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ABSTRACT 

Linking a Mitotic Oscillator to the Extracellular Environment: A Bottom-up 

Approach Analyzing Protein Network Structure and Multisite Phosphorylation 

by 

Ryan Christopher Vargo 

This thesis work contributes the first vital steps in the development of a 

biologically based proliferation model to advance a bioartificial tissue regeneration 

model. Specifically, this work presents a mitotic oscillator model incorporating ATP, 

which was linked to extracellular glucose. This model is the first mitotic oscillator linked 

to the extracellular environment. Furthermore, this work is the first to connect 

extracellular glucose to mitosis with ATP. 

Taking a bottom-up approach, a base mitotic model was developed using the 

latest biology. The reaction network structure of mitosis is not fully understood, and the 

role of multisite phosphorylation is uncertain. Therefore, using bifurcation analysis and 

transient simulations, the effect of the mitotic reaction network structure and multisite 

phosphorylation on system behavior was analyzed by varying the MPF activation 

network structure, the number of positive feedback loops, and the number of 

phosphorylations on the positive feedback loop proteins. 



The results suggest that the MPF activation network has evolved to efficiently 

utilize cyclin B and to generate switch-like transitions into mitosis. The behavior of the 

mitotic oscillator model was affected by the order and number of multisite 

phosphorylations, which are essential to generate sharp switch-like transitions into 

mitosis. Addition of multiple positive feedback loops into the model enhanced the signal 

to initiate mitosis. 

Next, ATP was incorporated into the network. The model was then tuned to a 

relative ATP concentration, which is generic and therefore applicable to different cell 

lines. Multiple Weel networks were analyzed to elucidate the function of the two 

inhibition mechanisms, kinase inhibition and increased degradation. The results suggest 

that the inhibition mechanisms are redundant. Therefore, the model incorporates the 

Weel mechanism that allows the cell to maintain maximum control over the initiation of 

mitosis. 

To generalize the mitotic model, the parameter set was tuned for to a relative ATP 

concentration and fibroblast division times. Finally, the relative intracellular ATP model 

was linked to the extracellular glucose. The model developed in this thesis work is the 

first to use ATP as the link between mitosis and the extracellular glucose, and the first 

mitotic model connected to the extracellular environment. 
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Figure 1 - Hierarchy of Bioartificial Tissue Model. At the bottom level is the full 

bioartificial tissue model. The middle level contains the key areas of the tissue 

regeneration process, individual cells, the tissue scaffold, and the environment. 

These models interact with each other and dictate the observed phenomena of the 

overall model. The processes dictating the behavior of the environment, scaffold, 

and individual cells compose the top level of the hierarchy. Individual cells have 

proliferation and migration models for individual cells, and the environment has 

mass transport, production, and consumption models for growth factors, nutrients, 

and waste products. All of these sub-models combine into the overall bioartificial 

tissue model. This work initiated the first steps developing a biologically based 

proliferation model for individual cells (red) 2 

Figure 2 - Regulation of MPF during the cell cycle. The arrows with plus signs indicate 

that the lead protein up regulates the terminal protein. Conversely, the arrows with 

minus signs indicate that the lead protein down regulates the terminal protein. Upon 

dimerization of cyclin B and phosphorylation by CAK, CDK1 activates and is 

known as the metaphase promoting factor (MPF). The Weel family of kinases 

inhibits MPF by phosphorylating CDK1. MPF down regulates the Weel family of 

kinases by phosphorylation forming a double negative, or positive, feedback loop. 

The Cdc25 family of phosphatases removes the inhibitory phosphorylations on 

CDK1, thus activating MPF. MPF up regulates the Cdc25 family of phosphatases, 

thereby forming an additional positive feedback loop. MPF also up regulates the 
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anaphase promoting complex (APC), a protease. Activated APC degrades cyclin B 

and the Cdc25 family of phosphatases forming a negative feedback loop 7 

Figure 3 - A) General bifurcation diagram capturing the essential elements of the mitotic 

oscillator and B) dynamics. The main bifurcation parameter is cyclin synthesis rate, 

which is controlled by environmental factors and is the source for MPF generation. 

A low steady state represented by a solid blue line represents the quiescent cells and 

G2 arrested cells. The upper steady state, represented by the solid blue line, 

represents the mitotic arrested and mitotic catastrophe cells. The middle region has 

an unstable steady state, which is shown as a dashed red line, and is the region 

where oscillations are observed. The oscillations represent proliferating cells, which 

are represented by solid blue circles. The open red circles are unstable limit cycle. 

 62 

Figure 4 - Base Mitotic Model Reaction Network. MPF is generated by the dimerization 

of cyclin B and CDK1 thereby forming the active complex. MPF initiates mitosis 

and therefore is the central protein. The model has a single positive feedback loop 

where MPF stabilizes Cdc25 A by phosphorylation and Cdc25A activates MPF by 

dephosphorylation. MPF activates APC by phosphorylation, and active APC in turn 

degrades all forms of cyclin B and Cdc25 A thus generating the negative feedback 

loop 67 

Figure 5 - Dynamics of mitotic oscillator. Cyclin B accumulates until a threshold of 

active MPF has been reached. Past the threshold, MPF rapidly stabilizes Cdc25 A, 

which in turn activates MPF. Both concentrations peak at approximately the same 

time. MPF then activates the APC, which degrades cyclin B before Cdc25A, thus 
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restarting the cell cycle. This is only a single parameter set, so a sensitivity analysis 

to determine how the model parameters change the oscillatory characteristics was 

performed. (k3 = 0.1 nM'1 min'1) 71 

Figure 6 - Increasing negative feedback Strength/Decreasing positive feedback strength. 

From left to right, negative feedback strength increases (k3 = 0.015 nM'1 min'1,0.1 

nM'1 min'1,0.2 nM'1 min'1). As the negative feedback strength increases, the size of 

the oscillatory region increases and shifts to higher synthesis rates. The size of the 

region of multiplicity and amplitude decrease, and the oscillations become less 

frequency encoded. Also, observe the decrease in the period in the lower plots. 

From right to left, the positive feedback strength increases, and has the exact 

opposite effect on the oscillatory characteristics of the system as increasing the 

negative feedback strength 77 

Figure 7 - Biphasic behavior of MPF activation by Cdc25A (kz). As the activation rate is 

increased, the region of oscillations is shifted to lower synthesis rates and there is a 

decrease in the size of the region of oscillations. Initially, increasing the activation 

increases the region multiplicity and creates more frequency encoded oscillations, 

but further increase destroys the region of multiplicity and creates less frequency 

encoded oscillations. From left to right, kj = 0.1 nM-1 min'1,0.5 nM'1 min'1,7 nM-1 

min'1 78 

Figure 8 - Dimerization and dissociation of cyclin B and CDK1. Figure A has a low 

dimerization rate (k4 = 0.0006 min'1). Monomeric cyclin accumulation drives the 

system oscillations. Figure B has a high dimerization rate (k» = 0.6 min'1). 

Monomeric cyclin efficiently dimerizes into MPF and MPF dynamics drive the 
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oscillations. Figure C has a high dissociation rate (k5 =100 min'1). The MPF dimer 

is unstable and quickly dissociates. Thus, the autocatalytic activation of MPF 

generates a monomeric cyclin concentration peak rather than a MPF concentration 

peak. Figure D has a low dissociation rate (ks = 1 min'1). MPF is a stable dimer, 

and the autocatalytic activation of MPF generates a MPF concentration peak 80 

Figure 9 - Observed system behavior for base mitotic model. All oscillatory behaviors 

have a lower steady state that represents quiescent and G2 arrested cells and a high 

steady state that represents mitotic arrested and catastrophe cells. System A has 

frequency encoded oscillations and a region of multiplicity of steady states (base 

parameter set). System B has frequency encoded oscillations but does not have a 

region of multiplicity of steady states (k3 = 0.1 nM-1 min'1). System C generates 

nonfrequency encoded oscillations and does not have a region of multiple steady 

states (k7 = 0.1 nM'1 min'1). System D is bistable (kio = 0.1 nM-1 min'1) 81 

Figure 10 - MPF phosphorylation reaction networks. The reaction networks are 

organized by their phosphorylation structure. The squares represent CDK1 and the 

ovals represent cyclin B. The small circles represent the phosphorylations. The 

inhibitory phosphorylations are on the left side of CDK1 and the activating 

phosphorylation is on the right. Active MPF is shaded blue. The activating 

phosphorylation can occur in parallel (A and B) or sequentially (C, D, E, and F) with 

the inactivating phosphorylations. Within sequential activating phosphorylation, 

cyclin B and CDK1 can either form an active (C and D) or inactive (E and F) dimer. 

Finally, the inactivating phosphorylations can either happen sequentially (A, C, and 

E) or simultaneously (B, D, F) 82 
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Figure 11 - Parallel vs. sequential activating phosphorylation sequence. The black line is 

total cyclin B concentration. The blue line represents concentration of CDK1 

species that have not been phosphorylated at the activating site and monomeric 

cyclin B. The dashed red line represents the concentration of CDK1 species that 

have been phosphorylated at the activating site and therefore have the ability to 

become active MPF. When the activating phosphorylation occurs in parallel with 

the inactivating phosphorylations, the majority of the CDK1 remains inactive and 

therefore cannot become active MPF. When the activating phosphorylation occurs 

sequentially with the inactivating phosphorylations following, the majority of CDK1 

has the activating phosphorylation and can be activated by Cdc25 A to active MPF. 

(Mechanism A base parameter set, Parallel kcak/kdcak = 10/100 = 0.1, Sequential 

kcak/kdcak = 10/0.0001 = 100000) 83 

Figure 12 - Cyclin B CDK1 dimerization to active (A) and inactive (B) complex. MPF 

mechanism C is shown in figure A with the base parameter set and when comparing 

the MPF mechanism E in figure B, there is little qualitative difference. Both 

systems exhibit frequency encoded oscillations and a region of multiple steady 

states. Similar qualitative results were obtained when comparing MPF mechanisms 

D and F 84 

Figure 13 - Dimerization to active vs. inactive MPF complex. In the two parameter 

bifurcation plots, the dashed lines are the limit points, which enclose the region of 

multiplicity of steady states, and the solid lines are the Hopf points, which enclose 

the region of oscillations. Figures A and B plot the rate of Cdc25A activation of 

MPF vs. cyclin B synthesis rate for MPF mechanisms C and E, respectively. 



Xlll 

Figures C and D plot the nonspecific degradation rate of liable Cdc25 A species vs. 

cyclin B synthesis rate for the same respective mechanisms. Both the Cdc25A 

activation rate of MPF and nonspecific degradation rate of liable Cdc25A are 

bounded when cyclin B and CDK1 form an active complex (A and C). On the other 

hand, when cyclin B and CDK1 form an inactive complex, the system retains the 

ability to oscillate at low MPF activation rates and high nonspecific liable Cdc25A 

degradation rates (B and D) 86 

Figure 14 - Simultaneous inactivating phosphorylation. Figure A displays the bifurcation 

diagram for MPF reaction network D with the base parameter set (Table 1). 

Although the system with sequential inactivating phosphorylations generates 

realistic cell cycle oscillatory characteristics with multiplicity of steady states and 

frequency encoded oscillations for this parameter set, the MPF reaction network 

with simultaneous inactivating phosphorylations does not generate realistic 

oscillation characteristics. Multiplicity is not observed throughout the MPF 

activation rate by Cdc25A oscillatory parameter space (Figure B). Solid black line 

represents Hopf bifurcation points and encloses the oscillatory region (Figure B). .87 

Figure 15 - Effect of sequential Cdc25A phosphorylations. Top figures are bifurcation 

plots with increasing number of sequential phosphorylations of Cdc25A and 

constant Cdc25A stabilization rate (kn=7.5 nM'Wn'1). The Cdc25A species with 

the maximum number of phosphorylations is considered to be stable for each 

simulation. All Cdc25A species with less than the maximum number of 

phosphorylations are considered liable. Bottom figures are two parameter 

bifurcation plots for Cdc25A stabilization by MPF phosphorylation vs. cyclin B 
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synthesis rate. Increasing the number of Cdc25A phosphorylations has a biphasic 

effect on the size of the region of multiplicity when the Cdc25 A stabilization rate is 

constant. Initially, the system with 1 phosphorylation does not have a region of 

multiple steady states. Increasing the system to 2 phosphorylations increases the 

region of multiple steady states, and an increases to 3 phosphorylations (Figure B) 

increases the size of the region of multiple steady states further. Further increase in 

the number of Cdc25 A phosphorylations results in a decrease in the size of the 

region of multiple steady states (Figure C). From the two parameter bifurcation 

plots (Figure D,E,F), the increase in the number of Cdc25A phosphorylations shifts 

the region of multiplicity (dashed grey line) further into the region of oscillations 

(solid black line). The region of oscillations is expanded over a larger region of 

cyclin Synthesis rate and the minimum Cdc25A stabilization rate where oscillations 

are observed is increased 88 

Figure 16 - Weel Network. Weel A species with less than N phosphorylations are active. 

The Weel A species withN phosphorylations is inactive 89 

Figure 17 - Incorporation of Weel dynamics. The bifurcation diagram for ki6=0.2 is 

shown in figure A. The amplitude of the oscillations is 3 fold larger than the 

original system. There is a slight decrease and increase in the size of the regions of 

oscillations and multiplicity, respectively (figure B). Figure B is a two parameter 

bifurcation of Weel A inactivation by MPF phosphorylation, ki6, vs. cyclin B 

synthesis rate. Dashed lines are limit points, which enclose the region of 

multiplicity. Solid lines are Hopf bifurcation points, which enclose the region of 

oscillations. 90 
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Figure 18 - Multiple WeelA Phosphorylations. From left to right Weel A has 2,4, and 8 

phosphorylations, respectively. The two parameter bifurcations plot WeelA 

inactivation rate vs. cyclin B synthesis rate. Solid lines are Hopf bifurcation points 

and enclose the region of oscillations. Dashed lines are the limit points, which 

enclose the region of multiplicity. As the number of Weel phosphorylations 

increases, the size of the region of oscillations increases at low WeelA inactivation 

rates. The size of the region of multiplicity and oscillations increases and decreases, 

respectively, as the inactivation rate increases further. At high WeelA 

phosphorylations, new Hopf bifurcations and limit points are generated which are 

not observed in the base model (Figure C) 91 

Figure 19 - WeelA with 15 phosphorylations. The expansion of the region of 

oscillations to higher cyclin B synthesis rates overlaps for a region of the WeelA 

inactivation rates. This results in systems with four Hopf bifurcations (Figure B). In 

figure B (ki6=0.6 nM'Imin'1), there is a region of the cyclin B synthesis rate where a 

steady state exists with a stable limit cycle. There is also birhythmic oscillations, 

existence of 2 stable limit cycles, at high cyclin B synthesis rates. At higher WeelA 

inactivation rates, the limit points overlap generating a parameter range where four 

limit points coexist (Figure C). In figure C (ki6=l. 15 nM^min"1), a double Sis 

observed for a region of the cyclin B synthesis rates where five unstable steady 

states coexist 92 

Figure 20 - Growth kinetics and intracellular ATP concentrations for Chinese hamster 

ovary cells under limited glucose conditions. Growth kinetics, p, are captured by 

Monod growth kinetics. Intracellular ATP concentrations follow similar saturable 



kinetics under limited glucose conditions. Figures reprinted from Lu and 

coworkers’ recent paper [10]  

xvi 

96 

Figure 21 - Mitotic Oscillator with ATP Integrated. Transparent species are not active 

whereas solid species are in their active form. Arrows pointing away from the 

protein into space are degradation terms. The larger arrows correlate with increased 

degradation. The yellow circles with P’s in the middle symbolize individual 

phosphorylations. Enzymes involved in reactions are shown as small icons next to 

the reaction arrow. In the case of protein synthesis, ATP is a necessary substrate. 

The central protein in mitosis is MPF that is formed by the trimer of cyclin B, CDK1 

and ATP. MPF forms a positive feedback and double negative feedback loop with 

Cdc25A and Weel, respectively. MPF stabilizes Cdc25A by phosphorylation that is 

otherwise highly degraded. Cdc25 A removes the inhibitory phosphorylations on 

inactive species of MPF activating them. Conversely, MPF destabilizes Weel by 

increasing its degradation by phosphorylation. Weel inhibits MPF by 

phosphorylation within MPF’s ATP binding pocket. MPF forms a negative 

feedback loop with APC by activating APC through phosphorylation. 

Consequently, active APC degrades all cyclin B species and Cdc25A species 97 

Figure 22 - ATP requirement for protein synthesis. When the Michaelis-Menten constant 

is zero (Km=0), ATP is not required for protein synthesis (Figure A). A second 

oscillatory region at low ATP concentrations is generated when ATP is not required 

for protein synthesis. As the requirement for ATP increases (Km=0.5), the 

oscillatory region at low ATP concentrations is destroyed (Figure B). This 
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parameter set was utilized as our base case and is presented in ATP Model 

Equations and Parameters with a description of each parameter 100 

Figure 23 - Weel ATP interaction with no requirement of ATP for protein synthesis. In 

the lower oscillatory region (Km=0 ATP=0.2 mM), the majority of the Weel species 

do not have ATP bound and therefore are inactive (Figure A). Active Weel species 

have ATP bound and can phosphorylate MPF. Therefore, I investigated the 

dimerization rate of Weel and ATP by two-parameter bifurcation (Figure B). Note 

the log scale on both axes. The y-axis is the dimerization rate of Weel and ATP. 

The x-axis is the bifurcation parameter, ATP. The solid black line tracks the 

movement of the Hopf bifurcation points and encloses the region of oscillations. 

The dashed black line is the dimerization rate of the base case, which has two 

regions of oscillatory behavior when ATP is not required for protein synthesis 

(Km=0). As the Weel ATP dimerization rate is increased, the lower oscillatory 

region is shifted to lower ATP concentrations and is eventually destroyed 100 

Figure 24- Slow dimerization of cyclin B and CDK1. When the dimerization process is 

slow (ks=0.01), the bifurcation diagram maintains most of the key features of the 

ideal cell cycle (Figure A). However, the region of multiplicity disappeared and the 

oscillations are less frequency encoded. Furthermore, the oscillatory region has 

shifted to higher ATP concentrations. The main difference between fast and slow 

dimerization is the amount of cyclin B not used during the cell cycle (Figure B). 

The black and red lines are the systems with fast (ks=l, base case parameter set) and 

slow dimerization, respectively. The dashed lines are the total concentration of 

cyclin B in the system and the solid lines are the concentrations of cyclin B 
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monomer. All the cyclin B proteins are dimerized with CDK1 when the system has 

fast dimerization. There are essentially no cyclin B monomers in the system (solid 

black line). When there is slow dimerization, some of the synthesized cyclin B 

never dimerizes with CDK1 (solid red line) and more total cyclin B is necessary to 

generate the same oscillations (dashed red line). Hence, slow dimerization utilizes 

cyclin B inefficiently 102 

Figure 25 - Unstable MPF Complex. When the CAK phosphorylation is removed at a 

fast rate (k7=10), the MPF complex becomes unstable. There is a decrease in the 

amplitude of MPF-ATP, and the size of the region of multiplicity decreased (Figure 

A). When the CAK phosphorylation is stable and therefore MPF is stable, there are 

minimal concentrations of cyclin B monomers and unphosphorylated cyclin B- 

CDK1 dimers; black dashed and solid lines, respectively (Figure B). Note the log 

scale on the y-axis. When the CAK phosphorylation is unstable and therefore MPF 

is unstable, orders of magnitude more cyclin B monomers and unphosphorylated 

cyclin B-CDK1 dimers are present in the system (red dashed and solid lines, 

respectively). There is a peak in unphosphorylated cyclin B-CDK1 dimers that 

corresponds to the activation of MPF. When Cdc25A activates MPF, the unstable 

CAK phosphorylation is removed and MPF becomes an unphosphorylated cyclin B- 

CDK1 dimer that cannot bind ATP to phosphorylate substrates. Thus, the cell must 

synthesize more cyclin to overcome the loss of active MPF because of the unstable 

active phosphorylation provided by CAK 103 

Figure 26 - MPF ATP Dimerization Rate. As the dimerization rate increases, the 

oscillatory region is shifted to lower ATP concentrations while maintaining all the 
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key characteristics of the ideal mitotic oscillator. In figure A, ks=0.1 and in figure 

B, kg=10,, which is the base case parameter set 104 

Figure 27 - Model Tuned to Relative ATP Concentration. The ATP concentration has 

been scaled by a maximum intracellular ATP concentration so that the range of the 

x-axis is zero to unity (Figure A). The oscillatory region falls between 0.5 and unity 

as approximated from experimental data [10]. The oscillations are frequency 

encoded and a region of multiplicity exists. The lower steady state at low relative 

ATP concentrations models quiescent and G2 arrested cells. The period of the 

oscillations is characteristic of mammalian cells (Figure B) 105 

Figure 28 - Weel Inhibition Networks. Arrows pointing out into blank space represent 

degradation. The larger arrows indicate increased degradation. Transparent species 

are not active and therefore cannot phosphorylate MPF. The small green and yellow 

species is MPF, which catalyzes the phosphorylation of Weel. The model analysis 

to this point incorporated the Weel subnetwork where MPF phosphorylation only 

induces increased degradation. Since MPF phosphorylation induces both kinase 
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region of multiplicity of steady states. The size of the oscillatory region has shrunk 

because of the larger positive feedback 108 

Figure 30 - Two-parameter bifurcation plots for liable Weel degradation rate versus ATP 

concentration. The liable Weel species have been phosphorylated by MPF at serine 

123 and therefore have increased degradation. The relative ATP concentration 

parameter set was utilized. However, since the systems are not tuned for relative 
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steady state solutions, which enclose the region of multiplicity. At a limit point, the 
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stabilize Weel. When MPF inhibits Weel only through degradation, as the 
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inhibits Weel, a decrease in degradation rate shrinks the size of the region of 

multiplicity and expands the size of the oscillatory region. However, the system 

does not have a region of multiplicity when the increased degradation becomes 

equal to background degradation. When MPF inhibits Weel then increases Weel 

degradation, changing the degradation rate does not affect the oscillatory region or 

region of multiplicity. Even when increased degradation becomes background 

degradation, the system maintains multiplicity and a tuned region of oscillations. 110 



XXI 

Figure 31 - Mitotic Oscillator Linked to Glucose. Glucose has been linked to the relative 

intracellular ATP concentration by saturable kinetics. The bifurcation parameter is 

extracellular glucose. The model maintains all ideal mitotic oscillator 

characteristics: region of multiplicity, frequency encoded oscillations, a lower steady 

state at low glucose concentrations where the cells are quiescent, and the correct 

order of magnitude for MPF amplitude (Figure A). The period of the model has 

been tuned for the fibroblast data obtained earlier in Dr. Zygourakis’s lab at Rice 
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Chapter 1 - Introduction 

During mitosis, a mother cell partitions it contents and divides into two daughter 

cells. The successful division of cells is necessary for all life forms from single cells like 

bacteria and yeast to multicellular organisms such as humans. In humans, cellular 

division occurs throughout our lifetimes and is a key process in wound healing and tissue 

regeneration. My thesis work implements the first steps in developing a proliferation 

model that can be implemented into a model for bioartificial tissue regeneration by 

creating a biologically based mitotic oscillator model that is linked to the extracellular 

environment. 

Our group carries out experimental and modeling studies to increase the 

understanding of the fundamental processes involved in bioartificial tissue regeneration 

[1-9]. A model for bioartificial tissue regeneration incorporates many different 

submodels (Figure 1). All the submodels flow into the bioartificial tissue regeneration 

model at the bottom. One level above the bioartificial tissue regeneration model, the 

middle level, are the models for the individual cells, the scaffold, and the environment. 

All of the models interact within this level. For example, the individual cell model is 

reacting to the scaffold and the extracellular environment to migrate, proliferate or die. 
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Figure 1 — Hierarchy of Bioartificial Tissue Model. At the bottom level is the full bioartificial tissue 
model. The middle level contains the key areas of the tissue regeneration process, individual cells, the 
tissue scaffold, and the environment. These models interact with each other and dictate the observed 
phenomena of the overall model. The processes dictating the behavior of the environment, scaffold, and 
individual cells compose the top level of the hierarchy. Individual cells have proliferation and migration 
models for individual cells, and the environment has mass transport, production, and consumption models 
for growth factors, nutrients, and waste products. All of these sub-models combine into the overall 
bioartificial tissue model. This work initiated the first steps developing a biologically based proliferation 
model for individual cells (red). 

The processes dictating the behavior of the environment, scaffold, and individual 

cells are located at the top level. The environmental model incorporates the mass 

transfer, consumption, and production of growth factors, nutrients, and waste products. 

The scaffold model describes the three dimensional structure that dictates how and where 

cells have the ability to migrate and proliferation. Finally, the single cell models describe 

the cellular process of migration and proliferation. 

Advances in any submodel improve the overall bioartificial tissue regeneration 

model. Therefore, this work focuses solely on the development of a single cell 
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proliferation model. I began by creating a mitotic oscillator model based on the core 

proteins of mitosis, and then incorporated ATP into the core model. Then, extracellular 

glucose was linked to the ATP concentration. 

There remains uncertainty in the mitotic protein network structure, and how 

different mitotic protein network structures affect the behavior of the systems. Therefore, 

to gain insight into the effect of the mitotic protein networks structure, the initial mitotic 

oscillator was developed utilizing a bottom-up approach, which allowed the model to be 

minimal in the early stages. Implementing the bottom-up approach, I incorporated only 

the bare essential elements of mitosis while maintaining the model’s biological integrity 

to create a base model. 

After completing a sensitivity analysis on the base model, I began the mitotic 

protein network structure analysis. The base model was augmented to include six 

different networks for the activation of the central protein involved in initiating mitosis, 

the metaphase promoting factor (MPF). Each of the activation networks arranged the 

phosphorylation order on MPF differently, and therefore is coupled with multisite 

phosphorylation. Next, the number of phosphorylations on the protein in a positive 

feedback loop with MPF was varied to elucidate the effect of multisite phosphorylation. 

To gain insight into the role of multiple positive feedback loops involved in MPF 

activation, an additional protein was incorporated into the model. Finally, the number of 

phosphorylations on the protein in the additional positive feedback loop was varied to 

conclude the analysis of multisite phosphorylation. 

With an ultimate goal of developing a proliferation model for the bioartificial 

tissue regeneration model, the next logical progression was to link the mitotic oscillator 



to the environment. Therefore, I began by incorporating ATP, a cellular energy source, 

into the model. ATP is involved in multiple aspects of the model and is correlated with 

the extracellular glucose concentration [10], and thus bridged the link between the 

extracellular environment and the mitotic oscillator. However, there remains uncertainty 

in the mechanism involved in inhibiting the additional positive feedback protein, Weel, 

at the initiation of mitosis. Therefore, four mechanisms were analyzed to gain insight 

into Weel inhibition during the initiation of mitosis. Utilizing the Weel mechanism that 

provided the cell with the most control over the initiation of mitosis, ATP was linked to 

extracellular glucose. The final mitotic model is linked to extracellular glucose through 

ATP, thereby producing a proliferation model modulated by the extracellular 

environment. 

In the following chapter, the biology of the mitotic proteins is presented followed 

by a chapter on the prior cell cycle modeling. I then present the methods utilized in this 

work. The mitotic oscillator is developed including the mitotic protein network structure 

and multisite phosphorylation studies. The mitotic oscillator is then linked to the 

extracellular environment and the Weel inhibition network is analyzed. Finally, 

concluding remarks are presented along with proposed future projects. 
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Chapter 2 - Biology of Mitosis 

The cell cycle has intrinsic, extrinsic, and external components [11]. The intrinsic 

components are executed during every cell cycle and include the essential proteins that 

compose the core of the cell cycle. The extrinsic components include proteins that arrest 

the cell cycle and act as checkpoints to problems that arise in the cell cycle including 

responses to DNA damage or unaligned chromosomes at metaphase. The external 

components balance growth between cells in an organism including cell-cell contacts, 

growth factors, and nutrients. This work focused on linking extracellular nutrients, an 

external component, to the intrinsic cell cycle components controlling the end of mitosis, 

but first a brief summary of the essential elements of the molecular control of mitosis is 

necessary. For a more thorough review of the molecular control of the mammalian cell 

cycle see Obaya and Sedivy’s recent review and chapter 13 of Krauss’s book [11,12] 

First, I introduce the central protein families that control the progression through 

the cell cycle, cyclin dependent kinases (CDKs) and cyclins. The key regulators of the 

mitotic CDK and cyclin are then presented. These include CAK, the Weel family of 

kinases, the Cdc25 family of phosphatases, and the anaphase promoting complex (APC). 

2.1. Cyclin Dependent Kinases 

The cell cycle is controlled by the activity of cyclin dependent kinases (CDKs) 

and their activating subunits, cyclins. Cyclins were discovered in 1983 in sea urchin 

embryos as proteins that oscillated with the cell cycle [13]. Cyclins activate their 

corresponding CDK by dimerization and determine substrate specificity of the CDK [11]. 

CDKs are Ser/Thr-specific protein kinases [11] and transduce their signal by utilizing 



ATP to phosphorylate their substrates. Cyclin CDK dimerization allows ATP to bind to 

the active center of the CDK [11]. 

6 

The yeast cells cycle incorporates only a single CDK: protein p34cdc2 in fission 

yeast and protein p34cdc28 in budding yeasts [11]. However, mammalian cells have at least 

10 CDKs, CDK1 to CDK10, [11] and multiple cyclins that are expressed during different 

phases of the cell cycle [12]. Cyclin-CDK activity is localized to the nucleus. 

Quiescent cells are transitioned back into a proliferation state by mitogenic 

signals in their environment. The signal cascade initiated by the mitogenic signals 

triggers the synthesis of cyclin D. Unlike the other cell cycle cyclins, cyclin D 

concentration remains roughly constant throughout the cell cycle in proliferating cells. 

Cyclin D binds to CDK4 and CDK6, and both active cyclin D and the mitogenic signal 

stimulate the synthesis of cyclin E. Cyclin E binds to CDK2 and initiates DNA synthesis 

and S phase entry. S phase entry triggers the accumulation of the mitotic cyclins. 

2.2. Mitotic Cyclins 

Cyclin A and B are considered the mitotic cyclins [14], but the role of cyclin A is 

not completely understood. Cyclin A binds with both CDK1 (also known as Cdc2) and 

CDK2 to form an active complex. Cyclin B binds to CDK1 to form the metaphase 

promoting factor (MPF) which was first purified in 1988 from Xenopus [15]. Although 

both cyclins are considered the mitotic cyclins, they appear at different times during the 

cell cycle. Cyclin A begins to accumulate in late G1 and degrades in early mitosis. 

Cyclin B begins to accumulate in late S phase and degrades abruptly at the end of mitosis 

[11]. 
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Figure 2 - Regulation of MPF during the cell cycle. The arrows with plus signs indicate that the lead 
protein up regulates the terminal protein. Conversely, the arrows with minus signs indicate that the lead 
protein down regulates the terminal protein. Upon dimerization of cyclin B and phosphorylation by CAK, 
CDK1 activates and is known as the metaphase promoting factor (MPF). The Weel family of kinases 
inhibits MPF by phosphorylating CDK1. MPF down regulates the Weel family of kinases by 
phosphorylation forming a double negative, or positive, feedback loop. The Cdc25 family of phosphatases 
removes the inhibitory phosphorylations on CDK1, thus activating MPF. MPF up regulates the Cdc25 
family of phosphatases, thereby forming an additional positive feedback loop. MPF also up regulates the 
anaphase promoting complex (APC), a protease. Activated APC degrades cyclin B and the Cdc25 family 
of phosphatases forming a negative feedback loop. 

The fall of MPF activity prompts the end of the cell cycle. In order to ensure that 

mitosis is not initiated before DNA synthesis and cellular material doubling occur, the 

cell maintains tight control of MPF activation. Cyclin B dimerization and subsequent 

phosphorylation control the activity of CDK1, and therefore MPF (Figure 2). CDK1 has 

2 inhibitory phosphorylation sites, threonine 14 and tyrosine 15, and one activating 

phosphorylation site, threonine 161 [16]. The phosphorylations of CDK1 are facilitated 

by cyclin B binding [17]. Weel and Mytl kinases are responsible for the two inhibitory 
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phosphorylations on CDK1, and Cdc25 phosphatases remove the inhibitory 

phosphorylations activating MPF. When CDK1 is phosphorylated at a single and both 

inhibitory sites, MPF has 10% and 1% the activity of unphosphorylated MPF, 

respectively [18]. CDK activating kinase (CAK) is responsible for the phosphorylation 

of CDK1 at the activating phosphorylation site. The following sections introduce the 

proteins that phosphorylate and dephosphorylate CDK1 including CAK, the Weel family 

of kinases, and the Cdc25 family of phosphatases. 

2.3. CAK 

CAK phosphorylâtes the t-loop of CDK1 (Thrl61), CDK2 (ThrlôO), CDK4 

(Thrl72), and CDK6 (Thrl72) [11]. CAK activity levels remain roughly constant 

throughout the cell cycle. Binding of cyclin and phosphorylation of the t-loop allows 

optimal access to the substrate binding pocket [11]. The t-loop blocks the substrate 

binding pocket when it is not phosphorylated [11]. When cyclin A-CDK2 is 

phosphorylated at ThrlôO, its activity is increased 300 fold [11]. In vivo, CAK 

phosphorylation stabilizes the cyclin B-CDK1 dimer which without phosphorylation at 

Thrl61 cannot be observed experimentally [19]. 

2.4. Weel and Mytl 

In vertebrates, CDK1 is phosphorylated at both tyrosine 15 (Tyrl5) and threonine 

14 (Thrl4) [20]. Thrl4 phosphorylation is not observed without Tyrl5 phosphorylation 

which suggests that Tyrl5 phosphorylation occurs before Thrl4 phosphorylation [21]. 

Weel kinase phosphorylâtes CDK1 at Tyrl5 and Mytl, another Weel family member, 

phosphorylâtes CDK1 at both Thrl4 and Tyrl5 [17, 22]. Thrl4 and Tyrl 5 reside in the 
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ATP binding pocket and when phosphorylated prevent ATP binding, which inhibits the 

CDK [23]. In mammalian cells, there are two forms of Wee 1, Weel A and Wee IB [17]. 

Weel A and Wee IB are synthesized in somatic and embryonic cells, respectively. Since 

this work focuses on the cell cycle of mammalian somatic cells, this section concentrates 

on the regulation of Weel A, also known as WeelHu, and Mytl. 

The catalytic region of the Weel A was initially characterized by Igarashi and 

colleagues and subsequently the kinetic capabilities were analyzed [24,25]. The full 

protein was isolated later, but found to have the same kinase activities [26], Weel A is 

localized to the nucleus [27]. In vitro, Weel A is able to phosphorylate CDK1 and CDK2 

when they are associated with cyclin A, Bl, or E [20]. Weel A cannot phosphorylate 

cyclin D1 associated CDKs [20]. Weel A protein levels increase during S and G2 phases 

and decrease in M phase due to phosphorylation [20]. 

CDK1 regulates Weel A activity through phosphorylation and subsequent 

proteolysis [28]. In vitro, CDK1 can phosphorylate Weel A, but cannot inhibit Weel A 

kinase activity [20]. Polo-like kinase 1 and CDK1 phosphorylate Weel A on serines 53 

and 123, respectively, which induces the proteolysis cascade. The key step appears to be 

CDK1 phosphorylation [17,28]. Although this single site is necessary for degradation, 

human somatic cell Weel A contains a total of 15 potential CDK phosphorylation sites 

[29]. This work analyzes the role of the 15 CDK phosphorylation sites on Weel A in the 

initiation of mitosis. 

In mitosis, hyperphosphorylated WeelHu has 8 to 15 fold decrease in activity 

when compared to the G2 phase when a similar amount of total WeelHu was measured 

[20]. The lower kinase activity is observed in the following G1 phase where WeelHu 
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has a 3 to 5 fold less activity when compared to the previous G2 phase activity at the 

same protein level [20]. Since WeelA is inhibited during mitosis, this work elucidates 

the role of WeelA inhibition as an additional feedback mechanism during MPF 

activation during mitotic initiation. 

Embryonic Weel, WeelA in Xe nopus oocytes and Wee IB in humans, is 

regulated in a different manner. There have been 5 mitotic phosphorylation sites 

identified in Xenopus Weel, all of which are phosphorylated by CDK1 [22]. Two sites, 

Thrl04 and Thrl50, are conserved across species including somatic Weel and inhibit 

Weel kinase activity during mitosis [22]. The other three sites are not conserved across 

species, but are required for a mitotic gel shift in Xenopus [22]. Weel also positively 

autophosphorylâtes on Tyr90, Tyrl03, and Tyrl 10 [22]. Embryonic Weel is down 

regulated by MPF by only kinase inhibition, and therefore permits the initial 

incorporation of Weel incorporated a simple mechanism. 

The other CDK inhibitory kinase, Mytl, was purified and characterized a few 

years after WeelA [30]. It is a membrane bound protein localized to the endoplasmic 

reticulum (ER) and Golgi complex [18]. Mytl can regulate CDK1 activity by two 

mechanisms [31]. Mytl can bind and sequester cyclin B-CDK1 keeping it from entering 

the nucleus and while bound phosphorylate CDK1 at its inhibitory sites. These 

mechanisms were shown in a set of experiments by Liu and colleagues [32]. First they 

observed that overproduction of kinase active Mytl delays HeLa cells in the G2 phase. 

They then observed that overproduction of kinase inactive Mytl was also able to delay 

the cell cycle in G2, but not as significantly as overproduction of kinase active Mytl. 

Overproduction of Mytl with the cyclin B-CDK1 interaction domain deleted, restored 
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nuclear shuffling in vivo, and Mytl would not bind with cyclin B-CDK1. CDK1 was not 

phosphorylated by Mytl when the binding domain was deleted, and therefore cyclin B- 

CDKl-Mytl complex formation is necessary for Mytl inhibitory phosphorylation [32]. 

With the cyclin B-CDK1 interaction domain intact, Mytl can phosphorylate 

CDK1 on Thrl4 and Tyrl5 when cyclin is bound, but preferentially phosphorylâtes 

CDK1 on Thrl4 [18]. Mytl phosphorylâtes CDK1 at Thrl4 when Tyrl5 is mutated to 

phenylalanine, but poorly phosphorylâtes CDK1 at Tyrl5 when Thrl4 is mutated to 

alanine [18,30]. Thus, only a single Weel kinase is necessary to phosphorylate CDK1 at 

both inhibitory sites, and therefore, a mitotic model does not need to incorporate both 

Weel A and Mytl. 

Mytl has 5 CDK phosphorylation sites and is inactivated directly in a 

phosphorylation dependent interaction which requires one or more of the five sites [31]. 

In vitro, CDK1 phosphorylation of Mytl does not inhibit its kinase activity [33], but the 

phosphorylations could decrease the binding of cyclin B-CDK1 [32]. Hence, MPF down 

regulates Mytl by multisite phosphorylation, which is a topic analyzed by this work. 

2.5. Cdc25 

The Weel family of kinases inhibits CDK1 prior to mitosis, but to initiate mitosis, 

the inhibitory phosphorylations must be removed from CDK1 to activate MPF. The 

Cdc25 family of phosphatases activates CDKs by sequentially removing the inhibitory 

phosphorylations Thrl4 and then Tyrl5 [34], Cdc25 was first discovered in fission yeast 

as a factor that was required for mitosis [35], and therefore was an essential component 

included throughout modeling work. For more thorough reviews on the Cdc25 
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phosphatases and their role throughout the cell cycle, refer to the following papers [36- 

39]. 

Higher eukaryotes, including humans, have three forms, Cdc25 A, Cdc25B, 

Cdc25C [11]. Cdc25A plays a general role in the cell cycle because it is involved in the 

initiation of both major cell cycle transitions, Gl/S and G2/M [37]. The c-Myc and E2F 

transcription factors increase Cdc25A expression in mid to late G1 [40-42]. Cdc25A 

activates cyclin E-CDK2 which in turn activates Cdc25A through phosphorylation [43]. 

Cdc25A then activates cyclin A-CDK2 [44]. Cdc25A is liable during G1 and begins to 

accumulate during S and G2 [45]. The liable form of Cdc25A is degraded by SCFBTRCP 

ubiquitin ligase [37]. During mitosis, Cdc25A is stabilized by MPF phosphorylation at 

serine 18 and serine 116 [46]. The stabilized form of Cdc25A is not recognized by 

SCFBTRCP ubiquitin ligase. MPF is in turn a substrate of Cdc25 A which contributes to 

MPF auto amplification at the onset of mitosis [46]. At the end of mitosis, Cdc25A is 

degraded by APCCDH1 to restart the cell cycle [37]. 

Cdc25B and Cdc25C are primarily involved in the G2/M transition [47-49]. 

Cdc25B levels increase during S phase and peak at the G2/M transition when it is 

hypothesized to initiate MPF activation [47, 50]. The small amount of activated MPF 

then activates Cdc25C which in turn fully activates MPF [51, 52]. Unlike Cdc25A and 

Cdc25B, Cdc25C protein levels remain roughly constant throughout the cell cycle [47, 

49, 53, 54]. Cyclin A-CDK1 phosphorylâtes Cdc25B during mitosis which initiates 

degradation through ubiquitin proteolysis [55]. Both Cdc25A and Cdc25B have a 

nonphosphorylated site that is recognized by SCF for degradation [56]. 
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The role of each of the isoforms of Cdc25 throughout the cell cycle is still not 

well understood. Overexpression of Cdc25A activates CDK2 prematurely leading to a 

shorter G1 phase [44, 57], but overexpression of Cdc25A also induces mitotic events 

[58]. Antibodies targeting Cdc25A induce G1 arrest [43,54]. Overexpression of 

Cdc25B or Cdc25C results in premature mitosis, but Cdc25B overexpression is more 

efficient [38, 59], Likewise, antibodies targeting Cdc25B or Cdc25C or transfection with 

inactive Cdc25B or Cdc25C induce G2 arrest [47-49]. Targeting either Cdc25A or 

Cdc25B results in G2 delay and targeting both leads to G2 arrest [50]. Although Cdc25B 

and Cdc25C are primarily involved in the G2/M transition, both proteins were observed to 

be involved in S phase initiation in human cells even in the presence of functional 

Cdc25A [60, 61]. However, Cdc25C‘/‘ knockout and Cdc25Bv‘ Cdc25C'/' double 

knockout mice develop normally suggesting that Cdc25A can compensate for all 

phosphatase functions throughout the cell cycle [62-64]. Therefore, this modeling work 

focused solely on the Cdc25A protein. 

The exact biological mechanism between MPF and the Cdc25 phosphatases is 

still being investigated, but all involve multisite phosphorylation. Cdc25A has 12 

potential CDK1 and CDK2 phosphorylation sites [39]. MPF stabilizes the protein by 

inhibiting SCF mediated degradation by phosphorylating serine 18 and serine 116 [46]. 

Cdc25B has 14 potential CDK1 and CDK2 phosphorylation sites, but their function is not 

known [39]. Cdc25C has 6 potential CDK1 and CDK2 phosphorylation sites and MPF 

mediated phosphorylation increases the phosphatase activity during the G2/M transition 

[39]. Although the potential number of MPF phosphorylation sites and in some cases the 

function of the phosphorylation, the number of necessary phosphorylations and the order 
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in which they occur is still not understood, and therefore, this thesis work analyzes the 

effect of multisite phosphorylation on the mitotic system. 

2.6. APC 

Cyclins are also controlled by proteolysis throughout the cell cycle. SCF is active 

during Gl/S, and APC (cyclosome) is active during mitosis [11]. SCF substrates must be 

phosphorylated at specific residues to be recognized, but APC substrates do not have to 

be phosphorylated [11]. APC is composed of 11 subunits and has high activity from late 

mitosis to late G1 [11]. APC has two activating subunits, Cdc20 and Hctl/Cdhl [11]. 

Cdc20 activity is high during early anaphase through the exit of mitosis when Hct/Cdhl 

activity rises and remains high until the end of G1 [11]. APC substrates include cyclin A, 

cyclin B, mitotic protein kinases, inhibitors of anaphase, spindle-associated proteins, and 

inhibitors of DNA replication [11]. MPF activates APC at the end of mitosis, and active 

APC degrades cyclin B species and Cdc25A the process by which the cell cycle is reset. 

Therefore, APC is an essential component for the mitotic process, and thus was included 

through all model iterations in this work. 

Cell cycle modeling has been a prominent research area for over three decades. 

The first models based on biology incorporated only the negative interaction between 

cyclin B and APC, but recent work has produced highly complex models that incorporate 

multiple cyclins and their regulatory subnetworks. The following chapter presents the 

prior cell cycle modeling works. 
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Chapter 3 - Cell Cycle Modeling 

This thesis work developed the first mitotic oscillator linked to the extracellular 

environment. Our model also incorporates recent biology that has not been accounted for 

in previous models. Furthermore, this model is the first to employ ATP as the link 

between the environment and mitosis. This chapter reviews the previous modeling work 

for the cell cycle. 

Models for the cell cycle have been investigated for over 3 decades. Early models 

were based upon hypothetical oscillators that mimicked the oscillations observed in 

bacteria [65-67]. As the proteins involved in the cell cycle were discovered, cell cycle 

modeling shifted from hypothetical mechanisms towards deterministic models based on 

protein interactions. Similar to an experimentalist’s approach, the first systems modeled 

were simple and were followed by the more complex systems. The first deterministic 

models were mitotic oscillators based on experimental data from frog embryos and 

extracts. Then, models capturing the protein dynamics of yeast systems were formed 

from experimental gene knockout data. Finally, models of the cell cycle checkpoints 

were analyzed which led to models of highly complex systems like mammalian cells. 

3.1. Mitotic Oscillators 

The first models of the mitotic oscillators were largely based on the negative 

feedback between cyclin and the Anaphase Promoting Complex (APC). The positive 

feedback mechanisms were incorporated and were followed by the addition of cyclin 

Dependent Kinase Inhibitors (CKI). These initial models were the precursors to more 

complex models that capture a broad spectrum of observed cell cycle phenomena. 
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The first mitotic model was proposed by Hyver and Guyader [68]. The intent of 

this model was to deduce whether cyclin and p34 kinase, a cyclin Dependent Kinase 

(CDK), dimerized to form Metaphase Promoting Factor (MPF), or whether cyclin 

activates pre-MPF into active MPF. They found that the system based on dimerization 

was able to oscillate without any constraints. Consequently, the system based on cyclin 

activation required that cyclin and MPF react stoichiometrically in order to observe 

oscillations. Both models incorporate active and inactive p34, cyclin, and MPF. Mass 

action kinetics are assumed for both mechanisms. 

Norel and Agur proposed a mitotic oscillator that incorporated cyclin and MPF 

[69]. In the model, cyclin was synthesized and incorporated into MPF. MPF was created 

at a basal rate proportional to cyclin and autocatalytically proportional to cyclin and 

MPF. MPF promoted its own degradation with Michaelis-Menten kinetics. The system, 

composed of two species and four parameters, produced sinusoidal oscillations. This was 

the first model to incorporate MPF’s autocatalytic activation. 

Goldbeter developed a mitotic oscillator for the cyclin-CDK cascade that 

comprises three differential equations for cyclin, active cyclin-CDK, and a degradation 

protein [70]. In the model, cyclin promotes the activation of cyclin-CDK. Active 

cyclin-CDK then activates the degradation protein. The phosphorylated form of each 

species is active, and the inactive form is not phosphorylated. Only the active forms of 

the species are accounted for by differential equations. The degradation protein then 

degrades cyclin, generating a negative feedback loop. All the species were scaled by 

their maximum, and thus all species have a maximum value of unity. 
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Goldbeter’s model utilized zero order ultrasensitivity and time delays to capture 

the cell cycle oscillations. Zero order ultrasensitivity dynamics are characterized by 

Michaelis-Menten rate forms with Michaelis-Menten constants that are orders of 

magnitude smaller than the maximum concentration. Zero order ultrasensitivity 

dynamics generate sigmoidal response curves that act as switches. Therefore, by turning 

the switches on and off in succession, the model generates oscillations. 

Tyson and his coworkers have been working on stochastic and probabilistic 

models of the cell cycle throughout the 70s and 80s [71-79]. Tyson published his first 

deterministic mitotic model incorporating a biological mechanism in 1991 [80]. The 

model, like earlier models, captures the minimal mechanism of a single cyclin-CDK 

organism. Tyson’s model started with six species that he reduces to two species to study 

with phase plane analysis. The phase plane analysis followed active cyclin-CDK with 

two key parameters: the active cyclin-CDK autocatalytic and degradation parameters. 

Tyson found that the autocatalytic activation of cyclin-CDK is essential for oscillation 

dynamics. In the model, the autocatalysis term is second order with respect to active 

cyclin-CDK, but when it is first order, limit cycle and an excitable lower steady state are 

not observed. 

Obeyesekere and coworkers reviewed the previous cell cycle models and studied 

the physical limitations of the models [81]. All of the models capture the same behavior 

and differ mainly in the assumed phenomenological nonlinear terms. Obeyesekere and 

coworkers found that of the three proposed models by Norel and Agur, the first can go to 

negative concentrations, the second always has positive concentrations, and the third, 

which Norel and Agur were not able to get to oscillate, does oscillate with the right 
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parameter set. They also found that Tyson’s model has the limitation that it can go to 

negative concentrations. Thron also reevaluated Norel and Agur’s model and proposed 

three new models [82]. Obeyesekere and coworkers determined that Thron’s first two 

proposed models always have positive concentrations and a stable periodic orbit for the 

correct parameter space, but Thron’s last model can produce negative concentrations. 

Obeyesekere and coworkers also generated three models by combining aspects of the 

earlier models or using variations on the nonlinear assumptions. The newly generated 

models did not have the physical limitations of the previously published models. Overall, 

Obeyesekere and coworkers analyzed ten models. Each model would result in a different 

biochemical reaction network, and thus the models do not capture the biological 

mechanism. Rather, the models capture the behavior of the dynamics of the species. The 

studies published by Obeyesekere and coworkers reveal that multiple models can 

simulate the same behavior. For this reason, a thorough analysis of protein network 

structure is carried out in this thesis work. 

The next advance in the mitotic oscillators was the incorporation of the proteins 

involved in the autocatalytic activation of MPF. The first mechanisms that were 

investigated involved the positive and double negative feedbacks generated by Cdc25 and 

Weel, respectively. MPF activates Cdc25 that activates MPF to form a positive feedback 

loop. MPF inhibits Weel, and Weel inhibits MPF to generate a double negative 

feedback loop. 

Novak and Tyson extended Tyson’s minimal model by incorporating Cdc25, 

Weel, CAK, and INH [83]. The Cdc25 and CAK proteins activate the cyclin-CDK 

complex. In contrast, the Weel and INH proteins inactivate the cyclin-CDK complex. 
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The positive feedback loop between MPF and Cdc25 generates the instabilities necessary 

for oscillations in the model. Following the same strategy as Tyson’s first work, the 

system was reduced to two species and analyzed with phase plane analysis. The 

parameters analyzed in the phase plane analysis were total cyclin and active cyclin-CDK. 

Novak and Tyson hypothesized that Cdc25 linked cell growth to the cell cycle, and that 

the ratio of Cdc25 to Weel controls the length of the cell cycle. Their model was the first 

attempt to link the cell cycle to cell growth utilizing the biological mechanism. 

In their next model, Novak and Tyson then incorporated Weel as a dynamic 

species in the Xenopus model [84]. Again, the system was then analyzed with phase 

plane analysis and response curves. Total cyclin was used as the main modeling 

parameter because it is a controlled variable in Xenopus extracts. Novak and Tyson 

found that positive feedback between MPF and Cdc25 and Weel contributed to 

thresholds and time delays. The negative feedback loop drove oscillations, but the 

positive feedback loops would also drive oscillations if there were abrupt 

dephosphorylation of MPF. 

The response curve for total cyclin versus active cyclin takes on a N-shape [84]. 

Thus, as total cyclin passes a threshold, there is a spike in the active cyclin concentration 

that triggers the activation of the protease. The protease then degrades the cyclin and 

resets the system to below the threshold. 

Their model exhibits two types of oscillatory behavior. One is driven by MPF 

phosphorylation-dephosphorylation cascades, which are observed in Xenopus extracts. 

The other is induced by cyclin degradation due indirectly to MPF activity, which is 

observed in early Xenopus embryos. Novak and Tyson observed that increasing the 
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cyclin synthesis rate changes the oscillatory behavior from positive feedback dominated 

oscillations to negative feedback dominated ones. 

Novak and Tyson then investigated how DNA damage, which is known to 

increase Weel activity and degrade Cdc25, shifted the response curve. DNA damage 

shifts the activation of Cdc25 and inactivation of Weel to higher concentrations of active 

MPF. By increasing Weel or decreasing Cdc25, the response curve shifts to higher total 

cyclin amounts, thereby resulting in division time delay or cell cycle arrest. 

Borisuk and Tyson analyzed the Xenopus oocyte model with bifurcation analysis 

[85]. The primary bifurcation parameter was cyclin synthesis because this variable can 

be controlled experimentally in the Xenopus oocyte extracts. The system has a stable low 

MPF steady state, stable high MPF steady state, and limit cycle behavior. The upper 

bifurcation is a supercritical Hopf bifurcation, and the lower bifurcation is a saddle node. 

The system also produced multiplicity where the interphase MPF steady state coexisted 

with the mitotic MPF steady state. Also, the coexistence of two stable limit cycles with 

different amplitude and period was observed over a range of the parameter space. The 

system was also analyzed with two parameter bifurcation where cyclin degradation, total 

Weel, and total Cdc25 were analyzed over the cyclin synthesis range. 

Novak and Tyson’s Xenopus oocyte model was then updated with a more accurate 

unreplicated DNA checkpoint [86]. The entry of mitosis is delayed by three mechanisms: 

activation of a CKI or Weel, and inactivation of Cdc25. The updated model has 15 

differential equations and 36 parameters with total Cdc25, Weel, APC, and APC 

intermediate enzyme (IE) concentrations remaining constant. The model accounts for 

five states of the cyclin CDK complex, four states of the cyclin CDK CKI trimer, free 
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phosphorylated CKI, and active Cdc25, Weel, APC, and IE. The work utilized the 

experimental data to gain better estimates of the rate constants in the model as well as 

update the protein interactions. 

Around the same time, Romond and coworkers extended Goldbeter’s minimal 

model by adding Cdc25 [87]. In the model, monomeric cyclin accumulates and activates 

Cdc25 that activates the cyclin-CDK complex. The active cyclin-CDK complex also 

activates Cdc25 forming a positive feedback loop. The active cyclin-CDK complex also 

activates a protease, which degrades the monomeric cyclin species forming the negative 

feedback loop. As in the earlier model, the species are scaled with their maximum 

values, and thus the maximum value of all species is unity. 

Goldbeter and coworkers utilized two parameter bifurcation analysis to perform a 

stability analysis on the original minimal model and found that lowering the first order 

degradation of cyclin increases the region of oscillatory behavior. The oscillatory region 

is the largest when first order degradation of cyclin is zero. Thus, non-specific 

degradation of cyclin suppresses the oscillatory behavior of the system. 

The stability analysis also reiterated that the Michaelis-Menten constants must be 

much smaller than the maximum concentration for the system to exhibit oscillations. 

Hence, the system must exhibit zero order ultrasensitivity. Cdc25 was then added to the 

model without autocatalysis. By adding the additional phosphorylation- 

dephosphorylation cascade to the model, the region of oscillations increased. In the 

model, surpassing a single threshold is sufficient to induce oscillations, and thus adding 

an additional species incorporates a threshold that can expand the region of oscillations. 

Finally, autocatalysis was added to the system, which increased the region of oscillations, 
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but not as significantly as adding an additional phosphorylation dephosphorylation 

cascade. Cyclin synthesis drives the oscillations, and therefore cyclin synthesis and 

degradation manipulate the oscillatory behavior of the system. 

Goldbeter and Guilmot then utilized two parameter bifurcation analysis of 

Goldbeter’s minimal mitotic oscillator to analyze how the cell cycle can be arrested [88]. 

Two sets of parameters were analyzed. The first compared the rate of activation of 

cyclin-CDK to the rate of inactivation of cyclin-CDK; the second compared the rate of 

protease activation to the rate of inactivation of the protease. In both bifurcations, the 

oscillatory region takes on the same shape and lies just above the bisector line. 

Goldbeter and Gonze found that if cyclin-CDK is phosphorylated faster than 

dephosphorylated, then the system exists in a steady state with high levels of active 

cyclin-CDK kinase and protease and low levels of cyclin. However, if cyclin-CDK is 

dephosphorylated faster than phosphorylated, then the system resided in a steady state 

that corresponds to high levels of cyclin and low levels of Cdc2 kinase, a CDK, and 

phosphatase. 

If the protease is phosphorylated faster than dephosphorylated, the system again 

resides in a steady state characterized by high levels of Cdc2 kinase and phosphatase. 

Alternatively, if the protease is dephosphorylated faster than phosphorylated, the system 

exists in a steady state with high levels of cyclin and Cdc2 phosphatase and low levels of 

Cdc2 kinase. Thus, from any starting point that oscillates, the system can be arrested into 

a steady state by changing the ratio of the rates to fall into one of the steady state 

categories. 
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After these studies of the Cdc25 and Weel, the next protein interaction to be 

incorporated into the mitotic oscillators was the double negative feedback generated by 

cyclin dependent kinase inhibitors (CKI). The CKI proteins bind to and inactivate cyclin- 

CDK complexes. The formation of the cyclin-CDK-CKI complex inactivates the cyclin- 

CDK complex until the CKI is removed. Active cyclin-CDKs phosphorylate CKIs, 

which lowers their binding affinity releasing and activating cyclin-CDK. 

Thron incorporated Sucl, a CKI, into his model to investigate an MPF pulse 

generator mechanism [89]. Thron found that Sucl is necessary for mitosis because it 

affects three mechanisms. The amount of CKI sets the threshold of cyclin accumulation 

that triggers mitosis, which is accomplished by the large pool of inactive MPF 

sequestered. The feedback loop between Sucl and MPF increases the reaction order of 

the autocatalysis that enhances the oscillatory characteristics of the system by increasing 

excitability and destabilizing the steady state. In Thron’s earlier work, he proved that for 

the cell cycle system to oscillate, the reaction order of the autocatalysis must be higher 

than the reaction order of the degradation [82]. 

Gardner and colleagues incorporated a CKI into Goldbeter’s minimal models and 

Novak and Tyson's yeast model [90]. Their data reveals that the cell division cycle can 

be controlled with CKI expression. The overall effect of the CKI on the system is 

determined on the CKI expression level, binding constant and binding rate. Gardner and 

colleagues found that the binding dynamics controlled the oscillatory characteristics of 

the system. Fast binding dynamics delayed the rise and fall of MPF due to buffering. 

Slow binding dynamics allowed the initial rise and fall of MPF to be fast. The magnitude 

of the effect was controlled by the CKI expression and equilibrium constant. 
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Since the two models utilized different mechanisms, the addition of a CKI 

induced different behavior. Goldbeter’s model, which has no checkpoint mechanisms, 

increased the frequency of oscillations when there was slow binding and decreased the 

frequency with rapid binding. Novak and Tyson’s model, which includes cell cycle 

checkpoints, had period doubling with low expression level of slowly binding CKI. The 

mean cell mass was decreased when the CKI had high expression level or rapid binding 

dynamics. 

Novak and coworkers integrated a CKI into a generic cell cycle model [91]. The 

work began with a simplified model that incorporated a CDK and APC. The CDK 

inhibits APC, which is activated by an unknown activator protein. APC degrades cyclin 

inactivating the CDK. A CKI was added into the model to link the growth cycle to the 

cell cycle. This link was accomplished by setting the synthesis rate of CDK proportional 

to the cell mass. Finally, they incorporated Weel and Cdc25 into the model to induce a 

G2/M checkpoint. 

Although models prior to Novak and coworkers generic cell cycle model followed 

a fairly similar path in their advancement, the continued research on mitotic oscillators 

branched in many directions to capture experimentally observed phenomena. 

Researchers investigated phenomenological models for cyclin and the dynamics of 

coupled oscillators. They also analyzed the contribution of the nucleocytoplasmic ratio 

and phosphorylation dephosphorylation cascades. Some groups researched the similarity 

between the cell cycle machinery between species including more complex models of 

Xenopus extracts. Stochasticity, feedback mechanism, and external oscillators have also 

been investigated. 
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Busenberg and Tang proposed an ordinary differential equation model and a delay 

differential equation model for the mitotic oscillator in early embryos [92]. The delay 

model is a phenomenological model for cyclin B. Through mathematical derivation, they 

develop a generic model for the MPF system that incorporates cyclin, preMPF, and MPF 

to gain insights into the underlying mechanisms. 

Goldbeter and colleagues coupled two minimal oscillators through mutual 

inhibition to mimic the M and S phases of the cell cycle [93]. The first oscillator captures 

the G2/M transition with cyclin B, Cdc2, and ubiquitin ligase. The second oscillator 

captures the Gl/S transition with cyclin E, CDK2, and an unknown ubiqutin ligase. To 

couple the oscillators, the current active CDK inhibits the counter cyclin’s synthesis. 

Similar results were found by coupling the active CDK with the opposite ubiqutin ligase. 

Alternating oscillations are observed in the model when the inhibition is strong, which is 

likely what is observed in nature. When the inhibition is weaker, chaos is found over a 

large portion of the parameter space. 

Ciliberto and Tyson incorporated the nucleocytoplasmic ratio into a model for sea 

urchin embryos [94]. The nucleocytoplasmic ratio is the ratio of the volume of the 

nucleus to the volume of the cytoplasm. As the cell grows and the DNA doubles, the 

nucleocytoplasmic ratio decreases. 

The model is adapted from Novak and Tyson’s Xenopus oocyte model and 

consists of MPF, positive feedback from Cdc25 and Weel, and negative feedback from 

APC that is activated through an intermediate enzyme. Bifurcation analysis was utilized 

to observe the transition behavior as the nucleocytoplasmic ratio changed. In the model, 

the nucleocytoplasmic ratio affected the activation and inactivation of Weel and Cdc25 
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respectively. Asymmetric division was incorporated into the model to account for the 

standard deviation in the cell cycle time from the experimental data. Ciliberto and Tyson 

also performed preliminary simulations for communication between neighboring cells. 

Although the cellular communication model is not complete, the diffusion of proteins 

through junction gaps did affect the model behavior. 

Gonze and Goldbeter developed a phosphorylation-dephosphorylation cascade 

model with positive and negative feedback [95]. In the model, the current active species 

phosphorylâtes the next species in the cascade activating it, and dephosphorylates a prior 

species in the cascade. The last species in the cascade phosphorylâtes the first species in 

the cascade thereby forming a looping cascade. The model utilized zero order 

ultrasensitivity to generate thresholds. To analyze the threshold’s switching behavior, 

Gonze and Goldbeter generated response curves by plotting the amount of active kinase 

versus the ratio of the rates of phosphorylation to dephosphorylation. The initial model 

had four species with identical corresponding parameters. 

Gonze and Goldbeter found that the generic phosphorylation-dephosphorylation 

cascade could generate a variety of dynamics. If the model had only positive feedback, 

the system exhibited bistability. When negative feedback is included, then damped 

oscillations were observed. To incorporate negative feedback, the crurent active species 

dephosphorylated the prior active species, which inactivated it. Gonze and Goldbeter 

observed that to generate oscillations the negative feedback must be applied at least two 

species prior to the current active species. When the negative feedback is two species 

prior to the current active species and there is only negative feedback, multiple steady 

states or oscillations are observed depending on the parameter selection. The model also 
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exhibited hard excitation, which Gonze and Goldbeter define as coexistence between a 

stable steady state and a stable limit cycle, also know as a subcritical Hopf bifurcation. 

The system can move from a sable oscillatory state to a stable steady state if any kinase is 

activated or inhibited from an outside source. The stable oscillations resume if the 

kinase or phosphatase is returned to its initial value. 

Next, Gonze and Goldbeter analyzed the model with a bifurcation analysis. The 

bifurcation parameter was the ratio of phosphorylation to dephosphorylation rates, and 

since all species had the same parameter set, the data applied to each active species. The 

steady state followed a sigmoidal shape. Two subcritical Hopf bifurcation points enclose 

the unstable region, and thus there are two regions of hard excitation. In the regions of 

hard excitation, the system can be excited by a perturbation from the steady state to an 

oscillatory state and remain there after the parameter value is returned to its original 

value. Vice versa, the system in an oscillatory state in the hard excitation region attracts 

to the steady state with a perturbation from the stable steady state and remain there after 

the parameter is returned to its original value. 

Gonze and Goldbeter also analyzed the system with two parameter bifurcation. 

They first analyzed the negative feedback strength versus the Michaelis-Menten constant. 

Their results reiterate that the Michaelis-Menten constant must be significantly small 

enough to generate oscillations. Thus, there must be zero order ultrasensitivity to 

produce oscillations in this model. They then analyzed the negative feedback strength 

versus the positive feedback strength and concluded that the negative feedback must be 

larger than the positive feedback for oscillations to occur. Finally, they analyzed the 

Michaelis-Menten constant versus the ratio of phosphorylation to dephosphorylation 
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rates. For the system to exhibit oscillations, the Michaelis-Menten constant must be 

orders of magnitude smaller than the maximum concentration, and the ratio of 

phosphorylation to dephosphorylation must be around unity. 

Gonze and Goldbeter also analyzed the case where each phosphorylation 

dephosphorylation cascade had a unique parameter sets. With different parameter sets, 

the model exhibited asymmetric cycles, but was able to oscillate. This proved that the 

minimal model was able to capture more complex dynamics and was robust over a wide 

parameter space. 

The number of species in the phosphorylation dephosphorylation cascade was 

then analyzed. They found that if there are an even number of cycles then, half the states 

would be high and the other half low. The states that were high or low depended on the 

initial condition. If there were an odd number of states or if half the number of states 

were odd (N or N/2 are odd), then the system oscillated with N/2 states overlapping. For 

example if there are 10 states, states 1,3,5,7, and 9 and 2,4,6,8, and 10 oscillate 

independently. Their most significant finding was that the system favors oscillations 

when there is both positive and negative feedback. Finally, Gonze and Goldbeter linked 

an external independent cAMP oscillator to the phosphorylation-dephosphorylation 

cascade and observed that the external oscillator was sufficient to drive oscillations in the 

phosphorylation-dephosphorylation cascade. 

Recently, Battogtokh and coworkers linked an external oscillator to the cell cycle 

by periodically forcing specific species with small amplitude variability [96]. This work 

was later applied to a culture synchronization model that utilized periodic forcing from an 

external nutrient [97]. In contrast to Battogtokh and coworkers’ models, our model links 
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the extracellular environment in a biologically mechanistic manner, and also links it to a 

specific source, extracellular glucose. 

Tyson and Novak then investigated the link between fission yeast, Xenopus 

extracts, and cultured mammalian cells by building a generic cell cycle model [98]. They 

approached the model by beginning with a simplistic core model that represented a 

mitotic oscillator and added complexity to capture the dynamics of more complex 

systems in higher eukaryotes. The model began with two ODEs that captured the 

antagonism between cyclin and APC/Cdhl. A CKI was then added to the model to 

capture the basic fission yeast cell cycle, and finally Cdc20 and an intermediate activating 

enzyme were added to capture multicellular eukaryotes. The system is driven by the 

cellular mass, which regulates the total cyclin enzymatic rate. In all forms of the model, 

the cellular mass drives the total cyclin past a saddle node bifurcation that is reset when 

the cell divides and the mass is halved. Zero order ultrasensitivity is utilized in the 

activation and inactivation of Cdhl and the active form of Cdc20 to capture the switch 

like properties of the protein interactions. The synthesis of total Cdc20 by total cyclin B 

utilizes a Hill function. Tyson and Novak draw upon the fact that many of the cell cycle 

proteins are conserved across species, and thus they hypothesize that there is a core cell 

cycle engine present at the center of all species regardless of the complexity that may be 

present in higher eukaryotes. More extensive bifurcation analysis was presented in a later 

review which linked molecular control systems and cell physiology [99]. 

Frankel built a two species model based on averaging cyclin and MPF to show 

that the lower bifurcation in the cell cycle model should be a saddle node bifurcation 

[100]. The model was able to explain long intermitotic times, quantized cell cycle times 
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and excitability. Rather than looking at cyclin independent synthesis rate or total cyclin, 

Frankel studied the autocatalytic nature of cyclin production. When cyclin production 

autocatalysis is zero, the model represents earlier two dimensional models, but by 

changing the amount of autocatalytic cyclin production, the system moved from 

nonexcitable behavior to excitable behavior. Thus, Frankel’s results verify that MPF 

positive feedback is essential in the mitotic network. 

Qu and coworkers created a model with the capability to simulate the dynamics of 

the Gl/S or G2/M dynamics [101]. Since the model is created to capture either Gl/S or 

G2/M, phase specific proteins are not used. Thus, the model includes a cyclin, and active 

and inactive cyclin CDK complex, Cdc25, Weel, APC and CKI. They assume that 

protein synthesis rates are constant, and CDK concentration is constant and in excess. 

Cyclin synthesis is assumed proportional to cell size, and Cdc25 is assumed to need two 

phosphorylation sites to reach full activity. Also, Weel is assumed to have two forms, 

inactive and active. 

Qu and coworkers analyzed the effects of positive and negative feedback with two 

parameter bifurcation. Positive feedback displayed low and high stable steady states with 

limit cycle and bistability in between. When adding negative feedback to the system, the 

bistable region was converted to limit cycle, and the limit cycle region grew substantially. 

The negative feedback converted the saddle node bifurcation points to Hopf bifurcation 

points. 

They also analyzed the effect of negative feedback strength. At low feedback and 

cyclin synthesis, bistability or a low stable steady state is observed. At intermediate 

feedback and cyclin synthesis, limit cycle or a high stable steady state behavior is 
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observed. The effect of the delay of the negative feedback did not affect the region of 

limit cycle. Rather, as the delay increased, the period increased. Also, delayed negative 

feedback resulted in systems that were excitable. 

Finally, Cdc25, Weel, and CKI were analyzed. As Cdc25 synthesis increased, 

limit cycle behavior was observed at lower cyclin synthesis rates with little change in the 

cycle period. The opposite was observed for increased rates of Weel synthesis with little 

change in the cycle period. Positive feedback from Cdc25 and Weel creates bistability in 

the model. The lower Hopf bifurcation point moved towards the upper Hopf point as 

CKI synthesis increased until they merged and the limit cycle behavior was lost. As CKI 

synthesis increased, the oscillatory period also increased. 

The model was able to capture a restriction point and the sizer and timer 

phenomena. Thus, cells must reach a certain size before DNA replication and mitosis. 

Qu and coworkers claim the G1 and G2 checkpoints are Hopf bifurcation points rather 

than Saddle Node bifurcation points as Tyson claimed in earlier papers. The 

contradiction in their work reiterates the uncertainty in the mechanism controlling the cell 

cycle, and therefore, this thesis work analyzed the protein network structure for mitosis. 

Ciliberto and colleagues created a more extensive Xenopus laevis embryo model 

to account for the experimentally observed double peak in cyclin E activity in early cell 

cycles and the developmental timer [102]. The research combined experimental and 

theoretical approaches to design and support their model. The model is able to capture 

the dual peaks in cyclin E/CDK2 activity and the delayed degradation of cyclin E. The 

dual peaks in cyclin E/CDK2 activity was due to the proposed negative feedback between 

cyclin E/CDK2 and Weel. Cyclin E/CDK2 inactivates Kin, the protein that inactivates 
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Weel, thus activating Weel, which inactivates cyclin E/CDK2 through phosphorylation. 

The delayed cyclin E degradation was linked to auto-phosphorylation, which marks the 

protein to be degraded. The degradation machinery has to be significantly delayed from 

the auto-phosphorylation to obtain the dynamics observed in experiments. Bifurcation 

analysis was used to support the observed phenomena. 

Yang and colleagues analyzed the effect of multiple phosphorylation on 

ultrasensitive response of proteins involved in the cell cycle [103]. The model 

incorporated an extensive cyclin-CDK model that allowed Weel phosphorylations to 

occur in parallel with CAK phosphorylation. Cyclin binds with CDK to form an inactive 

dimer that can than be phosphorylated by either Weel or CAK. The positive feedback 

loops of Cdc25 and Weel were allowed to have up to five phosphorylation sites. CAK 

could have up to two phosphorylation sites. The activity of Cdc25, Weel and CAK were 

the sum of all the concentrations of the species multiplied by an activity for each 

conformation. This work did not analyze the effect of multi-site phosphorylation on the 

APC system. Rather, a second order Hill function was utilized to capture the nonlinear 

dynamics. 

Yang and colleagues randomly searched parameter space to see the dynamics 

possible for each number of phosphorylations and counted the parameter sets that 

exhibited bistability or limit cycle dynamics. They found that bistability and limit cycles 

are observed if CDK, Cdc25, Weel, or CAK have multi-site phosphorylation. As the 

number of phosphorylations increased on Cdc25, the number of bistable and limit cycle 

systems increased, but they report that “cooperativity” did not affect the system as much. 

The same behavior is observed for multiple Weel phosphorylations. CAK did not induce 
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as many instabilities even when it had two phosphorylation sites. This is due partly to the 

fact that Cdc25 and Weel phosphorylate CDK at two sites. Thus, there is an 

amplification of the nonlinear behavior because it already acts on a multi-phosphorylated 

species. CAK phosphorylâtes CDK at only one site. The addition of negative feedback 

increased the incidences of limit cycle behavior. 

Also, combining multi-site phosphorylation cascades increases the robustness of 

the cell cycle machinery. Yang and colleagues defined robustness as the number of 

bistable and limit cycle systems in the parameter space when compared to other models. 

Bistability is the major dynamical behavior observed, and negative feedback converts 

bistable systems to limit cycle systems. Although many of the proteins that regulate 

cyclin/CDK activity have more than two phosphorylation sites, their study indicates that 

there is not a greater response after two phosphorylations. 

When they analyzed their model of CDK activation with previous simplified 

models, the overarching feature of earlier models is the assumption that CDK is 

phosphorylated simultaneously in both spots by Weel and dephosphorylated in one step 

also. When CDK is simultaneously phosphorylated, it is linearly activated, and therefore, 

requires the nonlinearities in Cdc25 and Weel to have more phosphorylations. 

The work pivotal work of Yang and colleagues was the first to analyze the effect 

of reaction network structure and multisite phosphorylation on the observable system 

behavior by quantifying the number of parameter set that exhibited limit cycle or bistable 

behavior. Although this work was the first to analyze the effect of reaction network 

structure and multisite phosphorylation on the observable system behavior, the results did 

not include how the observable system behavior changed when the reaction network 
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structure or number of multisite phosphorylations were varied. Rather, the results gave 

insight into which network structures would oscillate with the most parameter sets. This 

thesis work moves one step forward and analyzes the effect of protein network structure 

and multisite phosphorylation on the observed system behavior by analyzing the changes 

in the steady state behavior of the system for different reaction network structures and 

multisite phosphorylation. 

The first attempt to add stochasticity to the cell cycle models was investigated by 

Steuer [104]. Steuer introduced white noise by converting Tyson and Novak’s generic 

model [98] into stochastic differential equations. Steuer did not derive the noise terms; 

rather the noise was approximated and varied throughout the investigation. The addition 

of noise was able to account for quantized cycle times in Weel/Cdc25 double mutants, 

and the noise was able to create oscillations, also known as noise-induced oscillations. 

Zwolak, Tyson, and Watson developed an optimization approach to estimate the 

kinetic parameters from experimental data [105]. Data was used from frog eggs to 

minimize an objective function that was defined as the orthogonal distance between the 

model and experimental data. Although the method was applied to a mitotic oscillator 

and Xenopus extract data, the approach can be applied generally to estimate kinetic 

parameters from experimental data. This work was expanded upon to develop the JigCell 

parameter estimation environment utilized to estimate parameter in yeast cell models 

[106,107]. 

Pomerening and coworkers developed a model to assess the importance of the 

positive feedback in the Cdc2/APC system while simultaneously performing the 
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necessary experiments with Xenopus extracts [108]. They investigated the Cdc2- 

Weel/Mytl and Cdc2-Cdc25 loops which on their own induce bistable switches. 

The model they use is similar to the model proposed by Novak and Tyson’s 

Xenopus oocyte model [84]. The main difference between the models is the form of 

ultrasensitivity utilized in the model. Pomerening and coworkers utilized the Hill 

function, and Novak and Tyson utilized zero order ultrasensitivity. Their model includes 

cyclin B, Cdc2, Weel, Cdc25, PLX (an intermediate between active MPF and APC), and 

APC. The MPF activation mechanism for this model assumes that phosphorylations 

occur sequentially. Cyclin B and Cdc2 form an inactive dimer that is phosphorylated by 

Weel to form the second inactive dimer. The second inactive dimer is then 

phosphorylated in the activating phosphorylation site of Cdc2 at a constant rate to form 

the third inactive dimer. Finally, the third inactive dimer is dephosphorylated at the 

inactive phosphorylation site by Cdc25 to form the active species. APC degrades all 

forms of the dimer at the same rate. As mentioned earlier, APC is not directly activated 

by MPF, but rather by an intermediate PLX that still forms an indirect negative feedback 

loop. Pomerening and coworkers utilized nonlinear dynamics in all positive and negative 

feedback loops, whereas Tyson and Novak utilized only nonlinear dynamics in the Cdc25 

and negative feedback loops. Pomerening and coworkers varied their strength of 

feedback as their modeling parameter. 

From the data, they concluded that if the positive feedback is removed, damped, 

less temporally abrupt, faster oscillations are observed. Their model and experiments 

found that at low cyclin synthesis rates, bistability is required for oscillations, but at more 

realistic cyclin synthesis rates the requirement of bistability is relaxed. The positive and 
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negative loops of the cell cycle act as bistable switches. Their findings support the view 

that the Cdc2/APC system is a relaxation oscillator for which positive feedback is 

essential for sustained oscillations. 

Han and coworkers investigated whether hysteresis is necessary or sufficient for 

cell cycle transitions [109]. They began with a complex model incorporating many of the 

known proteins and protein interactions for mitosis, including parallel phosphorylation by 

inhibitory and activating phosphorylations on MPF. The model is then simplified to a 

linear model that has three species: cyclin, and inactive dimer of cyclin-CDK, and an 

active cyclin-CDK dimer. Cyclin synthesis was assumed to occur at a constant rate, and 

CDK concentration was assumed to remain constant. 

Han and coworkers then utilized bifurcation analysis to investigate the stability of 

subsystems of the cell cycle oscillator. They studied cyclin-CDK interactions with CKI, 

Rb-E2F and APC-CDH1 by incorporating each species into the simplified cyclin-CDK 

model one at a time. They analyzed each system over the cyclin synthesis range. They 

also created response curves, which plot active CDK versus total cyclin. There is no 

cyclin synthesis in these graphs, and total cyclin is controlled as an external variable. 

They then analyzed the response curve of active CDK and cyclin in response to 

dynamical instabilities. They found that CDK phosphorylation and dephosphorylation or 

CKI double negative feedback induced the dynamical instabilities. Also, systems with 

hysteresis displayed more instances of dynamical instabilities than nonhysteretic systems 

do. Thus, if the system has a hysteretic, then it is more probable that a negative feedback 

loop converts the bistability to limit cycle than a system that does not have hysteresis. 

Han and coworkers also found it statistically likely that phosphorylation and 
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déphosphorylation of CDK is the cause of the bistable response in Xenopus experiments. 

Thus, they concluded that although hysteresis is neither necessary nor sufficient for cell 

cycle transitions, it is a better mechanism for cell cycle dynamics than nonhystertic 

mechanisms. 

Recently, Tyson and colleagues proved that the quasi-steady state assumption that 

is utilized in Michaelis-Menten kinetics and Goldbeter’s ultrasensitive switches is not 

applicable for protein interaction networks like the cell cycle because the enzyme 

concentrations are found at comparable concentrations as the substrate [110]. In order for 

Michaelis-Menten kinetics and Goldbeter’s ultrasensitive switches to capture the kinetics 

of the underlying reaction network, the enzyme concentration must be much less than the 

substrate concentration. This is not the case in protein interaction networks like the cell 

cycle where enzyme and substrate concentrations exist in similar concentrations. 

Furthermore, proteins such as MPF and Weel, which mutually inhibit each other, exist in 

competing states. Since the proteins mutually inhibit each other, only one exists in a high 

concentration, and therefore at different points in the cell cycle, they switch roles with 

one at a high concentration and the other at a low concentration. 

When Tyson and colleagues unpacked an earlier cell cycle model that utilized 

ultrasensitive switches and Michaelis-Menten kinetics, they observed that the system lost 

bistability. The system gained bistability when the phosphorylated substrate retained 

some kinase activity rather than being fully inhibited. They also observed that the Weel 

MPF complexes accumulate to appreciable levels that capture the secondary inhibition of 

Weel on MPF through sequestration. 
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In a following work, Novak, Tyson and colleagues argued that irreversible cell 

cycle transitions occur because of system level feedback mechanisms rather than specific 

reactions such as activation or degradation of a specific protein [111]. They argue that 

systems-level feedback creates bistability that generates the irreversible transitions. 

Specific reactions can change as long as the systems-level feedback is retained. 

3.2. Yeast 

The yeast cell cycle was the next system researched both experimentally and 

theoretically. The cell cycle of yeast is a more complicated system than Xenopus extracts 

and embryos, but yeast populations can be mutated very easily. Fission yeast were the 

first system to be investigated and were followed closely by budding yeast. 

3.2.1. Fission Yeast 

Novak and Tyson were the first to model fission yeast data [112]. The model 

incorporated Weel, Mikl, Cdc25, and MPF. Mikl performs the same protein kinase 

activity as Weel. They assume that the core cell cycle machinery has been conserved 

over evolution, and thus the fission yeast model utilized the Xenopus extracts model as a 

basis. 

Novak and Tyson also incorporated checkpoints into the model. The first 

checkpoint at G2 determines if the DNA has replicated correctly and the cell is large 

enough to divide. The second checkpoint determines if the chromosomes are aligned on 

the metaphase plate, and the final checkpoint is the initiation of DNA synthesis where 

cell size is monitored. 
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Novak and Tyson utilized pseudo phase plane analysis to assess the dynamics of 

the system. The pseudo phase plane analysis plots total cyclin versus active MPF, but the 

system has not been reduced to two equations. The trajectories of the model through the 

plane can then be drawn. They then studied multiple different knockout scenarios with 

their model to capture the experimentally observed phenomena. The model consists of 

20 differential equations and 46 parameters. 

Novak and Tyson then added the biological mechanisms that control the start of 

DNA synthesis [113]. The phenomenological G1 checkpoint from the earlier model was 

replaced by the addition of Rum 1, a CKI. The model was then updated to have 

checkpoint controls for Gl/S, G2/M and metaphase/anaphase transitions [114] by 

combining the previous two models and testing them against mutant strains. 

Quantized cycle times for Weel/Cdc25 double mutants were simulated with a 

later model [115]. Sveiczer and colleagues found that in order to observe quantized cell 

cycle times, the systems must have weak positive feedback mechanisms. With the weak 

positive feedback, the system reverts to an oscillatory behavior that does not exhibit 

switch-like transition behavior. The model incorporated stochastic noise that varied one 

parameter to capture the quantized cell cycle times. A different hypothetical wiring 

diagram was used in a following investigation to explain the Weel/Cdc25 double mutant 

[116]. Both wiring diagrams, though significantly different, were able to capture the 

same phenotypical behavior, a contradiction that displays the limitations of modeling 

protein interactions. 

Sveiczer and coworkers also investigated the nucleocytoplasmic ratio by adding 

asymmetric division and variable nuclear volume into the fission yeast model [117]. This 
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was the first work to incorporate stochasticity into kinetic variables of the cell cycle to 

quantify population heterogeneity. Sveiczer and coworkers found that asymmetric 

division alone was not sufficient to quantify heterogeneity in fission yeast cells. 

This work was followed by an investigation of the quantized cell cycle times in 

Weel/Cdc25 double mutants [118]. In the model, nuclear volume was a stochastic 

random variable and asymmetric division was taken into account. The initial 

concentration of the Pyp3 protein, a phosphatase with that performs the same action as 

Cdc25, was taken as a stochastic random variable. The addition of the asymmetric 

distribution of Pyp3 at birth was able to capture the three quantized populations of Wee 1- 

50 Cdc25A fission yeast. Sveiczer and Novak found that the nuclearcytoplasmic ratio 

was an essential element in determining cycle times. 

In an effort to simplify a fission yeast cell cycle model, Srividhya and Gopinathan 

created a simple time delay model [119]. The time delay was incorporated into the 

activation of MPF by APC at the end of mitosis. By utilizing a time delay, fewer species 

are necessary in the cascade to activate APC. Bistability exists when the time delay is 

removed. As the time delay increases, MPF is allowed to activate before activating APC 

thus generating the oscillatory behavior of the system. Srividhya and Gopinathan 

incorporated stochasticity into the model by varying the cell birth length and 

incorporating white noise into their differential equations. The time delay model can 

capture many of the mutant strains, and the stochastic model captures quantized birth 

lengths observed in Weel Cdc25 double mutants. 
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3.2.2. Budding Yeast 

The first cell cycle model based on budding yeast proteins captured a two phase 

system composed of G1 and S/G2/M [120]. The species were based on the earlier mitotic 

oscillator, but the model did not include Cdc25 or Weel. The negative regulation of the 

CDK is through cyclin proteolysis and CKI inhibition. 

The model captured two distinct states: G1 where the cyclin degradation 

machinery and CKI’s are high, and S/M where cyclin/CDK activity is high and the 

inhibitory machinery is low. Cyclin B synthesis is modulated by the cell mass, and when 

it hits a critical concentration in the nucleus, cyclin B/CDK overcomes the negative 

inhibition and begins to accumulate. This triggers the activation of APC/Cdc20 that 

through cascading events degrades cyclin B and resets the system. 

The following investigation expanded the complexity of the model, which 

accounted of wild type and 50 mutant strains of budding yeast [121]. The model 

incorporates three cyclins, Sicl (CKI), Hctl (Cdhl), and Cdc20. It also includes three 

transcription factors and exponential cell growth. 

Utilizing a simplified representation of the budding yeast cell cycle model, 

Lovrics and colleagues followed the eigenvalues of the Jacobian with time to separate the 

regions of excitation and relaxation [122]. The analysis found four regions of excitation 

that were immediately followed by regions of relaxation. The excitation and relaxation 

regions corresponded with cell cycle transitions and cell cycle phases, respectively. 

Through dimensional analysis, Lovrics and colleagues found that the 13 species system 

could be represented by 7 species at any point in time in the model. The dimensional 
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analysis never fell below one, which corresponded with the cellular mass, which grows 

independently of the other species. 

The morphogenesis checkpoint was later added to the model which was again 

verified by modeling mutant strains [123]. This model was reduced and extensively 

analyzed by one and two parameter bifurcation [124]. The most recent budding yeast 

model captured 120 of the 131 known mutant strains [125]. This model now incorporates 

61 equations and well over 100 parameters. 

Thornton and colleagues adapted the budding yeast model to investigate how 

fission yeast are able to cycle without APC (cyclosome) [126]. The model was modified 

to account for 31 different mutants and was able to capture the phenotypes of 28 mutants 

including the oscillating system without APC. 

Rather than using ordinary differential equations, Li and coworkers developed a 

Boolean model for the budding yeast cell cycle and analyzed the model’s stability and 

robustness with dynamical tool [127]. They found that the budding yeast cell cycle is 

highly robust with a global attractor for the G1 state. The cell cycle pathway (G1-S-G2- 

M) is also globally stable and relatively stable against perturbations. 

The Boolean model by Li and coworkers was later expanded to include noise 

[128]. Utilizing a noise component that affected the entire system equally, they observed 

that when the noise was greater than the interaction strength, the network dynamics 

become noise dominated and lose their biological meaning. There is a critical noise limit 

below which the system maintains the biological function, namely the cell cycle. In 

Zhang and colleagues model, the cell cycle pathway falls in a valley on the potential 

surface and is stable against small perturbations induced by noise. In another work, Li 
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and coworkers original Boolean model was updated to include cell size as a variable 

[129]. In this work, Zhang and colleagues simulated the Boolean network utilizing a 

Markov Chain model. 

Proctor and coworkers developed a stochastic model for the telomere uncapping 

during DNA synthesis [130]. The model incorporates great detail into the telomere 

uncapping during DNA synthesis, but it incorporates a phenomenological model for the 

cell cycle. Each phase has a cyclin that activates cyclins for the next phase. There are no 

feedback loops for the cell cycle transitions and therefore the cell cycle aspect of the 

model follows a dominos and clock model. One cyclin builds, which builds the 

following cyclin while the previous falls. These events occur in a clock-like fashion to 

produce the oscillatory dynamics of the cell cycle. Although their work incorporated a 

cell cycle model, the specific focus was to model telomere uncapping, and not the cell 

cycle events. 

Ge, Qian, and Qian compared a stochastic budding yeast cell cycle model to its 

deterministic counterpart [131]. They observed a dominant cycle in the stochastic model 

that captures the deterministic model behavior. Ge and colleagues also found that the 

budding yeast cell cycle is very robust to small fluctuations. 

A budding yeast cell cycle model was broken down into subnetworks to analyze 

them for multistability [132]. By analyzing the subnetworks, chemical reaction network 

theory can be applied. Within the subnetworks, Conradi and colleagues extracted 

multiple pathways for the system to exhibit multistability. The CDK and CKI negative 

feedback loop was found to have three plausible multistable mechanisms. This type of 

analysis allows for the parameter space to be estimated over which multistability is 
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observed. Contrary to breaking down a larger model into subnetworks, this thesis work 

used a bottom-up approach, and therefore, began with a minimal model and added 

complexity to elucidate the contribution. 

Sriram, Bemot and Kepes developed a minimal model for the budding yeast cell 

cycle utilizing modules [133]. The positive feedback loops were analyzed separately 

from the negative feedback mechanisms and then combined into the full model where the 

topology of the network was investigated. Sriram and colleagues observed chaos within 

their reduced model over a small region of the parameter space. 

Rather than minimize the budding yeast cell cycle model, Barberis and Klipp 

incorporated special regulation into their model [134]. In the model, nuclear transport of 

cyclin-CDK complexes is dictated by the environmental nutrient source. They 

demonstrated that spatial regulation, nuclear or cytoplasmic, plays a major role in correct 

onset of DNA synthesis. 

3.3. Transition Models 

As the cell cycle models grew more complex, some groups moved away from the 

oscillatory systems into investigating the switching behavior of the cell cycle transitions. 

Tyson and coworkers were the first group to analyze the system from this perspective 

[135]. They analyzed simple models for G1 and G2 checkpoints for various species with 

phase plane analysis. 

Recently, the use of Michaelis-Menten kinetics in protein interaction networks 

was analyzed again by Sabouri-Ghomi and colleagues [136]. Utilizing bifurcation 

analysis, Sabouri-Ghomi and colleagues disassembled a bistable switch that was 

generated by Michaelis-Menten kinetics into the elementary reactions. They found that 
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the disassembled switch did not generate bistable behavior. Bistability was restored 

when the proteins were allowed to form a trimer complex where both proteins were 

attempting to phosphorylate their substrates. Sabouri-Ghomi and colleagues then ran 

stochastic simulations with the Gillespie algorithm and observed that the toggle switch is 

robust to small numbers of molecules. 

The remainder of the transition models investigated the restriction point and DNA 

synthesis transition, or the transitions associated with mitosis. The section begins with a 

discussion of the restriction point and DNA synthesis transition models followed by the 

mitotic transition models. 

3.3.1. Restriction Point and DNA Synthesis Transition Models 

Kohn began with a core E2F and pRb Gl/S transition model and added 

complexity to gain insight into the interactions of the proteins [137]. Kohn found that the 

binding and dissociation of E2F from Rb could produce a large wave of E2F activity. 

Cyclin E-CDK2 and finally cyclin D-CDK4 were then added to the model. Excessive 

cyclin E-CDK2 activity reduced the amplitude of the E2F activity wave. The extent of 

the effect was greater if Rb was phosphorylated both when complexed with E2F and 

unbound. Cyclin D decreased the delay in the E2F wave that occurred at later times with 

just the cyclin E circuit. Overexpression of either cyclin E or cyclin D under certain 

circumstances inhibited the start of DNA synthesis. 

Hatzimanikatis and coworkers analyzed the Gl/S transition with a nine 

component model [138]. The model included cyclin-CDK complexes, pRb, E2F-1, and a 

CKI. The model was analyzed with bifurcation analysis that revealed that changes in 

cyclin E or E2F can initiate proliferation, but co-overexpression results in quiescence. 
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Further analysis revealed that the concentration of CKI necessary to halt proliferation is 

independent of both E2F and cyclin E and only depends on the ratio of the bound and 

unbound forms of the CKI complex. 

Deineko and colleagues adapted Aguda and Tang’s Gl/S model [139] to utilized 

sequence analysis tools to predict new potential target genes that are regulators of the cell 

cycle [140]. A mitogenic signal was added into the model and the system behavior was 

analyzed for different pulses of the mitogenic signal. If the duration of the pulse is longer 

than a critical time, the cell enters S phase. If the duration is less than the critical time, 

the cell enters a GO state. The critical time of mitogenic signal corresponded to the 

exposure time necessary to pass the restriction point. The mitogenic signal increases AP- 

1 genes that up regulate cyclin E-CDK2. E2F and pRb are also included in the model. If 

there is an additional E2F and AP-1 positive feedback (E2F up regulates AP-1), the 

duration of the mitogenic signal necessary for transition is reduced five fold. 

Swat and coworkers analyzed their Gl/S model with bifurcation analysis [141]. 

The model included pRb, E2F1, Ap-1, cyclin D, CDK4/6, cyclin E, and CDK2. The 

restriction point is described by a transcritical bifurcation and the Gl/S transition by a 

saddle node bifurcation. They began with a minimal model with E2F and pRb and added 

complexity to the model to investigate how the addition changed system behavior. The 

observed behavior of the core model was found in the more complex model. Hill 

functions and enzyme kinetics were incorporated throughout the model, and the 

mitogenic stimulation was utilized as the bifurcation parameter. Swat and coworkers 

found that as the positive feedback strength increased, multiplicity increased, and the 

Gl/S transition became more irreversible. Similar to Swat and co workers work, an 
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objective of this thesis work was to develop a model linked the environment and 

therefore, the final bifurcation parameter was extracellular glucose. 

Aguda and Tang developed a model which addresses the G1 to S transition in 

mammalian cells to find the kinetic basis for the restriction point [139]. Aguda and Tang 

utilized this model to investigate the switching behavior of the G1 to S transition. The 

model includes cyclin D, CDK4, pi6, p27, cyclin E, CDK2, Cdc25A, pRb, and E2F. The 

p27 protein is a CKI that interacts with both cyclin D-CDK4 and cyclin E-CDK2. The 

pi6 protein is also a CKI which can bind to and inhibit cyclin D-CDK4 and inhibits the 

synthesis of pRb. The model has 11 kinetic equations for active cyclin E-CDK2, E2F, 

p27, p26, inactive cyclin E-CDK2, pRb, p27 bound cyclin E-CDK2, phosphorylated pRb, 

E2F pRb complex, cyclin D-CDK4, and p27 bound cyclin D-CDK4. 

Aguda and Tang found that positive feedback between cyclin E/CDK2 and Cdc25 

created a dynamical switching behavior. The switch behavior was also caused by the 

double negative feedback between cyclin E/CDK2 and p27kipl. These two key 

interactions determined the switching behavior of the entire system. 

A mesoscale liver regeneration model by Chauhan and colleagues linked cyclin E 

to DNA synthesis [142]. Since the model is mesoscale, the proteins of the cell cycle are 

lumped into groups, which limits the detail of the module. Utilizing this top-down 

approach, Chauhan and colleagues linked their cell cycle model to cytokines, growth 

factors released from damaged liver cells, and were able to simulate experimentally 

observed phenomena. 

In their Gl/S transition model for budding yeast, Barberis and coworkers 

incorporated compartmentalization of the proteins [143]. The model incorporates two 



48 

sizer mechanisms that are sugar source dependent. The parameter set was later assumed 

to be the mean values in a distribution of parameters to simulate a population of budding 

yeast. They observed that cell size is important for DNA synthesis initiation. 

Pfeuty and colleagues developed a G1 model for mammalian cells that determines 

the cell’s fate [144]. In their model, the G1 regulatory network dictates whether a cell 

remains quiescent in GO, begins Gl, initiates DNA synthesis (S), or dies through 

apoptosis. The network generates a double-S bifurcation structure where the first and 

second saddle nodes capture the transition between GO to Gl and Glto S, respectively. 

Tashima and coworkers designed a transition model for the Gl/S phase to predict the key 

factor controlling the transition [145]. Utilizing systems analysis, Tashima and 

coworkers isolated the key factors, but their model was not able to reproduce 

phenomenological behavior. In their model, as pointed out in the discussion, cyclin A 

peaks before cyclin E, which is not consistent with what has been observed 

experimentally. 

The DNA damage network was integrated with a Gl/S transition network in the 

model developed by Iwamoto and colleagues [146]. In the work, Iwamoto and 

colleagues linked the oscillatory behavior of p53 to DNA damage into the Gl/S transition 

network and analyzed the network through a sensitivity analysis. The model was able to 

qualitatively capture the dynamics of the Gl/S transition with and without DNA damage 

including the delay of the onset of DNA synthesis when there is DNA damage. 

Haberichter and coworkers developed a Gl/S model that accounts for cyclin D 

independent activation of cyclin E that is observed in proliferating cells continuously 

exposed to growth factors [147]. This model is contrary to earlier restriction point 
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models where cyclin D is required to proceed through the checkpoint. Thus, cyclin E 

must inactivate pRB without the assistance of cyclin D. Haberichter and coworkers 

globally optimized for parameter sets and filtered the datasets to meet knockout criteria. 

They observed that the activation of CDK2 needs to be connected to a sizer mechanism 

from the cell. 

3.3.2. Mitotic Transition Models 

Thron expanded his MPF pulse generator model with the incorporation of the 

Cdc25 positive feedback loop [148]. Thron analyzed the autocatalytic positive feedback 

on MPF. The model was reduced to a single differential equation that was analyzed by 

phase plane analysis. The model does not include negative feedback in which MPF 

promotes the degradation of cyclin. Thron then added a titratable CKI and analyzed the 

proteins involved in the Gl/S transition [149]. Multiple different positive feedback loops 

are proposed to create bistability. 

Aguda began investigating the extrinsic instabilities of the G2-M DNA damage 

checkpoint [150]. The model included MPF, Cdc25, and Weel. Each species had an 

active and inactive form in which the active form of MPF and Cdc25 is phosphorylated 

and the active form of Weel is not phosphorylated. 

The G2/M DNA damage checkpoint model identified a transcritical bifurcation 

point that is the product of the total amount of MPF and Cdc25. The transcritical 

bifurcation occurs when two phosphorylation dephosphorylation cascades are coupled. 

Once the transcritical bifurcation is achieved, both proteins switch on. The 

phosphorylation dephosphorylation cascades involving Cdc25 and MPF cause dynamical 

instabilities. 
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Aguda expanded this initial model to include proteins p53 and Chkl which signal 

that the DNA is damaged [151]. The p53 protein down regulates MPF and Cdc25, and 

Chkl down regulates only Cdc25. This model captures the positive feedback bistable 

switch for the entry into mitosis that can be arrested by DNA damage. 

This model also expanded the MPF and Cdc25 subsystems. The Weel subsystem 

has an active and inactive form like the previous model. In the MPF subsystem, a CKI, 

p21, is included in this model, which binds to MPF and renders it inactive. The synthesis 

of p21 is up regulated by p53 to link it to the DNA damage. MPF also catalyzes its own 

degradation with a second order feedback term. Thus, the model has three forms of 

MPF; preMPF, MPF, and MPF bound to p21. PreMPF is the Weel phosphorylated 

inactive form. The model phosphorylâtes both CDK1 inhibitory sites simultaneously. 

The Cdc25 subsystem includes five forms of the species; an inactive form, an 

active form, an inactive form that is phosphorylated at Ser216, an active form 

phosphorylated at Ser216, and an inactive form phosphorylated at Ser216 and bound to 

the 14-3-3 protein. The 14-3-3 protein exports proteins from the nucleus and when 

Cdc25 is phosphorylated at Ser216 by Chkl the 14-3-3 protein can bind to the inactive 

form of Cdc25. MPF and Plkl activate Cdc25. The 14-3-3 protein is upregulated by the 

p53 protein, thereby linking the 14-3-3 protein to DNA damage. 

Aguda found that Weel degradation is necessary for Cdc2 activation. G2 arrest 

due to DNA damage cannot be carried out solely by Rad3/Chkl pathway and must have 

the help of p53. As established in his first model, the transcritical bifurcation point 

establishes the thresholds for the switching behavior. Therefore, if either species causes 
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the product to fall below the transcritical bifurcation point, both species shut off. This is 

why nuclear export of either species due to DNA damage may arrest the cell cycle in G2. 

Recently, Ibrahim, Dittrich, Diekmann, and Schmitt investigated the activation of 

APC at the end of mitosis [152]. In their model, Mad2 sequesters Cdc20, which is 

required for APC activation, prior to anaphase to ensure that the cell divides DNA to each 

daughter cell accurately. They found that Mad2 could only reduce Cdc20 concentration 

by half. Therefore, they hypothesize that there is an additional mechanism present in the 

cell that reduces the remainder of Cdc20 during anaphase. 

Toth, Queralt, Uhlmann, and Novak reduced an earlier G2/M model in order to 

analyze it with phase plane analysis [153], They reduced the system to two dimensions, 

Clb2 and Cdcl4. Clb2 is the main cyclin involved in initiating mitosis and Cdcl4 is 

involved in the exit from mitosis. Toth and coworkers were able to report how the phase 

plane nulclines change as the mitotic exit network was activated. 

3.4. Higher Eukaryotes 

Unlike the cell cycle machinery in frog eggs and yeast, higher eukaryotes have 

multiple cyclins and CDKs that collaborate to initiate the cell cycle events [154]. The 

complexity of the system increases vastly because different regulatory proteins regulate 

the activity of each cyclin CDK. There have been models capturing the complex 

dynamics of finishing mitosis and apoptosis, but the majority of the models address the 

dynamics of the initiation of DNA synthesis. 

The first task was to adapt the earlier mitotic oscillators by adding the proteins 

found in higher eukaryotes. Obeyesekere, Tucker, and Zimmerman were the first to 

tackle higher eukaryotes mitotic exit by designing a model with cyclin A and cyclin B 



52 

[155]. Cilberto and coworkers developed a model to capture the activation of APC [156]. 

Phosphorylated Cdc20 and Cdhl have lower binding affinity than the unphosphorylated 

forms. The Cdc20 protein binds to phosphorylated APC. Conversely, Cdhl binds to 

unphosphorylated APC. As MPF accumulates, it initially inhibits Cdc20, but at peak 

concentration, the activation of APC sequesters Cdc20. The activated APC begins to 

degrade MPF, which releases the inhibition on Cdc20 to finish the degradation. 

In multicellular eukaryotes, programmed cell death, apoptosis, is an essential 

mechanism for controlling growth. Thus, Aguda and Algar developed a 

phenomenological model for linking apoptosis and the cell cycle [157]. A modular 

approach was used in the model assuming that the cell cycle machinery and apoptotic 

machinery could be separated. The work incorporated a simplified model that includes a 

basic level of connection between the two modules. The modules do not include specific 

proteins, but rather each module is considered a black box that captures the essence of 

each model. Thus, the module simulates the interaction between the two systems. 

The work proposes four different signals that could affect the two systems. One 

signal would up-regulate both proliferation and death pathways. Another would up- 

regulate apoptosis and down-regulate the cell cycle and vice versa. Finally, a signal 

could down-regulate both modules. Their work focuses on the case where a signal up- 

regulates both modules. 

One case, a negative feedback loop from the cell cycle reduced the mitogenic 

signal, which represses the apoptosis proteins. In this case, hyper-proliferation would 

reduce the apoptotic signal, and hyper-proliferating cells would not die when they should. 

Thus, the cell cycle must have some positive contribution to apoptosis. Consequently, 
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serum starved cells also become apoptotic, and thus lack of proliferation must positively 

affect apoptosis. The remainder of the work involves a thought experiment of the two 

systems and the complex interactions that must occur to allow the cell to proliferate 

normally. 

One of the central proteins in apoptosis is p53. Utilizing a simplified model of the 

DNA damage mechanism, Ciliberto and colleagues were able to reproduce the 

experimentally observed constant amplitude oscillations in p53 [158]. The number of 

oscillations depends on the extent of DNA damage. The model system incorporated both 

positive and negative feedback mechanisms. The negative feedback loop was verified, 

and the next model hypothesized different positive feedback loops that would generate 

the oscillations [159]. Alternative activation schemes of p53 were also considered. The 

activation schemes would induce oscillations with negative feedback alone when there 

was a time scale separation. Four model structures were analyzed with bifurcation 

analysis, and the authors hypothesize that the response of p53 to DNA damage is digital, 

that is, coupled to the number of oscillations rather than an analog response. 

Alarcon, Byme and Maini adapted Tyson and Novak’s mitotic oscillator [98] to 

include an environmental oxygen sensing mechanism [160]. By including p27, a CKI 

involved in sensing hypoxia, the model was able to capture Gl/S arrest because of low 

oxygen levels. They found that only cancerous cells could achieve a quiescent state, and 

both normal and cancerous cells were able to arrest in Gl/S. 

Obeyesekere and colleagues then focused their attention on the DNA synthesis 

oscillator [161]. Their G1 phase model incorporated cyclin E/CDK2, MPF, and pRb. 

The goal of this model was to find the minimal number of variables that captures the 
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events occurring in Gl. Obeyesekere and colleagues assumed that MPF has a negative 

feedback on cyclin E/CDK2, an autocatalytic activation, and first order degradation. 

Therefore, MPF is viewed as the negative feedback of Gl, but its own negative feedback 

of APC is not taken into account. The model produced sinusoidal oscillations which did 

not fall to near zero concentrations when the species were out of phase. 

Obeyesekere and colleagues then expanded their Gl oscillator to include an 

external growth factor [162], Simulations of normal cells, transformed cells and Rb 

knockout cells were performed. The model captures normal cells and Rb knockout 

cellular arrest when growth factors are removed from the system, but transformed cells 

oscillate without growth factors. The growth factor level did not change the division time 

in the model, but rather it changed the amplitude of the active CDK complex. The model 

also predicts delayed S phase entry with Rb knockouts that is contrary to experimental 

evidence. This growth factor model was revised by replacing MPF with a cell 

progression indicator, which represents all the proteins involved in the end of the cell 

cycle [163]. Bistability in the form of a subcritical Hopf bifurcation was observed for 

low growth factor concentrations. Therefore, there is a hysteresis in growth factor 

response between the lower steady state and stable oscillatory state. Contrary to 

experimental evidence, the lower steady state where the cell has entered a state of 

quiescence had high levels of cyclin E/CDK2. The model parameters were updated, and 

the hysteresis in growth factor response was shown experimentally [164]. 

Kaem and Hunding incorporated cyclin E/CDK2 into Novak and Tyson’s mitotic 

oscillator [83, 84] and found that cyclin E/CDK2 regulated the threshold activity of MPF; 

thus controlling the entry into mitosis [165]. The model arrests in G2 when active CDK2 
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is absent. Therefore, they suggest that cyclin A/CDK2 is a possible candidate to keep 

CDK2 activity present throughout S and G2 phases. High levels of CDK2 activity 

allowed for rapid repeated divisions in the model. 

Chiorino and Lupi investigated the G1 variability with a mathematical model 

which included cyclin E, p27 (CKI), CDK2, pRb, and E2F [166]. The model varied 

reaction rates or initial protein levels to account for intercellular variability of division 

times and was linked to flow cytometry data. 

Qu and coworkers designed a model of the G1 to S transition which was 

subdivided into modules [167]. Each module was added to the core module of cyclin E- 

CDK2 to assess its contribution and analyzed by steady state analysis. The proteins 

involved in the model are cyclin D, cyclin E, CDK2, CDK4, CDK6, Cdc25, E2F, Rb, and 

CKI. The model assumes mass action kinetics from biochemical reactions. Since the 

dynamics of the Gl-S checkpoint are not completely known, both Hopf and saddle node 

bifurcations were considered. 

The double negative feedback from Weel is not included in the model. The core 

module assumes that cyclin E binds to CDK2, which is already phosphorylated at all 

three sites. Cdc25 then unphosphorylates the two inhibitory sites simultaneously. Cdc25 

has five phosphorylation sites, but is allowed an arbitrary number of phosphorylation 

sites in the model. The positive feedback from Cdc25 on CDK2 is then the sum of the 

number of species that are weighted by the number of phosphorylations. The 

phosphorylation of Cdc25 has a background rate and a rate catalyzed by active CDK2. 

The same is true for Rb and CKI that have multiple phosphorylation sites. Rb 

must have at least M, a model parameter, phosphorylations to release E2F, but has a 
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larger possible number of phosphorylations. Likewise, CKI must be phosphorylated N, a 

model parameter, times before it releases cyclin E-CDK2 and is degraded. 

For the main module that includes cyclin E, CDK2, and Cdc25, bistability, 

multistability, limit cycle, and excitable dynamics are observed. These dynamics occur 

when there at least two phosphorylation sites on Cdc25. Bifurcation analysis is 

performed with cyclin E synthesis as the bifurcation parameter. The system can have 

oscillations is a lower Hopf or saddle node bifurcation. 

The effect of multiple phosphorylations on Cdc25 activation was also 

investigated. As the number of phosphorylations increased, the slope of the response 

curve and threshold of activation increased, a change that is essential to create 

instabilities. Also, fast phosphorylation is required to sustain oscillations. If the 

phosphorylation rate is lowered enough, the limit cycle behavior of the model disappears. 

Simulation results show that a high level of free and bound cyclin E are required 

to keep active cyclin E-CDK2 levels low. If the degradation rate is low, then higher 

levels of active cyclin E-CDK2 are observed, a condition that is shown to be tumorigenic, 

and the system behaves like overexpression of cyclin E. Low levels of cyclin E result in 

cell cycle arrest in Gl. Whereas, high levels result in early initiation of DNA synthesis. 

Overexpression of Cdc25 shortens Gl phase. Cdc25 is down regulated if there is 

DNA damage, which delays the G1 to S transition. Conversely, overexpression of CKI 

results in Gl arrest. Including CKI module in the model resulted in limit cycle behavior 

at higher cyclin synthesis rates. E2F and Rb have little effect on the threshold for 

oscillations when total E2F is conserved and cyclin D is not present. When cyclin D is 

present, overexpression of E2F hastens Gl phase and overexpression of Rb delays or 
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blocks the cell in the G1 phase. Over expressing E2F or deleting Rb causes high levels of 

cyclin E-CDK2, another condition that is characteristic of tumor formation. 

Multisite phosphorylation is essential for cell cycle instabilities that produce the 

oscillatory behavior. Cdc25 and CKI had to be phosphorylated in two or more sites to 

observe instabilities, and Rb required more than two sites. 

Qu and coworkers then created a model that links a cell growth model with an 

external source to the cell cycle [168]. They hypothesized that cell surface area at birth 

determines the growth rate. They then compared their model with cycle time versus birth 

size in fission yeast, Xertopus laevis, and serum removal before the restriction point in 

mammalian cells. The model was able to capture the sizer and timer effects of the cell 

cycle when a cell is smaller than a critical size. The physiologically derived model can 

capture the sizer and timer effect in a number of different species and of all experimental 

data sets unlike the empirical equations and phenomenological linking in Tyson’s work. 

By introducing spatial concentrations in the cytoplasm and nucleus, Yang and 

colleagues simulated a cell that linked cell growth with the cell cycle [169]. The model 

included mitotic proteins cyclin B-CDK1, Cdc25, Weel, Mytl, and APC. The cyclin B- 

CDK1 mechanism includes six species: cyclin B, hyper-phosphorylated cyclin B, inactive 

cyclin B-CDK1 complex, inactive cyclin B-CDK1 complex with hyper-phosphorylated 

cyclin B, active cyclin B-CDK1, and active cyclin B-CDK1 complex with hyper- 

phosphorylated cyclin B. 

Cyclin B forms an inactive complex with CDK1 that is activated by Cdc25 to 

form the active complex. Weel or Mytl can inactivate the active cyclin B-CDK1 

complex by phosphorylation. The active complex autophosphorylâtes the cyclin species, 
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which are actively transported into the nucleus. Cdc25, Weel, Mytl, and APC are 

assumed to have three phosphorylation sites which are catalyzed by both the active cyclin 

B-CDK1 complex and the active cyclin B-CDK1 complex with hyperphosphorylated 

cyclin B. The highest phosphorylated form of APC and Cdc25 are active and the 

unphosphorylated form of Weel and Mytl are active. The non-phosphorylated form of 

Cdc25 can bind to the 14-3-3 protein to form another inactive form. Active proteins are 

transported from the cytoplasm to the nucleus and inactive proteins are transported out of 

the nucleus except Weel and Mytl that are mainly nuclear and cytoplasmic, respectively. 

The protein model is mechanistic and assumes mass action kinetics. Nonlinear 

dynamics in the form of a third order dependence of active forms of cyclin B-CDK 

complex are utilized to capture the hyperphosphorylation of cyclin B species. The active 

transport of active cyclin B-CDK2 had been show experimentally and is reprinted in the 

paper. The nuclear volume is assumed to be constant, and as the cytoplasm grows at a 

rate proportional to the surface area at birth. The model was simulated with a discritized 

PDE model and two compartmental problem to determine the effects of transport and 

protein localization on the cell cycle system. 

Yang and colleagues determined early in the work that the two compartmental 

model captured the dynamics of the transport because there was a very small gradient 

within the nucleus and cytoplasm compartments in the full PDE model. They also found 

that the growth of the cytoplasmic volume makes the nucleus becomes a smaller sink 

term for the active species being transported between the two volumes. As the inactive 

cyclin B-CDK complexes accumulate in the cytoplasm, a threshold is past and then a 

spike occurs of active species, which are rapidly transported into the nucleus. The spike 
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in the nuclear concentrations is larger than the spike in the cytoplasmic concentration 

because the concentrating effect that is because the cytoplasmic volume is much larger 

than the nuclear volume. 

The bifurcation analysis shows a lower steady state at low active cyclin-CDK and 

a high steady state at high active cyclin B-CDK levels. In between the steady states is a 

limit cycle region that separated by two Hopf bifurcation points. The model accurately 

captures the active transport of the active species into the nucleus and links cell growth to 

the cell cycle in a mechanistic form. One limitation in the model is that it does not 

include a dilution term in the cytoplasm and the model is written in concentrations. 

Novak and Tyson developed a model that was able to capture the dynamics of the 

restriction point in mammalian cells [170]. Recently, a generic model that could capture 

cell cycle dynamics from Xenopus extracts to mammalian cells was developed in a 

modular form to display the similarities between the cell cycle machinery of all the 

species [171]. 

Although there has been great progress in the cell cycle modeling, there exists 

uncertainty in the protein network structure of the mitotic oscillator. Thus, this thesis 

work analyzed the effect of the reaction network structure and multisite phosphorylation 

on the observable system behavior. The next chapter presents the methods used in this 

thesis work to analyze the mitotic oscillator system behavior. 
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Chapter 4 - Methods 

The systems of ordinary differential equations (ODE) developed in this work 

were analyzed by bifurcation analysis and transient simulations. Bifurcation analysis 

solves for the steady state behavior of the system of equations, and therefore, this work 

could elucidate the effect of protein network structure and multisite phosphorylation on 

system behavior. The system behavior was further analyzed by transient simulation, 

thereby allowing the protein dynamics to be observed. For a thorough presentation of the 

theory behind bifurcation analysis refer to the following books [172,173]. Bifurcation 

analysis was performed by Ermentrout’s XPPA UT program [174]. 

For bifurcation analysis, the dynamic terms from the system of ODEs is set to 

zero, and the resulting system is solved for steady state behavior for a bifurcation 

parameter. As the value of the bifurcation parameter changes, the steady state behavior 

of the system changes. The cell cycle exhibits two steady state behaviors: limit cycle and 

stable steady state. For limit cycle behavior, a key protein oscillates between a minimum 

and maximum concentration with a specific period, a behavior that simulates 

proliferating cells. Once the system reaches a stable steady state, all protein 

concentrations are constant for all time. Quiescent and arrested cells are in a stable 

steady state where the cell cycle proteins dynamics do not change with time. 

Dynamic simulations for specific parameter sets were run with a program that I 

developed for this project. The program integrated an adaptive timestep Runge-Kutta- 

Fehlberg scheme with a Newton Raphson module. The two modules were integrated into 

a larger loop to accommodate a large number of parameter sets during a single 

simulation. For a specific parameter set, Newton Raphson was run to find the steady 
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state solution to the system. The key protein in the system, which in the case of the 

mitotic oscillator is MPF, was then perturbed to set the initial condition for the 

simulation. Adaptive time step Runge-Kutta-Fehlberg 45 was then run to generate the 

dynamic behavior of the perturbed system. This procedure repeated for each parameter 

set. For an in depth presentation on Newton Raphson and adaptive time step Runge- 

Kutta-Fehlberg 45 please refer to Chapra and Cannale’s book [175], 

Bifurcation analysis and transient simulation were utilized throughout this thesis 

work to elucidate the effect of protein network structure and multisite phosphorylation on 

the network behavior. Ultimately, this thesis work utilized bifurcation analysis and 

transient simulations to developed a mitotic oscillator linked to environment. For every 

analyzed parameter set, I observed how the system behavior deviates from ideal mitotic 

oscillator characteristics. 

4.1. Ideal Mitotic Model Characteristics 

An ideal mitotic model should capture the phenomenological behavior of a cell 

(Figure 3). First, a mitotic model should predict proliferating cells which are 

characterized by oscillating MPF levels [13]. A mitotic model should also capture 

quiescent and G2 arrested cells which are characterized by a low concentration of MPF 

[14]. Quiescent cells are non-cycling cells that are in a state of rest because they are 

completely surrounded by other cells or have not received a mitogenic signal from the 

environment. A mitotic model should also capture cells that are arrested in mitosis or 

have experienced mitotic catastrophe both of which are characterized by a high 

concentration of MPF. If cyclin B and CDK1 are over expressed, the cells enters mitosis 
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A. 

Time (min) 

Figure 3 - A) General bifurcation diagram capturing the essential elements of the mitotic oscillator and B) 
dynamics. The main bifurcation parameter is cyclin synthesis rate, which is controlled by environmental 
factors and is the source for MPF generation. A low steady state represented by a solid blue line represents 
the quiescent cells and G2 arrested cells. The upper steady state, represented by the solid blue line, 
represents the mitotic arrested and mitotic catastrophe cells. The middle region has an unstable steady 
state, which is shown as a dashed red line, and is the region where oscillations are observed. The 
oscillations represent proliferating cells, which are represented by solid blue circles. The open red circles 
are unstable limit cycle. 

before finishing DNA synthesis, consequently resulting in the death of the daughter cells. 

This behavior is known as mitotic catastrophe [176]. 

In the bifurcation diagram, the stable steady state with low concentrations of MPF 

at low cyclin synthesis rates represents all cells that are quiescent or G2 arrested. The 

stable limit cycle at intermediate cyclin synthesis rates represents proliferating cells, 

which have oscillatory MPF dynamics. MPF concentrations oscillate, a behavior which 

simulates multiple division cycles. The upper stable steady state with high MPF 

concentrations at high cyclin synthesis rates represents cells that have arrested in mitosis 

or that have experienced mitotic catastrophe. This thesis work takes the first vital steps to 

develop a proliferation model for a bioartificial tissue regeneration model. Therefore, I 

am particularly interested in the characteristics of stable limit cycle, otherwise known as 

the oscillatory region, where the cells are proliferating. 
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Specifically, I am interested in the size of the oscillatory region and the amplitude 

and period of the oscillations. Another model characteristic of interest to this work is 

hysteresis, which has been observed experimentally [177] with the MPF reaction 

network. Therefore, the model should be able to capture hysteresis. Hysteresis exists 

when there are multiple steady states for a singe value of the bifurcation parameter. 

Hence, I am interested if the model exhibits multiplicity of steady states for a given 

parameter set and network structure. The final model characteristic I am interested in is 

the shape of the change in amplitude with respect to the bifurcation parameter. Although 

it has not been observed experimentally yet, I hypothesize that the oscillations should be 

frequency encoded. When the oscillatory region is frequency encoded, as the key 

bifurcation parameter is changed over the oscillatory region, the period changes, but the 

amplitude remains approximately the same (Figure 3B). This behavior is ideal for a cell 

because the same peak in concentration is observed regardless of the division cycle time. 

In the following chapter, this work develops a mitotic oscillator using a bottom-up 

approach. Thus, the initial model incorporates the minimal number of components while 

maintaining biological integrity. Than expanding from the base model, the MPF 

activation network, number of positive feedback loops, and number of multisite 

phosphorylations were varied to analyze their affect on system behavior. 
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Chapter 5 - Mitotic Oscillator 

Cell mitosis has been the subject of many experimental and modeling studies. 

Even with all the new discoveries, there remains uncertainty about the protein network 

structure, and the effect of different protein network structures on the behavior of the 

systems is not fully understood. In an effort to elucidate the effect of protein network 

structure and multisite phosphorylation on system behavior, this work incorporated recent 

biological discoveries and a bottom-up approach to create a model for mitosis. 

Complexity was added to a base mitotic oscillator by increasing the number of 

phosphorylations and utilizing different protein reaction networks to analyze the effect of 

the different mechanisms and multisite phosphorylation on the oscillatory behavior of the 

model. This is the first work to analyze the effect of protein network structure and 

multisite phosphorylation on the system behavior of a mitotic oscillator. 

For more than two decades, researchers have been developing models for the cell 

cycle, a subset of which is mitotic oscillators. Development began in the early 90s with 

minimal models describing the oscillatory behavior observed in frog embryos [69,70,80, 

82]. The minimal models led to the development of more complex models for yeast 

[112,113,121] which were further generalized for eukaryotic systems [98] and expanded 

in complexity including a full model for the budding yeast cell cycle [125]. 

These models provided valuable insights into the cell cycle machinery and 

generated hypotheses that were later tested experimentally. However, all these models 

were developed with a top down approach. Each model incorporated the biological 

knowledge at the time, but assumed various nonlinear reaction rate expressions for 

protein-protein interactions. The model parameters were then fit to experimental data that 
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were based on postulated protein dynamics. However, the reaction rate expressions used 

in these models were not always supported by experimental evidence, and the 

mechanisms that generate the nonlinearities observed were not known. 

Since the biological mechanisms generating these nonlinear reaction rates were 

not always fully understood, several groups developed bottom-up models to analyze how 

different sub-networks within the larger network contribute to the model’s behavior [101, 

137,167,171]. Utilizing a bottom-up approach, the modelers begin with a base or 

minimal model that can capture the basic behavior of the system. Then, proteins and 

protein interactions are added to the base model to analyze their contribution to the larger 

system. By utilizing the bottom-up approach, the modelers were able to gain insight into 

how different sub-networks contribute to the overall behavior of the complex network. 

Yet these works still assumed various nonlinear reaction rate expressions within the 

models that are presently not known. Furthermore, Tyson and colleagues recently proved 

that the Michaelis-Menten kinetics and ultrasensitive switches utilized extensively in 

earlier models do not accurately describe the dynamics occurring between proteins in cell 

cycle networks [110,136]. 

The uncertainty in the functional form of the reaction rate expressions and the 

mechanisms that generate nonlinearities in the networks led Yang and colleagues to 

develop a bottom-up model for mitosis to analyze the effect of multiple phosphorylations 

on the observable behavior [103]. First, they developed a base model with the minimal 

assumption of mass action kinetics. Phosphorylation reactions were then added to the 

positive feedback loops and a Monte Carlo simulation was run. For each simulation, a 

random parameter set was chosen, and a bifurcation analysis was run. 
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Yang and colleagues observed that as the number of phosphorylations increased 

on the positive feedback mechanisms, the number of simulations that exhibited bistability 

and limit cycle increased. Bistability requires nonlinearities to exist within the network, 

and, therefore, the Yang and colleagues model suggests that multisite phosphorylation 

may be able to generate the nonlinear mechanisms that are present in mitosis. However, 

this study did not provide a systematic analysis of the parameter space where the model 

oscillates. Furthermore, this study did not provide details about the characteristics of the 

oscillations. 

Moreover, recent experimental studies have also revealed new insights about the 

biology of mitosis. The central protein that initiates mitosis is the metaphase promoting 

factor (MPF) that is a composed of two subunits, cyclin B and cyclin dependent kinase 1 

(CDK1). Larochelle and colleagues recently discovered that CDK1 must be 

phosphorylated at threonine 161 in order to stabilize the bond between cyclin B and 

CDK1 [19]. There have also been new discoveries about the activation of MPF. During 

the initiation of mitosis, the Cdc25 family of phosphatases activates MPF. All species of 

Cdc25 can activate MPF, but Cdc25A plays a general role in the cell cycle and is 

involved in both Gl/S and G2/M [37]. Furthermore, Cdc25B‘A Cdc25C"/' double 

knockout mice grow normally, and therefore, do not display a unique phenotype [62]. 

Thus, Cdc25 A can compensate for all CDK phosphatase functions throughout the cell 

cycle [62-64]. These results have not yet been incorporated into any of the models 

available in the literature. 

Therefore, this work employed a bottom-up approach to add complexity to an 

initial base mitotic oscillator model incorporating the current biological knowledge. 
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Bifurcation analysis was utilized to assess how varying the number of multisite 

phosphorylation events and protein network architecture affect the system behavior. 

Specifically, this work investigated the MPF activation network that involves three 

phosphorylation events by varying the protein reaction network architecture that changes 

the phosphorylation sequence. In addition, this work analyzed the effect of varying the 

number of multisite phosphorylation events on Cdc25 A on the oscillatory characteristics 

of MPF. Finally, an additional positive feedback loop was added to the model and the 

number of multisite phosphorylation events was varied to assess the biological relevance. 
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Figure 4 - Base Mitotic Model Reaction Network. MPF is generated by the dimerization of cyclin B and 
CDK1 thereby forming the active complex. MPF initiates mitosis and therefore is the central protein. The 
model has a single positive feedback loop where MPF stabilizes Cdc25A by phosphorylation and Cdc25A 
activates MPF by dephosphorylation. MPF activates APC by phosphorylation, and active APC in turn 
degrades all forms of cyclin B and Cdc25A thus generating the negative feedback loop 
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5.1. The Model 

Employing a bottom-up approach, I designed a base mitotic model (Figure 4) that 

incorporates a minimal number of components while incorporating the current biological 

knowledge. The MPF subsystem has four species: monomeric cyclin Bl, active MPF, 

and two inactive forms of MPF. CDK1 is in excess in cells [178], and therefore, is 

incorporated into the dimerization constant, k». This model is the first to include the 

recent biological discovery that CAK phosphorylation is required for the stabilization of 

the cyclin B-CDK1 dimer which is not observed otherwise [19]. In addition, CAK 

activity, which is observed to be constant in cells [179], and is also incorporated into the 

dimerization constant, kj. The two inactivating phosphorylations by the Weel family of 

kinases are have been observed to occur sequentially in cells [34] and thus the model 

incorporates two inactive MPF species. By incorporating sequential inactivation 

phosphorylations and the requirement of CAK phosphorylation for MPF dimerization, 

this MPF activation mechanism is supported by the current biological knowledge, and 

this is the first mitotic model to incorporate this MPF activation network. 

Although MPF is involved with multiple different proteins, which form positive 

feedback mechanisms during MPF activation, this work employed a bottom-up design 

and began by incorporating a single positive feedback loop by incorporating Cdc25A 

dynamics into the base model. All three species of Cdc25 can remove the inhibitory 

phosphorylations on MPF, but Cdc25A plays a general role in the cell cycle and is 

involved in both Gl/S and G2/M [37]. Furthermore, Cdc25B_/' Cdc25C'/' double 

knockout mice do not display a unique phenotype [62]. Cdc25A can compensate for all 
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Table 1 - Mitotic Oscillator Base Model Rate Constants with Descriptions. 

Parameter Description Base Model 

ki Cyclin B synthesis rate Bifurcation Parameter 

^2 Nonspecific Cyclin B degradation rate 0.0001 min'1 

k3 Cyclin B degration rate by APC 0.015 nM'1 min'1 

k4 Cyclin B CDK1 dimerization rate 6 min'^ 
ks Cyclin B CDK1 dissociation rate 0.01 min"1 

kô MPF inactivation rate by Weel kinases 2.1 nM'1 min'1 

k7 MPF activation rate by Cdc25A 0.5 nM'1 min'1 

k8 Cdc25A synthesis rate 1.2 nM min'1 

k9 Nonspecific lliable Cdc25A degradation rate 12 min'1 

kio Cdc25A degradation rate by APC 0.4 nM'1 min'1 

kn Cdc25A stabilization rate by MPF 7.5 nM'1 min'1 

ki2 Cdc25A desabilization rate 0.1 min'1 

ki3 APC activation rate by MPF 0.001 nM'1 min'1 

ki4 APC inactivation rate 0.45 min'^ 
Atnf Total APC Concentration 100 nM 

Weel Total Weel Concentration 1 nM 

phosphatase functions throughout the cell cycle [62-64], and therefore this work focuses 

solely on the Cdc25A species. 

Cdc25A activity during mitosis is controlled by phosphorylation dependent 

stabilization [46]. Throughout interphase, Cdc25A is liable and degraded by the SCF 

protease [46]. During mitosis, Cdc25A is stabilized by MPF phosphorylation at serine 18 

and serine 116 [46] thereby forming an additional positive feedback loop. 

Cdc25A has three phosphorylation states in the base model. Unphosphorylated 

Cdc25A and Cdc25 A with a single MPF phosphorylation are liable species and are 

degraded by a background protease. Cdc25A with two MPF phosphorylations is 

stabilized and is not degraded by the background protease. Since this work employed a 

bottom-up approach and therefore included only a single positive feedback mechanism in 

the base model, the positive feedback mechanism with Weel is not included and the 

activity of Weel is assumed to be constant. 
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In order to reset the system, MPF must activate its negative feedback mechanism, 

which is the anaphase promoting complex (APC). MPF can phosphorylate APC on at 

least 15 sites which facilitates the binding of its activating subunit Cdc20 [180]. The 

APC has two activating subunits, Cdc20 and Hctl/Cdhl [11]. Cdc20 activity is high 

during early anaphase through the exit of mitosis when Hct/Cdhl activity rises and 

remains high until the end of G1 [11]. 

Since the reaction network of the activation of APC is highly complex, the base 

model incorporates a simplified model of APC. APC has two forms, active and inactive, 

and the total concentration of APC is assumed to be constant during the cell cycle. MPF 

activates APC, which degrades all species containing cyclin B and all Cdc25A species. 

The base model was formulated with the minimal assumption of mass action kinetics and 

can capture the mitotic oscillations observed in proliferating cells (Figure 5). Rate 

constants for the base model are displayed in Table 1 with descriptions. The model 

equations are presented below. 
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Figure 5 - Dynamics of mitotic oscillator. Cyclin B accumulates until a threshold of active MPF has been 
reached. Past the threshold, MPF rapidly stabilizes Cdc25A, which in turn activates MPF. Both 
concentrations peak at approximately the same time. MPF then activates the APC, which degrades cyclin 
B before Cdc25A, thus restarting the cell cycle. This is only a single parameter set, so a sensitivity analysis 
to determine how the model parameters change the oscillatory characteristics was performed. (k3 = 0.1 nM' 
1 min'1) 

d[C^B\ = kx-k2 [ÇycB] - k3 [APC - P][<CycB] - k4 [CycB] + k5 [MPF] 

d[^F] = ^ |’CycB] - k5 [MPF] - k3 [APC - P][MPF] - kb [WeelA][MPF] 

+k7 ([Cdc25A] + [Cdc25A - p} + [Cdc25A - PP^[MPF - P] 

-k2[MPF] 

d[MPF-P] = ^ j^cdc25A] + \Cdc25A - p] + [Cdc25A - PP])[MPP - PP] 

-k2 [XW] + kb [WeeXA^MPF] - k6 [WeeXA^MPF - p] 

-k3[APC- P][MPF- P] 

-k7 {^Cdc25Â\ + [Cdc25A - p] + [Cdc25A - PP]}[MPF - P] 

-1   i = -k7 §Cdc25A\ + [Cdc25A - P] + [Cdc25 - PP\j[MPF - PP] 

-k2 [MPF - PP]~k3 [APC - P][MPF-PP] 

+kb\Wee\A\MPF- P\ 

(5.1) 

(5.2) 

(5.3) 

(5.4) 



72 

d\Cdc2$Â\ 
= ks-k9 [Cdc25A] - kl0 [APC - P\Cdc25A] 

dt 
-kn [.MPF\Cdc25A] + kn [Cdc25A - P] 

(5.5) 

-kn [MPF][Cdc25A - f>]+ kn [Cdc25- PP] 

-k9 [Cdc25A-/>]-k10 [APC - P][Cdc25A - P] 
(5.6) 

(5.7) 

(5.8) 

Equation 5.1 describes the dynamics of cyclin B monomers, CycB. CycB is 

synthesized at a constant rate, ki. All species that incorporate cyclin B, CycB, MPF, 

MPF-P, and MPF-PP, degrade at a background rate, k2, and at a rate proportional to the 

anaphase promoting complex, k3. CycB dimerizes with CDK1 and is phosphorylated by 

CAK to from MPF at a rate of k4. MPF dissociation to CycB and CDK1 occurs at a rate 

ofk5. 

Equation 5.2 describes the dynamics of MPF, which is the protein that initiates 

mitosis. MPF dynamics include the dimerization and dissociation of cyclin B monomers 

and CDK1. Since MPF incorporates cyclin B, it has the same degradation terms. In 

addition, MPF is phosphorylated by Weel at a rate of ks and is formed by the 

dephosphorylation of inactive singly phosphorylated MPF species, MPF-P, by Cdc25 A at 

a rate of k7. 

Equations 5.3 and 5.4 capture the dynamics of the inactive MPF species, MPF-P 

and MPF-PP. MPF-P has a single inactivating phosphorylation, whereas MPF-PP has 
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both inactivating phosphorylations. Both species incorporate cyclin B, and thus are 

degraded at a background rate of k2 and proportional to APC, k3. Both species are 

created by phosphorylation of the prior MPF specie by Weel at a rate of k<s. The removal 

of the inhibitory phosphorylation by Cdc25 A converts each species to the prior species, 

and occurs at a rate of k7. For example, MPF-PP becomes MPF-P when 

dephosphorylated by Cdc25A. 

The Cdc25A species are described by equations 5.4 through 5.6. Cdc25A is 

synthesized at a constant rate of kg. MPF phosphorylâtes Cdc25A at a rate of kn. 

Cdc25A-P is the singly phosphorylated species, and Cdc25A-PP has two MPF 

phosphorylations. Cdc25 A and Cdc25 A-P are liable and therefore degraded at an 

accelerated rate, kç. APC degrades all Cdc25A species at a proportional rate, kio. MPF 

phosphorylation stabilizes Cdc25A, and therefore, Cdc25A-PP does not have accelerated 

degradation. The MPF phosphorylations are removed at a rate of ki2. The interactions 

between MPF and Cdc25A generate a positive feedback loop. MPF stabilizes Cdc25A, 

and Cdc25 A removes the inhibitory phosphorylations on MPF, thereby activating it. 

The final equation, 5.7, captures the dynamics of the active form of anaphase 

promoting complex, APC-P. The model assumes that the total APC concentration 

remains constant throughout the cell cycle, APQ0t. The inactive APC species, which is 

calculated as the total APC concentrations minus the active concentration, is activated by 

MPF phosphorylation at a rate of ki2. The MPF phosphorylation is removed at a rate of 

kn, thereby inactivating APC. MPF activates APC, which in turn degrades all cyclin B 

species and Cdc25A species, thus forming a negative feedback loop. 



74 

This work analyzed the effect of multisite phosphorylation and protein network 

structure on the oscillatory characteristics of the mitotic oscillator, but first the effect of 

parameters on oscillatory behavior must be elucidated. Thus, I began with a sensitivity 

analysis of the base model. With a thorough understanding of how parameters affect the 

oscillatory characteristics of the mitotic oscillator, I began the investigation of the protein 

network structure. The protein network structure analysis included an analysis of the 

MPF activation network and the effect of multiple phosphorylations and multiple positive 

feedback loops. 

The six MPF activation networks in the study are grouped by their 

phosphorylation order (Figure 10). The activating phosphorylation can occur in parallel 

(Figure 10A and B) or sequentially (Figure IOC, D, E, and F) with the inactivating 

phosphorylations. Within sequential activating phosphorylation, cyclin B and CDK1 can 

form either an active (Figure 10C and D) or inactive (Figure 10E and F) dimer. Finally, 

the inactivating phosphorylations can either happen sequentially (Figure 10A, C, and E) 

or simultaneously (Figure 10B, D, F). MPF activation that includes multisite 

phosphorylation requires sequential inactivating phosphorylations. As discussed earlier, 

mechanisms A, B, D, and F have been utilized in prior modeling efforts. Current 

biological knowledge supports mechanism C, which is incorporated into the base model 

in this work for comparison. 

The model was then expanded to increase the number of sequential 

phosphorylations on Cdc25A. MPF is known to phosphorylate Cdc25A at two sites, 

serine 18 and 116, which stabilizes Cdc25A during mitosis [46], but Cdc25A has a total 

of 12 potential CDK phosphorylation sites [39]. For each additional phosphorylation, a 
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species was added to the system, but the model parameters remain constant. The Cdc25A 

species with the most phosphorylations was assumed to be stabilized. 

In mammalian cells, multiple positive feedback loops are involved in the 

activation of MPF. To analyze the effect of multiple positive feedback loops I 

incorporated Weel dynamics into the base mitotic model. Since multiple Weel kinases 

are involved in the inhibition of MPF, Weel A and Mytl, and their regulation by MPF 

differs, the model assumes that Weel A can phosphorylate both inhibitory sites on MPF 

as is observed in fission yeast [181]. Weel inhibits MPF [20] and MPF indirectly 

inhibits Weel through phosphorylation [182] which forms a double negative, or positive 

feedback loop. 

Although two MPF phosphorylation sites lead to Weel A inhibition [182], there 

are a total of 15 potential CDK phosphorylation sites on Weel [29]. Therefore, 

sequential MPF phosphorylations are added to Weel to investigate the effect of multiple 

phosphorylations with a second positive feedback mechanism. The Weel A species with 

the maximum number of phosphorylations is assumed to be inactive for each Weel A 

network. 

Throughout this work, bifurcation analysis was run on XPPAUT [174] with the 

stiff integrator function. Transient simulations were run with an adaptive timestep RK45 

integrator on the three key mitotic regions (quiescent, proliferation, mitotic catastrophe) 

of the bifurcation diagrams in the sensitivity analysis. To generalize the results from the 

MPF activation reaction networks, multiple parameter sets were chosen from the base 

model to capture the full range of observed bifurcation structures. Since the base model 

incorporates the current biological knowledge, each tested MPF activation network is 
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compared to the base model with the parameter sets that capture the base model’s full 

range of observed bifurcation structures. The analysis for the effects of additional 

phosphorylations and positive feedback loops employed the base mitotic model which 

incorporates the current biological knowledge. 

5.2. Sensitivity Analysis 

The majority of the model parameters can be separated into two groups: the 

parameters that increased the negative feedback strength and the parameters that 

increased the positive feedback strength. As the negative group parameters (k2, kî, ks, kç, 

kio, ki2, kn) are increased, the size of the oscillatory region increases and is shifted to 

higher synthesis rates (Figure 6). The amplitude, period, and size of the region of 

multiplicity decrease, and the oscillations become less frequency encoded. 

By increasing the negative feedback strength, the system must produce more MPF 

and thus more cyclin to activate MPF through Cdc25A that causes the shift of the 

oscillatory region to higher synthesis rates. The increase in the negative feedback 

parameters down-regulate MPF by increasing MPF degradation (k2, ka), MPF 

inactivation (ks), Cdc25A degradation (k9,kio), Cdc25A inactivation (ki2),or APC 

activation (kn). As the negative feedback strength approaches the positive feedback 

strength, the difference in the MPF concentration necessary to activate APC and stabilize 

Cdc25A decreases, thus shrinking the delay between the positive and negative feedback 

activation generating non-frequency encoded oscillations. 
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The positive feedback group (kg, kn, ki4) has the opposite effect on the oscillatory 

characteristics as the negative feedback group (Figure 6). Increasing the parameters in 

the positive group decreases the oscillatory region and shifts it to lower synthesis rates. 

The amplitude, period, and size of the region of multiplicity increase, and the oscillations 

become more frequency encoded. 

Increasing the positive feedback group parameters decreases the amount of MPF 

necessary to trigger the onset of mitosis, which causes the shift of the oscillatory region 

to lower cyclin B synthesis rates. Increasing Cdc25A synthesis (kg) or stabilization (ki i) 

rates raises the amount of stable Cdc25A in the system. Increasing APC inactivation 

raises the amount of MPF necessary to active the negative feedback loop. Therefore, 

A. B. C. 

F. 

Figure 6 - Increasing negative feedback Strength/Decreasing positive feedback strength. From left to right, 
negative feedback strength increases (k3 = 0.015 nM'1 min'1, 0.1 nM'1 min'1, 0.2 nM'1 min'1). As the 
negative feedback strength increases, the size of the oscillatory region increases and shifts to higher 
synthesis rates. The size of the region of multiplicity and amplitude decrease, and the oscillations become 
less frequency encoded. Also, observe the decrease in the period in the lower plots. From right to left, the 
positive feedback strength increases, and has the exact opposite effect on the oscillatory characteristics of 
the system as increasing the negative feedback strength. 



increasing the positive feedback group up-regulates MPF by lowering the activation 

threshold of MPF or raising the activation threshold of the negative feedback loop. 

Although normally considered a positive group parameter, MPF activation by 

Cdc25A (ky) actually displays biphasic behavior (Figure 7). This work defines biphasic 

behavior as a change from increasing positive feedback characteristics to increasing 

negative feedback characteristics as the parameter is raised. Initially increasing the 

parameter increases the positive feedback strength. The size of the oscillatory region 

decreases and shifts to lower synthesis rates. The size of the region of multiplicity, 

amplitude, and period (data not shown) increase and the oscillations become more 

A. B. C. 

Figure 7 - Biphasic behavior of MPF activation by Cdc25A (k7). As the activation rate is increased, the 
region of oscillations is shifted to lower synthesis rates and there is a decrease in the size of the region of 
oscillations. Initially, increasing the activation increases the region multiplicity and creates more frequency 
encoded oscillations, but further increase destroys the region of multiplicity and creates less frequency 
encoded oscillations. From left to right, k7 = 0.1 nM'1 min'1, 0.5 nM'1 min'1, 7 nM'1 min'1. 

frequency encoded. 

However, further increase in MPF activation rate weakens the positive feedback 

strength because of the protein network structure of the Cdc25 A stabilization mechanism. 

As MPF activation rate increases, the concentration of Cdc25A necessary to activate 

MPF decreases. Thus, the unstable, rapidly degraded Cdc25A species concentrations 

become more significant decoupling the positive feedback mechanism of MPF induced 
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stabilization of Cdc25A. Since less Cdc25A is necessary to activate MPF, the oscillatory 

region is decreases and shifts to lower cyclin synthesis rates. The weakened positive 

feedback does not fully activate MPF before APC is activated which decreases the 

amplitude, period, and size of the region of multiplicity, and the oscillations are less 

frequency encoded. 

The dimerization and dissociation of cyclin B and CDK1, k4 and k5, do not affect 

the positive or the negative feedback strength. Rather, both parameters affect the total 

amount of monomeric cyclin B observed in the system and where it oscillates (Figure 8). 

When dimerization of cyclin B and CDK1 is rapid and stable, cyclin B concentrations are 

negligible because all cyclin monomers are dimerized with CDK1. Slow dimerization 

rates create a barrier to the MPF activation subsystem, and thus monomeric cyclin B 

accumulates in order to dimerize into MPF. Hence, monomeric cyclin B accumulation is 

driving the oscillations in the system. Accumulation of monomeric cyclin B is inefficient 

for the cell since the majority of the cyclin B synthesized is not utilized in MPF to initiate 

mitosis. Alternatively, high cyclin B CDK1 dissociation rates destabilize MPF during 

mitosis. During interphase, cyclin B and CDK1 dimerize to form MPF that is rapidly 

inactivated by the Weel family of kinases, and therefore cyclin B monomer 

concentration is negligible. When Cdc25A activates MPF during the initiation of mitosis, 

the rapid dissociation results in MPF splitting into cyclin B and CDK1 that generates a 

spike in cyclin B monomer concentration. Thus, a high dimerization rate and low 

dissociation rate allow a cell to efficiently utilize synthesized monomeric cyclin B and 

generate an autocatalytic peak concentration in MPF. 
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A. B. 

C. D. 

Time (inin) 

Figure 8 - Dimerization and dissociation of cyclin B and CDK1. Figure A has a low dimerization rate (kj 
= 0.0006 min'1). Monomeric cyclin accumulation drives the system oscillations. Figure B has a high 
dimerization rate (k4 = 0.6 min'1). Monomeric cyclin efficiently dimerizes into MPF and MPF dynamics 
drive the oscillations. Figure C has a high dissociation rate (k5 = 100 min'1). The MPF dimer is unstable 
and quickly dissociates. Thus, the autocatalytic activation of MPF generates a monomeric cyclin 
concentration peak rather than a MPF concentration peak. Figure D has a low dissociation rate (k5 = 1 min' 
*). MPF is a stable dimer, and the autocatalytic activation of MPF generates a MPF concentration peak. 

With a thorough understanding of the effect of the parameter values on the 

oscillation characteristics, I grouped the observed parameter sets into four categories. 

The first category has both multiplicity of steady states and frequency encoded 

oscillations to capture ideal mitotic oscillator characteristics (Figure 9A). The second 

category has frequency encoded oscillations without multiplicity of steady states, and the 

third category has multiplicity of steady states without frequency encoded oscillations. 
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C. D. 

Figure 9 - Observed system behavior for base mitotic model. All oscillatory behaviors have a lower steady 
state that represents quiescent and G2 arrested cells and a high steady state that represents mitotic arrested 
and catastrophe cells. System A has frequency encoded oscillations and a region of multiplicity of steady 
states (base parameter set). System B has frequency encoded oscillations but does not have a region of 
multiplicity of steady states (k3 = 0.1 nM'1 min'1). System C generates nonfrequency encoded oscillations 
and does not have a region of multiple steady states (k7 = 0.1 nM'1 min'1). System D is bistable (kio = 0.1 
nM'1 min'1) 

The final category is bistable without oscillation. One parameter set from each of these 

categories was analyzed for all MPF network structures. 

In the following section, this work switches from analyzing the varying parameter 

values to elucidating the effect of different protein network structures. Many different 

MPF activation networks were employed in prior models, and therefore this analysis shed 

light into the motivation for cells to evolve to the present day mechanism. One parameter 

set from each of the categories from the sensitivity analysis was analyzed for every MPF 

activation network to generalize the results. 



82 

5.3. MPF Phosphorylation Reaction Network 

The MPF reaction networks are grouped into 3 different groups by their 

phosphorylation order (Figure 10). First, parallel and sequential activating and 

inactivating phosphorylations are compared. Then, active and inactive cyclin B CDK1 

dimerization are compared. Finally, sequential and simultaneous inactivating 

phosphorylations are compared. A parameter set from each of the four categories 

discussed in the sensitivity analysis was utilized to ensure the observed results are 

generalizable different regions of the parameter space. All six networks were analyzed, 

and the results were qualitatively consistent based on the phosphorylation structure. 

Inactivating Phosphorylations (Wee1 A) 

Figure 10 - MPF phosphorylation reaction networks. The reaction networks are organized by their 
phosphorylation structure. The squares represent CDK1 and the ovals represent cyclin B. The small 
circles represent the phosphorylations. The inhibitory phosphorylations are on the left side of CDK1 and 
the activating phosphorylation is on the right. Active MPF is shaded blue. The activating phosphorylation 
can occur in parallel (A and B) or sequentially (C, D, E, and F) with the inactivating phosphorylations. 
Within sequential activating phosphorylation, cyclin B and CDK1 can either form an active (C and D) or 
inactive (E and F) dimer. Finally, the inactivating phosphorylations can either happen sequentially (A, C, 
and E) or simultaneously (B, D, F). 
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The first group has parallel activating and inactivating phosphorylations. Cyclin 

B and CDK1 dimerize to form a complex without phosphorylations on CDKlthat can 

then be phosphorylated by either CAK or Weel species. Two parameters (kcak and kdcak) 

are added to the model to describe the rate of phosphorylation and dephosphorylation at 

the activating site of CDK1, respectively. The ratio of kcak/kdcak was employed to 

compare parallel and sequential activating phosphorylations. When the ratio is very 

large, the activating phosphorylation event is rapid and stable and transforms the parallel 

models (Figure 10A and B) into sequential models (Figure IOC and D). 

All MPF species that do not have the activating phosphorylation by CAK 

including monomeric cyclin B cannot be activated by Cdc25A to initiate mitosis. These 

inactive MPF species are referred to as CAK unphosphorylated MPF species. The 

remaining MPF species can be activated by Cdc25A to initiate mitosis and are referred to 

A. 
Parallel Phosphorylation 

B. 
Sequential Phosphorylation 

Figure 11 - Parallel vs. sequential activating phosphorylation sequence. The black line is total cyclin B 
concentration. The blue line represents concentration of CDK1 species that have not been phosphorylated 
at the activating site and monomeric cyclin B. The dashed red line represents the concentration of CDK1 
species that have been phosphorylated at the activating site and therefore have the ability to become active 
MPF. When the activating phosphorylation occurs in parallel with the inactivating phosphorylations, the 
majority of the CDK1 remains inactive and therefore cannot become active MPF. When the activating 
phosphorylation occurs sequentially with the inactivating phosphorylations following, the majority of 
CDK1 has the activating phosphorylation and can be activated by Cdc25A to active MPF. (Mechanism A 
base parameter set, Parallel kcak/kdca!( = 10/100 = 0.1, Sequential kcak/kdca)( = 10/0.0001 = 100000) 
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as CAK activated MPF species. When the ratio of kcak/kdcak is small there is parallel 

phosphorylation, and the majority of cyclin B remains in CAK unphosphorylated MPF 

species (Figure 11). When the ratio of kcak/kdcak is large the activating phosphorylation 

occurs before the inactivating phosphorylations, and the majority of the cyclin B is in 

CAK activated MPF species (Figure 11). Therefore, the more efficient usage of cyclin B 

occurs when the activating phosphorylation occurs sequentially before the inactivating 

phosphorylations and is supported by experimental observations. CAK phosphorylation 

is required for the stabilization of the cyclin B CDK1 dimer [19], and cyclin B must bind 

CDK1 before Weel and Mytl can phosphorylate CDK1[17]. 

The next group is defined by the dimerization of cyclin B and CDK1 into an 

active (Figure IOC and D) or inactive (Figure 10E and F) MPF complex. To form an 

active dimer, the activating phosphorylation occurs before the inactivating 

phosphorylation. To form an inactive dimer, both the activating and inactivating 

phosphorylations occur at dimerization. 

A. B. 

Figure 12 - Cyclin B CDK1 dimerization to active (A) and inactive (B) complex. MPF mechanism C is 
shown in figure A with the base parameter set and when comparing the MPF mechanism E in figure B, 
there is little qualitative difference. Both systems exhibit frequency encoded oscillations and a region of 
multiple steady states. Similar qualitative results were obtained when comparing MPF mechanisms D and 
F. 
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The results show that is not a qualitative difference in bifurcation diagrams for the 

active dimer and inactive dimer groups (Figure 12). The main qualitative difference 

between the active and inactive dimerization is observed when analyzing two parameter 

bifurcation plots (Figure 13). When cyclin B and CDK1 dimerize to an active MPF 

species, the MPF activation rate by Cdc25A has a lower bound, and below the lower 

bound the system does not oscillate (Figure 13A). Furthermore, there is a bounded 

region for the liable Cdc25A degradation rate (Figure 13C). Thus, if the liable Cdc25A 

degradation rate is unregulated above a certain rate the system no longer maintains the 

ability to oscillate. Up-regulated degradation of CDC25A is a mechanism utilized by the 

cell to arrest the cell cycle in response to DNA damage [46]. 

Alternatively when cyclin B and CDK1 dimerize to an inactive MPF species, the 

MPF activation rate by Cdc25A has a limitless lower bound (Figure 13B). Moreover, the 

liable Cdc25A degradation rate can increase orders of magnitude, and the system has the 

ability to oscillate if it synthesizes cyclin fast enough (Figure 13D). Hence, the cell has 

lost two mechanisms to arrest the cell cycle. Furthermore, since cyclin B binding is 

necessary for CAK and Weel/Mytl phosphorylation [17], and CAK phosphorylation is 

necessary for stabilization of the dimer [19], the dimerization cannot form an inactive 

MPF species. 

The final grouping of MPF networks is whether the inactive phosphorylations 

occur sequentially (Figure 10A, C, and E) or simultaneously (Figure 10B, D, and F). 

When the inactivating phosphorylations occur sequentially, two phosphorylation events, 

there exist parameter sets that can generate ideal cell cycle oscillatory characteristics. 

Sequential dephosphorylation by Cdc25 has been observed experimentally [34], and Y15 
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A. 

C. 

B. 

Figure 13 - Dimerization to active vs. inactive MPF complex. In the two parameter bifurcation plots, the 
dashed lines are the limit points, which enclose the region of multiplicity of steady states, and the solid 
lines are the Hopf points, which enclose the region of oscillations. Figures A and B plot the rate of 
Cdc25A activation of MPF vs. cyclin B synthesis rate for MPF mechanisms C and E, respectively. Figures 
C and D plot the nonspecific degradation rate of liable Cdc25A species vs. cyclin B synthesis rate for the 
same respective mechanisms. Both the Cdc25A activation rate of MPF and nonspecific degradation rate of 
liable Cdc25A are bounded when cyclin B and CDK1 form an active complex (A and C). On the other 
hand, when cyclin B and CDK1 form an inactive complex, the system retains the ability to oscillate at low 
MPF activation rates and high nonspecific liable Cdc25A degradation rates (B and D). 

phosphorylation has only been observed with T14 phosphorylation [21] which suggests 

sequential phosphorylation. 

When the inactivating phosphorylations occur simultaneously in one 

phosphorylation event, the mechanism does not generate ideal cell cycle dynamics 

(Figure 14A). The oscillations are sinusoidal, and thus the transition into mitosis is not 

abrupt. This behavior is in stark contrast to the switch-like transitions observed 

experimentally. In fact, multiplicity is not observed over the entire oscillatory space of 



87 

A. B. 

Figure 14 - Simultaneous inactivating phosphorylation. Figure A displays the bifurcation diagram for 
MPF reaction network D with the base parameter set (Table 1). Although the system with sequential 
inactivating phosphorylations generates realistic cell cycle oscillatory characteristics with multiplicity of 
steady states and frequency encoded oscillations for this parameter set, the MPF reaction network with 
simultaneous inactivating phosphorylations does not generate realistic oscillation characteristics. 
Multiplicity is not observed throughout the MPF activation rate by Cdc25A oscillatory parameter space 
(Figure B). Solid black line represents Hopf bifurcation points and encloses the oscillatory region (Figure 
B). 

the MPF activation (Figure 14B). The loss of multiplicity is because of the loss in the 

nonlinear term in the MPF network when the inactivating phosphorylation is assumed to 

occur in a single step. If the intermediate inactive MPF species is assumed to be at 

(d\MPF-P] ) 
 i = 0 

dt 
pseudo steady state, ' ', then the resulting ODEs retain the nonlinearity 

and the system qualitatively exhibits the original system (see Appendix I). The loss of 

nonlinearity supports my hypothesis that multisite phosphorylation is crucial in the MPF 

activation network. 

5.4. Cdc25A Phosphorylations 

After determining that multisite phosphorylation is crucial in the MPF activation 

network, I investigated multisite phosphorylation on Cdc25A. The system has a region 

of multiplicity when Cdc25A has linear stabilization (Figure 15D). The nonlinearity is 
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Figure 15 - Effect of sequential Cdc25A phosphorylations. Top figures are bifurcation plots with 
increasing number of sequential phosphorylations of Cdc25A and constant Cdc25A stabilization rate 
(ki i=7.5 nivr'min1). The Cdc25A species with the maximum number of phosphorylations is considered to 
be stable for each simulation. All Cdc25A species with less than the maximum number of 
phosphorylations are considered liable. Bottom figures are two parameter bifurcation plots for Cdc25A 
stabilization by MPF phosphorylation vs. cyclin B synthesis rate. Increasing the number of Cdc25A 
phosphorylations has a biphasic effect on the size of the region of multiplicity when the Cdc25A 
stabilization rate is constant. Initially, the system with 1 phosphorylation does not have a region of 
multiple steady states. Increasing the system to 2 phosphorylations increases the region of multiple steady 
states, and an increases to 3 phosphorylations (Figure B) increases the size of the region of multiple steady 
states further. Further increase in the number of Cdc25A phosphorylations results in a decrease in the size 
of the region of multiple steady states (Figure C). From the two parameter bifurcation plots (Figure 
D,E,F), the increase in the number of Cdc25A phosphorylations shifts the region of multiplicity (dashed 
grey line) further into the region of oscillations (solid black line). The region of oscillations is expanded 
over a larger region of cyclin Synthesis rate and the minimum Cdc25A stabilization rate where oscillations 
are observed is increased. 

present only in the MPF activation network, which reiterates the importance of sequential 

inactivating phosphorylations on CDK1. 

Increasing the number of Cdc25A phosphorylations increases the size of the 

oscillatory and multiplicity regions and shifts the oscillatory behavior to higher synthesis 

rates (Figure 15). Higher Cdc25A stabilization rates are necessary for the system to 

oscillate while the parameter set is fixed. There is a threshold below which addition of 

phosphorylations increases the size of the region of multiplicity and amplitude, and the 

oscillations become more frequency encoded. Above the threshold, additional 
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phosphorylations decrease the size of the region of multiplicity and amplitude, and the 

oscillations become less frequency encoded. 

Each additional Cdc25A phosphorylation increases the threshold concentration of 

MPF necessary to stabilize the protein because the parameter set remains constant. Thus, 

a larger Cdc25 A stabilization rate must be utilized in order to maintain the positive 

feedback strength as the number of phosphorylations increase. If the stabilization rate is 

held constant and the number of Cdc25A phosphorylations increases, the oscillatory 

region is eventually destroyed when the concentration of MPF necessary to stabilize 

Cdc25A exceeds the concentration necessary to activate APC. 

5.5. Additional Positive Feedback Loop 

To analyze the effect of multiple positive feedback loops this work incorporated 

Weel dynamics into the base mitotic model (Figure 16). Weel A dynamics introduce two 

new parameters to the model, ki5 and ki6- The activation rate, kis, is set to unity and the 

inactivation rate is catalyzed by active MPF. When there is no inactivation of Weel 

(ki6=0), the original system dynamics are generated. When the inactivation is increased, 

which adds the positive feedback, the amplitude of MPF increases (Figure 17). There is 

also a slight decrease in the region of oscillations and an increase in the region of 

Ml P_P_P_P 

<—J m ► P Weel A P 
WWW p_p_p_p 

Weel A 

Figure 16 - Weel Network. Weel A species with less than N phosphorylations are active. The Weel A 
species with N phosphorylations is inactive. 



90 

Figure 17 - Incorporation of Weel dynamics. The bifurcation diagram for ki6=0.2 is shown in figure A. 
The amplitude of the oscillations is 3 fold larger than the original system. There is a slight decrease and 
increase in the size of the regions of oscillations and multiplicity, respectively (figure B). Figure B is a two 
parameter bifurcation of Weel A inactivation by MPF phosphorylation, k\6, vs. cyclin B synthesis rate. 
Dashed lines are limit points, which enclose the region of multiplicity. Solid lines are Hopf bifurcation 
points, which enclose the region of oscillations. 

multiplicity. By inhibiting Weel and stabilizing Cdc25A the system shifts to active MPF. 

Without a constant inactivation from Weel, less MPF is necessary to stabilize Cdc25A 

and more MPF is activated as Weel shuts off. Flence, a cell activates MPF more 

efficiently when both the inhibition of Weel and stabilization of Cdc25A are present. 

As the number of Weel A phosphorylations increases, the size of the oscillatory 

region expands over a larger range of cyclin B synthesis rates at low Weel A inactivation 

rates (Figure 18). In the lower Weel A inactivation rates, the rate of Cdc25A stabilization 

is faster than Weel A inactivation. Therefore, Cdc25A is stabilized before Weel A is 

inactivated, and the oscillatory characteristics resemble the base system dynamics (Figure 

17). As the Weel A inactivation rate increases, there is an expansion of the oscillatory 

region to higher cyclin B synthesis rates. The expansion is enhanced as the number of 

phosphorylations increases (Figure 18B and C). In this region of Weel A inactivation 

rates, Weel A inactivation is faster than Cdc25A stabilization. The oscillatory region 

generated by Cdc25A stabilization remains the same, and therefore the lower Hopf 
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Figure 18 - Multiple WeelA Phosphorylations. From left to right Weel A has 2, 4, and 8 
phosphorylations, respectively. The two parameter bifurcations plot WeelA inactivation rate vs. cyclin B 
synthesis rate. Solid lines are Hopf bifurcation points and enclose the region of oscillations. Dashed lines 
are the limit points, which enclose the region of multiplicity. As the number of Weel phosphorylations 
increases, the size of the region of oscillations increases at low WeelA inactivation rates. The size of the 
region of multiplicity and oscillations increases and decreases, respectively, as the inactivation rate 
increases further. At high WeelA phosphorylations, new Hopf bifurcations and limit points are generated 
which are not observed in the base model (Figure C). 

bifurcation point does not move. In the region of expansion to higher cyclin B synthesis 

rates, WeelA is inactivated which leads to Cdc25A stabilization. Further increase in 

WeelA inactivation rate, increases the positive feedback strength so it is not comparable 

to the negative feedback strength. Hence for high WeelA inactivation rates, the system 

is bistable. 

With 8 phosphorylations, the expansion of the region of oscillations has dipped 

down where it now overlaps with the original region of oscillations (Figure 18C). Thus, 

for a region of the WeelA inactivation rate space, there are four Hopf bifurcations. For a 

slightly larger WeelA inactivation rates, the limit points begin to overlap and there is a 

region of the WeelA inactivation rate space where there are 4 limit points. This 

phenomenon is enhanced as the number of phosphorylations increases. Although the 

model can exhibit this behavior, I hypothesize this behavior does not occurs naturally. 

To observe the generation of additional Hopf and limit points, Weel must have 6 to 13 

more phosphorylations than Cdc25A. Since Cdc25A has 12 potential sites [39]and 

WeelA has 15 CDK phosphorylation sites [29], there is not a significant difference in the 
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Figure 19 - Weel A with 15 phosphorylations. The expansion of the region of oscillations to higher cyclin 
B synthesis rates overlaps for a region of the Weel A inactivation rates. This results in systems with four 
Hopf bifurcations (Figure B). In figure B (k16=0.6 nlvr'mirf’), there is a region of the cyclin B synthesis 
rate where a steady state exists with a stable limit cycle. There is also birhythmic oscillations, existence of 
2 stable limit cycles, at high cyclin B synthesis rates. At higher Weel A inactivation rates, the limit points 
overlap generating a parameter range where four limit points coexist (Figure C). In figure C (ki6=l. 15 nM' 
'min'1), a double S is observed for a region of the cyclin B synthesis rates where five unstable steady states 
coexist. 

number of phosphorylations necessary to generate the other bifurcation points. 

Furthermore, the parameter region over which the multiple bifurcation points occur is 

relatively small. Cell heterogeneity would likely negate these states. 

Therefore, the overall role of Weel inhibition is to utilize cyclin B more 

efficiently and generate a larger amplitude of MPF during the initiation of mitosis. In 

vivo, Weel has three more phosphorylations than Cdc25A, thereby leading us to 

conclude that Cdc25A is activated before Weel is inactivated, and the three additional 
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phosphorylation on Weel expand the region of cyclin B synthesis rates over which the 

system oscillates. 
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Chapter 6 - Linking a mitotic oscillator to the extracellular 

environment via ATP 

The next step in developing a proliferation model for a bio-artificial tissue 

regeneration model is to link the proliferation model to the environment. Therefore, I 

linked the previously developed mitotic oscillator model to the extracellular environment. 

Specifically, I incorporated ATP, a cellular energy source, into a mitotic oscillator and 

then correlated the intracellular ATP concentration to the extracellular glucose 

concentration. 

Although a plethora of models has been developed for the cell cycle, relatively 

few have linked them to the extracellular environment. Obeyesekere and coworkers 

developed three models for the initiation of DNA synthesis that linked extracellular 

growth factor concentration directly to cyclin D and cyclin E synthesis [162-164]. Novak 

and Tyson developed a transition model for the restriction point in which the 

transcription factors for cyclin D and cyclin E were linked directly to extracellular growth 

factor [170]. Alarcon incorporated a protein that sensed extracellular oxygen levels into 

one of Tyson’s early mitotic oscillators to include to investigate hypoxia in cancer cells 

[160]. Most recently, Battogtokh and coworkers linked an external oscillator to the cell 

cycle by periodically forcing specific species with small amplitude variability [96]. 

However, this model is the first to link extracellular glucose to a mitotic 

oscillator. Unlike earlier models, glucose does not be linked directly with protein 

synthesis, but rather to intracellular ATP, which affects multiple areas of the model. The 

extracellular environment plays a vital role in wound and tissue regeneration in humans. 
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During wound healing and regeneration of tissue, cells migrate into the void to 

proliferate and heal the wound. As cells migrate from the healthy tissue at the periphery 

into the wound or damaged tissue, their environment changes. Since the extracellular 

environment modulates cellular division time [10], a model for bio-artificial tissue 

regeneration must include a cellular proliferation model that is modulated by the 

extracellular environment. 

The following section presents the link between the cell cycle and ATP. The link 

between the cell cycle and ATP was then incorporated into the mitotic oscillator 

developed in chapter 5 in the following section. Next, a sensitivity analysis is performed 

on the model, followed by the model tuning for a relative ATP concentration. Then, a 

Weel inhibition network analysis was performed, and finally, the ATP model is linked to 

extracellular glucose. 

6.1. ATP and the Cell Cycle 

Cells uptake nutrients in the environment and convert them into biomass and 

energy, one form of which is ATP. In 1942, Monod proposed a relationship between 

cellular growth rate and a main nutrient source [183]: 

f* max-S 

Kg+S 
(6.1) 

The cellular growth rate, p, exhibits saturable kinetics with respect to the main 

nutrients source, S, with a maximum growth rate of pmax. Recently, Lu and coworkers 

observed Monod growth kinetics for Chinese hamster ovary cells in limited glucose 

conditions [10]. The important new aspect of this work was that Lu and coworkers 

measured intracellular ATP concentrations in limited glucose conditions (Figure 20). 
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Figure 20 - Growth kinetics and intracellular ATP concentrations for Chinese hamster ovary cells under 
limited glucose conditions. Growth kinetics, \i, are captured by Monod growth kinetics. Intracellular ATP 
concentrations follow similar saturable kinetics under limited glucose conditions. Figures reprinted from 
Lu and coworkers’ recent paper [10]. 

Intracellular ATP concentrations follow similar saturable kinetics as the cellular growth 

rate. Thus, one mechanism limiting the growth rate is the amount of cellular energy, 

ATP. 

6.2. Model 

I began with the final model developed in chapter five and incorporated more of 

the details of mitosis (Figure 21). The model equations and parameter sets can be found 

in ATP Model Equations and Parameters. The cyclin B CDK1 dimerization process was 

expanded to include CAK phosphorylation. CAK phosphorylation on CDK1 is necessary 

to stabilize the dimer, because the cyclin B-CDK1 dimer is not observed without the 

phosphorylation experimentally [19], WeelA is incorporated into the network, because 

previously in this work WeelA was observed to be essential to efficiently utilize cyclin B 

during MPF activation. Synthesis and degradation terms were added to the WeelA 

network, because MPF phosphorylation on serine 123 of WeelA induces a proteolysis 

cascade, thus up-regulating WeelA degradation [17,28]. To reduce the number of 
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Figure 21 - Mitotic Oscillator with ATP Integrated. Transparent species are not active whereas solid 
species are in their active form. Arrows pointing away from the protein into space are degradation terms. 
The larger arrows correlate with increased degradation. The yellow circles with P’s in the middle 
symbolize individual phosphorylations. Enzymes involved in reactions are shown as small icons next to 
the reaction arrow. In the case of protein synthesis, ATP is a necessary substrate. The central protein in 
mitosis is MPF that is formed by the trimer of cyclin B, CDK1 and ATP. MPF forms a positive feedback 
and double negative feedback loop with Cdc25A and Weel, respectively. MPF stabilizes Cdc25A by 
phosphorylation that is otherwise highly degraded. Cdc25A removes the inhibitory phosphorylations on 
inactive species of MPF activating them. Conversely, MPF destabilizes Weel by increasing its degradation 
by phosphorylation. Weel inhibits MPF by phosphorylation within MPF’s ATP binding pocket. MPF 
forms a negative feedback loop with APC by activating APC through phosphorylation. Consequently, 
active APC degrades all cyclin B species and Cdc25A species. 

proteins and therefore the model complexity, the model assumes that Weel A can 

phosphorylate MPF on both inhibitory phosphorylation sites on CDK1. 

The Cdc25A and APC subnetworks remain the same as the base model from the 

mitotic oscillator. The cyclin B CDK1 dimerization process was expanded to include 

CAK phosphorylation on CDK1 because the dimer is not observed without the 

phosphorylation experimentally [19]. CAK activity remains roughly constant throughout 

the cell cycle [11], and therefore the model assumes that total CAK levels are constant. 

I then incorporated ATP into the model. The first process affected by changes in 

ATP concentration is protein synthesis [184], I assume that the requirement of ATP for 
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protein synthesis has saturable kinetics and affects all synthesized proteins in the same 

manner. Therefore, each protein has a maximum synthesis rate, but all proteins have the 

same Michaelis-Menten parameter, K„,. Saturable kinetics are a plausible assumption 

because ATP concentrations are orders of magnitude larger than the proteins involved in 

the cell cycle [178,185]. 

All of the kinases in the model, MPF, Weel, and CAK require ATP to 

phosphorylate their substrates [11]. The model assumes that the kinases bind to ATP, 

which in turn phosphorylate their substrates. Additionally, this model assumes that the 

kinase-substrate binding and phosphorylation reactions are rapid compared to the kinase 

substrate interaction, and therefore, that the kinase-substrate complex is not incorporated 

into the model. 

The average intracellular concentration of ATP is modulated by extracellular 

glucose and remains roughly constant throughout the cell cycle [10,186]. Therefore, this 

work employs intracellular ATP concentration as the bifurcation parameter. I performed 

a sensitivity analysis to elucidate the effect of intracellular ATP on the cell cycle 

dynamics. Next, I investigated the Weel subnetwork to gain insight into the two 

mechanisms by which MPF can down regulate Weel activity at the initiation of mitosis: 

kinase inhibition and enhanced degradation. Finally, I linked intracellular ATP to the 

extracellular glucose to connect the cell cycle to the extracellular environment. 

6.3. Sensitivity Analysis 

Additional details have been incorporated into the mitotic oscillator model. In the 

expanded model, protein synthesis requires ATP, CAK must phosphorylate the cyclin B 
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CDK1 dimer for stabilization, and MPF must bind ATP to activate. To begin, this work 

investigated the requirement of ATP for protein synthesis. 

Protein synthesis requires ATP [184]. This model incorporates saturable kinetics, 

Michaelis-Menten kinetics, for the ATP requirement for protein synthesis. In the base 

case parameter set, the system exhibits ideal mitotic oscillatory characteristics (Figure 

22B). The oscillations are frequency encoded and the MPF-ATP amplitude is the correct 

order of magnitude. A region of multiplicity of steady states exists along with a lower 

steady state that models quiescent and G2 arrested cells. The base model equations and 

parameter set may be found in ATP Model Equations and Parameters. When the ATP 

requirement for protein synthesis is removed from the model by setting the Michaelis- 

Menten constant to zero, a second oscillatory region is generated at very low ATP 

concentrations (Figure 22A). Cells die at very low ATP concentrations [187], and 

therefore, the model should not induce MPF-ATP oscillations, which simulate 

proliferation at low ATP concentrations. Since the cell should not be proliferating at low 

ATP concentrations, I analyzed how the MPF oscillations were generated in the lower 

oscillatory region. 
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Figure 23 - Weel ATP interaction with no requirement of ATP for protein synthesis. In the lower 
oscillatory region (Km=0 ATP=0.2 mM), the majority of the Weel species do not have ATP bound and 
therefore are inactive (Figure A). Active Weel species have ATP bound and can phosphorylate MPF. 
Therefore, I investigated the dimerization rate of Weel and ATP by two-parameter bifurcation (Figure B). 
Note the log scale on both axes. The y-axis is the dimerization rate of Weel and ATP. The x-axis is the 
bifurcation parameter, ATP. The solid black line tracks the movement of the Hopf bifurcation points and 
encloses the region of oscillations. The dashed black line is the dimerization rate of the base case, which 
has two regions of oscillatory behavior when ATP is not required for protein synthesis (Km=0). As the 
Weel ATP dimerization rate is increased, the lower oscillatory region is shifted to lower ATP 
concentrations and is eventually destroyed. 

In the lower oscillatory region, the majority of the Weel species remain inactive, 

and therefore, Weel is not binding with ATP and inhibiting MPF (Figure 23A). 

Consequently, cyclin B is synthesized until there is a very high concentration of inactive 

MPF that pushes the system to activate Cdc25A. ATP does not affect the activity of the 

Cdc25A species, but Weel is not active to inhibit MPF without ATP. Therefore, the 

decreased inhibition from Weel allows Cdc25A to activate MPF at low ATP 

concentrations. Active MPF then activates APC, which degrades cyclin B and Cdc25A 

species, resetting the cell cycle. 

The lower oscillatory region has a steep change in amplitude because of the 

amount of active Weel (Figure 22A). As the amount of ATP in the system increases, the 

amount of active Weel increases, which inactivates more MPF. Thus, there is more 

inactive MPF available to be activated, generating a larger amplitude in MPF-ATP 
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With larger concentrations of active Weel, all the cyclin B synthesized is 

dimerized into MPF and inhibited by Weel. Since Weel has a high dimerization rate, it 

is always in an active form with ATP bound and can counter balance the Cdc25A 

activation of MPF. Therefore, the Weel ATP dimerization, or Weel activation, also 

controls the generation of the lower oscillatory region. 

Therefore, there are two mechanisms that ensure that cells do not proliferate at 

low ATP concentrations: the requirement of ATP for protein synthesis and Weel-ATP 

dimerization. When ATP is required for protein synthesis, there is a single region of 

oscillations with the base case parameter set (Figure 22B). As the Weel ATP 

dimerization is increased, thereby allowing Weel to bind ATP more tightly, the lower 

oscillatory region shifts to smaller ATP concentrations and is eventually destroyed 

(Figure 23B). 

Next, I investigated the effect of cyclin B CDK1 dimerization on the oscillatory 

features of the system. Cyclin B must bind to CDK1 and be phosphorylated by CAK in 

order to bind to ATP to phosphorylate the proteins necessary to initiate mitosis. The base 

case parameter set incorporates rapid cyclin B-CDK1 dimerization and therefore 

generates the ideal mitotic oscillator characteristics (Figure 22B). When the dimerization 

process is slow, the oscillatory region is shifted to higher ATP concentrations, and the 

system loses the region of multiplicity (Figure 24A). More significantly, slow 

dimerization forces the cell to synthesize more cyclin B to generate the same oscillatory 

behavior (Figure 24B). Thus, the cell wastes energy and nutrients to synthesize cyclin B 

that is not dimerized with CDK1 and thus cannot initiate mitosis. 



102 

A. Slow Dimerization Slow Dimerization Utilizes Cyclin H Inefficiently 

Figure 24- Slow dimerization of cyclin B and CDK1. When the dimerization process is slow (k5=0.01), 
the bifurcation diagram maintains most of the key features of the ideal cell cycle (Figure A). However, the 
region of multiplicity disappeared and the oscillations are less frequency encoded. Furthermore, the 
oscillatory region has shifted to higher ATP concentrations. The main difference between fast and slow 
dimerization is the amount of cyclin B not used during the cell cycle (Figure B). The black and red lines 
are the systems with fast (k5=l, base case parameter set) and slow dimerization, respectively. The dashed 
lines are the total concentration of cyclin B in the system and the solid lines are the concentrations of cyclin 
B monomer. All the cyclin B proteins are dimerized with CDK1 when the system has fast dimerization. 
There are essentially no cyclin B monomers in the system (solid black line). When there is slow 
dimerization, some of the synthesized cyclin B never dimerizes with CDK1 (solid red line) and more total 
cyclin B is necessary to generate the same oscillations (dashed red line). Hence, slow dimerization utilizes 
cyclin B inefficiently. 

The cyclin B-CDK1 dimerization process acts as a throttle for mitosis. For 

mitosis to run efficiently, the throttle must be fully open. Therefore, dimerization must 

be a fast process compared to the dynamics of the mitotic oscillator. When the throttle is 

choked down, the cell is using energy and nutrients to produce the fuel, cyclin B, to 

initiate mitosis, but not all the fuel is being utilized. Hence, cyclin B-CDK1 dimerization 

must be fast for the cell to efficiently make use of all the cyclin B it synthesizes. 

The cyclin B-CDK1 dimer requires CAK phosphorylation to stabilize [19]. In the 

base case parameter set, the CAK phosphorylation on CDK1 is stable. When the CAK 

phosphorylation on CDK1 is unstable, and therefore rapidly removed, the MPF dimer 

becomes unstable. This system maintains all the key characteristics of the ideal mitotic 

oscillator, but the amplitude of the oscillations and size of the region of multiplicity have 

decreased (Figure 25A). 
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A. Unstable MPF 

Figure 25 - Unstable MPF Complex. When the CAK phosphorylation is removed at a fast rate (k7=10), 
the MPF complex becomes unstable. There is a decrease in the amplitude of MPF-ATP, and the size of the 
region of multiplicity decreased (Figure A). When the CAK phosphorylation is stable and therefore MPF is 
stable, there are minimal concentrations of cyclin B monomers and unphosphorylated cyclin B-CDK1 
dimers; black dashed and solid lines, respectively (Figure B). Note the log scale on the y-axis. When the 
CAK phosphorylation is unstable and therefore MPF is unstable, orders of magnitude more cyclin B 
monomers and unphosphorylated cyclin B-CDK1 dimers are present in the system (red dashed and solid 
lines, respectively). There is a peak in unphosphorylated cyclin B-CDK1 dimers that corresponds to the 
activation of MPF. When Cdc25A activates MPF, the unstable CAK phosphorylation is removed and MPF 
becomes an unphosphorylated cyclin B-CDK1 dimer that cannot bind ATP to phosphorylate substrates. 
Thus, the cell must synthesize more cyclin to overcome the loss of active MPF because of the unstable 
active phosphorylation provided by CAK. 

When the MPF dimer is unstable, the system maintains higher concentrations of 

cyclin B monomer and unphosphorylated cyclin B-CDK1 dimer (Figure 25B). The 

unphosphorylated cyclin B-CDK1 dimer is a highly transient species that is not observed 

experimentally [19], and therefore should be minimized in the model. Furthermore, the 

cyclin synthesized by the cell that remains as monomers or unphosphorylated cyclin B- 

CDK1 dimers is not employed to initiate mitosis. Therefore, the CAK phosphorylation 

must be stable for the cell to efficiently utilize cyclin B and to minimize the concentration 

of the unphosphorylated cyclin B-CDK1 dimer, which is not observed experimentally. 
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Finally, I investigated the addition of MPF-ATP dimerization in the MPF 

activation network. As the dimerization rate increases, the oscillatory region is shifted to 

lower ATP concentrations while maintaining all the key features of the ideal mitotic 

oscillator (Figure 26). I modulated the MPF ATP dimerization rate to tune the model to a 

relative ATP concentration. Thus, the relative ATP model is a general mitotic oscillator 

that can be tuned to many different cell lines with different maximum ATP 

concentrations. 

Figure 26 - MPF ATP Dimerization Rate. As the dimerization rate increases, the oscillatory region is 
shifted to lower ATP concentrations while maintaining all the key characteristics of the ideal mitotic 
oscillator. In figure A, k8=0.1 and in figure B, k8=10,, which is the base case parameter set. 

6.4. Model Tuned for Relative ATP Concentration 

Since the maximum intracellular ATP concentration is likely to vary between 

different cell lines, I tuned the model to a relative ATP concentration that is scaled by the 

maximum concentration. The relative ATP concentration ranges from zero to unity, and 

the region of oscillations ranges between the relative ATP concentrations of 0.5 to unity 

as approximated from the experimental data by Lu and coworkers [10]. 
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Figure 27 - Model Tuned to Relative ATP Concentration. The ATP concentration has been scaled by a 
maximum intracellular ATP concentration so that the range of the x-axis is zero to unity (Figure A). The 
oscillatory region falls between 0.5 and unity as approximated from experimental data [10], The 
oscillations are frequency encoded and a region of multiplicity exists. The lower steady state at low 
relative ATP concentrations models quiescent and G2 arrested cells. The period of the oscillations is 
characteristic of mammalian cells (Figure B). 

The model captures the ideal mitotic oscillator characteristics. The oscillations 

are frequency encoded. Hysteresis has been observed experimentally [177] with the MPF 

reaction network. The model captures hysteresis in the region of multiplicity of steady 

states. Quiescent and G2 arrested cells are modeled by the lower steady state at low 

relative ATP concentrations. The amplitude of MPF is the correct order of magnitude 

[178], and the period is characteristic of mammalian cells. The relative ATP tuned model 

parameter set is presented in ATP Model Equations and Parameters . 

Although the model is capable of being linked to glucose at this point, it 

incorporates only a single inhibitory mechanism for MPF inhibition of Wee 1, increased 

degradation. In nature there are two mechanisms by which MPF can inhibit Weel, 

increased degradation and kinase inhibition. Therefore, I analyzed different Weel 

subnetworks to elucidate the effect of different Weel inhibition mechanisms on the 

oscillatory characteristics of the system. 
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6.5. Weel Network Structure 

MPF phosphorylation inhibits Weel A by two different mechanisms. [22]. Two 

sites, threonine 104 and 150, are conserved across species, including somatic Weel, and 

inhibit Weel kinase activity during mitosis [22]. Phosphorylation on serine 123 by CDK1 

induces a proteolytic cascade, which increases degradation [28]. Up to this point, the 

mitotic model has only included inhibition by increased degradation. Therefore, I 

Degradation Only Degradation then Inhibition 

Inhibition Only Inhibition then Degradation 

Figure 28 - Weel Inhibition Networks. Arrows pointing out into blank space represent degradation. The 
larger arrows indicate increased degradation. Transparent species are not active and therefore cannot 
phosphorylate MPF. The small green and yellow species is MPF, which catalyzes the phosphorylation of 
Weel. The model analysis to this point incorporated the Weel subnetwork where MPF phosphorylation 
only induces increased degradation. Since MPF phosphorylation induces both kinase inhibition and 
increased degradation, three other networks were investigated: networks where MPF phosphorylation only 
induces inhibition, degradation then inhibition, and finally inhibition then degradation. 
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generated three alternative Weel inhibition mechanisms to analyze the effect of Wee 1 

inhibition on the oscillatory characteristics of the model (Figure 28). 

I investigated a Weel subnetwork where MPF phosphorylation induced only 

inhibition. There were also two cases when MPF induced both inhibition and 

degradation that depend on the order of the inhibitory phosphorylations: one case where 

the degradation phosphorylation occurs before the inhibitory phosphorylation and vice 

versa. To keep the same amount of active Weel in the systems during interphase, the 

model assumes that Weel must have two phosphorylations before any inhibitory effect 

occurs. Otherwise, the networks with both inhibitory mechanisms would have less active 

Weel because a single phosphorylation would cause inhibition. Less active Weel in the 

dual inhibition Weel mechanisms would not allow equal comparison to the single 

inhibition Weel networks. 

Regardless of the MPF inhibition mechanism on Weel, all the systems displayed 

the same qualitative oscillatory behavior (Figure 29). All mechanisms generate 

frequency encoded oscillations and a region of multiplicity. The system with MPF 

phosphorylation inducing inhibition then degradation has a larger region of multiplicity. 

The increased positive feedback has slightly shrunk the oscillatory region so that the 

maximum ATP concentration that induces oscillations is less than unity. Although all 

Weel mechanisms respond qualitatively the same for most parameter changes, one 

parameter that the systems respond differently to is the increased rate of degradation 

induced by MPF phosphorylation (Figure 30). 

Three of the four inhibition mechanisms are affected by changes in the increased 

degradation rate of Weel by phosphorylation at serine 123. The increased degradation 
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Inhibition Only Inhibition then Degradation 

Figure 29 - Weel Inhibitory Mechanisms with Relative ATP Parameter Set. All of the Weel mechanisms 
generate the same qualitative oscillatory characteristics that have frequency encoded oscillations and a 
region of multiplicity of steady states. The system with MPF phosphorylation inducing inhibition then 
degradation has a larger region of multiplicity of steady states. The size of the oscillatory region has shrunk 
because of the larger positive feedback. 

rate cannot fall below the background degradation rate. Otherwise, MPF phosphorylation 

induces stabilization, which converts the positive feedback loop into a negative feedback 

loop. 

When MPF induces only increased degradation on Weel, lowering the 

degradation rate shrinks the size of the region of multiplicity and increases the size of the 

region of oscillations. If the degradation rate is lowered below a threshold, the region of 

multiplicity disappears. Incorporating point mutations in Weel that remove the 

inhibitory phosphorylation sites can generate this system for experimentation, and 



109 

therefore, by lowering the degradation rate, the positive feedback loop is lost. Without 

increased degradation, Weel is not inhibited by MPF in this mechanism, and therefore 

remains at constant activity. Since both inhibitory mechanisms are present in nature, I 

further investigated these systems. 

When MPF phosphorylâtes the increased degradation site prior to the inhibitory 

site, similar behavior for the degradation only system is observed. Lowering the 

degradation rate shrinks the size of the region of multiplicity and increases the size of the 

oscillatory region. The addition of kinase inhibition does not greatly increase the positive 

feedback in the model, because the high degradation rate limits the concentrations of the 

prior active species. Moreover, the inhibited species is also highly degraded, and 

therefore does not exist in high concentrations. Since there are low concentrations of the 

highly degraded species and the kinase inhibited species, the addition of kinase inhibition 

to the down regulation of Weel does not reduce the amount of active Weel during the 

initiation of mitosis. However, the additional positive feedback from the kinase 

inhibition does allow the system to maintain oscillations and multiplicity at lower 

increased Weel degradation rates than the Weel inhibition mechanism with degradation 

only. When the increased degradation is removed, this Weel inhibition mechanism 

becomes a kinase inhibition mechanism with an additional phosphorylation. 
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Degradation Only Degradation then Inhibition 

Inhibition then Degradation 

Figure 30 - Two-parameter bifurcation plots for liable Weel degradation rate versus ATP concentration. 
The liable Weel species have been phosphorylated by MPF at serine 123 and therefore have increased 
degradation. The relative ATP concentration parameter set was utilized. However, since the systems are 
not tuned for relative ATP, the x-axis has units of milimolar. The solid black lines, which enclose the 
region of oscillations, track the Hopf bifurcation points as the degradation rate of the liable Weel protein 
changes. The dashed blue lines track the limit points of the steady state solutions, which enclose the region 
of multiplicity. At a limit point, the steady state solution changes the sign of its slope, and therefore 
overlaps with other steady states. The increased degradation rate cannot be lower than the background 
degradation rate of Weel (ki7=150 hr'1). Otherwise, MPF phosphorylation would stabilize Weel. When 
MPF inhibits Weel only through degradation, as the degradation rate decreases, the size of the oscillatory 
and multiplicity regions increases and decrease, respectively. When MPF increases degradation and then 
inhibits Weel, a decrease in degradation rate shrinks the size of the region of multiplicity and expands the 
size of the oscillatory region. However, the system does not have a region of multiplicity when the 
increased degradation becomes equal to background degradation. When MPF inhibits Weel then increases 
Weel degradation, changing the degradation rate does not affect the oscillatory region or region of 
multiplicity. Even when increased degradation becomes background degradation, the system maintains 
multiplicity and a tuned region of oscillations. 

Finally, when MPF phosphorylation induces kinase inhibition and then increased 

degradation, increasing the degradation rate slightly increases the size of the region of 

multiplicity and decreases the size of the oscillatory region. Increasing the degradation 



Ill 

rate only reduces the amount of inactive Weel, and thus there is not a large change in 

system behavior. From these results, I hypothesize that kinase inhibition followed by 

increased degradation is the Weel inhibition mechanism that is present in cells. By 

inhibiting Weel first, the system can initiate mitosis while maintaining Weel 

concentrations in the inactive form. Therefore, if the cell requires to arrest mitosis, the 

inhibitory phosphorylation on Weel can be removed, thus activating Weel, which 

inactivates MPF. If the cell commits to mitosis, the inactive form of Weel is then 

degraded, irreversibly shifting the cell into mitosis. 

If increased Weel degradation occurs before inhibition, the cell loses the ability 

to reversibly inhibit Weel during the early states of mitosis. Once the protein in 

degraded, the cell must synthesize new Weel if it needs to arrest in mitosis. This is not a 

logical mechanism for the cell to arrest in mitosis, because it would likely take longer to 

synthesize new proteins than it would for MPF to complete mitosis. 

In summary, regardless of the inhibitory mechanism utilized to down regulate 

Weel, the MPF network can generate the ideal cell cycle characteristics (Figure 29). The 

MPF activation network responds in the same qualitative way as long as Weel is 

inhibited by either or both mechanisms. Although I hypothesize that the inhibitory 

phosphorylation occurs before the increased degradation phosphorylation, if either 

mechanism were to be removed, the cell would still be able to accurately initiate mitosis. 

Hence, the results suggest that the two inhibitory mechanisms are redundant. 

6.6. Linking Model to Glucose 

Since the results suggest that the two Weel inhibitory mechanisms are redundant, 

any of the Weel mechanisms can be tuned for relative ATP concentrations with mitotic 
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oscillator characteristics. Therefore, I chose to move forward with the model that 

incorporated Weel inhibition followed by increased degradation, because it incorporates 

both inhibitory mechanisms and maintains the most logical order for the cell to maintain 

control of the initiation of mitosis. 

Following the trend observed between ATP and extracellular glucose in the work 

by Lu and coworkers, the relative ATP concentration is described by saturable kinetics 

with glucose [10]. The Michaelis-Menten parameter was utilized an earlier study 

performed in our lab on fibroblast division times grown in limited glucose concentrations 

[2]. 

\ATP} 
AT,+[GfacoS€] 

The parameters were scaled to shift the division times to correspond to the 

experimental data. The glucose parameter set can be found in ATP Model Equations and 

Parameters . The model maintains the ideal cell cycle behavior and all attributes of the 

underlying relative ATP model, but now the bifurcation parameter is extracellular 

glucose concentration (Figure 31). The oscillations are frequency encoded and have an 

amplitude in the correct order of magnitude for MPF. There is a small steady state region 

at low glucose concentrations where cell do not proliferate. The model generates a 

region of multiplicity of steady states and the period is characteristic of fibroblast cells. 
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Figure 31 - Mitotic Oscillator Linked to Glucose. Glucose has been linked to the relative intracellular 
ATP concentration by saturable kinetics. The bifurcation parameter is extracellular glucose. The model 
maintains all ideal mitotic oscillator characteristics: region of multiplicity, frequency encoded oscillations, 
a lower steady state at low glucose concentrations where the cells are quiescent, and the correct order of 
magnitude for MPF amplitude (Figure A). The period of the model has been tuned for the fibroblast data 
obtained earlier in Dr. Zygourakis’s lab at Rice University by Dr. Gang Cheng [2], The solid blue circles 
are stable limit cycle periods. The open red circles are unstable limit cycle periods and are not observed 
experimentally. The open black circles are the data collected by Dr. Cheng in the lab, and the black line is 
the Monod kinetics fit to the data by Dr. Cheng. 

The final model accurately captures the observed phenomena of modulation of the 

division time by extracellular glucose (Figure 3IB). As a cell migrates within an 

environment with variable extracellular glucose, ATP, which is linked to the glucose, 

modulates the proteins involved in the cell cycle, and therefore the cell proliferates at a 

rate proportional to the extracellular glucose. Ultimately, this work developed a mitotic 

oscillator that is modulated by the extracellular environment through ATP (Figure 32). 
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Mitotic Oscillator 

Figure 32 - Effect of Extracellular Glucose on Proliferation. The extracellular glucose concentration 
increase over time, for instance when a cell migrates towards a nutrient source (top). The mitosis is 
triggered when MPF-ATP peaks (middle). Thus, the division time (bottom) is modulated by the 
extracellular glucose. The division time is calculated as the time between MPF-ATP peaks (middle). As 
the extracellular glucose concentration increases, the doubling time of the cell decreases towards a 
minimum division at the maximum proliferation rate. 
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Chapter 7 - Conclusions and Future Work 

This thesis work initiated the first vital steps to develop a biologically based 

proliferation model for a bioartificial tissue regeneration model. Using a bottom-up 

approach, I first created a base model for mitosis that maintains all of the core aspects of 

the mitotic oscillator including cyclin B, MPF, Cdc25A, and APC. The effect of the 

mitotic reaction network structure and multisite phosphorylation on system behavior was 

elucidated by varying the MPF activation network structure, the number positive 

feedback loops, and the number of phosphorylations on the positive feedback loop 

proteins, Weel and Cdc25A. Building upon this model, ATP was incorporated into the 

mitotic network. The inhibitory mechanism for Weel is not fully understood, and 

therefore, to gain insight into Weel inhibition during the initiation of mitosis, four 

mechanisms were analyzed. Using the Weel mechanism that allowed the cell to 

maintain maximum control over the initiation of mitosis, ATP was linked to extracellular 

glucose, and the model was tuned for fibroblast proliferation. 

This mitotic model is the first to utilize the recent biological discoveries that CAK 

phosphorylation is required for the stabilization of the cyclin B-CDK1 dimer [19], and 

that the inactive MPF species are phosphorylated and dephosphorylated sequentially [34]. 

This work is also the first to analyze the effect of multisite phosphorylation and protein 

network structure on the oscillatory characteristics of a mitotic network. 

The results suggest that the MPF reaction network has evolved to efficiently 

utilize cyclin and maintain maximum control of mitotic initiation. Sequential 

phosphorylations on CDK1, CAK followed by Weel phosphorylations allows the cell to 

efficiently utilize cyclin B and gives insight about why this sequence of phosphorylations 
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is observed experimentally [19]. In contrast, parallel phosphorylations on CDK1 by 

CAK and the Weel family of kinases requires the to cell synthesize more cyclin B in 

order to observe the same dynamics as sequential CAK followed by Weel 

phosphorylation. 

When the network incorporates sequential phosphorylation events on CDK1, 

cyclin B and CDK1 can dimerize into an active or inactive complex. When cyclin B and 

CDK1 form an active dimer, CDK1 is phosphorylated by CAK to stabilize the dimer, 

followed by the inactivating phosphorylations by Weel. This network has a bounded 

region of oscillations over the MPF activation and unstable Cdc25 A degradation rates, 

allowing the cell to arrest the cell cycle either by raising the Cdc25A degradation or 

lowering the MPF activation rate. However, when cyclin B and CDK1 form an inactive 

dimer, the cell loses the ability to arrest the cell cycle by lowering the MPF activation 

rate or raising the unstable Cdc25 A degradation rate. As long as the cell synthesizes 

enough cyclin B, it maintains the ability to proliferate even at low MPF activation rates or 

high unstable Cdc25A degradation rates. In addition, to form an inactive cyclin B-CDK1 

dimer, all CDK1 phosphorylations must occur simultaneously during dimerization, but 

these behaviors are contrary to what is observed in vivo. Increased Cdc25 A degradation 

has been reported as a mechanism for cell cycle arrest when DNA damage is present 

[188]. Moreover, CAK phosphorylation is required for cyclin B-CDK1 dimerization 

[19]. Furthermore, dimerization is required for Weel phosphorylation of CDK1 [17], 

and the inactivating CDK1 phosphorylations occur sequentially [21,34]. 

Finally, when the inactive phosphorylations occur sequentially on CDK1, the 

MPF network maintains the ability to generate nonlinear dynamics that induce sharp 
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transitions into mitosis. However, when the inactivating phosphorylations occur 

simultaneously, in a single event, the cell loses the switch like behavior necessary to have 

a sharp transition between interphase and mitosis. These results from the MPF reaction 

network analysis indicate that multisite phosphorylation is vital to generate sharp 

transitions into mitosis and to utilize cyclin B efficiently. Not only is multisite 

phosphorylation important, but also the order of phosphorylation events plays a major 

role in the observed behavior of the system, and the ability of the system to be arrested. 

Multisite phosphorylation also plays a major role in the positive feedback loop 

generated by Cdc25 A stabilization. The addition of multiple phosphorylations to 

Cdc25 A increases the size of the oscillatory and multiplicity regions allowing the cell to 

proliferate over a larger range of cyclin synthesis rates while maintaining frequency 

encoded oscillations. Since the extracellular environment modulates cell growth, and 

therefore protein synthesis, a larger oscillatory region in the cyclin synthesis rate can be 

related to a larger region of extracellular conditions over which the cell can proliferate. 

Incorporating an additional positive feedback loop by including Weel dynamics in the 

model generates a larger amplitude in MPF thereby creating a sharper transition into 

mitosis and increasing the efficiency of cyclin utilization by activating more MPF. 

Similar to Cdc25A, additional phosphorylations on Weel increase the size of the 

oscillatory and multiplicity regions. 

ATP plays a dual role in the mitotic network and is a vital component in the 

mitotic process. ATP is required for protein synthesis [184] and for the functionality of 

all kinases in the cell, including MPF and Weel [11], The average intracellular ATP 

concentration is modulated by extracellular glucose [10]. Therefore, incorporating 
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intracellular ATP into the mitotic oscillator model provided a link between mitosis and 

the extracellular environment. 

Initially, the model incorporated a Weel network with increased degradation as 

the only mechanism for down regulation by MPF. However, Weel has two inhibition 

mechanisms, and thus this work analyzed four Weel inhibition networks. The results 

suggest that the two forms of Weel inhibition are redundant. All four Weel inhibition 

mechanisms created qualitatively similar behavior. During mitotic initiation, MPF 

activates regardless of the mechanism that down regulates Weel. Therefore, from the 

perspective of MPF activation, the system behavior remains the same regardless of the 

inhibitory mechanism that down regulates Weel as long as a mechanism that down 

regulates Weel exists. Both mechanisms are present in nature, and thus was included in 

the model. 

I hypothesize that the inhibitory phosphorylation occurs before the 

phosphorylation that increases degradation. Even with increased degradation removed 

from the network, the model exhibits ideal mitotic oscillator characteristics. Unlike the 

additional inhibition following increased degradation, the increased degradation after 

inhibition increases the positive feedback in the system. The size of the region of 

multiplicity increases and the oscillatory region decreases slightly, both of which are 

characteristics of increased positive feedback. 

Furthermore, inhibition followed by increased degradation for Weel down 

regulation allows a cell to maintain maximum control over the initiation and completion 

of mitosis. Weel can be inhibited during the initiation of mitosis, but if a problem arises, 

the cell can remove the inhibitory phosphorylation and allow Weel to inhibit MPF, 
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thereby arresting the cell in mitosis. If Wee 1 were degraded before being inhibited, then 

the cell would have to synthesize new Weel to inhibit MPF to arrest the cell cycle. 

Consequently, this would cost the cell energy, and the cell would not likely be able to 

synthesize Weel rapidly enough to arrest when needed. 

Therefore, the final model incorporates the Weel network with kinase inhibition 

followed by increased degradation. In the model, ATP is linked to extracellular glucose 

via saturable kinetics as observed by Lu and coworkers [10], and tuned for fibroblast 

division times [2]. Ultimately, this project has developed a mitotic oscillator linked to the 

extracellular environment and tuned for fibroblasts. 

This work gives valuable insight into the effect of multisite phosphorylation and 

protein network structure on the oscillatory characteristics of a mitotic oscillator. 

Moreover, the model is the first to connect extracellular glucose to a mitotic oscillator 

utilizing ATP as the link. From this point, there are a number of projects that can 

advance the model and the knowledge of bioartificial tissue regeneration including 

heterogeneity, limited glucose time-lapse microscopy experiments, DNA synthesis 

oscillator models, and further mitotic oscillator network analysis. 

This work has made great strides in developing a proliferation model for a 

bioartificial tissue regeneration model, but cell population heterogeneity must be 

incorporated into the proliferation model before the model can be integrated into the 

larger bioartificial tissue regeneration model. This work developed a proliferation model 

that is modulated by the extracellular environment and simulates the dynamics for the 

average cell in a population. In nature, cell populations are heterogeneous. Even in a 

homogeneous environment, cell populations have a distribution of division times [5]. 
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There are a number of different sources that generate cell population 

heterogeneity. One source is the stochastic nature of the chemical reactions in the cell. 

The small numbers of proteins that regulate the cell cycle generate discrete, rather than 

continuous, concentration profiles that may move the reaction network into stochastic 

reaction kinetics. MPF peak concentration occurs on the order of 1000 molecules, but 

during interphase there are fewer than 100 molecules [178]. Although the transition into 

mitosis is highly regulated, variability may exist in the time before initiation. Therefore, 

the mitotic oscillator developed in this work could be incorporated into Gillespie’s 

algorithm [189] for stochastic chemical kinetics to elucidate the effect of stochastic 

chemical reactions on the distribution of mitotic times. 

Another source of cell population heterogeneity is unequal cell partitioning. 

Although mother cells partition DNA between daughter cells with high precision, the 

other cellular material does partition equally, thereby forming two daughter cells with 

different initial contents. One modeling technique that takes into account unequal 

portioning is population balances [190-193]. By incorporating the mitotic oscillator into 

a population balance, the effect of unequal portioning on division times could be 

analyzed. 

Furthermore, individual cells may have slightly different parameters for 

degradation and synthesis of proteins and their reaction to limited glucose conditions, 

thereby forming distributions of kinetic parameters. The distributions of kinetic 

parameters are another source of heterogeneity and could be simulated using ensemble 

methods, which simulate a population of cells. Ensemble methods have been used to 

simulate bacteria populations [194,195]. The Monte Carlo algorithm would isolate the 
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kinetic parameter distribution to observe the contribution from each source to the 

distribution of division times. 

All prior projects would incorporate a single source of heterogeneity, but to model 

heterogeneous populations, all the sources of heterogeneity must be included. Recently, 

a stochastic cell population model has been developed in Dr. Zygourakis’s group [196]. 

It takes into account the major sources of heterogeneity and can isolate the sources to 

elucidate their contribution. By incorporating this work’s mitotic oscillator into the 

stochastic cell population model, environmental heterogeneity could be simulated as well. 

The full stochastic cell population model is much too large to incorporate into the 

bioartificial tissue regeneration model. However, this project would thoroughly analyze 

the various sources of heterogeneity for the mitotic oscillator, and from the results one 

could isolate the most prominent sources of heterogeneity to reduce the model size for 

incorporation into a bioartificial tissue regeneration model. 

Division time distributions are necessary to analyze cell proliferation 

heterogeneity. Prior experiments conducted in Dr. Zygourakis’s lab at Rice University 

measured the distribution of division times with time-lapse video microscopy [5], In the 

work, the division time distribution was measured at a single glucose concentration. 

Since cells are exposed to heterogeneous environments in bioartificial tissue 

regeneration, distributions of division times are required for varying glucose conditions. 

Performing time-lapse video microscopy experiments in limited glucose conditions 

would elucidate the change in the distribution of division times as the extracellular 

glucose concentration varied. These distributions taken at different homogeneous 
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glucose concentrations could be compared to the corresponding stochastic modeling 

efforts to tune and validate the models. 

Although incorporating heterogeneity is a necessary step to integrate the 

proliferation model into the bioartificial tissue regeneration model, further modeling can 

have an impact on many aspects of the cell cycle. Many components of the cell cycle 

prior to mitosis can be incorporated into the model. A mammalian cell must pass through 

a restriction point in interphase and initiate DNA synthesis before initiating mitosis and 

dividing. Both of the crucial steps occur in every cycle, but there exists uncertainty about 

the mechanisms involved in passing through the restriction point and to initiate DNA 

synthesis. Similar to previous mitotic models, the prior restriction point and DNA 

synthesis models utilized various nonlinear kinetics to describe protein-protein 

interactions, but without experimental justification [98,101,114,116,120,134,137-147, 

160-162,166,167, 197-199]. Many of the proteins involved in the earlier aspects of the 

cell cycle likely have multisite phosphorylation that could generate the assumed 

nonlinearities. For example, Cdc25A is involved in a positive feedback loop in the 

initiation of DNA synthesis and has fourteen potential CDK phosphorylation sites [11, 

39]. Thus, a model for the restriction point and DNA synthesis incorporating multisite 

phosphorylation and analyzing the various prior network structures would advance the 

understanding of the evolution of the biology and the progression of the models in the 

area. The restriction point and DNA synthesis model could then be combined with this 

work’s mitotic oscillator to create a full scale cell cycle model to reveal the underlying 

mechanisms involved to ensure that the two processes maintain their order. 
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Additionally, there are components in mitosis that could be added to the mitotic 

oscillator to understand their role in the regulation of mitosis and to advance the 

connectivity to the other components of the bioartificial tissue regeneration model. Since 

this work took a bottom-up approach, a minimal number of components were 

incorporated into the model while maintaining the biological integrity. Building 

complexity into the mitotic model revealed the function of the added components. For 

instance, two proteins inhibit MPF by phosphorylation, Weel and Mytl. The current 

model incorporates Weel, but Mytl can be added to reveal the likely different function 

of both Weel kinases. Weel is located in the nucleus and Mytl is located on the Golgi 

complex and endoplasmic reticulum in the cytoplasm [18,27]. The Weel kinases bring 

to light the spatial regulation of the cell cycle proteins. Several models have included 

spatial regulation of the proteins and have stressed its significance in regulating the cell 

cycle [134,169]. Spatial regulation is yet another aspect that can be integrated into the 

model. 

The Cdc25 family of phosphatases has three members, Cdc25A, Cdc25B, and 

Cdc25C [11]. This work included Cdc25A, which has been shown to be able to 

compensate for all the roles in the cell cycle [63]. However, the other two proteins do 

exist in nature and therefore must have had or have a role in the regulation of the cell 

cycle. Cdc25C is generally regarded as a mitotic protein, and the role of Cdc25B is yet to 

be understood folly [11]. Including each of these proteins into the model could clarify 

the role of each of them in the cell cycle. 

The negative feedback loop in the mitotic network is highly complex. This work 

incorporated a simplified feedback loop in which MPF activated APC in a linear fashion. 
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In reality, APC has two activating proteins, Cdhl and Cdc20, and all three proteins are 

regulated by multisite phosphorylation by MPF [11]. There have been a few modeling 

works to gain insight into this complex activation of APC to exit mitosis, but all previous 

models have incorporated various nonlinear kinetics for the protein-protein interaction 

[120, 153, 156]. The APC activation network is another subnetwork of the cell cycle that 

would benefit from a comprehensive study on prior protein network structures and the 

effect of multisite phosphorylation on system behavior. 

Finally, other environmental factors could be incorporated into the proliferation 

model, including growth factor concentrations, scaffold configurations with bound 

signaling proteins, extracellular drugs and waste products, or extracellular oxygen. For 

example, growth factors have been observed to modulate glucose uptake and therefore 

cellular metabolism [200]. Therefore, by modulating metabolism, growth factors 

modulate intracellular ATP, which has already been incorporated into this work’s mitotic 

oscillator. 

In conclusion, this work has taken vital steps to develop a proliferation model for 

a bioartificial tissue regeneration model. As the cell cycle models become more complex 

through increased biological knowledge, it will be important to analyze models in a 

mechanistic manner to gain an understanding of the underlying reaction networks. By 

using this thought process, one can gain insight into why cells evolved the network 

structures observed today. 
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Appendix I - Nonlinearity in MPF activation Network 

If the intermediate inactive MPF species from the base mitotic model is assumed 

to be at pseudo steady state, 
' d[MPF-P] 

dt 
= 0 , then the resulting ODEs retain the 

nonlinearity and the system qualitatively exhibits the original system. Below are the 

equations for the base MPF activation network. 

Original System 

d[A^F] m [Q>CP]- k5 [MPF]- k3 [APC - p][MPF]- k6 [Veel^MPp] 

+it7 §Cdc25A] + [Cdc25A-p] + \cdc25A-PP])[MPP-p] 

-k2[MPF] 

^ '
= *7 §pdc25A\+ [Cdc25A - P] + [Cdc25A - PP]) [iWPF - PP] 
-k2 [xw^+k^ |Wu][MPF] - k6 \Wee\A^MPF - P] 

-k3[APC - P][MPF - P] 

-k7 {^Cdc25A1\ + \Cdc25A - p]+\Cdc25A - PP])[M>F - P] 

d[MPF-PP] 

dt 
= -kn §Cdc25A] + [Cdc25A - P]+\Cdc25 - PP]) [ MPF - PP] 

-k2 [MPF - PP] - /t3 [APC - P][MPF - PP] 

+k6[WeelA][MPF - P] 

(1) 

(2) 

(3) 

Reduced System 

To reduce the system, the intermediate inactive species of MPF is assumed to be 

at pseudo-steady state, d[MPF~p] = Q , and therefore equation (2) can be solved for MPF- 

P. 
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k7 ([Cdc25A]+\Cdc25A - P]+[Cdc25A - PP]) [MPF - PP] + k6 [Weel][MPF] 

* k2 + k3 [APC-P]+k6 [Weel]+k7 ^Cdc25À\ + [Cdc25A - p]+[cdc25A - PP]) 
(4) 

Plugging equation (4) into the differential equations for MPF and MPF-PP retains 

the nonlinearity generated by the MPF-P species which can be seen in the last two terms 

of each differential equation. This system produces the same qualitative behavior seen in 

the base case system (Figure 33). 

</[M>F] 

dt 
- kA [CycB\ -k5 [MPF]-k3 [APC - P][MPF]- k6 [tFeeU][MPp]- k2 [MPF] 

k] ([Cdc25A]+]Cdc25A - p]+[Cdc25A - PP])2 [ MPF - PP] 

k2 + k3\APC-P]+/t6 [Weel] + k? ^Cdc25A~\ + \Cdc25A - p] + [Cdc25A - PP]) 

+k6k7 \Wee\^Cdc25A]+[Cdc25A - p]+[Cdc25A - PP])[A4PF] 

k2 + k3 [APC -P]+k6 [Weel]+ky ([CJc25^]+[Cdc25A - P]+[Cdc25A - PP]) 

(5) 

j[jWPF-PP] 
— It 

= -kn (j[Cdc25A\ + [Cdc25A - P] + [Cdc25 - PP])[MPF - PP] 

-k2 [MPF - PP] - k3 [APC - P][MPF - PP] 

k6k7 [Weel] i^Cdc2SA]+[Cdc25A - p] + \cdc25A - PP]) [MPF - PP] 

k2 + k3 [.APC -P]+*6 [Weel] + k7 §Cdc25Â\+[Cdc25A - p] + \Cdc25A - PP]) 

k2
6 [Weelf [MPF] 

k2 + k3 [.APC ~P\+k6 [Weel] + k7 ([Cdc25A] + \Cdc25A - p] + \cdc25A - PP]j 

(6) 

In the case of simultaneous inactivating phosphorylations, the last two terms in 

equations (5) and (6) do not contain the nonlinearity observed in the base mitotic model 

or in the reduced model. The equations for MPF and MPF-PP for this model are 

displayed below. 

= k4 [CycB\ - k5 [MPF] - k3 [.APC - P][MPF] - k6 [iVeelA][M>F] - k2 [iWPF] 

+k7 §Cdc25Â\ + \Cdc25A - P] + \Cdc25A - PP]|[A/PF - PP] 

dt (7) 
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Figure 33 - Quasi-Steady State for Intermediate Inactive MPF species. The system retains the nonlinearity 
generated by the intermediate species, and therefore displays the same qualitative behavior as the base 
model. 

d[MPF-PPj 

dt 
= -k, ([Cdc25A] + \cdc25A - P] + [Cdc25 - />/>]) [MPF - PP] 

-k2 [ MPF - PP] - k3 [APC - P] [ MPF - PP] + kb [Weel] [ MPF] 

(8) 

Neither of the simultaneous terms have the nonlinearity terms observed in the 

reduced system, and therefore, is the reason why multiplicity and frequency encoding are 

not observed throughout the MPF activation rate parameter space (Figure 14 p.87). 
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Appendix II - ATP Model Equations and Parameters 

This appendix presents the equations for the ATP model. To begin, the ATP 

model that incorporates Weel inhibition by only degradation is presented in full. The 

wiring diagram for this system (Figure 21) can be found on page 97. Then, the equations 

that were changed for the models for Weel A inhibition by only kinase inhibition, by 

increased degradation followed by kinases inhibition, and finally kinase inhibition then 

increased degradation are presented. The wiring diagram for the Weel A inhibition 

mechanisms (Figure 28) can be found on page 106. A table of the parameter sets used for 

the ATP models is presented at the end of this appendix. 

ATP Model Incorporating Weel A Inhibition by only Increased Degradation 

The first three equations capture the dynamics of the species involved in cyclin B 

CDK1 dimerization into active MPF. 

d\-CAK~ATF] = jfcj [CAKt0,][ATP] - (fcj [Arp] + jfc_! + k6 [CycB - CDK1])[CAK - ATP] 

d[C^ = k2 K - *3 [CycB]- *4 [APC -P][CycB] -k5 [CycB] + k_5 [CycB -CDK\] 

d[CycB-CDK\] _ ^ + ^ 

- (*_5 + k6 [CAK - ATP]+k3 + k4 [APC - P]) [CycB - CDKÏ] 

(1) 

(2) 

(3) 

CAK activity has been observed to be roughly constant throughout the cell 

cycle[l 1], and thus the model assumes total CAK concentration, CAKot, is constant. 

Therefore, only the ATP bound CAK species is incorporated into the model. The 

dynamics of CAK-ATP are described by equation (1). CAK binds with ATP at a rate of 

ki to form CAK-ATP. CAK concentration is calculated as the total CAK concentration 
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minus CAK-ATP concentration. CAK-ATP phosphorylâtes the cyclin B-CDK1 dimer at 

a rate of lq>, thereby using ATP and becoming CAK. 

Cyclin B monomer, CycB, dynamics are generated by equation (2). CycB has 

saturable rate of protein synthesis with respect to ATP with a maximum rate of ka. Km is 

the Michaelis-Menten parameter for saturable ATP kinetics. All cyclin species including 

CycB, CycB-CDKl, MPF, MPF-ATP, MPF-P, and MPF-PP have a background 

degradation rate of k2 and are also degraded by APC at a rate of k3 and proportional to the 

APC-P concentration. CycB dimerizes with CDK1 at a rate of ks and dissociates at a rate 

of k-5. CDK1 is observed to be in excess [178], and therefore, is incorporated into the k5 

constant. 

The next equation captures the dynamics of CycB-CDKl, which is the 

unphosphorylated dimer of cyclin B and CDK1. CycB-CDKl is formed by and 

destroyed by dimerization and dissociation of CycB and CDK1. CycB-CDKl is 

phosphorylated by CAK-ATP on CDK1 at the activating site, thus forming MPF. The 

phosphorylation occurs at a rate of k> and is proportional to the concentration of CAK- 

ATP. The activating phosphorylation is removed from CDK1 at a rate of k7, then 

converting MPF to CycB-CDKl. 

The next four equations capture the dynamics of the active and inactive MPF 

species. The active form of MPF is bound to ATP (MPF-ATP), and is the species that 

phosphorylâtes Weel, Cdc25A, and APC. The other MPF species are not catalytically 

active. 
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d[MPll m k6 [CycB - CDK\] [CAK - ATP] + fc_8 [MPF - ATP] 

- (*7 + *8 [ATP]+ *3 + *4 [APC - P]) [MPF] 

-k^ [[WeelA - ATP] + [WeelA -P- ATP]+[WeelA -PP- ATP])[MPF] 

+k10 ([0/c25 A] + [Cdc25A - P] + [Cdc25A - PP])[MPF - P] (4) 

+*i4 ([Cdc25A] + [Cdc25A - P])[MPF - ATP] 

+*j9 ([WeelA] + [WeelA - A7P] + [WeelA - P] + [WeelA - P-ATP]) [MPF - ATP] 

+*22 ([APCtof ] - [APC - P])[MPF - ATP] 

d[MPF~ATP] = k& [ATp][MPF] - *_§ [MPF - ATP] - *3 [MPF - ATP] 

—*4 [APC - P] [MPF - AFP] 

—*14 ([Ofc25A]+[Ofc25A - P]) [MPF - ATP] 

-*22 ([APC,OI ] - [APC - P]) [MPF - ATP] 

—*19 ([WeelA] + [WeelA - P]) [MPF - ATP] 

—*19 ([WeelA - AFP]+[ WeelA - P - AFP]) [MPF - ATP] 

diMPP~P] m ^ {[WeelA - ATP]+[WeelA - P - AFP] + [WeelA - PP - AFP])[MPF] 

-*,0 ([Crfc25 A]+[CdclSA - P] + [CJc25 A - PP]) [MPF - P] 

—*9 ([WeelA - AFP]+[WeelA - P - AFP] + [WeelA - PP - AFP]) [MPF - P] (6) 

+*io ([Crfc25A] + [C4c25A - P] + [Cdc25A - PP])[MPF - PP] 

—*3 [MPF - P] - *4 [APC - p] [MPF - P] 

d[MPF-PP] = ^ ([WeelA _ AFP] + [WeelA - P - AFP] + [WeelA - PP - AFP]) [MPF - P] 

-*,„ ([C4c25 A]+[Cdc25A - P] + [CJc25A - PP]) [MPF - PP] (7) 

—*3 [MPF - PP] - *4 [APC - p] [MPF - PP] 

As stated before, MPF is formed by the phosphorylation of CycB-CDKl by 

CAK-ATP at a rate of k<>. All MPF species contain cyclin B, and therefore are degraded 

at the background rate of k3 and at a rate of k^ which is proportional to the concentration 

of APC. MPF dimerizes with and dissociates from ATP at the rate of kg and k.g, 

respectively. The MPF-ATP species is the active form and phosphorylâtes the MPF 

substrates, Weel, Cdc25A, and APC. When MPF-ATP phosphorylâtes a substrate, it 
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uses ATP, and therefore, becomes MPF. Thus, MPF is generated by all MPF-ATP 

phosphorylation reactions, thus adding the last three terms on equation (4). These terms, 

ki4, ki9, and k22, are loss terms in the MPF-ATP equation. The only generation term for 

MPF-ATP is the dimerization of MPF and ATP at a rate of k^. 

The ATP bound Weel species are active, and therefore, phosphorylate MPF at a 

rate of kg that is proportional to the active Weel species concentration. Weel A 

phosphorylâtes CDK1 in the ATP binding pocket [23]. Thus phosphorylated MPF 

species, MPF-P and MPF-PP, cannot bind with ATP and are therefore inactive. The 

inhibitory phosphorylations are removed from MPF-P and MPF-PP by the Cdc25A 

family of phosphatases at a rate of kio, which is proportional to the concentration of the 

Cdc25A species. 

The next three equations describe the dynamics of Cdc25A. The 

unphosphorylated and singly phosphorylated species, Cdc25A and Cdc25A-P, are 

degraded at a fast rate, k^. The stabilized species, Cdc25 A-PP, does not contain this 

term. 

d[Cdc25A] 

dt (8) 

d[Cdc2^A~P] _ k{4[MPF_ A7Ï>][cdc25A]-kl5[Cdc25A-P] 

-kH [MPF - ATP] [Cdc25A - P]+kl5 [Cdc25A - PP] 

-kn [Cdc25A -P]- kl3 [APC - P] [Cdc25A - P] 

(9) 

d[cdc25^~pp} m [MPF _ A7P][cdc25A - P] - kl5 [Cdc25A - PP] 

-k13 [APC - P] [Cdc25A - P] 

(10) 
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Cdc25 A is synthesized at a saturable rate with respect to ATP with a maximum 

rate of kn. MPF-ATP phosphorylâtes Cdc25A species at a rate of ki4 that is proportional 

to the MPF-ATP concentration. The MPF-ATP phosphorylation is removed at a rate of 

kis. APC degrades all Cdc25A species at a rate of ku. Cdc25A forms a positive 

feedback loop with MPF. MPF-ATP phosphorylâtes Cdc25A and stabilizes it [46]. The 

Cdc25A-PP species that has two MPF-ATP phosphorylations does not have the rapid 

background degradation term, ki2. Cdc25A in turn dephosphorylates the inactive MPF 

species, MPF-P and MPF-PP, to create MPF. MPF then binds with ATP to form MPF- 

ATP and can phosphorylate more Cdc25A. 

Weel A dynamics are captured by the following six equations. For this system, 

MPF down regulation of Weel A is by degradation only. Weel A must bind ATP to form 

an active kinase. The unphosphorylated and singly phosphorylated forms of Weel A are 

stable and have low background degradation when compared to the Weel A species with 

two MPF phosphorylations that degrades rapidly (k2i). 

d[WeelA] 

7t 

(ID 

d[WeelA-ATP] _ ^ [WeelA] - k_m [WeelA - ATP] 

-kl9 [MPF - ATP][WeelA - ATP] + k20 [WeelA -P- ATP] 

-kl7 [WeelA - ATP] - ([MPF]+[MPF - P]) [WeelA - ATP] 

(12) 

-kl9 [MPF - ATP] [WeelA - P] + k20 [WeelA - PP] 

-kls [ATP] [WeelA - P] + k_ls [WeelA - P - ATP] - k„ [WeelA - P] 

+k9 [[MPF]+[MPF - P]) [WeelA - P - ATP] 

(13) 
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d[WeelA-P ATP] = ^^Mpp_ATP][WeelA_ATpj_^[Wee\A_/>_ATP} 

-kl9 [MPF - ATP] [WeelA -P- ATP] 

+*20 [WeelA -PP- ATP]+*18 [ATP][Wee\A - P] (14) 

-*_18 [WeelA -P- ATP] - *I7 [WeelA -P- ATP] 

-k9 ([MPF] + [MPF - P]) [WeelA -P-ATP] 

<f[WeeU-PP] _ ^ ^Mpp _ [Wee\ A-/>]-k20 [WeelA - PP] 

-kls [ATP][Wee\A - PP]+*_18 [WeelA -PP- ATP] (15) 

—*2i [WeelA - PP] + kg ([MPF]+[MPF - P]) [WeelA -PP- ATP] 

d[Wee\A-PP - ATP] _ ^ |-ATpj[WeelA -PP]-*_18 [WeeU - PP - AFP] 

+*19 [MPF-AFP] [WeelA-P-A7P] (jg) 

”*2o [WeelA - PP - AFP] - *2! [WeelA - PP - AFP] 

-*9 ([MPF] + [MPF - P]) [WeelA - PP - AFP] 

The WeelA species names describe their phosphorylation and ATP bound state. 

For example, Weel A-P-ATP has a single MPF phosphorylation and has ATP bound, 

whereas WeelA-PP has only two MPF phosphorylations. WeelA is synthesized at a 

saturable rate with respect to ATP with a maximum synthesis rate of k^. ATP is 

assumed to affect all protein synthesis with the same saturable kinetics and therefore, 

WeelA synthesis has the same Michaelis-Menten constant as cyclin B and Cdc25A, Km. 

All WeelA species dimerize with ATP at a rate of kis, and dissociate with ATP at a rate 

of k-ig. The ATP bound WeelA species, WeelA-ATP, Weel A-P-ATP, and WeelA-PP- 

ATP, are active and thus phosphorylate MPF species to inactivate them. MPF 

phosphorylation of Weel initiates a proteolytic cascade [28]. Therefore, when MPF-ATP 

phosphorylâtes WeelA at a rate of ki9, the WeelA-PP and WeelA-PP-ATP are degraded 

at a higher rate, kzi. The unphosphorylated and singly phosphorylated WeelA species 

have a background degradation rate of kn. The increased degradation parameter, kn, 
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must always be greater than or equal to the background degradation rate, kn. Otherwise, 

MPF phosphorylation of Wee 1 would result in stabilization rather than increased 

degradation. The MPF phosphorylations on WeelA species are removed in first order 

manner at a rate of k2o- 

When active WeelA species phosphorylate MPF species, they use their bound 

ATP. Thus, WeelA-ATP becomes WeelA with the other ATP bound species following 

the same behavior. Thus, the WeelA species with ATP bound have a sink term for MPF 

and MPF-P phosphorylation at a rate of kç, and the WeelA species without ATP bound 

have a source term. 

The final equation is for the active form of APC. Total APC concentration is 

assumed to be constant and is set to unity. MPF-ATP activates APC by phosphorylating 

it at a rate of k22- Inactive APC is calculated as the difference between the total APC, 

APCtot, minus the active form of APC, APC-P. The MPF phosphorylation on APC is 

removed at a rate of k23. 

= *22 lMPF
 ~ ATP] ‘ ‘ p]) * *23 [W ~p] (17) 

ATP Model Incorporating WeelA Inhibition by Kinase Inhibition Only 

For this variation of the model, the equations for CAK, CycB, MPF-ATP, the 

Cdc25A species, APC-P, WeelA, WeelA-ATP, and WeelA-P remain the same. The 

equations that change are for MPF, MPF-P, MPF-PP, WeelA-P-ATP, and Weel A-PP. 

There is not a Weel A-PP-ATP species because the model assumes the inhibited form, 

Weel A-PP, cannot bind to ATP. 
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= k6 [CycB -CDKl\[CAK - ATP\ + *_g [MPF -ATP\ 

-(*7 + k& [ATP\+*3 + kA [APC - P])[MPF] 

-kg ([(Feel-ATP]+[Weel-P-ATP]^MPF] 

+Jfc10 i^CdclSA] + [CdclSA-P] + [Cdc25A - PP])[A/PF - p] 

+kl4 §Cdc25Â\+[cdc25A - p]) [ MPF - A TPj 

+kig ([(Feel] + [(Fee1- ATP]+[Weel- P] + [(Fee 1 - P - ATP]j[MPF - ATP\ 

+*22 ^APC<o, ] - [APC -P%MPF-A TP] 

- kg ([(Fee 1 -ATP] + [(Feel -P- ATP^j[MPFj 

-kl(j ([C<fc25A]+[Cdc25A - P] + [Cdc25A - PP]) [ MPF - P] 

-kg ([(Feel -ATP] + [(Fee 1 - P- ATP^MPF - p] 

+*10 §Cdc25Â\ + [Cdc25A - P]+[Cdc25A - PP]) [MPF - PP] 

-k3 [MPF-P]-k4 [APC-P][MPF- p] 

(18) 

(19) 

—i - ' = kg ([(Feel -ATP]+[(Feel - P - ^PP]) [MPF - p] 

-kl0 ([cdc25A] + [cJe25^ - p]+\cdc25A - PP]) [MPF - PP] (20) 

~k3 [MPF - PP] - k4 [APC - P][MPF - PP] 

The MPF species equations are changed by only the Weel A phosphorylation 

term. Since WeelA-PP-ATP has been removed from the model, there are only two 

active forms of Weel A, Weel A-ATP and Weel A-P-ATP. Thus, the inactivation term 

for MPF phosphorylation, k9, has two active forms of Weel A rather than the three from 

the last model. 

d[Wee\A-P-ATP] 

dt 
- kxg [MPF - ATP][WeelA - ATP}- k20 [WeelA -P-ATP\ 

-kig [MPF - ATP][WeelA -P-ATP] 

+kl3 [ATP] [WeelA - p] - *_lg [WeelA - P-ATP] 

-kl7 [WeelA -P-ATPYkg ([MPF] + [MPF - P]) [WeelA - P - ATP] 

(21) 



= kl9 [ MPF - A TP] [fVeel A-p]- k2Q [WeelA-PP] 

+kl9 [MPF - ATP] [WeelA -P-ATP]-kv [WeelA - PP] 
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d[WeelA-PP] 

It (22) 

Weel A-P-ATP can now be phosphorylated by MPF-ATP, thereby releasing ATP 

and forming WeelA-PP. WeelA-PP does not dephosphorylate to form Weel A-P-ATP, 

and therefore, Weel A-P-ATP does not have a source term from dephosphorylation, k2o, 

as it did from Weel A-PP-ATP in the previous model. WeelA-PP has the additional 

source term from Weel A-P-ATP phosphorylation by MPF-ATP at a rate of ki9. WeelA- 

PP does not bind with ATP and thus these terms have been removed from the equation. 

WeelA-PP does not have a source term from phosphorylation of MPF species, because 

the ATP bound Weel A-PP-ATP species does not exist in this model. Thus, these terms 

were removed. 

ATP Model Incorporating WeelA Inhibition by Increased Degradation 

Followed by Kinase Inhibition 

This model was created by augmentation of the ATP model with WeelA 

inhibition by only degradation. The equations for MPF-P, MPF-PP, WeelA, WeelA- 

ATP, Weel A-P, Weel A-P-ATP, all Cdc25A species, and APC-P remain the same. The 

equations for MPF, MPF-ATP, WeelA-PP-ATP, and WeelA-PP-ATP are altered. To 

compare the models, the amount of active WeelA was kept constant. Thus, WeelA 

species had to be phosphorylated at two sites before any inhibitory action was 

implemented. Thus, for the systems with two inhibitory mechanisms, an additional 

species was added, Weel A-3P, which was phosphorylated by MPF-ATP at three 

phosphorylation sites. 
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With the extra phosphorylations steps occurring in the Weel A mechanism, the 

MPF and MPF-ATP equations had to be augmented. MPF-ATP now phosphorylated 

Weel A-PP and WeelA-PP-ATP to form WeelA-3P. Thus, there were two new sink and 

source terms for MPF-ATP and MPF, respectively. The new terms can be found in the 

ki9 reaction for both species. 

d[MPF] m £6 [CycB _ CDKI][CAK - ATP] + *_8 [MPF - ATP] 

-(ibj + kg [ATP] + *3 + *4 [APC - P])[MPiF] 

-kg ([ WeelA - ATP]+[WeelA -P- ATP] + [WeelA -PP- ATP])[MPF] 

+*10 ([Cdc25A\ + [Cdc25A - P] + [CdclSA - PP])[MPF - P] 

+*14 ([Cdc25A] + [Cdc25A - P])[MPF - ATP] 

([WeelA] + [WeelA - ATP] + [WeelA -P] + [WeelA -P- ATP] 
+ 19 [+ [WeelA - PP]+[WeelA -PP- ATP] 

+*22 ([APC!ot ] - [APC - P])[MPF - ATP] 

(23) 

[MPF-ATP] 

d^MPF
dt 

ATP^ = *8 [ATP][MPF] - *_g [MPF - ATP] - *3 [MPF - ATP] 

—k4 [APC - P] [MPF - ATP] 

-kl4 §Cdc25A]+[Cdc25A - P]) [MPF - ATP] 

-*22 ([APCtot]-[APC-P])[MPF-ATP] 

-kl9 ([WeelA] + [WeelA-P] + [ WeelA - PP])[MPF - ATP] 

-*19 ([WeelA - ATP]+[WeelA - P - ATP] + [ WeelA - PP - APP]) [MPF - ATP] 

The Weel A-PP and Weel A-PP-ATP species are now phosphorylated by MPF- 

ATP to form Weel A-3P. Thus, there are new sink terms for both at a rate of ki9 and 

proportional to MPF-ATP. Weel A-3P is dephosphorylated at a rate of k2o to form 

Weel A-PP. The new equation for Weel A-3P has source terms from MPF-ATP 

phosphorylation of Weel A-PP and Weel A-PP-ATP. Weel A-3P is dephosphorylated to 

form Weel A-PP. All three species have increased degradation rates, k2i. 
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d[WeelA-PP\ = ^ _ ATP^WeelA _ pj_ ^ _ />/>] 

[MPF - ATP\[Wee\A - PP\ + *20 [fVeelA - 3P] 

[ATP] [Weel A - PP] - k_x% [WeelA -PP- ATP] 

-k2l [WeelA - PP] + k9 ([MPF]+[MPF - />]) [WeelA -PP- ATP] 

d[WeelA-PP-ATP] 

It 
- kl9 [MPF- ATP][WeelA-P- ATPj-k2Q [WeelA-PP- ATP] 

-kl9 [MPF - ATP][WeelA -PP- ATP] 

+kli[ATP\Wee\A- PP\ 

-k_w[WeelA-PP-ATP]-k2x [fVeelA-PP- ATP] 

-k9([MPF]+[MPF-/>])[WeelA-PP- ATP\ 

d[\Vee\A-3P] 

dt 
+k[9 

[MPF - ATP] [WeelA - PP] - k20 [WeelA - 3P] 

[MPF - ATP][WeelA -PP-ATP]-k2l [WeelA -3P] 

(26) 

(27) 

ATP Model Incorporating WeelA Inhibition by Kinase Inhibition Followed by 

Degradation 

This variation of the ATP was constructed from the ATP model incorporating 

WeelA inhibition by only kinase inhibition. Therefore, the only equations to change are 

MPF, MPF-ATP, and Weel A-PP. An additional species, Weel A-3P was incorporated 

into the model. To make an equal comparison between the different mechanisms, all 

models maintained the same number of active WeelA species. Therefore, two MPF-ATP 

phosphorylations were required on a WeelA specie before any inhibition mechanism was 

initiated. Hence, the additional WeelA specie with three MPF-ATP phosphorylations, 

Weel A-3P, was added to the model to analyze the effect of the extra inhibition 

mechanism. 

Since Weel A-PP is now phosphorylated by MPF-ATP to form Weel A-3P, MPF- 

ATP uses its bound ATP in the reaction. Therefore, a source and sink term must be 
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added to the MPF and MPF-ATP equations, respectively. This term is found in the ki9 

reaction. 

d\MPF] r ir , r , 
-L—-J - k6 [CycB - CDK\\[CAK -ATP\ + k_% [.MPF - ATP] 

+ ks [ATP}* A3 + k4 [APC - i>])[MPF] 

-k9 [[(VeelA-ATP]+[WeelA-P-ATP^j[MPF] 

+kl0 ^CdclSA^+\Cdc25A-P] + [Cdc25A - [MPF - P\ 

+ku §Cdc25Â\+[cdc2SA - /»])[MPF - ATP] 

'[WeelA]+[WeelA -ATP]* [WeelA - /»]' 

+k'9 ( +[WeelA -P-ATP] +[fVeelA- FP] 

+*a iAPC«,t\-[A* - P])[MPF - ATP] 

[.MPF-ATP] 

d\MPF-ATP1 
-1 1 - kg [,47’PJ[M>F] - k_g [MPF - ATP\ - *3 [MPF - ATP] 

-k4 [APC - P][MPF- ^7?] 

-ku §Cdc25Ay[Cdc25A - P^[MPF - ATP] 

-*22 ([^0/ ] - [APC - />]) [ MPF - A TP] 

-kx9 [[WeeU]+[fVeelA - P]+[WeelA - PP^[MPF - ATP] 

-*,9 [[Wee 1 - ATP]+[Wee 1 - /> - ^7P])[MPF - z(7P] 

(28) 

(29) 

The Weel A-PP equation has an additional sink term for MPF-ATP 

phosphorylation, ki9, and a source term for Weel A-3P dephosphorylation, k2o. 

Conversely, The additional equation for Weel A-3P has a source term from Weel A-PP 

phosphorylation by MPF-ATP, ki9, and a sink term for déphosphorylation, k2o- Weel A- 

3P specie has increased degradation, k2i, which is always greater than the background 

degradation term, kn. Otherwise, MPF-ATP phosphorylation would induce stabilization 

rather than increased degradation. 
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d[Wee\A PP] = ^ ^Mpp _ ATp-]^WeelA _ pj _ *2o pfeelA - PP] 

-jt,9 [MPF - A TP^WeelA - FP]+k20 [WeelA - PP] (30) 

+kl9 [MPF - ATP] [lWee\A -P-ATP]-kl7 [WeelA - PP] 

d[WeelA-3P] ^ ^ _ ATP^WeeU _ />/>] _ ^ [ffeeU -3P] ^ 

-k2l[Wee\A-3P] 
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Table 2 - ATP Model Parameters with Descriptions. Parameter sets are presented for the base case model, 

Parameter Description 
Base 
Case 

Relative ATP - 
WeelA 

Degradation 
Only 

Relative ATP - 
WeelA Inhibition 
then Degradation 

Final Model 
Linked to 
Glucose 

Units 

CAKtot Total Concentraiton of CAK 1 1 1 1 nM  
APC» Total Concentration of APC 1 1 1 1 nM 

km 
Michaelis-Menten Constant for ATP 

requirement for Protein Synthesis 0.5 0.05 0.05 0.05 mM 

k, CAK ATP Dimerization 5 7500 7500 7350 mM'V1 

k.i CAK ATP Dissociation 1 150 150 147 hr'1 

^2 Cyclin B Syntheis Rate 0.01 1.5 1.5 1.47 nM hr1 

k3 Cyclin B Background Degradation 0.0001 0.015 0.015 0.0147 hr* 
k4 Cyclin B Degradaiton by APC 1.5 1.15 1.15 1.127 nM‘hrl 
k5 Cyclin B CDK1 Dimerization 1 150 150 147 nM~‘hr1 

k-s Cyclin B CDK1 Dissociation 1 150 150 147 hr1 

k6 CDK1 Activating Phosphorylation by CAK 6 900 900 882 nM^hr'1 

k? CDK1 Activating Phosphorylation Removal 0.01 1.5 1.5 1.47 hr"1 

k, MPF ATP Dimerization 10 750 750 735 mM^hr1 

k.8 MPF ATP Dissociation 10 750 750 735 hr'1 

k9 MPF Inhibtion by Weel 2.1 345 345 338.1 nM^hr'1 

kjo MPF Activation by Cdc25A 0.5 250 250 245 nM^hr'l 
ku Cdc25A Synthesis Rate 1.2 180 180 176.4 

. jMJhf1 . 

kn Unstable Cdc25A Degradation Rate 12 1650 1650 1617 hr'1 _ 
ki3 Cdc25A Degradation by APC 40 75 75 73.5 nM'hr1. 
k14 Cdc25A Stabilization by MPF 7.5 1800 1800 1764 nM~'hr~1 

kis Cdc25A Destabilization 0.1 15 15 14.7 hr* 
ki6 Weel A Synthesis 1 150 150 147 nM hr'1 

kn Weel A Background Degradation 1 150 150 147 hr1 

kig Weel A ATP Dimerization 10 15000 15000 14700 mM^hr1 

k.i8 Weel A ATP Dissociation 1 150 150 147 hr* 
ki9 Weel A Inhibition by MPF 0.4 600 550 539 nM^hiiL 
^20 

Weel A Activation 1 75 75 73.5 hr1.... 
^21 Unstable WeelA Degradation Rate 5 750 750 735 hr1 

^22 APC Activation by MPF 0.001 67.5 67.5 66.15 nM“1hr'1 

^23 APC Inactivation 0.45 75 75 73.5 hr1 

Michaelis-Menten Constant for Glucose 0.1085 mo mT:1 


