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ABSTRACT 

Plasmonic modulation of fluorescence point spread functions reveals 

underlying properties of quantum emitters 

by 

Rashad Baiyasi 

Plasmonic nanostructures offer a wealth of novel optical properties but 

optimization of their structure-function relationship with superlocalization 

techniques is hindered by the modification of point spread functions (PSFs) due to 

nanoantenna effects. The biasing of PSFs towards nanoparticle centers has been 

widely investigated, while the biasing of PSFs away from nanowires (NWs) has not 

received much attention in literature. I investigate the localization bias and extra 

localizations observed in wide-field fluorescence microscope movies collected by 

collaborators of Alexa 647 dye labeled Ag nanowires imaged under remote 

excitation. I introduce and focus on two main classes of abnormal PSFs: single-lobed 

PSFs exhibiting a variable localization bias based on position around the nanowire 

(NW) and bi-lobed PSFs occurring near the top edge of the NW. Finite-difference 

time-domain simulations show that the localization bias for these two populations 

form distinct distributions for NW diameters below 300 nm. The experimental 

apparent width of these NWs suggests a larger population of bi-lobed PSFs due to 

heterogeneous emission of Alexa 647 dependent on dye position. I also present a 

novel fitting method for these abnormal PSFs using Hermite-Gaussian basis 

functions and show that dipole emitter orientation is encoded in multi-lobed PSFs.
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Chapter 1 

Introduction 

1.1. A superlocalization approach to studying nanocatalysts 

Metal nanoparticles (NPs) are promising candidates for a new generation of 

stable, efficient, and low-energy catalysts [1, 2] due to their unique optical 

properties [1, 3-5]. Incident light excites collective oscillations of the valence 

electrons, referred to as surface plasmons, which scatter into the far field or decay 

through various pathways [6, 7]. Catalysts formed from various plasmon-supporting 

metals have been studied [2, 5, 8, 9], as have more complex structures that combine 

the light harvesting effects of plasmonic NPs with non-plasmonic catalysts [10-15]. 

Evidence shows that they display high selectivity [10] and the capacity to facilitate 

interactions otherwise thought “impossible” [2, 16]. The efficiency of metal 

nanocatalysts has been shown to vary dramatically with not just size but also shape 

[17]. Edges and defects form sites with higher catalytic activity due to lower 



 
2 

coordination saturation of the crystal facets. Experiments on Au nanorods [18] and  

nanoplates [19] have measured novel intra-particle catalytic activity in situ using 

superlocalization and tracking of individual fluorogenic reactions. Using 

superlocalization microscopy to track individual catalytic reactions allows one to 

extract structural information, which could provide insight into the structure-

activity relationship and optical tracking of NP reshaping. This superlocalization 

approach is the most powerful method to precisely identify and localize the sites of 

individual reactions, but such techniques depend heavily on well-behaved point 

spread functions (PSFs) to yield accurate fluorescent emitter positions [20-23]. 

1.2. Superlocalization of quantum emitters 

Localization of a particle or emitter with sub-diffraction limit precision is 

referred to as superlocalization. Superlocalization microscopy is a powerful tool for 

imaging below the diffraction limit of light, but has been shown to fail when applied 

to metal NPs [20, 24-27]. Superlocalization microcopy has already found numerous 

applications in the field of biological imaging [28-32], but using it to study metal 

surfaces and nanostructures provides more than just superresolution images. 

Superlocalization provides the ability to probe electromagnetic hotspots [33], 

protein monolayer formation [34], catalytic reactivity patterns [18, 35-37], and 

regimes of fluorescent enhancement and quenching [38, 39]. However, 

experimental and simulated data reveals that we often cannot accurately localize 

emitters near metal NPs [20, 24-27]. 
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The key concepts that enable superlocalization are the prior knowledge that 

there is only one emitter in an ‘on’ state in a diffraction-limited region, and that the 

PSF can be used to extract the precise position of the emitter [21, 22]. 

Superlocalization microscopy techniques such as STORM [40], PALM [41], and 

PAINT [42, 43] use stochastic excitation or reversible binding of fluorescent species 

to vary the density of active emitters so that only a sparse subset are ‘on’ at any 

given time. Recording images of multiple sparse subsets of emitters allows the final 

super-resolution image to be reconstructed from localizations determined in each 

frame. Quantum dipole emitters, such as fluorescent dyes or quantum dots, can be 

switched between ‘on’ and ‘off’ states in several ways. 

Obtaining fluorescent localizations with sub-diffraction limit precision 

requires either fitting of the PSF [21-23] or taking advantage of some other property 

(such as radial symmetry [44]). The PSF is the blur returned by an imaging system 

in response to an isotropic point source of photons, spread out with a characteristic 

width ≈λ/(2∙NA), where λ is wavelength and NA is numerical aperture [21, 22]. 

While the width of the PSF is limited by the diffraction limit of light, the uncertainty 

in the estimated  localization varies as the inverse of the square root of the number 

of collected photons [45], and typical experimental conditions give localization 

precisions of ~20 nm. The 2D paraxial wide-field fluorescence microscope PSF is the 

Airy disk [46] and is often approximated as a 2D Gaussian for superlocalization 

algorithms due to its accuracy and computational simplicity [23]. Not all 

superlocalization techniques require fitting the PSF to a model [23, 44], but a well-

behaved, or at least well-understood, PSF is vital. 
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1.3. Superlocalization of Alexa 647 near Ag nanowires 

Experimental wide-field fluorescence movies and scanning electron 

microscope (SEM) images of Alexa 647 labeled Ag nanowires (NWs) for use in my 

research were obtained from collaborators in the Hofkens group [20]. NWs were 

functionalized with Alexa 647 dye with a bulky bioconjugation as a linker, 

maintaining a distance of ~10 nm between dye and NW surface [20]. NW-dye 

complexes were drop cast onto coverslips and movies of ~2000 frames were 

recorded with the NWs under remote excitation [20]. Remote excitation of 

fluorophores was accomplished by using a polarized (longitudinal, lateral, or 

circular relative to the NW axis) 632.8 nm He-Ne laser focused on one end of the NW 

to launch propagating surface plasmon polaritons [20]. Alexa 647 dye molecules 

were excited by the evanescent field extending outside the NW and fluorescent 

emission was projected into the far field [20]. I calculated localizations frame-by-

frame using the radial symmetry method [44] to approximate PSF lobe positions 

with the understanding that localizations were not the true Alexa 647 dye positions 

[20].  

1.4. Localization bias near plasmonic nanostructures 

Plasmonic NPs have been shown to act as nanoantennas [26, 47], altering the 

PSF of fluorescent dyes so that traditional superlocalization techniques provide 

inaccurate localizations [48-50]. Imaging fluorescent events on plasmonic NPs is 

complicated by the shifting and reshaping of the PSF due to coupling effects, such 



 
5 

that the localization is significantly biased away from the actual emitter position 

[20, 25, 49, 50]. Despite the theoretically improved localization precision that 

fluorescent enhancement from plasmonic NPs provides, this localization bias must 

be addressed to obtain accurate localizations [50].  

Ag NWs are a powerful tool for confining and guiding electromagnetic 

radiation below the diffraction limit of light and could prove useful in more complex 

antenna-reactor structures for catalysis, but when a standard PSF model is used to 

localize fluorescent labels adsorbed to the structure, the distribution of localizations 

overestimates the NW diameter by several tens of nanometers [20]. To determine 

why dye labels on the NW were being localized outside of the NW support, Su et al. 

simulated the NW-dye system to reveal that PSFs were not only shifting, but also 

splitting into abnormal, multi-lobed PSFs [20]. This means that a single emitter can 

result in multiple blurs, or lobes, in the image plane, breaking the standard 

assumption of superlocalization that each blur is a PSF centered on a single emitter. 

Coupling between NWs and quantum emitter such as quantum dots or fluorescent 

dyes has been extensively studied using a variety of techniques [51-57], but to the 

best of our knowledge no method has been proposed to approach the fitting of these 

abnormal PSFs, which is a challenge that must be addressed if superlocalization 

microscopy is to be used to extract nanoscale structure or reactivity sites. A 

necessary initial step for superlocalization under these conditions is the 

classification of abnormal PSFs so that, for example, two single-lobed PSFs are not 

localized as a single, two-lobed PSF. I have developed a framework and identified 
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optimal systems for the classification of these abnormal PSFs by examining their 

size and shape in the context of dipole emitter geometry and Ag NW diameter. 

1.5. Scope of this thesis 

I have simulated multi-lobed PSFs using the finite-difference time-domain 

(FDTD) method for uniformly distributed dipole emitter positions and orientations 

on a range of NW diameters and classified them according to their lobe structure. By 

superlocalization of Alexa 647 adsorbed to Ag NWs I have found evidence of a larger 

population of multi-lobed PSFs than uniformly distributed dyes would generate. 

This increased occurrence rate of multi-lobed PSFs is a main source of the 

significant overestimation of thinner NW diameters by superlocalization, as the 

different classes of PSFs I simulated occur with different frequencies and 

contributing differently to the overestimation of NW diameter. I have identified that 

NWs with diameters in the range of 200 to 300 nm are best suited to distinguish 

between different PSF classes. As an example of how the fitting of identified multi-

lobed PSFs can provide more than just sub-diffraction limited localizations, I have 

developed and employed a novel Hermite-Gaussian basis to fit simulated multi-

lobed PSFs and extract the underlying orientation of the associated dipole emitters. 

This new method opens the door for future superlocalization of dyes on metal 

substrates that produce non-Gaussian PSFs. 
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Chapter 2 

Simulation of Multi-Lobed Point 

Spread Functions 

2.1. Simulation of electric near fields 

Using Lumerical FDTD Solutions, emission patterns of a dipole source near 

pentagonal cross-section Ag NWs were calculated that mimics the fluorescent 

radiation from a molecule close to the NW. The small dipole was located 10 nm 

above the NW surface to simulate the Alexa 647 dye and bulky bioconjugation 

linker. The dielectric function of silver was extracted from Johnson & Christy [58], 

while the background index of refraction was set to 1.33. The glass substrate, with 

index of refraction of 1.52, was placed below the NW with a gap to simulate the even 

NW coverage by the dye and linker. A monitor in the substrate recorded the electric 

field for generating simulated PSFs using the plane wave spectrum method. 
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2.2. Parallelization of the far field projection 

The electric field data taken from the frequency domain profile monitor in 

Lumerical served as the input at the focal plane of the optical system. In order to 

model the effects of the objective lens, I used the farfieldexact script built into 

Lumerical FDTD Solutions. This function projects complex vector fields out to 

specified points in space - in my case, I projected onto a hemisphere of radius 1 m to 

simulate an infinite distance. Propagation to the far field projects the electric field to 

the Fourier plane, where each point is associated with a plane wave from the 

angular spectrum representation of the near field distribution [59]. 

In order to generate the ~20,000 simulations I used to study a range of NW 

diameters and uniformly distributed dipole emitter, parallelization was an 

important step. To accomplish this I used 10 nodes on the DAVinCI cluster at Rice 

University (12 cores per node at 2.83 GHz). The Lumerical FDTD Solutions 

Maxwell’s equations solver engine used to calculate the near field distribution 

supports parallelization but the scripting language needed for far field projection 

does not. Through a combination of bash scripts and the stream editor Sed, I 

developed a process to parse large sets of near field data from the Lumerical engine 

and submit them to individual cores on the supercomputer. Due to the large number 

of simulation files I was projecting, this basic form of parallelization resulted in a 

speedup of ~16x. This allowed me to simulate thousands of dipoles in a matter of 

hours rather than days, and gave me the flexibility to quickly add to my dataset 

when needed. 
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2.3. Simulation of PSFs 

The angular spectrum representation is a powerful tool for calculating the 

propagation of complex electromagnetic fields [59, 60]. Using this method, 2-

dimensional (2D) Fourier transforms take the place of lenses, while propagation 

through space after the objective lens is modeled as multiplication by a phase-shift 

factor. It is an interesting fact that lenses actually perform 2D Fourier transforms on 

incident light - the lens performs a coordinate transformation from spatial to 

angular coordinates [60]. 

 

Figure 2.1. Projecting near field simulation data to the image plane by the 

angular spectrum method. Simulated near field data is recorded by the 

monitor in Lumerical FDTD Solutions acting as the focal plane. Far field 

projection mimics the role of the objective lens, projecting the components of 

electric field to the Fourier plane. A 2D Fourier transform acts as the tube lens, 

projecting from the Fourier plane to the image plane, where the components 

are combined into a positive-real valued intensity map, or PSF. Near and far 

field are depicted as the real values of the complex electric field components, 

while the PSF components are shown as intensity maps. 
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Each complex-valued component of the electric field on the far field 

hemisphere was propagated to the image plane using a 2D Fourier transform, 

resulting in the PSF components shown in Figure 2.1. Pixel sizes for simulated 

images were calculated using the relation p2=(m1λ)/(2m2NA) for the emission 

wavelength λ, the numerical objective NA, and the number of pixels used in the far 

field and the image plane (m1 and m2, respectively) [21]. Several example PSFs are 

shown in Figure 2.2. The PSFs show multi-lobed and single-lobes structure 

depending on the position and orientation of the dipole source, here simulating the 

transition dipole of a fluorescent label [20]. Figure 2.2c-f shows how rotation or 

translation of the dipole source causes reweighting of relative lobe intensities and 

shifting of lobe positions. Since lobes are not generally symmetric, the position of 

each lobe for use in quantifying localization bias is calculated using the maximum 

intensity points of high-resolution simulated PSFs. 
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Figure 2.2. Multi-lobed emission patterns are observed for Alex 647-labeled 

Ag NWs. (a) Pictorial representation of a pentagonal cross-section Ag NW on a 

substrate labeled with a fluorescent dye. The orange arrow represents the 

transition dipole of an Alexa 647 dye modeled as a dipole emitter in 

simulation. The orientation and position of the transition dipole determines 

the properties of PSFs. (b) Sample super-resolution reconstruction of dye-

labeled Ag NWs overlaid on SEM. Direct localization of fluorescent spots shows 

strong bias towards the NW edges. Scalebar 2 µm. (c-f) Varied transition 

dipole orientation and position with associated PSFs. (c-d) Effect of shifting 

the dipole away from the apex reweights the relative lobe intensities as seen 

in simulation (middle columns) and experiment (right columns, scalebar 500 

nm). (e) Simulated PSFs for dipole oriention along the optical axis. (f) Rotated 

and shifted dipoles shows more complex reweighting behavior in PSFs (top-

down view of NW). Dotted line indicates the NW axis in all simulated PSFs. 
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Chapter 3 

Quantifying plasmon-induced 

localization bias 

3.1. Overestimation of dye-labeled Ag NW diameter 

The apparent width of Ag NWs from superlocalization of Alexa 647 dye labels 

consistently overestimates the diameter by ~100 nm for various NW samples. 

Figure 3.1a-b shows the SEM image and localization map for a sample NW with a 

diameter of ~400 nm. The distribution of localizations in Figure 3.1b can be 

visualized as displacements from the NW axis, shown as a histogram in Figure 3.1c. I 

define the apparent width of the NW as the distance between the peaks of this 

distribution. For localizations accurately representing emitter positions, the 

apparent width is ~50 nm less than the NW diameter. However, across a wide range 

of NW diameters the apparent width overestimates the NW diameter as shown in 

Figure 3.1d. The blue circles show the apparent width of Ag NWs from PSFs 

calculated from FDTD simulations. Vertical error bars/regions for experiment and 

simulation are calculated as the standard deviation of the distribution about the 

peaks, calculated using a histogram as show in Figure 3.1c. Experiment and 
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simulation agree for NW diameters between 400 and 700 nm but diverge for 

thinner NWs. For a NW with ~200 nm diameter, simulations predict an apparent 

width within 20 nm of the NW diameter, while the experimental apparent width is 

~150 nm greater than the diameter. The source of the apparent width 

overestimation can be traced back to the different abnormal PSFs observed in 

simulations. 

Apparent width

Nanowire

ba

2µm

c

d

 

Figure 3.1. The apparent width of pentagonal cross-section NWs imaged via 

superlocalization of fluorescent emitters overestimates the NW diameter by 

approximately 100 nm. Experimental data collected by collaborators in the 

Hofkens group [20]. (a) SEM image of a representative Ag NW, with the 

detected edge outlined in red. (b) Average wide-field fluorescent image of the 

same NW as in (a) recorded as a 2000 frame movie, with localizations 

calculated for each frame using the radial symmetry method[44] and shown as 

red points. Scale is given by the scalebar in (a). (c) Localization events across 

the width of the NW (gray region). The apparent width is defined as the 

distance between the peaks of the distribution of localizations. (d) Apparent 

widths as a function of NW diameter for a set of five NWs (red triangles) are 

compared to simulation (blue circles). The black arrow indicates the data 
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point formed by the sample NW shown in (a-c). Dashed black line is a 1:1 

reference showing the actual NW diameter. Vertical error bar/region show 

the standard deviation of localizations around the peaks (as shown in (c)). 

Horizontal experimental error bars the standard deviation in the SEM widths 

along each NW. Apparent width diverges for NWs with diameter ~200 nm with 

simulated apparent width predicting no overestimation while experiment 

shows the greatest overestimation. 

3.2. Classification of PSFs 

I found that the apparent width overestimation shown in Figure 3.1d 

originates from different contributions from classes of complex PSFs for dipole 

emitters near Ag nanowires. I classified PSFs as single-lobed, two-lobed oriented 

perpendicular to the nanowire axis, two-lobed oriented parallel, and four-lobed. A 

representative sample of PSFs were calculated for each nanowire using 2000 

uniformly distributed dipole emitter positions and orientations in the simulation 

space. As summarized in Figure 3.2, the most common class of PSFs are single-lobed 

and two-lobed oriented perpendicular to the nanowire, the latter of which I will 

refer to as bi-lobed PSFs for brevity. Single-lobed PSFs contribute to apparent width 

overestimation though the biasing of the PSF away from the nanowire axis, while bi-

lobed PSFs contribute through the separation between the two lobes. While single- 

and bi-lobed PSFs overestimate the nanowire to a similar degree for nanowire 

diameters above 400 nm, they diverge for thinner nanowires. The source of this 

discrepancy is the different contributions of single- and bi-lobed PSFs to apparent 

width and will be discussed in greater details in the next section. 
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Figure 3.2 – Classification of PSFs. 20,000 PSFs for uniformly distributed 

dipole emitters were simulated and classified as one of four types of PSFs. 

PSFs with only one lobe are classified as single-lobed. PSFs with two lobes are 

split between those with lobes oriented perpendicular to the NW axis (bi-

lobed) and those oriented parallel (two-lobed). PSFs with more than two lobes 

are classified as multi-lobed. The histogram shows the relative occurances of 

each class of PSF (log scale). 

3.3. Contribution of single- and bi-lobed PSF to apparent width 

Simulated apparent width decomposed by PSF class demonstrates that at 

NW diameters < 300 nm bi-lobed PSFs yield a much greater overestimation than 

single-lobed PSFs. The apparent width for single-lobed and bi-lobed PSFs are shown 

in Figure 3.3a as a function of NW diameter. Their apparent widths agree in an 

overestimation of ~100 nm for NW diameters > 400 nm, but they diverge for 

thinner NW. The separation between single- and bi-lobed apparent widths 

simulated for a 200 nm diameter NW is similar to the disagreement between 
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simulation and experiment shown in Figure 3.1d. For the 200 nm diameter NW, the 

single-lobed apparent width is within 20 nm of the NW diameter and the bi-lobed 

apparent width overestimation is ~200 nm. The decrease in apparent width 

overestimation for single-lobed PSFs at low NW diameters can be traced to the 

decrease in localization bias with decreasing NW diameter. The bias of single-lobed 

PSFs depends on the NW diameter and where emitters are located around the NW. 

As shown in Figure 3.3b, the bias in single-lobed PSF localization decreases more 

dramatically from 400 to 200 nm than from 600 to 400 nm. The difference in 

apparent width overestimation can also be seen in Figure 3.3c, where the single-

lobed and bi-lobed PSFs for a 400 nm diameter (right column) appear the same 

distance outside the NW diameter, while for a 200 nm diameter NW (left column) 

the single-lobed PSF is closer to the true NW edge than the bi-lobed PSF. One would 

expect that the simulated apparent width from all PSFs would fall somewhere 

between these two values, but it in fact precisely matches the single-lobed trend. 

This is due to the fact that more than 95% of PSFs are single-lobed for simulations of 

uniformly distributed dipole emitters (Figure 3.2). 
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Figure 3.3. The relative occurrence rate of PSFs favors single- over bi-lobed 

PSFs. (a) Apparent width decomposed in terms of single- and bi-lobed PSFs 

diverge for smaller NW diameters. (b) Mislocalization of single-lobed PSFs as a 

function of parametric dipole position k (inset) for different NW diameters. 

Localization bias is not shown for k < 0.35 due to infrequency in single-lobed 

PSF occurrence. (c) PSFs simulated for two dipole geometries (resulting in 

single- and bi-lobed PSFs) and two different NW diameters. The intensity of 

the bi-lobed PSFs decreases more dramatically with increasing NW diameter 

than for single-lobed PSFs. Colorbar and scalebar of 500 nm is shared between 

the PSFs. (d) Number of bi-lobed and single-lobed PSFs detected around a NW. 

Bi-lobed PSFs only occur near the apex of the nanowire (k = 0) while single-

lobed dominate otherwise.  

Bi-lobed PSFs occur less frequently than single-lobed PSFs in simulations 

with uniformly distributed dipole emitters due to the dipole emitter configurations 

that can produce them and their relative intensity. As shown in Figure 3.3d, bi-lobed 
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PSFs only occur for dipole emitters in a narrow region around the apex of the NW. 

Single-lobed occurrence is at a minimum at the nanowire apex, but aside from this 

region the rest of the NW is dominated by single-lobed PSFs. The occurrence rate of 

bi-lobed PSFs decreases with increasing NW diameter because decreasing bi-lobed 

PSF intensity hides them in noise at larger NW diameters. This is demonstrated in 

Figure 3.3c, which shows four PSFs generated by two different dipole emitter 

geometries (resulting in single- or bi-lobed PSFs) simulated for NW diameters of 

200 and 400 nm. As NW diameter is increased, the bi-lobed PSF intensity decreases 

more dramatically than single-lobed. With lower intensities, these bi-lobed PSFs are 

less likely to be detected over noise. Bi-lobed PSF fraction also drops for NWs below 

300 nm, as the spread of the lobes leads to overlap and can result in 

misidentification as a single lobe. 

3.4. Enhanced bi-lobed PSF expression in experiments 

Experimental apparent width for ~200 nm diameter NW predicts a higher 

relative occurrence of bi-lobed PSFs than is obtained from uniformly distributed 

dipole emitters in simulation. The divergence in apparent width for simulation and 

experiment shown in Figure 3.1d is similar to the different apparent widths 

calculated for only single-lobed and only bi-lobed PSFs as is shown in Figure 3.3a. As 

described above, single-lobed PSFs dictate the apparent width for the overall 

simulation resulting in less than 20 nm overestimation of NW diameter. In contrast, 

the experiment more closely resembles the apparent width shown by bi-lobed PSFs. 

This suggests that the true distribution of PSFs has a higher occurrence of bi-lobed 
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PSFs than from the uniformly distributed dipole emitters used in simulation. The 

effect of increasing the percentage of bi-lobed PSFs on the simulated apparent width 

is shown in Figure 3.3d. The average apparent width for 100 trials increases for 

between 20% and 30% bi-lobed PSFs, levelling off on either side of this region. The 

simulated apparent width only comes into agreement with the experimental result 

in Figure 3.1d (orange line) for > 30% bi-lobed PSFs compared to the 5% found for 

uniformly distributed dipoles.  

Nanowire

 

Figure 3.4 – Apparent width varies with occurrence rate of bi-lobed PSFs for a 

simulated 200 nm diameter NW as compared to experiment. Agreement with 

experiment is reached when ~30% of PSFs are bi-lobed. Sample histograms of 

localizations across the NW for 10% and 40% bi-lobed PSFs show different 

apparent widths for the same NW diameter (grey). 

Bi-lobed PSFs may be expressed more frequently under experimental 

conditions due to inhomogeneity in dye coverage or the spatial distribution of 

plasmon near fields. As they only occur at the apex of the NW, preferential binding 
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of the biotin-terminated poly(ethylene glycol) to the NW edges due to crystal facets, 

defects, or crowding effects, would increase the relative occurrence of bi-lobed PSFs. 

Furthermore, the excitation of dyes through propagating surface plasmon polaritons 

will result in fluorescent enhancement in the regions around the NW corners where 

the electric field is most tightly confined. The FDTD simulations performed herein 

uses a constant dipole emission rate, while the proximity of various plasmonic NP 

features have been shown to drastically enhance or quench fluorescence [27, 33, 61, 

62]. Further experiments are needed to distinguish between these two effects – for 

example, wide-field excitation of a dye-labeled, non-plasmonic NW could use three-

dimensional superlocalization methods [21, 63-65] to examine only the preferential 

binding effects.  

The optimum pentagonal cross-section Ag NW-Alexa 647 system to study for 

classification of experimentally measured multi-lobed PSFs should utilize NW 

diameters between 200 and 300 nm to maximize the differences between single- 

and bi-lobed PSFs. At lower NW diameters, bi-lobed PSFs merge into single blurs 

due to the diffraction limit. Meanwhile, at larger NW diameters the similar apparent 

width (Figure 3.3a) means that the separation between two blurs cannot be used to 

classify them as a single bi-lobed PSF. For NW diameters that support bi-lobed PSFs, 

there is some probability that two single-lobed PSF expressing dipoles may be 

positioned close to each other. Figure 3.5 shows how this can result in what appears 

to be a bi-lobed PSF. If the distribution of single- and bi-lobed PSFs have similar 

apparent widths, a more sparse set of active emitters is needed in each frame to 

decrease the likelihood of false identification of bi-lobed PSFs. Under the optimal 
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conditions described above, candidate PSF identification can incorporate lobe 

separation as a way to lower the false-positive rate in bi-lobed PSF classification. 

Future experiments characterizing the dipole emitter-NW interaction is benefited 

by the relatively high occurrence rate of bi-lobed PSFs. As opposed to other emitter-

NP systems which only produce biased single localizations, there is information 

encoded into the extra lobes present in the system studied here. While no methods 

have been presented in the literature on how to treat such multi-lobed PSFs, the 

Hermite-Gaussian model presented below shows how one can extract fluorescent 

transition dipole moment orientations from bi-lobed PSFs. 

Single-lobed Bi-lobed

 

Figure 3.5 – False bi-lobed PSFs can be formed if two active dipole sources 

forming single-lobed PSFs occur on opposite sides of the NW. Red crosses 

represent the lobe localization.
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Chapter 4 

Fitting multi-lobed PSFs 

4.1. Multi-lobed PSFs present a novel problem for modelling 

I developed a method for fitting of multi-lobed PSFs using a Hermite-

Gaussian (HG) basis to quantitatively analyze multi-lobed PSFs. My method of 

modeling polarized components of multi-lobed PSFs as a linear combination of the 

Hermite-Gaussian functions is an example of how one might approach the fitting of 

novel PSFs. The analysis of apparent width and its dependence on PSF class 

presented above is useful, but a functional method is needed to better characterize 

and fit multi-lobed PSFs. Localization with a standard technique (such as Gaussian 

fitting or radial symmetry) could serve as a preprocessing step in which individual 

blurs are grouped together into candidate multi-lobed PSFs. The relative position 

and intensity of the candidate lobes provide features to describe the PSFs but due to 

the non-Gaussian profiles of lobes, a functional PSF model would be preferable for 

robust fitting of multi-lobed PSFs.  
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Figure 4.1. HG functions form a basis for a multi-lobed PSF model. Simulated 

PSF and polarized PSFs for a dipole emitter at the apex of a NW and two HG 

functions which look similar to the x- and y-polarized PSFs. 

The variety of PSFs formed by dipole emitters near NWs presents difficulties 

for fitting since a simple model in the same vein as the Gaussian or Airy PSF model 

cannot assume such varied forms. While a basis for fitting could be constructed by 

feeding a many PSFs into a machine learning algorithm, the resultant basis would be 

unique to the simulation parameters, limited by the training data, and would lack 

any physical significance. However, a potential basis for fitting PSFs can be seen by 

inspecting polarized PSFs. Figure 4.1 shows the similarity between the polarized 

components of a simulated PSF and the intensity maps of the (1,0) and (1,1) HG 

functions. 
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4.2. The HG basis for PSFs fitting 

The HG functions are described by 

𝐸𝑛𝑚(𝑥, 𝑦, 𝑧) = 𝐸0

𝑤0

𝑤(𝑧)
⋅ 𝐻𝑛 (√2

𝑥

𝑤(𝑧)
) 𝑒

−
𝑥2

𝑤(𝑧)2 ⋅ 𝐻𝑚 (√2
𝑦

𝑤(𝑧)
) 𝑒

−
𝑦2

𝑤(𝑧)2 ⋅ 𝑒^

− 𝑖 (𝑘𝑧 − Φ(𝑚, 𝑛, 𝑧) +
𝑘(𝑥2 + 𝑦2)

2𝑅(𝑧)
) 

Equation 4.1 

where 𝑤(𝑧) = 𝑤0√1 +
𝑧

𝑧𝑅
 is the beam waist or radius, 𝑤0 is the beam waist at the 

focus, 𝑅(𝑧) = 𝑧 (1 +
𝑧𝑅
2

𝑧
) is the radius of curvature, 𝑧𝑅 =

𝜋𝑤0
2

𝜆
 is the Rayleigh length 

for wavelength 𝜆, and Φ(𝑚, 𝑛, 𝑧) = (1 + 𝑛 + 𝑚)arctan (
𝑧

𝑧𝑅
), where m and n are 

integers denoting the different HG modes.   

The first few HG functions are shown in Figure 4.2a. The HG functions are a set of 

orthogonal complex-valued solutions to the paraxial approximation of the wave 

equation [66, 67]. They display rectangular symmetry and form a complete, infinite 

basis for the space of square integrable complex functions [68]. The HG functions 

appear in the analytical solution for strongly focused laser beams [59] and have 

been used as a model for extracting orientation of fixed dipoles in free space [66]. 

The (0,0) mode is the common Gaussian beam and the higher-order modes are 

inhomogeneous solutions to the paraxial wave equation with Cartesian symmetry. 
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While the polarized PSFs for certain orientations almost directly match specific HG 

functions as in Figure 4.1, other PSFs that do not directly match the HG basis 

functions can be fit by a linear combination of weighted basis functions, as is shown 

in  

Figure 4.2b for a dipole emitter rotated 20° off the NW axis in the image 

plane. 
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Figure 4.2. (a) Representative HG functions, shown as real-valued surfaces and 

intensity (magnitude-squared) images. The HG functions form an infinite basis 

for square-integrable functions, though a sparse set of functions are needed to 

describe a given polarized PSF. (b) Reweighted HG functions from (a) can be 

summed to model polarized PSFs. The magnitude-squared of the summed 

surface gives the final model PSF, showing good agreement with simulated 

polarized PSF for a transition dipole rotated 20° off-axis. 
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4.3. 𝓵2-minimization for Hermite-Gaussian fitting 

One common method to find the best fit between a model and a target image 

is to minimize the error (also called the residue) by finding the set of fit parameters 

that minimize the ℓ2-norm. I used this method to fit polarized PSFs to the weighted 

sum of the HG basis, where the weights of the basis functions are the fit parameters. 

While approximating polarized PSFs from HG functions can be accomplished by 

visual inspection and trial-and-error, I needed robust fitting algorithm to test the 

implementation of this basis. Using the ℓ2-norm of the residue as the objective 

function to minimize suffices to test this model. For the purpose of developing this 

fitting method, I represented the HG basis functions as matrices centered and scaled 

to match the simulated polarized PSFs. 

In order to implement the minimization, I first defined the objective function 

using linear algebra notation. The polarized PSF is reshaped into an L × 1 column 

vector, X, while the HG bases are also cast as vectors and combined into a L × M 

matrix, H, where linear pixel index of an image matrix is mapped to row number. 

The weights of the basis function �⃗⃗�  is an M × 1 column vector, and the goal of the 

minimization is to recover this vector. The vector lengths L and M are the number of 

pixels in the intensity map (10,000 for a 100×100-pixel image) and the number of 

HG functions used in the basis, respectively. I included the HG basis functions for 

mode numbers of 0 to 3 in both dimensions (𝑀 = 16) since the structure of multi-

lobed PSFs I tested doesn’t show more than 4 lobes along either Cartesian axis. In 

the future, extracting lobe positions and relative intensities of PSFs could be used to 
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initially classify PSFs and choose a smaller subset of basis functions based on that 

class. 

The expression for the objective function is complicated due to the mismatch 

between the positive-real valued PSF and the complex-valued HG basis functions. In 

the absence of this mismatch, the residue would be expressed as 𝑟 (𝑎 ) = 𝑠 − 𝐻�⃗⃗� . In 

fact, due to the orthonormal nature of the HG basis, I would ideally be able to project 

the PSF onto the basis to obtain the weight vector. Unfortunately, the use of a 

complex-valued basis for positive-real valued image fitting necessitates an extra 

step. The fit must be mapped to the positive-real plane by multiplying each element 

by its complex conjugate, i.e. the magnitude squared of each element. This element-

wise operation cannot be carried out using standard linear algebra operators, and as 

such, must be handled carefully while developing the minimization expression. 

Taking the complex nature of the basis into account, the minimization of the 

objective function for HG fitting is expressed by min
�⃗⃗� 

‖𝑟 (�⃗⃗� )‖2
2 = min

�⃗⃗� 
‖𝑠 − |𝐻�⃗⃗� |2‖2

2 , 

where |𝐻�⃗⃗� |2 is the element-wise magnitude squared of the weighted sum of the HG 

basis functions, which I will refer to as the fit vector 𝑓 (�⃗⃗� ). Similar to how the critical 

values of a function 𝑓(𝑥) are found by setting 
𝑑

𝑑𝑥
𝑓(𝑥) = 0, finding the minimum of 

the objective function starts with setting the gradient equal to zero. When 

minimizing a function of a vector and its complex conjugate, the gradient is taken 

with respect to the complex conjugate. The gradient of the objective function can be 

written as 
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∇⃗⃗ �⃗⃗� ∗‖𝑟 (�⃗⃗� , �⃗⃗� 
∗)‖2

2 = ∇⃗⃗ �⃗⃗� ∗‖𝑠 − 𝑓 (�⃗⃗� , �⃗⃗� ∗)‖
2

2
 

Equation 4.2 

where the residue is the difference in the target vector 𝑠  and fit vector 𝑓 , written as 

explicitly depending on �⃗⃗�  and �⃗⃗� ∗, (where ∗ represents complex conjugation). 

 

4.4. Expression for the gradient of the objective function 

As the analytic expression of the objective function is the most complex part 

of the HG fitting algorithm, I have included the derivation below. Taking the gradient 

of the scalar objective function with respect to the complex conjugate of the HG 

weight vector �⃗⃗� ∗ results in an 𝑀 × 1 column vector which provides the direction in 

the space of weights pointing toward the greatest increase in the residue. To aid in 

the derivation of the gradient expression, I define the ℓ𝑡ℎ row of the basis matrix 𝐻 

as �⃗⃗� (ℓ) = [𝐻ℓ,1, 𝐻ℓ,2,⋯𝐻ℓ,𝑀] and generate the set of 𝐿 matrices (size 𝑀 × 𝑀) 

ℋℓ = �⃗⃗� (ℓ)′�⃗⃗� (ℓ) 

Equation 4.3 

formed by the outer product of �⃗⃗� (ℓ) with its complex conjugate. 
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Rewriting the fit vector 𝑓 (�⃗⃗� , �⃗⃗� ∗) using Equation 4.3 results in a form for the 

fit vector written without the element-wise magnitude squared operation, given by 

𝑓 (�⃗⃗� , �⃗⃗� ∗) = [
�⃗⃗� ′ℋ1�⃗⃗� 

⋮
�⃗⃗� ′ℋ𝐿�⃗⃗� 

] . 

Equation 4.4 

While the objective function is a scalar, the fit vector is 𝐿 × 1 as described above. 

Thus, the gradient of a single element of the fit vector can be written as 

∇⃗⃗ �⃗⃗� ∗𝑓ℓ(�⃗⃗� , �⃗⃗� 
∗) = ℋℓ�⃗⃗� . Extrapolating the gradient of each term in the fit vector 

results in the Jacobian matrix of the fit vector with respect to �⃗⃗� ∗. The elements of 

the Jacobian can be written as 𝒥𝑖,𝑗 =
𝜕𝑓𝑖

𝜕𝑤𝑗
∗ = ℋ(𝑗,1→𝑀)

𝑖 �⃗⃗�  . Each column of the Jacobian 

corresponds to the partial derivative with respect to each element of �⃗⃗� ∗ while the 

rows correspond to each element of the fit vector, forming an 𝐿 × 𝑀 matrix.  Using 

vector calculus to perform the gradient in Equation 4.2 with the Jacobian results in 

the expression for the gradient of the objective function for HG fitting: 

∇⃗⃗ �⃗⃗� ∗‖𝑟 (�⃗⃗� , �⃗⃗� 
∗)‖2

2 = 2𝒥T (𝑠 − 𝑓 (�⃗⃗� , �⃗⃗� ∗)) . 

Equation 4.5 
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4.5. Testing of Hermite-Gaussian fitting 

As Equation 4.5 cannot be solved analytically, I employed the iterative 

method of steepest descent algorithm to test it. Briefly, this algorithm starts with an 

initial guess �⃗⃗� 0 iteratively updates by calculating the gradient at each point and 

incrementing the weight vector in the direction of negative gradient, similar to a ball 

rolling down a curved surface (or error landscape), where the height represents the 

value of the residue. The set of weight used the initiate the algorithm can be thought 

of as the starting point on the error landscape. While better initial guesses improve 

convergence time, a greater issue is due to the lack of convexity of this minimization 

problem. For a given target image some initial weight vectors will converge to 

incorrect intensity maps. This indicates the potential for local minima in Equation 

4.5 where the algorithm may become “stuck”. Care must be taken in choice of initial 

state to ensure proper convergence. An example of convergence to the global 

minimum and local minimum is shown in Figure 4.3, using an additional LASSO 

regularization term [69] discussed in the following section. 
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Figure 4.3. Example of results using method of steepest descent algorithm for 

HG fitting with LASSO regularization. The y-axis of the plots show magnitude 

of the HG weights as a function of weight index. (a) Successfully recovered HG 

weights show excellent agreement with the weights used to generate the test 

image. Reconstructed intensity map appears visually indistinguishable from 

test image. (b) Example of algorithm converging at a local minima. 4-lobed 

structure comes from an incorrect, non-sparse set of weights. In this case, 

LASSO regularization failed to enforce sparsity. 

4.6. Using LASSO regression to encourage sparsity 

In minimizing Equation 4.5 in an unconstrained fashion, the recovered vector 

of HG weights, when multiplied by the basis matrix and projected as an intensity 

map, shows good visual agreement with the test images used when local minima are 

avoided. However, when compared to the original weights used to generate the test 

image, it becomes apparent that extra basis functions represent in the 

reconstruction. As the goal is to recover the true vector of weights for analytic 
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purposes, the extra non-zero weights are problematic. One solution is to add a 

regularization term to Equation 4.5 that encourages sparsity, called the least 

absolute shrinkage and selection operator, or LASSO [69]. The minimization 

problem with the addition of the LASSO parameter can be written as min
�⃗⃗� 

‖𝑟 (�⃗⃗� )‖2
2 =

min
�⃗⃗� 

‖𝑋 − |𝐻�⃗⃗� |2‖
2

2
+ 𝜆‖�⃗⃗� ‖1, where ‖�⃗⃗� ‖1 is the ℓ1norm of the vector of HG weights, 

and 𝜆 is the tunable LASSO parameter. This results in an additional term in the 

gradient of the objective function, 

∇�⃗⃗� ∗‖𝑟 + 𝜆‖�⃗⃗� ‖1‖2
2 = 2𝒥T (𝑠 − 𝑓 (�⃗⃗� , �⃗⃗� ∗)) + 𝜆 ⋅ 𝑆𝐼𝐺𝑁(�⃗⃗� ) , 

Equation 4.6 

where 𝑆𝐼𝐺𝑁(�⃗⃗� ) is the element-wise complex sign of �⃗⃗� . The factor λ can be tuned to 

change the sparsity of �⃗⃗� . 

Substituting Equation 4.6 in place of Equation 4.5 for the method of steepest 

descent algorithm results in improved sparsity of �⃗⃗� . Figure 4.4 shows the effects of 

varying the LASSO parameter λ for the same target image and initial state. Under-

valued λ still gives good image reconstruction despite extra non-zero weights being 

recovered. Over-valued λ fails to recover the image or the general trend of the 

weights due to the sparsity over-constraint. 
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Figure 4.4. Effects of changing LASSO parameter λ. The plots of recovered HG 

weights versus actual weight are generated for the same test image and the 

same initial state. Setting λ too low (top plot) reconstructs the intensity map 

well, but results in extra non-zero weights when compared to the middle plot. 

When λ is set too high, as in the bottom plot, the algorithm converges to an 

incorrect set of weights to fulfill the sparsity constraint. 

4.7. Implementation of fitting algorithm on simulated PSFs 

Having tested the HG fitting algorithm on intensity maps generated from the 

basis matrix H, I applied the fitting algorithm to simulated polarized PSFs as a proof-

of-concept. The goal of this test was to determine if fitting simulated PSFs in this 

manner would yield clear trends of the weights, indicating the potential of this 

method to recover position and orientation in experimental data. The PSFs used for 

this test were simulated in Lumerical FDTD solutions for a dipole emitter located 

above the apex of the NW, oriented in-plane and rotated about the optical axis in 
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increments of 5° starting parallel to the NW axis. The simulation of these PSFs 

resulted in centered images, and the size of the HG basis to be used was determined 

manually. In future work, these steps will be automated using aggregate data to 

simulate experimental conditions. The target images for the fitting algorithm were 

the normalized PSFs, and the initial state of the weight vector was chosen based on 

visual confirmation of the accuracy of reconstructed intensity maps.  

The reconstructed intensity maps showed visual agreement with the target 

intensity maps as shown in Figure 4.5, while the recovered weight vectors had four 

or fewer non-zero weights of the 9 HG modes used in the basis. The magnitude of 

the error shown in Figure 4.5 are show higher-frequency features with low 

intensities, which are likely to be negligible in the presence of noise. 
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Figure 4.5. Simulated PSFs and results of fitting for transition dipole rotated 

from 0° to 90° from NW axis. Simulated PSFs, resultant fit, and error are 

shown for 4 represenative dipole angles. Plot shows the magnitude of the 

weight vector that minimizes the error as the dipole is rotated about the 

optical axis. 
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The magnitudes of the four non-zero weights are plotted in Figure 4.5. The 

(0,0) and (1,1) HG modes have the greatest effect on PSF shape, with the (1,1) mode 

responsible for the four-lobed shape, while the (0,0) mode modulates the maximum 

intensity of the lobed structures in the higher-order HG functions. The smooth 

variation in weights presented in Figure 4.5 suggest that HG fitting has the potential 

to recover orientation data from. If the transformation from the set of NW-emitter 

complex parameters (e.g. NW diameter, dipole emitter position and orientation) to 

the set of fit parameters (HG weights) can be inverted, this would provide a method 

for estimating the orientation of dipole emitters on plasmonic NWs.
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Chapter 5 

Conclusion and Future Work 

5.1. Conclusion 

In this thesis, I have analyzed simulated and experimental PSFs of dipole 

emitters near pentagonal cross-section Ag NWs and determined the optimal range 

of NW diameters to enable the classification of multi-lobed PSFs. I demonstrated 

that the fluorescence PSFs formed near dye-labeled Ag NWs present a unique set of 

challenges due to the biasing of single-lobed emitters and the extra localizations 

from multi-lobed emitters. Simulated PSFs for uniformly distributed dipole emitters 

for various NW diameters resulted in apparent widths lower than seen in 

experiment for small NW diameters due to the over-expression of single-lobed PSFs. 

Due to the decreasing localization bias for smaller NWs, the range of simulated PSFs 
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were unable to account for the larger apparent width experimentally observed for a 

~200 nm diameter NW. 

The larger apparent width overestimation for bi-lobed PSFs on thinner NWs 

predicts that the relative fraction of bi-lobed PSFs is larger than seen through 

uniform sampling of dipole emitters, most likely due to preferential excitation and 

binding at the NW edges. This has positive implications for future experiments, as 

relative weight and separation between the lobes of bi-lobed PSFs provide more 

encoded information than a single-lobed PSF. As an example of the extra 

information available from bi-lobed PSFs, I developed and implemented a PSF 

model based on the HG functions, where the angle of rotation can be related to the 

relative weights of different beam modes to the polarized PSF. Future research 

under similar experimental conditions should focus on NW diameters between 200 

and 300 nm to enable filtering of bi-lobed PSFs by lobe separation. These multi-

lobed PSFs provide a novel system to develop superlocalization techniques that are 

compatible with plasmonic nanostructures. Improving the viability of 

superlocalization of events on plasmonic nanostructures will open the door to 

optically measure surface activity in nanocatalyst development in the future. 

5.2. Future work 

In uncovering the different spatial distribution of single- and bi-lobed PSFs 

for thinner NWs, I’ve identified a range of NW diameters that future experiments 
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could use to better understand multi-lobed PSFs. While this work has focused on Ag 

NWs, Au NWs provide another plasmonic system to study. Using these simulation 

techniques, I would like to determine the optimal dimensions for isolating bi-lobed 

PSFs on Au NWs. My preliminary simulations seen in Figure 5.1 show that Au NWs 

with a trapezoidal cross-section, mimicking lithographically prepared NWs, also 

support multi-lobed PSF formation. With the ability to precisely define NW 

dimensions and generate lithographic arrays, a large number of experimental PSFs 

can be collected and analyzed using my HG fitting method. 

 

Figure 5.1. Simulated PSFs for dipole source on top of a trapezoidal cross-

section Au NW shows multi-lobed characteristics. 

This thesis and publications like it focus on quantifying the effects that 

plasmonic particles have on PSFs and their localization with the goal of minimizing 

bias and enabling accurate superlocalization of emitters. Fitting PSFs also quantifies 

the far field representation of what is happening inside of plasmonic particles. In 

this thesis I have investigated the far field expression of the plasmonic nanoantenna 

effect on dye molecules, but my future work will look more closely at how plasmon 

mode structure modulates coupling, scattering, and absorption. Collaborators in the 
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Link lab have discovered spatially-dependent absorption and scattering in Au 

plasmonic nanostructures. Long Au nanorods (~500 nm) show wavelength-

dependent photothermal PSFs that can be spread out over the nanorod, focused on 

the ends, or focused in the middle. Au nanorings have shown asymmetric scattering 

PSFs based on the handedness of circularly polarized excitation light. These newly 

discovered phenomena could lead to better localized heating or tunable scattering 

structures, but still need quantification and theory to understand. Characterization 

of PSFs and simulation of plasmon mode structure and current density inside the 

particles will provide much needed insights and enable the optimization of these 

nanostructures. 
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