

RICE UNIVERSITY

On Designing Convertible Data Center
Network Architectures

by

Yiting Xia

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Approved, Thesis Committee:

T. S. Eugene Ng, Chair
Professor of Computer Science and
Electrical and Computer Engineering

Alan L. Cox
Professor of Computer Science and
Electrical and Computer Engineering

Edward W. Knightly
Professor of Electrical and Computer
Engineering and Computer Science

Houston, Texas

April, 2018

ii

Abstract

Most data centers deploy fixed network topologies. This brings di�culties to traf-

fic optimization and network management, because bandwidth locked up in fixed

links is not adjustable to tra�c needs, and changes of network equipments require

cumbersome rewiring of existing links. Moreover, each network topology has unique

properties, so it is infeasible to use a one-size-fit-all structure to satisfy the heteroge-

neous and ever-changing service requirements in data centers. We believe the solu-

tion is to build convertible data center network architectures, which can dynamically

change the network topology through cable rewiring fully automated by software. We

leverage low-cost small port-count converter switches to enable topology change and

introduce three convertible data center architectures to experiment with the idea.

OmniSwitch is a production-ready modular container that serves as a universal

building block for constructing data centers of various scales. It interleaves converter

switches with Ethernet switches to provide local topology optimization and large-scale

connectivity. Flat-tree improves transmission performance by dynamically changing

topological clustering characteristics of the network. It enables conversion between

Clos and approximate random graph networks to provide a suitable network topol-

ogy for each tra�c workload. ShareBackup improves reliability with the concept of

“shareable backup”. It allows the network to share a small pool of backup switches

that can be brought online instantaneously to recover from failures. These works

demonstrate the powerful idea of convertible networks, which has the potential to

improve a wide range of network performance characteristics, e.g. tra�c optimiza-

tion, load balancing, failure recovery, network expansion, power saving etc.

Acknowledgements

Above all, I would like to thank my advisor, Prof. T. S. Eugene Ng. This thesis

would not have been possible without his inspiration, guidance, help, and support.

I am grateful for his mentorship both on the academic and the personal level. I

learnt a lot from his knowledge, enthusiasm, and integrity as a computer scientist.

I would also like to thank Prof. Alan Cox and Prof. Edward Knightly for being

on my committee and providing me with valuable feedbacks for the thesis. I want

to thank Dr. Mike Schlansker and Dr. Jean Tourrilhes, our major collaborators for

the OmniSwitch project. They proposed the initial idea of configurable Clos network

using small port-count circuit switches, which is the basis of the concept of convertible

network. My work would not have existed without their insights. I’m also grateful to

my fellow group members, Xiaoye Steven Sun, Simbarashe Dzinamarira, Xin Sunny

Huang, and Dingming Wu, who helped me with some of the experiments and gave

me many constructive suggestions. Last but not least, my thanks go to my parents

and all family and friends, who always believe in me and support me in whatever

situations.

Contents

List of Illustrations vii

List of Tables xi

1 Introduction 1

2 Background and Related Work 10

2.1 Fixed Data Center Network Architectures 10

2.2 Configurable Data Center Network Architectures 11

2.3 Failure Recovery in Data Center Networks 12

2.4 The Concept of Convertible Network 13

2.5 Realization of Convertible Networks 15

2.6 Implementation Criteria for Convertible Networks 17

3 OmniSwitch: A Universal Switch as the Basic Building

Block for Data Centers 19

3.1 Motivation . 19

3.2 OmniSwitch Design . 23

3.2.1 Architecture . 23

3.2.2 Advantage Discussion . 26

3.2.3 Control Plane . 27

3.3 VM Clustering: A Case Study . 29

3.3.1 Problem Formulation . 29

3.3.2 Control Algorithm . 30

3.3.3 Evaluation . 31

v

3.4 Summary . 35

4 Flat-tree: A Convertible Data Center Architecture from

Clos to Random Graph 36

4.1 Motivation . 36

4.2 Motivating Examples . 41

4.2.1 The Case for Convertibility 41

4.2.2 Example Flat-tree Network 43

4.3 Flat-tree Architecture . 45

4.3.1 Flat-tree Pod . 45

4.3.2 Pod-Core Wiring . 47

4.3.3 Inter-Pod Wiring . 49

4.3.4 Server Distribution . 50

4.3.5 Operation Modes . 51

4.4 Control System . 52

4.4.1 MPTCP . 53

4.4.2 k-Shortest-Paths Routing . 54

4.4.3 Topology Conversion . 59

4.5 Evaluation . 61

4.5.1 How well does flat-tree approximate random graph in theory? 61

4.5.2 Can multiple topologies coexist in flat-tree? 66

4.5.3 Is k-shortest-paths routing with MPTCP e�cient enough? . . 66

4.5.4 Does flat-tree handle real tra�c well? 70

4.5.5 Is flat-tree implementable? . 75

4.5.6 Does convertibility benefit applications? 77

4.6 Summary . 81

5 ShareBackup: Enabling Sharable Backup for Failure Re-

vi

covery in Data Center Networks 82

5.1 Motivation . 82

5.2 Network Architecture . 86

5.3 Control Plane . 94

5.3.1 Fast Failure Detection and Recovery 94

5.3.2 Distributed Network Controllers 95

5.3.3 O✏ine Failure Diagnosis . 97

5.3.4 Live Impersonation of Failed Switch 99

5.4 Discussion . 100

5.5 Architecture Properties . 103

5.5.1 Capacity to Handle Failures 103

5.5.2 Cost Analysis . 104

5.5.3 Performance Characteristics 107

5.6 Summary . 109

6 Future Work 111

6.1 Joint Optimization of Network Topology and Tra�c 111

6.2 Combining Flat-tree and ShareBackup 113

6.3 Convertibility for Power Saving . 114

7 Conclusion 116

Bibliography 122

Illustrations

3.1 An example data center network. The transmission hop count

between VM 1 and VM 2 is originally 5. Moving the bold link to the

dashed position reduces the hop count to 3. 21

3.2 Internal of an OmniSwitch cabinet 23

3.3 OmniSwitch mesh network. The right subfigures show topologies of

the Ethernet switches. Switch 1, 2, 3, 4 are in one cabinet; switch 5,

6, 7, 8 are in another cabinet. Each line represents 4 individual fibers.

Solid lines are connections within a cabinet; dashed lines are

connections across cabinets. 24

3.4 OmniSwitch tree network. In subfigure (b), the 2 uplinks out of each

cabinet refer to the 4 dark and light multilink connections in

subfigure (a) respectively. 25

3.5 Average bandwidth rejection rate under di↵erent load 32

3.6 Algorithm computation time for various tenant size and load 33

4.1 Converter switch configurations . 38

viii

4.2 Example flat-tree network and some achievable topologies. Core

switches in stripe, aggregation switches in grid, edge switches in

shade, and servers as circles. Gray lines are connections in the original

Clos network, which are replaced with the dashed links connected to

converter switches to form flat-tree. The converter switches show the

configuration for approximated random graph. Flat-tree uses a

customized wiring pattern to connect Pods to core switches. 43

4.3 A flat-tree Pod. A pair of edge switch Ej and aggregation switch Aj/r

connected to n 4-port converter switches and m 6-port converter

switches. Converter switches are placed evenly on both sides as

matrices. Blade A and B has 4-port and 6-port converter switches

respectively. 46

4.4 Pod-Core wiring for the same set of connectors across Pods. All

connectors are on aggregation switches in Clos; flat-tree has 3 types

of connectors on blade A, B, and aggregation switches, enabling

core-server, core-edge, and core-aggregation connections respectively. 47

4.5 Illustration of the addressing scheme. “a” shows the IP address fields

in flat-tree. In the “b” example, the server in strip connects to switch

#3, switch #8, and switch #5 respectively in the global, local, and

Clos mode, where the number of concurrent paths, or k, is chosen to

be 16, 8, and 4. The IP addresses assigned to this server are shown in

“c”. All these addresses for every flat-tree topology mode are

preconfigured on the server. 55

4.6 Average path length of server pairs in the entire network 61

4.7 Average path length of server pairs in each Pod 62

4.8 Throughput of broadcast/incast tra�c in 1000-server clusters 64

4.9 Throughput of all-to-all tra�c in 20-server clusters 65

ix

4.10 Average flow throughput normalized against LP minimum on selected

flat-tree topologies . 68

4.11 Box plots to show the distribution of flow throughput on the topo-1

topology under flat-tree global mode (topo-1 global). MPTCP uses

12 paths. The box contains the 25th to 75th percentiles of the data.

The whisker lines extending above and below the box cover the data

within 3 times the box range. The data in dots beyond the whisker

are outliners. The bold line in the middle of the box shows the

median and the diamond shows the average. 70

4.12 CDF of flow completion time in Facebook’s Hadoop-1, Hadoop-2,

Web, and Cache data centers . 72

4.13 A testbed implementing the flat-tree example in Figure 4.2 75

4.14 Summation of iperf throughput every 0.5 second on the testbed with

the variation of flat-tree modes. Every server sends iperf tra�c to its

counterparts in the other Pods to saturate the network core. Tra�c

adapts to the topology change in 2 to 2.5 seconds. 78

4.15 Average data flow read duration (left y-axis) and average

communication phase duration (right y-axis) in the Spark broadcast

and Hadoop shu✏e applications under di↵erent flat-tree topology

modes . 79

5.1 Impact of failures on flows and coflows 83

5.2 A k = 6 fat-tree [1]. To build a ShareBackup network from it, the

blocks of devices like in the shaded areas should be replaced by the

corresponding structures in Figure 5.3. 90

x

5.3 Substructures of a ShareBackup network where k = 6 and n = 1. The

subfigures correspond to the shaded areas in Figure 5.2. Devices are

labeled according to the notations in Table 5.1. Edge and aggregation

switches are marked by their in-Pod indices; core switches and hosts

are marked by their global indices. Switches in the same failure group

are packed together, which share a backup switch in stripe on the

side. Circuit switches are inserted into adjacent layers of

switches/hosts. The connectivity in shade is the basic building block

for shareable backup. The crossed switch and connections represent

example node and link failures. Switches involved in failures are each

replaced by a backup switch with the new circuit switch

configurations shown at the bottom, where connections regarding the

original red round ports reconnect to the new black square ports. . . 92

5.4 Communication protocol in the control system. (a): Failure detection

and recovery. (b): Diagnosis of link failure. 95

5.5 Circuit switch configurations for diagnosis of link failures shown by

examples (b) and (c) in Figure 5.3. Circuit switches in a Pod are

chained up using the side ports. Only “suspect switches” on both

sides of the failed link and some related backup switches are shown.

Through configurations 1�, 2�, and 3�, the “suspect interface” on

both “suspect switches” associated with the failure can connect to 3

di↵erent interfaces on one or multiple other switches. 97

5.6 Additional cost of ShareBackup, Aspen Tree, and 1:1 Backup relative

to fat-tree at di↵erent network scales using market prices in Table 5.2 106

Tables

3.1 Average hop count when load = 0.8 31

4.1 Throughput of clustered tra�c normalized against the minimum value in

the compared architectures . 41

4.2 List of flat-tree topologies for evaluating the control system.

Abbreviations: Edge Switch (ES), Aggregation Switch (AS), Core Switch

(CS), Upstream Port (UP), Downstream Port (DP), Oversubscription

Ratio (OR). 67

4.3 Conversion delay of the throughput experiment in Figure 4.14 77

5.1 List of notations . 86

5.2 Cost of compared architectures, where the data center uses electrical

(E-DC) and optical (O-DC) transmissions respectively. 105

5.3 Performance characteristics of di↵erent network architectures 107

1

Chapter 1

Introduction

In this thesis, we appeal for rethinking the design of data center network architectures

by introducing the concept of convertibility. We define convertibility as a network’s

ability to change its topology dynamically. This change should be completely man-

aged by software, without involving human labor for rewiring the physical devices.

With the power of convertibility, it is possible for the first time to build a data cen-

ter that can function with di↵erent network architectures to combine the benefits of

conventionally incompatible worlds. Our proposal is rooted in the recent trends in

the development of data center networks.

The first trend is the continuous e↵orts towards two conflicting goals for data cen-

ter network design: low implementation complexity vs. high transmission through-

put. These e↵orts are reflected in the enthusiasm for Clos networks in industry and

random graph networks in academia. Clos, or multi-rooted tree, is the de-facto stan-

dard data center network architecture because of it highly organized structure [2, 3].

Figure 4.2b shows an example Clos network. The central wiring between switches

in adjacent layers is relatively easy to manage, and the network can be expanded

to arbitrary size by adding stages. Bandwidth oversubscription can occur at any

switch layer to save cost. Modular Pods are adopted as building blocks to further

ease network deployment and management. However, Clos networks have suboptimal

throughput, as tra�c needs to traverse up and down the network hierarchy and the

resulting ine�ciency exacerbates oversubscription.

2

In contrast, random graphs are proven to have optimal throughput [4,5]. Without

rigid structures, switches are more directly connected at shorter path lengths. If

implemented using the same switches and servers as a Clos network, a random graph

can provide richer bandwidth and e↵ectively alleviate the oversubscription problem.

The “fluid” structure also enables constructing random graphs at di↵erent scales to

serve heterogeneous workloads in data centers [6–10], e.g. a network-wide random

graph to serve large clusters and regional random graphs as part of the network to

serve small clusters. Yet, the neighbor-to-neighbor wiring between random switch

pairs is disorderly, making real-world implementation a daunting task.

Closely related to these conflicting stances is the second trend of stagnation in

the emergence of new data center network architectures. Back in 2008 and 2009,

the research community proposed a number of interconnection networks as the data

center fabric, fat-tree [1], DCell [11], BCube [12], and HyperX [13] being the famous

examples. However, there has been no breakthrough ever since. In the design space,

these architectures fall between Clos and random graph at the extremes of the scale.

They attempt to find the right middle ground between orderly implementation and

good performance by tuning the degree of hierarchical vs. flat structure, central vs.

neighbor-to-neighbor wiring, etc. Yet, the transmission performance of a network is

tra�c specific, thus each topology has the sweet spot for particular workloads [4]. It is

hard to use a one-size-fit-all topology to address the heterogeneous and ever-changing

service needs in data centers.

To combat the limitation of fixed network topologies, the third trend is optimiza-

tion at various layers of the network stack to make better use of the network. The

rich set of work include routing and transport protocols [6, 14–18], flow scheduling

mechanisms [19–25], workload placement heuristics [26–29], etc. An extreme example

3

is Google builting well-customized data centers with specialized hardware, network

architecture, control system, computation framework, resource allocation scheme,

etc [3, 30]. Despite the success of these e↵orts, some fundamental traits of applica-

tions are unchangeable. For example, even with proper optimizations of workloads

and transmission performance, Facebook still observes very di↵erent tra�c charac-

teristics in its service clusters [10], indicating di↵erent stress points are placed on the

network.

Relaxing the constraint of fixed topologies, the fourth trend is the advent of con-

figurable data center networks that create ad-hoc links as needed. Some solutions

provide a local remedy for fixed topologies by adding a small number of connec-

tions to alleviate hot spots [31–36], while others create a flexible network core for

small-scale networks [37–41]. On one hand, these works demonstrate it is technically

mature to change the network topology by software at runtime. On the other hand,

the flexibility of network topology has potential to be extended to a wider range of

the network and to larger-scale networks.

Based on the above evidence, we make the bold claim that it is time to promote

convertible data center network architectures. Convertibility elevates link configura-

bility to a higher level. It allows for global topology change in a data center network

of any scale.

Convertibility is achievable by converter switches, which can pipe tra�c point to

point with no bandwidth contention from the input ports to the output ports using

di↵erent permutations. By changing the configurations of the converter switches,

cables are rewired to di↵erent outgoing connections, as if they were unplugged and

replugged manually. We leverage small port-count converter switches to reduce the

cost. If implemented using packet switches, the bare-minimum switching functionality

4

does not require expensive processor/bu↵ering, sophisticated routing protocols, or

general-purpose OS, etc. Cheap switching chips in small scale with support for simple

port-to-port forwarding rules would su�ce. If implemented using circuit switches,

low-cost switching technologies with modest port count limited by signal losses can

also apply [42,43].

The benefits of convertibility is multi-fold. First, convertibility provides another

dimension of flexibility to tra�c optimization. Static network topologies lock up

bandwidth in fixed links, so congested links cannot get more bandwidth even if it

exists in the network. In a convertible network, however, bandwidth can be moved

to transmission hot spots as needed. Convertibility can enhance tra�c locality and

reduce transmission hop count. Servers that exchange the most tra�c can be relo-

cated to a common switch to minimize the tra�c sent to higher layers in the network

hierarchy. Opposite to tra�c locality, load balancing and failure resilience can be

achieved by directing tra�c relevant to the same service to di↵erent switches.

Second, convertibility also simplifies deployment, upgrade, and management for

complex data center networks. Constructing data centers requires complex wiring,

and cable rewiring for later changes is especially challenging. If cables are intercon-

nected through converter switches, detailed rewiring after the initial deployment can

be maintained automatically by cable management software. This introduces oppor-

tunities for dynamic topology optimization in case of a hardware failure, during a

switch firmware upgrade, or after partial power-down during o↵-hour operation.

Third, convertibility enables incremental expansion of data centers. A data center

can be partially populated with switches and servers by disconnecting a subset of

links via converter switches. As more equipments are activated in the network, the

converter switch settings are configured to adapt to the change, avoiding manual

5

rewiring of existing links.

Fourth, convertibility makes e�cient backup possible. Most data centers deploy

one-on-one backup for each Ethernet switch for fault tolerance. 1 out of N backup

can be achieved with configurable topology. A single spare switch connected to mul-

tiple switches through converter switches can be brought online as needed to replace

any switch that fails. This enables more e�cient backup and reduces the cost for

redundancy significantly.

This thesis is that it is economical and feasible to build data center networks

with topological convertibility to improve transmission performance and fault toler-

ance. In this thesis, we propose three convertible data center network architectures.

OmniSwitch is the first e↵ort towards the exploration of convertibility. We design a

production-ready modular container that use interleaving converter switches and Eth-

ernet switches to provide both local convertibility within the container and large-scale

connectivity. As universal building blocks of data centers, a number of OmniSwitch

containers can be interconnected to form data center networks of di↵erent scales us-

ing di↵erent topologies, such as mesh and tree networks. We consider practical issues

in this product design, including directing tra�c by converter switches to desirable

Ethernet switches within the container for tra�c optimization, exposing multi-link

connectors external to the container for easy wiring, allowing partial population of

devices and enforcing modular design for incremental expansion, equipping a spare

Ethernet switch shareable to a set of active ones for e�cient backup, and employing

small port-count converter switches instead of large ones for cost e↵ectiveness. We

demonstrate the potential of convertibility with the VM clustering case study. Simu-

lations using a real data center workload show that compared to the state-of-the-art

solutions, OmniSwitch reduces the average path length significantly and services more

6

bandwidth using minimal computation time. Small converter switches are proven to

provide similar convertibility to a high port-count counterpart.

Flat-tree is a more in-depth study of convertibility. Unlike OmniSwitch that tunes

the network topology locally, it aims at converting the entire network between the

Clos topology and approximate random graph of various scales to achieve the con-

ventionally conflicting goals of low implementation complexity and high transmission

throughput. We flatten Clos’ tree structure by rewiring existing connections via

converter switches, which have low cost and can be packaged into Pods to ease de-

ployment. With regular wiring patterns between Pods and core switches and simple

connections between adjacent Pods, we e↵ectively approximate randomness in the

network core and at the same time obtain low wiring complexity. Multi-path rout-

ing and congestion control are crucial to exploiting the path diversity in flat-tree,

and we have shown that aggregation strategies can be applied to avoid an explo-

sion of network states. Existing routing and transport protocols combined with our

architecture-specific state aggregation schemes can balance between high network uti-

lization and fair bandwidth sharing among flows. We explore the implementability

of flat-tree using simulations with real data center tra�c and a testbed implemen-

tation of the system. Flat-tree has similar average path length as random graphs

and the tra�c throughput is indistinguishable. We also observe flat-tree can opti-

mize for diverse workloads with di↵erent topology options, and it brings performance

improvements to applications with greater core bandwidth.

ShareBackup explores how convertibility can be used to enhance fault tolerance

in the network. A measurement study has shown that failures are rare but dis-

ruptive in production data centers [44]. Moreover, we find the e↵ect of failures is

magnified hugely on the application level by our own experiments: under failures,

7

the number of impacted Coflows is significantly greater than the number of impacted

individual flows. As a result, we should recover from failures immediately after they

happen. OmniSwitch adds a spare switch as backup in the local container, while

ShareBackup further develops the idea of e�cient backup by creating a small pool of

backup switches that can be shared by the entire network. ShareBackup is based on

the fat-tree architecture. We organize switches into failure groups and allow them to

share one or more backup switches. Switches in the same failure group, as well as the

backup switches, are connected to the same set of converter switches, so that they can

be replaced by the backup switches when failed. Link failures are addressed as node

failures on both ends, and we use o✏ine failure diagnosis to understand the cause

of problem and to recycle healthy switches. We use distributed network controllers

to share the burden of failure detection and recovery. For fast failure recovery, we

support live impersonation of the failed switches on the control plane. Using mar-

ket prices, the cost of ShareBackup is multi-fold lower than state-of-the-art failure-

resilient architectures. It also provides more bandwidth compared to rerouting-based

solutions.

The contributions of this thesis are as follows:

• We introduce the concept of “convertibility” as a new angle to the design of

data center networks and propose to realize this idea by distributed placement

of cost-e↵ective small circuit switches. Compared to previous works of using

a large central circuit switch to add ad-hoc links at runtime, we rearrange the

structure of the network to provide greater average performance characteristics

throughout the life cycle of the workload. The per-port cost of our targeting

switching technology is significantly lower, and the scalability of the network

is not limited by the port count of the central circuit switch. This new design

8

philosophy may motivate other novel architectures of data center networks.

• We design three data center network architectures as di↵erent use cases of con-

vertibility. OmniSwitch is a rack-scale computing container. It explores the

potential of local tra�c optimization and e�cient backup with convertibility.

Flat-tree and ShareBackup extend these ideas to the scope of the entire net-

work. Flat-tree enables network-wide conversion between Clos and approximate

random graph networks to provide a suitable network topology for each tra�c

workload. ShareBackup allows the network to share a small pool of backup

switches for fast failure recovery. We prove the power of convertibility through

these architectures and discuss other promising applications, such as load bal-

ancing, network expansion, power saving etc.

• We provide complete design of the network architectures and the control sys-

tems to give sights for general principles of convertible networks. We give wiring

plans of the network devices to serve the specific design purposes. We pro-

pose resource scheduling algorithms to convert the network when necessary and

devise customized routing protocols to transmit data on the flexible network

topology. We also consider practical problems in real-world deployment, such

as host transparency, packaging, wiring, etc. We find the cross-layer optimiza-

tion very e↵ective, and our experience is helpful for follow-up works on the

design of convertible networks.

• We conduct extensive evaluations of the proposed network architectures to

demonstrate advantages of convertible networks, including theoretical analy-

ses, flow-level simulations, packet-level simulations, and testbed implementa-

tions. We evaluate e↵ectiveness of di↵erent aspects of the designs and compare

9

the performance with state-of-the-art solutions. Specifically, compared to VM

placement schemes, OmniSwitch provisions more cloud virtual clusters, and its

only takes 0.1% computation time; flat-tree increases bandwidth through topol-

ogy conversion to fit di↵erent workloads, which translates to reduction of end-

to-end data read time in Hadoop and Spark applications; ShareBackup restores

bandwidth immediately after failures at orders of magnitude lower additional

cost than other redundancy-featured data center architectures.

The rest of the thesis is organized as follows. Chapter 2 introduces the back-

ground and related work of convertible networks. Chapter 3, 4, and 5 explain the

detailed architecture and system designs of OmniSwitch, flat-tree, and ShareBackup

respectively. Chapter 6 presents future work, and Chapter 7 concludes the thesis.

10

Chapter 2

Background and Related Work

2.1 Fixed Data Center Network Architectures

A number of interconnections networks have been proposed as the fabric for data

center networks. Fat-tree suggests moving from a traditional hierarchical data center

design utilizing expensive specialized core switches to a network built of commercial

Ethernet switches which nevertheless achieved high throughput [1]. Because the port

counts of commercial switches are usually limited, Fat-tree forms non-blocking 3-layer

folded Clos networks, which use a large number of parallel links to provide network-

wide connectivity and full aggregation bandwidth. DCell is a server-centric modular

data center network architecture [11], where servers can be interconnected to relay

tra�c. It is a recursively defined structure, in which a high-level DCell is constructed

from many low-level DCells and DCells at the same level are fully connected with

one another. BCube is also a server-centric network structure [12]. It has multiple

layers of switching units, and the servers are connected to each of the layers with one

port. The BCube topology shows good characteristics for one-to-one, one-to-several,

and one-to-all tra�c patterns. HyperX is an architecture extended from hypercube

and flattened butterfly, two important topologies in high performance computing

networks [13]. HyperX is a class of multi-dimensional networks using high-radix

switches. In a HyperX, each switch is connected to all of its peers in each dimension

and the number of switches in each dimension can be di↵erent. CamCube builds

11

a shipping container sized data center [45]. It replaces the traditional switch-based

network with a 3D torus topology, with each server directly connected to 6 other

servers. Unlike these structured networks, Jellyfish realizes degree-bounded random

graph [5]. The switches are randomly connected to each other as long as there are

available ports, and servers are uniformly connected to the switches.

2.2 Configurable Data Center Network Architectures

Our work is also related to the recent proposals of configurable data center network

architectures. One group of works creates ad-hoc links at runtime to alleviate hot

spots [31,32,34,35,46,47]. Helios and c-Through construct a separate optical network

with an expensive high port-count 3D MEMS side by side with the existing data

center to add core bandwidth on the fly [48, 49]. This idea is extended to di↵erent

tra�c patterns other than point-to-point communication [46, 47]. Flyways exploits

60 GHz wireless technology to augment the traditional data center network with

dynamic wireless links between directional antennas on ToR switches [34]. To reduce

interference, a follow-up work uses 3D beamforming to bounce 60 GHz signals o↵ to

data center ceilings, thus establishing indirect line-of-sight between any two racks in

a data center [35].

Another group constructs an all-connected flexible network core with high band-

width capacity [33, 36–41]. OSA builds an all-optical network by introducing WDM

and WSS technologies to provide multi-hop forwarding and tunable link capacity [50].

Mordia, Quartz, and Plexxi use fast optical circuit switches (WSS or WDM rings) to

build a full-mesh aggregation layer that has high bandwidth capacity and low switch-

ing latency [39, 40]. Because WSS and WDM rings scale poorly, these designs work

best for small networks with tens of aggregation ports. FireFly and ProjecToR pro-

12

vide free-space optics solutions, which use modulated visible or infrared laser beams

transmitted through free space [33, 36]. FireFly equips ToR switches with antennas

and they shoot signals onto ceiling mirrors to avoid obstruction, whereas ProjecToR

uses a DMD and mirror assembly combination as a transmitter and photodetector on

each rack. WaveCube builds a 2D-torus network with optical components working as

joint nodes [38], in which tra�c is usually relayed by many intermediate hops.

However, these solutions are constrained by the port count of central switches

when enabling configurability [31,32,37], the number of optical wavelengths that can

be reused [37–41], or the interference and attenuation of wireless signals [33–36]. Due

to these scalability concerns, only a small number of connections can be added as a

local remedy or the size of the network is limited to a small scale. Our work is the

first to realize globally convertible data center networks at large scale.

2.3 Failure Recovery in Data Center Networks

Many architectural solutions have been proposed to improve failure resiliency of data

center networks. Fat-tree [1], DCell [11], BCube [12], VL2 [51], HyperX [13], and Jel-

lyfish [5] build high-performance data center network architectures with redundant

paths and provide customized rerouting schemes to bypass failures. PortLand en-

hances fault tolerance of fat-tree with a layer-2 routing and forwarding protocol [52].

F10 adjusts wiring of fat-tree to diversify alternative paths in the network struc-

ture [53]. It also improves responsiveness to failures by fast failure detection and

local rerouting to longer paths. Aspen Tree adds redundancy to fat-tree to reduce

failure convergence time, at the price of partitioning the network or introducing extra

hardware [54].

Other architecture-transparent solutions overcome the routing disruption problem

13

in ISP networks, including IP fast reroute [55–58], and multipath routing [59–61].

Failure carrying packets (FCP) eliminates the convergence process after a failure by

allowing data packets to carry failure information [62]. Packet Recycling is a con-

tingent forwarding technique with small packet overhead that takes advantage of

cellular graph embedding for fast packet rerouting in the event of link failures [63].

R-BGP pre-computes a few strategically chosen failover paths and provably guar-

antees that a domain will not become disconnected from any destination as long

as it will have a policy-compliant path to that destination after convergence [64].

Data-Driven Connectivity (DDC) addresses connectivity issues separately from the

more far-reaching distributed computations of the control plane and provides ideal

forwarding-connectivity [65]. Keep Forwarding (KF) is a labeling-free local failure re-

silient routing framework that provides e↵ective failure resilience for the general k-link

failure case [66]. DF-EDST resilience was introduced to use edge-disjoint spanning

trees to provide deadlock-free local fast failover [67]. Plinko explores the feasibility of

implementing local fast failover groups in hardware by conducting forwarding table

compression [68]. In the OpenFlow network, Schi↵ et al. have introduced a number

of useful functions that rely on hardware fast failover group [69]. Borokhovich et al.

describe an OpenFlow fast failover algorithm that guarantees delivery without loop-

ing packets by treating failover as a maze traversal problem [70]. FatTire introduces

a language for specifying fault tolerance requirements in the SDN paradigm [71].

2.4 The Concept of Convertible Network

Convertibility is a network’s ability to change its topology dynamically. This change

should be completely managed by software, without involving human labor for rewiring

the physical devices. A convertible network is able to change between multiple net-

14

work topologies when necessary, thus it is possible for the first time to build a data

center that can function with di↵erent network architectures to combine the benefits

of conventionally incompatible worlds.

Convertible networks are distinguished from the fixed data center network archi-

tectures by its topological flexibility. Each of these fixed topologies has sweet spots

for particular tra�c patterns [4], whereas convertible architectures are able to change

the network topology to adapt to di↵erent workloads. For instance, OmniSwitch can

dynamically direct tra�c to di↵erent Ethernet switches to reduce the hop count of

transmission, and flat-tree has multiple topology options that are suitable for di↵erent

tra�c patterns respectively. These fixed architectures have varying implementation

complexity and performance properties. With the power of convertibility, flat-tree

can be implemented more easily as a Clos network and has better performance as

random graph networks. OmniSwitch successfully addresses many practical issues,

i.e. tra�c optimization, easy wiring, e�cient backup, and incremental expansion,

thanks to convertibility.

The concept of convertible network is fundamentally di↵erent from existing pro-

posals of configurable data center network architectures. First, it aims to achieve

network-wide topology change in large-scale data centers. The scalability of many

previous works is constrained by a centralized device that enables flexibility, such as

3D MEMS [31, 32, 37, 46, 47] and WDM ring [39–41]. To overcome this weakness, in

our proposal the enabling devices are placed across the network in a decentralized

manner. Second, instead of adding extra bandwidth to the network, a convertible net-

work rearranges the network structure to utilize existing bandwidth resources more

e�ciently. Third, rather than incremental topology evolution according to the instan-

taneous tra�c pattern, a convertible network changes the intrinsic characteristics of

15

the topology to fit the requirements of di↵erent workloads throughout their lifecycle.

Convertible networks can also improve reliability of data center networks. The

weaknesses of the above rerouting-based solutions on fault tolerance motivate the use

of convertible networks. First, rather than bypassing failures at compromised per-

formance, we should replace failed devices completely to restore bandwidth. Second,

redundancy may cause excessive hardware expenses [54], while we can enable share-

able backup with convertibility to save cost. Third, alternative paths can have more

hops [5,11,13,53] and path re-computation may be expensive [5], whereas a convert-

ible network can maintain original paths after failures to avoid rerouting overhead

and path dilation. Fourth, some solutions experience slow failure propagation [1],

while convertible networks can replace failed devices instantly and thus localize the

e↵ect of failures.

As aforementioned, the network topology should be converted infrequently to

avoid disruptions of the network. OmniSwitch converts topology when cloud virtual

tenants come and go; flat-tree converts topology when the network operator deploys

di↵erent applications; and ShareBackup converts topology when failures occur. Be-

cause the network topology remains relatively stable between conversions, existing

tra�c optimization and failure management mechanisms can be applied to the con-

vertible network. For example, transport protocols, flow scheduling algorithms, and

tra�c re-routing solutions can adapt to convertible networks naturally.

2.5 Realization of Convertible Networks

Convertibility is achievable using circuit switches. By changing the circuit switch

configurations, cables can be rewired to di↵erent outgoing connections as if they are

plugged/unplugged manually. In this thesis, we use “converter switch” to denote

16

circuit switch with the special functionality of achieving convertibility.

The choice of specific switching technology depends on the existing devices already

deployed in the data center. If the data center has copper cables in place, electrical

crosspoint switches whose per-port cost is as low as $3 [72] can be used. Crosspoint

switches can scale up to 160 ports, and the switching latency is only 70ns. These

converter switches split some cables into two parts. Because crosspoint switches are

passive devices, cables connected to a converter switch do not need active elements.

If manufactured properly, the cost of two cables each with only one active element at

the packet switch end is equivalent to the cost of the original cable.

Many data centers nowadays use optical fibers for cross-rack connections. To avoid

the cost of extra transceivers, optical circuit switches are sensible options for converter

switches. We exploit cheap small port-count circuit switches, such as 2D MEMS and

Mach-Zehnder switches to minimize deployment costs. These switches are fabricated

on a planar substrate using lithography. Losses from photonic signal crossings or other

e↵ects limit the port count to modest scale. The mass production cost is dominated

by packaging. With significant advances in photonic packaging, the per-port cost of

these switches will be far cheaper than their counterparts that scale to hundreds of

ports. While we are not able to project future costs precisely, we anticipate that

the per-port cost will become reasonably cheap as photonic packaging technology

advances. These converter switches can scale to 32 ports, and the switching delay

is around 40µs. The di↵erence between transmit power and receive sensitivity of

commercial optical transceivers can be over 8dB [73], which easily overcomes the

insertion loss of most optical switches. Amplifiers are thus not needed.

Despite the realization technology, converter switches have relatively small port

count. Because small converter switches cannot provide general connectivity, building

17

large-scale data centers requires intimate combination with the existing switching

power in the network. Therefore, convertible networks employ interleaving converter

switches and Ethernet switches to provide topological flexibility for the full scope of

a data center.

2.6 Implementation Criteria for Convertible Networks

The implementation and management of data center networks involve a lot of manual

e↵orts, such as initial deployment of equipments, wiring, upgrade and expansion, and

trouble-shooting. Standard principles have been introduced to simplify these proce-

dures. We follow these criteria in the implementation of our convertible networks.

They apply to each and every architectural designs in this thesis.

Modular Design: The last decade has seen the emergence of the modular data

center [74], a self-contained shipping container complete with servers, network, power,

and cooling, which is usually referred as a Pod. Organizations like Google and Face-

book have begun constructing large data centers out of Pods [2, 3], and many tradi-

tional server vendors now o↵er products in this space [75–77]. These modular Pods

can be easily integrated to form a data center, and the inter-Pod wiring is simplified

with bundled cables and streamlined connectors. Convertible data center networks

require converter switches to be distributed across the network. We aim to make the

changes transparent to the network operator. We insert converter switches into the

Pods and hide the additional wiring inside. As our new type of Pod is manufactured,

the network operator can implement the convertible data center as easily as regular

data centers.

Regularized Wiring: The inter-Pod connections in data centers follow a highly

organized wiring pattern. For example, in the status quo Clos structure for data center

18

networks, a set of core switches connect to the Pods using the same wiring pattern,

that is each core switch connects to all the Pods each with one link. In convertible

networks, because of the di↵erent network structure, inter-Pod wiring needs to be

changed. We seek regular wiring patterns to minimize the wiring complexity. These

patterns follow straightforward rules, such as repetitive patterns, shifting patterns,

and swapped patterns. In the specific architectures described later, we produce wiring

plans or wiring algorithms that are readily executable for practical wiring.

Packaging: When failures happen, the network operator enters the Pods to di-

agnose the problem. Equipment packaging within the Pod is thus very important,

since a well organized packaging plan largely simplifies the trouble shooting process.

In convertible networks, we need to package the converter switches properly along

with the other devices. Converter switches have very limited port count, so we de-

ploy a multitude of them in the Pod to enable Pod-wide connectivity. With today’s

technology, converter switches can be manufactured at minimal size, and they can

be easily compacted. For instance, Lucent’s 64⇥64 switch has a size of 100⇥120⇥20

mm3, which can be mounted on a standard circuit board [78]; and Fujitsu’s 80⇥80

switch has a packaged size of 77⇥87⇥53 mm3 [79]. We can compact the converter

switches into two groups and place them on the left and right sides of the Pod. Each

compacted group can have aggregated connectors pointing to the converter switch

ports, which facilitates connections to regular switches in the Pod.

19

Chapter 3

OmniSwitch: A Universal Switch as the Basic
Building Block for Data Centers

In this chapter, we introduce OmniSwitch as the first step towards convertible data

center networks. OmniSwitch is a production-ready modular container that serves

as an universal building block for constructing data centers of various scales. It

interleaves converter switches with Ethernet switches to provide local topology opti-

mization and large-scale connectivity. It also addresses practical issues such as easy

wiring, e�cient backup, and incremental expansion. We design an example control al-

gorithm for a tra�c optimization use case. Simulation results show that our solution

is e↵ective in provisioning bandwidth for cloud tenants and reducing transmission

hop count at low computation cost. The detailed design is presented in the following

sections.

3.1 Motivation

In traditional data centers, thousands of servers are connected through a multi-rooted

tree structure of Ethernet switches. Figure 5.3 depicts an example data center net-

work. At each layer of switches, the upstream bandwidth is only a fraction of the

downstream bandwidth, creating a bottleneck in the network core. Nowadays, novel

network architectures with high bisection bandwidth have been studied to overcome

this limitation [1, 11, 12].

Yet measurement studies show that the utilization of core links is highly imbal-

20

anced [80, 81], indicating making good use of the existing bandwidth is more critical

than adding bandwidth to the network. A recent trend is to optimize the bandwidth

utilization leveraging the diverse routing paths in data centers. This set of works in-

clude multi-path routing and transport protocols for load balancing [14–18, 82], flow

scheduling mechanisms for transmission acceleration [19–21, 83], and virtual tenant

allocation heuristics for cloud service performance guarantees [26–29,84].

Besides routing flexibility, there is another level of flexibility that was rarely ex-

plored for bandwidth optimization: topological flexibility. Static network topolo-

gies lock up bandwidth in fixed links, so congested links cannot get more bandwidth

even if it exists in the network. With a configurable network topology, bandwidth

can be moved to transmission hot spots as needed. In the Figure 5.3 example, virtual

machine (VM) 1 and 2 are placed in di↵erent edge subnetworks and must communi-

cate through the network core no matter how the tra�c is routed. If we move the

bold link to the dashed position, we construct a shorter path between the VMs and

reduce the bandwidth consumption in the network core. Although migrating VM

1 to location 3 achieves the same e↵ect, it is undesirable because VM migration is

expensive [85] and a tenant may request for storage (SAN) and connectivity (WAN)

that are not movable.

Topological flexibility is achievable using circuit switches. By changing the cir-

cuit switch configurations, cables can be rewired to di↵erent outgoing connections

as if they are plugged/unplugged manually. Modern data centers have optical fibers

and optical transceivers in place for high-bit-rate transmission [86]. Optical circuit

switches align well with the existing data center infrastructure, and thus become a

sensible choice of implementation. The link change in Figure 5.3 can be realized by

inserting an optical circuit switch between the relevant aggregation and ToR switches.

21

Aggrega&on)
switch))

Core)
switch)

Top3of3Rack)
(ToR))switch))

3 2 31

Figure 3.1 : An example data center network. The transmission hop count between

VM 1 and VM 2 is originally 5. Moving the bold link to the dashed position reduces

the hop count to 3.

Topological flexibility provided by optical circuit switches also simplifies deploy-

ment, upgrade, and management for complex data center networks. Constructing

data centers requires complex wiring, and cable rewiring for later changes is especially

challenging. If cables are interconnected through circuit switches, detailed rewiring

after the initial deployment can be maintained automatically by cable management

software. This introduces opportunities for dynamic topology optimization in case of

switch or server failures, adding new equipments for incremental expansion, firmware

upgrade for o✏ine switches, and switch power-down during o↵-hour operation. Most

data centers deploy one-on-one backup for each Ethernet switch for fault tolerance.

1 out of N sparing can be achieved with configurable topology. A single spare switch

connected to multiple switches through optical circuit switches can be brought online

as needed to replace any switch that fails. This enables more e�cient backup and

reduces the cost for redundancy significantly.

We present OmniSwitch, a convertible data center network architecture, and lever-

age its topological flexibility to utilize and manage the data center e�ciently. Om-

22

niSwitch exploits cheap small port-count optical switches, such as 2D MEMS, Mach-

Zehnder switches, and switches using tunable lasers with array waveguide gratings,

to minimize deployment costs. These switches are fabricated on a planar substrate

using lithography. Losses from photonic signal crossings or other e↵ects limit the port

count to modest scale. The mass production cost is dominated by packaging. With

significant advances in photonic packaging, the per-port cost of these switches will be

far cheaper than their counterparts that scale to thousands of ports. Because small

optical switches cannot provide general connectivity, building large-scale data cen-

ters requires intimate combination with the existing switching power in the network.

OmniSwitch employs interleaving optical switches and Ethernet switches to provide

topological flexibility for the full scope of a data center. Evaluations in Section 3.3.3

demonstrate small optical switches integrated in the OmniSwitch architecture are

e↵ective enough to give considerable topology flexibility.

In the rest of the chapter, we describe the OmniSwitch architecture and the con-

trol plane design. We use VM clustering as a case study and propose a control

algorithm that enhances locality of tra�c in the same tenant. We evaluate our solu-

tion using simulations in the tenant provisioning scenario. Compared to intelligent

VM placement on a fixed network topology, running our VM clustering algorithm

given dumb VM placement on the OmniSwitch configurable topology can reduce the

rejected bandwidth by 60%. Our approach also reduces the provisioning time for

large tenants from 17min to 1s.

23

3.2 OmniSwitch Design

3.2.1 Architecture

128 port x 5
Ethernet

Stack

128 Ports

...

4x5 port x 128
Circuit Switch

Stack

Spare
Switch

Photonic
Conversion

Front View of
OmniSwitch Panel

8
M

ul
til

in
k

C
on

ne
ct

or
s

Multilink
16 x 25G

Front
Panel

Figure 3.2 : Internal of an OmniSwitch cabinet

OmniSwitch deploys identical hardware building blocks to provision port count,

bandwidth, and reliability. Figure 3.2 illustrates an OmniSwitch module that com-

bines electrical packet switches and optical circuit switches into a single cabinet. The

Ethernet stack can be populated with up to 5 cards each having a 128-port Ethernet

switch ASIC. The 5th card is a spare switch to provide fault tolerance and always-

on maintenance. The Ethernet switches are connected through electrical-to-optical

converters, and then a stack of 4⇥5 photonic circuit switches, to optical front panel

connectors. 16 25Gbps bidirectional fibers are bundled into one multilink to reduce

the number of manually installed cables. After plugged into a multilink connec-

tor, these individual fibers are connected vertically across 16 adjacent optical circuit

switches. Each circuit switch allows arbitrary optical connections between a row of

individual links inside the front panel and a corresponding row of Ethernet ports that

span the Ethernet stack. Multilink connectors provide connectivity to both end de-

vices (servers or ToR switches) as edge bandwidth and to other multilink connectors

24

1 2

6 5

3

4

8

7

3 4

2 1

768 Port384 Port

3072 Port

768 Port384 Port

3072 Port

3 4

2 1

(a)

(b)

Figure 3.3 : OmniSwitch mesh network. The right subfigures show topologies of the

Ethernet switches. Switch 1, 2, 3, 4 are in one cabinet; switch 5, 6, 7, 8 are in another

cabinet. Each line represents 4 individual fibers. Solid lines are connections within a

cabinet; dashed lines are connections across cabinets.

in the same or di↵erent OmniSwitch cabinets as core bandwidth. The proportion of

core over edge bandwidth determines the oversubscription ratio.

Mesh networks can be realized using single or multiple OmniSwitch cabinets. In

Figure 3.3 (a), the 4 active Ethernet switches are each connected to other Ethernet

switches through 2 multilinks. The remaining 384 individual fiber ports can be used

for end devices. Specific connections among the Ethernet switches are decided by

the circuit switch permutations. We present two possible topologies, where the total

bandwidth between switch pairs are adjustable depending on tra�c demand. Fig-

ure 3.3 (b) shows a larger network that gives 768 end-device ports. Ethernet switches

in the same cabinet connect to each other using 1 multilink each. They each also

connect to switches in the other cabinet using 1 multilink. A possible topology is

25

1 Spine
OmniSwitch

4 Leaf
OmniSwitches32 uplink cables

1536 Port768 Port384 Port

3072 Port

(a)

(b)

Figure 3.4 : OmniSwitch tree network. In subfigure (b), the 2 uplinks out of each

cabinet refer to the 4 dark and light multilink connections in subfigure (a) respectively.

shown.

OmniSwitch cabinets can also be structured as tree networks. Spine cabinets are

interior nodes in the tree and only provide connectivity for the children cabinets. Leaf

cabinets connect to both end devices and the parent spine cabinets. Figure 3.4 (a)

is the topology used for our evaluations in Section 3.3.3. 4 leaf OmniSwitch cabinets

each provide 8 upward and 24 downward multilink ports. The dark and light lines

show how uplink ports on leaf cabinets are connected to the spine cabinet. In our

example network, 8 ToR switches are connected to each multilink connector, each

ToR switch having 2 25Gbps individual uplinks. A ToR switch hosts 8 servers each

using a 25Gbps downlink. The network has 6144 servers. The ToR switches are 4:1

26

oversubscribed and each cabinet provides 3:1 edge over core bandwidth, so the overall

oversubscription ratio in the network is 12:1.

Figure 3.4 (b) shows a 3072 port configuration using 8 leaf cabinets and 2 spine

cabinets as a Clos topology. The leaf cabinets are connected to the core cabinets in a

similar fashion to Figure 3.4 (a). The lines between the leaf and spine cabinets each

represent 4 multilink cables. For each leaf cabinet, the two lines refer to the dark and

light multilink connections in Figure 3.4 (a) respectively.

3.2.2 Advantage Discussion

Easy wiring: OmniSwitch reduces wiring complexity using multilink cables. De-

tailed interleaving for individual links are handled by circuit switch configuration

software. This enables automatic cable rewiring after a hardware failure, during a

switch firmware upgrade, or after partial power-down during o↵-hour operation.

Incremental expansion: OmniSwitch cabinets can be partially populated with

Ethernet switches and servers. As new equipments are added to the cabinet, circuit

switch settings are configured to adapt to the change, avoiding manual rewiring of

existing links. As shown in Figure 3.3 and Figure 3.4, it is also simple to purchase

additional OmniSwitch cabinets to form larger networks.

E�cient backup: As Figure 3.2 shows, by configuration the circuit switches,

the 5th spare switch can be brought online to replace any Ethernet switch that fails.

Compared to most data centers where each switch has a stand-by backup, OmniSwitch

reduces the sparing hardware and achieves more e�cient backup.

Tra�c optimization: Topological flexibility can enhance tra�c locality and

reduce transmission hop count. Links that exchange the most tra�c can be optically

configured to a common Ethernet switch to minimize the tra�c sent to higher layers in

27

a network hierarchy. Opposite to tra�c locality, load balancing and failure resilience

can be achieved by optically directing tra�c relevant to the same tenant to di↵erent

Ethernet switches.

Cost e↵ectiveness: Small optical switches are potentially far cheaper than the

large counterpart, despite less flexibility. Circuit switches require one-to-one mapping

between the input and output ports. As Figure 3.2 depicts, the cables connected to

the same optical switch cannot reach the same Ethernet switch. Evaluation result

in Section 3.3.3 shows small optical switches can provide considerable topological

flexibility, thus OmniSwitch makes a good tradeo↵ between configurability and cost.

3.2.3 Control Plane

The OmniSwitch architecture requires a control plane (1) to program optical switch

connectivities for topology optimization and (2) to enforce routing for quick adapta-

tion to topology changes. Because a data center is administered by a single entity, an

emerging trend is to leverage centralized network control to achieve global resource

management [16, 19, 52]. We follow this trend to deploy a centralized network con-

troller for OmniSwitch, which is a user process running on a dedicated machine in a

separately connected control network.

Most optical switches can be configured via a software interface, and existing works

provide basic routing mechanisms we can borrow. For example, after the topology

is determined, our network controller can pre-compute the paths and program the

routing decisions on switches using software-defined networking (SDN) protocols [16,

18, 82] or VLANs [15, 49, 87], or on end hosts by source routing [26]. The control

logic should be customized to di↵erent use cases, such as localizing tra�c to save

core network bandwidth, balancing workload to improve service availability, powering

28

down some Ethernet switches to save energy, activating the spare Ethernet switch to

recover from failure, etc. We design a control algorithm that configures topology and

routing simultaneously for the VM clustering use case.

29

3.3 VM Clustering: A Case Study

In cloud computing terminology, tenant refers to a cluster of reserved VMs. A VM

communicates with a subset of other VMs in the same tenant; there is almost no

communication between VMs in di↵erent tenants [88]. VM clustering is to localize

tra�c within the same tenant by optically configuring end-device links that exchange

the most tra�c to a common Ethernet switch. The algorithm requires no control of

VM placement and seeks opportunities for optimization in the network.

3.3.1 Problem Formulation

VM clustering can be realized at the flow level or the tenant level, reconfiguring the

network either to address instant tra�c changes at real-time or to address tenant

bandwidth requirements that last for substantial time. We perform tenant manage-

ment in this case study, because frequent topology changes cause disruptions in the

network and degrade transport performance. Tenant bandwidth requirements can be

expressed by di↵erent network abstraction models [26, 27, 29, 89]. Here we use the

simple pipe model that specifies bandwidth requirement between each VM pair as a

Virtual Link (VL) [26, 84]. Other models apply to OmniSwitch as well. The pipe

model can be constructed either by user specification or by bandwidth prediction

tools [90].

Our problem is to place the VLs in the OmniSwitch network, so that maximum

amount of bandwidth that tenants require can be hosted. Placing VLs on a fixed

network topology can be formulated as a multi-commodity flow problem. Because

splitting VLs across several physical links can cause packet reordering, we seek integer

assignments to the problem, which is NP-complete [91]. In a configurable network

like OmniSwitch, there are numerous possible topologies, making the search space

30

even larger. We design a heuristic algorithm to approximate the global optima.

3.3.2 Control Algorithm

For each tenant, the algorithm takes in the physical locations of VMs and the band-

width requirements of VLs. It accepts the tenant if it accommodates all the VLs with

bandwidth guarantees, otherwise it rejects the tenant and recycles the allocated re-

sources. We assume a tree structure of OmniSwitch cabinets, as shown in Figure 3.4.

The OmniSwitch cabinets run the same sub-procedure, layer by layer from the edge

to the root of the tree. The output of children cabinets is the input of parent cabinets.

In each cabinet, the algorithm handles VLs in the order of decreasing bandwidth

requirement. Because configuring the optical switches can rewire cables to di↵erent

Ethernet switches, we search through the egress and ingress uplinks with su�cient

bandwidth on the source and destination VMs respectively to check what Ethernet

switches can service the VL. If the egress and ingress uplink can reach up to the same

Ethernet switch, the VL can be provisioned within this cabinet, demanding no extra

bandwidth from the upstream cabinets. Optical circuit switch allows an input port to

be connected to only one output port, thus locating VLs from the same tenant onto

the same physical link saves optical ports for other tenants. We use a scoring function

for the VL uplink assignment, which favors links heavily utilized by the tenant. If

the VL must traverse di↵erent Ethernet switches, e.g. optical ports connected to the

same Ethernet switch occupied already, we place the VL on egress and ingress uplinks

with high scores and let the upstream cabinet deal with the connection between the

Ethernet switches.

31

Table 3.1 : Average hop count when load = 0.8

dumb

+fixed Clos

SecondNet

+fixed Clos

OmniSwitch
OmniSwitch

(big OCS)

4.622 4.164 3.217 3.048

3.3.3 Evaluation

Simulation Setup

To demonstrate the power of topological flexibility, we compare two solutions in a

tenant provisioning scenario: dumb VM placement on the configurable topology vs.

judicious VM placement on a static topology. For the first solution, we simulate the

example OmniSwitch architecture in Figure 3.4 (a). When a tenant is subscribed,

we provision VMs by contiguous placement and run the VM clustering algorithm to

accommodate bandwidth for VLs. For the second solution, we simulate a Clos network

with the same number of Ethernet switches and servers, and run the SecondNet tenant

provisioning algorithm [26]. We simulate dumb VM placement on the fixed network

as the baseline of comparison. To analyze the e↵ectiveness of small optical switches,

we also compare the original OmniSwitch with an alternative implementation using

one big optical switch for each cabinet.

The simulated networks have 6144 servers. SecondNet places VMs within tenant

onto di↵erent servers. For fair comparison, we give each server the capacity to host a

single VM in these experiments. Each simulation run consists of 1000 Poisson tenant

arrivals and departures. The tenant size and bandwidth requirements are sampled

from the Bing data center workload [88]. The mean tenant size (S) is 79 and the

32

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Load

Ba
nd

wi
dt

h
Re

je
ct

io
n

Ra
te

dumb + fixed Clos
SecondNet + fixed Clos
OmniSwitch
OmniSwitch (big OCS)

Figure 3.5 : Average bandwidth rejection rate under di↵erent load

largest tenant has 1487 VMs. We keep the tenant duration time (T) fixed and vary

the mean arrival rate (�) to control the load on the data center, which is defined as

S⇥�⇥T
6144 , or the proportion of requested over the total VM slots.

Simulation Results

The simulated networks have 12:1 oversubscription ratio, so tenants may be rejected

due to lack of network capacity. In this casee, all bandwidth required by the VLs are

considered rejected. We define bandwidth rejection rate as the amount of rejected

bandwidth relative to the total requested bandwidth. We use this metric to evaluate

each solution’s e�cacy to accommodate tenants.

Figure 3.5 shows OmniSwitch rejects very little bandwidth even when the load

is high, which demonstrates its e↵ectiveness in localizing tra�c given the simple

VM placement. The OmniSwitch implementation using big optical circuit switches

only reduces the rejection rate slightly, indicating small optical switches can provide

considerable topological flexibility. SecondNet is much better than the dumb solution,

33

101 102 103102

103

104

105

106

107

108

109

1010

Tenant Size (#VM)

C
om

pu
ta

tio
n

Ti
m

e
(u

s)

SecondNet − load = 0.2
SecondNet − load = 0.5
SecondNet − load = 0.8
OmniSwitch − load = 0.2
OmniSwitch − load = 0.5
OmniSwitch − load = 0.8

Figure 3.6 : Algorithm computation time for various tenant size and load

because it pre-configures the servers into clusters by hop count and prioritizes small-

hop-count clusters for VM placement. However, it still rejects over 2⇥ as much

bandwidth as OmniSwitch. On the fixed topology, if a cluster cannot host the entire

tenant, SecondNet must move to large hop-count clusters for resources. OmniSwitch

utilizes bandwidth more e�ciently by constructing connections dynamically according

to bandwidth requirement of individual VLs.

We measure the average hop count of the provisioned VLs to help interpret

the above results. As shown in Table 3.1, the average hop count on the OmniSwitch

network is significantly shorter than that of the SecondNet solution, which explains

why OmniSwitch can host a lot more requested bandwidth. Big optical switches

further reduce the hop count, but the bandwidth rejection rate in Figure 3.5 makes

little di↵erence. This is because OmniSwitch successfully reduces path length for

most VLs, leaving su�cient core bandwidth for the rest VLs.

In Figure 3.6, we compare the computation time of the SecondNet algorithm

and the OmniSwitch VM clustering algorithm. OmniSwitch can finish provisioning

a large tenant with over 1000 VMs in around 1s, and the computation time is not

34

sensitive to variation of load; while SecondNet takes up to 17min and the computation

time grows significantly as the load increases. Although SecondNet pre-clusters the

data center to reduce the problem size, it still needs to do exhaustive search in each

cluster. This is quite expensive, especially when the servers are heavily occupied. The

search space for the OmniSwitch VM clustering algorithm is very small. Since it seeks

optimization for pre-allocated VMs, it only needs to search through a few uplinks and

possible optical switch connections. Table 3.1 shows the algorithm keeps most tra�c

within edge cabinets even at high load, so the search space does not enlarge with load

increase.

35

3.4 Summary

This chapter presents OmniSwitch, a modular data center network architecture that

integrates small optical circuit switches with Ethernet switches to provide both topo-

logical flexibility and large-scale connectivity. Mesh and tree networks can be easily

constructed with identical OmniSwitch building blocks. Topological flexibility can

improve tra�c optimization and simplify network management. We demonstrate its

potential with the VM clustering case study, where we give a control algorithm that

optimizes both topology and routing to enhance locality of tra�c within tenant. Our

approach is evaluated using simulations driven by a real data center workload. Com-

pared to the state-of-the-art solution, it reduces the average path length significantly

and services more bandwidth using minimal computation time. Small optical switches

are proven to provide similar topological flexibility to a high port-count counterpart.

36

Chapter 4

Flat-tree: A Convertible Data Center Architecture
from Clos to Random Graph

In this chapter, we introduce flat-tree, which further explores convertible data center

networks by changing the entire network from one topology to another. It can be im-

plemented as a Clos network and later be converted to approximate random graphs of

di↵erent sizes, thus achieving both Clos-like implementation simplicity and random-

graph-like transmission performance. To convert between these least-alike topologies,

It performs cable rewiring via converter switches to flatten the Clos’ tree structure

and redistribute servers across the switches. We also design an architecture-specific

control system that achieves multi-path routing with a moderate number of network

states. We evaluate the performance of flat-tree using extensive simulations and a

testbed implementation. Flat-tree e↵ectively approximates random graph, and it is

able to optimize diverse workloads with di↵erent topology options. We demonstrate

bandwidth increase through topology conversion, and this improvement can be trans-

lation into reduction of communication time in Spark and Hadoop applications. The

detailed design is presented in the following sections.

4.1 Motivation

The fundamental trade-o↵ in data center network design is low implementation com-

plexity versus high transmission throughput. Clos, or multi-rooted tree, is the de-

facto standard data center network architecture because of its highly organized struc-

37

ture [2, 3]. Figure 4.2b shows an example Clos network. The central wiring between

switches in adjacent layers are relatively easy to manage, and the network can be

expanded to arbitrary size by adding stages. Bandwidth oversubscription can occur

at any layer of switches to save cost. Modular Pods are usually adopted as building

blocks to further ease network deployment and management. However, Clos networks

have suboptimal throughput, as tra�c needs to traverse up and down the network

hierarchy and the resulting ine�ciency exacerbates oversubscription.

In contrast, random graphs are proven to have optimal throughput [4,5]. Without

rigid structures, switches are more directly connected at shorter path lengths. If

implemented using the same switches and servers as a Clos network, a random graph

can provide richer bandwidth and e↵ectively alleviate the oversubscription problem.

To address the heterogeneous workloads in data centers, it is desirable to construct

random graphs at di↵erent scales to adapt to the various service cluster sizes [6–9], e.g.

a network-wide random graph to serve large clusters and regional random graphs as

part of the network to serve small ones. Yet the neighbor-to-neighbor wiring between

random switch pairs are complicated, making real-world implementation a daunting

task.

This dilemma poses a natural question: is it possible to have random-graph-like

performance at various scales with Clos-like implementation simplicity?

We address this question by an unconventional proposal: a convertible data center

network architecture called flat-tree⇤, which converts topologies between Clos and

approximated random graphs. We combine the best of both worlds by building the

⇤The name “flat-tree” captures the dual nature of the proposed architecture. It can function

as approximated random graphs (“flat” networks) and Clos (multi-rooted “tree”). It is as easy to

implement as a “tree” network and has good performance as “flat” networks.

38

C

S

C’$

S’$
b4:$6)port$cross$$

C

A$

S

E

b1:$6)port$default$

A$

C

S
a2:$4)port$local$

E

C

A$

S

E

a1:$4)port$default$

C

S
b2:$6)port$local$$

E
A$ A$

E
A’$
E’$

C’$

S’$

C

S
b3:$6)port$side$$

A$
E

A’$
E’$

C:$core$switch$
$
$
A:$aggrega?on$
$$$$$switch$
$
E:$edge$switch$
$
$
S:$server$

Figure 4.1 : Converter switch configurations

data center as a Clos network and converting it to approximate random graphs at

di↵erent scales.

Flat-tree leverages inexpensive small port-count converter switches to convert

topologies dynamically. By changing the configurations of the converter switches,

cables are rewired to di↵erent outgoing connections, as if they were unplugged and

replugged manually. Flat-tree takes a pragmatic approach to start from a Clos net-

work and addresses challenges of flattening the tree structure to approximate random

graphs. Specifically, how to equalize switches in di↵erent layers and relocate servers

from edge to aggregation and core switches? How to break the hierarchy and connect

the network core and edge directly? How to enable connections between switches in

the same layer at minimum wiring complexity?

Flat-tree inherits the merits of packaging and wiring from Clos networks. It adopts

the modular Pod design. Additional hardware and wiring are packaged in Pods, leav-

ing the same external connectors as a Clos counterpart. Pods are connected to core

switches with a customized regular wiring pattern. Adjacent Pods are interconnected

through multi-link side connectors to allow simple neighbor-wise wiring.

Flat-tree can approximate random graphs at di↵erent scales, ranging from a Pod,

39

to a subnetwork comprising multiple Pods, to the entire network. It can also function

as Clos, which benefits applications that require rich equal-cost redundant links, pre-

dictable path length, and rack-level locality. Flat-tree can operate in hybrid mode:

the network is organized into functionally separate zones each having a di↵erent topol-

ogy. Workloads are placed into suitable zones to optimize their performance. As the

workloads change, the network can be reorganized to adapt to the new requirements.

We discuss design options for the control system and present the implementation

details given the current technology. To exploit the link diversity in flat-tree, we

adopt k-shortest-paths routing [92] and MPTCP [17], whose deployment in large-

scale data centers is an open challenge. The enormous number of paths lead to

explosion of network states. We propose an architecture-specific addressing scheme

to aggregate IP addresses and use SDN-based source routing to relieve state-keeping

at the switches. Packet-level simulations show that given various tra�c patterns

on flat-tree networks of di↵erent scales, the pragmatic implementation of k-shortest-

paths routing and MPTCP constantly achieves comparable throughput to optimal

routing from linear programming.

Linear programming simulations show that the performance of flat-tree is close to

random graphs. Compared to a network-wide random graph, the di↵erence in average

path length is within 5% and the di↵erence in throughput for large-clustered tra�c

is negligible. Flat-tree in hybrid mode optimizes tra�c in di↵erent zones without

interference and achieves the same throughput as separate flat-tree networks. To

further evaluate the practical performance of flat-tree, we run packet-level simulations

given real tra�c traces from several production data centers each carrying di↵erent

services. The results show that flat-tree is able to optimize for diverse workloads

with di↵erent topology options. We implement a flat-tree prototype on a 20-switch

40

24-server testbed and run Spark and Hadoop applications with di↵erent topologies.

The tra�c reaches the maximal throughput only 2.5s after a topology change, proving

the feasibility of converting the topology at runtime. The network core bandwidth is

increased by 27.6% just by converting the topology from Clos to approximate random

graph. This improvement can be translated into acceleration of applications as we

observe reduced communication time in Spark and Hadoop jobs.

41

Table 4.1 : Throughput of clustered tra�c normalized against the minimum value in the

compared architectures

Cluster Size Fat-tree Random Graph Two-stage Random Graph

8 1.91 1 1.16

30 1 1.38 1.65

100 1 1.59 1.17

4.2 Motivating Examples

4.2.1 The Case for Convertibility

Two reasons contribute to the diversity of data center workloads. First, enterprise

data centers may deploy di↵erent services that have di↵erent tra�c characteristics [9,

10]. For instance, the Facebook data centers with di↵erent services show di↵erent

locality features. The Hadoop site has rack-level locality, while the web and cache

sites have Pod-level locality [10]. Second, in public clouds, the virtual tenants have

di↵erent sizes and tra�c patterns [6–8]. For example, in a Microsoft data center,

the mean tenant size is 79 VMs and the largest tenant has 1487 VMs [8, 93]. In

this subsection, we use a simple example to motivate the necessity of using di↵erent

network topologies to serve di↵erent workloads.

We construct a k = 16 fat-tree network [1], and use the same devices to form ran-

dom graph and two-stage random graph networks [5]. The two-stage random graph

network first forms a random graph in each Pod and takes the Pods as super nodes

to form another layer of random graph together with core switches. Figure 4.2b, 4.2c

and 4.2d show approximations of these topologies. To simulate intra-tenant commu-

42

nications in cloud data centers, we pack consecutive servers into clusters and create

all-to-all tra�c in each cluster. We measure the throughput following a well-adopted

methodology [5], which assumes optimal routing and allocates bandwidth to flows

using a linear programming solver.

Table 4.1 shows the normalized throughput with di↵erent cluster sizes. In the

fat-tree network, each edge switch is connected to 8 servers, and there are 64 servers

per Pod. 8-server clusters generate local tra�c only, so fat-tree, without bottleneck

in the network core, yields the highest throughput. Servers are distributed uniformly

across all switches in the random graph. In the two-stage random graph, servers in

each Pod are distributed uniformly across switches in the Pod, and core switches take

no servers. As a result, the two-stage random graph has the second best performance

since the tra�c is served with better locality than in the random graph. For 30-

server clusters, most of the tra�c stays in Pods, so the two-stage random graph

has the highest throughput. Random graph is particularly suitable for network-wide

tra�c because of the rich core bandwidth, so it performs the best for the cross-Pod

tra�c from 100-server clusters.

This example shows that di↵erent topologies perform better for di↵erent work-

loads, depending on the extent of locality they exhibit. We believe the network

should be convertible between multiple topologies to adapt to di↵erent workloads.

Our flat-tree architecture can work as a Clos network and can approximate random

graph and two-stage random graph. The network can be configured to the topology

that best suits the workload. In hybrid-mode, the flat-tree network is organized into

functionally separate zones each having a di↵erent topology. Clusters of di↵erent sizes

can be placed into suitable zones to optimize their performance. Our simulation ex-

periments with real data center tra�c in Section 4.5.4 demonstrate the performance

43

b:#Clos#

c:#approximated#random#graph# d:#approximated#local#random#graph#a:#flat&tree#

Figure 4.2 : Example flat-tree network and some achievable topologies. Core switches

in stripe, aggregation switches in grid, edge switches in shade, and servers as circles.

Gray lines are connections in the original Clos network, which are replaced with the

dashed links connected to converter switches to form flat-tree. The converter switches

show the configuration for approximated random graph. Flat-tree uses a customized

wiring pattern to connect Pods to core switches.

advantage of each supported topology under di↵erent tra�c.

4.2.2 Example Flat-tree Network

We use the simple flat-tree example in Figure 4.2 to demonstrate how to convert a

Clos network to an approximate random graph. The gray lines represent original

connections in the Clos Pod that need to be replaced by the dashed links in the flat-

tree Pod. The most notable di↵erences between Clos and random graphs are server

distribution and types of links. In Clos networks, servers are attached to edge switches

only and all links are hierarchical, either between edge and aggregation switches or

between aggregation and edge switches. All switches are equal in random graphs.

Servers are uniformly distributed to the switches, and the links are between random

switch pairs. So, the first step of conversion is to relocate servers to aggregation and

edge switches and to diversify the types of links.

44

These can be achieved by small port-count converter switches. As shown in the

zoomed-in Pod, flat-tree breaks an edge-server link and an aggregation-core link in

the Clos network, and connects the corresponding server, edge, aggregation, and core

switches to a converter switch. Figure 4.1 illustrates the valid configurations of 4-port

and 6-port converter switches. The “default” configuration enables the original Clos

connections. The “local” configuration relocates the server to the aggregation switch

and connects the core and edge switches directly. This change is local in the Pod.

4-port converter switches should not be used to relocate servers to core switches.

If we connect the server and the core switch, the edge and aggregation switches

must be connected as well, otherwise we waste a link. There are su�cient edge-

aggregation links in the Pod, so this change fails to diversify the types of links.

6-port converter switches introduce side ports, through which two converter switches

can be interconnected. The “side” and “cross” configurations both relocate servers

to core switches, but connect edge and aggregation switches to their peers in di↵erent

ways. We only allow 6-port converter switches in adjacent Pods to be interconnected

for simple neighbor-to-neighbor wiring.

The number of 4-port and 6-port converter switches are determined by the layout

of the Clos network. In Figure 4.2, each pair of edge and aggregation switches are

connected to a 4-port converter switch and a 6-port converter switch, which show

the approximate random graph configuration. Converter switches and the additional

wiring are packaged in the Pod, keeping the same core connectors as a Clos Pod.

The side connectors of 6-port converter switches are bundled as multi-link connectors

to simplify inter-Pod wiring. Flat-tree Pods are connected to core switches via a

customized wiring pattern (details in Section 4.3.2). In this example, the uplinks

from Pods are swapped in di↵erent ways, so that servers are distributed uniformly

45

across the core switches.

Flat-tree converts between multiple topologies with di↵erent converter switch con-

figurations. Figure 4.2b shows the Clos network, when all converter switches take the

“default” configuration. Figure 4.2c shows an approximate global random graph,

with the 4-port “local” and 6-port “side” configurations. In practice, we can also use

the 6-port “cross” configuration to swap connections. Figure 4.2d shows approximate

local random graphs in each Pod. It is configured in a way that half servers are con-

nected to the edge switches and half to the aggregation switches. In this example, we

use 4-port “local” and 6-port “default” configurations. Flat-tree can also operate in

hybrid mode, with di↵erent combinations of the above topologies each in a number

of Pods.

This chapter limits the discussion to one Pod layer connected by core switches.

Flat-tree can be extended to multi-stages of Pods: the lower-layer Pods consider the

edge switches in the upper-layer Pods as core switches; intermediate switch-only Pods

take relocated servers from lower-layer Pods as their own servers. We leave the details

to future work.

4.3 Flat-tree Architecture

4.3.1 Flat-tree Pod

Figure 4.3 depicts a flat-tree Pod. Without loss of generality, we assume the number

of edge switches is a multiple of the number of aggregation switches. There are d

edge switches and d/r aggregation switches. We pair up each edge switch Ej with

aggregation switch Aj/r and connect them to n 4-port converter switches andm 6-port

converter switches. n and m represent the number of servers that can be relocated

46

m�

d/2#

m x#d/2#server#connectors# �

m x#d/2#core#connectors# �

n�

d/2#

n x#d/2#server#connectors# �

n x#d/2#core#connectors# �

Blade#A# Blade#B#

core#
connector#

server#
connector#

i, j�

Ej�

Aj/r�
double#
side#

connectors#

core#
connector#

server#
connector#

i, j�

Ej####�

Aj/r�

d#edge#switches#E0#to#Ed91###

d/r#aggrega;on#switches#A0#to#Ad/r91###

core#
connector#

server#
connector#

i, j�

Ej+d/2 �

A(j+d/2)/r�

le<#blade#

right#blade#

core#
connector#

server#
connector#

i, j�

Ej+d/2�

A(j+d/2)/r�
double#
side#

connectors#

le<#blade#

right#blade#

Remaining#core#connectors#

Remaining#server#connectors#

Blade#B# Blade#A# Blade#A# Blade#B#

Figure 4.3 : A flat-tree Pod. A pair of edge switch Ej and aggregation switch Aj/r

connected to n 4-port converter switches and m 6-port converter switches. Converter

switches are placed evenly on both sides as matrices. Blade A and B has 4-port and

6-port converter switches respectively.

dynamically to aggregation and core switches. We place the converter switches evenly

on the two sides of the Pod: those connected to E0...Ed/2�1 locate on the left of the

Pod and those connected to Ed/2...Ed�1 locate on the right. This forms a n ⇥ d/2

matrix of 4-port converter switches, i.e. blade A in figure, and a m ⇥ d/2 matrix of

6-port converter switches, i.e. blade B in figure, on each side of the Pod.

For both types of blades, converter switch hi, ji on the left blade is connected to

edge switch Ej and aggregation switch Aj/r, and that on the right is connected to

edge switch Ej+d/2 and aggregation switch A(j+d/2)/r. Each 4-port converter switch

connects to a core switch and a server, so blade A has n ⇥ d/2 core connectors and

server connectors. Each 6-port converter switch has a pair of side connectors as

well, so blade B has m ⇥ d/2 core connectors, server connectors, and double side

connectors. There may be remaining core connectors on the aggregation switches

and server connectors on the edge switches. The total number of core connectors

and server connectors are equal to those in a Clos counterpart. If d is odd, a middle

47

Ej!in!Pod!0!
Ej!in!Pod!1!
Ej!in!Pod!2!

Ej!in!Pod!0!
Ej!in!Pod!1!
Ej!in!Pod!2!

Ai!in!Pod!0!
Ai!in!Pod!1!
Ai!in!Pod!2!

h core!switches!Cih!to!Cih+h-1 �

m blade!B� n blade!A� h/r-m-n aggreg.�
connectors!connectors! connectors!

h/r core!switches!Cjh/r!to!Cjh/r+h/r-1 �

h!aggrega8on!connectors!
m blade!B� n blade!A�
connectors!connectors! connectors!

a:!Clos!Pod;Core!Wiring!Pa=ern! b:!Flat;tree!Pod;Core!Wiring!Pa=ern!1! c:!Flat;tree!Pod;Core!Wiring!Pa=ern!2!

h/r-m-n aggreg.�

h/r core!switches!Cjh/r!to!Cjh/r+h/r-1 �

Figure 4.4 : Pod-Core wiring for the same set of connectors across Pods. All connec-

tors are on aggregation switches in Clos; flat-tree has 3 types of connectors on blade

A, B, and aggregation switches, enabling core-server, core-edge, and core-aggregation

connections respectively.

converter switch can be on either side, but the side connectors of the 6-port converter

switch are unused.

4.3.2 Pod-Core Wiring

In a Clos network, all Pod-core connections are between aggregation and core switches.

Suppose each aggregation switch has h uplinks. As Figure 4.4a illustrates, aggregation

switches with the same index i in di↵erent Pods are connected to the same group

of h core switches via the aggregation connectors. Repeatedly for each Pod, this

wiring pattern links the h connectors for each aggregation switch consecutively to

core switches.

In flat-tree, as shown in Figure 4.3, there are 3 types of core connectors. Core

switches can be connected 1) to servers via blade B connectors, 2) to edge switches

via blade A connectors, and 3) to aggregation switches via aggregation connectors.

The Pod-core wiring determines the distribution of servers and di↵erent types of links

(to an edge or aggregation switch) across the core switches, thus a↵ecting how closely

flat-tree approximates a random graph.

48

As each aggregation switch corresponds to r edge switches, the h aggregation con-

nectors in Clos are replaced with n⇥r blade A connectors, m⇥r blade B connectors,

and h � m ⇥ r � n ⇥ r aggregation connectors. The Clos wiring pattern is based

on aggregation switches, each connected to h core switches. Since flat-tree has edge-

core connections, its wiring pattern should be based on edge switches. Each edge

switch corresponds to n blade A connectors, m blade B connectors, and h/r�m� n

aggregation connectors, which connects to overall h/r core switches.

We o↵er two wiring options, shown in Figure 4.4b and 4.4c. Connectors corre-

sponding to the edge switches with the same index j in di↵erent Pods are connected

to the same group of h/r core switches. Both wiring patterns connect the group of

core switches consecutively to blade B connectors, followed by blade A connectors and

aggregation connectors. They rotate in di↵erent ways across Pods. Pattern 1 packs

blade B connectors continuously Pod by Pod throughout the set of core switches.

Pattern 2 moves them forward by one more core switch as the Pod index grows. Both

patterns wrap around within the group.

Physically, we suggest wiring Pod 0 first, by linking every m blade B connectors, n

blade A connectors, and h/r�m�n aggregation connectors in turn to core switches

consecutively. We start from the left blades and move on to the right blades, until all

connectors in the Pod are consumed. In this process, we mark the mapping between

each edge switch and the corresponding group of h/r core switches. For the following

Pods, connectors corresponding to each edge switch are connected to the marked h/r

core switches according to the rotating patterns.

These wiring patterns have the following properties:

Property 1: For both wiring patterns, servers are distributed uniformly across

the core switches.

49

Property 2: For both wiring patterns, the core switches have an equal number

of links of the same type.

Flat-tree maintains structure to ease implementation, so servers and links must

be permuted by wiring. These properties ensure that flat-tree well-approximates a

random graph.

Because these patterns follow straightforward rules, they have low wiring com-

plexity. Pattern 1 has better performance, because a core switch does not connect

to servers from adjacent Pods at the same time, thus it takes advantage of side con-

nections between adjacent Pods to the greatest extent. Yet when h/r is a multiple

of m, di↵erent Pods are likely to repeat the same pattern, thus reducing the wiring

diversity. In this case, pattern 2 is more favorable.

4.3.3 Inter-Pod Wiring

For adjacent Pods p and p + 1, the 6-port converter switches on the left blade B

of Pod p + 1 are connected to those on the right blade B of Pod p by the side

connectors. Recall from Figure 4.3 that the converter switches in the same column

connect to the same pair of edge and aggregation switches. We want to connect an

edge/aggregation switch to as many di↵erent switches as possible in the adjacent Pod,

so we design a shifting wiring pattern such that the converter switches in the same

column of the right Pod are connected to converter switches each in a di↵erent column

of the left Pod. Specifically, let i and j be the row and column of the converter switch

matrices, converter switch hi, ji on the left of Pod p+1 is connected to converter switch

hi, (d/2�1�j+i)%(d/2)i on the right of Pod p, which represents the converter switch

in the same row i and in the column i slots shifted from the mirrored column d/2�1�j.

We want the converter switches to be interconnected by di↵erent configurations, so

50

we have both peer-wise and edge-aggregation connections across Pods. If i is even,

they take the 6-port “side” configuration (in Figure 4.1); if i is odd, they take the

6-port “cross” configuration. To streamline the connection of adjacent Pods, the side

connectors on the same side of a Pod are bundled as a multi-link connector that

integrates this wiring pattern.

4.3.4 Server Distribution

In a random graph, servers are distributed uniformly across the switches, because the

random links roughly connect the switches in a uniform manner. Yet flat-tree main-

tains structures, e.g. the Clos connections between edge and aggregation switches,

core switches connected to the Pods, though using customized wiring patterns, and

the neighbor-to-neighbor wiring restricted to adjacent Pods. The path length of

switch pairs is not uniform for flat-tree, so we should place servers intelligently to

leverage the shorter paths in the network.

Recall that 6-port converter switches can relocate servers to core switches, and

4-port ones can relocate servers to aggregation switches, so the server distribution is

determined by the choice of m and n. Because flat-tree aims at converting generic

Clos networks, which may have very di↵erent layouts, it is di�cult to pre-define the

m and n values for optimal transmission performance. We suggest a profiling scheme:

under the preferred Pod-core wiring pattern described in Section 4.3.2, vary m and

n until they result in the shortest average path length over all server pairs. Xia et al.

provided the sensitivity test for this approach [94].

51

4.3.5 Operation Modes

Global: Flat-tree approximates a network-wide (or global) random graph in the

“global” mode. 6-port converter switches take either the “side” or the “cross” config-

uration (Figure 4.1 b3 or b4) depending on their row index in the matrix as described

in Section 4.3.3. 4-port converter switches take the “local” configuration (Figure 4.1

a2).

Local: Flat-tree approximates a two-stage (or local) random graph in the “local”

mode. It first forms random graphs in each Pod and takes the Pods as super nodes to

form another layer of random graph together with core switches. 6-port and 4-port

converter switches take the “local” configuration (Figure 4.1 a2 and b2) to relocate

half servers to aggregation switches. Any remaining 6-port converter switches take

the “default” configuration (Figure 4.1 b1).

Clos: Flat-tree functions as a Clos network by default. All converter switches

take the “default” configuration (Figure 4.1 a1 and b1).

Hybrid: Flat-tree can be configured in the unit of a Pod, so it can have arbitrary

combinations of the above three topologies each in a number of Pods. The converter

switch configurations follow the rules in their corresponding mode.

52

4.4 Control System

Flat-tree requires a control system to change the network topology and to conduct

routing accordingly. The main contribution of this work is the network architecture,

and the control system is orthogonal to it. Here we give possible designs for the

control system and show the implementation details. We acknowledge there may be

alternative solutions.

Because a data center is administered by a single authority, we follow the recent

trend of using a centralized network controller for global network management. Flat-

tree has several operation modes with pre-known topologies, which designate a fixed

set of configurations for the converter switches. The controller changes the topology

by configuring the converter switches, via specific control mechanisms depending on

the realization technology. For instance, most optical switches can be programmed

via a software interface. The converter switch configurations for di↵erent flat-tree

modes can be hard-coded into the controller.

For flat-tree Clos mode, we can use ECMP [95], two-level routing [1], or customized

SDN routing with pre-computed paths [3]. We omit the discussions for these readily

available solutions. The study on random graph network [5] suggests using k-shortest-

paths routing [92] and MultiPath TCP (MPTCP) [17]. We adopt this approach

for flat-tree global mode and local mode, because they approximate random graph

and two-stage random graph respectively. Deploying k-shortest-paths routing and

MPTCP in large data centers is an open challenge due to the scalability concern to

maintain a huge number of network states. We explore feasible technologies for the

deployment in the following subsections.

53

4.4.1 MPTCP

MPTCP has been standardized and widely used in academia and industry [96–98].

The kernel implementation has been released [99]. MPTCP establishes subflows via

multi-homing: the end hosts using multiple IP addresses to distinguish paths. In

flat-tree, servers have one uplink only, so we must associate multiple IP addresses

to a single NIC. IP aliasing gives the solution by setting multiple virtual network

interfaces. These virtual interfaces are linked to the physical interface by default, so

tra�c with di↵erent IP addresses can be forwarded by the physical interface.

The full-mesh option in MPTCP allows subflows with di↵erent combinations of

the source-destination IP address pairs. For instance, with 2 IP addresses on both

the sender and the receiver, we obtain 2⇥2 = 4 subflows. Therefore, the number of

IP addresses per server is the square root of the number of concurrent paths, or k

in k-shortest-paths routing. Not all subflows are needed sometimes. For example,

8-shortest-paths routing requires 3 IP addresses per server, thus creating one extra

subflow. In such case, a straightforward workaround is to limit the routing logic to

the necessary subflows only, and MPTCP will not allocate tra�c to subflows with no

end-to-end reachability.

This simple way of assigning IP addresses defines a flat address space, which may

be ine�cient considering the great number of servers in a large data center. The

property of MPTCP to send tra�c only with routable addresses gives the freedom

for more intelligent addressing mechanisms. Generally, address assignment depends

on the structure of the network and serves for the ease of routing. This task is

particularly di�cult for flat-tree, which has completely di↵erent network structures

and routing paths for each topology. We propose a customized addressing scheme

specific to the flat-tree architecture in the next subsection.

54

4.4.2 k-Shortest-Paths Routing

In k-shortest-paths routing, there are k routes for every source-destination server

pairs. A critical consequence of the enormous number of paths is explosion of the

network states. Let n and N be the number of servers and switches in the data center

and L be the average path length, the average number of network states per switch

is n2⇥k⇥L
N . For a large data center, this number can easily reach tens of million, far

exceeding the storage and processing capacity of switches. k-shortest-paths routing

requires matching both the source and destination IP addresses, and traditional ways

of aggregation, such as destination IP lookup or prefix matching, do not readily

work. A switch may forward packets for the same receiver to di↵erent ports, because

they need to take di↵erent routes. Servers can be relocated to di↵erent switches

under di↵erent flat-tree topology modes, making the definition of common prefix

very challenging. We need novel approaches to factoring down the number of network

states.

Addressing

We have two important observations from the flat-tree architecture and from an

extensive analysis of the computed k-shortest paths in the network.

Observation 1: A server is connected to one and only one ingress/egress switch,

regardless of the fact that it may be relocated to a di↵erent ingress/egress switch

as the topology changes. So, there is no path diversion between servers and the

connected ingress/egress switches.

Observation 2: The number of equal-cost paths is small in the approximate

random graph flat-tree creates. The k-shortest paths between server pairs are nearly

deterministic, with uncommon exception of ties. So, the k-shortest paths between

55

00001010# Switch#ID# Path#ID# Topology#ID# Server#ID#

8#bits#(10.0.0.0/8)# 13#bits# 3#bits# 2#bits# 6#bits#

SW#3# SW#8# SW#5# Switch#

Server#

Global#mode#link#

Local#mode#link#

Clos#mode#link#

Topology'
ID'

Switch'
ID'

Server'
ID'

'

IP'addresses'

'
0'(global)'

'
3'

'
2'

00001010''0000000000011''000''00''000010''''(10.0.24.2)'
00001010''0000000000011''001''00''000010''''(10.0.25.2)'
00001010''0000000000011''010''00''000010''''(10.0.26.2)'
00001010''0000000000011''011''00''000010''''(10.0.27.2)'

'
1'(local)'

'
8'

'
1'

00001010''0000000001000''000''01''000001''''(10.0.64.65)'
00001010''0000000001000''001''01''000001''''(10.0.65.65)'
00001010''0000000001000''010''01''000001''''(10.0.66.65)'

'

2'(Clos)'
'

5'
'

0' 00001010''0000000000101''000''10''000000''''(10.0.40.128)'
00001010''0000000000101''001''10''000000''''(10.0.41.128)'

a:#flat&tree#address#space#

b:#example#of#IP#address#assignment###

c:#list#of#IP#addresses#for#the#server#in#stripe#

Topology'
ID'

Switch'
ID'

Server'
ID'

!

k!
'

IP'addresses'

'
0'(global)'

'
3'

'
2'

'
16'

00001010''0000000000011''000''00''000010''''(10.0.24.2)'
00001010''0000000000011''001''00''000010''''(10.0.25.2)'
00001010''0000000000011''010''00''000010''''(10.0.26.2)'
00001010''0000000000011''011''00''000010''''(10.0.27.2)'

'
1'(local)'

'
8'

'
1'

'
8'

00001010''0000000001000''000''01''000001''''(10.0.64.65)'
00001010''0000000001000''001''01''000001''''(10.0.65.65)'
00001010''0000000001000''010''01''000001''''(10.0.66.65)'

'

2'(Clos)'
'

5'
'

0'
'

4' 00001010''0000000000101''000''10''000000''''(10.0.40.128)'
00001010''0000000000101''001''10''000000''''(10.0.41.128)'

c:'list'of'IP'addresses'for'the'server'in'stripe'

Figure 4.5 : Illustration of the addressing scheme. “a” shows the IP address fields in

flat-tree. In the “b” example, the server in strip connects to switch #3, switch #8,

and switch #5 respectively in the global, local, and Clos mode, where the number of

concurrent paths, or k, is chosen to be 16, 8, and 4. The IP addresses assigned to

this server are shown in “c”. All these addresses for every flat-tree topology mode

are preconfigured on the server.

ingress and egress switches almost capture the full set of selected paths between

source and destination servers.

Given these observations, it is promising to conduct prefix matching on the ingress/edge

switch level. This way, the average number of network states per switch is reduced

from n2⇥k⇥L
N to S2⇥k⇥L

N , S being the number of ingress/egress switches. Usually 20

to 40 servers are connected to a top-of-rack switch (ToR) in a data center, so the

number of network states can be reduced by a factor of 400 to 1600.

As discussed previously, the major di�culty in flat-tree is servers’ mobility. To

guarantee common prefix for servers under the same ingress/egress switch, we need

a di↵erent set of IP addresses for each flat-tree topology mode. Because we aim to

change the network topology at runtime by software, it is infeasible to reset the server

IP addresses manually for each topology. Thanks to the property of MPTCP to send

tra�c only with routable addresses, we can preconfigure all possible IP addresses for

56

each topology onto the servers and let the network controller dynamically load the

routing logic for the subset of addresses particular to the topology in use.

Our definition of the address space is shown in Figure 4.5a. We assume IPv4

addresses and allocate IP addresses within the private 10.0.0.0/8 block. The first

13 bits after the fixed heading octet represent the switch ID of the ingress/egress

switch. In flat-tree, all switches may serve as an ingress/egress switch. We associate

each switch with a unique ID, which is not changed with the conversion of topology.

This 13-bit field allows for 8196 switches, which is su�cient for an immense-scale data

center. The next 3 bits are for the path ID in the k-shortest paths. As aforementioned,

MPTCP distinguishes paths by di↵erent combinations of IP addresses between server

pairs. This 3-bit field allows for 8 addresses at sender/receiver and thus supports

82 = 64 concurrent paths at most, covering the range of k most data centers will use.

The next 2 bits are used to specify the 3 possible flat-tree topologies. The rest 6

bits show the server ID under the ingress/egress switch. Because of the limited IPv4

address space, we cannot a↵ord to assign a unique ID for every individual server. So,

these IDs are reused for servers under di↵erent ingress/egress switches. This 6-bit

field supports 64 servers per switch, which is enough for the 20 to 40 servers per

ToR in most data centers. By this address assignment, we match the /24 prefix at

the ingress/egress switches. This addressing scheme can be easily extended to IPv6

addresses, which even support globally unique server IDs.

Figure 4.5b shows an example of the address assignment. The server in stripe

is connected to 3 di↵erent ingress/egress switches under di↵erent flat-tree modes.

The servers under the same ingress/egress switch are ordered from left to right, so

the server ID in the global, local, and Clos mode is 2, 1, and 0 respectively. The

number of concurrent paths, or k, can be di↵erent under each mode, because each

57

topology may have optimum transmission performance with a di↵erent k. In this

example, k equals 16, 8, and 4 for each topology, so we need 4, 3, and 2 IP addresses

accordingly. Figure 4.5c lists the allocated IP addresses according to our addressing

scheme. All these addresses for every flat-tree topology are preconfigured on the

server at deployment time.

One possible problem is the overhead of MPTCP probing unused IP addresses

for potential paths. In our small testbed with 4 concurrent paths, as shown in Sec-

tion 4.5.5, we implement this addressing mechanism (6 addresses per server, 2 for

each topology) as well as the naive address assignment (2 addresses per server, no

unnecessary addresses). We observe no noticeable di↵erence in throughput between

the two approaches. Whether the overhead is a valid concern in large data centers is

the direction of future work.

Source Routing

A common solution to relieving state management at switches is source routing [26,

100–102]. Segment routing is a natural fit to this request in the SDN world [103–

105]. In segment routing, the k-shortest-paths routing algorithm can be implemented

in the Path Computation Element (PCE), an equivalent of the centralized network

controller, which enforces per-route states only at ingress switches. It relies on the

MPLS [106] and IPv6 architecture. The ingress switch encodes the hops of a path as

a stack of MPLS labels. The transit switches forward packets by dumb compliance

of the label on top of the stack and pop it upon completion.

Not all data centers have the MPLS and IPv6 forwarding fabric, so we provide an

alternative solution in the better recognized OpenFlow paradigm. Source routing is

not supported in OpenFlow by default. From the rich literature of workarounds [100–

58

102, 107, 108], we pick a readily deployable approach without modification of the

OpenFlow protocol [101]. We encode the path, represented as a list of next-hop

output ports, into the source MAC address and use TTL as the location pointer in

the path. Flat-tree is a small diameter network, where paths traverse less than 3

switches on average [94]. The 48-bit MAC address is able to hold 6 hops for switches

having as many as 256 ports, which is su�cient for the need of the network. OpenFlow

1.3 allows matching arbitrary bits of a given field [109]. We can thus concatenate the

transit hops in the MAC address and let intermediate switches match di↵erent bits

using a mask depending on the TTL. For instance, if TTL equals 253 (2nd hop), we

apply the mask 000000001111111100000000...... on the MAC address and match the

extracted bits to all possible 256 ports to decide the right output port. This way, we

need an entry per TTL per output port. So, the number of OpenFlow rules on the

transit switches is D⇥C, where D is the diameter of the network and C is the switch

port count. This number is at most up to one thousand, far below the capacity of an

OpenFlow switch. These rules remain the same as the flat-tree topology changes, so

they can be preconfigured statically.

With source routing, the number of network states per ingress/egress switch is

reduced to S⇥k. This number is at most a few tens of thousand, within the capacity

of high-end OpenFlow switches [101]. There is large room for optimization to further

bring down this number. For example, in public clouds, tenants request virtual

clusters where only machines within the cluster talk to each other. In this case,

we can set in-cluster routing logic, which involves a small number of ingress/egress

switches. Tra�c is skewed in many enterprise data centers [6–10]. We can use diverse

paths (large k) for a small number of elephant flows, and simple paths (small k) for

a large number mice flows.

59

4.4.3 Topology Conversion

The conversion delay of flat-tree topologies is determined by the switching delay of

the converter switches and the delay of changing the routing logic. Depending on the

realization technology, the switching delay of converter switches ranges from several

µs to hundreds of ms [41–43, 110, 111]. The network controller takes roughly 1ms to

add/delete a network state [112,113]. Instead of streaming the states all from a single

network controller, we can speed up the state distribution by having a set of controllers

each managing a number of switches. We designate a logically centralized controller

to maintain the global network graph. It observes link failures and updates the graph,

which happens infrequently and does not cause heavy burden. The k-shortest-paths

routing algorithm is easily parallelizable, because the computation of paths between

di↵erent nodes is independent. So, the distributed controllers can either work as

dumb agents of the logically centralized controller and preload paths from it, or

compute paths independently based on a consistent network graph. Following the

trend of building customized switches for data centers [3], it is conceivable to push

the computation to switches. This way, switches can update network states locally on

simple signaling of topology change. The paths and the resulting network states can

also be precomputed and stored into a table in memory to save the computation time.

With these implementation options, we estimate the delay of changing the routing

logic to be on the order of seconds.

We do not expect the network topology to be converted very frequently, e.g.

constantly changing to optimize individual flows. We recommend converting the

network topology for management purpose, e.g. to reorganize services, to deploy

new services, to adapt to user requirement changes, etc. Generally, applications and

transport protocols are tolerant to disruptions of a few seconds. However, there

60

are opportunities for optimizing data center applications and transport protocols to

better align with convertibility.

61

4 6 8 10 12 14 16 18 20 22 24 26 28 30 324.5

4.75

5

5.25

5.5

5.75

6

k (Fat−tree parameter)

Av
er

ag
e

Pa
th

 L
en

gt
h

e Random graph Flat−tree(m=k/8,n=k/8) Flat−tree(m=k/8,n=2k/8) Flat−tree(m=k/8,n=3k/8) Flat

4 6 8 10 12 14 16 18 20 22 24 26 28 30 324.5

4.75

5

5.25

5.5

5.75

6

k (Fat−tree parameter)

Av
er

ag
e

Pa
th

 L
en

gt
h

Fat−tree Random graph Flat−tree(m=k/8,n=k/8) Flat−tree(m=k/8,n=2k/8) Flat−tree(m=

4 6 8 10 12 14 16 18 20 22 24 26 28 30 324.5

4.75

5

5.25

5.5

5.75

6

k (Fat−tree parameter)

Av
er

ag
e

Pa
th

 L
en

gt
h

Fat−tree Random graph Flat−tree(m=k/8,n=k/8) Flat−tree(m=k/8,n=2k/8) Flat−tree(m=

4 6 8 10 12 14 16 18 20 22 24 26 28 30 324.5

4.75

5

5.25

5.5

5.75

6

k (Fat−tree parameter)

Av
er

ag
e

Pa
th

 L
en

gt
h

(m=k/8,n=2k/8) Flat−tree(m=k/8,n=3k/8) Flat−tree(m=2k/8,n=k/8) Flat−tree(m=2k/8,n=2k/8)

4 6 8 10 12 14 16 18 20 22 24 26 28 30 324.5

4.75

5

5.25

5.5

5.75

6

k (Fat−tree parameter)

Av
er

ag
e

Pa
th

 L
en

gt
h

(m=k/8,n=2k/8) Flat−tree(m=k/8,n=3k/8) Flat−tree(m=2k/8,n=k/8) Flat−tree(m=2k/8,n=2k/8)

Figure 4.6 : Average path length of server pairs in the entire network

4.5 Evaluation

4.5.1 How well does flat-tree approximate random graph in theory?

We first evaluate the performance of flat-tree by linear programming simulations.

Although flat-tree targets at converting generic, especially oversubscribed, Clos net-

works, our evaluations are based on fat-tree [1]. Because generic Clos networks can

have very di↵erent layouts, e.g. arbitrary number of switches and servers, oversub-

scription at any possible layer, it is di�cult to have a “typical” example for evaluation.

Fat-tree gives the upper-bound performance for Clos networks, thus serving as a stress

test for our solution. We construct fat-tree, random graph, and our flat-tree using

the same equipments with the variance of k, the fat-tree parameter that defines the

switch port count, the number of Pods, as well as the number of switches in each layer.

We consider two flat-tree configurations: approximated network-wide random graph

and approximated local random graphs in each Pod. When flat-tree approximates

local random graphs, we compare it with two-stage random graph, which first forms

random graphs in each Pod with the same number of links as flat-tree, and takes

the Pods as super nodes to form another layer of random graph together with core

switches. We also evaluate flat-tree in hybrid mode: having di↵erent proportions of

62

4 6 8 10 12 14 16 18 20 22 24 26 28 30 323.25

3.5

3.75

4

4.25

4.5

4.75

5

k (Fat−tree Parameter)

Av
er

ag
e

Pa
th

 L
en

gt
h

In
 P

od
s

Flat−tree Fat−tree Random graph Two stage random graph

Figure 4.7 : Average path length of server pairs in each Pod

the network functioning as approximated global and local random graph respectively.

We use average path length in hops and throughput as the evaluation metrics.

We assume converter switches function in the physical layer and do not contribute to

path length. The throughput experiments follow a well-adopted methodology [4, 5].

We assume optimal routing and solve the maximum concurrent multi-commodity flow

problem [114] using a linear programming solver. All links have one unit bandwidth.

We relax the bandwidth constraints at the servers to show the switch-level capacity,

which is relevant to the maximum number of servers a topology can accommodate.

Measurement studies show two pervasive tra�c patterns in data centers: broad-

cast/incast tra�c from/to hot spots to/from a large number of servers, and all-to-all

tra�c within small clusters [6, 8, 9]. We simulate them by broadcast/incast tra�c

from/to a random target in 1000-server clusters and all-to-all tra�c in 20-server clus-

ters. We consider strong, weak, and no locality of workload placement to evaluate the

topologies’ sensitivity to it. Specifically, the workload is placed continuously across

servers, randomly in Pods, or randomly in the entire network.

63

Average Path Length

We first determine m and n for flat-tree through the profiling mechanism described

in Section 4.3.4. Flat-tree has the same equipments as the fat-tree counterpart, so

m+ n  k/2. We vary m and n at the interval of k/8, rounded to the closest integer

if fractional. This process can happen at finer granularity with smaller intervals. We

use Pod-core wiring pattern 2 when k is a multiple of 4 and pattern 1 otherwise for

reason discussed in Section 4.3.2.

Figure 4.6 compares the average path length of flat-tree under the settings of

di↵erent m and n against that of fat-tree and random graph. The desirable values for

m and n are k/8 and 2k/8, when flat-tree has the minimal average path length. It is

notably shorter than that of fat-tree, and within only 5% di↵erence to random graph.

k as multiples of 4 are hard cases where pattern 1 tends to repeat frequently. Pattern 2

successfully maintains the average path length at a relatively low level. These results

demonstrate that with the right choice of m and n, flat-tree approximates global

random graph well and it improves against fat-tree significantly. We set m = k/8 and

n = 2k/8 for the rest experiments.

We further evaluate the average path length between server pairs in the same Pod,

when flat-tree functions as approximated local random graphs within each Pods. Fig-

ure 4.7 shows the result against fat-tree, global random graph, and two-stage random

graph. Random graph performs the worst as servers scatter around the network, fol-

lowed by fat-tree whose servers at the edge switches have locality. Flat-tree moves half

the servers from edge to aggregation switches, reducing the distance between servers

connected to di↵erent types of switches. Surprisingly, it outperforms two-stage ran-

dom graph. In flat-tree, servers evenly distributed over edge and aggregation switches

are connected by the regular Clos edge-aggregation links, which is more e�cient than

64

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320

0.005

0.01

0.015

0.02

0.025

0.03

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree no locality
Flat−tree locality
Flat−tree no locality
Random graph locality
Random graph no locality

Figure 4.8 : Throughput of broadcast/incast tra�c in 1000-server clusters

pure randomness in server distribution and inter-switch connections.

Throughput

We create 1000-server clusters, each server being involved in a single cluster. One ran-

dom server in each cluster is the source/destination of broadcast/incast tra�c to/from

all the other servers in the same cluster. In the locality case, we pack clusters contin-

uously across the servers; in the no locality case, we place them randomly throughout

the network. Each Pod has k2/4 servers, so one cluster spans multiple Pods even

for large k under the locality setting. Flat-tree approximates a global random graph

to accommodate such large clusters, so we compare its throughput with fat-tree and

random graph. As shown in Figure 4.8, the throughput of flat-tree is very close to

that of random graph and is 1.5⇥ that of fat-tree. The throughput grows linearly

with k, the switch port count, as the few hot spots have increasing sending/receiving

capacity. None of the topologies is sensitive to locality, due to heavy cross-Pod tra�c.

This set of results demonstrate that with arbitrary workload placement, flat-tree can

achieve near-optimal performance for the prevalent broadcast/incast tra�c at hot

spots.

Then we create 20-server clusters featuring all-to-all tra�c, which can fit in the

65

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k (Fat−tree Parameter)

Th
ro

ug
hp

ut
4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Two−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Two−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Flat−tree weak locality
Two−stage random graph locality
Tow−stage random graph weak locality
Random graph locality
Random graph weak locality

4 6 8 10 12 14 16 18 20 22 24 26 28 30 320.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k (Fat−tree Parameter)

Th
ro

ug
hp

ut

Fat−tree locality
Fat−tree weak locality
Flat−tree locality
Flat−tree weak locality
Two−stage random graph locality
Two−stage random graph weak locality
Random graph locality
Random graph weak locality

Figure 4.9 : Throughput of all-to-all tra�c in 20-server clusters

Pod for most k. Flat-tree approximates local random graphs within each Pod to

accommodate small clusters in Pods. So, besides fat-tree and random graph, it is

also compared with two-stage random graph. We consider workload with locality,

clusters packed continuously across servers, and workload with weak locality, clusters

packed randomly in Pods as long as there are remaining servers. Weak locality is the

worst-case simulation of resource fragmentation in workload placement.

Figure 4.9 shows flat-tree well approximates local random graph. It outperforms

two-stage random graph for small networks (k  14), and the di↵erence in throughput

is less than 6% and 9% respectively with strong and weak workload locality for larger

networks. Flat-tree has shorter average path length in Pods, as shown in Figure 4.7,

whereas two-stage random graph forms closer inter-Pod connections. The result is

the outcome of the interplay between these factors. Tra�c locality has greater im-

pact on flat-tree, because the regular direct links between adjacent Pods are more

likely to benefit consecutively packed servers. Fat-tree is highly sensitive to workload

placement. It has sweet spots, such as k = 20, when most tra�c is local in Pods.

Its throughput drops significantly for weak locality, as even local tra�c in Pods takes

more hops through aggregation switches. Random graph has moderate throughput as

66

it does not specialize in local clustered tra�c, but it is the least sensitive to workload

locality. In reality, we expect the performance of flat-tree to be between the locality

and the weak locality curves, given a reasonable level of fragmentation. In summary,

flat-tree optimizes all-to-all tra�c in small clusters e↵ectively.

4.5.2 Can multiple topologies coexist in flat-tree?

Flat-tree can work in hybrid mode with di↵erent topologies each in a number of Pods.

Workloads placed in di↵erent zones share the network core. We use experiments to

answer the question whether flat-tree can optimize multiple workloads in separate

zones without interfering with each other.

We construct flat-tree with 30 Pods, i.e. k = 30, and organize the network into

two separate zones with varying proportions at an interval of 10%. We let flat-tree

operate as an approximated global random graph in one zone and as approximated

local random graphs within each Pod in the other zone. Each topology gets the same

tra�c pattern as the corresponding complete network as described in Section 4.5.1.

We observe that regardless of the proportion, each zone constantly achieves the same

throughput as that of the corresponding complete network under the same locality

setting. Therefore, flat-tree in hybrid mode is as e↵ective as building separate flat-tree

networks, and the workloads in di↵erent zones can be segregated perfectly.

4.5.3 Is k-shortest-paths routing with MPTCP e�cient enough?

We then evaluate the performance of k-shortest-paths routing and MPTCP to see

how close the throughput they achieve is to the theoretical bound. We use the

MPTCP packet-level simulator [115] and integrate Yen’s k-shortest loopless paths

algorithm [92] into it. We compute k-shortest paths between ingress and egress

67

Table 4.2 : List of flat-tree topologies for evaluating the control system. Abbreviations:

Edge Switch (ES), Aggregation Switch (AS), Core Switch (CS), Upstream Port (UP), Down-

stream Port (DP), Oversubscription Ratio (OR).

ID #ES #AS #CS OR OR #Server

(#UP, #DP) (#UP, #DP) (#DP) at ES at AS

topo-1 128 (8, 32) 128 (8, 8) 64 (16) 4 1 4096

topo-2 72 (6, 24) 72 (6, 6) 36 (12) 4 1 1728

topo-3 128 (8, 64) 128 (8, 8) 64 (16) 8 1 8192

topo-4 128 (8, 32) 64 (16, 16) 32 (32) 4 1 4096

topo-5 128 (16, 32) 128 (8, 16) 64 (16) 2 2 4096

topo-6 128 (16, 32) 64 (32, 16) 32 (32) 2 2 4096

switches, because the proposed control system, described in Section 4.4, performs pre-

fix matching at that level. We construct various flat-tree networks based on generic

Clos networks of di↵erent layouts. Table 4.2 lists the evaluated flat-tree topologies.

We use topo-1 as the baseline topology and create other topologies by varying the

network scale, oversubscription ratio, and arrangement of switches. topo-1 has 4:1

oversubscription at edge switches only. topo-2 is a proportional down-scale of topo-1.

topo-3 is two times more oversubscribed at the edge than topo-1. topo-4 replaces

the aggregation and core layers of topo-1 with fewer switches of larger port counts.

topo-5 moves half of topo-1’s oversubscription to the aggregation switch level. topo-6

replaces the aggregation and core switches of topo-5 with larger ones. These topolo-

gies capture the major variations in Clos networks. We have flat-tree function in both

global and local mode for each topology.

68

traffic-1 traffic-2 traffic-3 traffic-4
0

0.5

1

1.5

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.3

7

1
.0

2

1
.0

0

1
.0

9

0
.9

9

0
.6

2

0
.9

6

1
.0

21
.1

1

1
.0

1

0
.9

3

1
.0

11
.1

2

1
.0

0

0
.9

6

1
.0

1

traffic-1 traffic-2 traffic-3 traffic-4
0

0.5

1

1.5

2

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.3

8

1
.0

2

1
.0

0

1
.5

3

0
.6

6

0
.7

7 0
.9

5

1
.4

3

0
.9

7

1
.0

0

0
.9

5

1
.4

3

1
.0

1

1
.0

1

0
.9

6

1
.4

3

traffic-1 traffic-2 traffic-3 traffic-4
0

0.5

1

1.5

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.3

2

1
.0

4

1
.0

4 1
.1

9

1
.1

1

0
.8

0 0
.9

4 1
.1

1

1
.2

0

1
.0

2

0
.9

5 1
.1

1

1
.2

0

1
.0

2

0
.9

5 1
.1

2

traffic-1 traffic-2 traffic-3 traffic-4
0

0.5

1

1.5

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.3

5

1
.0

2

1
.0

3 1
.1

6

1
.1

3

0
.6

5

0
.9

4 1
.0

91
.2

4

1
.0

1

0
.9

5 1
.0

81
.2

3

1
.0

1

0
.9

6 1
.0

9

LP minimum LP average 4-way MPTCP 8-way MPTCP 12-way MPTCP

(a) topo-1 global (b) topo-1 local (c) topo-2 global (d) topo-5 global

N
o

rm
a

liz
e

d
 t
h

ro
u

g
h

p
u

t

Figure 4.10 : Average flow throughput normalized against LP minimum on selected

flat-tree topologies

A standard approach for evaluating routing in interconnection networks is to mea-

sure the throughput of flows given well-studied tra�c patterns [116], so we use the

following widely used synthetic tra�c patterns to drive the simulation.

Permutation (tra�c-1): every server sends a single flow to a unique server other

than itself at random. This pattern creates uniform tra�c across the network.

Pod Stride (tra�c-2): every server sends a single flow to its counterpart in the

next Pod. This tra�c pattern creates heavy contention in the network core.

Hot spot (tra�c-3): every 100 servers form a cluster, in which one server broad-

casts to all the others. It simulates the multicast phase in many machine learning

applications.

Many-to-many (tra�c-4): every 20 servers form a cluster with all-to-all tra�c.

This tra�c pattern simulates the shu✏e phase in MapReduce jobs.

We also vary k, the number of concurrent paths in k-shortest-path routing, to

evaluate the sensitivity of throughput against it. Given the above tra�c, we compare

the flow throughput from simulation to the optimum bandwidth allocation, which

is the solution to the multi-commodity flow problem [114]. We make two linear

programming (LP) formulations with di↵erent optimization goals: 1) maximizing

69

the minimum flow throughput (denoted as “LP minimum”) to achieve ideal load

balancing; 2) maximizing the average flow throughput (denoted as “LP average”) to

achieve best network utilization.

Figure 4.10 shows the average flow throughput on selected topologies, and the

topologies not shown have similar trends. We normalize against LP minimum for

each evaluated method for readability, as throughput numbers are vastly di↵erent in

scale. The number of concurrent paths, k, a↵ects the MPTCP performance. If k is

too small, the path diversity cannot be fully exploited, thus many links are under-

utilized. In these experiments, 8 concurrent paths is su�cient, and larger k cannot

improve the throughput further. This result is consistent with the performance of

MPTCP and k-shortest-path routing in random graph networks [5].

k-shortest-path routing plus MPTCP reaches a reasonable middle ground between

LP minimum and LP average. To scrutinize at the throughput of individual flows,

we zoom in on topo-1 global mode and show the distribution of flow throughput

with box plots in Figure 4.11. Neither LP minimum nor LP average is realistic. To

balance the load among flows, LP minimum stops allocating residual bandwidth after

it has successfully maximized the minimum flow throughput. LP average assigns some

zero throughputs and some high or even full throughputs to maximize the network

utilization. MPTCP balances between these extremes. It achieves higher average

throughput than LP minimum, and the variance of flow throughput is smaller than

LP average. Leveraging multi-paths and congestion control, MPTCP can dynamically

adapt to the link utilization to get high throughput and maintain fair bandwidth

sharing across flows.

From the above results, we conclude that k-shortest-path routing plus MPTCP

is e�cient enough. With the right choice of k, it constantly achieves comparable

70

−1
0
1
2
3
4
5
6
7
8
9

10
11

MPTCP LP avg LP min

traffic−1
Fl

ow
 th

ro
ug

hp
ut

 (G
bp

s)

−1
0
1
2
3
4
5
6
7
8
9

10
11

MPTCP LP avg LP min

traffic−2

Fl
ow

 th
ro

ug
hp

ut
 (G

bp
s)

−1
0
1
2
3
4
5
6
7
8
9

10
11

MPTCP LP avg LP min

traffic−3

Fl
ow

 th
ro

ug
hp

ut
 (G

bp
s)

−1
0
1
2
3
4
5
6
7
8
9

10
11

MPTCP LP avg LP min

traffic−4

Fl
ow

 th
ro

ug
hp

ut
 (G

bp
s)

Figure 4.11 : Box plots to show the distribution of flow throughput on the topo-1

topology under flat-tree global mode (topo-1 global). MPTCP uses 12 paths. The

box contains the 25th to 75th percentiles of the data. The whisker lines extending

above and below the box cover the data within 3 times the box range. The data in

dots beyond the whisker are outliners. The bold line in the middle of the box shows

the median and the diamond shows the average.

throughput to optimal bandwidth allocation from LP solutions given a set of tra�c

patterns on diverse flat-tree topologies. It balances between high network utilization

and load balancing, which are important indicators of good performance in practice.

4.5.4 Does flat-tree handle real tra�c well?

To further evaluate the flat-tree performance with real data center tra�c, we need a

practical network topology. Large-scale data center network designs in recent years

show the trend of non-blocking switch fabric with oversubscription only at the network

edge [2, 3]. We follow this trend to use topo-1 as a representative flat-tree topology

for the remaining simulations. We run tra�c traces from 4 Facebook data centers

each carrying di↵erent services. They are from the following two sources.

1) We obtain the one-hour trace in a Hadoop data center (denoted as Hadoop-1)

from the Coflow benchmark [117], which contains aggregated rack-level tra�c through

a 1Gbps single-switch network core. Our flat-tree network uses 10Gbps links and has

71

8 uplinks per edge switch. For each rack-to-rack flow from the trace, we create 8 flows

between servers under the source and destination edge switches to stress the switch

uplinks and give 10 times the original tra�c volume to each the 8 flows to adjust the

bandwidth di↵erence.

2) We obtain tra�c statistics for 3 other data centers (denoted as Hadoop-2,

Web, and Cache) from the Facebook measurement study [10]. The full traces are

not released, so we generate our own traces based on the publicly shared sampling

data [118] and the reported results from the paper [10]. The source and destination

servers of the flows are inferred from the sampling data. The flow size and the flow

arrival rate are reverse-engineered from Figure 6 and Figure 14 in the paper. We omit

inter-data-center tra�c in the data.

The tra�c has the following characteristics.

Hadoop-1: the trace reflects the shu✏e phase of MapReduce jobs. The tra�c

does not have clear locality. We observe one-to-many, many-to-one, and many-to-

many tra�c involving a large number of machines network-wide.

Hadoop-2: di↵erent from the above trace, the tra�c shows strong rack and Pod

level locality. 75.7% of the tra�c is intra-rack, and almost all the remaining tra�c is

intra-Pod.

Web: the tra�c has strong Pod level locality. There is a tiny amount of intra-rack

tra�c. Around 77% of the tra�c is intra-Pod, and the rest is inter-Pod.

Cache: the tra�c shows even stronger Pod level locality. There is almost zero

intra-rack tra�c. Around 88% of the tra�c is intra-Pod, and the rest is inter-Pod.

Figure 4.12 shows the distribution of flow completion time of these di↵erent tra�c

traces. Regardless of the tra�c, the performance of flat-tree in the global mode is

close to that of the random graph, and the performance of flat-tree in the local mode

72

Flow completion time (ms)
102 103 104 105 106 107

CD
F

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a) Hadoop-1

Flow completion time (ms)
10-1 100 101 102

CD
F

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(b) Hadoop-2

Flow completion time (ms)
10-1 100 101

CD
F

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(c) Web

Flow completion time (ms)
10-1 100 101 102

CD
F

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(d) Cache

Flat-tree global mode Flat-tree local mode Flat-tree Clos mode (k-shortest paths)
Flat-tree Clos mode (ECMP) Random graph Two-stage random graph

Figure 4.12 : CDF of flow completion time in Facebook’s Hadoop-1, Hadoop-2, Web,

and Cache data centers

is close to that of the two-stage random graph. It demonstrates that flat-tree well

approximates random graphs of di↵erent scales given real data center workloads,

which is consistent with the conclusion in the prior study [94].

In practice, Clos networks usually implement ECMP and TCP. For fair compar-

ison, we simulate the flat-tree Clos mode with k-shortest-path routing and MPTCP

as well to avoid the handicap of less e�cient routing and congestion control mecha-

nisms. As expected, the performance of flat-tree Clos mode with ECMP and TCP is

remarkably worse than the other networks. For ECMP, the next hop at each switch is

determined pseudo-randomly by header field hashing, so each TCP flow traverses only

one of the equal cost shortest paths. Being unable to use multi paths concurrently is

especially bad for large flows. In later discussions, we focus on the Clos mode with

k-shortest path routing and MPTCP.

Most importantly, we observe that di↵erent modes of flat-tree are best suited

for di↵erent types of tra�c. In Figure 4.12(a), for the network-wide tra�c, flat-tree

73

global mode has an order of magnitude improvement over the Clos network. Flat-tree

local mode has similar performance to the global mode for two reasons. First, the

tra�c is not intensive enough to saturate the links on these topologies, although the

Clos network is already heavily congested. Second, there is a considerable amount of

intra-Pod tra�c in the network-wide tra�c. Since the global mode has richer core

bandwidth than the local mode, we expect greater benefit from the global mode given

heavier tra�c and more inter-Pod communications.

In Figure 4.12(b), the performance of flat-tree Clos mode is the best due to the

large proportion of intra-rack tra�c. Flat-tree local mode is the second best, because

the topology handles intra-rack tra�c relatively well and there is still around 24.3%

intra-Pod tra�c. Flat-tree global mode is not very e�cient for tra�c with strong

locality. For tra�c with Pod-level locality, as shown in Figure 4.12(c) and (d), flat-tree

local mode has the best performance, followed by the global mode and the Clos mode.

This result reflects the distribution of network bandwidth. The global mode has less

intra-Pod bandwidth than the local mode, but the rich network-wide bandwidth

makes it more e�cient than the Clos network. The di↵erence among topologies is

more significant in Figure 4.12(d) due to stronger locality and higher tra�c volume.

These simulation results of real data center tra�c on a practical data center

topology validate the design purpose of flat-tree. Flat-tree can be configured into

di↵erent modes to optimize tra�c with di↵erent locality features, i.e. Clos mode for

rack-level locality, local mode for Pod-level locality, and global mode for no locality.

If the network is used for a di↵erent service, the network topology can be easily

reconfigured to adapt to the new tra�c. This flexibility in topology is particularly

useful for public clouds where the service requirements are constantly changing. For a

production data center like Facebook with integral parts of di↵erent services, flat-tree

74

can be used in the hybrid mode with various service-specific zones, interconnected by

the network core for inter-zone communication. When the services are reorganized,

the network zones can be repartitioned to accommodate the change of needs.

75

Pod$1

Pod$2

Pod$3

Pod$4

Core

LinkstoOCS
Linkstoservers Edge7aggr links

Linkstopacket$switches

Servers$
inPod2

Servers$
inPod1

Servers$
inPod4

Servers$
inPod3

Figure 4.13 : A testbed implementing the flat-tree example in Figure 4.2

4.5.5 Is flat-tree implementable?

To explore the feasibility of implementing flat-tree in practice, we build the example

network in Figure 4.2 on a hardware testbed. As shown in Figure 4.13, it consists

of 5 48-port packet switches, one 192-port 3D-MEMS optical circuit switch (OCS),

and 24 servers each with 6 3.5GHz dual-hyperthreaded CPU cores and 128GB RAM.

All links are 10Gbps. The first 4 packet switches are partitioned into edge and

aggregation switches in each Pod, and the last packet switch is partitioned into the 4

core switches. The converter switches are logical partitions of the OCS. To make the

testbed more manageable, we connect servers to converter switches via an extra hop

on packet switches.

We implement k-shortest-paths routing and MPTCP for all 3 flat-tree topologies.

k is set to 4 as it yields the best performance in the simulation of this network. We

76

realize the addressing scheme as described in Section 4.4.2. Our packet switches use

a legacy OpenFlow 1.0 image. It does not support arbitrary bits matching of a field,

which is necessary for source routing as shown in Section 4.4.2. So, we conduct prefix

matching for the source and destination IP addresses on the switches a path traverses.

The maximum number of OpenFlow rules per switch under each topology is 242, 180,

and 76 respectively. The di↵erence is due to the di↵erent number of ingress/egress

switches in each topology. With source routing, these numbers will be significantly

less.

We demonstrate the functionality of the testbed with an iperf throughput experi-

ment. On every server, we send iperf tra�c to the 3 servers with the same index in the

other 3 Pods. This tra�c pattern enables the measurement of the core bandwidth in

the network. iperf is set to update the flow throughput every 0.5 second. Throughout

the 5-minute experiment, we change the network topology to di↵erent flat-tree modes.

We add up the throughputs of individual flows to obtain the real-time bidirectional

core bandwidth.

Figure 4.14 plots the variation of core bandwidth as we change the network topol-

ogy. The local mode and the Clos mode have around 145Gbps average total through-

put. Compared to the Clos mode, the local mode rearranges servers within Pods

only, so there is no change to the core bandwidth. Our testbed is 1.5:1 oversub-

scribed, so the Clos network has 24⇥ 10Gbps/1.5 = 160Gbps total bandwidth. This

result shows that the overhead of MPTCP and k-shortest-paths routing is within

9.38% of the bandwidth, which is reasonable as the MPTCP packet processing lays

extra burden on CPU and k-shortest-paths routing is not perfect. The average total

throughput in the global mode is around 185Gbps. With the power of convertibility,

the network core bandwidth increases by 27.6% in this small testbed. We envision

77

Table 4.3 : Conversion delay of the throughput experiment in Figure 4.14

Topology OCS configuration Rule deletion Rule installation Total

Global 160ms 477ms 644ms 1281ms

Local 160ms 202ms 482ms 844ms

Clos 160ms 635ms 209ms 1004ms

greater improvement in real data centers with a larger number of switches and more

flexibility of conversion.

From the figure, we observe that iperf reaches the maximum throughput in 2s to

2.5s after topology change. Table 4.3 shows the accurate measurement of the con-

version delay by the control software. The delay can be broken down into the time

for reconfiguring the OCS, deleting old OpenFlow rules, and adding new OpenFlow

rules. The rule deletion and installation delay are proportional to the number of rules

for the topology before and after conversion. Our implementation has room for im-

provement. First, the legacy switches process rules more slowly than the main-stream

technology [112, 113]. Second, the packet switches and the OCS are configured se-

quentially, and they can be easily parallelized. Even with these artifacts, the network

topology can be converted in roughly 1s and the application adapts to the topology

change in another 1.5s.

4.5.6 Does convertibility benefit applications?

Most data center applications are computation-oriented, inter-node communications

serving the purpose of exchanging intermediate computation data. For this reason,

the behavior of data transmission is influenced by many factors in the computation

78

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 3000
20
40
60
80

100
120
140
160
180
200
220

Time (s)

N
et

w
or

k
co

re
 b

an
dw

id
th

 (G
bp

s)

Global mode

Clos mode

Global mode

Local mode

2.5s
2s

2.5s

Figure 4.14 : Summation of iperf throughput every 0.5 second on the testbed with

the variation of flat-tree modes. Every server sends iperf tra�c to its counterparts in

the other Pods to saturate the network core. Tra�c adapts to the topology change

in 2 to 2.5 seconds.

framework. For instance, read/write data serialization/deserialization adds to the

end-to-end data transmission time; imperfect synchronization of computation nodes

disorganizes tra�c patterns; garbage collection may block communications, etc. In

our testbed, converting the network topology from the Clos mode to the global mode

improves the core bandwidth by 27.6%. However, with all these overheads from

the computation framework, whether the bandwidth increase can be translated into

acceleration of data center applications is yet another question.

We answer this question by running Spark and Hadoop, the most widely used

computation frameworks, on our testbed. Among the 24 servers, we set the first

server as the master node and all the other servers as slave nodes. We change the

network topology and compare the end-to-end data read time under di↵erent flat-tree

modes. The characteristics of the jobs are as follows.

Spark broadcast: we run Word2Vec, the iterative machine learning job for doc-

ument feature extraction. In each iteration, the master node broadcasts the updated

79

(a) Spark broadcast

Global Local ClosD
a

ta
 f

lo
w

 r
e

a
d
 d

u
ra

tio
n

 (
m

s)

0

5

10

15

20

1
7

.0
8

1
7

.1
7

1
9

.1
2

0

2.5

5

7.5

10

8
.9

6

9
.3

2

9
.7

4

Communication phase durationData flow read duration

(b) Hadoop shuffle

Global Local ClosD
a

ta
 f
lo

w
 r

e
a

d
 d

u
ra

tio
n

 (
se

c)

0

1

2

3

4

5

2
.9

8

2
.9

9

3
.3

1

B
ro

a
d

ca
st

 p
h

a
se

 d
u

ra
tio

n
 (

se
c)

0

1

2

3

4

5

3
.6

8

3
.7

6 4
.3

8

S
h

u
ff
le

 p
h

a
se

 d
u

ra
tio

n
 (

se
c)

Figure 4.15 : Average data flow read duration (left y-axis) and average communication

phase duration (right y-axis) in the Spark broadcast and Hadoop shu✏e applications

under di↵erent flat-tree topology modes

model to all workers. We choose the “torrent” option for the broadcast operation

to distribute the data in the BitTorrent fashion. Spark promotes in-memory compu-

tation, so the data to be transmitted is readily available in memory, although data

serialization and deserialization are needed.

Hadoop shu✏e: we run the Sort job on Tez [119], a variant of Hadoop MapRe-

duce. It has a heavy shu✏e phase, where all the nodes as mappers send data to a

subset of nodes as reducers. We store the data on a RAM disk to prevent the hard

drive being the bottleneck of data read/write.

Figure 4.15 shows the average end-to-end data read time and the duration of the

communication phase for the above two applications. The end-to-end data read time

includes the time for data serialization and deserialization. In the Spark broadcast

application, flat-tree global mode reduces the average data read time by 10% and

reduces the broadcast phase duration by 16% compared to the Clos topology. In the

Hadoop shu✏e application, the reduction in the average data read time and in the

shu✏e phase duration are 10.5% and 8% respectively. With this visible di↵erence,

80

we conclude that the improvement of network topology is reflected in the application

performance. The global mode only slightly outperforms the local mode, because

their network structures are not hugely di↵erent at this small scale (Figure 4.2 c

vs. d). Both applications have many-to-many tra�c pattern, which is similar to the

Hadoop-1 trace in the simulation. As shown in Figure 4.12(a), flat-tree global mode

performs better than the local mode by 36.08% and better than the Clos mode by an

order of magnitude. From this evidence, we expect more considerable performance

improvement to applications from the change of topology in a large-scale data center.

81

4.6 Summary

Flat-tree is the first e↵ort towards building convertible data center networks. By con-

verting between Clos and approximate random graph of various scales, it achieves the

conventionally conflicting goals of low implementation complexity and high transmis-

sion throughput. Convertibility can be achieved by a set of small port-count converter

switches distributed across the network. They have low cost and can be packaged

into Pods to ease deployment. We find flattening Clos’ tree structure does not require

global rewiring. With regular wiring patterns between Pods and core switches and

simple connections between adjacent Pods, we e↵ectively approximate randomness

in the network core and at the same time obtain low wiring complexity. Multi-path

routing and congestion control are crucial to exploiting the path diversity in flat-tree,

and we have shown that aggregation strategies can be applied to avoid an explo-

sion of network states. Existing routing and transport protocols combined with our

architecture-specific state aggregation schemes can balance between high network uti-

lization and fair bandwidth sharing among flows. We explore the implementability

of flat-tree using simulations with real data center tra�c and a testbed implemen-

tation of the system. We observe flat-tree can optimize for diverse workloads with

di↵erent topology modes, and it brings performance improvements to applications

with greater core bandwidth. Flat-tree is merely one design point in the broad space

of convertible data center networks. We believe our experience will motivate future

studies on convertibility.

82

Chapter 5

ShareBackup: Enabling Sharable Backup for
Failure Recovery in Data Center Networks

In this chapter, we continue the study on convertible data center networks with the

emphasis on enhancing fault tolerance of the network. We propose ShareBackup to

improve reliability with the concept of “shareable backup”, which allows the network

to share a small pool of backup switches that can be brought online instantaneously

to recover from failures. We organize switches into failure groups. Through the same

connectivity to a set of converter switches, these switches share one or more backup

switches. Link failures are addressed as node failures on both ends, and we use o✏ine

failure diagnosis to understand the cause of problem and to recycle healthy switches.

We use distributed network controllers to share the burden of failure detection and re-

covery. For fast failure recovery, we support live impersonation of the failed switches

on the control plane. Using market prices, the cost of ShareBackup is multi-fold

lower than state-of-the-art failure-resilient architectures. It also provides more band-

width compared to rerouting-based solutions. The detailed design is presented in the

following sections.

5.1 Motivation

As the underlying infrastructure for cloud computing, data center networks should

provide high reliability to guarantee service performance. The mainstream solution

to fault tolerance is rerouting: many data center network architectures provide re-

83

0 1 2 3 4 5
Percentage of node failure (%)

0

10

20

30

40

50

60

70

P
e

rc
e

n
ta

g
e

 o
f
a

ff
e

ct
e

d
 c

o
flo

w
s

(%
)

0

5

10

15

20

25

P
e

rc
e

n
ta

g
e

 o
f
a

ff
e

ct
e

d
 f
lo

w
s

(%
)

(a)

0 1 2 3 4 5
Percentage of link failure (%)

0

10

20

30

40

50

60

70

P
e

rc
e

n
ta

g
e

 o
f
a

ff
e

ct
e

d
 c

o
flo

w
s

(%
)

0

5

10

15

20

P
e

rc
e

n
ta

g
e

 o
f
a

ff
e

ct
e

d
 f
lo

w
s

(%
)

(b)

Fat-tree

(coflow%)

F10

(coflow%)

Fat-tree

(flow%)

F10

(flow%)

10-2 10-1 100 101 102 103

CCT slowdown

0

0.5

1

C
D

F

(c)

Fat-tree link failure

Fat-tree node failure

F10 link failure

F10 node failure

Figure 5.1 : Impact of failures on flows and coflows

dundant paths to increase bandwidth, and alternative paths can be used to reroute

tra�c around failures [1, 5, 11–13, 51–54]. While rerouting maintains connectivity,

bandwidth is nonetheless degraded under failures, which may jeopardize application

performance drastically.

This concern has been validated by a measurement study: in a path-rich pro-

duction data center, 10% less tra�c is delivered for the median case of the analyzed

failures, and 40% less for the worst 20% of failures [120]. Because data center tra�c

is expressed as sets of flows—known as coflows—to capture the application-level re-

quirements [20], a small number of straggler flows influenced by failures can prolong

the duration of the entire coflow. The e↵ect of failure is thus exacerbated on the

coflow level. The following experiment shows this phenomenon.

We run the coflow trace of real data center tra�c [117] on packet-level simulators

of the fat-tree [1] and F10 [53] networks, two widely used fault-tolerant data center

architectures. The trace contains aggregated rack-level tra�c from a 150-rack 10:1

oversubscribed network, so we map the tra�c to similar-sized k = 16 fat-tree and F10

84

networks with the same oversubscription ratio at the edge switches. Fat-tree and F10

both use ECMP routing. Under failures, fat-tree uses global optimal rerouting, and

F10 uses its local three-hop rerouting [53]. We simulate the final states after failures

without the transient dynamics and measure the percentage of flows and coflows

a↵ected by failures with the variance of failure rate. A flow is considered a↵ected if

it traverses a failed node or link, and a coflow is a↵ected if at least one flow in its set

gets a↵ected.

We observe from Figure 5.1 that the impact of failures gets magnified significantly

on the coflow level. The percentage of a↵ected coflows is 3.3⇥ to 90⇥ that of individ-

ual flows. The coflow curves climb faster in the beginning, indicating a small number

of failures have huge impact on applications. With only a single node and link failure,

as many as 29.6% and 17% of coflows are a↵ected respectively. An application can

proceed only after an entire coflow has finished, so occasional failures have devastating

harm to application performance. These results show necessity of repairing failures

rapidly rather than rerouting tra�c to mitigate its e↵ect.

The only approach that can restore network to its full capacity immediately after

failures happen is backup. Switches can keep a hot spare; hosts are multi-homed to

the primary and the backup switches; and every link between two primary switches

is duplicated by a mesh amongst them and their shadows. In this way, a switch can

failover to its spare without bandwidth loss in the network. However, this 1:1 backup

consumes a large number of backup switches and doubles the port requirements on

hosts and switches. The prohibitive cost of extra hardware prevents the deployment

of network-wide backup, so most data centers only backup a few crucial devices.

Two recent trends provide new opportunities for network-wide backup. First,

commercial devices in data centers are increasingly more reliable. Despite the dis-

85

astrous e↵ect, the same measurement study shows failures are rare and transient:

most devices have over 99.99% availability; and failures usually last for only a few

minutes [120]. Therefore, 1:1 backup is unnecessary for occasional failure events.

Second, configurable interconnects can facilitate physical-layer adaptation of the net-

work topology, and novel architectures have been proposed to create paths on the fly

according to tra�c requirements [31–40]. This configurability can be repurposed for

e�cient failure recovery.

In this chapter, we introduce shareable backup, where a small pool of backup

devices can repair failures on demand. This solution is both desirable and achievable

from the above evidence. By connecting a group of switches and a few backup switches

to highly reliable configurable interconnects, e.g. circuit switches, a backup switch

can be brought online to replace any failed switch via simple circuit reconfiguration.

We realize this idea in ShareBackup⇤, a prototype failure recoverable fat-tree net-

work. We focus on fat-tree because fat-tree and its variants are widely adopted

by many industrial data centers [2, 3]. The ShareBackup design faces many chal-

lenges. The per-port cost of small circuit switches are considerably lower than large

ones [32, 42]. How to design the architecture to leverage this cost benefit? Switches

need to be grouped together to share backup switches. How to partition switches

into groups so that all switches are covered by backup switches and the placement of

circuit switches can align with the fat-tree packaging and wiring? Link failures can

be treated as failures of the associated switches, but it is hard to determine which

end has lost connectivity. Instead of replacing switches on both sides of the link, how

to diagnose the problem and only replace the faulty switch? Backup switches can re-

place regular switches on the physical layer, but how to impersonate a replaced switch

⇤The name is inspired by the emerging trend of Shareconomy.

86

Table 5.1 : List of notations

Notation Meaning

k Fat-tree parameter: switch port count and # Pods [1]

n # backup switches shared by k
2 switches per failure group

Hj The jth host

Ei,j The jth Edge switch in the ith Pod

Ai,j The jth Aggregation switch in the ith Pod

Cj The jth Core switch

CSl,i,j The jth Circuit Switch in the ith Pod on the lth layer

FGl,u The uth Failure Group on the lth layer

BSl,u,v The vth Backup Switch in FGl,u

UPp The pth UPward facing port of a circuit switch

DOWNp The pth DOWNward facing port of a circuit switch

on the control plane? Moreover, how to avoid extra delay from the impersonation

process so that ShareBackup can recover failures as fast as the highly responsive local

rerouting? We address these challenges and analyze the properties of our proposed

architecture. Compared to rerouting-based solutions, ShareBackup provides more

bandwidth with short path length at low cost.

5.2 Network Architecture

87

Algorithm 1 Wiring algorithm

// Edge layer

1: for each CS1,i,j where 0  i < k, 0  j < k
2 do

2: Ei,j 2 FG1,i

3: for each p where 0  p < k
2 do

4: DOWNp ! H k
2⇥p+j+i⇥(k2)

2

5: UPp ! Ei,p // External connection

6: DOWNp L9999K UPp // Internal connection

7: for each p where k
2  p < k

2 + n do

8: UPp ! BS1,i,p� k
2

// Aggregation layer

9: for each CS2,i,j where 0  i < k, 0  j < k
2 do

10: Ai,j 2 FG2,i

11: for each p where 0  p < k
2 do

12: DOWNp ! Ei,p

13: UPp ! Ai,p

14: DOWNp L9999K UP(p+j)% k
2

15: for each p where k
2  p < k

2 + n do

16: DOWNp ! BS1,i,p� k
2

17: UPp ! BS2,i,p� k
2

88

Algorithm 1 Wiring algorithm (continued)

// Core layer

18: for each CS3,i,j where 0  i < k, 0  j < k
2 do

19: C i
2+

k
2⇥j 2 FG3, i2

20: for each p where 0  p < k
2 do

21: DOWNp ! Ai,p

22: UPp ! C k
2⇥p+j

23: DOWNp L9999K UPp

24: for each p where k
2  p < k

2 + n do

25: DOWNp ! BS2,i,p� k
2

26: UPp ! BS3,j,p� k
2

89

ShareBackup has stringent requirements on cost and failure recovery delay, which

guide our choice of circuit switch technologies. No existing circuit switch has enough

ports to connect to all switches in the data center plus the pool of backup switches.

Cascading multiple circuit switches wastes many intermediate ports, increases inser-

tion loss thus requiring more powerful (and expensive) transceivers, and causes large

end-to-end switching delay that slows down failure recovery. Instead, recent works

promote partial configurability in small network regions using circuit switches with

considerably low per-port cost and switching delay [72, 121]. For instance, a com-

mercial 160-port 10Gbps electrical crosspoint switch costs $3 per port and has 70ns

switching delay [72]; 32-port 25Gbps optical 2D-MEMS has been developed, with 40µs

switching delay at an estimated cost of $10 per port [42,122]. These technologies meet

our demand.

These targeted circuit switches have modest port count, so we divide the network

into smaller failure groups and deploy them in each group. Measurement studies show

that failures in data centers are rare, uncorrelated, and spatially dispersed [120,123].

ShareBackup’s distributed design is a good match for these characteristics and can

provide good coverage. Fat-tree has k
2 edge and aggregation switches per Pod. To

align with the architecture, we cluster k
2 switches into a failure group and allow them

to share n backup switches. All switches in a failure group, including the backup

switches, must connect to the same circuit switch with the same wiring pattern. In

this way, a backup switch can be brought online at runtime to replace a failed switch

or failed links associated with it. This circuit switch should have at least k
2 ⇥ (k2 + n)

ports, which exceeds the port count of the targeted circuit switches for a large data

center. We combine k
2 individual circuit switches side by side and design a wiring

pattern to achieve equivalent functionality. Figure 5.2 and Figure 5.3 give intuitions

90

(a)$ (b)$

(c)$

Figure 5.2 : A k = 6 fat-tree [1]. To build a ShareBackup network from it, the blocks

of devices like in the shaded areas should be replaced by the corresponding structures

in Figure 5.3.

of the architecture design. Algorithm 1 shows the wiring plan, with notations listed

in Table 5.1.

Figure 5.3(a) illustrates the basic building block for ShareBackup. The edge

switches in the same Pod form a failure group (line 2 in Algorithm 1). We place

k
2 units of (k2+n+2) by (k2+n+2) circuit switches between the edge switches and the

hosts. Every switch, regular and backup switch alike, connects to these k
2 circuit

switches each with a link (line 5 and 8). As shown in Figure 5.5, these k
2 switches are

chained together via 2 side ports, which is omitted in Figure 5.3 for simplicity. Hosts

connect to the edge switches via straight-through connections on the intermediate

circuit switches (line 4 and 6). The ports to backup switches are unconnected inter-

nally. When a switch is down, the internal connections to it on all the circuit switches

are reconfigured to connect to a backup switch, which thus replaces the failed switch

completely. A switch whose links are down is replaced in the same manner so as to

91

fix the link failures.

In Figure 5.3(b), the aggregation switches in the same Pod form a failure group

(line 10). Edge and aggregation switches in their failure groups repeat the building

block of connectivity in Figure 5.3(a) to another set of k
2 circuit switches (line 12, 13,

16, and 17). In a fat-tree Pod, an edge/aggregation switch connects to each and every

aggregation/edge switch, so we use a rotational wiring pattern in the circuit switches

(line 14) to achieve this shu✏e connectivity, i.e. the di↵erent internal connections on

CS2,1,0 to CS2,1,2.

92

0" 1" 2"

0" 1" 2"0" 1" 2"

0" 3" 6" 1" 4" 7" 2" 5" 8"

CS1,0,0&
|"

CS1,0,2&

E0,0&&&&&&&E0,2& BS1,0,0&
FG1,0&

Pod"0"

CS2,1,0&
|"

CS2,1,2&

Pod"1"

FG2,1&

FG1,1&

A1,0&&&&&&&A1,2& BS2,1,0&

E1,0&&&&&&&E1,2& BS1,1,0&H0&&&&&&&H8&

0" 1" 2" 0" 1" 2" 0" 1" 2"

0" 3" 6" 1" 4" 7" 2" 5" 8"

CS3,3,0&
|"

CS3,3,2&

CS3,4,0&
|"

CS3,4,2&

CS3,5,0&
|"

CS3,5,2&

Pod"3" Pod"4" Pod"5"

C0,&C3,&C6& BS3,0,0& C1,&C4,&C7& BS3,1,0& C2,&C5,&C8& BS3,2,0&

A3,0&&&&&&&A3,2& BS2,3,0& A4,0&&&&&&&A4,2& BS2,4,0& A5,0&&&&&&&A5,2& BS2,5,0&

FG3,0& FG3,1& FG3,2&

FG2,3& FG2,4& FG2,5&

(a)$ (b)$ (c)$

Figure 5.3 : Substructures of a ShareBackup network where k = 6 and n = 1. The

subfigures correspond to the shaded areas in Figure 5.2. Devices are labeled according

to the notations in Table 5.1. Edge and aggregation switches are marked by their

in-Pod indices; core switches and hosts are marked by their global indices. Switches

in the same failure group are packed together, which share a backup switch in stripe

on the side. Circuit switches are inserted into adjacent layers of switches/hosts.

The connectivity in shade is the basic building block for shareable backup. The

crossed switch and connections represent example node and link failures. Switches

involved in failures are each replaced by a backup switch with the new circuit switch

configurations shown at the bottom, where connections regarding the original red

round ports reconnect to the new black square ports.

93

Similarly, aggregation switches in each failure group shown in Figure 5.3(c) are

connected upward to k
2 circuit switches with the wiring pattern in the building block

(line 21 and 25). As Figure 5.2 shows, the connections from aggregation switches

in each Pod iterate through all the core switches in consecutive order. Because the

aggregation switches are already connected to the circuit switches, we set wiring

between the core switches and the circuit switches to achieve the fat-tree connectivity.

The core switches connect to k
2 circuit switches with a stride of k

2 , and we set straight-

through connections in the circuit switches (line 22 and 23). Based on the building

block for shareable backup, only switches connected to the same set of circuit switches

can be put into a failure group. As a result, core switches whose indices are in k
2

intervals form a failure group (line 19). We give each failure group n backup switches

and connect them up in the same way as regular switches (line 26).

In fat-tree, edge and aggregation switches are packaged into Pods for ease of

deployment. In each ShareBackup Pod, there are n additional edge and aggregation

switches respectively as backup switches, and 3 sets of k
2 circuit switches between

adjacent layers of switches and hosts. It is straightforward to package the backup

switches and the circuit switches into the original fat-tree Pods with simple changes

of wiring as shown in Figure 5.3. In practice, the core switches can be placed as in

the original fat-tree, with the backup core switches added to the end. The reordering

depicted in Figure 5.3 is unnecessary. By streamlining the connectors from within

each Pod, we can maintain the original Pod-host and Pod-core wiring patterns in

fat-tree.

94

5.3 Control Plane

5.3.1 Fast Failure Detection and Recovery

Most previous fault-tolerant data center network architectures, such as PortLand [52]

and F10 [53], mainly focus on link failures. According to a measurement study, how-

ever, switch failures account for 11.3% of the failure events in data centers and their

impact is significantly more severe than link failures [120]. Therefore, ShareBackup

aims to detect and recover both link and switch failures rapidly.

Failure detection and recovery are handled by a management entity, e.g. one or

more dedicated machines running specific processes. For switch failures, we require

switches to send keep-alive messages continuously to the management entity. After

missing keep-alive messages from a switch for a pre-defined time period, the man-

agement entity allocates an available backup switch to failover to and reconfigures

the circuit switches associated with the failure group. As shown in Figure 5.3(a), in

these circuit switches, original connections to the failed switch should reconnect to

the backup switch.

We adopt the rapid failure detection mechanism in F10 [53] for link failures, where

switches keep sending packets to each other (or to hosts) to test the interface, data

link, and forwarding engine. When a link is down, it takes time to determine which

end has lost connectivity. For the purpose of fast failure recovery, the switches on

both sides of the failed link are replaced. The cause of failure is analyzed later by the

procedure in Section 5.3.3. The management entity gets notifications of link failures

from switches and hosts, and reconfigures the circuit switches in the same way as it

addresses switch failures on both ends. Figure 5.3(b) and 5.3(c) show examples of

this approach.

95

k/2$

k/2$ k/2$

k/2$

k/2$

replace(DOWN1,DOWN2)$

replace(UP1,UP2)$

link$failure$

link$failure$
ini#ator(controller(

connect(Port1,Port2)"

connect(Port1,Port2)"

config"
ID"

ACK"

1
2

3

3

ready"

ping"

success?"

4

5

6

respondent(controller(
connect(Port1,Port2)"

connect(Port1,Port2)"

config"
ID"

ACK"

1
3

2

4

ready"

ping"

success?"

5

6

7
suspect(switch(

respondent(switch(

suspect(
interface(

circuit(switch(

circuit(switch(

switch(controller(circuit(switch(

(a)$ (b)$

Figure 5.4 : Communication protocol in the control system. (a): Failure detection

and recovery. (b): Diagnosis of link failure.

5.3.2 Distributed Network Controllers

ShareBackup requires the management entity to be implemented as distributed net-

work controllers. A single controller is not capable of collecting frequent heartbeats

from all the switches in the network. Like F10, the probing interval for failure detec-

tion can be as low as a few ms. For example, in a k = 48 fat-tree with 2880 switches,

a heartbeat message every 5ms leads to 576k queries per second, which exceeds the

capacity of a single controller. Distributed controllers also isolate the impact of con-

troller failures to a small portion of the network. Controllers only store local state, so

adding redundant controllers can further enhance resiliency with low state-exchange

overhead. Finally, with distributed placement of network controllers, switches and

circuit switches can be physically close to their controller, which e↵ectively reduces

the message latency of failure detection and recovery.

Figure 5.4(a) shows the failure detection and recovery process using distributed

network controllers. Based on the layout of the ShareBackup architecture, an intu-

itive way of controller placement is to assign each failure group a dedicated controller.

Each controller receives heartbeat messages from k
2 switches only. As shown in Fig-

ure 5.3, a failure group in the core layer corresponds to k
2 circuit switches beneath

96

it, while one in the edge and aggregation layers corresponds to two sets of k
2 circuit

switches above and beneath it, so each controller reconfigures k circuit switches at

maximum. The load for each controller is thus very light even for a large network.

The controllers do not share state, so the communication among them is also minimal.

Due to the simple functionality, controllers can be realized by low-cost, bare-minimum

computing hardware, such as the Arduino [124] and Raspberry Pi [125] platforms.

Multiple controllers can also reside on the same machine to realize di↵erent degrees

of distribution/centralization.

Most circuit switches nowadays use the TL1 software interface to setup a connec-

tion, whose input and output ports should be specified explicitly, i.e. connect(input port,

output port). The network controller needs to maintain the current connections of the

circuit switches so as to switch to new connections. In Figure 5.3(b) and 5.3(c), a

circuit switch connects to two switches from the failure groups above and below, so

it can be reconfigured by both controllers. After one controller updates the circuit

configuration, the other is ignorant of the change. The other controller may later use

outdated port information and mess up the connections. To address this problem,

we change the interface function to replace(old port,new port) and free controllers

from bookkeeping of the circuit switch configurations. After this change, network

controllers reconfigure circuit switches by two parameters: the old port to the failed

switch and the new port to the backup switch (the red round and black square ports

in Figure 5.3), from which circuit switches resolve the new connections to change

to. Requests from di↵erent controllers relate to ports on opposite sides of the circuit

switch. In case of concurrent requests, the circuit switch reconfigures one side at a

time, so the order of execution does not a↵ect the end result.

97

1 2 3

(c)$ (c)$ (c)$

0

0

0

0 0

0

1 2 3

(b)$ (b)$ (b)$

0

0 0

0 0

0

BS3,1,0'C0'

A3,0'

BS3,1,0'

A3,0'

BS3,2,0'BS3,1,0'C0'

A3,0'

A1,0'

E1,0'

BS3,2,0' C0' BS3,2,0'
A1,0'

E1,0'

A1,0'

E1,0'

Figure 5.5 : Circuit switch configurations for diagnosis of link failures shown by

examples (b) and (c) in Figure 5.3. Circuit switches in a Pod are chained up using the

side ports. Only “suspect switches” on both sides of the failed link and some related

backup switches are shown. Through configurations 1�, 2�, and 3�, the “suspect

interface” on both “suspect switches” associated with the failure can connect to 3

di↵erent interfaces on one or multiple other switches.

5.3.3 O✏ine Failure Diagnosis

Most link failures are due to malfunction of the network interface on one end. After

both switches are replaced, we run failure diagnosis in the background to find which

“suspect interface” (and the “suspect switch” it belongs to) has caused the problem.

We chain up circuit switches in the same layer of a Pod as a ring through the side

ports. Figure 5.5 shows the circuit switch configurations, through which the suspect

interface on either end of the failed link can connect to 3 di↵erent interfaces, either

on the same switch (as A1,0, E1,0, and C0) or on di↵erent switches (as A3,0).

The network controllers for the involved switches coordinate to change the cir-

cuit switch configurations and enforce the switches to exchange testing messages. A

suspect interface that has connectivity in at least one configuration is redressed as

healthy, so is the corresponding suspect switch. Because failure diagnosis only in-

volves suspect switches already taken o✏ine and backup switches not in use, this

98

process is completely independent of the functioning network.

Figure 5.4(b) illustrates the controller coordination process. The two suspect

interfaces are tested one by one. Their corresponding controllers elect one to be

the initiator and the other one as passive respondent. The initiator cycles through

the configurations to test the suspect interface on its side, after which the initiator

and the respondent reverse roles to test the other suspect interface. As shown in

Figure 5.4(a), in our distributed control system, each controller is responsible for

reconfiguring a small subset of circuit switches and is only allowed to control the ports

on its own side. So, both controllers need to participate in the circuit setup. The

respondent controller learns the target connections from the initiator controller via

the configuration ID. Here, we use the original TL1 interface, i.e. connect(input port,

output port), to connect to the side ports. As an o✏ine process, failure diagnosis

can be preempted by failure recovery. It is paused if the involved backup switch,

such as BS3,1,0 and BS3,2,0 in Figure 5.5(c), needs to be used when another failure

happens. The initiator controller thus proceeds only after receiving confirmation that

the respondent side is not being preempted at the moment. It will continue with the

next configuration if reaching the ACK timeout. In the end, the tested interface pings

the other end and terminates the diagnosis process if it has connectivity.

Failure diagnosis requires both sides have at least one healthy interface, so that

both suspect interfaces can be tested. If this condition is not met, both suspect

switches are considered faulty. Since all hosts are actively in use, the o✏ine failure

diagnosis is not supported between hosts and edge switches. We assume switches are

at fault for link failures to hosts. If the problem is not fixed after replacing the switch,

we mark the switch as healthy and trouble-shoot the host.

After a failed switch is repaired or a suspect switch is exonerated, it is unnecessary

99

to switch back to the original connectivity. Backup switches and regular switches are

equal in functionality, so we keep the backup switch online and turn the replaced

switch into a backup switch for future use. This design saves the reconfiguration

overhead and avoids disruptions in the network. The network controller keeps track

of the current backup switches in their failure groups.

5.3.4 Live Impersonation of Failed Switch

Tra�c will be redirected to the backup switch in the physical layer after a failed

switch is replaced. The backup switch needs to impersonate the failed switch by

using the same routing table. Fat-tree uses Two-Level Routing, where each switch

has a pre-defined routing table with k entries [1]. To avoid the additional delay of

inserting forwarding rules into the backup switch, we aim to preload the routing table

and make the backup switch a hot standby. Regular switches recovered from failures

can work as backup switches, so every switch needs to store the routing tables of all

the switches in the failure group. The challenge is to resolve the conflicts between

di↵erent routing tables.

In fat-tree, all the core switches and all the aggregation switches in the same Pod

have the same routing table. Therefore, in the aggregation and core layers of our

network, switches in a failure group only keep a common routing table. For in-bound

tra�c, edge switches in a Pod, also a failure group, have the same set of k
2 forwarding

entries that match on the su�x of the end host addresses. For out-bound tra�c, each

of these edge switches has k
2 di↵erent entries. We use VLANs for di↵erentiation. We

first edit the original fat-tree routing tables by assigning every edge switch in the Pod

a unique VLAN ID and adding it to the out-bound routing table entries. The edited

routing tables from all the edge switches are then combined together and stored in

100

every switch in the failure group. A host knows which edge switch it should connect

to, so it tags out-going packets with the VLAN ID of the edge switch. No matter

what switches in the failure group are active, by matching the VLAN ID, packets can

always refer to the correct routing table. This combined routing table from k
2 edge

switches has k
2 in-bound entries and k2

4 out-bound entries. This total number is within

the TCAM capacity of commercial switches even for large-scale fat-tree networks. For

instance, the table contains only 1056 entries for a k = 64 fat-tree with over 65k hosts.

5.4 Discussion

Layer-wise Partial Deployment: ShareBackup is especially powerful at the edge of

the network. In today’s data centers, a host connects to one Top-of-Rack (ToR) switch

only, and most fault-tolerant architectures fail to improve this condition [52–54]. If

ToR or host link failures happen, hosts are disconnected and we have to rely on

application frameworks to restart the task elsewhere. In this case, the job may be

prolonged significantly or even crash due to loss of workers. In a fat-tree network,

there are k2

4 parallel paths in the core layer, but only k
2 in the aggregation layer.

ShareBackup is more helpful in the aggregation layer, as rerouting may cause greater

congestion with fewer paths to balance the load. Partial deployment is straightforward

in ShareBackup thanks to the separate failure groups. We give a complete solution in

this paper, but network operators have freedom to deploy backup switches in certain

layers according to application requirements and monetary budget.

Cost E↵ectiveness: Redundancy incurs extra cost. We make key design deci-

sions in ShareBackup to reduce cost. Concurrent failures are rare in data centers [120],

so the ideal case is to have a single backup switch shared by the entire network.

However, as discussed at the beginning of Section 5.2, this requires cascaded circuit

101

switches with high cost, insertion loss, and switching delay. As a compromise, we

deploy low-cost circuit switches with short switching delay, e.g. electrical crosspoint

switch or optical 2D-MEMS, in separate failure groups. A failure group needs at

least 1 backup switch, so large groups help keep the backup pool small. Our targeted

circuit switches have modest port count. As Figure 5.3 shows, we combine them to

cover more switches and form larger failure groups. Our design achieves a reasonably

low backup ratio at low circuit switch cost. The additional cabling cost is minimal in

ShareBackup, because the circuit switches, either electrical or optical, are passive and

do not require active elements on their end, e.g. optical transceiver or amplifier for

copper. The layer-wise partial deployment can further reduces cost. A quantitative

cost analysis with market price of devices is shown in Section 5.5.2.

Benefits to Network Management: When switches are routinely taken out

for upgrade or maintenance, backup switches can neatly take their place to avoid

downtime. Misconfigurations account for a large proportion of failures in data cen-

ters [120], and they are hard to reason and fix. ShareBackup can help mitigate the

e↵ect and diagnose the problem. The configurations of backup switches can be ver-

ified when they are idle. If a switch is misconfigured, it can failover to the backup

switch whose configurations are guaranteed to be correct. Then complicated diag-

nosis can be executed o✏ine. With judicious use of hardware, our o✏ine failure

diagnosis in Section 5.3.3 helps identify which interface has caused a link failure. In

today’s data centers, failure diagnosis and repair are mostly handled manually and

take hours at least. Even pioneering work like NetPilot takes 20 minutes only to mit-

igate failures [126]. As discussed in Section 5.5.3, with proper implementation of the

control system, ShareBackup can repair failures in sub-ms. The failure diagnosis in

Section 5.3.3 only involves simple communications between the network controllers,

102

switches, and circuit switches, so we expect the entire procedure to finish within sec-

onds. This rapid automatic failure recovery and diagnosis is a breakthrough for data

center management.

Extra Failures: Link failures are usually caused by faulty network interfaces.

Although ShareBackup adds more cables, the number of network interfaces stays the

same, so the network is unlikely to have significantly more link failures. Even if

connectors to circuit switches fail, the failure recovery and diagnosis mechanisms will

react to bypass the problematic connector and infer the cause of the error. Circuit

switches are highly reliable passive physical-layer devices with bare-minimum control

software. If the control software is unfunctional, the a↵ected part of the network can

still work under the current configuration. In the rare case that a circuit switch is

completely down, the responsible controllers will receive a large number of link failure

reports associated with the circuit switch in a short period of time. We can program

controllers to stop failure recovery in such case and request for human intervention.

As illustrated in Figure 5.3, each switch is connected to k
2 circuit switches. During

the downtime of one circuit switch, each switch only loses 2
k capacity. Our distributed

controllers are intrinsically robust, and it is simple to realize a fault-free control plane

by redundancy.

Alternative Methods: An interesting question is whether PortLand and F10

will outperform ShareBackup if allowing the same deployment cost. Section 5.5.2

shows the cost of ShareBackup is only 6.7% more than fat-tree when k = 48. Tree

networks are known to lack expandability. It is hard, if not impossible, to add only

a small proportion of switches with the same port count. Even if more switches

could be added, they would lock up bandwidth to fixed locations. Failures at highly

unpredictable locations might still cause bandwidth loss. In contrast, ShareBackup

103

can move backup switches to wherever needed. Unstructured networks have been

proposed for easier expansion [5, 127, 128], but the performance under failures is yet

to be explored. Admittedly, these topologies have rich bandwidth and diverse paths,

but the path length hugely varies, causing risk of path dilation. We can add switches

to either provision bandwidth at the price of degraded performance under failures, or

to provide guaranteed performance while keeping the backups idle most of the time.

We choose the latter, and we believe shareable backup is an e↵ective way to reduce

the idle rate.

5.5 Architecture Properties

5.5.1 Capacity to Handle Failures

Switch failures: In a failure group, n backup switches are shared by k
2 switches.

Thus, ShareBackup can handle n concurrent switch failures per failure group. In

data centers, failures are independent; most devices have over 99.99% availability;

and failures usually last for only a few minutes [120]. As a result, a small n is

su�cient for a large-scale data center. For instance, let n = 1 for a k = 48 fat-tree

with over 27k hosts, the backup ratio is n/k
2 = 4.17%, which is more than 400⇥ higher

than the 0.01% switch failure rate.

Link failures: ShareBackup handles link failures as node failures. With failure

diagnosis, we can identify the interface at fault, so we consume only one backup switch

at the faulty end. For each failure group, ShareBackup can handle n independent link

failures, which translates to up to kn link failures rooted at those n switches. Link

failures are rare, and concurrent link failures are especially uncommon [120]. It is

su�cient to target at a few link failures with a small n.

104

Circuit switch failures: Circuit switches are highly reliable. They are passive

physical-layer devices with less than 10�12 bit-error rate [42, 72], and their bare-

minimum control software for circuit reconfiguration receives infrequent requests only

when switch and link failures happen. In the rare case that a circuit switch is down,

switches connected to it will report link failures to their network controllers. If a

controller receives a large number of link failure reports associated with one circuit

switch in a short period of time, i.e. over a pre-defined threshold, it will stop failure

recovery and request for human intervention. A rebooted circuit switch can get up-

to-date circuit configurations from the controllers. Circuit switch port failures are

sensed as link failures and handled by regular failure recovery.

Controller failures: ShareBackup uses distributed network controllers, so the

failure of one controller only a↵ects a small proportion of the network. If a failed

switch cannot be replaced due to controller failure, other switches connected to it will

take it as link failures. After a series of unsuccessful attempts to fix the problem,

their controllers can notice the unusual condition and notify the network operator. A

rebooted controller learns the current backup switches in its failure group from circuit

switch configurations.

5.5.2 Cost Analysis

We calculate ShareBackup’s additional cost to fat-tree and compare to Aspen Tree [54]

and 1:1 backup, which also add hardware to fat-tree to improve robustness. Table 5.2

lists the cost equations of these architectures and the market price of necessary de-

vices. 1:1 backup requires twice as many switches as fat-tree, and the switch port

count needs to be doubled. Assuming constant price of a switch port, the cost of 1:1

backup is 4⇥ that of fat-tree. Aspen Tree repurposes links between switches in adja-

105

Table 5.2 : Cost of compared architectures, where the data center uses electrical

(E-DC) and optical (O-DC) transmissions respectively.

Architecture Cost

Fat-tree 5
4k

3b + k3

2 c

ShareBackup 3
2k

2(k2 + n+ 2)a+ 5
2k

2nb+ 5
4k

2nc + fat-tree cost

Aspen Tree k3

2 b + k3

4 c + fat-tree cost

1:1 Backup 15
4 k

3b + 3
2k

3c + fat-tree cost

Variable Meaning Price Notes

a Per-port cost of $3 E-DC Electrical crosspoint switch [72]

circuit switches $10 O-DC 2D MEMS optical switch [42]

b Per-port cost of $60 $3000 for a 48-port

packet switches 10Gbps bare metal switch

$81 E-DC 10m 10Gbps DAC [129]

c Cost per link $40 O-DC 10Gbps transceiver ($16) ⇥ 2 +

10m 10Gbps optical fiber ($8) [129]

cent layers. The lower-layer switches can disconnect half of the upper-layer switches

to duplicate connections to the other half. One more layer of switches are needed to

connect the partitioned network, so there are k2

2 more switches and k3

4 more cables.

In ShareBackup, the cost of controllers is negligible. Because of the simple func-

tionality, controllers can be realized by bare-minimum computing hardware, and mul-

tiple controllers can reside on one physical machine to further reduce cost. The circuit

switches chained up in a group (Figure 5.5) are placed close to each other, so the cost

of the very short inter-circuit-switch optical fibers is minimal. ShareBackup has 5
2k

106

16 20 24 28 32 36 40 44 48
k (Fat-tree parameter)

0.01

 0.1

 1

 10

Ad
dit

ion
al

co
st

re
lat

ive
 to

 F
at

-tr
ee

(a) Copper cables

ShareBackup n=1 ShareBackup n=2 ShareBackup n=4

16 20 24 28 32 36 40 44 48
k (Fat-tree parameter)

0.01

 0.1

 1

 10

(b) Optial fibers

Aspen Tree 1:1 Backup

Figure 5.6 : Additional cost of ShareBackup, Aspen Tree, and 1:1 Backup relative to

fat-tree at di↵erent network scales using market prices in Table 5.2

failure groups, each with n backup switches, and each Pod contains 3 sets of k
2 cir-

cuit switches with (k2+n+2) by (k2+n+2) ports. Thus, ShareBackup has 5
2kn more

switches, 5
4k

2nmore cables from these switches, and 3
2k

2(k2+n+2) circuit switch ports.

ShareBackup is less costly than Aspen Tree and 1:1 backup because it uses shareable

backup and cheap circuit switches. As shown in Table 5.2, a is much cheaper than

b and c, and n is a small constant in practice. Compared to Aspen Tree and 1:1

backup, ShareBackup reduces the power of k in b- and c-related terms, and the factor

a limits the additional term to a relatively small value.

Figure 5.6 shows ShareBackup is multi-folds less expensive than 1:1 backup and

Aspen Tree. For a fixed n, the relative additional cost of ShareBackup decreases as

the network scales up, because the backup switches can be shared by more switches

in the failure group. As discussed in Section 5.5.1, n = 1 is su�cient for a k = 48

fat-tree network. In this case, the additional cost of ShareBackup is merely 6.7%

and 13.3% of the cost of fat-tree with copper cables and optical fibers respectively,

107

Table 5.3 : Performance characteristics of di↵erent network architectures

Architecture No bandwidth loss? No path dilation? No upstream repair?

ShareBackup X X X

Fat-tree ⇥ X ⇥

F10 ⇥ ⇥ X

Aspen Tree ⇥ X X/⇥

while Aspen Tree costs 6.5⇥ and 3.2⇥ as much. Even if n is increased to 4, which

renders backup ratio as high as 16.7% for k = 48, ShareBackup is still cheaper than

Aspen Tree. The cases where ShareBackup out-costs Aspen Tree show the flexibility

of improving robustness by adding more backup switches.

5.5.3 Performance Characteristics

Scaling to large data centers with high robustness. The scalability of Share-

Backup is determined by the port count of circuit switches, i.e. (k2 +n+2). 256-port

electrical crosspoint switches are common place today [72], and 32-port 2D MEMS op-

tical switches can be realized [42]. Even with the 32-port limit, we have k
2+n+2 = 32,

or k
2 + n = 30. When n = 1, ShareBackup can support a k = 58 fat-tree network

with over 48k hosts. The backup ratio is n/k
2 = 3.45%, which is significantly higher

than the 0.01% switch failure rate. For a sizable k = 48 fat-tree with 27k hosts, n

can reach 6, leading to a backup ratio as high as 25%. These parameters relating to

scalability and robustness can be tuned to meet practical needs of the data center.

Recovering failures as fast as state of the art. F10 and Aspen Tree are

state-of-the-art solutions for fast failure recovery [53,54]. They reroute tra�c locally

108

as soon as a switch detects a failure, so the recovery delay is the failure detector’s

probing interval plus the time of redirecting packets to a di↵erent NIC interface.

Rerouting requires change of at least one routing table entry. Using the standard

SDN approach, it takes ⇠1ms to modify a forwarding rule [112], e.g. changing the

rule priority to match packets to a di↵erent interface. ShareBackup detects failures in

a similar way, so we assume the same failure detection delay. Specifically, controllers

probe switches for node failures, and switches probe each other for link failures and

inform their controllers. With the failure information, a controller sends requests to

circuit switches to reset circuits. The circuit reconfiguration delay is negligible, which

is only 70ns for crosspoint switches [72] and 40µs for 2D MEMS [42]. Each failure

group has a dedicated controller, so it can be placed close to the switches and the

circuit switches. The communication channels are actively on because of probing.

With e�cient controller implementation, e.g. as a kernel module, the delay of switch-

to-controller and controller-to-circuit-switch communications can be reduced to sub-

ms level. Therefore, failure recovery in ShareBackup is as fast as that in F10 and

Aspen Tree.

No bandwidth loss, no path dilation, and no upstream repair. Table 5.3

compares key features of failure-resilient architectures. Because ShareBackup replaces

failed hardware completely, it does not have bandwidth loss. All other rerouting-based

solutions have to cope with the remaining bandwidth resource, and we have demon-

strated in Figure 5.1 that a single link or node failure can be disastrous to application

performance. Fat-tree requires failure announcements to propagate multiple hops so

rerouting can be performed upstream. To improve responsiveness, F10 reroutes traf-

fic locally through longer paths, and Aspen Tree creates duplicate paths with extra

hardware. As Figure 5.6 shows, the additional cost of Aspen Tree is high, so it pro-

109

vides the option of partial duplication that requires upstream repair. With shareable

backup, our proposal replaces failed devices locally without path dilation at minimal

additional cost to the network.

5.6 Summary

We introduce shareable backup as a novel solution to failure recovery in data cen-

ter networks. It allows the entire network to share a small pool of backup devices.

This proposal is grounded in three key observations. First, the traditional rerouting-

based failure recovery is ine↵ective, because bandwidth loss from failures degrades

application performance drastically. Therefore, failed devices should be replaced to

restore bandwidth. Second, failures in data centers are rare but destructive [120],

so it is desirable to seek cost-e↵ective backup options. Third, the emergence of con-

figurable data center network architectures promises feasibility of bringing backup

devices online dynamically.

We find the e↵ect of failures is magnified hugely on the application level: under

failures, the number of impacted coflows is significantly greater than the number of

impacted individual flows. As a result, we aim to restore bandwidth rapidly after fail-

ures. We design the ShareBackup prototype architecture based on fat-tree to realize

the idea of replacing switches at runtime. We organize switches into failure groups

and allow them to share one or more backup switches. Switches in the same failure

group, as well as the backup switches, are connected to the same set of converter

switches, so that they can be replaced by the backup switches when failed. Link

failures are addressed as node failures on both ends, and we use o✏ine failure diag-

nosis to understand the cause of problem and to recycle healthy switches. We use

distributed network controllers to share the burden of failure detection and recov-

110

ery. For fast failure recovery, we support live impersonation of the failed switches on

the control plane. Using market prices, the cost of ShareBackup is multi-fold lower

than state-of-the-art failure-resilient architectures. It also provides more bandwidth

compared to rerouting-based solutions.

The concept of shareable backup goes beyond our proposed failure recoverable fat-

tree network. Like fat-tree, most data center network architectures have symmetric

structures [11–13, 51]. Sharable backup is thus readily applicable to these networks,

with di↵erent plans for partitioning failure groups. Non-uniform failure groups should

also be explored, so that this idea can be extended to unstructured networks, such

as Jellyfish [5], and we can have more backup on critical devices and less backup

on unimportant ones. Several questions are worth further studies. First, a detailed

failure diagnosis protocol between coordinating controllers need to be developed and

evaluated. Second, the e�ciency of the control plane depends on implementations of

controllers, so the real-world performance is yet to be tested. Third, when backup

switches are idle, they can be activated to add bandwidth to the network. How to

make better use of backup switches to improve performance with guaranteed fault

tolerance is an interesting research topic.

111

Chapter 6

Future Work

6.1 Joint Optimization of Network Topology and Tra�c

In traditional data center networks, tra�c is optimized against the network topology.

The network has fixed topology, and tra�c is engineered to take advantage of the

available bandwidth resources. The optimization may happen at di↵erent layers,

including routing [14, 15, 51, 52, 82], congestion-free data transportation [6, 17, 130–

132], flow scheduling [16, 18–21, 83], and workload placement [26–29, 84]. The recent

proposals of configurable network architectures have introduced the opposite way:

optimizing the network topology against tra�c [31–41,46–49]. These works constantly

monitor the tra�c volume and change the network topology at fine granularity, e.g.

on the scale of ms or µs, to fit the tra�c at runtime.

Other than these mainstream approaches, convertible network makes it possible

to jointly optimize the network topology and tra�c, giving potential for better trans-

mission performance. The VM clustering algorithm in OmniSwitch makes decision

for topology adaptation and tra�c placement at the same. It heuristically changes

the local topology and tentatively routes tra�c to possible paths until the tra�c is

fully localized within the cabinet. Flat-tree suggests a suitable topology based on

a high-level estimation of the communication properties and optimizes tra�c using

traditional methods on the chosen fixed topology. Recent studies also demonstrate

the e↵ectiveness of joint optimization. RotorNet can change the topology dynami-

112

cally. Instead of fully adapting the network topology to tra�c demand, it routinely

cycles through pre-defined topologies and shapes the tra�c to a uniform pattern to

fit the average topology. Kassing et al. uses the Xpander network, whose structure

has been proved to provide rich bandwidth and easy expandability. Like RotorNet,

this work also uniformalizes the tra�c, as uniform tra�c is known to work best on

the topology.

The joint optimization of topology and tra�c has a very large design space, and

many challenges arise. Most importantly, topology and tra�c build on each other.

On one hand, topology adjustment is to seek opportunities to optimize tra�c. On the

other hand, tra�c optimization on the new topology changes characteristics of the

tra�c, which the topology update is based on in the first place. So, optimizing them

iteratively may lead to a disruptive network that will never converge. Methods from

optimization theory might be borrowed. However, these complicated procedures take

much computation time, making them unsuitable for real-time decision making in a

responsive data center network. Moreover, topology adjustment and tra�c shaping

are not without cost. Changing the topology frequently can match tra�c accurately.

Yet, since the network is disrupted during the transition period, too frequent a change

will disrupt routing and transport protocols, as well as reduce the network utiliza-

tion. Changing the tra�c might increase the path length, thus wasting bandwidth

in the network. In the huge design space, the above proposals only explored several

design points that show decent performance in practice. Better designs require funda-

mental understanding of these inherent tradeo↵s through formulation and theoretical

analysis.

113

6.2 Combining Flat-tree and ShareBackup

Flat-tree and ShareBackup are di↵erent use cases of convertibility. Flat-tree changes

the structure of the network dynamically to improve the transmission performance,

while ShareBackup adds a small number of shareable backup switches to recover from

failures. An interesting question is whether we can build a convertible network that

achieves both goals, or combining flat-tree and ShareBackup.

This design is appealing for the cost advantage. ShareBackup requires additional

hardware for redundancy. Yet, without adding more switches to the network, flat-

tree can approximate random graph networks of di↵erent scales, which provide richer

bandwidth than the original tree-structured network. If the extra bandwidth gained

from topology conversion can be repurposed for failure recovery, we can reduce or

even completely eliminate backup switches to save cost.

Despite the potential benefits, many open questions still remain. First, the place-

ment of converter switches in flat-tree and ShareBackup are di↵erent. How should we

place them in the new architecture to serve both purposes of bandwidth provisioning

and fault tolerance? Second, ShareBackup requires distributed network controllers to

constantly monitor the health of switches and links in the network, whereas a central-

ized controller is su�cient in flat-tree. How should we assign network controllers in

the new architecture to distribute responsibility and minimize communication among

them? Third, flat-tree has 3 operation modes, tree network, approximate local ran-

dom graph, and approximate global random graph. How can we guarentee reliability

in each individual topology? Last but not least, data center networks carry diverse

applications, and people optimize their performance using di↵erent objectives accord-

ing to their requirements, such as minimizing flow/job completion time and meeting

deadlines. Failure recovery is yet another objective. How can we balance these equally

114

important goals and assign di↵erent priorities when necessary? These problems need

to be addressed in future studies.

6.3 Convertibility for Power Saving

Besides improvement to transmission performance and fault tolerance, convertibility

can play a broader role in network management, such as power saving. According to

measurement studies [6–9], the average utilization of data center networks is low, and

the network experiences busy/idle hours throughout the day. It would be desirable to

automatically up/down-scale the network during busy/idle time. Specifically, some

switches should be automatically shut down when the network utilization is low, and

they should be turned on when needed. This is impossible traditionally, as the work-

load spread across the network requires all switches to be actively on, and compacting

the workload to spare some switches involves very expensive VM migration. With

the power of convertibility, the network can be partitioned to keep some switches

functional, and tra�c can be directed to these switches on the physical layer without

shifting the workload around.

To enable this functionality, we should first monitor the power utilization of the

switches and tra�c demand in the network. Based on the collected information, a

wiring plan can be formed to (1) minimize the number of switches being used and (2)

have full coverage of all the tra�c in the network. Unlike flat-tree and ShareBackup

where topology change can be completed instantaneously, turning switches on and

o↵ takes non-negligible time. A straightforward solution is to convert the network

topology at low frequency to improve the duty cycle and have a relatively stable

network. A more sophisticated method is to leave a reasonable power head room

with more active switches than necessary. The topology can evolve gradually given

115

the estimation of the power utilization in the near future, so that we can turn on/o↵

switches ahead of time to combat the long delay. Machine learning based on statistical

data of the past power utilization has potential to produce an accurate estimation.

Which solution will be chosen in the end requires more understanding of operational

features of specific data centers.

116

Chapter 7

Conclusion

This thesis introduces “convertible networks” as a new way to build data center net-

works and presents three prototype architectures as di↵erent use cases of this concept.

A convertible network can switch between multiple topologies. This topology change

is network-wide, and the network topology stays stable for a relatively long period of

time throughout the life cycle of workloads. Using this approach, we achieve flexi-

bility of the network structure and at the same time prevent frequent disruptions to

tra�c in the network.

Our exploration of convertible networks started from an industry project: Om-

niSwitch. The goal is to build a production-ready modular container with topological

flexibility using the widely adopted Clos topology. In this project, we for the first

time use small port-count converter switches to change the topology at low cost. Due

to the limited port count of each individual converter switch, we deploy interleaving

converter switches and Ethernet switches to provide convertibility and connectivity

within the container. As universal building blocks of data centers, a number of Om-

niSwitch containers can be interconnected to form data center networks of di↵erent

scales using di↵erent topologies. We give examples of mesh and tree networks, and

numerous network structures are achievable with the rich permutation of converter

switch configurations.

The convertibility facilitated by automatic rewiring of the converter switches can

have many applications. For instance, we can direct tra�c by converter switches

117

to desirable Ethernet switches within the container for tra�c optimization, equip a

spare Ethernet switch shareable to a set of active ones for e�cient backup, allow

partial population of devices for incremental expansion, and shut down some under-

utilized switches to save power during idle hours. We demonstrate the potential of

tra�c optimization with the VM clustering case study. In the multi-tenant cloud

environment, we want to localize tra�c within the same VM cluster to make e�cient

use of the bandwidth. With convertibility, we can rewire the converter switches to

bring VMs in the same cluster close to each other and thus reduce the hop count

of transmission. We give a heuristic algorithm for this purpose and run simulations

with a real data center workload for evaluations. Compared to state-of-the-art so-

lutions, OmniSwitch reduces the average path length significantly and services more

bandwidth using minimal computation time. Small converter switches are proven to

provide similar convertibility to a high port-count counterpart.

OmniSwitch demonstrates on the conceptual level the feasibility of hardware im-

plementation and potential applications of convertibility. However, it does not pro-

vide specific instructions of how to construct a convertible network. In the following

two projects, we propose flat-tree and ShareBackup as two concrete architecture and

system designs of convertible data center networks. They both base on the intu-

itions from OmniSwitch and target towards tra�c optimization and e�cient backup

respectively.

OmniSwitch optimizes the network topology opportunistically within the con-

tainer according to requirements of cloud tenants, yet a more fundamental questions

is: what network topologies are desirable for data center tra�c? We find Clos and

random graph networks have complementary characteristics: Clos has low implemen-

tation complexity in practice and has good performance for inter-rack tra�c; while

118

random graph is suitable for uniform network-wide tra�c, and local random graphs

can be constructed to optimize for more localized tra�c. In the flat-tree project, we

seek to convert the topology of the entire network between these options.

To convert between these completely di↵erent topologies, we flatten the tree struc-

ture of Clos network to approximate random graphs of di↵erent scales. Specifically,

we relocate servers to di↵erent switches and diversify the connects between switches

by reconfiguring the converter switches. Like OmniSwitch, flat-tree also places small

converter switches in a distributed manner. To ease deployment, we package these

converter switches into Pods and only connect adjacent Pods for neighbor-to-neighbor

wiring. Using regular wiring patterns between Pods and core switches, we e↵ectively

approximate randomness in the network core and at the same time obtain low wiring

complexity.

A control system is indispensable for flat-tree. In a random graph network,

multi-path routing and congestion control are crucial to exploiting the path diversity

for high-throughput transmission. However, multi-path routing generates an enor-

mous number of states, exceeding the capacity of commercial switches. In flat-tree,

we design state aggregation strategies including an architecture-specific addressing

and source routing schemes. As a result, we perform multi-path routing on the

ingress/egress switch level and transit switches in the network become stateless. Sim-

ulation results show that existing routing and transport protocols combined with our

aggregation schemes can balance between high network utilization and fair bandwidth

sharing among flows.

We explore the performance of flat-tree using simulations with real data center

tra�c and a testbed implementation of the system. Flat-tree has similar average

path length as random graphs and the tra�c throughput is indistinguishable. We

119

also observe flat-tree can optimize for diverse workloads with di↵erent topology op-

tions. This result validates the necessity of convertibility: we can choose the right

network topology for each workload through conversion. In our testbed experiments,

topology conversion takes tens of ms and the tra�c can recover in 2.5s, meaning real-

time topology change is feasible. We run Hadoop and Spark jobs on the testbed under

di↵erent topology modes. The core bandwidth is increased by 27.6% by converting

the topology from Clos to approximate random graph. With this improvement, the

end-to-end reading time of the applications is reduced by around 10%, meaning the

physical-layer topology change does bring benefits to the application-layer perfor-

mance.

OmniSwitch supports 1: N e�cient backup in the container, yet it is still unclear

how to enable it in the entire network. For example, if two OmniSwitch containers

are connected to each other, two layers of converter switches are connected back to

back with duplicate functionalities; and we don’t yet know how to handle link failures.

We design the ShareBackup architecture to further explore how convertibility can be

used to enhance fault tolerance in the network.

First of all, we need to understand the characteristics of failures in data center

networks. We find from literature that failures are rare but disruptive in production

data centers [44]. Our own experiments also validate the result. We observe that

the e↵ect of failures is magnified hugely on the application level: under failures, the

number of impacted coflows is significantly greater than the number of impacted

individual flows. Based on the evidence, a network ought to recover from failures

immediately after they happen, and a small backup ratio is su�cient in practice.

Therefore, we create the concept of “shareable backup”, which is to create a small

pool of backup switches that can be shared by the entire network.

120

ShareBackup realizes this concept on the fat-tree network, which is the most

widely adopted data center network architecture. We organize switches into failure

groups and allow them to share one or more backup switches. Switches in the same

failure group, as well as the backup switches, are connected to the same set of con-

verter switches, so that they can be replaced by the backup switches when failed. This

approach can recover node failures if backup switches are available. For link failures,

we can replace switches on both ends of the link. To enable fast failure recovery, we

take the switches o✏ine instantly and then run failure diagnosis to understand the

cause of problem and to recycle healthy switches.

OmniSwitch and flat-tree both use a single network controller to reconfigure the

converter switches. In ShareBackup, monitoring the status of the switches constantly

for failure detection is a heavy burden, so one controller is not enough. To address this

problem, we assign distributed network controllers to each failure group. Because the

ultimate goal is to recover failure fast enough to be transparent to applications, we

cannot a↵ord to change forwarding rules at runtime, which takes several milliseconds.

Therefore, we support live impersonation of the failed switches on the control plane.

We pre-set routing tables of all the edge switches in the failure group into each switch

and di↵erentiate them by VLANs. The end hosts set the VLAN ID according to the

edge switch the host should connect to. Even if the edge switch has been replaced by

the backup switch, by matching the VLAN ID, the switch knows which routing table

to enable. In this way, we resolve conflicts of di↵erent routing tables and make backup

switches as hot standbys. We derive formula for the cost of ShareBackup. Using

market prices, the cost of ShareBackup is multi-fold lower than state-of-the-art failure-

resilient architectures. We also analyze the qualitative properties of ShareBackup.

Compared to rerouting-based solutions, It provides more bandwidth after failures,

121

does not use longer paths, and repairs the problem locally without failure propagation

among switches.

122

Bibliography

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity Data Cen-

ter Network Architecture,” in SIGCOMM ’08, (Seattle, Washington, USA),

pp. 63–74, August 2008.

[2] “Introducing data center fabric, the next-generation Facebook data cen-

ter network, https://code.facebook.com/posts/360346274145943/introducing-

data-center-fabric-the-next-generation-facebook-data-center-network/.”

[3] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Bov-

ing, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons,

E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter Rising:

A Decade of Clos Topologies and Centralized Control in Google’s Datacenter

Network,” in SIGCOMM ’15, (London, United Kingdom), pp. 183–197, ACM,

August 2015.

[4] A. Singla, Designing Data Center Networks for High Throughput. Ph.D. Thesis,

University of Illinois at Urbana-Champaign.

[5] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Networking Data

Centers Randomly,” in NSDI ’12, (San Jose, California, USA), pp. 1–14, April

2012.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,

S. Sengupta, and M. Sridharan, “DCTCP: E�cient Packet Transport for the

123

Commoditized Data Center,” in SIGCOMM’10, August 2010.

[7] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding Data Center

Tra�c Characteristics,” SIGCOMM CCR, vol. 40, no. 1, pp. 92–99, January

2010.

[8] P. Bod́ık, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and I. Stoica,

“Surviving Failures in Bandwidth-constrained Datacenters,” in SIGCOMM ’12,

(Helsinki, Finland), pp. 431–442, August 2012.

[9] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The Nature

of Data Center Tra�c,” in IMC ’09, (Chicago, Illinois, USA), pp. 202–208,

November 2009.

[10] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the Social

Network’s (Datacenter) Network,” in Proceedings of the 2015 ACM Conference

on Special Interest Group on Data Communication, SIGCOMM ’15, (London,

United Kingdom), pp. 123–137, August 2015.

[11] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: A Scalable

and Fault-Tolerant Network Structure for Data Centers,” in SIGCOMM ’08,

(Seattle, Washington, USA), pp. 75–86, August 2008.

[12] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu,

“BCube: A High Performance, Server-centric Network Architecture for Modular

Data Centers,” in SIGCOMM ’09, (Barcelona, Spain), pp. 63–74, August 2009.

[13] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber, “HyperX:

Topology, Routing, and Packaging of E�cient Large-scale Networks,” in SC

’09, (Portland, Oregon, USA), pp. 41:1–41:11, November 2009.

124

[14] C. Kim, M. Caesar, and J. Rexford, “Floodless in SEATTLE: A Scalable Eth-

ernet Architecture for Large Enterprises,” in SIGCOMM ’08, SIGCOMM ’08,

(Seattle, WA), pp. 3–14, 2008.

[15] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul, “SPAIN: COTS

Data-center Ethernet for Multipathing over Arbitrary Topologies,” in NSDI’10,

(San Jose, CA), pp. 18–33, 2010.

[16] M. Al-fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, “Hed-

era: Dynamic Flow Scheduling for Data Center Networks,” in NSDI ’10, (San

Jose, CA), 2010.

[17] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design, implementa-

tion and evaluation of congestion control for multipath tcp,” in Proceedings of

the 8th USENIX Conference on Networked Systems Design and Implementa-

tion, NSDI’11, (Berkeley, CA, USA), pp. 99–112, USENIX Association, 2011.

[18] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine Grained Tra�c

Engineering for Data Centers,” in CoNEXT ’11, (Tokyo, Japan), pp. 8:1–8:12,

ACM, 2011.

[19] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Managing Data

Transfers in Computer Clusters with Orchestra,” in SIGCOMM ’11, (Toronto,

Ontario, Canada), pp. 98–109, 2011.

[20] M. Chowdhury and I. Stoica, “Coflow: A Networking Abstraction for Cluster

Applications,” in HotNets-XI, (Redmond, WA), pp. 31–36, 2012.

[21] M. Chowdhury, Y. Zhong, and I. Stoica, “E�cient Coflow Scheduling with

Varys,” in SIGCOMM ’14, (Chicago, IL), pp. 443–454, 2014.

125

[22] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and

S. Shenker, “pFabric: Minimal Near-optimal Datacenter Transport,” in Pro-

ceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM

’13, (Hong Kong, China), pp. 435–446, August 2013.

[23] M. Chowdhury and I. Stoica, “E�cient Coflow Scheduling Without Prior

Knowledge,” in Proceedings of the 2015 ACM Conference on Special Interest

Group on Data Communication, SIGCOMM ’15, (London, United Kingdom),

pp. 393–406, August 2015.

[24] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng, “CODA:

Toward Automatically Identifying and Scheduling Coflows in the Dark,” in

Proceedings of the 2016 Conference on ACM SIGCOMM 2016 Conference, SIG-

COMM ’16, (Florianopolis, Brazil), pp. 160–173, August 2016.

[25] L. Chen, K. Chen, W. Bai, and M. Alizadeh, “Scheduling Mix-flows in Commod-

ity Datacenters with Karuna,” in Proceedings of the 2016 Conference on ACM

SIGCOMM 2016 Conference, SIGCOMM ’16, (Florianopolis, Brazil), pp. 174–

187, August 2016.

[26] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang,

“SecondNet: A Data Center Network Virtualization Architecture with Band-

width Guarantees,” in CoNEXT ’10, (Philadelphia, PA), pp. 15:1–15:12, 2010.

[27] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards Predictable

Datacenter Networks,” in SIGCOMM ’11, (Toronto, Ontario, Canada), pp. 242–

253, 2011.

[28] L. Popa, A. Krishnamurthy, S. Ratnasamy, and I. Stoica, “FairCloud: Sharing

126

the Network in Cloud Computing,” in HotNets-X, (Cambridge, MA), pp. 22:1–

22:6, 2011.

[29] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and P. Sharma,

“Application-driven Bandwidth Guarantees in Datacenters,” in SIGCOMM ’14,

(Chicago, IL), pp. 467–478, 2014.

[30] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes,

“Large-scale Cluster Management at Google with Borg,” in Proceedings of the

Tenth European Conference on Computer Systems, EuroSys ’15, (Bordeaux,

France), pp. 18:1–18:17, 2015.

[31] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng,

M. Kozuch, and M. Ryan, “c-Through: Part-time Optics in Data Centers,”

in SIGCOMM ’10, (New Delhi, India), pp. 327–338, August 2010.

[32] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya,

Y. Fainman, G. Papen, and A. Vahdat, “Helios: A Hybrid Electrical/Optical

Switch Architecture for Modular Data Centers,” in SIGCOMM ’10, (New Delhi,

India), pp. 339–350, August 2010.

[33] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni, G. Ranade,

P.-A. Blanche, H. Rastegarfar, M. Glick, and D. Kilper, “ProjecToR: Agile Re-

configurable Data Center Interconnect,” in Proceedings of the 2016 Conference

on ACM SIGCOMM 2016 Conference, SIGCOMM ’16, (Florianopolis, Brazil),

pp. 216–229, August 2016.

[34] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall, “Augment-

ing Data Center Networks with Multi-gigabit Wireless Links,” in Proceedings

127

of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, (Toronto, Ontario,

Canada), pp. 38–49, August 2011.

[35] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao, and

H. Zheng, “Mirror Mirror on the Ceiling: Flexible Wireless Links for Data Cen-

ters,” in Proceedings of the ACM SIGCOMM 2012 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communication, SIG-

COMM ’12, (Helsinki, Finland), pp. 443–454, August 2012.

[36] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin, H. Shah,

and A. Tanwer, “FireFly: A Reconfigurable Wireless Data Center Fabric Using

Free-space Optics,” in Proceedings of the 2014 ACM Conference on SIGCOMM,

SIGCOMM ’14, (Chicago, Illinois, USA), pp. 319–330, August 2014.

[37] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and

Y. Chen, “OSA: An Optical Switching Architecture for Data Center Networks

with Unprecedented Flexibility,” in NSDI ’12, (San Joes, CA), April 2012.

[38] K. Chen, X. Wen, X. Ma, Y. Chen, Y. Xia, C. Hu, and Q. Dong, “WaveCube:

A Scalable, Fault-tolerant, High-performance Optical Data Center Architec-

ture,” in 2015 IEEE Conference on Computer Communications (INFOCOM),

pp. 1903–1911, April 2015.

[39] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Ros-

ing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating Microsecond Cir-

cuit Switching into the Data Center,” in SIGCOMM ’13, (Hong Kong, China),

pp. 447–458, August 2013.

[40] Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav, “Quartz: A New Design Element

128

for Low-latency DCNs,” in SIGCOMM ’14, (Chicago, Illinois, USA), pp. 283–

294, August 2014.

[41] “Plexxi, http://www.plexxi.com/.”

[42] M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for Lightwave Commu-

nication,” Journal of Lightwave Technology, vol. 24, pp. 4433–4454, December

2006.

[43] M. Fokine, L. E. Nilsson, Å. Claesson, D. Berlemont, L. Kjellberg, L. Krum-

menacher, and W. Margulis, “Integrated Fiber Mach–Zehnder Interferometer

for Electro-Optic Switching,” Optics Letters, vol. 27, pp. 1643–1645, September

2002.

[44] P. Gill, N. Jain, and N. Nagappan, “Understanding Network Failures in Data

Centers: Measurement, Analysis, and Implications,” in Proceedings of the ACM

SIGCOMM 2011 Conference, SIGCOMM ’11, (Toronto, Ontario, Canada),

pp. 350–361, ACM, Aug. 2011.

[45] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and A. Donnelly, “Symbi-

otic Routing in Future Data Centers,” in SIGCOMM ’10, (New Delhi, India),

pp. 51–62, August 2010.

[46] H. Wang, Y. Xia, K. Bergman, T. S. E. Ng, S. Sahu, and K. Sripanidkulchai,

“Rethinking the Physical Layer of Data Center Networks of the Next Decade:

Using Optics to Enable E�cient *-cast Connectivity,” SIGCOMM Comput.

Commun. Rev., vol. 43, pp. 52–58, July 2013.

[47] Y. Xia, T. S. E. Ng, and X. Sun, “Blast: Accelerating High-Performance Data

129

Analytics Applications by Optical Multicast,” in INFOCOM ’15, (Hong Kong,

China), pp. 1930–1938, April 2015.

[48] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya,

Y. Fainman, G. Papen, and A. Vahdat, “Helios: A Hybrid Electrical/Optical

Switch Architecture for Modular Data Centers,” in SIGCOMM ’10, (New Delhi,

India), p. 339, Aug. 2010.

[49] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng,

M. Kozuch, and M. Ryan, “c-Through: Part-time Optics in Data Centers,”

in SIGCOMM ’10, (New Delhi, India), p. 327, Aug. 2010.

[50] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and

Y. Chen, “OSA: An Optical Switching Architecture for Data Center Networks

with Unprecedented Flexibility,” in NSDI ’12, (San Joes, CA, USA), April

2012.

[51] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.

Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible Data Center

Network,” in Proceedings of the ACM SIGCOMM 2009 Conference on Data

Communication, SIGCOMM ’09, (New York, NY, USA), pp. 51–62, ACM,

2009.

[52] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-

hakrishnan, V. Subramanya, and A. Vahdat, “PortLand: A Scalable Fault-

tolerant Layer 2 Data Center Network Fabric,” in Proceedings of the ACM

SIGCOMM 2009 Conference on Data Communication, SIGCOMM ’09, (New

York, NY, USA), pp. 39–50, ACM, 2009.

130

[53] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10: A Fault-

Tolerant Engineered Network,” in Presented as part of the 10th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 13), (Lom-

bard, IL), pp. 399–412, USENIX, 2013.

[54] M. Walraed-Sullivan, A. Vahdat, and K. Marzullo, “Aspen Trees: Balanc-

ing Data Center Fault Tolerance, Scalability and Cost,” in Proceedings of the

Ninth ACM Conference on Emerging Networking Experiments and Technolo-

gies, CoNEXT ’13, (New York, NY, USA), pp. 85–96, ACM, 2013.

[55] S. Kini, S. Ramasubramanian, A. Kvalbein, and A. F. Hansen, “Fast recovery

from dual link failures in IP networks,” in INFOCOM 2009, IEEE, pp. 1368–

1376, IEEE, 2009.

[56] A. Kvalbein, A. F. Hansen, S. Gjessing, and O. Lysne, “Fast IP network recov-

ery using multiple routing configurations,” in in INFOCOM 2006. 25th IEEE

International Conference on Computer Communications. Proceedings, Citeseer,

2006.

[57] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chuah, “Proactive vs reac-

tive approaches to failure resilient routing,” in INFOCOM 2004. Twenty-third

AnnualJoint Conference of the IEEE Computer and Communications Societies,

vol. 1, IEEE, 2004.

[58] A. Li, X. Yang, and D. Wetherall, “Safeguard: safe forwarding during route

changes,” in Proceedings of the 5th international conference on Emerging net-

working experiments and technologies, pp. 301–312, ACM, 2009.

[59] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala, “Path splicing,” in

131

ACM SIGCOMM Computer Communication Review, vol. 38, pp. 27–38, ACM,

2008.

[60] W. Xu and J. Rexford, MIRO: multi-path interdomain routing, vol. 36. ACM,

2006.

[61] X. Yang and D. Wetherall, “Source selectable path diversity via routing deflec-

tions,” in ACM SIGCOMM Computer Communication Review, vol. 36, pp. 159–

170, ACM, 2006.

[62] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker, and

I. Stoica, “Achieving convergence-free routing using failure-carrying packets,”

ACM SIGCOMM Computer Communication Review, vol. 37, no. 4, pp. 241–

252, 2007.

[63] S. S. Lor, R. Landa, and M. Rio, “Packet re-cycling: eliminating packet losses

due to network failures,” in Proceedings of the 9th ACM SIGCOMM Workshop

on Hot Topics in Networks, p. 2, ACM, 2010.

[64] N. Kushman, S. Kandula, D. Katabi, and B. M. Maggs, “R-bgp: Staying con-

nected in a connected world,” USENIX, 2007.

[65] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker, “Ensuring

connectivity via data plane mechanisms.,” in NSDI, pp. 113–126, 2013.

[66] B. Yang, J. Liu, S. Shenker, J. Li, and K. Zheng, “Keep forwarding: Towards k-

link failure resilient routing,” in INFOCOM, 2014 Proceedings IEEE, pp. 1617–

1625, IEEE, 2014.

132

[67] B. Stephens and A. L. Cox, “Deadlock-free local fast failover for arbitrary data

center networks,” in Computer Communications, IEEE INFOCOM 2016-The

35th Annual IEEE International Conference on, pp. 1–9, IEEE, 2016.

[68] B. Stephens, A. L. Cox, and S. Rixner, “Scalable multi-failure fast failover

via forwarding table compression,” in Proceedings of the Symposium on SDN

Research, p. 9, ACM, 2016.

[69] L. Schi↵, M. Borokhovich, and S. Schmid, “Reclaiming the brain: Useful open-

flow functions in the data plane,” in Proceedings of the 13th ACM Workshop

on Hot Topics in Networks, p. 7, ACM, 2014.

[70] M. Borokhovich, L. Schi↵, and S. Schmid, “Provable data plane connectivity

with local fast failover: Introducing openflow graph algorithms,” in Proceedings

of the third workshop on Hot topics in software defined networking, pp. 121–126,

ACM, 2014.

[71] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “FatTire: Declarative Fault

Tolerance for Software-defined Networks,” in Proceedings of the Second ACM

SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN

’13, (Hong Kong, China), pp. 109–114, ACM, Aug. 2013.

[72] S. Legtchenko, N. Chen, D. Cletheroe, A. Rowstron, H. Williams, and X. Zhao,

“XFabric: A Reconfigurable In-Rack Network for Rack-Scale Computers,” in

13th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 16), (Santa Clara, CA), pp. 15–29, USENIX Association, 2016.

[73] “40G short range transceiver.”

133

[74] J. R. Hamilton, “An Architecture for Modular Data Centers,” in CIDR’07,

(Asilomar, California, USA), pp. 306–313, 2007.

[75] “B. Canney, IBM Portable Modular Data Center Overview,

https://www.ibm.com/us-en/marketplace/prefabricated-modular-data-

center.”

[76] “HP Performance Optimized Datacenter, https://www.hpe.com/us/en/integrated-

systems/pods.html.”

[77] “SGI ICE Cube, http://www.sgi.com/pdfs/4160.pdf..”

[78] M. Kozhevnikov, N. Basavanhally, J. Weld, Y. Low, P. Kolodner, C. Bolle,

R. Ryf, A. Papazian, A. Olkhovets, F. Pardo, et al., “Compact 64 x 64 microme-

chanical optical cross connect,” IEEE Photonics Technology Letters, vol. 15,

no. 7, pp. 993–995, 2003.

[79] M. Yano, F. Yamagishi, and T. Tsuda, “Optical mems for photonic switching-

compact and stable optical crossconnect switches for simple, fast, and flexible

wavelength applications in recent photonic networks,” IEEE Journal of Selected

Topics in Quantum Electronics, vol. 11, no. 2, pp. 383–394, 2005.

[80] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The Nature

of Data Center Tra�c: Measurements & Analysis,” in IMC ’09, (Chicago, IL),

pp. 202–208, 2009.

[81] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding Data Center

Tra�c Characteristics,” SIGCOMM CCR, vol. 40, pp. 92–99, Jan. 2010.

134

[82] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “PAST: Scalable

Ethernet for Data Centers,” in CoNEXT ’12, (Nice, France), pp. 49–60, 2012.

[83] M. Chowdhury, S. Kandula, and I. Stoica, “Leveraging Endpoint Flexibility in

Data-Intensive Clusters,” in SIGCOMM ’13, (Hong Kong, China), pp. 231–242,

2013.

[84] X. Meng, V. Pappas, and L. Zhang, “Improving the Scalability of Data Center

Networks with Tra�c-aware Virtual Machine Placement,” in INFOCOM’10,

(San Diego, CA), pp. 1154–1162, 2010.

[85] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of Virtual Ma-

chine Live Migration in Clouds: A Performance Evaluation,” in CloudCom ’09,

(Beijing, China), pp. 254–265, 2009.

[86] H. Liu, C. F. Lam, and C. Johnson, “Scaling Optical Interconnects in Datacen-

ter Networks Opportunities and Challenges for WDM,” in HOTI ’10, (Mountain

View, CA), pp. 113–116, 2010.

[87] M. Schlansker, Y. Turner, J. Tourrilhes, and A. Karp, “Ensemble Routing for

Datacenter Networks,” in ANCS ’10, (La Jolla, CA), pp. 23:1–23:12, 2010.

[88] P. Bod́ık, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and I. Stoica,

“Surviving Failures in Bandwidth-Constrained Datacenters,” in SIGCOMM

’12, (Helsinki, Finland), pp. 431–442, 2012.

[89] N. G. Du�eld, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan, and

J. E. van der Merive, “A Flexible Model for Resource Management in Virtual

Private Networks,” in SIGCOMM ’99, (Cambridge, MA), pp. 95–108, 1999.

135

[90] K. LaCurts, J. C. Mogul, H. Balakrishnan, and Y. Turner, “Cicada: Introduc-

ing Predictive Guarantees for Cloud Networks,” in HotCloud’14, (Philadelphia,

PA), pp. 14–19, 2014.

[91] S. Even, A. Itai, and A. Shamir, “On the Complexity of Time Table and Multi-

commodity Flow Problems,” in SFCS ’75, (Washington, DC), pp. 184–193,

1975.

[92] J. Y. Yen, “Finding the K Shortest Loopless Paths in a Network,” Management

Science, vol. 17, no. 11, pp. 712–716, 1971.

[93] Y. Xia, M. Schlansker, T. S. E. Ng, and J. Tourrilhes, “Enabling Topological

Flexibility for Data Centers Using OmniSwitch,” in HotCloud ’15, (Santa Clara,

CA), July 2015.

[94] Y. Xia and T. S. E. Ng, “Flat-tree: A Convertible Data Center Network

Architecture from Clos to Random Graph,” in Proceedings of the 15th ACM

Workshop on Hot Topics in Networks, HotNets ’16, (Atlanta, GA), pp. 71–77,

November 2016.

[95] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” RFC 2992, 2000.

[96] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural Guide-

lines for Multipath TCP Development,” RFC 6182, 2011.

[97] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions for

Multipath Operation with Multiple Addresses,” RFC 6824, 2013.

[98] M. Scharf and A. Ford, “Multipath TCP (MPTCP) Application Interface Con-

siderations,” RFC 6897, 2013.

136

[99] “MultiPath TCP - Linux Kernel implementation, http://multipath-

tcp.org/pmwiki.php/Main/HomePage.”

[100] R. M. Ramos, M. Martinello, and C. E. Rothenberg, “SlickFlow: Resilient

source routing in Data Center Networks unlocked by OpenFlow,” in 38th An-

nual IEEE Conference on Local Computer Networks, pp. 606–613, October

2013.

[101] S. A. Jyothi, M. Dong, and P. B. Godfrey, “Towards a Flexible Data Cen-

ter Fabric with Source Routing,” in Proceedings of the 1st ACM SIGCOMM

Symposium on Software Defined Networking Research, SOSR ’15, (Santa Clara,

California), pp. 10:1–10:8, June 2015.

[102] M. Soliman, Exploring Source Routing as an Alternative Routing Approach in

Wide Area Software-Defined Networks. PhD thesis, Carleton University Ot-

tawa, 2015.

[103] C. Filsfils, S. Previdi, B. Decraene, S. Litkowski, and R. Shakir, “Segment

Routing Architecture,” IETF Draft: draft-ietf-spring-segment-routing-04, 2016.

[104] “Segment Routing: Prepare Your Network for New Business Models White

Paper,” Cisco Technology White Paper, 2015.

[105] “Segment Routing and Path Computation Element,” Nokia Technology White

Paper.

[106] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching

Architecture,” RFC 3031, 2001.

137

[107] M. Soliman, B. Nandy, I. Lambadaris, and P. Ashwood-Smith, “Source Routed

Forwarding with Software Defined Control, Considerations and Implications,”

in Proceedings of the 2012 ACM Conference on CoNEXT Student Workshop,

CoNEXT Student ’12, (Nice, France), pp. 43–44, December 2012.

[108] Y. Chiba, Y. Shinohara, and H. Shimonishi, “Source Flow: Handling Millions

of Flows on Flow-based Nodes,” in Proceedings of the ACM SIGCOMM 2010

Conference, SIGCOMM ’10, (New Delhi, India), pp. 465–466, August 2010.

[109] “OpenFlow Switch Specification, Version 1.3.0,” Open Networking Foundation,

2012.

[110] “ Glimmerglass 80x80 MEMS switch, http://electronicdesign.com/article/test-

and-measurement/3d-mems-based-optical-switch-handles-80-by-80-fibe.aspx.”

[111] L. J. Hornbeck, “Digital Light Processing for high-brightness high-resolution

applications,” 1997.

[112] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella, L. E. Li,

and M. Thottan, “Measuring Control Plane Latency in SDN-enabled Switches,”

in Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined

Networking Research, SOSR ’15, (Santa Clara, California), pp. 25:1–25:6, 2015.

[113] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, “OFLOPS:

An Open Framework for Openflow Switch Evaluation,” in Proceedings of the

13th International Conference on Passive and Active Measurement, PAM’12,

(Berlin, Heidelberg), pp. 85–95, Springer-Verlag, 2012.

[114] T. Leighton and S. Rao, “Multicommodity Max-flow Min-cut Theorems and

138

Their Use in Designing Approximation Algorithms,” J. ACM, vol. 46, no. 6,

pp. 787–832, November 1999.

[115] “MPTCP simulator, http://nrg.cs.ucl.ac.uk/mptcp/implementation.html.”

[116] W. Dally and B. Towles, Principles and Practices of Interconnection Networks.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[117] “Coflow-Benchmark, https://github.com/coflow/coflow-benchmark.”

[118] “Facebook Network Analytics Data Sharing,

https://www.facebook.com/groups/1144031739005495/.”

[119] “Tez, https://tez.apache.org/.”

[120] P. Gill, N. Jain, and N. Nagappan, “Understanding Network Failures in Data

Centers: Measurement, Analysis, and Implications,” in Proceedings of the ACM

SIGCOMM 2011 Conference, SIGCOMM ’11, (New York, NY, USA), pp. 350–

361, ACM, 2011.

[121] Y. Xia, X. S. Sun, S. Dzinamarira, D. Wu, X. S. Huang, and T. S. E. Ng, “A Tale

of Two Topologies: Exploring Convertible Data Center Network Architectures

with Flat-tree,” in Proceedings of the Conference of the ACM Special Inter-

est Group on Data Communication, SIGCOMM ’17, (New York, NY, USA),

pp. 295–308, ACM, 2017.

[122] M. Schlansker, M. Tan, J. Tourrilhes, J. R. Santos, and S.-Y. Wang, “Config-

urable optical interconnects for scalable datacenters,” in Optical Fiber Com-

munication Conference and Exposition and the National Fiber Optic Engineers

Conference (OFC/NFOEC), 2013, pp. 1–3, IEEE, 2013.

139

[123] D. Zhuo, M. Ghobadi, R. Mahajan, K.-T. Förster, A. Krishnamurthy, and

T. Anderson, “Understanding and Mitigating Packet Corruption in Data Center

Networks,” in Proceedings of the Conference of the ACM Special Interest Group

on Data Communication, SIGCOMM ’17, (Los Angeles, CA), pp. 362–375,

ACM, 2017.

[124] “Arduino, https://www.arduino.cc.”

[125] “Raspberry Pi, https://www.raspberrypi.org.”

[126] X. Wu, D. Turner, C.-C. Chen, D. A. Maltz, X. Yang, L. Yuan, and M. Zhang,

“NetPilot: Automating Datacenter Network Failure Mitigation,” in Proceed-

ings of the ACM SIGCOMM 2012 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication, SIGCOMM ’12,

(Helsinki, Finland), pp. 419–430, August 2012.

[127] S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and A. Singla, “Beyond

Fat-trees Without Antennae, Mirrors, and Disco-balls,” in Proceedings of the

Conference of the ACM Special Interest Group on Data Communication, SIG-

COMM ’17, (Los Angeles, CA, USA), pp. 281–294, ACM, 2017.

[128] A. Valadarsky, G. Shahaf, M. Dinitz, and M. Schapira, “Xpander: Towards

Optimal-Performance Datacenters,” in Proceedings of the 12th International on

Conference on Emerging Networking EXperiments and Technologies, CoNEXT

’16, (Irvine, California, USA), pp. 205–219, ACM, 2016.

[129] “FS.COM, http://www.fs.com/.”

[130] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware Datacenter TCP

(D2TCP),” in Proceedings of the ACM SIGCOMM 2012 Conference on Applica-

140

tions, Technologies, Architectures, and Protocols for Computer Communication,

SIGCOMM ’12, (Helsinki, Finland), pp. 115–126, ACM, 2012.

[131] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better Never Than

Late: Meeting Deadlines in Datacenter Networks,” in Proceedings of the ACM

SIGCOMM 2011 Conference, SIGCOMM ’11, (Toronto, Ontario, Canada),

pp. 50–61, ACM, 2011.

[132] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. Antichi, and

M. Wójcik, “Re-architecting Datacenter Networks and Stacks for Low Latency

and High Performance,” in Proceedings of the Conference of the ACM Special

Interest Group on Data Communication, SIGCOMM ’17, (Los Angeles, CA,

USA), pp. 29–42, ACM, 2017.

