We have also used a large-N method to study the

influence of the Kondo coupling to the Fermi surface around the QCP. Our results

have shown that the antiferromagnetism to paramagnetism transition driven by the

magnetic frustration is stable against the weak Kondo coupling, and the Fermi surface

remains small.
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Heavy fermion systems provide the setting to explore a very rich variety of quan-

tum phases and quantum criticality. We have taken advantage of this highly desirable

feature, and extended the Kondo destruction physics into multipolar heavy fermion

systems. Motivated by the experiment in CePd20Si6, we have studied a spin-orbital

coupled Bose-Fermi Kondo model, which captures the essential physics of the under-

lying multipolar Kondo lattice model. By using the bosonization technique, we have

mapped this Bose-Fermi Kondo model to a Coulomb gas model, by which we can de-

rive the β functions. We have established a generic phase diagram of this spin-orbital

coupled Bose-Fermi Kondo model based on a detailed RG analysis. From this generic

phase diagram, we have found that the notion of sequential Kondo destruction is

robust, which gives us a firm theoretical basis for the earlier numerical QMC results

in a related Kondo model, and for the understanding of quantum criticality in the

multipolar heavy fermion systems.

Finally, the general relevance of quantum criticality to a variety of strongly cor-

related systems is accompanied by the distinctive ingredient that arises in particular

classes of such systems. We illustrate this point by considering the interplay be-

tween the nematic and antiferromagnetic quantum criticality in the iron pnictides.

To do so, we have established an identity through field theoretical methodology that

connects the spin excitation anisotropy to the dynamical spin susceptibility and the

static nematic susceptibility. Based on this identity and a general scaling analysis, we

have demonstrated how to extract the scaling dimension of the nematic order and the

dynamical exponent. In turn, this procedure allows us to determine the dynamical

nematic susceptibility, which is hard to measure directly. We have illustrated the

whole procedure in the optimally Ni-doped BaFe2As2, and found that the singular

energy dependences of the spin excitation anisotropy and the dynamical magnetic
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susceptibility observed in the optimally Ni-doped BaFe2As2 imply the existence of a

non-trivial dynamical term |ω|/q2 in the dynamical nemacit susceptibility. We ex-

pect that this understanding of the dynamical nematic susceptibility in the regime of

optimal superconductivity will be important to the elucidation of the mechanism for

the iron-based high temperature superconductivity.



123

Appendix A

Appendix of Chapter 3

A.1 Coupling between fermions and nonlinear sigma model

Since we are working with a bipartite honeycomb lattice, an intraunit cell antiferro-

magnetic phase (Néel order) describes the ground state of a nearest neighbor Heisen-

berg model. The nonlinear sigma model description for this phase is usually derived

by employing a large spin approximation. However, for describing the competing

spin singlet orders such as spin Peierls and Kondo singlet it is more advantageous

to work with a fermionic description. This is similar to the methods of Affleck and

Haldane [114] for one dimensional spin-1/2 chain. The antiferromagnetic phase for

honeycomb lattice can only be obtained from a Hubbard model for sufficiently strong

onsite repulsion, as the density of states for two dimensional Dirac fermion vanishes

at zero energy. The repulsive Hubbard interaction, Hint = U
∑

i ni,↑ni,↓, where ni,s

is the density operator for spin projection s =↑ / ↓, can be decoupled in the magnetic

channel by performing the following Hubbard-Stratonovich transformation∫
dc†idci exp

[
−
∫ ~

kBT

0

dτ

~
Hint

]

=

∫
dc†idcidMi exp

[
−
∫ ~

kBT

0

dτ

~

{∑
i

[
3M2

i

2U
+Mi · c†i,sηs,s′ci,s′

]
+
U

2

∑
i,s

ni,s

}]
.

Notice that the Hubbard interaction has been decoupled in the magnetic channel in

terms of the vectors Mi (i = A,B are assigned to two sublattices), where Mi =

(U/3)⟨c†i,sηss′ci,s′⟩. In the process of mean-field decoupling the chemical potential
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has to be shifted by the amount U/2, to maintain the condition of half-filling. The

antiferromagnetic phase corresponds to the choice MA = −MB. Due to the vanishing

density of states the antiferromagnetic phase arises for U > Uc. Within the continuum

limit this leads to the following effective action

S =

∫
d2xdτ

[
ψ̄γµ∂µ + gψ̄M · ηψ +

M2

2

]
, (A.1)

with g ∝ U . At U = Uc (equivalently g = gc), we have an itinerant version of

paramagnetic semimetal to antiferromagnet quantum phase transition, where the

fermion fields and both longitudinal and transverse parts of the order parameter

constitute gapless or critical excitations. For U > Uc, the amplitude of the order

parameter |M| ∼ |U − Uc|β is finite, and away from the itinerant critical regime

i.e., at the length scales larger than the correlation length ξ ∼ |U − Uc|−ν we can

effectively freeze the amplitude fluctuations of the magnetic order parameter. Since

we can denote M = |M| n, where n is the unit vector or nonlinear sigma model field,

after freezing M| Eq. (A.1) can be reduced to

S =

∫
d2xdτ

[
ψ̄γµ∂µ + gψψ̄n · ηψ

]
.

This allows us to work with a nonlinear sigma model coupled to Dirac fermions,

as used in the main text. The longitudinal part of the nonlinear sigma model field

gives rise to a charge gap for the Dirac fermions, and after integrating out the Dirac

fermions by following [106, 96, 95] one can obtain a nonlinear sigma model. The

ordered phase of the nonlinear sigma model indeed corresponds to the ordered phase

obtained within the large spin approximation of nearest neighbor Heisenberg model.

An advantage for the effective theory is that the bare stiffness for nonlinear sigma

model does not guarantee a global long range order, and it remains possible that the

emergent gapped/insulating phase supports a nonmagnetic competing order, where
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the Berry phase for the sigma model does not vanish and follows from the evaluation

of fermion determinant [96, 95].

A.2 Topological charge of skyrmion and induced charge

The induced charge for each valley is defined as the difference of charge in each valley

between system with and without skyrmion (vacuum):

Q± =

∫ 0

−∞
dEρS,±(E)−

∫ 0

−∞
dEρ0,±(E)

= −1

2

∫ ∞

−∞
dEρS,±(E) sign(E) = −1

2
η±

(A.2)

where ρS,±(E) and ρ0,±(E) is the density of state at energy E with and without

skyrmion for ± valley, respectively, η± =
∫∞
−∞ dEρS,±(E) sign(E) =

∫∞
0

dE (ρS,±(E)− ρS,±(−E))

is called the spectral asymmetry, and we have used the fact that system without

skyrmion field has charge conjugate symmetry.

Since Hamiltonian of Eq. (3.9) does not break valley symmetry, it can be decoupled

into each valley space as H±, the density of states in each valley is well-defined as:

ρ±(E) ≡ Tr δ (H± − E) =
1

π
ImTr

(
1

H± − E − iϵ

)
(A.3)

The spectral asymmetry then is:

η± =

∫ ∞

0

dE (ρS,±(E)− ρS,±(−E))

=
1

π

∫ ∞

0

dE

(
ImTr

1

H± − E − iϵ
− ImTr

1

H± + E − iϵ

)
=

1

π

∫ ∞

0

dE ImTr

(
1

H± − E − iϵ
+

1

H± + E + iϵ

) (A.4)

where we use the identity 1
x±iη = P

(
1
x

)
∓iπδ(x). By changing the variable z = E+iϵ,

we have
η± =

1

π
Im

∫ ∞+iϵ

iϵ

dzTr

(
1

H± − z
+

1

H± + z

)
=

2

π
Im

∫ ∞+iϵ

iϵ

dzTr

(
H±

1

H2
± − z2

) (A.5)
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In our case, H± = ± (vχ (σ1k1 + σ2k2) + gχn · ησ3) = ± (H0 + I), where H0 =

vχ (σ1k1 + σ2k2) and I = gχn·ησ3, thus H2
± = H2

0+V = −v2χ∇2+g2χ+igχvχσ3σ
i∂in·η,

where H2
0 = −v2χ∇2 + g2χ and V = igχvχσ3σ

i∂in · η

We assume that background field varies very slowly compared with coupling con-

stant, that is |∇n| ≪ gχ, and then expand η± in order of |∇n|/gχ:

Tr

(
H±

1

H2
± − z2

)
= Tr

(
H±

1

H2
0 + V 2 − z2

)
= Tr

(
H±G0 (z) (1 +G0 (z)V )−1)

= Tr

(
H±G0 (z)

∞∑
n=0

(−G0 (z)V )n
) (A.6)

where G0 (z) =
1

H2
0−z2

.

By identity G0 (z)V = V G0 (z)+G0 (z) [V,H0]G0 (z), we are now able to separate

the trace into pure momentum and real space part, and then do the trace separately.

The non-vanishing leading order of (A5) will be ±Tr (IV 2) Tr (G3
0 (z)). Since

Tr
(
IV 2

)
= −g3χv2χTr

(
σ3
3n · ησi∂in · ησj∂jn · η

)
= −g3χv2χTr

(
σ3σ

iσjηaηbηcna∂inb∂jnc
)

= −4g3χv
2
χ

∫
d2xϵijϵabcna∂inb∂jnc

Tr
(
G3

0 (z)
)
= Tr

(
1

H2
0 − z2

)3

= Tr

(
1

−v2χ∇2 + g2χ − z2

)3

=

∫
dk

(2π)2
2πk(

v2χk
2 + g2χ − z2

)3 =
1

8πv2χ
(
g2χ − z2

)2

(A.7)

Consequently, the leading order of η± will be

∓8g3χv
2
χ

π
Im

∫ ∞+iϵ

iϵ

dz

8πv2χ
(
g2χ − z2

)2 ∫ d2xϵijϵabcna∂inb∂jnc

=
∓ sign (gχ)

4π

∫
d2xϵijϵabcna∂inb∂jnc

(A.8)
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Therefore,
Q± = −1

2
η± =

± sign (gχ)

8π

∫
d2xϵijϵabcna∂inb∂jnc

= ± sign (gχ)Qtop

(A.9)



128

Appendix B

Appendix of Chapter 4

B.1 Renormalization group calculation for X-Y component

of Kondo coupling

In this appendix, we aim to derive the Beta function of the Kondo coupling λK (4.23)

from the XY Kondo vertex λ⊥ =
√
gλK . To calculate the one-loop correction to the

XY Kondo vertex λ⊥, we need to include a higher order vertex which results from

expanding 1/σ in the Eq. (4.5) and is not included in Fig. (4.1). Fig. (B.1) is the

Feynman rule of such vertex.

Figure B.1 : Feynman rule for a high-order XY component of the Kondo coupling.
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The one-loop diagram to the XY Kondo vertex λ⊥ is shown in Fig. (B.2). Such

diagram is vanishing after performing the components summation. Therefore, at

one-loop level we have:

Figure B.2 : One-loop correction diagram for XY Kondo vertex.

(λ⊥)
′ = λ⊥ξ

−1
π ξ−2

ψ b(D+4) (B.1)

Together with Eq. (4.17) and Eq. (4.20), the Beta function of λ⊥ can be derived:

β (λ⊥) = −1

2
ϵλ⊥ − 1

2
gλ⊥ (B.2)

By using λ⊥ =
√
gλK , one can verify from Eq. (B.2) that

β (λK) = −gλK (B.3)

which is consistent with Eq. (4.23). As we have pointed out, the O (3) symmetry of

the action (4.3) guarantees such consistency.
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Appendix C

Appendix of Chapter 5

C.1 Derivation of the Coulomb gas action and RG equations

As we mentioned in the Chapter 5, because of the Ising-type couplings in HBK (5.13),

the whole Bose-Fermi Kondo model (5.8) breaks not only the SU(4) symmetry but

also the SU(2)×SU(2) symmetry. Therefore, to perform the RG calculation, one

need to reduce the symmetry in the Kondo part HK and introduce much more Kondo

couplings. To our purpose, the model with the minimal number of parameters that

we need to consider is:

HBFK = H0 +HK +HKB

H0 =
∑
iα

λf †
iαfiα +

∑
p,iα

ϵpc
†
p,iαcp,iα +

∑
q

Wq

(
ϕ⃗†
σ,q · ϕ⃗σ,q + ϕ⃗†

τ,q · ϕ⃗τ,q
)

HK = Jσzσ
zσzc + Jσ⊥ (σxσxc + σyσyc ) + Jτzτ

zτ zc + Jτ⊥ (τxτxc + τ yτ yc )

+ 4JM1

[
(σx ⊗ τx) (σx ⊗ τx)c + (σx ⊗ τy) (σx ⊗ τy)c + (σy ⊗ τx) (σy ⊗ τx)c + (σy ⊗ τy) (σy ⊗ τy)c

]
+ 4JM2

[
(σz ⊗ τx) (σz ⊗ τx)c + (σz ⊗ τy) (σz ⊗ τy)c

]
+ 4JM3

[
(σx ⊗ τz) (σx ⊗ τz)c + (σy ⊗ τz) (σy ⊗ τz)c

]
+ 4JM4 [(σz ⊗ τz) (σz ⊗ τz)c]

HBK = gσzσzϕσz + gτzτzϕτz

(C.1)

where ϕ⃗σ/τ =
∑

q

(
ϕ⃗σ/τ,q + ϕ⃗†

σ/τ,−q

)
, and Jσ⊥ = JM3 and Jτ⊥ = JM2.
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For the Ising-type bosonic coupling, to perform a controllable RG calculation,

one need to map the Bose-Fermi Kondo model into a Coulomb gas type model[75,

145]. The first step to decompose the above Hamiltonian HBFK into the part that is

diagonal in the space of the local impurity states |σ⟩⊗ |τ⟩, and the other part that is

not:

HBFK = H0 +Hf (C.2)

where H0 is diagonal in the space of the local impurity states |σ⟩ ⊗ |τ⟩. We use the

notation |m⟩ = |iα⟩ to denote a local impurity state with the orbital i = 1, 2 and the

spin α =↑, ↓. Therefore,

H0 =
∑
m

Hm|m⟩⟨m| (C.3)

Then we rewriteHm in term of the projection operatorsXmm = |m⟩⟨m| = |iα⟩⟨iα|,

so that:

Hm = Em +
∑
n

V n
mc

†
ncn +

∑
k,n

Ekc
†
k,nck,n +

∑
q

Wq

(
ϕ⃗†
σ,q · ϕ⃗σ,q + ϕ⃗†

τ,q · ϕ⃗τ,q
)

+
∑
q

Fm
σ,q

(
ϕσz,q + ϕ†

σz,−q

)
+
∑
q

Fm
τ,q

(
ϕτz,q + ϕ†

τz,−q

) (C.4)

where
V iα
iα =

1

4
(Jσz + Jτz + JM4)

V iα
iα =

1

4
(Jτz − Jσz − JM4)

V iα
iα =

1

4
(Jσz − Jτz − JM4)

V iα
iα = −1

4
(Jσz + Jτz − JM4)

(C.5)
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and
F i↑
σ,q = gσz

F i↓
σ,q = −gσz

F 1α
τ,q = gτz

F 2α
τ,q = −gτz

(C.6)

One the other hand, the flipping part is defined as:

Hf =
∑
m̸=n

Q (m,n) (C.7)

where

Q (m,m) = |m⟩⟨m|Hf |n⟩⟨n| (C.8)

describing the process of flipping from the local impurity state |n⟩ to |m⟩. Specifically,

Q
(
iα, iα

)
= JM1f

†
iαfiαc

†
iα
ciα

Q (iα, iα) =
1

2
(Jσ⊥ − JM3) f

†
iαfiαc

†
iα
ciα +

1

2
(Jσ⊥ + JM3) f

†
iαfiαc

†
iαciα = Jσ⊥f

†
iαfiαc

†
iαciα

Q
(
iα, iα

)
=

1

2
(Jτ⊥ − JM2) f

†
iαfiαc

†
iα
ciα +

1

2
(Jτ⊥ + JM2) f

†
iαfiαc

†
iα
ciα = Jτ⊥f

†
iαfiαc

†
iα
ciα

(C.9)

since Jσ⊥ = JM3 and Jτ⊥ = JM2.

Since H0 is diagonal in the local impurity states, after tracing out these local

states, the partition function can be expanded in Hf , and the results is:

Z =
∞∑
n=0

∫ β

0

dτn...

∫ τi+1

0

dτi...

∫ τ2

0

dτ1
∑
m

A (m; τn, ..., τ1) (C.10)

Here the transition amplitude is defined as:

A (m; τn, ...τ1) = (−1)n
∑

m2,...,mn

∫
DcDϕ exp [−Hm (β − τn)]Q

′ (m,mn)× ...

× exp
[
−Hmi+1

(τi+1 − τi)
]
Q′ (mi+1,mi) exp [−Hmi (τi − τi−1)]× ...

× exp [−Hm2 (τ2 − τ1)]Q
′ (m2,m) exp [−Hmτ1]

(C.11)
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where

Q′ (mi+1,mi) = ⟨mi+1|Hf |mi⟩ (C.12)

, which can be separated as:

⟨m|Hf |n⟩ = y′m,nO
′ (m,n) (C.13)

with

y′iα,iα =
1

4
(Jσz + Jτz + JM4)

y′
iα,iα

= JM1

y′iα,iα =
1

2
(Jσ⊥ + JM3) = Jσ⊥

yiα,iα =
1

2
(Jτ⊥ + JM2) = Jτ⊥

O′
iα,iα = c†iαciα

O′
iα,iα

= c†
iα
ciα

O′
iα,iα = c†iαciα

O′
iα,iα = c†

iα
ciα

(C.14)

Now we can trace out the conduction electron by using the bosonization technique.

For our local impurity problem, we only need to consider the S-wave component:

ciα (x) =
1√
2πa

e−iθiα(x) (C.15)

The projected Hamiltonian thus transforms into:

Hm = Hc+Hϕσ+Hϕτ+E
′
m+
∑
n

δnm
πρ0

(
dθn (x)

dx

)
+
∑
q

Fm
σ,q

(
ϕσz,q + ϕ†

σz,−q

)
+
∑
q

Fm
τ,q

(
ϕτz,q + ϕ†

τz,−q

)
(C.16)

where E ′
m = Em +∆Em, ρ0 is the bare conduction electron density of state, and δjβiα
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is the phase shift from the scattering potential:

δiαiα = tan−1
(
πρ0V

iα
iα

)
= tan−1

[πρ0
4

(Jσz + Jτz + JM4)
]

δiαiα = tan−1
(
πρ0V

iα
iα

)
= tan−1

[πρ0
4

(Jτz − Jσz − JM4)
]

δiαiα = tan−1
(
πρ0V

iα
iα

)
= tan−1

[πρ0
4

(Jσz − Jτz − JM4)
]

δiαiα = tan−1
(
πρ0V

iα
iα

)
= tan−1

[
−πρ0

4
(Jσz + Jτz − JM4)

]
(C.17)

The history dependent potential is treated then through introducing a canonical

transformation at each imaginary time:

Uδ = exp

(
i
δ

π
θ

)
(C.18)

The potential after the canonical transformation is time-independent because of the

property:

U †
δHcUδ = Hc +

δ

πρ0

dθ

dx
(C.19)

We also introduce a similar canonical transformation to the bosonic degree of

freedom,

UWσ,m = exp

(∑
q

Fα
σ,q

Wq

(
ϕσz,q − ϕ†

σz,−q

))

UWτ,m = exp

(∑
q

Fα
τ,q

Wq

(
ϕτz,q − ϕ†

τz,−q

)) (C.20)

with the property:

U †
Wσ,m

HϕσUWσ,m = Hϕσ +
∑
q

Fm
σ,q

(
ϕσz,q + ϕ†

σz,−q

)
U †
Wτ,m

HϕτUWτ,m = Hϕτ +
∑
q

Fm
τ,q

(
ϕτz,q + ϕ†

τz,−q

) (C.21)
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The transition amplitude now reduce to:

A (m; τn, ..., τ1) = Zc
∑

mn+1=α1=m,m2,...mn−1

y′mn+1,αn
...y′mi+1,mi

...y′m2,m1

× exp

[
−E ′

m (τ1 − τn)−
n−1∑
i=2

E ′
mi+1

(τi+1 − τi)

]

× ⟨O (mn+1,mn) (τn) ...O (mi+1,mi) (τi) ...O (m2,m1) (τ1)⟩

× ⟨Bσ (mn+1,mn) (τn) ...Bτ (mi+1,mi) (τi) ...Bσ (m2,m1) (τ1)⟩

× ⟨Bτ (mn+1,mn) (τn) ...Bτ (mi+1,mi) (τi) ...Bτ (m2,m1) (τ1)⟩

(C.22)

Here, for the bosonic part

Bσ (mi+1,Mi) (τi) = UWσ,mi+1
U †
Wσ,mi

(τi)

Bτ (mi+1,mi) (τi) = UWτ,mi+1
U †
Wτ,mi

(τi)

(C.23)

, the correlation function can be reduced into

⟨Bσ (mn+1,mn) (τn) ...Bσ (m2,m1) (τ1)⟩ = UWσ,mi+1
U †
Wσ,mi

(τi)

= ⟨
∏
i

exp

(
−
∑
q

F
mi+1mi
σ,q

Wq

(
ϕσz,q − ϕ†

σz,−q

)
(τi)

)
⟩

= ⟨exp

(∑
ij

Cσ (τi − τj)

)
exp (∆E)⟩

(C.24)

and similarly

⟨Bτ (mn+1,mn) (τn) ...Bτ (m2,m1) (τ1)⟩

= UWτ,mi+1
U †
Wτ,mi

(τi) = ⟨
∏
i

exp

(
−
∑
q

F
mi+1mi
τ,q

Wq

(
ϕτz,q − ϕ†

τz,−q

)
(τi)

)
⟩

= ⟨exp

(∑
ij

Cτ (τi − τj)

)
exp (∆E)⟩

(C.25)

where
Fmi+1mi
σ,q = Fmi+1

σz,q − Fmi
σz,q

Cσ (τi − τj) =
∑
q

F
mi+1mi
σ,q F

mj+1mj
σ,q

W 2
q

exp (−Wq (τj − τi))
(C.26)
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Fmi+1mi
τ,q = Fmi+1

τz,q − Fmi
τz,q

Cτ (τi − τj) =
∑
q

F
mi+1mi
τ,q F

mj+1mj
τ,q

W 2
q

exp (−Wq (τj − τi))
(C.27)

with ∑
q

exp (−Wqτ) =
Kγ

τ 1+γ
(C.28)

On the other hand, for the conduction electron part

O (mi+1,mi) (τi) = exp (Hcτi)O (mi+1,mi) exp (−Hcτi) (C.29)

Here,

O (mi+1,mi) =

(∏
n

Uδnmi+1

)
O′ (m,mi)

(∏
n

U †
δnni

)
(C.30)

and for different channels, they are:

O (iα, iα) =
∏
jβ

U jβ
iα c

†
iαciα

∏
jβ

U †jβ
iα = 1

O
(
iα, iα

)
=
∏
jβ

U jβ
iα c

†
iα
ciα
∏
jβ

U †jβ
iα

= exp

[(
δiαiα
π

−
δiα
iα

π
− 1

)
θiα +

(
δiαiα
π

−
δiα
iα

π

)
θiα +

(
δiαiα
π

−
δiα
iα

π

)
θiα +

(
δiαiα
π

−
δiα
iα

π
+ 1

)
θiα

]

O (iα, iα) =
∏
jβ

U jβ
iα c

†
iαciα

∏
jβ

U †jβ
iα

= exp

[(
δiαiα
π

− δiαiα
π

− 1

)
θiα +

(
δiαiα
π

− δiαiα
π

+ 1

)
θiα +

(
δiαiα
π

− δiαiα
π

)
θiα +

(
δiαiα
π

− δiαiα
π

)
θiα

]

O
(
iα, iα

)
=
∏
jβ

U jβ
iα c

†
iα
ciα
∏
jβ

U †jβ
iα

= exp

[(
δiαiα
π

−
δiα
iα

π
− 1

)
θiα +

(
δiαiα
π

−
δiα
iα

π

)
θiα +

(
δiαiα
π

−
δiα
iα

π
+ 1

)
θiα +

(
δiαiα
π

−
δiα
iα

π

)
θiα

]
(C.31)

We can rewrite these term as:

O (m,n) = exp

[
i
∑
r

ermnθr

]
(C.32)
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After all of these, the partition function is mapped into:

Z

Z0

=
∞∑
n=0

∑
mn+1=m1=m,m2,...mn−1

∫ β−ξ0

ξ0

dτn
ξ0
...

∫ τi+1−ξ0

ξ0

dτi
ξ0
...

∫ τ2−ξ0

ξ0

dτ1
ξ0

exp [−S (τ1, ..., τn)]

(C.33)

with a Coulomb gas type action:

S (τ1, ..., τn) = −
∑
i

ln ymi,mi+1
+
∑
i

hmi+1

τi+1 − τi
ξ0

+
∑
i<j

[
Kmi,mj +Kmi+1,mj+1

−Kmi,mj+1
−Kmi+1,mj

]
ln
τj − τi
ξ0

+
∑
i<j

[
Mσ

mi,mj
+Mσ

mi+1,mj+1
−Mσ

mi,mj+1
−Mσ

mi+1,mj

] [(τj − τi
ξ0

)1−γ

− 1

]

+
∑
i<j

[
M τ

mi,mj
+M τ

mi+1,mj+1
−M τ

mi,mj+1
−M τ

mi+1,mj

] [(τj − τi
ξ0

)1−γ

− 1

]
(C.34)

where hm ∝ E ′
m and

ym,nO
′ (m,n) = ⟨m|Hf |n⟩

Km,n =
1

2

∑
r

(ermn)
2

Mσ
m,n =

1

2

∑
q

(
Fmn
σ,q

)2
M τ

m,n =
1

2

∑
q

(
Fmn
τ,q

)2
(C.35)

By following these definitions, for the Bose-Fermi Kondo model (C.1), the non-
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vanishing fugacity ym,n and stiffness Km,n, Mσ
m,n and M τ

m,n are:

y′
iα,iα

≡ y1 = JM1

y′iα,iα ≡ y2 = Jσ⊥

yiα,iα ≡ y3 = Jτ⊥

Kiα,iα ≡ K1 = f1 (Jσz, Jτz, JM4)

Kiα,iα ≡ K2 = f2 (Jσz, Jτz, JM4)

Kiα,iα ≡ K3 = f3 (Jσz, Jτz, JM4)

Mσ
iα,iα

=Mσ
iα,iα ≡Mσ = Γ (γ) g2σz

M τ
iα,iα

=M τ
iα,iα

≡M τ = Γ (γ) g2τz

(C.36)

where the explicit expression of K1,2,3 is complicated and unnecessary. They come

from Eq. (C.31), where the phase shifts are known in Eq. (C.17). The only few things

that matter are that they depend only on indices-preserving coupling Jσz,τz,M4, and

the range of their bare value is f1,2,3 (Jσz, Jτz, JM4) ∈ (0, 3).

For the Coulomb gas action (C.34), the associated RG equations can be derived

through a conventional manner[145, 167, 168, 169], and it turns out:
dy1
dl

= (1−K1 −Mσ −M τ ) y1 + 2y2y3

dy2
dl

= (1−K2 −Mσ) y2 + 2y1y3

dy3
dl

= (1−K3 −M τ ) y3 + 2y1y2

dK1

dl
= −2y21 (2K1)− 2y22 (K1 +K2 −K3)− 2y23 (K1 +K3 −K2)

dK2

dl
= −2y21 (K2 +K1 −K3)− 2y22 (2K2)− 2y23 (K2 +K3 −K1)

dK3

dl
= −2y21 (K3 +K1 −K2)− 2y22 (K3 +K2 −K1)− 2y23 (2K3)

dMσ

dl
=
(
ϵ− 4y21 − 4y22

)
Mσ

dM τ

dl
=
(
ϵ− 4y21 − 4y23

)
M τ

(C.37)
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where ϵ = 1− γ.

C.2 RG analysis and the generic phase diagram

In this section, we give a detailed RG analysis of the β functions (C.37). We also

illustrate the generic phase diagram Fig. (5.7) based on our RG analysis.

C.2.1 RG analysis

By identifying the zeros of the β functions (C.37), one can find the fixed points:

(F1) : y1 =
√
ϵ

2
, y2 = 0, y3 = 0, K2 = K3 = k, K1 = 0, Mσ +M τ = 1

(F2) : y1 = 0, y2 =

√
ϵ

2
, y3 = 0, K1 = K3 = k, K2 = 0, Mσ = 1, M τ = 0

(F3) : y1 = 0, y2 = 0, y3 =

√
ϵ

2
, K1 = K2 = k, K3 = 0, Mσ = 0, M τ = 1

(F4) : y1 = y2 = y3 = 0, K1 = k1, K2 = k2, K3 = k3, M
σ =M τ = 0

The RG flow trajectory around these fixed points can be analysed through the

eigenvalues and eigenvectors of the matrix:

W =



∂βy1
∂y1

∂βy1
∂y2

∂βy1
∂y3

∂βy1
∂K1

∂βy1
∂K2

∂βy1
∂K3

∂βy1
∂Mσ

∂βy1
∂Mτ

∂βy2
∂y1

∂βy2
∂y2

∂βy2
∂y3

∂βy2
∂K1

∂βy2
∂K2

∂βy2
∂K3

∂βy2
∂Mσ

∂βy2
∂Mτ

∂βy3
∂y1

∂βy3
∂y2

∂βy3
∂y3

∂βy3
∂K1

∂βy3
∂K2

∂βy3
∂K3

∂βy3
∂Mσ

∂βy3
∂Mτ

∂βK1

∂y1

∂βK1

∂y2

∂βK1

∂y3

∂βK1

∂K1

∂βK1

∂K2

∂βK1

∂K3

∂βK1

∂Mσ

∂βK1

∂Mτ

∂βK2

∂y1

∂βK2

∂y2

∂βK2

∂y3

∂βK2

∂K1

∂βK2

∂K2

∂βK2

∂K3

∂βK2

∂Mσ

∂βK2

∂Mτ

∂βK3

∂y1

∂βK3

∂y2

∂βK3

∂y3

∂βK3

∂K1

∂βK3

∂K2

∂βK3

∂K3

∂βK3

∂Mσ

∂βK3

∂Mτ

∂βMσ

∂y1

∂βMσ

∂y2

∂βMσ

∂y3

∂βMσ

∂K1

∂βMσ

∂K2

∂βMσ

∂K3

∂βMσ

∂Mσ
∂βMσ

∂Mτ

∂βMτ

∂y1

∂βMτ

∂y2

∂βMτ

∂y
∂βMτ

∂K1

∂βMτ
3

∂K2

∂βMτ

∂K3

∂βMτ

∂Mσ
∂βMτ

∂Mτ



(C.38)

and then one can conclude that except the fixed point F1, which is a generic critical
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point, other are just unstable fixed points. The RG trajectory around the critical point

F1 flow toward either a strong coupling SU(4) Kondo-screened(KS) fixed point:

(S1) : y1, y2, y3 → ∞, K1 = K2 = K3 = 0, Mσ =M τ = 0

or a spin and orbital Kondo-destroyed(KD) phase:

(G) : y1 = y2 = y3 = 0, K1 = k1, K2 = k2, K3 = k3, M
σ → ∞, M τ → ∞

However, F1 is not the only critical point that controls all the critical phenomena

of the phase diagram. For instance, one can also find that except flowing to the fixed

point F1, fixed point F2 also flows toward the direction M τ
3 → ∞, and thus approach

to:

(F5) : y1 = 0, y2 =

√
ϵ

2
, y3 = 0, K1 = K3 = k, K2 = 0, Mσ

2 = 1, M τ
3 → ∞

For the F5, except the β function dM τ/dl, other β functions remain zero. As a

result, F5 corresponds to a fixed point at the large M τ regime. By study the nearby

RG trajectory through the matrix W in Eq. (C.38), one can conclude that fixed point

F5 is actually a generic critical point, and flows toward either the spin and orbital

KD phase G, or an orbital KS phase:

(S2) : y2 → ∞, y1 = y3 = 0, K2 = 0, K1 = K3 = kτ , M
σ = 0, M τ → ∞

Similarly, there is another fixed point

(F6) : y1 = 0, y2 = 0, y3 =

√
ϵ

2
, K1 = K2 = k, K3 = 0, Mσ = 0, M τ → ∞

which flows to either the spin and orbital KD phase G, or a spin KS strong coupling

fixed point:

(S3) : y3 → ∞, y1 = y2 = 0, K3 = 0, K1 = K2 = kτ , M
σ → ∞, M τ = 0
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Figure C.1 : The schematic fixed points structure and their relative RG flow of BFK
model (5.8) based on the β functions (C.37). Here KS and KD is the abbreviation
for the Kondo-screened and the Kondo-destroyed, respectively. The three boxes on
the top are the different kinds of strong Kondo coupling fixed points, which should
be all stable according to the β functions (C.37). The middle five are the different
fixed points in the order of ϵ, where F1, F5 and F6 are the generic critical points
corresponding to different kinds of phase transitions. The bottom box is a completely
Kondo-destroyed phase. Since the critical points can flow toward the different types
of strong Kondo coupling fixed points S1, S2, and S1, there should be some critical
points(denoted as orange boxes here) separating these strong Kondo coupling fixed
points.
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The stability of the strong coupling fixed points S1, S2, and S3 can be explored

through the matrix W (C.38), which indicates that they are stable against other

small perturbations. Hence, there should be other strong coupling critical points

separating them. The whole RG flow structure is summarized in Fig. C.1, where

the orange boxes denote the strong coupling critical points separating stable strong

Kondo coupling fixed points. We also neglect the fixed F4 since it is the most unstable

fixed point and thus does not affect the RG structure at all.

Figure C.2 : The generic phase diagram with arbitrary Kondo couplings based on the
RG flow structure Fig. C.1. The critical properties across each blue lines, the red
line, and orange lines are controlled by a specific critical points in the blue, red, and
orange boxes in Fig. C.1, respectively.

From to the RG flow structure Fig.C.1, one can see that the spin and orbital KD

phase G can transit to different kinds of strong Kondo coupling fixed points S1, S2,

and S3. There are three distinct types of trajectory path, and the associated critical
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phenomena are controlled by different generic critical points F1, F5, and F6. Based

on these results, the generic phase diagram is shown in Fig. C.2∗.

In the following, we are going to elaborate these results in a more transparent and

visible way.

C.2.2 Transition to the SU(4) Kondo-screened phase

To illustrate the transition between the spin and orbital KD phase to the SU(4) KS

phase, we choose to scan the RG flow structure by taking gσz = gτz = g, which

corresponds to the trajectory denoted as dashed arrow in Fig. 5.8.

Since along this direction, the β functions (C.37) are invariant under σ ↔ τ , one

can set y2 = y3 = y and K2 = K3 = K. The β functions (C.37) thus can be reduced

to:
dy1
dl

= (1−K1 − 2M) y1 + 2y2

dy

dl
= (1−K −M) y + 2y1y

dK1

dl
= −2y21 (2K1)− 4y2 (K1)

dK

dl
= −2y21 (K1)− 4y2 (2K) + 2y2 (K1)

dM

dl
=
(
ϵ− 4y21 − 4y2

)
M

(C.39)

One can see that the coupling constant K1 flows to 0 no matter the initial values,

∗Here the term “generic” means that we choose arbitrary Jσz, Jτz ,Jσ⊥ ,Jτ⊥, JM1
, JM4

, and then

keep them fixed while varying gσz and gτz.
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and thus the β functions can be further reduced into:

dy1
dl

= (1− 2M) y1 + 2y2

dy

dl
= (1−K −M) y + 2y1y

dK

dl
= −2y21 (K1)− 4y2 (2K)

dM

dl
=
(
ϵ− 4y21 − 4y2

)
M

(C.40)

and again, K → 0 no matter the initial values, so in the end we derive the reduced β

functions Eq. (5.15):
dy1
dl

= (1− 2M) y1 + 2y2

dy

dl
= (1−M) y + 2y1y

dM

dl
=
(
ϵ− 4y21 − 4y2

)
M

(C.41)

By these reduced β functions (C.41), one identify a critical point (y∗1, y
∗,M∗) =(√

ϵ
2
, 0, 1

2

)
. This critical point actually corresponds to the critical point F1 in Fig.

C.1, and separates the spin and orbital KD phase from the SU(4) KS phase.

C.2.3 Transition to spin or orbital Kondo-screened phase

Here we aim to illustrate the transition between the spin and orbital KD phase and

the spin or orbital KS phase. We scan the RG flow by taking the gσz → ∞ and

vary the gτz, which corresponds to the dashed arrow lines in Fig. 5.10. Under this

condition, according to the β functions (C.37), y1 and y3 must both flow to 0, and
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both are irrelevant. The β functions can thus be reduced into:

dy2
dl

= (1−K2 −Mσ) y2

dK1

dl
= −2y22 (K1 +K2 −K3)

dK2

dl
= −2y22 (2K2)

dK3

dl
= −2y22 (K3 +K2 −K1)

dMσ

dl
=
(
ϵ− 4y22

)
Mσ

(C.42)

by which one can see that K2 → 0, and again the β functions can be further reduced

into:
dy2
dl

= (1−Mσ) y2

dK1

dl
= −2y22 (K1 −K3)

dK3

dl
= −2y22 (K3 −K1)

dMσ

dl
=
(
ϵ− 4y22

)
Mσ

(C.43)

From the reduced β functions (C.43), one can immediately conclude that the K1

and K3 flow to the fixed point K1 = K3 = kτ , where kτ is a constant. As a result,

the final reduced β functions are indeed Eq. (5.16).

By these reduced β functions (C.43), One can find a critical point (y∗2,M
σ∗) =(√

ϵ
2
, 1
)

, which corresponds to the fixed point F5 in Fig. C.1 and separates the spin

and orbital KD phase from the spin KS phase.
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Appendix D

Appendix of Chapter 6

D.1 Ginzburg-Lanbdau theory

We start from the Ginzburg-Landau description for the magnetism in iron pnictides,

Eq. (1) of the main text. After performing the Hubbard-Stranovich transformation

to the quartic term S4 in the action of Eq. (1), the resulting action is:

S0 = S2,m⃗,∆,η + S3,m⃗,∆,η

S2,m⃗,∆,η =
∑

q=q⃗,iωn

{
χ−1
0 (q)

(
|m⃗A (q) |2 + |m⃗B (q) |2

)
+∆(q)χ−1

∆ (q)∆ (−q) + −1

4u1

(
iη (q)− r

)(
iη (−q)− r

)}
S3,m⃗,∆,η =

∫ β

0

dτ

∫
d2x

[
2∆m⃗A · m⃗B + 2iη

(
m⃗2
A + m⃗2

B

)]
(D.1)

The field ∆ is the Ising-nematic order parameter field because it is the conjugate to the

bilinear m⃗A · m⃗B, which changes sign under the transformation m⃗A → ±m⃗A , m⃗B →

∓m⃗B. The field η is the conjugate of m⃗2
A + m⃗2

B. The nematic propagator χ∆ will

have the form

χ−1
∆ (q⃗, iωn) =

1

uI
− Π∆ (q⃗, iωn) . (D.2)

The constant term 1
uI

comes from the Hubbard-Stratonovich transformation of the

quartic term in Eq. (1), while Π(q⃗, iω) will come from integrating out high energy

m⃗A and m⃗B fields as well as background coherent-fermion fields.
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D.2 nematicity and the Spin excitation anisotropy

The spin excitation anisotropy χd (ω) and the dynamical magnetic susceptibility

χs (ω) is defined as:

χs (ω) ≡ χ
(
Q⃗1, ω

)
+ χ

(
Q⃗2, ω

)
(D.3)

χd (ω) ≡ χ
(
Q⃗1, ω

)
− χ

(
Q⃗2, ω

)
(D.4)

where Q⃗1 = (π, 0) and Q⃗2 = (0, π) are ordering wave vectors, and the dynamical

spin susceptibility χ (q⃗, ω) is:

χ (q⃗, ω) =∫
d2r′

∫
d2r

∫
dτe−iq⃗·(r⃗

′−r⃗)−iωτ ⟨Tτ S⃗ (r⃗, τ) · S⃗∗ (r⃗′, 0)⟩S
(D.5)

and S⃗ (r⃗, τ) is the local spin operator.

In order to measure spin excitation anisotropy χd (ω), an small external uniaxial

stress is necessary to detwin the sample. Therefore, the expectation ⟨Tτ S⃗ (r⃗, τ) ·

S⃗∗ (r⃗′, 0)⟩S in Eq.(D.5) is calculated under the action S = S0 + Sλ,∆ in Eq. (2) of the

main text.

Our next step is to express the dynamical magnetic susceptibility χs (ω) and the

spin excitation anisotropy χd (ω) in term of the magnetic order parameter fields m⃗A,

m⃗B, and the nematic order parameter field ∆. To do so, we just need to recognize

that in iron pnictides, the local spin operator field S⃗ (r⃗, τ) can be represented as

S⃗ (r⃗, τ) = m⃗1 (r⃗, τ) e
iQ⃗1·r⃗+m⃗2 (r⃗, τ) e

iQ⃗2·r⃗, where m⃗1 (r⃗, τ) = (m⃗A (r⃗, τ)− m⃗B (r⃗, τ)) /2

and m⃗2 (r⃗, τ) = (m⃗A (r⃗, τ) + m⃗B (r⃗, τ)) /2, is the magnetic order parameter associated

with ordering wave vector Q⃗1 and Q⃗2, respectively. We can then express the spin

excitation anisotropy χd (ω) and dynamical magnetic susceptibility χs (ω) in terms of
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the magnetic order parameter fields m⃗A and m⃗B:

χd (ω) ≡ χ
(
Q⃗1, ω

)
− χ

(
Q⃗2, ω

)
= −1

2

∫
dτe−iωτ ⟨Tτm⃗A (q⃗ = 0, τ) · m⃗B (q⃗′ = 0, τ ′ = 0)⟩S

− 1

2

∫
dτe−iωτ ⟨Tτm⃗B (q⃗ = 0, τ) · m⃗A (q⃗

′ = 0, τ ′ = 0)⟩S

= −
∫
dτe−iωτ ⟨Tτm⃗A (q⃗ = 0, τ) · m⃗B (q⃗′ = 0, τ ′ = 0)⟩S

(D.6)

and
χs (ω) ≡ χ

(
Q⃗1, ω

)
+ χ

(
Q⃗2, ω

)
=

1

2

∫
dτe−iωτ ⟨Tτm⃗A (q⃗ = 0, τ) · m⃗A (q⃗

′ = 0, τ ′ = 0)⟩S

+
1

2

∫
dτe−iωτ ⟨Tτm⃗B (q⃗ = 0, τ) · m⃗B (q⃗′ = 0, τ ′ = 0)⟩S

=

∫
dτe−iωτ ⟨Tτm⃗A/B (q⃗ = 0, τ) · m⃗A/B (q⃗′ = 0, τ ′ = 0)⟩S

(D.7)

Here, the last equality for both Eq. (D.6) and Eq. (D.7) hold since the the model (2)

of the main text respect the symmetry m⃗A ↔ m⃗B, and there is no condensation of the

⟨m⃗2
A−m⃗2

B⟩. We also neglected the terms such as ⟨m⃗A

(
Q⃗2 − Q⃗1, ω

)
m⃗B

(
−
(
Q⃗2 − Q⃗1

)
,−ω

)
⟩.

Because |Q⃗1 − Q⃗2| ≈ Λ, where Λ is the momentum cut-off of the theory, such term

can only be generated by very severe spatial fluctuations which had already been

coarse-grained in the construction of the starting Ginzburg-Landau description (1) of

the main text.

The expectation values in Eqs. (D.6) and (D.7) are calculated under the action

S = S0 + Sλ,∆. Now we treat the uniaxial strain Sλ,∆ as a perturbation and expand

the action with respect to S0:
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⟨Tτm⃗A (0, τ) · m⃗A (0, 0)⟩S0+Sλ,∆ = ⟨Tτm⃗A (0, τ) · m⃗A (0, 0)⟩S0

− λ

∫
dτ ′⟨Tτm⃗A (0, τ) · m⃗A (0, 0)∆ (0, τ ′)⟩S0 +O

(
λ2
)

= ⟨Tτm⃗A (0, τ) · m⃗A (0, 0)⟩S0 +O
(
λ2
)

=

∫
dω′eiω

′τχmA (0, ω
′) +O

(
λ2
)

(D.8)

We have used ⟨Tτm⃗A (0, τ) m⃗A (0, 0)∆ (0, τ ′)⟩S0 = 0, and the fact that χmA (q⃗, ω
′) is

the magnetic propagator in the momentum space. Following Eq. (D.7) and Eq. (D.8),

we have:

χs (ω) = χmA/B (0, ω) = χm (0, ω) (D.9)

where χmA (0, ω) = χmB (0, ω) because of the symmetry m⃗A ↔ m⃗B respected by the

action (2) of the main text. We have defined χm (0, ω) ≡ χmA (0, ω) = χmB (0, ω).

We see that χs (ω) is just the dynamical magnetic propagator χm (0, ω). Similarly,

for the spin excitation anisotropy χd (ω):

⟨Tτm⃗A (0, τ) · m⃗B (0, 0)⟩S0+Sλ,∆ = ⟨Tτm⃗A (0, τ) · m⃗B (0, 0)⟩S0

− λ

∫
dτ ′⟨m⃗A (0, τ) · m⃗B (0, 0)∆ (0, τ ′)⟩S0 +O

(
λ2
)

= −λ
∫
dτ ′⟨Tτm⃗A (0, τ) · m⃗B (0, 0)∆ (0, τ ′)⟩S0 +O

(
λ2
) (D.10)

where ⟨Tτm⃗A (0, τ) · m⃗B (0, 0)⟩S0 ∝ ⟨∆⟩S0δτ,0 vanishes when temperature T > TS, the

nematic phase transition temperature, or T < TS but near the critical point at which

⟨∆⟩S0 → 0. Since in this work, we focus on the quantum critical region, we can safely

discard this term.

On the other hand, since any three-point correlation function can always be fac-

torized as the product of suitable irreducible two-point correlation function and irre-
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ducible vertex function[164, 165, 166], we have:∫
dτ ′⟨Tτm⃗A (0, τ) · m⃗B (0, 0)∆ (0, τ ′)⟩S0 =∫
dω′eiω

′τV (0, ω′)χmA (0, ω
′)χ∆ (0, 0)χmB (0,−ω′)

(D.11)

As a result, we conclude:

χd (ω) ≡ χ
(
Q⃗1, ω

)
− χ

(
Q⃗2, ω

)
= λV (0, ω)χmA (0, ω)χ∆ (0, 0)χmB (0,−ω) +O

(
λ2
)

= λV (0, ω)χ2
m (0, ω)χ∆ (0, 0) +O

(
λ2
) (D.12)

where the χ∆ is the nematic propagator, and V is the vertex function involving

two external magnetic order parameter fields m⃗A and m⃗B, and one nematic order

parameter field ∆. Again, we use χmA (0, ω) = χmB (0, ω) = χm (0, ω). Because of

the time reversal symmetry, we also have χm (0, ω) = χm (0,−ω)

Note that when we derive the identities (D.9) and (D.12), we only expand the

uniaxial strain term Sλ,∆ perturbatively. Therefore, both the identities (D.9) and

(D.12) are valid non-perturbatively as far as S0 is concerned.

D.3 Scaling analysis of spin excitation anisotropy with non-

zero anomalous dimension

In this section, we carry through the scaling analysis of the spin excitation anisotropy

χd (ω) and dynamical magnetic susceptibility χs (ω) with a non-zero anomalous di-

mension η for the magnetic order parameter field m⃗. The scaling dimension of the

magnetic order parameter field is:

dm = −D + z + 2− η

2
(D.13)

with η ̸= 0.
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Following a procedure similar to that presented in the main text, in the quantum

critical regime the frequency dependence of the magnetic propagator is:

χm (0, ω) = χs (ω) ∼ ω− 2−η
z (D.14)

and the frequency dependence of the vertex function is:

V (0, ω) ∼ ω
(2−η)−d∆−(D+z)

z (D.15)

Consequently, by the identity Eq. (D.12), the spin excitation anisotropy is:

χd (ω) ∼ ω
−(2−η)−d∆−(D+z)

z (D.16)

Therefore, with the knowledge of the anomalous dimension η, again we can detect

the dynamical exponent z and the scaling dimension of the nematic order parameter

d∆ by measuring the dynamical nematic susceptibility χs (ω) and the spin excitation

anisotropy χd (ω) according to:

− (2− η)

z
=
∂ lnχs (ω)

∂ lnω
−d∆ − (D + z)− (2− η)

z
=
∂ lnχd (ω)

∂ lnω

(D.17)

For the singular energy dependence of the spin excitation anisotropy and the

dynamical magnetic susceptibility observed in the Ni-doped BaFe2As2 near optimal

doping, if anomalous dimension η ̸= 0, again the relation (20) in the main text implies

that:

V (0, ω) ∼ χd (ω)

χ2
m (0, ω)

∼ ω0 (D.18)

and thus following Eq. (D.15):

d∆ = 2− η −D − z (D.19)
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Again, to see what this implies for the nematic degree of freedom, let’s consider

the nematic propagator to take a general form in the quantum critical regime:

χ−1
∆ (q, ω) = b1q

n + b2
|ω|
qa

(D.20)

by which we then know:

z = n+ a (D.21)

and

d∆ = −D + z + n

2
= −D + 2n+ a

2
(D.22)

Compare it with Eq. (D.19), it is straightforward to show that:

a = 4−D − 2η = 2− 2η (D.23)
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