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Abstract

This thesis studies the degeneration of a particular class of minimal surfaces in

the bidisc, describing both the limiting metric structure and geometry. Minimal

surfaces inside symmetric spaces have been shown to be directly related to surface

group representations into higher rank Lie groups by recent work of Labourie. Let

S be a closed surface of genus g � 2 and let ⇢ be a maximal PSL(2,R) ⇥ PSL(2,R)

surface group representation. By a result of Schoen, there is a unique ⇢-equivariant

minimal surface e⌃ in H
2
⇥ H

2. We study the induced metrics on these minimal

surfaces and prove the boundary limits are precisely mixed structures, as defined

below in the introduction. In the second half of the thesis, we provide a geometric

interpretation: the minimal surfaces e⌃ degenerate to the core of a product of two

R-trees. As a consequence, we obtain a geometric compactification of the space of

maximal representations of ⇡1(S) into PSL(2,R)⇥ PSL(2,R).
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Chapter 1

Introduction and background

1.1 A lay introduction

Since the dawn of civilization, man has gazed up towards the heavens and wondered

what lied beyond. Explorers from empires past have voyaged to the ends of the earth

to chart new lands. But the quest to understand what things “far away” look or

how things change also appears in mathematics. Archimedes looked at regular n-

sided polygons, and for large n, observed the shape looked more and more circular.

Centuries later, with the advent of calculus, limits of functions were studied.

The thesis seeks to describe particular limits. But instead of celestial bodies

or behavior of functions, the objects we are interested in are minimal surfaces. A

minimal surface is a surface that locally minimizes area. In Euclidean 3-space R
3,

physical models of minimal surfaces can be seen with soap solutions adhering to some

wire frame creating a soap film. These configurations are nice models of minimal

surfaces, as nature seeks to minimize “energy”, and any configuration occupying the

1
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least area would be a prime candidate. The particular class of minimal surfaces we

are interested in however, cannot be easily physically modeled, as is in the case of

minimal surfaces in R
3. We are mainly interested in minimal surfaces in the bidisc

H
2
⇥ H

2, which is a 4-dimensional space. The hyperbolic space H
2 is the unit disc

D := {z 2 C : |z| < 1} endowed with the hyperbolic metric ds2 = 4|dz|2

(1�|z|2)2 . One

possible way to envision this metric is the disk is covered with a strange liquid, and if

one starts at the origin of the disk and wades further out, one can imagine the liquid

become more and more viscous. Hence, what we might usually perceive as a small

distance in the Euclidean sense, becomes larger and larger, the further out from the

center of the disk we are. The bidisc is then the product of two copies of H2. Our

choice of studying minimal surfaces in H
2
⇥ H

2 is not arbitrary, but rather because

it appears as the symmetric space of the Lie group PSL(2,R)⇥ PSL(2,R).

In what may initially appear as an entirely di↵erent focus, we are interested in

surface group representations to PSL(2,R) ⇥ PSL(2,R). A surface group is the fun-

damental group ⇡1(S) of a closed surface S. It is the group of (equivalence classes

under homotopy) of closed loops on the surface S. Concretely, for a surface of genus

g, it has the following group presentation

⇡1(S) = {�1, �2, ..., �2g�1, �2g :
gY

i=1

�2i�1�2i�
�1
2i�1�

�1
2i = 1}.

By a representation, we mean a homomorphism between groups, so that the sur-

face group representations to the Lie group PSL(2,R) ⇥ PSL(2,R) will be a group

homomorphism between ⇡1(S) and PSL(2,R)⇥ PSL(2,R).
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It may be clear at this point why will restrict ourselves to the case where the genus

g of the surface S is at least 2. In the genus 0 case, the fundamental group is trivial,

as the sphere is simply connected. In the genus 1 case, though the fundamental

group is nontrivial, it is abelian, and from a representation point of view, becomes

too simplistic.

In order to motivate why these algebraic objects are particularly interesting, we

use as a model case of surface group representations to PSL(2,R). This is where

classical Teichmüller theory comes into play. As the intent of this section is to provide

an introduction to a non-specialist audience, we defer precise definitions to the next

section.

The group PSL(2,R) is defined by

PSL(2,R) :=

(
0

BB@
a b

c d

1

CCA : a, b, c, d 2 R, and ad� bc = 1

)
/{±I},

so it is the quotient of the group SL(2,R) by identifying the identity element I with

its negative �I. The group PSL(2,R) is the group of isometries of H2. If we have a

representation ⇢ from ⇡1(S) to PSL(2,R), that is both faithful (injective) and discrete,

then the quotient H2/⇢(⇡1(S)) is a closed hyperbolic surface with the same underlying

topology as S. These particular surface group representations into PSL(2,R), which

are both discrete and faithful, are known as Fuchsian representations. In fact, if one

starts with a closed hyperbolic surface X with the same underlying smooth surface

S, one can lift to its universal cover eX, which by the Cartan-Hadamard theorem, is

isometrically di↵eomorphic to H
2. Under the usual correspondence between elements
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of the fundamental group of X to deck transformations of eX, one then obtains from

a closed hyperbolic surface X, a Fuchsian representation.

Herein we see a bridge between two di↵erent fields of mathematics. On the one

hand we have a surface group representation to PSL(2,R), which is an algebraic and

topological object. The algebraic aspect is clear, as we are dealing with a group

homomorphism. The topological feature comes from the fundamental group (the

fundamental group of a closed surface completely determines the surface up to home-

omorphism). On the other hand, we have a hyperbolic surface, a geometric object.

The metric allows us to makes sense of lengths and angles.

One final class of objects, we would like to introduce, are Riemann surfaces. In-

formally (the precise definition is given in the next section), these are patches of the

complex plane C stitched together in a holomorphic (complex di↵erentiable) fashion.

Though Riemann surfaces will naturally carry an underlying smooth structure S, for

a fixed surface S, there are many di↵erent possible Riemann surface structures one

may place on the same surface S. The moduli space of Riemann surfaces is the space

of possible Riemann surface (or complex) structures one may place on S. Riemann

himself was interested in this particular question of moduli, and knew the number of

parameters on which the complex structure depends. Classical Teichmüller theory is

the study of Riemann surfaces and their variations.

A Riemann surface is a holomorphic object, and having the notion of locally

resembling the complex plane, allows us to make sense of angles (given locally by

multiplication by i). Notice that having the notion of angle is not quite enough if

we desire to work with a metric. We would need the notion of length. But the
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Uniformization theorem allows one to start with just notions of angle and extend this

to an apt metric, which is usually taken to be the hyperbolic metric, thus allowing

one to freely pass between Riemann surfaces and hyperbolic surfaces.

The Uniformization theorem completes the bridge between holomorphic objects

and geometric ones. Combining with the earlier discussion concerning Fuchsian rep-

resentations and hyperbolic surfaces, we now see a correspondence between alge-

braic/topological objects, geometric objects and holomorphic objects.

It is one aim of higher Teichmüller theory to extend such a correspondence to

include di↵erent groups, not just PSL(2,R). In replacing PSL(2,R) with a higher

rank Lie group G, the resulting algebraic/topological objects are still surface group

representations, though this time not to PSL(2,R), but rather to G. Hyperbolic

metrics are replaced with minimal surfaces inside a symmetric space and are the

higher rank versions of the geometric objects. Finally, Riemann surfaces will be

replaced with Riemann surfaces with a holomorphic n-di↵erential.

One possible question is why in particular choose PSL(2,R)⇥ PSL(2,R)? In the

later sections on background material, we will see that the following groups enjoy the

correspondence discussed above: PSL(2,R) ⇥ PSL(2,R), SL(3,R), Sp(4,R) and G2.

In higher rank, the correspondence is conjectured to be true, but remains unproven.

Among the rank 2 groups, PSL(2,R)⇥PSL(2,R) has a product structure allowing us

to employ some techniques coming from the theory of representations to PSL(2,R).

These tools cannot immediately be applied to the other groups, though in the con-

cluding remarks, we will mention how some of the methods developed in this thesis

can be used to study the other rank 2 groups (see [49], [50]).
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Our thesis studies the group PSL(2,R) ⇥ PSL(2,R). Utilizing the correspon-

dence discussed above, observing that the symmetric space associated to PSL(2,R)⇥

PSL(2,R) is the bidisc H
2
⇥ H

2, it is clear now why minimal surfaces in the bidisc

have interest outside of geometry. These minimal surfaces correspond to surface group

representations to PSL(2,R) ⇥ PSL(2,R). For sake of completeness, we remark the

analogous holomorphic objects are Riemann surfaces with a holomorphic quadratic

di↵erential, which will play a prominent role in the setting of harmonic maps later

in our work. One can now see from this correspondence, why if one had interests

in surface group representations PSL(2,R) ⇥ PSL(2,R) and their limits, why it is

worthwhile to study the behavior of minimal surfaces in H
2
⇥H

2 as one changes the

representation.

In our title, we have opted for the word degeneration instead of limits. This is

to emphasize that the minimal surfaces we study, start to change into a new class

of objects of lower complexity. Whereas minimal surfaces are defined by solutions to

a partial di↵erential equation, the cores of R-trees (to be defined in Chapter 3), are

defined by prescribing an explicit recipe to remove pieces of a space. What remains

is called the core.

This thesis contains four chapters. The first contains introductory remarks and

provides the initial geometric framework for the thesis. We provide a cursory review

of classical Teichmüller theory and some of the topological and analytic tools used,

namely geodesic currents and harmonic maps. We then discuss the basics of the higher

rank Teichmüller theory, which has been a relatively new and popular, developing

field of geometry. The second chapter contains our first main result. Here we study
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the variational quantities related to harmonic maps in order to make a statement

about minimal surfaces. This allows us to proceed with our goal of compactifying a

particular class of metrics on these minimal surfaces. Chapter three is the bulk of

the thesis and contains the majority of our new results. We classify all the boundary

limits of the minimal surfaces in the bidisc and describe the limiting metric structure

and geometry. Finally we end the thesis with chapter four which consists of future

projects and related questions.

1.2 A non-lay introduction

Classical Teichmüller theory studies the space of marked hyperbolic structures or

equivalently the space of marked Riemann surfaces. (Recall a marking is a fixed

labelling of elements of the fundamental group of a surface S.) But one may also view

the Teichmüller space as the representation variety of conjugacy classes of discrete

and faithful surface group homomorphisms into PSL(2,R).

When the Lie group is of higher rank, surface group representations do not imme-

diately correspond to geometric objects. In particular low rank settings and when the

representation is Hitchin, recent work by Labourie [38] shows to each such represen-

tation ⇢, there is a unique ⇢-equivariant minimal surface in the associated symmetric

space.

It is from this perspective we wish to conduct our study of limits of representations.

The first of these lower high rank settings is the semisimple Lie groupG = PSL(2,R)⇥

PSL(2,R), which is studied extensively in this thesis. Here, the symmetric space is
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H
2
⇥H

2. Using the disc model of hyperbolic 2-space H2, then one sees the symmetric

space H2
⇥H

2 is the bidisc D⇥D equipped with the product metric, where each factor

has the usual Poincaré metric. The Hitchin representations into PSL(2,R)⇥PSL(2,R)

correspond to minimal lagrangians in the bidisc, which are parameterized by two

copies of Teichmüller space.

There is a goal in the higher Teichmüller theory of understanding limits of rep-

resentations as geometric objects generalizing measured laminations, which occur as

boundary limits in classical Teichmüller theory. One wants to see the sequences

of representations leaving all compact sets somehow as geometric objects which de-

generate to the objects at the boundary, in the same spirit as the Thurston com-

pactification (see section 11 of [60]). This thesis addresses this goal in the case of

G = PSL(2,R) ⇥ PSL(2,R). The intermediate geometric objects are minimal la-

grangians in the bidisc, and the objects at the boundary are cores in the sense of

Guirardel (see [28]) of a product of two R-trees constructed from the data of a pro-

jective pair of measured laminations. We will show that this interpretation of cores

will coincide with the Thurston compactification when we restrict our compactifcation

to classical Teichmüller space.

The first part of our main results studies the metric structure of the minimal

langrangians using marked length spectra and geodesic currents. This perspective

was first utilized by Bonahon [3] in the setting of Teichmüller space, and he recovers

the Thurston compactification in this way.

We study the length spectrum of these induced metrics on the minimal surface

and show that we can degenerate the metrics to obtain singular flat metrics, measured
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laminations and mixed structures. A mixed structure ⌘ = (S↵, q↵,�) is the data of

a collection of incompressible subsurfaces S↵, with a prescribed meromorphic (inte-

grable) quadratic di↵erential on each subsurface (collapsing the boundary components

and viewing them as punctures) and a singular flat metric on each subsurface coming

from the prescribed quadratic di↵erential, with a measured lamination � supported

on the complement S \t S↵. Observe that a singular flat metric coming from a holo-

morphic quadratic di↵erential on (S, J) and a measured lamination on S are trivial

examples of mixed structures, corresponding to S↵ = S and S↵ = ;, respectively.

Our first main result is the following.

Theorem 1.1. The space of induced metrics Ind(S) embeds into the space of projec-

tivized currents PCurr(S). Its closure is Ind(S) t PMix(S), where PMix(S) is the

space of projectivized mixed structures on S .

If we keep track of the ambient space, namely H
2
⇥H

2, we show that by scaling the

ambient space by a suitable sequence of constants (which generally will be the total

energy of some harmonic maps), we can obtain, as limits of minimal langrangians, the

core of a pair of R-trees coming from measured foliations. These will be distinguished

subsets of a product of trees, which will be typically part 2-dimensional, and part

1-dimensional. These objects will be defined in a geometric group-theoretic way,

requiring only the data of the pair of R-trees and the group action. In fact, we show

there is an isometry from a metric space obtained from the data of a mixed structure

to the core of trees.

As a consequence, we have an answer to our original goal of ascribing something
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geometric to a surface group representation to PSL(2,R)⇥ PSL(2,R) which is max-

imal, and a description of a natural boundary object which is geometric and is a

natural extension of measured laminations.

Theorem 1.2. The space of maximal representations of PSL(2,R) ⇥ PSL(2,R)

embeds into the space of ⇡1S-equivariant harmonic maps from H
2
! H

2
⇥H

2, whose

graphs are minimal lagrangians. The scaled Gromov-Hausdor↵ limits of these graphs

are given by harmonic maps from H
2 to T1⇥T2, where T1 and T2 are a pair of R-trees

coming from a projective pair of measured foliations, with image given by the core of

the trees.

There has been some recent interest in studying surface group representations to

the Lie group PSL(2, R)⇥ PSL(2,R) by way of geodesic currents. Work of Glorieux

[24] shows that the average of two Liouville currents
LX1+LX2

2 yields the length spec-

trum of the Globally Hyperbolic Maximal Compact AdS3 manifold with holonomy

(⇢1, ⇢2), where Xi = H
2
\ ⇢i. In another recent paper of Glorieux [25], it is shown

that this map which sends an unordered pair of elements in Teichmüller space to a

projectivized current given by (X1, X2) = (X2, X1) !
LX1+LX2

2 is injective. Forth-

coming work of Burger, Iozzi, Parreau, and Pozzetti [6] will show the limits of this

embedding are given by the projectivization of a pair of measured laminations. Their

limiting currents thus satisfy

i(⌘, ·) = i(�1, ·) + i(�2, ·), (1.1)

where �1 and �2 are specific representatives of the projectivized classes [�1] and [�2],

respectively, representing limits on the Thurston boundary.
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We remark that our compactifcation via geodesic currents is distinct. If the lim-

iting laminations �1 and �2 fill, that is, the sum of their intersection numbers with

any third measured lamination is never zero, then the corresponding limiting object

⌘0 under our compactification is a singular flat metric coming from a unit-norm holo-

morphic quadratic di↵erential � whose horizontal and vertical laminations are �1 and

�2. The corresponding current is thus given by

l2
|�|
(↵) = i2(⌘0,↵) = i2(�1,↵) + i2(�2,↵), (1.2)

for a suitably short arc ↵ away from the zeros of |�|. In general, this is di↵erent from

the sum of �1 and �2. Notice that for � an arc of the horizontal lamination of �, then

the two intersection numbers i(⌘,↵) and i(⌘0,↵) coincide, so that the two currents ⌘

and ⌘0 are distinct even as projectivized currents.

One may view the work [6] of Burger, Iozzi, Parreau and Pozzetti as understanding

the limiting length spectra of degenerating families of globally hyperbolic maximally

Cauchy-compact anti-de Sitter 3-manifolds (henceforth abbreviated as GHMC AdS3

manifolds; for a more detailed discussion, see Section 3.4), whereas our work in in-

vestigating the metric structure of the minimal langrangians in the bidisc furnishes

the limiting data of the unique embedded space-like maximal surface in the AdS3

manifold. This is not the main perspective we adopt, as it is unclear how the AdS3

manifold converges geometrically, and so one may possibly lose information on the

ambient space. By contrast, this is not the case with minimal lagrangians in the

bidisc.
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1.3 Geometric Preliminaries

We begin by summarizing the underlying geometric objects required throughout the

thesis.

1.3.1 Riemann surface theory

A Riemann surface X is a one-dimensional complex manifold. It is a smooth sur-

face which admits a maximal atlas of charts into the complex plane C with transition

maps being biholomorphisms. A compact Riemann surface will be a Riemann surface,

whose underlying smooth structure is a closed (compact with no boundary) surface.

For our purposes, Riemann surfaces will be compact Riemann surfaces unless other-

wise indicated. A punctured Riemann surface will be obtained from a closed surface

by removing finitely many points. Open neighborhoods containing the punctures will

be mapped onto a punctured disc in the complex plane.

The real cotangent bundle of X is denoted T ⇤X and may be complexified to yield

the complex cotangent bundle T ⇤X ⌦ C. The underlying complex structure on X

allows us to decompose any smooth covector into a holomorphic (1, 0)-part and an

antiholomorphic (0, 1)-part. The canonical bundle KX of X will be the (1, 0)-part of

the complexified cotangent bundle. When the underlying Riemann surface X is clear,

the canonical bundle will be simply denoted as K.

Natural operations may be performed on bundles. In particular, the tensor prod-

uct of two bundles is well-defined, and to any bundle, the vector space of sections is

well-defined. A section is a smooth map from the surface to the total space of the
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bundle, so that postcomposition with the projection map yields the identity map.

A holomorphic quadratic di↵erential is a holomorphic section of the square of

the canonical bundle. The vector space of holomorphic quadratic di↵erentials is

denoted H0(X,K2). One corollary of the Riemann-Roch theorem is that the complex

dimension of H0(X,K2) is 3g � 3, where g is the genus of the underlying smooth

surface. More concretely, if X is a Riemann surface and � is a holomorphic quadratic

di↵erential, then locally � = f(z)dz2, where f is holomorphic and z is a coordinate

chart for X.

If Sg,n is a compact surface of genus g with n punctures such that 3g� 3+ n > 0,

then Qg,n will denote the space of integrable holomorphic quadratic di↵erentials on

Sg,n. At each of the punctures, the di↵erential has at worst a pole of order 1.

1.3.2 Classical Teichmüller theory

Teichmüller space is the space of marked hyperbolic structures on a surface S. If

X is a hyperbolic surface, a marking is a di↵eomorphism  : X ! S. This allows

one to keep track of homotopy classes of curves on X. Two hyperbolic metrics g, h

are identified if there exists a di↵eomorphism � isotopic to the identity map, so that

the pullback metric �⇤g is equal to h. The topology is given by its marked length

spectrum.

Alternatively, Teichmüller space may be regarded as the space of marked Riemann

surface structures on S. Two complex structures X and Y on S are identified, if there

is a biholomorphism � : X ! Y , which is isotopic to the identity map as a smooth
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map.

The last setting in which Teichmüller space may be viewed, is from the perspective

of surface group representations. A representation will be a homomorphism from the

fundamental group ⇡1(S) of S to a Lie group G. Here, Teichmüller space is the space

of discrete and faithful surface group representations into the Lie group PSL(2,R).

Two representations are identified if one may be conjugated to the other.

One may freely pass between the various incarnations of Teichmüller space. The

hyperbolic perspective and the Riemann surface viewpoint are equivalent by the Uni-

formization theorem. From a surface group representation, one constructs an hyper-

bolic surface by taking the quotient of H2 by the representation. That is to say, if ⇢

is a discrete and faithful representation of the fundamental group ⇡1(S) of a surface

S into the isometry group PSL(2,R) of H2, the quotient H2/⇢(⇡1(S)) is a closed sur-

face with the same underlying topology of S, but now inherits a hyperbolic metric

obtained from H
2. From a hyperbolic structure, one recovers the representation, by

taking its holonomy representation. Closed geodesics on the hyperbolic surface lift to

isometries of H2. Using this, one may construct a Fuchsian representation from the

data of a hyperbolic surface.

Teichmüller space is topologically trivial, being homeomorphic to R
6g�6.

1.3.3 The Thurston compactification

The Thurston compactification utilizes the perspective of Teichmüller space as the

space of marked hyperbolic surfaces. Let S = S(S) denote the set of free isotopy
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classes of simple closed curves on S. Fix a hyperbolic metric m. To any element [�]

of S, the length of the m-geodesic of [�] is well-defined and is a positive number. With

this map, to each element of Teichmüller space, one obtains a sequence of positive

numbers indexed by elements of S, where each number lm([�]) is the length of the

m-geodesic. We will refer to this sequence as the marked length spectrum of m. Call

the map

L : Teich(S) ! R
S

�0

It is a classical result (see [19]) that there are 9g � 9 simple closed curves, whose

lengths determine the hyperbolic metric up to isotopy homotopic to the identity.

Hence the map L above is seen to be injective.

In constructing a compactification of a space X, it is often useful to embed the

space X into a compact space Y , then take the closure of X in Y , or to embed the

space X into a space Z with precompact image. The latter is done by Thurston [19]

with Teichmüller space. Consider the space PR
S

�0 = P(RS
� {0}), which is the space

R
S

�0 with the sequence which is identically 0 removed, up to scalar multiplication.

There is a natural projection map ⇡ : RS

�0 ! PR
S

�0. Then using some elementary

hyperbolic geometry, it is shown that ⇡ � L : Teich(S) ! PR
S

�0 is injective.

Theorem 1.3 (Thurston [19]). The map

⇡ � L : Teich(S) ! PR
S

�0

is injective with precompact image.

The boundary is described explicitly. It is important to remark here that the

boundary points are not simply arbitrary non-negative sequences, but rather, are
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the marked length spectra of a topological object. The boundary points under this

compactification are given by projective classes of measured foliations. A measured

foliation on a closed surface S is a singular foliation with a transverse measure, that

is a measure µ defined on each arc transverse to the foliation, such that the measure is

invariant under isotopy between two arcs through transverse arcs. Measured foliations

are considered equivalent if they di↵er by an isotopy or Whitehead equivalence, which

consists of collapsing arcs between singularities.

Thurston shows the space MF(S) of measured foliations on a surface S is homeo-

morphic to R
6g�6, so that PMF(S) is homeomorphic to a sphere of dimension 6g�7.

The boundary of the Thurston compactification is thus a sphere. A particularly

salient feature of this compactification is that the boundary is acted upon naturally

by the mapping class group.

It is appropriate to mention that there is a natural relation between measured foli-

ations and holomorphic quadratic di↵erentials. Holomorphicity of the di↵erential and

compactness of the Riemann surface ensures the quadratic di↵erential has precisely

4g � 4 zeros counted with multiplicity. Hence, in a simply-connected neighborhood

avoiding a zero of �, one may choose natural coordinates ⇣ so that � = d⇣2. The

metric |�| is well-defined on the complement of the zeros and is locally Euclidean. At

the zeros, the metric has conic singularities of angle (n+2)⇡, where n is the order of

the zero of the quadratic di↵erential at that point.

For any point in the complement of the zeros of the quadratic di↵erential, there

is a unique direction for which q(v, v) 2 R
+. Integrating the resulting line field,

one obtains a foliation, called the horizontal foliation of the quadratic di↵erential q.
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Likewise, one can define the vertical foliation of q, by integrating the line field of

directions for which q(v, v) 2 iR+. The foliations come equipped with a transverse

measure. For any arc � transverse to the horizontal foliation, the measure for the

horizontal foliation is given by

⌧h =

Z

�

|Im(
p
q)(z)||dz|,

and likewise, the transverse measure for the vertical foliation is given by integrating

the real part |Re(
p
q)| over and arc �.

1.3.4 Geodesic Currents

Let (S, �) be a fixed closed hyperbolic surface of genus g � 2. Then its universal cover

S̃ may be identified isometrically with H
2. Let G(S̃) denote the space of geodesics

of S̃. Then a geodesic current on S is a ⇡1(S)-equivariant Radon measure on G(S̃).

The space of geodesic currents, denoted Curr(S), is given by the weak⇤ topology.

Remark 1.4. A priori, the definition of a geodesic current may appear to depend

upon the choice of hyperbolic metric, but it turns out G(S̃) depends only upon ⇡1(S)

(c.f. [3]), hence the space of geodesic currents is independent of the hyperbolic metric

initially chosen for S.

The ur-example of a geodesic current is given by a single closed geodesic � on S.

Lift � to a discrete set of geodesics �̃ on S̃. These lifted geodesics may be given a

Dirac-measure, which is ⇡1(S)-invariant as the lifts themselves are ⇡1(S)-invariant.

Hence to any closed curve, by looking at its geodesic representative, one obtains a
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geodesic current on S. In fact, Bonahon [3] shows the space of weighted closed curves

is dense in Curr(S) and the geometric intersection number between curves has a

continuous bilinear extension to i : Curr(S)⇥ Curr(S) ! R�0. Moreover, a geodesic

current on S is determined by its intersection number with all closed curves [47].

The topology then on the space of geodesic currents is given by its marked length

spectrum. In particular, for the fixed surface S, denote by C(S) the set of isotopy

classes of closed curves of S. The marked length spectrum of a geodesic current

µ is given by the collection {i(µ, �)}�2C(S). We make two remarks. First, the use

of the phrase marked length spectrum in the context of geodesic currents will be a

generalization with that of the marked length spectrum of a hyperbolic surface, as

to hyperbolic metric m, there is an associated Liouville current Lm (see [3] for the

explicit construction) so that

lm([�]) = i(Lm, �).

Hence, the m-length of the geodesic in the homotopy class of � is equal to the inter-

section of the currents Lm and � (here � is a geodesic current, as constructed above).

The second remark is that with geodesic currents, if our indexing set for the marked

length spectrum is simply S, then Otal [47] has shown it is not su�cient to distin-

guish di↵erent geodesic currents. However, if one expands the indexing set to be all

closed curves on S, then it is su�cient to distinguish geodesic currents based on their

marked length spectra.

A sequence of geodesic currents µn is said to converge to µ if its marked length

spectrums converge, that is, to each � 2 C(S) and ✏ > 0, there is an N(✏, �) so that
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for n > N(✏, �), one has |i(µ, �) � i(µn, �)| < ✏. It is important to note that N is

allowed to depend on the curve class chosen. No requirement on uniform convergence

is required.

If a current arises from a metric, the following rather useful formula applies:

Proposition 1.5 (Bonahon [3], Otal [47]). Let µ be a current arising from a metric

�. Then

i(µ, µ) =
⇡

2
Area(�)

In the case where µ is a geodesic current arising from a measured lamination, it

is not hard to see that i(µ, µ) = 0, but in fact, this turns out to be a characterization

of measured laminations.

Proposition 1.6 (Bonahon [3]). Let µ be a geodesic current such that i(µ, µ) = 0,

then µ is a measured lamination.

It is clear that if µ is a geodesic current, then so is cµ for c 2 R+. The set

of projectivized currents, denoted PCurr(S) is given by Curr(S)/ ⇠, where µ ⇠ ⌫

if there exists a positive constant c for which µ = c⌫ and so consists of projective

classes of geodesic currents. The space PCurr(S) is then given the quotient topology.

We highlight an important property of this space.

Proposition 1.7 (Bonahon [3]). The space PCurr(S) is compact.

Several geometric structures have been shown to be embedded into Curr(S). The

first such example was due to Bonahon [3], who showed Teichmüller space could be

embedded inside Curr(S) via its Liouville current, namely � 7! L� with the property
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that for any closed curve �, one has l�([�]) = i(L�, �), so that the length of the

geodesic representative of � with respect to the hyperbolic metric � coincides with

the intersection number between the currents L� and �. As the space of measured

laminations can be realized as geodesic currents, Bonahon recovers the Thurston

compactification by way of projectivized geodesic currents.

Otal [47] has shown the space of negatively curved Riemannian metrics on surfaces

can be realized by geodesic currents. For any simple curve class [�], the length of the

unique geodesic representative coincides with the intersection number of the corre-

sponding geodesic current and the curve class [�], extending the work of Bonahon.

Duchin, Leininger and Rafi [16] have embedded the space of singular flat metrics

arising from integrable holomorphic quadratic di↵erentials into the space of geodesic

currents. We summarize a few of results here, as we shall use them in what follows.

Recall that to any holomorphic quadratic di↵erential q, one can associate a singular

flat metric |q| via canonical coordinates.

The unit sphere Q1
g ⇢ Qg consists of the holomorphic quadratic di↵erentials with

L1-norm 1. Then the space Flat(S) of unit-norm singular flat metrics may be identi-

fied by

Flat(S) = Q1
g / S

1,

where the action of S1 is given by multiplication by ei✓, for 0  ✓  2⇡. We require

this quotient because if q is a holomorphic quadratic di↵erential, then q and ei✓q will

have the same singular flat metric |q|. For q 2 Q1
g, consider the vertical foliation of q,

that is vq = |Re(
p
q)|. Denote v✓q = |Re(ei✓

p
q)|, the vertical foliation of ei✓q. Form
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the integral

Lq :=
1

2

Z ⇡

0

v✓q d✓.

Theorem 1.8 (Duchin-Leininger-Rafi [16]). The integral Lq is a geodesic current

such that to any simple closed curve �,

l|q|(�) = i(Lq, �),

where |q| is the singular flat metric arising from the holomorphic quadratic di↵erential

q. Furthermore, the map which sends |q| 2 Flat(S) to Lq 2 PCurr(S) is an embedding.

As the space of projectivized currents is compact, one may take the closure of the

space Flat(S), and it is shown [16] that the limiting structures consist precisely of

projectivized mixed structures. A mixed structure may be defined as follows.

Definition 1.9. Let W be an incompressible subsurface of S. Then consider QW ,

the space of integrable holomorphic quadratic di↵erentials on W , where we have

chosen a complex structure on the smooth surface W such that neighborhoods of

boundary components of @W are conformally punctured disks. To any such quadratic

di↵erential q, the corresponding singular flat metric on W thus assigns length zero to

any peripheral curve. Let � be a measured lamination supported on the complement

S \W . The triple (W, q,�) is called a mixed structure on S.

To any ⌘ = (W, q,�), one obtains a geodesic current L⌘ given by the property

i(L⌘, �) = i(�, �) +
1

2

Z ⇡/2

0

i(v✓q , �) d✓,

where � is a closed curve on S. We remark that in the case W = ;, then ⌘ is

a measured lamination on S, so that the space Mix(S) properly contains ML(S).
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The compactification of the singular flat metrics arising from unit-norm quadratic

di↵erentials is then given by the following theorem.

Theorem 1.10 (Duchin-Leininger-Rafi [16]). The closure of Flat(S ) in PCurr(S ) is

given by Flat(S ) t PMix(S ).

1.3.5 Harmonic maps between surfaces

Let (M, �|dz|2) and (N, ⇢|dw|2) be two closed Riemannian surfaces and w : (M, �|dz|2) !

(N, ⇢|dw|2) a Lipschitz map. Then the energy of the map w is given by the integral

E(w) :=
1

2

Z

M

||dw||2 dvol�.

A critical point of the energy functional is a harmonic map. We remark that if the

domain M is a surface, the energy is a conformal invariant; hence a harmonic map

depends only upon the conformal class of the domain but depends on the metric of

the target surface. The energy density of the map w at a point is given by

e(w) =
⇢(w(z))

�(z)
(|wz|

2 + |wz|
2),

and so the total energy is also given by the formula

E(w) =

Z

M

e(w) � dz ^ dz

=

Z

M

⇢(w(z))(|wz|
2 + |wz|

2) dz ^ dz,

once again seeing that the total energy depends only upon the conformal structure of

the domain and the metric of the target. Alternatively, a harmonic map w solves the

Euler-Lagrange equation for the energy functional, a second-order nonlinear PDE:

wzz + (log ⇢)wwzwz = 0.
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To any harmonic map w : (M, �|dz|2) ! (N, ⇢|dw|2), the pull-back of the metric

tensor decomposes by type according to

w⇤⇢ = �dz2 + �edzdz + �dz2,

where � dz2 is a holomorphic quadratic di↵erential with respect to the complex struc-

ture coming from the conformal class of (M, �|dz|2) called the Hopf di↵erential of w.

Much of the formulas arising from harmonic maps make use of the auxiliary functions:

H =
⇢(w(z))

�(z)
|wz|

2

L =
⇢(w(z))

�(z)
|wz|

2.

We list some of these formulas and make liberal use of them without always explicitly

citing the precise one:

The energy density e = H + L

The Jacobian J = H� L

The norm of the quadratic di↵erential |�|2/�2 = HL

The Lapace-Beltrami operator � ⌘
4

�

@2

@z@z

Gaussian curvature of the source K(�) = �
2

�

@2 log �

@z@z

Gaussian curvature of the target K(⇢) = �
2

⇢

@2 log ⇢

@w@w

The Beltrami di↵erential ⌫ =
wz

wz
=
�

�H
and |⌫|2 =

L

H
.

The Bochner formula is given by

� logH = �2K(⇢)H + 2K(⇢)L+ 2K(�), when H(p) 6= 0

� logL = �2K(⇢)L+ 2K(⇢)H + 2K(�), when L(p) 6= 0.
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We shall often be in the setting where both the source and target are hyperbolic

surfaces, that is K(�) = K(⇢) ⌘ �1, and so some of the formulas listed above can

be simplified. In the more general setting where the target has negative curvature,

the existence of a harmonic map in the homotopy class is due to Eells-Sampson [18],

its uniqueness is due to Hartman [29] and Al’ber [1], and that if the homotopy class

contains a di↵eomorphism, then the harmonic map itself is a di↵eomorphism and

H > 0 is due to Schoen-Yau [56] and Sampson [52].

1.4 Higher Teichmüller theory

It has been discussed in the previous section that Teichmüller space may be regarded

as a space of conjugacy classes of discrete and faithful representations into PSL(2,R).

From an algebraic and topological perspective, one may be interested in the repre-

sentation variety

�(G) := Hom(⇡1(S), G)//G,

the space of conjugacy classes of surface group representations into a Lie group.

Seminal work of Goldman [26], reveals that in the case where G = PSL(2,R), the

representation variety has precisely 4g � 3 connected components, each indexed by

a topological invariant known as the Euler class. The components which attain the

maximal Euler class 2g � 2 and 2� 2g are two copies of Teichmüller space, Teich(S)

and Teich(S), respectively, where S is the surface S with the opposite orientation.

The goal to ascertain the topology of distinguished components of representation

varieties into higher rank Lie groups is the genesis of the higher rank Teichmüller
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theory. In foundational work by Hitchin [31], the number of the connected components

of the PSL(n,R) representation variety is given explicitly, and is shown to depend

solely on the parity of n.

Theorem 1.11 (Hitchin [31]). The space Hom+(⇡1(S),PSL(n,R))/PSL(n,R) has,

for n > 2, three connected components if n is odd, and six components if n is even.

The Teichmüller portion of higher Teichmüller theory is not entirely arbitrary.

Classical representation theory shows that given PSL(n,R), n > 2, there is a unique

irreducible representation ◆ : PSL(2,R) ! PSL(n,R), so that in these representation

varieties, there is a distinguished component which contains the image of Teichmüller

space under the map

I : Teich(S) ,! Hom+(⇡1(S),PSL(n,R))/PSL(n,R)

⇢ 7! ◆ � ⇢.

The connected component which contains this copy of Teichmüller space is called

the Hitchin component, and its topology is completely understood.

Theorem 1.12 (Hitchin [31]). The Hitchin component Hitn(S) is homeomorphic to

R
(2g�2)(n2

�1).

Hitchin proves these two results using Higgs bundles, which will be discussed in

the following section. However, the analytic approach via Higgs bundles reveal no

geometric significance of the underlying objects. With Teichmüller space, though it

may be seen as a representation variety, the underlying objects may also be viewed
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as hyperbolic metrics. In the case when n = 3, work by Goldman [27] and Choi-

Goldman [8] shows the Hitchin component for PSL(3,R) parameterizes the space of

convex real projective structures on S. These are projective structures on S, whose

developed image is a strictly convex subset of RP2.

1.4.1 Nonabelian Hodge correspondence

The nonabelian Hodge correspondence furnishes a dictionary between three particular

moduli spaces. The first is known as the Betti moduli space and is the representation

variety discussed previously

Hom(⇡1(S), G)//G,

for a Lie group G, where the double slash denotes the GIT quotient (an algebraic

quotient to ensure the resulting space is Hausdor↵). However, the usual quotient by

taking conjugacy classes is su�cient when G = PSL(2,R), and the representation

is discrete and faithful. For the remainder of the section however, for simplicity, we

describe the correspondence forG = SL(n,C). For other groups, additional conditions

need to be imposed on the objects.

The Betti moduli space has the structure of an algebraic variety, as the space is

determined explicitly by the data of where the usual 2g generators of the fundamental

group are sent to in G, with the one algebraic relation given by the product of the

commutators being the identity element of G.

The second moduli space, the deRham moduli space is the space of flat connections

on rank n complex vector bundles. These first two moduli spaces are di↵eomorphic
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and the correspondence has the historical name of the Riemann-Hilbert correspon-

dence. To obtain a flat connection from a representation ⇢, one constructs the flat

bundle eS ⇥⇢ C
n, which will have a natural flat structure, and hence a flat connec-

tion. From a flat bundle, one takes the monodromy representation to recover the

representation.

The third moduli space, called the Dolbeault moduli space, features holomorphic

objects known as Higgs bundles on a Riemann surface, which are given by the data of

a holomorphic vector bundle E and a Higgs field �, which is a holomorphic (1, 0)-form

with values in End(E). An additional property of the Higgs bundle is required, and

that is the notion of stability. A stable Higgs bundle is a Higgs bundle, where for any

�-invariant nonzero proper subbundle F ⇢ E , one has that the slope condition

degF

rankF
<

deg E

rank E

is satisfied.

The correspondence between the Dolbeault moduli space with the Betti and deR-

ham moduli spaces is due to the combined independent work of Donaldson [15],

Corlette [10], Hitchin [30] and Simpson [54]. The dictionary is completed by show-

ing existence of a ⇢-equivariant harmonic maps from the universal cover of S to the

associated symmetric space of G.

1.4.2 Labourie conjecture

As noted before, a Higgs bundle requires the choice of a Riemann surface to make

sense of holomorphicity. Yet, in the original data of a representation, there is only
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topological data coming from the smooth structure of the surface (recall we only

make use of the Lie group and the fundamental group ⇡1(S) of the surface S to define

a representation). Hence, in the nonabelian Hodge correspondence, a choice of a

Riemann surface structure must be made. The correspondence holds for any choice

of complex structure endowed on S. The issue here is that the representation variety

is acted upon by the mapping class group (the action is on ⇡1(S)), whereas for a

Higgs bundle, the action is not evident. To this end, Labourie has conjectured there

is an apt choice of a complex structure for each such representation.

Conjecture 1.13. If ⇢ is a Hitchin representation into a real split Lie group G, then

there is a unique complex structure X on S such that the ⇢-equivariant harmonic map

from X to G/K is weakly conformal.

The conjecture has been fully resolved in the case of real rank 2 split Lie groups.

Theorem 1.14 (Labourie [38]). Let ⇢ be a Hitchin representation for G = PSL(2,R)⇥

PSL(2,R), SL(3,R), Sp(4,R), or G2, then there is a unique complex structure X on

S such that the ⇢-equivariant harmonic map from X to G/K is weakly conformal.

As a historical note, the case when G = PSL(2,R) ⇥ PSL(2,R) was first proven

by Schoen [53], in the context of studying minimal lagrangians on the bidisc as a way

to give a midpoint map on Teichmüller space.

The Labourie theorem gives a parametrization of the groups G listed above by

a bundle of di↵erentials over Teichmüller space. In the order written above, the

Hitchin component of the G representation variety are parameterized by the bundle of
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quadratic, cubic (shown independently by Loftin [40]), quartic and sextic di↵erentials

over Teichmüller space.



Chapter 2

Embedding of induced metrics

In this chapter, we discuss the metric structure of the minimal lagrangians in the

bidisc. In particular, we discuss the relation between the Labourie parameterization of

Hitchin PSL(2,R)⇥PSL(2,R) representations by the bundle of quadratic di↵erentials

over Teichmüller space with geometric properties of the minimal lagrangians in H
2
⇥

H
2. In the process, we present two new results in the classical theory of harmonic

maps between surfaces.

2.1 Minimal lagrangians

A di↵eomorphism � : (S, g1) ! (S, g2) is said to be minimal if its graph ⌃ ⇢ (S ⇥

S, g1� g2) with the induced metric is a minimal surface. Observe that if � is minimal

then so is ��1. If !1 and !2 denote the area forms of g1, g2 respectively, and if in

addition ⌃ ⇢ (S⇥S,!1�!2) is a Lagrangian submanifold, then we say � is a minimal

lagrangian.

30
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Theorem 2.1 (Schoen [53]). If g1 and g2 are hyperbolic metrics on S, then there is

a unique minimal lagrangian map � : (S, g1) ! (S, g2) in the homotopy class of the

identity.

Let ⌃ denote the graph of �, which is a minimal surface, with the induced metric.

Then its inclusion into the product i : ⌃! (S ⇥ S, g1 � g2) is a conformal harmonic

map. A conformal harmonic map to a product space is an ordered pair of harmonic

maps whose Hopf di↵erentials sum to zero. Hence to any pair of points in Teichmüller

space, one may record the data of both the conformal structure of the minimal surface

along with one of the Hopf di↵erentials. The harmonic maps parametrization of

Teichmüller space which we record below ensures the map is bijective. Sampson

proved injectivity and continuity of the map, and Wolf showed the map was surjective

and admits a continuous inverse.

Theorem 2.2 (Sampson [52], Wolf [61]). Let (S, �) be a fixed hyperbolic surface.

To any point in Teichmüller space [(S, ⇢)], select the representative (S, ⇢) so that the

identity map id : (S, �) ! (S, ⇢) is the unique harmonic map in its homotopy class

and denote its Hopf di↵erential �(⇢). Then this map

� : T (S) ! H0(X,K2
X)

is a homeomorphism, where X is the complex structure associated to (S, �).
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Theorem 2.3. The map

 : T (S)⇥ T (S) ! Qg

(X1, X2) 7! Hopf(u1)

which assigns to any pair of points X1, X2 in Teichmüller space, the conformal struc-

ture of the unique graph minimal surface ⌃ ⇢ X1⇥X2 along with the Hopf di↵erential

Hopf(u1) of the projection u1 : ⌃! X1 is a homeomorphism.

Proof. The discussion above ensures the map  is well-defined. As the construction

of the minimal surface varies continuously with the choice of X1, X2, it is clear the

map is continuous. To see injectivity of  , suppose that  (X1, X2) =  (Y1, Y2) =

(⌃,�). Then the harmonic maps u1 : ⌃ ! X1 and v1 : ⌃ ! Y1 have the same

Hopf di↵erentials, so by the harmonic maps parameterization, X1 = Y1. The same

argument forces X2 = Y2. Surjectivity follows similarly, as to any choice of Riemann

surface ⌃ = (S, J) and holomorphic quadratic di↵erential �, there exists a unique

hyperbolic metric X1 = (S, g1), so that the identity map id : ⌃ ! X1 is a harmonic

map with Hopf di↵erential �. Similarly one can find an X2 arising from the Hopf

di↵erential ��. Hence  (X1, X2) = (⌃,�) which gives surjectivity. The inverse

is clearly continuous as given the data of a Riemann surface and a holomorphic

quadratic di↵erential, the pair of hyperbolic metrics may be written explicitly and

vary continuously, which su�ces for the proof.
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2.1.1 Embedding

In this section we study the induced metric on the graph minimal surfaces. Recall

that given an ordered pair (X1, X2) of hyperbolic surfaces, Theorem 2.1 produces

a graph minimal surface ⌃ in the 4-manifold (S ⇥ S, g1 � g2), where Xi = (S, gi).

If m : (S, g1) ! (S, g2) is the unique minimal map isotopic to the identity, then

id : (S, g1) ! (S,m⇤g2) is the unique minimal map isotopic to the identity, which in

this case is the identity map. The graph ⌃ then, is the diagonal in S⇥S and there is

a canonical di↵eomorphism from the surface S to the diagonal in S⇥S. The induced

metric on ⌃ thus furnishes a metric g on S by the pullback of this di↵eomorphism.

Henceforth, when we say induced metric, we refer to this metric g on S, and will use

⌃ to denote (S, g). We consider these metrics up to pullback by a di↵eomorphism

isotopic to the identity, and call this subspace of metrics Ind(S) and endowing it with

the compact-open topology. The remainder of the section is devoted towards studying

geometric properties of the minimal surfaces and showing Ind(S) can be embedded

into PCurr(S).

Proposition 2.4. Let X1 = (S, g1), X2 = (S, g2) and  (X1, X2) = (⌃,�). Then the

induced metric on the minimal surface ⌃ is given by g1 + m⇤g2. Consequently, the

induced metric is given by twice the (1, 1) part of a hyperbolic metric when expressed

in conformal coordinates.

Proof. As in the discussion above, we may choose a suitable hyperbolic metric X2 =

(S, g2) in the equivalence class of [X2] to ensure the unique minimal map isotopic to

the identity is the identity map. Hence, the graph of the minimal map is the diagonal
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in S ⇥ S, so that (after identifying the diagonal with S) the harmonic map from the

minimal surface ⌃ to Xi is given by the identity map. The first result then follows by

definition of the product metric. Notice that the hyperbolic metric g1 may be written

in conformal coordinates on ⌃ as �dz2 + �edzdz + �dz2. As the minimal surface

⌃ is mapped conformally into the product X1 ⇥X2 of hyperbolic surfaces, then one

obtains a pair ui : ⌃! Xi of harmonic maps, whose Hopf di↵erentials, Hopf(u1) and

Hopf(u2), sum to zero. Hence g2 may be written in conformal coordinates on ⌃ as

��dz2 + �edzdz � �dz2, for |�| = | � �|, so by a result of Sampson (Proposition

2.7), the energy densities will coincide. As the induced metric is given by the sum,

the induced metric has local expression 2�edzdz.

Proposition 2.5. The induced minimal surfaces have strictly negative sectional cur-

vature.

Proof. For any point p 2 ⌃, it is clear thatKp  0, as ⌃ is a minimal surface in a NPC

space, so we wish to show that Kp 6= 0. The proof is by contradiction. Let {e1, e2} be

an orthonormal basis of Np⌃. Now consider the 2-plane spanned by eigenvectors X

and Y of the second fundamental form II. Then one has II(X, Y ) =
P2

j=1 IIj(X, Y )ej.

Then the mean curvatures of the immersion are given by

H1 = II1(X,X) + II1(Y, Y ) = 0 (2.1)

H2 = II2(X,X) + II2(Y, Y ) = 0 (2.2)
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Then the Gauss equation tells us that at p,

0 = Rm(X, Y, Y,X) = gRm(X, Y, Y,X)� hII(X,X), II(Y, Y )i+ hII(X, Y ), II(X, Y )i

(2.3)

= gRm(X, Y, Y,X) +
2X

j=1

IIj(X,X)IIj(Y, Y )�
2X

j=1

IIj(X, Y )2,

(2.4)

and as H
2
⇥ H

2 is NPC, from (4.1), (4.2) and (4.4), it follows II ⌘ 0 at p and that

gRm(X, Y, Y,X) = 0 at p. As T (H2
⇥H

2) ⇠= TH2
� TH2, we may write X = X1 �X2

and Y = Y1 � Y2. A simple calculation shows:

0 = gRm(X, Y, Y,X) = Rm1(X1, Y1, Y1, X1) +Rm2(X2, Y2, Y2, X2)

= (X1, Y1)
�
|X1|

2
|Y1|

2
� hX1, Y1i

2
�
+ (X2, Y2)

�
|X2|

2
|Y2|

2
� hX2, Y2i

2
�

= �1 ·
�
|X1|

2
|Y1|

2
� hX1, Y1i

2
�
� 1 ·

�
|X2|

2
|Y2|

2
� hX2, Y2i

2
�
,

which by Cauchy-Schwarz implies that X1 and Y1 (and also X2 and Y2) are linearly

dependent, so that the map u1⇤ drops rank, a contradiction, as our surface was a

graph.

Proposition 2.6. The second fundamental form is given by
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II(E1, E1) =
�Re�(�e)y � �e(Im�)x + Im�(�e)x

�e
p

2�e(�2e2 � 4|�|2)
JE1

+
Im�(�e)y � �e(Re�)x + Re�(�e)x

�e
p
2�e(�2e2 � 4|�|2)

JE2

II(E2, E2) =
Re�(�e)y + �e(Im�)x � Im�(�e)x

�e
p
2�e(�2e2 � 4|�|2)

JE1

+
� Im�(�e)y + �e(Re�)x � Re�(�e)x

�e
p
2�e(�2e2 � 4|�|2)

JE2

II(E1, E2) =
Im�(�e)y � �e(Re�)x + Re�(�e)x

�e
p

2�e(�2e2 � 4|�|2)
JE1

+
��e(Re�)y + Re�(�e)y � Im�(�e)x

�e
p

2�e(�2e2 � 4|�|2)
JE2.

Proof. For a choice of complex coordinates z = x+ iy on the minimal surface ⌃, then

@
@x and @

@y is an orthogonal frame. Denote then E1 = @
@x/|

@
@x |⌃ and E2 = @

@y/|
@
@y |⌃.

Let J be the almost complex structure on the 4-manifold X1 ⇥X2, then J = J1 � J2,

where Ji is the almost complex structure arising from Xi = (S, gi). As ⌃ ⇢ X1 ⇥X2

is a lagrangian submanifold, then {E1, E2, JE1, JE2} forms an orthonormal basis of

T (X1 ⇥X2) ⇠= TX1 � TX2 in this neighborhood. The second fundamental form then

is given by

II(X, Y ) =
2X

j=1

eg(erXY, JEj)JEj,

where eg = g1 � g2 and er = r1 �r2. We first calculate II(E1, E1). As the minimal

surface metric is given by 2�e|dz|2 = 2�e(dx2 + dy2), one has

2�e(dx2 + dy2)

✓
@

@x
,
@

@x

◆
= 2�e =

����
@

@x

����
2

⌃

,

so that

E1 =
@
@x

p
2�e

.
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Similarly E2 is given by

E2 =
@
@y

p
2�e

.

To calculate JE1, we project E1 to each of its factors and apply the almost complex

structure on each of its factors, namely, we find the vector which has the same length

and forms angle ⇡/2 with the projected factor using the hyperbolic metric. This

is the complex structure arising from the conformal class of the metric. To find

J1E1 = a @
@x + b @

@y for instance, we observe first the hyperbolic metric on X1 is given

by

⇢1 = �dz
2 + �edzdz + �dz2 = (2Re�+ �e)dx2

� 4 Im�dxdy + (�2Re�+ �e)dy2

Hence we want to solve a 6= 0, b > 0 for which

g1

✓
a
@

@x
+ b

@

@y
, E1

◆
= 0 (2.5)

g1

✓
a
@

@x
+ b

@

@y
, a

@

@x
+ b

@

@y

◆
= g1(E1, E1) =

2Re�+ �e

2�e
. (2.6)

Some basic algebra yields that a = 2 Im�p
(2�e)((�e)2�4|�|2)

and b = 2Re�+�ep
(2�e)((�e)2�4|�|2)

, so

that

J1E1 =
2 Im�p

(2�e)((�e)2 � 4|�|2)

@

@x
+

2Re�+ �ep
(2�e)((�e)2 � 4|�|2)

@

@y
.

Notice that the denominator appearing in b is positive, as 2|�| < �e when � ⌘ 0, in

which case the minimal surface is a totally geodesic subsurface. Now J2E1 is found

similarly, and is given by

J2E1 =
�2 Im�p

2�e((�e)2 � 4|�|2)

@

@x
+

�2Re�+ �ep
2�e((�e)2 � 4|�|2)

@

@y
.
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The tangent vector given by erE1E1 splits as r1
E1
E1�r

2
E1
E1. The Christo↵el symbols

for g1 and g2 can be readily calculated.

r
1
E1E1 = r

1
@
@xp
2�e

@
@x

p
2�e

=
1

p
2�e

✓
1

p
2�e

r
1
@
@x

@

@x
+

✓
1

p
2�e

◆

x

@

@x

◆

=
1

p
2�e

✓
1

p
2�e

✓
1�1

11

@

@x
+1 �2

11

@

@y

◆
+

✓
1

p
2�e

◆

x

@

@x

◆
,

=

✓
1

2�e

1

�1
11 +

1
p
2�e

✓
1

p
2�e

◆

x

◆
@

@x
+

1

2�e

2

�2
11

@

@y

where 1�1
11 and 1�2

11 are the usual Christo↵el symbols, where the extra superscript

denotes these are the ones for the metric g1. There are given explicitly by

1�1
11 =

1

2

✓
�2Re�+ �e

�2e2 � 4|�|2
(2Re�+ �e)x +

2 Im�

�2e2 � 4|�|2
((�4 Im�x)� (2Re�+ �e)y)

◆

2�1
11 =

1

2

✓
2 Im�

�2e2 � 4|�|2
(2Re�+ �e)x +

2Re�+ �e

�2e2 � 4|�|2
((�4 Im�x)� (2Re�+ �e)y)

◆
.

Similarly, the same can be done for the metric g2 and using the formula for II, one

gets II(E1, E1). The same can be done for the rest.

It would be curious to see under what conditions di↵erent points in Qg would

yield the same induced metric. One might hope that the space of induced metrics

would be homeomorphic to Qg, but the following result of Sampson shows this is not

possible:

Proposition 2.7 (Sampson). For a fixed closed hyperbolic surface X = (S, �), if �1

and �2 are two Hopf di↵erentials on X arising from harmonic maps from X to closed



39

hyperbolic surfaces of the same genus, such that the norms |�1| and |�2| coincide, then

the energy densities coincide, that is e1 = e2.

Hence, if we select two elements of Qg, say (X,�1) and (X,�2), where |�1| = |�2|,

but �1 6= �2, then the corresponding energy densities are the same and hence the

corresponding induced metrics are the same.

The following proposition is a converse to the result of Sampson and shows this

is the only situation for which the corresponding induced metrics coincide.

Lemma 2.8. On a fixed closed hyperbolic surface, we have e1 = e2 if and only if

|�1| = |�2|.

Proof. That |�1| = |�2| implies e1 = e2 is due to Sampson. Now suppose e1 = e2,

then H1 + L1 = H2 + L2, so the Bochner formula 4 logHi = 2Hi � 2Li � 2 may be

rewritten as 4 logHi = 4Hi � 2ei � 2. Subtracting the two equations for i = 1, 2

yields

4 log
H1

H2
= 4(H1 �H2).

Now Hi > 0, so that the quotient H1/H2 attains its maximum on the surface, which

we claim is 1, for if the maximum of H1/H2 is greater than 1, then at the maximum

(which is also the maximum of log H1
H2

)

0 � 4 log
H1

H2
= 4(H1 �H2) = 4H2

✓
H1

H2
� 1

◆
> 0,

a contradiction, so that H1
H2

 1 and symmetrically H2
H1

 1, hence H1 = H2 and so

L1 = L2, by the assumption on the energy densities. From the formula |�|2/�2 = HL,

the conclusion follows.
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Corollary 2.9. The space of induced metrics Ind(S) may be identified with Qg/ ⇠,

where (X,�1) ⇠ (Y,�2) if X = Y and |�1| = |�2|.

We conclude this section by proving the space Ind(S) can be embedded into the

space of currents and that the embedding remains injective after projectivization,

thereby obtaining an embedding into projectivized currents.

Proposition 2.10. The space Ind(S) can be realized as geodesic currents.

Proof. From Proposition 2.5, the induced metrics have strictly negative curvature, so

by Otal [47], there is a well-defined embedding C : Ind(S) ! Curr(S), from the space

of induced metrics on S to the space of geodesic currents, which sends 2�e 7! L2�e,

so that if � is a closed curve, then l2�e([�]) = i(L2�e, �).

The following lemma is a statement concerning energy densities and their failure

to scale linearly.

Lemma 2.11. On a fixed closed hyperbolic surface, if e1 = ce2, then c = 1, and hence

|�1| = |�2|.

Proof. Without loss of generality, suppose c � 1, else we may reindex so that c � 1.

Then H1
H2

 c, for if H1
H2

> c, we locate the maximum of H1/H2, and the Bochner
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formula at that point yields

0 � 4 log
H1

H2
= 4(H1 �H2)� 2(e1 � e2)

= 4(H1 �H2)� 2(ce2 � e2)

= 4H2

✓
H1

H2
� 1

◆
� 2e2 (c� 1)

> 4H2 (c� 1)� 2e2 (c� 1)

= (c� 1)(4H2 � 2e2)

= (c� 1)(2H2 � 2L2) = 2(c� 1)J2 > 0,

a contradiction. Notice the upper bound is actually attained, for at a zero of |�1|, we

have that L1 vanishes and so at such a zero we have the equation

H1 = cH2 + cL2,

and as we have H1/H2  c, it follows that L2 must also vanish whenever L1 does. In

fact, we can say more about the zeros of Li. The condition on the energy densities

yields the equality

0 = (cH2 �H1) + (cL2 � L1),

and the bound on the quotient H1/H2 implies that the first term is nonnegative so

the second term is nonpositive, that is cL2 � L1  0 or c  L1/L2 or L2/L1  1/c,

so that the order of the zeros of L2 is greater than or equal to the order of zeros of

L1. As |�|2/�2 = HL and H > 0, then both L1 and L2 have exactly 8g � 8 zeros

counted with multiplicity, so that the order of vanishing of L1 is the same as that of

L2 at every point of the surface. Hence the quadratic di↵erentials �1 and �2 di↵er by

a multiplicative constant k 2 C, that is �1 = k�2. At the zero of |�2| (and so also a
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zero of |�1|), which is a maximum of the quotient H1/H2, the Bochner equation now

reads,

0 � 4 log
H1

H2
= 2H1 �

2|�1|
2

�2H1
� 2H2 +

2|�2|
2

�2H2

= 2(H1 �H2)

= 2H2(c� 1) � 0,

which implies c = 1, and by the previous lemma |k| = 1.

Theorem 2.12. The space of induced metrics Ind(S) embeds into PCurr(S).

Proof. Let ⇡ : Curr(S) ! PCurr(S) be the natural projection map. It su�ces to

show the map ⇡ � C : Ind(S) ! PCurr(S) is injective. If the image of two induced

metrics under the map ⇡ � C coincide, that is �dzdz = c�0e0dzdz, where c 2 R>0,

then they will be in the same conformal class, so that � = �0. Then e = ce0, and by

Lemma 2.11, c = 1.

Remark 2.13. As the induced metrics are not scalar multiples of each other, we make

a slight modification by dividing the induced metrics by 2 to ensure these metrics

are now precisely the (1, 1)-part of a hyperbolic metric when written in conformal

coordinates rather than twice that.



Chapter 3

Compactification

In this chapter, we identify the elements in the closure Ind(S) ⇢ PCurr(S). As

the space of projectivized currents is compact, we obtain a compactification Ind(S)

t PMix(S) of the induced metrics from the embedding obtained in the previous

chapter. This is the first main result of our thesis. The second main result is at the

end of the chapter, and describes the geometry of the limiting harmonic maps. We

show limits of minimal lagrangians in the bidisc are cores of R-trees, thereby giving

a geometric compactification of the Hitchin component of the PSL(2,R)⇥PSL(2,R)

representation variety.

3.1 Metric structure of limits

3.1.1 Flat metrics as limits

In a simple scenario where the conformal structure of the minimal surface remains

fixed, we can describe the asymptotic behavior of the induced metric. We consider

43
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the simplest case where X1,n (and consequently X2,n) lie along a harmonic maps ray,

that is the sequence of Hopf di↵erentials of the projection map onto the first factor

is given by tn�, where � 6= 0 and tn ! 1.

Proposition 3.1. Let �nen be the induced metric where �n = � for all n, and the

Hopf di↵erentials of the harmonic maps u1,n : (S, �) ! X1,n are given by tn�0, where

�0 is a unit-norm quadratic di↵erential on (S, �). Suppose En ! 1. Then everywhere

away from the zeros of |�0|, one has

lim
n!1

�nen
En

= |�0|.

Proof. By construction, the Hopf di↵erential of the harmonic map from (S, �) to X1,n

is given by tn�0, where �0 is a unit-norm quadratic di↵erential. In a neighborhood

away from any zero of �0, consider then the horizontal foliation of �n = tn�0. By the

estimates on the geodesic curvature of its image [62], a horizontal arc of the foliation

in this neighborhood will be mapped close to a geodesic in X1n (we do not reproduce

the techniques here, as we will do so later in a slightly modified setting). Using normal

coordinates for the target adapted to this geodesic and estimates on stretching [61],

we have that

(x, y) 7! (2t1/2n x, 0) + o(e�ct),

where the constant c only depends upon the domain Riemann surface, and the dis-

tance from the zero of the quadratic di↵erential. For the harmonic map from (S, �) to

X2,n, its Hopf di↵erential is given by �tn�0, so that an arc of its horizontal foliation,

which is an arc of the vertical foliation of tn�0, gets mapped close to a geodesic,
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yielding

(x, y) 7! (0, 2t1/2n y) + o(e�ct),

for some constant c > 0 that only depends on the Riemann surface structure on ⌃.

Hence, as a map from ⌃ to the 4-manifoldX1,n⇥X2,n with the product metric, we have

that the induced metric �nen in this neighborhood has the form (4tn + o(e�ct))dx2 +

2o(e�ct)dxdy+(4tn+o(e�ct))dy2. Dividing by 4tn and observing that for a high energy

harmonic map, the total energy is comparable to twice the L1-norm of the quadratic

di↵erential (Proposition 3.8), and taking the limit yields the conclusion.

Proposition 3.2. Suppose �nen is a sequence of induced metrics such that �n ! � 2

T (S) and En ! 1, then after passing to a subsequence, there exists a sequence tn

and a unit-norm quadratic di↵erential �0 on [�] so that

lim
n!1

�nen
En

! |�0|.

Proof. The result follows from the compactness of unit-norm holomorphic quadratic

di↵erentials over a compact set in Teich(S) and the argument in the previous propo-

sition.

As the previous results only show C0 convergence in any neighborhood away from

a zero of the quadratic di↵erential, it is not quite so obvious we have convergence

in the sense of length spectrum. The following technical proposition shows we ac-

tually do have convergence when the metrics are regarded as projectivized geodesic
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currents. With the length spectrum embedding (as given in Theorem 2.12), we now

have sequences of points whose limits are the flat structures in the space of geodesic

currents.

Proposition 3.3. Let �nen and En be in the same setting as above. Then as currents

L�nen

E
1/2
n

! L|�0|.

Proof. As the topology of geodesic currents is determined by the intersection number

against closed curves, it su�ces to show that given any closed, non-null homotopic

curve class [�] and ✏ > 0, there is an N([�], ✏) such that for n > N , one has that

|i(L�nen/En , �) � i(L|�0|, �)| < ✏. We choose a representative � of [�] to be a |�0|-

geodesic with length L = i(L|�0|, �) with some fixed orientation. As the estimate in

Proposition 3.2 does not hold near a zero zi of |�0|, the first step is to construct open

balls Vi of radius ✏ in the |�0|-metric about each zero zi of �0 (choosing ✏ su�ciently

small) so that

(i) balls centered about distinct zeros do not intersect

(ii) if the curve � enters one of the neighborhoods Vi, then the curve � must intersect

the zero zi before � exits Vi

(iii) (1�✏)C�(4g�2) ⇡ ✏ > 0, where C is the systolic length of the surface (S, |�0|).

As �0 is holomorphic, the zeros are isolated, so we can easily ensure (i) is satisfied.

If the curve � does not intersect zi, then as � is a closed curve, the distance from zi

to the curve � in the |�0|-metric is bounded away from zero, guaranteeing condition
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(ii). Finally, condition (iii) follows as the systolic length C of (S, |�0|) and the genus

of surface are fixed.

As the complement of the union of the Vi’s forms a compact set, by Proposition 3.2

we can find an N so that for n > N the metrics �nen/En and |�0| di↵er by at most ✏.

Now each time � enters Vi, say at p, then hits the zero zi and exits Vi for the first time

thereafter, say at q, we may replace that segment of � with a segment running along

the boundary of Vi connecting p and q. Notice this does not change the homotopy

class of �. We make this alteration for each instance � enters a Vi and denote the

new curve by �0. Observe that each time we make such an alteration, the length

of the curve (in the |�0| metric) increases by at most Ki✏, where Ki is a constant

depending only upon the |�0| and the order of the zero zi. In fact Ki  (4g � 2)⇡.

Hence the |�0|-length of �0 is bounded above by L +
Pj

i=1 niKi✏, where ni is the

number of times � enters Vi. But as �0 now lies in the complement of the union

of the Vi’s, by Proposition 3.2, the length of �0 in the �nen/En metric is at most

(1 + ✏)(L+
Pj

i=1 niKi✏). But the length of �0 in the �nen/En metric must be at least

the length of the geodesic in its homotopy class, which has length L0

n = i(L�nen/En , �),

hence

(1 + ✏)(L+
jX

i=1

niKi✏) � L0

n.

Distributing on the left hand side and subtracting both sides by L, yields

jX

i=1

niKi✏+ ✏(L+
jX

i=1

niKi✏) � L0

n � L

:= i(L�nen/En , �)� i(L|�0|, �).
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Now if L0

n � L � 0, then we are done, for Ki is independent of ✏ and ni decreases

as ✏ does.

So consider the case where L0

n � L < 0, that is, L > L0

n. Consider the �nen/En-

geodesic e�n in the homotopy class of �, and again we give e�n an orientation. Naturally

e�n can enter and exit the Vi’s multiple times, but we remark that as the distance

function on a NPC space from a convex set is itself convex, then each time the curve

leaves Vi, it must pick up some topology before returning, that is, the part of the

curve rel endpoints on lying on the boundary of Vi, the curve is not homotopic to a

segment along the boundary of Vi.

However, now if e� enters and exits Vi say a total of r times, we consider the

pairs of entry and exit points ordered accordingly as p1, q1, ...., pr, qr using the chosen

orientation. Now look at the segment of e�n between ps and ps+1. If this is homotopic

rel endpoints to a segment of the boundary of Vi, then we look at the segment of e�n

between ps and ps+2 (using a cyclic ordering so that r + 1 is identified with 1) and

see if that segment is homotopic rel endpoints to a segment along the boundary of

Vi. We repeat this until the segment of e�n between ps and ps0 is not homotopic rel

endpoints to the boundary of Vi. Then we repeat this process for ps and ps�1 (again

using a cylic ordering) until we find the segment of e�n between ps and ps00 which is

not homotopic rel endpoints to the boundary of Vi. Then we replace the segment of

e� between ps00+1 and ps0�1 with a segment along the boundary of Vi connecting these

two points. We repeat this for each i, so that when the curve leaves Vi, it picks up

some topology before reentering Vi. Altering e�n in this fashion yields a curve e�0n lying
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outside of all the Vi’s. Switching over the |�0|-metric yields the inequality,

(1 + ✏)L0

n +
4g�4X

i=1

miKi✏ � L,

where mi is the number of segments of the altered curve e�0n lying on the boundary

Vi and once again Ki is a constant depending solely on the order of the zero zi. By

assumption that L > L0

n, we have actually that

L0

n + ✏L+
4g�4X

i=1

miKi✏ � L

✏L+
4g�4X

i=1

miKi✏ � L� L0

n.

It su�ces to show that mi can be bounded independently of n. This follows from an

estimate on the systolic length of the metric �en/En. Let C 0 denote the systolic length

among all homotopically non-trivial curves which avoid the Vi’s for the metric |�|.

Then C 0
� C. Then by Proposition 3.1, the systolic length among all homotopically

non-trivial curves which avoid all the Vi’s for the metric �en/En is at least (1� ✏)C 0.

If K denotes the largest constant among the Ki’s, then one has that

4g�4X

i=1

mi 
L

(1� ✏)C �K✏
,

for by construction we had mi segments of e�0n which are each not homotopic rel

endpoints to the boundary of Vi, so that if we connect the endpoints of the segment

with a segment along the boundary of Vi, we add at most K✏ to the length of the

segment. But we now have a closed curve not homotopic to the boundary of any of

the Vi’s, so the length of this closed curve is bigger than C 0. This su�ces for the

proof.
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The resulting flat metrics arising from unit-norm holomorphic quadratic di↵eren-

tials are distinct as Riemannian metrics from the induced metrics as the quadratic

di↵erential metrics have zero curvature away from the zeros, whereas the induced

metrics have negative curvature everywhere (Proposition 2.5). In fact, the flat met-

rics are distinct as geodesic currents, as work of Frazier [20] shows the marked length

spectrum distinguishes nonpositively curved Euclidean metrics from the negatively

curved Riemannian metrics.

3.1.2 Measured laminations as limits

However, not all limits of induced metrics are given by flat metrics. One can also

obtain measured laminations. This is most readily seen in the setting where one

takes a hyperbolic metric and looks at the minimal lagrangian to itself. The induced

metric of the minimal surface is then twice the hyperbolic metric. We thus have

a copy of Teichmüller space inside the space of induced metrics inside the space

of projectivized currents. From Bonahon [3], we know we must have projectivized

measured laminations in our compactification of the induced metrics. However, there

are more ways to obtain measured laminations than by degenerating only the induced

metrics which are scalar multiples of hyperbolic metrics, as the following proposition

shows.

Proposition 3.4. Suppose L�nen leaves all compact sets, but that the sequence En

of total energies is bounded, then in PCurr(S), we have [L�nen ] ! [�] 2 PMF(S).

Furthermore, if [L�n ] ! [�0] in the Thurston compactification, then i(�,�0) = 0,
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where � 2 [�] and �0 2 [�0].

Proof. By the compactness of PCurr(S), any sequence [L�nen ] subconverges to [�] 2

PCurr(S). Hence, there is a sequence of positive real numbers so that tnL�nen ! � 2

Curr(S). We claim tn ! 0.

Consider a finite set of curves �1, �2, ..., �k which fill the surface S. Then the

current �1+�2+ ...+�k is a binding current, that is to say, it has positive intersection

number with any non-zero geodesic current.

As L�nen leaves all compact sets in Curr(S), then

lim
n!1

i(L�nen , �1 + ...+ �k) ! 1,

so by continuity of the intersection form, one has

lim
n!1

tni(L�nen , �1 + ...+ �k) = i(�, �1 + ...+ �k).

But the intersection number on the right hand side is finite, hence tn ! 0. From

Proposition 1.5, one has i(L�nen , L�nen) = ⇡/2 Area(S, �nen), which in this case is

⇡
2En. Then

i(�,�) = lim
n!1

i(tnL�nen , tnL�nen)

= lim
n!1

t2n
⇡

2
En = 0,

where the last equality follows from the boundedness of total energy, hence � 2

MF(S). Now if [L�n ] ! [�0], then there is a sequence t0n ! 0 such that t0nL�n ! �0.
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Then

i(�,�0) = lim
n!1

i(tnL�nen , t
0

nL�n)

 lim
n!1

tnt
0

ni(L�nen , L�nen)

= lim
n!1

tnt
0

nEn = 0.

where the inequality follows from �n  �nen as metrics, and the last equality by the

boundedness of the sequence of total energy En along with the sequences tn, t0n tending

towards zero.

3.1.3 Mixed structures as limits

As some of the possible limits are the singular flat metrics arising from a holomorphic

quadratic di↵erential, the closure of the space of induced metrics on the minimal

surface must include mixed structures, as these arise as limits of singular flat metrics

[16]. The main theorem asserts these are precisely all the possible limits of the

degenerating minimal surfaces.

Theorem 3.5. Let �nen be a sequence of induced metrics such that either �n leaves

all compact sets in T (S) or En ! 1, then there exists a sequence tn ! 0 so that up

to a subsequence tnL�nen ! ⌘ = (S 0, q,�) 2 Mix(S) ⇢ Curr(S). Furthermore, given

any ⌘ 2 Mix(S), there exists a sequence of induced metrics �nen and a sequence of

constants tn ! 0, so that tnL�nen ! ⌘. Hence, the closure of the space of induced

metrics in the space of projectivized currents is Ind(S) = Ind(S) t PMix(S).

The proof of the main theorem will follow from a series of intermediate results,

and will be at the end of the section. The strategy is to show that if the sequence of
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currents coming from the induced metrics is not converging projectively to a measured

lamination, then scaling the induced metrics to have total area 1 is enough to ensure

convergence in length spectrum. To each normalized induced metric, we produce

a quadratic di↵erential metric in the same conformal class as the induced metric,

which will serve as a lower bound. Convergence of the quadratic di↵erential metric

to a mixed structure will yield a decomposition of the surface into a flat part and

a laminar part. On each flat part, we will prove the conformal factor between the

normalized induced metric and the quadratic di↵erential converges to 1 uniformly

(away from finitely many points). An area argument will show the complement is

laminar.

The following proposition allows us to analyze sequences of induced metrics which

are not converging to projectivized measured laminations. If the sequence of induced

metrics is not converging to a projectivized measured lamination, we may scale the

current associated to the induced metric by the square root of its area (which is also

the total energy). We remark that in the case where the limiting geodesic current is

not a measured lamination, then scaling the induced metrics by total energy of the

associated harmonic map is strong enough to ensure length-spectrum convergence,

yet delicate enough to ensure the limiting length spectrum is not identically zero.

This should be compared to the situation in [62] and [14] where one always scales the

metric by the total energy.

Proposition 3.6. Suppose the conformal class of the minimal surface leaves all com-

pact sets in T (S) and the sequence of total energies is unbounded, that is En ! 1.
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Then up to a subsequence, there exists a sequence cn ! 0 and a geodesic current µ

such that cnL�nen ! µ. If µ is a measured lamination, then cn = o(E�1/2
n ). If µ is

not a measured lamination, then cn ⇣ E
�1/2
n .

Proof. By Theorem 2.12, one has an embedding of the space of induced metrics into

the space of projectivized geodesic currents, which is compact. Taking the closure

implies the first result. If [µ] is the limiting projective geodesic current, then one can

choose a fixed representative; call it µ.

If µ is a measured lamination, then dividing the current L�nen by E
1/2
n normalizes

the current to have self-intersection number 1. Then as the measured laminations

have self-intersection 0, the second result follows.

Suppose then µ is not a measured lamination. Then its self-intersection number

is positive and finite. But

i(µ, µ) = lim
n!1

i(cnL�nen , cnL�nen)

= lim
n!1

c2n i(L�nen , L�nen)

= lim
n!1

c2n
⇡

2
Area(S, �nen)

= lim
n!1

c2n
⇡

2

Z

S

�nen dzn ^ dzn

= lim
n!1

c2n
⇡

2
En,

so that 0 < limn!1 c2n En < 1, that is cn ⇣ E
�1/2
n , as desired.

With the normalization of dividing the current L�nen by E
1/2
n , the self-intersection

of the current will be ⇡/2, that is to say we have scaled the induced metric to have
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total area 1.

The following proposition shows the relation of the induced metric to the corre-

sponding Hopf di↵erential metric.

Proposition 3.7. Away from the zeros of �, one has the following identity

�e = |�|

✓
1

|⌫|
+ |⌫|

◆
.

Consequently,

�nen � 2|�n|.

Proof. This result follows immediately by manipulation of the formulae involving H

and L. One has

�2e2 = �2(H2 + 2HL+ L
2)

= �2
HL

✓
H

L
+ 2 +

L

H

◆

= |�|2
✓

1

|⌫|

2

+ 2 + |⌫|2
◆
.

Taking a square root on both sides yields the result.

For a given sequence �nen we consider the associated smooth (away from the zeros

of the quadratic di↵erential) function fn = ( 1
|⌫n|

+ |⌫n|). To each n, there is only one

such fn by Lemma 2.8.

The following proposition due to Wolf allows us to pass freely between the L1-

norm of a Hopf di↵erential and the total energy of the corresponding harmonic map.

The original proof was for a fixed Riemann surface as the domain, but the argument

holds when the domain is allowed to change. For the ease of the reader, we have

included the adapted proof.
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Proposition 3.8 (Wolf [61], Lemma 3.2). For any Riemann surface (S, J) and hy-

perbolic surface (S, �), if id : (S, J) ! (S, �) is a harmonic map with Hopf di↵erential

� and total energy E , then

E + 2⇡�(s)  2||�||  E � 2⇡�(S).

Proof. As H� L = J and
R
J �dzdz = �2⇡�, we have

Z
H � dzdz + 2⇡� =

Z
L � dzdz =

Z
� ⌫ dzdz,

as the integrands agree. But, recalling that |⌫| < 1, we have

Z
� ⌫ dzdz 

Z
|�| dzdz

=

Z
H |⌫| � dzdz



Z
H � dzdz =

Z
L � dzdz � 2⇡�.

Adding the first integral and the last integral yields

Z
e� dzdz + 2⇡�  2

Z
|�| dzdz 

Z
e � dzdz � 2⇡�,

proving the proposition.

Corollary 3.9. If the sequence �0,n of unit-norm quadratic di↵erential metrics con-

verges projectively to a measured lamination, then so does the associated sequence

L�nen/E
1/2
n of geodesic currents.

Proof. Suppose L|�0,n| ! [�] in the space of projectivized currents. As i(L|�0,n|, L|�0,n|) =

⇡/2, while i(�,�) = 0, then there exists a sequence tn ! 0, so that the length spec-

trum of tn|�0,n| converges to that of some � 2 [�]. This is to say, there is a curve
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class [�], for which the length of its geodesic representative against the metric |�0,n| is

unbounded, so by Propositions 3.7 and 3.8, the sequence of lengths of the [�]-geodesic

against the metrics �nen/En is unbounded. Hence there is a sequence sn ! 0 so that

snL�nen/E
1/2
n converges to a current µ. But as the self-intersection of L�nen/En is

exactly ⇡/2, the intersection of µ with itself is zero, from which the result follows.

The previous corollary allows us to exclude the case where the sequence of flat

metrics tends towards a projectivized measured lamination, for in that case, we have

that the sequence of induced metrics also tends towards a projectivized measured

lamination. Hence, we need only consider the case where the sequence of flat metrics

converges to a non-trivial mixed structure, say ⌘. The data of ⌘ gives us a subsurface

S 0 for which the restriction of ⌘ is a flat metric arising from a quadratic di↵erential.

Here we consider S 0 up to isotopy.

The remainder of the section is devoted towards showing that if the sequence of

unit-norm quadratic di↵erential metrics converges to a mixed structure that is not

entirely laminar, then so does the sequence of unit-area induced metrics. This will

then complete the proof of Theorem 3.5.

We begin by record the following useful bound due to Minsky, for the function

G = log(1/|⌫|).

Proposition 3.10 (Minsky [45], Lemma 3.2). Let p 2 S be a point with a neighbor-

hood U such that U contains no zeros of � and in the |�|-metric is a round disk of

radius r centered on p. Then there is a bound

G(p)  sinh�1

✓
|�(S)|

r2

◆
.
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Proof. The PDE�G = 2J > 0 shows that G is subharmonic in U . It su�ces therefore

to bound the average of G on U in the |�|-metric. Some algebra yields

sinhG =
1

2

�

|�|
J .

Using the concavity of sinh�1 on the positive real axis, we obtain

G(p)  |�|-AvgU(G) by subharmonicity of G

= |�|-AvgU

✓
sinh�1 1

2

�

|�|

◆

 sinh�1

✓
|�|-AvgU

✓
1

2

�

|�|

◆◆
by concavity of sinh�1

= sinh�1

✓
1

2⇡r2

Z

U

�

|�|
J dA(|�|)

◆

 sinh�1

✓
|�(S)|

r2

◆
by Gauss-Bonnet.

As we are in the setting where the sequence L�0,n of currents coming from unit-area

holomorphic quadratic di↵erential metrics converges to a non-trivial mixed structure

⌘ = (S 0,�1,�), we have that the restriction of the metric |�0,n| to S 0 converges to

the metric |�1|. On this systole positive collection S 0 of subsurfaces, we have the

following proposition.

Proposition 3.11. Given ✏, ✏0 > 0, there exists N = N(✏, ✏0) such that for n > N

m|�0,n|({p 2 S :

✓
1

|⌫n|
+ |⌫n|

◆
(p) � 2 + ✏0}) < ✏.

Consequently the limiting function 1
|⌫| + |⌫| is 2 almost everywhere with respect to the

|�1|-metric.
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Proof. By Proposition 3.7, one has the equality

�nen
En

=
|�n|

En

✓
1

|⌫n|
+ |⌫n|

◆

=

✓
||�n||

En

◆
|�n|

||�n||

✓
1

|⌫n|
+ |⌫n|

◆
.

Defining

1� cn
2

:=

✓
||�n||

En

◆
,

one has cn ! 0 by virtue of Proposition 3.8. Observe that cn � 0, as the function

1
|⌫n|

+ |⌫n| � 2, the area of |�0,n| =
|�n|

||�n||
is 1 and the area of the scaled metric �nen

En

is also 1. If mn then denotes the |�0,n|-measure of the set of of points for which the

function 1
|⌫n|

+ |⌫n| is at least 2 + ✏0, then one has

Z

{p:( 1
|⌫n|+|⌫n|)(p)�2+✏0}

✓
1

|⌫n|
+ |⌫n|

◆✓
1� cn

2

◆
dA(|�0,n|)

+

Z

{p:( 1
|⌫n|+|⌫n|)(p)<2+✏0}

✓
1

|⌫n|
+ |⌫n|

◆✓
1� cn

2

◆
dA(|�0,n|) =

Z
dA(

�nen
En

) = 1.

The integrand in the first integral is at least (2 + ✏0)
�
1�cn
2

�
, whereas the second

integrand is at least 2
�
1�cn
2

�
. Multiplying these lower bounds with the measures of

their respective sets yields

(2 + ✏0)

✓
1� cn

2

◆
mn + 2

✓
1� cn

2

◆
(1�mn)  1.

Some basic algebraic manipulation gives

mn

✓
(2 + ✏0)

✓
1� cn

2

◆
� 2

✓
1� cn

2

◆◆
 cn

mn

✓
1� cn

2

◆
✏0  cn

mn 
2cn

(1� cn)(✏0)
,
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and as ✏0 is now fixed, one may find a su�ciently large N to guarantee mn < ✏.

As the metric |�1| has finite total area, convergence in measure of the sequence of

functions 1
|⌫n|

+ |⌫n| to the constant function 2, implies that up to a subsequence, one

has convergence to the constant function 2 almost everywhere.

Sets of measure zero can be rather problematic if we wish to say something about

length of curves. The following proposition shows that we actually have convergence

o↵ the zeros and poles of |�1|.

Proposition 3.12. Suppose En ! 1. Then up to a subsequence
⇣

1
|⌫n|

+ |⌫n|
⌘
! 2

everywhere on S 0 except at the zeros and poles of |�1|.

Proof. Observe that the function 1
|⌫n|

+ |⌫n| is not defined at the zeros of |�n|, but

is well-defined everywhere else. Moreover, the auxiliary function G = log 1
|⌫| satisfies

the partial di↵erential equation

� log
1

|⌫n|
= 2Jn > 0,

so that the function G and hence 1
|⌫n|

+ |⌫n| never attains an interior maximum on the

complement of the zeros. It follows that 1
|⌫n|

+|⌫n| is only unbounded in a neighborhood

of a zero of a corresponding quadratic di↵erential �n. The sequence of flat metrics

|�0,n| on S 0 converges geometrically to |�1|, and so the zeros of |�n| on S 0 will

converge to the zeros of |�1|. For any ✏ > 0, consider balls of radius 3✏ about each

zero of |�1|, choosing ✏ su�ciently small, so that balls about distinct zeros do not

intersect. Call this collection B. Then for large n, balls of radius ✏ in the |�0,n| metric

about the zeros of |�n| will be contained in B. For each boundary component of S 0,
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which in the geometric limit is collapsed to a puncture, choose a geodesic curve with

respect to the |�1|-metric, homotopic to the puncture and enclosing the puncture, of

length l✏ > 3✏ so that the |�1|-distance of each point of the curve to the puncture is

at least 3✏, possibly choosing a smaller ✏ until such a configuration is possible. This

gives an annulus for each boundary component of S 0. Call the collection of these

annuli A.

For any point in the complement of both A and B, for large n, the injectivity

radius with respect to the |�0,n|-metric is at least ✏ and the distance to any of the

zeros is at least ✏. Moreover, each point p in the region satisfies the property that

any q 2 B✏/2(p) has injectivity radius at least ✏/2 and distance at least ✏/2 to any

zero or the boundary of the cylindrical region. Hence, by Proposition 3.10, the value

of log(1/|⌫n|) is at most M✏/2, where the constant no longer depends on n, once n is

chosen su�ciently large. As the function log(1/|⌫n|) is subharmonic, by the mean-

value property, one has at any point p in this set

log(1/|⌫n|)(p) 

Z

B✏/2(p)

log(1/|⌫n|) dA|�0,n|


�
|�0,n|-Area(B✏/2(p)

�
✏0 +M✏/2✏

00,

for n large enough so that log(1/|⌫n|) < ✏0 outside a set of measure at most ✏00 by

Proposition 3.11. As the choice of ✏ was arbitrary, the conclusion follows.

These collection of propositions prove the following result:

Theorem 3.13. Suppose L|�0,n| converges to a mixed structure ⌘, which is not en-
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tirely a measured lamination. Then the corresponding metrics �nen/En as En ! 1,

restricted to S 0 converges geometrically to |�1|.

Proof. Defining A and B as in the previous proof, on the region S 0
\(A [ B), Propo-

sition 3.12 guarantees that we have uniform bounds on the sequence of functions

1/|⌫n|+ |⌫n| whose limit was the constant function 2. Hence by Arzelá-Ascoli, up to a

subsequence, we have uniform convergence on this region. Hence, by the same argu-

ment as that of Proposition 3.3, the length spectrum of the scaled induced metric on

this domain converges to the limiting length spectrum of the sequence |�0,n|, which

is |�1|.

Proof of Theorem 3.5. Recall that to any flat metric arising from a holomorphic

quadratic di↵erential, one can find a sequence of induced metrics so that the cho-

sen flat metric is the limit in the space of geodesic currents (Proposition 3.2). Hence

by Theorem 1.10, any mixed structure ⌘ can be obtained by a sequence L�nen of

currents coming from the induced metrics. On the other hand, to any sequence of

induced metrics leaving all compact sets, then either it converges projectively to a

measured lamination or it does not. If it does not, then the corresponding sequence of

normalized Hopf di↵erential metrics must converge to a mixed structure which is not

purely laminar. The previous theorem thus ensures there is a nonempty collection

of incompressible subsurfaces, S 0, on which the limiting current is a flat metric. But

on the complement of S 0, the current µ restricts to a measured lamination (as on

this complement the areas of the metric tend to zero), the proof of Theorem 3.5 is

complete.
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3.1.4 Dimension of the boundary

We end this section with a remark about the compactification of the induced metrics.

Recall the dimension of the space of induced metrics (being homeomorphic to Qg/S1)

was 12g� 13. The dimension of the singular flat metrics can be readily seen to be of

dimension 12g� 14. The mixed structures are stratified by the subsurfaces for which

the mixed structure is a flat metric. A subsurface of lower complexity yields fewer

free parameters than the whole surface S in the choice of a flat structure, and the

extra choices one gains for a measured lamination on the complementary subsurface

is strictly less than the loss of choice for the flat structure. Hence the boundary of

the compactification of the induced metrics via projectivized geodesic currents is of

codimension 1.

3.2 Geometry of the limits

In this section, we wish to relate the mixed structures with cores of R-trees arising

from laminations. To this end, we elucidate the relation between the mixed structure

and the pair of projective measured laminations obtained from the pair of degenerat-

ing hyperbolic surfaces.

3.2.1 R-trees

Here we recall some basic facts about R-trees. An R-tree T is a metric space for which

any two points are connected by a unique topological arc, and such that the arc is

a geodesic. Equivalently, if (X, d) is a metric space, for any pair of points x, y 2 X,
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define the segment [x, y] = {z 2 X| d(x, y) = d(x, z) + d(z, y)}. Then an R-tree is a

real non-empty metric space (T, d) satisfying the following:

(i) for all x, y 2 T , the segment [x, y] is isometric to a segment in R.

(ii) the intersection of two segments with an endpoint in common is a segment

(iii) the union of two segments of T whose intersection is a single point which is an

endpoint of each is itself a segment.

We say that a group � acts on T by isometry if there is a group homomorphism

✓ : � ! Isom(T ). The action is from the left. An action is said to be small if the

stabilizer of each arc does not contain a free group of rank 2. An action is said to be

minimal if no proper subtree is invariant under �.

A particularly important class of R-trees comes from the leaf space of a lift of a

measured foliation on a closed surface to its universal cover. Any measured foliation

F on a closed surface of genus g � 2 may be lifted to a ⇡1S-equivariant measured

foliation on its universal cover. The leaf space can be made into a metric space, by

letting the distance be induced from the intersection number. Notice this is an R-tree

with a � = ⇡1S action by isometries. Naturally, not all R-trees with a ⇡1S action

arise from this construction. A theorem of Skora [55] shows that an R-tree with a

⇡1S-action comes from a measured foliation if and only if the action is small and

minimal (see [21] for a proof in the current setting of harmonic maps). Alternatively,

one may start with a measured lamination (�, µ) on S and lift it to a measured

lamination (e�, µ) on the universal cover. Then an R-tree may be formed by taking the

connected components of eS\e� with edges between two vertices if the two components
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were adjacent (separated by a geodesic), and then metrically completing the distance

induced by the intersection number. The R-tree comes equipped with a ⇡1S-action,

and is ⇡1S-equivariantly isometric to the R-tree constructed from the corresponding

measured foliation. In what follows, we will deal exclusively with R-trees with a

⇡1S-action coming from the leaf space of the lift of a measured foliation.

3.2.2 Relation of flat metrics to R-trees

We obtain a classification of the flat parts of the mixed structure arising from the

data of the limits of the sequences X1,n and X2,n. Let S 0 be a connected subsurface

for which the limiting mixed structure ⌘ is a flat metric. For each n, denote by

S 0

n the subsurface isotopic to S 0 such that the boundary components are geodesics

with respect to the induced metric �nen/En. Let X 0

1,n denote the restriction of the

hyperbolic metric X1,n to the subsurface of S, in the same isotopy class of S 0, but

which has geodesic boundary with respect to the restricted hyperbolic metric. Then

let u0

i,n denote the restriction to S 0

n of the harmonic map ui,n : (S, �nen) ! Xi,n.

Theorem 3.14. Consider a connected component of S 0. The sequence of harmonic

maps u0

1,n : (S 0

n, �nen/En) ! X1,n/2En converges to a ⇡1(S 0)-equivariant harmonic

map u0 : (S 0, |�1|) ! T1, where T1 is the R-tree dual to �1 = limn!1 X1,n/2En. The

Hopf di↵erential is given by �1. Likewise the same holds for �2 and ��1. Hence,

the laminations are the vertical and horizontal foliations of �1.

Proof. We begin by showing that �1 is a well-defined measured lamination in the

projective class of [�1], which is the limit on the Thurston boundary of the sequence
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X1,n. This will follow from standard estimates on stretching and geodesic curvature

of an arc of the horizontal foliation which avoids the zeros. This will be an adaptation

of the argument employed in [62], for the case where the domain conformal structure

is fixed and the Hopf di↵erentials lie along a ray.

We first show boundedness of the Jacobian. For any neighborhood U of the surface

which avoids a zero of �0,n one has the usual PDE

��n log
1

|⌫n|2
= 4Jn > 0, (3.1)

and consequently,

��n ||�n|| log
1

|⌫n|2
= 4||�n||Jn > 0. (3.2)

Using the conformal invariance of harmonic maps, we replace the metric �n on the

neighborhood U with a metric �0

n in the same conformal class as �n, but one which

is flat on U . Subharmonicity of the function ||�n|| log 1/|⌫n|2 yields

||�n|| log
1

|⌫n|2
(p) 

1

⇡R2

Z

BR(p)

||�n|| log
1

|⌫n|2
dA(�0

n) (3.3)

on a ball of �0

n radius R contained in U . Some algebra yields

Jn(p)
||�n|| log

1
|⌫n|2

(p)

Jn(p)


1

⇡R2

Z

BR(p)

Jn

Jn
||�n|| log

1

|⌫n|2
dA(�0

n), (3.4)

and hence

Jn(p) 
Jn(p)

||�n|| log |⌫n|�2

 
sup

q2BR(p)

||�n|| log |⌫n|�2(q)

Jn(q)

!
1

⇡R2

Z

BR(p)

Jn dA(�0

n). (3.5)

But one has that

Jn

||�n|| log |⌫n|�2
=

|�0,n|

�n|⌫n|

(1� |⌫n|2)

log |⌫n|�2
, (3.6)
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so that in applying Proposition 3.12 to the expression (6.6), one obtains that (6.5)

may be rewritten as

Jn(p)  cn

Z

BR(p)

Jn dA(�0

n), (3.7)

where cn will depend on the metric |�0,n|, |⌫n|, R and �n. But on the neighborhood

U , we know for su�ciently large n, we have that |�n| ! |�1|, and |⌫n| ! 1 and

�n ! �1, where �1 is the uniformizing metric of �1. Hence cn remains bounded on

U . But finally,

Z

BR(p)

Jn dA(�0

n) =

Z

BR(p)

�0

n

�n
Jn dA(�n)  sup

U

�0

n

�n

Z

M

Jn dA(�n)  �2⇡�(S)c0n,

(3.8)

where here c0n will only depend upon the injectivity radius of the metric �n on the

neighborhood U , which for large n will be close to the injectivity radius of �1.

From (6.7), (6.8) and the PDE in (6.1), one obtains by elliptic regularity (see [23],

Problem 4.8a) that |⌫n| ! 1 in C1,↵(U), where U does not contain a zero or pole of

�1.

In the natural coordinates of the quadratic di↵erential, the hyperbolic metric g1,n

is given by (�nen + 2||�n||)d⇣2n + (�nen � 2||�n||)d⌘2n.

Recall that the geodesic curvature of an arc of the horizontal foliation of �0,n in

the natural coordinates for �0,n = d⇣2n = d⇠2n + d⌘2n is given by the equation

(�)⌘=constant = �
1

2g11
p
g22

@g11
@⌘n

, (3.9)
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so that for � an arc of the horizontal foliation of �0,n avoiding the zeros, one has

(�)⌘=constant = �
1

2(�nen + 2||�n||)(�nen � 2||�n||)1/2
@

@⌘n
(�nen + 2||�n||) (3.10)

= �
1

2Jn(�nen + 2||�n||)1/2
@

@⌘n
�nen. (3.11)

But simple algebra yields that �nen = ||�n|||�0,n|(|⌫n|�1+ |⌫n|), so that in the natural

coordinates as |�0,n| ⌘ 1, one actually has �nen = ||�n||(|⌫n|�1 + |⌫n|). Hence

(�) =
1

2
||�n||(1� |⌫n|

2)J �1
n |⌫n|

�2(�nen + 2||�n||)
�1/2 @

@⌘n
|⌫n| (3.12)

=
1

2
||�n||H

�1
n |⌫n|

�2(�nen + 2||�n||)
�1/2 @

@⌘n
|⌫n|, (3.13)

as Jn = Hn(1� |⌫n|2). As ||�n||H
�1
n = |⌫n|/|�0,n|, rewriting (6.13) gives

(�) =
1

2

1

(|�0,n| · |⌫n|)(�en + 2||�n||)1/2
·
@

@⌘n
|⌫n|, (3.14)

and as |⌫n| ! 1 in C1,↵(U), one obtains g1,n(�) = o(||�n||
�1/2) = o(E�1/2

n ).

Then to any arc � of the horizontal foliation of �n avoiding any zeros of �n, one has

that is is mapped close to its geodesic in the target hyperbolic surface. The following

standard calculation on the stretching shows that by normalizing the target hyperbolic

manifold by the total energy, the resulting length is given by the intersection number

with the measured lamination �1. One has

lg1,n(�) =

Z

�

H
1/2
n + L

1/2
n ds�n

=

Z

�

H
1/2
n (1 + |⌫n|) ds�n

=

Z

�

||�n||
1/2

|�0|
1/2

|⌫n|1/2
(1 + |⌫n|)

ds�n

�1/2
n

= ||�n||
1/2

Z

�

✓
1 +

✓
1

|⌫n|1/2
� 1

◆◆
(2� (1� |⌫n|)) ds|�0|

= 2||�n||
1/2l|�0,n|(�) +O(||�n||

1/2(1� |⌫n|)),
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recalling that in order to obtain the metric �e, one has to divide both hyperbolic

surfaces by twice the energy, which is approximately 4 times the L1-norm of the

Hopf di↵erential for su�ciently large energy, independent of the Riemann surface

structure (see Proposition 3.8). Meanwhile, a similar calculation shows that an arc

of the vertical foliation of �n avoiding the zeros of �n, say ↵, has length in the target

hyperbolic surface given by

lg1,n(↵) =

Z

↵

H
1/2
n � L

1/2
n ds�n

=

Z

↵

H
1/2
n (1� |⌫n|) ds�n

=

Z

↵

||�n||
1/2

|�0,n|
1/2

�1/2
n |⌫n|1/2

(1� |⌫n|) ds�n

= ||�n||
1/2

Z

↵

1� |⌫n|

|⌫n|1/2
ds|�0,n|

= o(E1/2
n ).

Noting that a horizontal arc of �n is a vertical arc of ��n, one sees the �1 and �2

are the horizontal and vertical foliations of �1 (the geometric limit of �n, see [42])

respectively.

To get our desired harmonic map from the flat subsurface to the two trees, notice

that the above estimates show that a horizontal arc of �0,n gets mapped close to a

geodesic in the target space which is a hyperbolic surface scaled by the reciprocal of

total energy. As the scaled induced metric limits to the flat metric |�1|, a horizontal

arc of �1 will thus be mapped by an isometry to the tree T1 and any vertical arc

collapsed, so that the limiting map in the universal cover is given by a projection onto

the leaf space of the horizontal foliation of �1. The same argument holds for T2.
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Proposition 3.15. For any closed curve � on the surface S, one has the following

pair of inequalities:

lg1,n(�)  l�nen(�)

lg2,n(�)  l�nen(�)

Consequently if tnL�nen ! ⌘ as currents, then the length spectra of limn!1 tnLgi,n are

well-defined. If the limiting currents are denoted �j, then

i(�j, ·)  i(⌘, ·).

Proof. As the minimal surface has induced metric of the form g1,n + g2,n, where the

gi,n is a hyperbolic metric, both inequalities is immediate. The final comment follows

from choosing a closed curve � = �n to be a �nen-geodesic and using the inequality

lt2ngi,n([�])  lt2ngi,n(�).

Combining Proposition 3.15 and Theorem 3.14, we obtain a necessary and su�-

cient condition on the pair of measured laminations �1 and �2 to determine a corre-

sponding flat part on the mixed structure.

Corollary 3.16. Let �0i = limn!1 X 0

i,n/2En be a pair of non-zero measured lamina-

tions on a subsurface S 0. Then the pair of laminations fill if and only if the restriction

of the mixed structure ⌘ to S 0 is flat.

Proof. If ⌘ is flat on S 0, the preceding theorem shows the pair of laminations are dual

and hence fill. If the pair of laminations do fill, then for any third lamination �0 one
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has by Propostion 3.15 that i(⌘,�0) > 0, so that it cannot be a lamination, and hence

must be flat by definition of a mixed structure.

Proposition 3.17. On the subsurface S 00 = S \S 0, the laminations �1 and �2 restrict

to a pair of measured laminations which have no transverse intersection. If � denotes

the measured lamination part of the mixed structure, then i(�,�1) = i(�,�2) = 0.

Proof. By Proposition 3.15, since i(�,�) = 0, one has that i(�1,�) = i(�2,�) = 0.

Applying the inequality from Proposition 3.15 again yields i(�1,�2)  i(�,�2) = 0,

from which the result follows.

3.2.3 From geodesic currents to metric spaces

In this section, we construct noncompact metric spaces admitting a ⇡1S-action by

isometries.

Definition 3.18. Let X and X 0 be two metric spaces and let ✏ > 0. Then an ✏-

approximation between X and X 0 is a relation R in X ⇥ X 0 that is onto, so that

for every x, y 2 X and for every x0, y0 2 X 0, the conditions xRx0 and yRy0 imply

|dX(x, y)� dX0(x0, y0)| < ✏.

Definition 3.19. Let Xn be a sequence of metric spaces, each admitting an isometric

action by a group � and a supposed limiting metric space X1 also admitting an

isometric action by the same group �. Then we say Xn converges to X1 in the sense

of Gromov-Hausdor↵-Paulin, if for every ✏ > 0 and every finite set A ⇢ �, and for

every compact subset K ⇢ X1, then for n su�ciently large, there is a compact set
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Kn ⇢ Xn and an ✏-approximation Rn which is A-equivariant between Kn and K in

the following sense: for every x 2 K, for every xn, yn 2 Kn, and for every ↵ 2 A, we

have that the conditions ↵x 2 K and xnRnx and ynRn↵x imply d(↵xn, yn) < ✏.

We construct a sequence of noncompact metric spaces Xn with an isometric action

by � = ⇡1S as follows. Take the induced metric (S, �nen) and lift the metric to

the universal cover (eS, �̂nen). We will deal with the case where the induced metric

converges in length spectrum to a mixed structure that is not entirely laminar (this

is to ensure so that we can scale our metric spaces by total energy; for the case of

a mixed structure that is entirely laminar, the same discussion holds after amending

the sequence of constants). The sequence of noncompact metric spaces thus will be

Xn = (eS, g�nen/En). The following proposition is thus clear.

Proposition 3.20. The manifold Xn = (eS, g�nen/En) is a noncompact metric space

admitting an isometric action by the group � = ⇡1S.

Proof. As Xn itself is a noncompact Riemannian manifold with � = ⇡1S acting on it

by isometries, the result follows immediately.

Up to a subsequence, the metrics (S, �nen/En) will converge in length spectrum

to a non-trivial mixed structure ⌘ = (S 0, q,�). We construct a noncompact metric

space X1 = X⌘ from the mixed structure ⌘. Regard ⌘ as a geodesic current on (eS, g).

To any two distinct points x, y 2 eS, one can form the geodesic arc ↵ connecting the

two points. Let c be the set of bi-infinite geodesics which intersect ↵ transversely.

Then the intersection number i(⌘,↵) is given by the ⌘-measure of c. This yields

a pseudo-metric space coming from the geodesic current ⌘. Notice it is possible
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for the intersection number to be zero, for instance if the geodesic arc is disjoint

from the support of the current, or if it forms no nontransverse intersection with the

support of ⌘. Taking the quotient by identifying points which are distance 0 from

each other, and then taking the metric completion, yields a noncompact metric space

X1. As � = ⇡1S acted on ⌘ equivariantly, then � acts by isometries on X1. For a

more detailed discussion about the construction of a metric space from the data of a

geodesic current, see [7].

Remark 3.21. In the setting where ⌘ is a measured foliation, the metric space X⌘

is a familiar one. It is a R-tree dual to the foliation. The space is constructed

by collapsing the leaves of the foliation with the distance on the tree inherited by

intersection number and then completing (see [46]). The case where ⌘ is a non-trivial

mixed structure follows the same spirit of this construction. The laminar part is tree-

like, formed on the universal cover by collapsing leaves of the supported lamination

and then completing. On the flat part, the metric space is formed by the product

of the trees dual to the vertical and horizontal lamination of a quadratic di↵erential

whose metric is the given flat metric.

The preceding discussion is summarized by the following proposition.

Proposition 3.22. To any mixed structure ⌘, the construction above gives a non-

compact metric space X⌘ admitting an isometric action by � = ⇡1S.

Using the Gromov-Hausdor↵ topology, one has the following.

Theorem 3.23. A subsequence of the metric spaces (eS, g�nen/En) converges in the
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sense of Gromov-Hausdor↵ to a noncompact metric space X⌘ coming from a mixed

structure ⌘ acted upon by � = ⇡1S.

Before presenting the proof, we record one useful fact regarding convergence of

maps. This follows from work of Korevaar-Schoen.

Theorem 3.24 (Korevaar-Schoen, see [35], [14]). Let fM be the universal cover of

a compact Riemannian manifold, and let uk : fM ! Xk be a sequence of maps such

that:

a. Each Xk is an NPC space

b. The uk’s have uniform modulus of continuity: For each x, there is a monotone

function !(x, ·), so that limR!0 !(x,R) = 0 and maxB(x,R) d(uk(x), uk(y)) 

!(x,R).

Then the pullback metrics duk
converge (possibly after passing to a subsequence) point-

wise, locally uniformly to a pseudometric d1.

Proof of Theorem 3.23. Recall from Theorem 3.13, that on S 0 we have uniform con-

vergence of the induced metric to the flat metric. For the complementary subsurface,

recall that metric spaces were obtained as the induced metric on the minimal surface,

so that the metric came from a pull-back of a harmonic map. By Proposition 3.6,

the scaled metric is the pull-back metric of a harmonic map with energy at most 1.

Hence by Theorem 3.24 (see Proposition 3.7 [35], or Theorem 2.2 [14]), the metrics

converge uniformly. As the lifts of the induced metrics admitted an ⇡1S-action by

isometries, so does the limit.
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3.2.4 Convergence of Harmonic maps

Not only do the metric spaces converge in a suitable topology, the harmonic maps do

as well. As we have shown in the preceding section that the domains converge in the

sense of Gromov-Hausdor↵ to a metric space arising from a mixed structure, and as

shown in work of Wolf [63], one has that the lifts of a sequence of degenerating hyper-

bolic metrics, when properly scaled, subconverge in the sense of Gromov-Hausdor↵

to R-trees dual to a particular measured lamination in the projective class of the

associated point on the Thurston boundary. Hence we have both domain and target

converging in the same topology to noncompact metric spaces with isometric actions

by � = ⇡1S. It is natural to expect some sort of convergence in the harmonic maps.

In Wolf [63], the domain is a fixed Riemann surface, and the target is changing. Here,

we have both domain and target changing (and converging). We begin by reviewing

the necessary definitions.

Definition 3.25 (see also [63]). Let Xn, X1 be spaces admitting an action of a group

� and let (Yn, dn) and (Y1, d1) be metric spaces admitting an isometric action of �.

Suppose fn : Xn ! Yn and f1 : X1 ! Y1 are equivariant maps. Then we say that

fn converges (uniformly) to f if

(i) Both Xn and Yn converge (uniformly) to X and Y respectively in the sense of

Gromov, and

(ii) For every ✏ > 0, there is an N(✏) so that for n > N(✏), the ✏-approximations

Rn, R0

n satisfies: for every xnRnx one has fn(xn)R0

nf(x).
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We will require a notion of harmonic for maps between singular spaces. The

following can be found in more detail in [17].

Definition 3.26. Let � 2 L2
loc(X, Y ). The approximate energy density is defined for

✏ > 0 by

e✏(�)(x) =

Z

BX(x,✏)

d2Y (�(x),�(x
0))

✏m+2
dµg(x

0).

Definition 3.27. The energy E(�) of a map � of class L2
loc(X, Y ) is

E(�) = sup
f2Cc(X,[0,1])

✓
lim sup

✏!0

Z

X

fe✏(�)dµg

◆

Definition 3.28. A harmonic map � : X ! Y is a continuous map of classW 1,2
loc (X, Y )

which is bi-locally E-minimizing in the sense that X can be covered by relatively com-

pact subdomains U for each of which there is an open set V � �(U) in Y such that

E(�|U)  E( |U)

for every continuous map  2 W 1,2
loc (X, Y ) with  (U) ⇢ V and  = � in X\U .

In the setting where both singular spaces are finite metric graphs, the resulting

harmonic maps are a�ne maps. Each edge of the domain graph is mapped via the

constant map, or mapped linearly to the target graph. The following result of Lebeau

characterizes all such harmonic maps.

Theorem 3.29 (Lebeau [39]). Given two finite metric graphs G and G0, every contin-

uous map between G and G0 is homotopic to a a�ne map which minimizes the energy

within its homotopy class. Furthermore, the map is unique up to parallel transport.
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Proposition 3.30. Suppose L�nen/Cn converges to �, where � is a Jenkins-Strebel

lamination. Then the sequence of metric spaces (S, �nen/Cn) converges geometrically

to a finite metric graph.

Proof. This follows immediately from Theorem 3.24 (see also Proposition 3.7 of [35]),

as the induced metrics are the pullback metrics of a harmonic map from H
2 to H2

⇥H
2,

which is NPC. The assumption on the modulus of continuity follows from the bound

on the total energy of the maps un to the rescaled target, so that total energy is at

most 1. Hence, the limiting metric space is the dual graph of �, which is a finite

metric graph.

Theorem 3.31. Let Cn ! 1, so that L�nen/Cn ! ⌘, where ⌘ is a mixed structure

with laminar part supported on a finite collection of simple closed curves. Suppose

LXi,n/Cn ! �i, where �i are measured laminations also supported on a finite collection

of simple closed curves. Then the sequence of harmonic maps ui,n : (S, �nen/Cn) !

Xi,n/Cn converges to a harmonic map ui : X⌘ ! Ti.

Proof. Recall X⌘ is the metric completion of the metric space obtained from the

geodesic current ⌘ by creating a pseudo-metric space from the intersection number

with ⌘, and then identifying points with 0 distance.

As the case where ⌘ is flat has been previously handled in Theorem 3.14, we first

construct a ⇡1S-equivariant map between the laminar part of X⌘ and T1 (here we

will consider only the case where ⌘ is a Strebel lamination). The same construction

will produce a similar map to T2. Let D be a connected fundamental domain of the

laminar region of X⌘, then D is a finite metric graph. We embed the graph D into the
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laminar region S 00 of the minimal surface as follows: we map each vertex of D to its

corresponding thick region on S 00. The geometric convergence of the minimal surfaces

to D from Proposition 3.30 allows us to determine which region of the minimal surface

will converge to a given vertex. Once we have made our choice of where to send each

vertex of D, if there is an edge e connecting two vertices of D, then we send the edge

e to the geodesic arc connecting the two points on the minimal surface where we have

mapped our two vertices. (The limiting map we will obtain later will not depend on

this choice, as distances will converge uniformly.)

As we have convergence in length spectrum and as there are only finitely many

edges, we can ensure that for large n > N(✏), the length of the image of each edge has

changed by at most ✏. We require that the embedding is proportional to arclength.

Then there is a collection of continuous maps �n : D ! Xn with the property that

given ✏ > 0, there is an N = N(✏) so that �n is a (1 + ✏) quasi-isometry.

Likewise, as eX1,n/Cn converges geometrically to an R-tree, a fundamental domain

of eX1,n/Cn will converge geometrically to a finite graph G1 (see for instance, [63]).

Hence, there is a collection of continuous maps  n : X1,n/Cn ! G1 with the same

property as �n.

Form the composition gn =  n � u1,n � �n : D ! G1, where u1,n : (S, �nen/Cn) !

X1,n/Cn is a harmonic map with total energy at most 1. We claim this sequence

of maps gn is uniformly bounded and equicontinuous. Uniform boundedness is clear

as the target graph G1 is a finite graph. To see equicontinuous, we note that as �n

and  n were (1 + ✏) quasi-isometries and since there is a uniform Lipschitz constant

of the maps u1,n, as the total energy of the maps are bounded by 1, (see [34], Thm
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2.4.6), then equicontinuity follows. Hence, by the Arzelà-Ascoli theorem, we have a

subsequence gk converging uniformly to a map g : D ! G1.

We have that g is harmonic as map between singular spaces, for we have uniform

convergence of distances (see [35]) between the approximate metric spaces coming

from our scaled induced metrics and the limiting R-tree. Hence all the quantities in

the definitions of the approximate energy density and the energy converge. As there

is a unique energy minimizer (up to parallel transport, by Theorem 3.29) between

the limiting spaces (which are finite graphs), the map g must be this unique energy

minimizer. (If g were not the energy minimizer, it would have larger energy than

the unique energy minimizer, by say �. One could then construct a map between

the approximate Riemannian manifolds, which would have energy lower than the

harmonic maps u1,n, contradicting the harmonicity of u1,n.)

From Theorem 3.14, we obtained a limiting harmonic map u0 on the flat part of

X⌘ to the tree T1, and now we have a limiting harmonic map g from the laminar part

of X⌘ to the tree T1. Taking the union yields the desired u : X⌘ ! T1. The same

argument holds for T2.

3.2.5 Cores of trees

Here we review some basics of cores of R-trees. A more detailed overview of this

material may be found in [28], [63].

For any R-tree, a direction at a point x 2 T is a connected component of T\x. A
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quadrant in T1 ⇥ T2 is the product of �1 ⇥ �2 of two directions �1 ⇢ T1 and �2 ⇢ T2.

We will say that the quadrant is based at (x1, x2) 2 T1 ⇥ T2, where xi is the base

point for the direction �i.

Let T1, T2 be a pair of trees with a common group action by �. Let x = (x1, x2) 2

T1 ⇥ T2 be a base point.

Definition 3.32. Consider a quadrant Q = �1 ⇥ �2 ⇢ T1 ⇥ T2. Then Q is said to be

heavy if there exists a sequence �k 2 � so that

(i) �k · x 2 Q

(ii) di(�k · xi, xi) ! 1 as k ! 1 for i = 1, 2.

Otherwise we say Q is light.

We define the core of a product of trees to be the product T1 ⇥ T2 with all light

quadrants removed.

Definition 3.33 (Guirardel, [28]). The core C of T1 ⇥ T2 is the subset

C = T1 ⇥ T2\

"
[

Q light quadrant

Q

#
.

Proposition 3.34 ([28]). Let T1 and T2 be dual to a pair of measured foliations �1

and �2, respectively. Consider the map pi : eS ! Ti, which maps an element of eS to

the leaf of e�i which contains it. Then C(T1 ⇥ T2) = p1(eS)⇥ p2(eS).

Proof. The result will follow from the claim that any quadrant Q = �1⇥ �2 in T1⇥T2

is light if and only if p�1
1 (�1) \ p�1

2 (�2) = ;. It is clear that if p�1
1 (�1) \ p�1

2 (�2) = ;,

then Q is light, as for each point x 2 eS, the orbit of (p1(x), p2(x)) does not intersect
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Q. Conversely, if p�1
1 (�1) intersects p

�1
2 (�2), then take U�i to be an open half plane in

eS with bounded Hausdor↵ distance from p�1
i (�i), where U�i is bounded by a geodesic

in e�i. Then as p�1
1 (�1) has nonempty intersection with p�1

2 (�2), then so do U�1 and

U�2 . Moreover, there exists a geodesic � intersecting the pair of geodesics bounding

U�1 and U�2 . Take an element h 2 ⇡1S whose axis is �. Then h is hyperbolic in both

T1 and T2 and h makes Q heavy.

Remark 3.35. This characterization of the core of two trees is particularly useful in

our setting where the trees come from measured laminations. The map p which sends

H
2 to the leaf space of a measured lamination is a ⇡1S-equivariant harmonic map,

and as a product of harmonic maps is harmonic, we see that the core is the image of

the ⇡1S-equivariant harmonic map (p1 ⇥ p2) : H ! T1 ⇥ T2.

In the setting where where T1 and T2 arise from two transverse measured foliations

�1 and �2, then C(T1 ⇥ T2)/⇡1S is isometric to S endowed with the unique singular

Euclidean metric whose vertical and horizontal foliations are �1 and �2.

We present our next main result concerning the relation between the mixed struc-

tures we obtain as limits of the induced metrics and the limits of the corresponding

graphs of the minimal langrangians.

Theorem 3.36. Suppose Cn ! 1, so that L�nen/Cn ! ⌘ and X1,n/Cn ! T1 and

X2,n/Cn ! T2. Then the metric space X⌘ is isometric to the core of the pair of trees

(T1, T2). Consequently, the minimal lagrangians f⌃n/Cn ⇢ H
2/Cn ⇥ H

2/Cn converge

geometrically to the core C(T1 ⇥ T2) ⇢ T1 ⇥ T2.
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Proof. Define the auxiliary map  : P(ML⇥ML) ! PMix(S) by

 ([�1,�2]) = lim
n!1

[L�nen ],

where ⌃n ⇢ X1,n ⇥ X2,n is the minimal lagrangian with induced metric 2�nen and

(X1,n, X2,n) converge projectively to [(�1,�2)]. We claim the map is well-defined.

Choose [(�1,�2)] 2 P(ML ⇥ ML) and a representative (�1,�2) 2 [(�1,�2)].

Then if both (X1,n/kn, X2,n/kn) and (Y1,n/dn, Y2,n/dn) converge in length spectrum

to (�1,�2), then for large enough n, we will have that X1,n/kn will be close to Y1,n/dn

as negatively curved Riemannian surfaces (and likewise for X2,n/kn and Y2,n/dn) by

[47]. Hence the induced metrics on the respective pairs of minimal langrangians will

have close length spectra, so that  is well-defined.

To see that  is continuous, observe that the induced metric on the minimal

surface varies continuously as a map defined on T (S) ⇥ T (S), and as the length

spectrum of the induced metric varies continuously as one takes a sequence of hyper-

bolic surfaces (X1,n, X2,n) ! [(�1,�2)] 2 P(ML⇥ML), one finds the space of mixed

structures varies continuously on P(ML⇥ML) by a diagonal argument.

But we now have a harmonic map from X⌘ to T1 ⇥ T2 defined as follows. From

Theorem 3.14, the harmonic map on the flat part is given by projection to its vertical

and horizontal lamination. By Theorem 3.31, the harmonic map from the laminar part

is given by an a�ne map, when both trees come from Jenkins-Strebel di↵erentials.

We will focus on trees dual to Jenkins-Strebel di↵erentials, as in each fundamental

domain, their dual graphs are finite metric graphs.

On the region S 00 of the minimal surface ⌃n/Cn, which is converging to a measured
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lamination � = a1�1 + ...+ ak�k, we may do a ✏-thick-thin decomposition as follows.

For each core geodesic in the homotopy class of �i, construct a cylindrical region of

height ai � ✏ with core curve given by the geodesic. These thick regions will converge

to the edges of the limiting graph. The complement will be called the thin regions,

which will converge to the vertices of the limiting graph. A similar decomposition

may be constructed on the surfaces Xi,n/Cn. Observe that the thick regions are all

cylinders and the thin regions are never homeomorphic to a cylinder.

We now claim that the limiting harmonic map from X⌘ to Ti will send a vertex of

X⌘ to a vertex in Ti. If a vertex of X⌘ is mapped distance � > 0 away from the nearest

vertex, then for su�ciently large n, the harmonic maps from ⌃n/Cn to the scaled

hyperbolic surfaces Xi,n/Cn will map at least one point p1 in a thin neighborhood to

a point in the cylindrical region which is at least distance �/2 from the boundary of

the cylindrical region. The harmonic map is a di↵eomorphism, so the thin region,

which is never cylindrical, cannot map the thin region completely into a thick region

of the scaled hyperbolic surface, so that there is at least a second point p2 of the thin

region of ⌃n/Cn mapped outside the thick region of Xi,n/Cn.

The thin regions have both diameters and systoles tending towards zero, so the

distance between p1 and p2 tends towards zero. However, their images, by assumption,

are distance at least �/2 apart. But the harmonic map is a projection, which is

distance decreasing, leading to a contradiction. Hence any vertex of X⌘ must be

mapped to a vertex of Ti.

Hence by Theorem 3.29, the map is an a�ne map which maps vertices to the

corresponding vertices.
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But the induced metric on the graph of an a�ne map between the two metric

graphs yields the product metric for the core of the two trees (see Proposition 3.34

and the remark which follows). The equality of the mixed structure and the core of the

trees then holds for pairs of R-trees dual to a pair of Jenkins-Strebel foliations, which

is a dense set in P(ML⇥ML), and both quantities vary continuous for P(ML⇥ML),

thus the theorem follows.

Remark 3.37. In fact, by Theorems 3.14 and 3.31, the sequence of ⇢-equivariant

harmonic maps from H
2 to H

2
⇥H

2 converges projectively to a harmonic map from

H
2 to the product of R-trees, whose image is the core of the trees.

3.3 Compactification of the space of maximal rep-

resentations to PSL(2,R)⇥PSL(2,R)

In this section, we provide an application of our work to compactifying the maximal

component of the representation variety �(PSL(2,R) ⇥ PSL(2,R)). The theory of

maximal representations is defined for general Hermitian Lie groups G and is con-

siderably more straightforward to define in our specific setting of G = PSL(2,R) ⇥

PSL(2,R). Nevertheless, we will define a maximal representation in the general set-

ting before providing a straightforward characterization in our setting.

Let G be a Hermitian Lie group, that is a noncompact simple Lie group whose

symmetric space G/K is a Kähler manifold. In particular, there is a G-invariant
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two-form ! on G/K. Let S be a closed, orientable, smooth surface of genus g � 2.

Then given a representation ⇢ : ⇡1S ! G, one can choose any ⇢-equivariant map

f̃ : eS ! G/K and define the Toledo invariant to be

T (⇢) :=
1

2⇡

Z

S

f̃ ⇤!.

The Toledo invariant will be well-defined for each such representation as the num-

ber obtained will not depend on the choice of f̃ chosen above. A well-known Milnor-

Wood type inequality holds for the Toledo invariant,

|T (⇢)|  |�(s)| · rank(G/K).

Representations whose Toledo invariant attains the upperbound are known as

maximal representations. We now restrict our attention specifically to the group G =

PSL(2, R)⇥ PSL(2, R), whose associated symmetric space is H2
⇥H

2.

To each representation to the group PSL(2,R) ⇥ PSL(2,R), one obtains a pair

of representations to the group PSL(2,R). By work of Goldman [26], the Euler

number of representations to PSL(2,R) characterizes the connected components of

the representation variety. The maximal representations are precisely those whose

projections live in the Hitchin component of PSL(2,R) representations, that is, those

representations that are both discrete and faithful. Hence, such a representation

yields a pair of points in Teichmüller space and an associated minimal surface. We

may parameterize such representations by the induced metric on the minimal surface

⌃, as well as the ⇢ = (⇢1, ⇢2)-equivariant harmonic map from H
2 to H

2
⇥ H

2, given

by the graph of the minimal langrangian from Theorem 2.1. As a final consequence
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of our study of these minimal langrangians, we obtain a compactifcation of the the

maximal component of surface group representations to PSL(2,R)⇥ PSL(2,R).

Theorem 3.38. Let S be a closed surface of genus g > 1. The space of maxi-

mal representations of ⇡1(S) to PSL(2,R) ⇥ PSL(2,R) embeds into the space of

⇡1S-equivariant harmonic maps from H
2
! H

2
⇥ H

2, whose graphs are minimal la-

grangians. The Gromov-Hausdor↵ boundary of these maps is given by harmonic maps

from H
2 to T1 ⇥ T2, where T1 and T2 are a pair of R-trees coming from a projective

pair of measured foliations, with image given by the core of the trees.

Proof. To any maximal representation ⇢ = (⇢1, ⇢2), we may look at the two closed

hyperbolic surfaces given by X1 = H
2
\⇢1 and X2 = H

2
\⇢2. This gives a clear

homeomorphism between the maximal component and two copies Teich(S)⇥Teich(S)

of Teichmüller space. By Theorem 2.1, we obtain a minimal lagrangian � between

X1 and X2 which respects the marking. If ⌃ denotes the conformal structure of the

graph of �, then the inclusion map i : ⌃ ! X1 ⇥ X2 is a conformal map, which

lifts to the desired ⇢-equivariant map from H
2 to H

2
⇥ H

2. The correspondence

which associates the representation ⇢ to this map is continuous and is injective as

distinct representations have distinct minimal lagrangians, hence yielding our desired

embedding.

If ⇢n is a sequence of representations leaving all compact sets, then either g1,n or

g2,n (or both) leaves all compact sets in Teichmüller space (recall (S, gi) = H
2/⇢i).

By Theorem 3.5 (up to a subsequence) the sequence of induced metrics on the graphs

converge projectively to a mixed structure. Let cn be the sequence of constants for
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which we divide the induced metric to ensure length spectrum convergence to a non-

zero mixed structure with self-intersection 1 or a measured lamination. If we scale

the target by the same sequence of constants, then the total energy of the sequence

of harmonic maps is now uniformly bounded, so that by Theorem 3.24, the maps

converge to a map from H
2 to T1 ⇥ T2, where Ti is the R-tree associated to the limit

eXi,n/cn (notice that Ti may be a single point). By Theorem 3.36, the image is given

by the core of the trees, which su�ces for the proof.

3.4 Applications to maximal surfaces in AdS
3

In this section, we prove the required analogues of the minimal lagrangian setting to

show a similar result for limits of maximal surfaces in GHMC AdS3 manifolds.

3.4.1 Anti-de Sitter space

We are primarily concerned with the anti-de Sitter space of signature (2, 1), which

is given by the quasi-sphere x2
1 + x2

2 � x2
3 � x2

4 = �1 inside R
(2,2) with the metric

ds2 = dx2
1 + dx2

2 � dx2
3 � dx2

4. More precisely,

[AdS3 = {x 2 R
(2,2) : hx, xi = �1}.

As the manifold is pseudo-Riemannian, tangent vectors v 2 T [AdS3 come in one

of the following three types:

Timelike if hv, vi < 0
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Lightlike if hv, vi = 0

Spacelike if hv, vi > 0.

The anti-de Sitter space AdS3 is given by the projectivization of [AdS3, its double

cover. The isometry group of AdS3 is PSL(2,R)⇥ PSL(2,R).

A smooth surface S ,! AdS3 is said to be spacelike if the restriction to S of the

metric on AdS3 is a Riemannian metric. This is equivalent to the condition that every

tangent vector v 2 TS is spacelike.

Consider the Levi-Civita connections on S and AdS3 given by r and r
S, re-

spectively. For a unit normal field N on S, the second fundamental form is given

by

rṽw̃ = r
S
vw + II(v, w)N.

The shape operator is the (1, 1) tensor given by B(v) = rvN . It satisfies the property

II(v, w) = hB(v), wi. The maximal surfaces then are governed by the condition that

trB=0.

An AdS3 manifold is a Lorentzian manifold locally isometric to AdS3. Among

these manifolds, we restrict our attention to those which are“globally hyperbolic

maximal compact”, henceforth written as “GHMC”. These manifolds are defined by

those satisfying the following three properties:

1. they contain a closed orientable space-like surface S

2. each complete time-like geodesic intersects S precisely once

3. maximal with respect to isometric embeddings.
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It follows that GHMC AdS3 manifolds must be homeomorphic to S ⇥ R. Mess

[43] showed that the genus of S must be at least 2 and that GHMC structures are

parametrized by two copies of Teichmüller space. Barbot, Béguin and Zeghib [2]

showed that for each such GHMC manifold, there exists a unique embedded spacelike

maximal surface ⌃. In fact, there is a parametrization of all such GHMC manifolds by

the unique embedded maximal surface it contains along with its second fundamental

form.

Theorem 3.39 (Krasnov-Schlenker [36]). Let M be a GHMC AdS3-manifold and

let ⌃ be its unique embedded spacelike maximal surface. The second fundamental

form of ⌃ is given by the real part of a holomorphic quadratic di↵erential on the

underlying complex structure of the maximal surface. Furthermore, there is a homeo-

morphism between the space of all GHMC AdS3-structures and the cotangent bundle

of Teichmüller space, which assigns to a GHMC AdS3-structure, the conformal class

of its unique maximal surface and the holomorphic quadratic di↵erential for which its

real part is the second fundamental form.

The induced metric of the maximal surface is given by e2u�, where � is the hy-

perbolic metric and u satisfies the following PDE:

��u = e2u � e�2u
|�|� 1.

But the solution to this PDE is u = 1
2 logH for which the PDE becomes the usual

Bochner equation. Here H is the holomorphic energy density arising from harmonic

maps between closed hyperbolic surfaces. Hence, the induced metric of the maximal
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surface is given by H�. As a corollary of our main result, we will describe the limiting

length spectrum of any sequence of induced metrics of the maximal surface.

3.4.2 Relation to minimal lagrangians

In the previous section, it was mentioned that maximal surfaces enjoy the same

parameterization as the minimal lagrangians in H
2
⇥ H

2, namely via the bundle of

holomorphic quadratic di↵erentials over Teichmüller space. There is however, an

explicit way to construct the associated minimal lagrangian started from the unique

embedded spacelike maximal surface in a GHMC AdS3 manifold. The image of the

maximal surface under the Gauss map is the minimal lagrangian in the bidsic (see

[36]).

3.4.3 Length spectrum compactification of maximal surfaces

Recall that to each GHMC AdS3 manifold, there is a unique embedded spacelike

maximal surface with induced metric H�, where H is the holomorphic energy density

coming from a harmonic map u : (S, �) ! (S, ⇢) between hyperbolic surfaces. In this

section, we first prove a few basic properties concerning H. This is an analogue of

the analysis done earlier, where we observed the inability of e, the energy density,

to scale linearly. Naturally, the arguments are simpler in nature as the Bochner

equations already involve H, whereas this was not the case with the energy density

e.

Proposition 3.40. On a fixed hyperbolic surface (S, �) one has H1 = H2 if and only
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if e1 = e2.

Proof. Note that if e1 = e2 then |�1| = |�2| by Lemma 2.8. From |�1| = |�2|, one

has by some basic algebra L2 =
H1L1
H2

. From the Bochner formula, one has

� logH = 2H� 2L� 2

1

2
� log

H1

H2
= (H1 �H2)� (L1 � L2)

= (H1 �H2)� L1(1�
H1

H2
).

At a point p 2 S for which the quotient H1/H2 achieves its maximum (which without

loss of generality we may assume to be greater than 1, or else as before we may

reindex), the left hand side of the preceding calculation must be non-positive, but the

right hand side is positive, hence H1 = H2 everywhere.

Proposition 3.41. On a fixed hyperbolic surface (S, �) if H1 = cH2 then c = 1.

Proof. Without loss of generality, take c > 1 or we we may reindex to ensure this is

the case. Once again by the Bochner formula,

� log
H1

H2
= 2(H1 �H2)� 2(L1 � L2)

0 = � log c = 2(cH2 �H2)� 2(L1 � L2)

= 2H2(c� 1)� 2(L1 � L2)

Hence, everywhere one has

L1 � L2 = H2(c� 1) > 0.

But L1 vanishes at the zeros of the quadratic di↵erential �1, a contradiction. Hence

c = 1.
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Proposition 3.42. Let H =
R
H dA(�). Then E = 2H + 4⇡�. Consequently if

En ! 1, then limn!1 En/Hn = 2.

Proof. As J = H� L and
R
J �dzdz = �2⇡�, one has

Z
H�dzdz + 2⇡� =

Z
L�dzdz.

Adding the terms yields

E =

Z
(H + L)�dzdz = 2

Z
H�dzdz + 4⇡� = 2H + 4⇡�.

Recall from Section 2.6, the existence and uniqueness of a spacelike, embedded

maximal surface in any GHMC AdS3 manifold.

Proposition 3.43 (Lemma 3.6 [36]). The induced metric on the maximal surface is

of the form H�.

Proposition 3.44. The induced metric on the maximal surface has strictly negative

curvature.

Proof. The formula for curvature is given by

KH� = �
1

2H�
� logH�

= �
1

2

1

H

✓
� logH

�
+
� log �

�

◆

=
�J

H

where the last step comes from the Bochner equation and the curvature of the hyper-

bolic metric.
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Theorem 3.45. There exists an embedding of the space of maximal surfaces into the

space of projectivized currents.

Proof. As the induced metrics on the maximal surfaces are negatively curved, they

may be realized as geodesic currents. By Proposition 3.41, the projectivization re-

mains injective.

Theorem 3.46. The closure of the space of induced metrics on the maximal surfaces

is given by the space of flat metrics arising from unit norm holomorphic quadratic

di↵erentials and projectivized mixed structures.

Proof. To any induced metric H� on the maximal surface, there is a unique singular

quadratic di↵erential metric |�| associated to it. Some algebra shows that

H� =
|�|

|⌫|
� |�|,

which for high energy, Proposition 3.42 tells us H approximates the L1-norm of the

quadratic di↵erential, so that if the sequence of unit-norm quadratic di↵erentials

converges to measured lamination, then so does the projective current associated to

the induced metric on the maximal surface. Hence, we assume the sequence of unit-

norm quadratic di↵erential metrics converges to a mixed structure. On the flat part

of the mixed structure, we know that up to a subsequence the Beltrami di↵erentials

converges uniformly to 1 outside of a small region about the zeros of the di↵erential

and a cylindrical neighborhood of the boundary curves. But then we know that on

this subsurface the maximal surface metric will converge to |�1| in terms of its length

spectrum. As the total area of the mixed structure is 1 and we have normalized the
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maximal surface metric by the total holomorphic energy, on the complement, the area

of the metric tends to 0, so that the restriction of the limiting current is a measured

lamination.

We observe there is a rather interesting trichotomy at play here. For high energy,

on the subsurface S 0, if the quadratic di↵erentials converge to |�1| then so do the

associated sequence of minimal surface metrics and the sequence of maximal surface

metrics.



Chapter 4

Conclusion

4.1 Future direction

This thesis is the start of a program to compactify Hitchin components from the

perspective of equivariant minimal surfaces inside a symmetric space. The existence

and uniqueness of such a equivariant minimal surface is completely resolved in the

rank 2 setting, namely for the groups PSL(2,R) ⇥ PSL(2,R), SL(3,R), Sp(4,R) and

G2. This thesis has completely classified boundary limits of Hitchin PSL(2,R) ⇥

PSL(2,R) representations, by studying both the metric structure and the geometry of

the minimal surfaces. In the setting of SL(3,R), the author and Tamburelli [49] have

shown the boundary limits of a sequence of induced metrics of the minimal surfaces

coming from Hitchin SL(3,R) representations, when viewed as projectivized geodesic

currents, are mixed structures, where the flat metric comes from a holomorphic cubic

di↵erential instead of a quadratic one. This result is achieved by studying Blaschke

metrics on equivariant a�ne spheres (see [40], [41], [49] ). Forthcoming work by the

95
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author and Tamburelli will show a similar result for Hitchin Sp(4,R) representations

by way of studying maximal surfaces in the pseudo-hyperbolic space H
2,2, which is

the space of negative definite lines in R
2,3 (see [4], [11]). One possible avenue in

this program is to classify the limits of the induced metrics on the minimal surfaces

coming from Hitchin G2 representations, thereby completing the list of rank 2 groups.

Little is known about existence and uniqueness of equivariant minimal surfaces

in the rank 3 case. The product structure of the semi-simple group PSL(2,R) ⇥

PSL(2,R) ⇥ PSL(2,R) suggests that this group may be the most tractable of rank

3 ones, though even in this setting, uniqueness is unknown. If stability of the graph

minimal surfaces inH
2
⇥H

2
⇥H

2 is known, it would be curious to classify the geometric

limits and see if the boundary objects are cores given by a product of three R-trees.

In the setting of Sp(4,R), the representation variety has other distinguished con-

nected components besides the Hitchin components. There are maximal components,

which are further generalizations of Hitchin components. Equivariant minimal sur-

faces in the symmetric space Sp(4,R)/U(2), coming from maximal Sp(4,R) represen-

tations, have been shown to exist and be unique by recent work of Collier, Tholozan

and Toullise [11]. It is however, unknown if all these minimal surfaces have strictly

negative sectional curvature. Ascertaining the curvature properties, or perhaps even

asymptotics of the curvature would greatly aid in applying our program of compacti-

fying distinguished connected components by using geodesic currents (see recent work

of Dai-Li [13], [12]). Recall that a su�cient condition to realize a Riemannian metric

on a surface by a geodesic current is that the sectional curvature is strictly negative,

so proving that the equivariant minimal surfaces in Sp(4,R)/U(2) have strictly nega-



97

tive curvature would allow one to realize the induced metrics on the minimal surfaces

as geodesic currents.

It would be quite interesting to see to what extent Hitchiness or maximality of

the representation ⇢ ensures uniqueness of the ⇢-equivariant minimal surface inside

the symmetric space. Existence of the ⇢-equivariant minimal surface uses the fact

that Hitchin representations are quasi-isometric embeddings. But this is not enough

to guarantee uniqueness; in the quasi-fuchsian case, it has been shown by Huang-

Wang [33] that one can have arbitrarily many such minimal surfaces in quasi-fuchsian

hyperbolic 3-manifolds.

Project 1. Prove the uniqueness of ⇢-equivariant minimal surface in H
2
⇥H

2, where

⇢ is in a non-Hitchin component of the representation variety �(PSL2R⇥ PSL2R).

Then study the limits of their metric structures and global geometry as one degenerates

the representation.

Foundational work of Goldman [26] handles the characterization of all the con-

nected components of �(PSL2R⇥ PSL2R) in terms of the Euler number. As an easy

way to obtain non-Hitchin representations in �(PSL2R⇥ PSL2R), we consider the set-

ting where one of the representations to PSL2R is Fuchsian and the other is not. A

particular class of non-Fuchsian representations arise in the setting of handle-crushing

harmonic maps from a surface of higher genus to a lower genus. Understanding the

geometry of these maps would allow us to understand the ⇢-equivariant minimal sur-

faces, when the non-Fuchsian representation comes from these handle-crushing maps.

Naturally, the harmonic maps community would be interested in having a complete
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picture of the geometry of these maps. There has been work in this direction by Andy

Huang in his thesis [32], but little else is known.

Our work in proving some new results concerning harmonic maps between closed

surfaces of the same genus, provides an initial framework to delve into the new setting

where the genus of the target surface is now smaller. The first step would be derive the

relevant identities and equations (such as statements concerning the energy densities

of these harmonic maps) governing the phenomenon when the harmonic map is no

longer a di↵eomorphism.

Perhaps the first example to consider is one where the domain surface can cover

the target surface. Let S be a closed surface of genus g and S 0 be a surface of genus

g0 = N(g � 1) + 1 for N > 1 and g � 2. Then S 0 is a N -sheeted cover of S, so that

there is a covering map ⇡ : S 0
! S. Fix an auxiliary complex structure J on S 0 and

a hyperbolic metric h on S. Then by Eells-Sampson [18], Al’ber [1] and Hartman

[29], there is a unique harmonic map f : (S 0, J) ! (S, h) in the homotopy class

of ⇡ : S 0
! S. Replacing (S, h) with (S, f ⇤h) ensures this unique harmonic map is

actually ⇡ : S 0
! S. The Hopf di↵erential of the map is given by the (2, 0)-part of

the pull-back metric under ⇡, and is a holomorphic quadratic di↵erential on (S, J).

Then to each point [h] in Teich(S), one can choose the unique representative h 2 [h]

to ensure ⇡ : (S 0, J) ! (S, h) is a harmonic map. This yields a well-defined map

� : Teich(S) ! QD((S 0, J)) from the Teichmüller space of S to the vector space of

holomorphic quadratic di↵erentials on (S 0, J). When g = g0, Sampson [52] proved the

map  is continuous and injective, and Wolf [61] proved the map is a homeomorphism.

Naturally in this setting, we have no hope of the map being a homeomorphism
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as the dimension of Teich(S) is 6g � 6, whereas the dimension of QD((S 0, J)) is

6g0 � 6 = 6N(g � 1), which is bigger. However, we can try to determine if we can

develop a Teichmüller theory of harmonic maps in the setting of mapping a higher

genus surface to a lower one.

Question 1. Is the map � injective? Is its image a vector subspace of QD((S 0, J))?

The original proof by Schoen on the existence of a ⇢-equivariant minimal surface in

H
2
⇥H

2, where ⇢ is Hitchin, uses the properness of an energy functional on Teichmüller

space to force existence of a minimum. A result of Micallef-Wolfson [44] then implies

there is a strict minimum for the area functional, and as energy dominates area, the

resulting conformal map is unique.

There have been numerous other proofs since, each employing di↵erent techniques.

Wan [58] has a direct proof calculating the first and second variations of the area func-

tional. Wang [59] has a proof using mean curvature flow. An answer in the a�rmative

to Question 1 would provide a starting point to see if we can prove uniqueness of the

⇢-equivariant minimal surface by adapting one of these perspectives to our setting.

If uniqueness of the ⇢-equivariant minimal surface holds in this setting (one repre-

sentation is Fuchsian, the other is not), we would like to study the induced metric on

the minimal surface and understand the limiting metric structure. We would use the

tools we have developed in this thesis using both techniques from harmonic maps and

geodesic currents to extend the program of length spectrum compactification to the

setting of a non-Hitchin component of the representation variety �(PSL2R⇥PSL2R).

The new compactified component would also be a subspace of the space of projec-
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tivized currents, so it is natural to ask if this component shares any boundary objects

with our compactification of the maximal component.

Project 2. Determine to what extent length spectra distinguishes connected compo-

nents of �(PSL2R⇥ PSL2R).

There are more algebraic constructions utilizing tools from logic, such as ul-

trafilters, to construct compactifications of the various connected components of

�(PSL2R ⇥ PSL2R). While it is sometimes di�cult to describe explicitly what the

boundary objects are, compactifications constructed in this school have the feature

that they can separate the various connected components. This is often one of the

reasons given to prefer the more abstract compactification of various components of

the representation variety as opposed to using length spectra. Our proposed project

would determine to what extent the boundaries of the di↵erent connected components

coincide. Work in this direction has been done by Wol↵ in the setting G = PSL2R

(see [64]).

Our work in three separate rank 2 settings (see [48], [49], [50]) suggests that flat

metrics arising from holomorphic n-di↵erentials and their mixed structures will play

an integral role in studying limits of induced metrics on the minimal surface in the

symmetric space ofG. To this end, a required tool would be to show the geometric lim-

its of holomorphic n-di↵erentials are meromorphic n-di↵erentials on lower complexity

Riemann surfaces, extending the result of McMullen [42] and Ouyang-Tamburelli [49],

[50] to all n.

Project 3. Classify the geometric limits of holomorphic n-di↵erentials, for n > 3.
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Finally, in a separate direction from the higher rank Teichmüller theory, there is

the question about limits flat metrics coming from holomorphic n-di↵erentials. To

any holomorphic n-di↵erential say � = f(z) dzn, one may form a singular Riemannian

metric |�|2/n = |f(z)|2/n|dz|2. This will be a flat singular metric away from the zeros

of �, and will have a conical singularity with angle 2⇡ + 2⇡k
n at a zero of order k.

It would be of independent interest to the flat metrics community to ascertain

the limits of all flat metrics arising from holomorphic n-di↵erentials. Previous work

by Duchin-Leininger-Rafi [16] and Ouyang-Tamburelli [49], [50] suggest the limits of

any particular stratum (fixed n) of flat metrics should be mixed structures, where

the flat part is a n-di↵erential metric, but it is unclear what all the limiting objects

are when one takes a sequence of flat metrics where say the n is strictly increasing.

For instance, it is possible to obtain all negatively curved Riemannian metrics by

considering first a very fine triangulation, then replacing each triangle with its CAT(0)

comparison Euclidean triangle to obtain a C0-approximation of the initial negatively

curved metric with a NPC Euclidean cone metric. The NPC Euclidean metric can

then be approximated by a flat metric coming from a holomorphic n-di↵erential.
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