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Abstract

Peroxisomes are essential for life in plants. These organelles house a variety of metabolic 

processes that generate and inactivate reactive oxygen species. Our knowledge of pathways and 

mechanisms that depend on peroxisomes and their constituent enzymes continues to grow, and in 

this review we highlight recent advances in understanding the identity and biological functions of 

peroxisomal enzymes and metabolic processes. We also review how peroxisomal matrix and 

membrane proteins enter the organelle from their sites of synthesis. Peroxisome homeostasis is 

regulated by specific degradation mechanisms, and we discuss the contributions of specialized 

autophagy and a peroxisomal protease to the degradation of entire peroxisomes and peroxisomal 

enzymes that are damaged or superfluous. Finally, we review how peroxisomes can flexibly 

change their morphology to facilitate inter-organellar contacts.

Graphical Abstract

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Opin Plant Biol. Author manuscript; available in PMC 2017 December 01.

Published in final edited form as:
Curr Opin Plant Biol. 2016 December ; 34: 17–26. doi:10.1016/j.pbi.2016.07.008.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Peroxisomes are small organelles found in most eukaryotes that are delimited by a single 

lipid bilayer. Diverse metabolic activities are compartmentalized in plant peroxisomes (Table 

1). Well-established peroxisomal activities include fatty acid β-oxidation, hormone 

production, and photorespiration. Peroxisomal pathways often include an oxidative step 

generating reactive oxygen species (ROS) as byproducts; peroxisomes therefore also house 

catalase and other ROS-inactivating enzymes.

Peroxisomes primarily proliferate by growth and division (Figure 1). The proteins required 

for peroxisome biogenesis, matrix protein import, and division are designated as peroxins 

(PEX proteins). Peroxisomal matrix proteins are imported into the organelle with the 

assistance of two interacting receptors, PEX5 for peroxisome-targeting signal type 1 (PTS1) 

proteins and PEX7 for PTS2 proteins (Figure 2). The cargo-loaded receptors dock at the 

peroxisomal membrane via interactions with PEX13 and PEX14 and release their cargo into 

the matrix by largely unknown mechanisms. Membrane-associated PEX5 is ubiquitinated, 

extracted from the membrane and retrotranslocated back to the cytosol for additional import 

rounds. After arrival in the matrix, the PTS2 domain is removed, whereas PTS1 proteins 

retain the signal (Figure 2).

Peroxisomal membrane proteins (PMPs) are inserted into peroxisomes either directly or via 

the ER membrane, from which pre-peroxisomes can bud and mature by post-translational 

import of matrix and additional membrane proteins into the organelle (Figure 1). PMPs 

include a subset of the PEX proteins necessary for import of matrix proteins into the 

organelle. Mature peroxisomes extend, tubulate, and divide by fission, which is considered 

to be the predominant mode of peroxisome proliferation (Figure 1).

Although key peroxins and core peroxisomal functions are largely conserved in eukaryotes, 

there are important differences among fungal, animal, and plant peroxisomes. These 

distinctions underscore the need for a thorough knowledge of peroxisome biology at all 

levels in the reference plant Arabidopsis thaliana, which is prerequisite for translation to 

crop plants and microalgae for future agricultural and biotechnological applications. In this 

article, we highlight recent discoveries that have deepened our understanding of the 

functional plasticity, biogenesis, degradation, and membrane dynamics of peroxisomes in 

plants.

Functional diversity of plant peroxisomes

The metabolic diversity and plasticity of peroxisomes is amazing (Table 1), and unexpected 

functions of plant peroxisomes continue to be discovered. For instance, peroxisomes house 

biosynthetic steps of phylloquinone (2-methyl-3-phytyl-1,4-naphtho-quinone or vitamin K1), 

a vital co-factor for electron transfer in photosystem I. Phylloquinone biosynthesis begins in 

plastids with the synthesis of o-succinylbenzoate from chorismate. Peroxisomal enzymes 

catalyze the next three steps to the double-ring structure of naphthoquinone: i) activation via 

CoA esterification by acyl-activating enzyme 14, ii) ring cyclization by naphthoate synthase 

to yield the CoA thioester of 1,4-dihydroxy-2-naphthoate (DHNA) [1], and iii) hydrolysis of 
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DHNA-CoA by two functionally redundant peroxisomal thioesterases [2]. Phylloquinone 

biosynthesis is finalized in chloroplasts by DHNA prenylation and methylation. 

Interestingly, while most phylloquinone biosynthetic enzymes are of cyanobacterial origin, 

the thioesterases apparently originate from Lactobacillales by horizontal gene transfer [2]. 

Because none of the three peroxisomal enzymes of phylloquinone biosynthesis produces 

ROS, it remains to be elucidated why these steps were shifted from chloroplasts to 

peroxisomes during higher plant evolution.

The first enzyme in biotin synthesis (BioF) is peroxisomal in plants and fungi [3,4], while 

the subsequent steps are mitochondrial. Moreover, peroxisomal β-oxidation is required for 

synthesis of the BioF substrate, pimeloyl-CoA [3,4]. In addition, the enzymes catalyzing the 

final two steps of mevalonate biosynthesis, 5-phosphomevalonate kinase and mevalonate 5-

diphosphate decarboxylase, were recently characterized as peroxisomal in Arabidopsis and 

Catharanthus roseus [5].

High amounts of photorespiratory H2O2 are produced during photosynthesis. Both host cells 

and pathogens can impinge on peroxisomal functions to modulate ROS homoeostasis [6]. 

For example, Arabidopsis LESION SIMULATING DISEASE1 interacts with catalase via a 

zinc finger domain and increases peroxisomal catalase activity to negatively regulate 

programmed cell death [7]. In addition, the Rab GTPase-activating protein RabGAP22 

facilitates plant defenses against the soil-borne fungal pathogen Verticillium longisporum. 
Verticillium infection induces Arabidopsis RabGAP22 expression and triggers RabGAP22 

redirection from the nucleus to peroxisomes, where it forms a complex with the 

photorespiratory enzyme, serine:glyoxylate aminotransferase (AGT1) [8]. The rabgap22-1 
mutant displays elevated jasmonate (JA) levels, and it will be interesting to learn whether the 

RabGAP22-AGT1 complex interferes with peroxisomally localized JA biosynthetic 

enzymes.

Only a few membrane proteins that transport metabolic intermediates and co-factors across 

the peroxisomal membrane have been identified. One such transporter is PEROXISOMAL 

ATP binding cassette (ABC) TRANSPORTER 1 (PXA1), which transports various 

substrates into peroxisomes for β-oxidation, including fatty acids and lipophilic precursors 

of the hormones JA and auxin in Arabidopsis [9,10] and barley [11]. Whether transport by 

PXA1 is regulated and whether the import substrates are CoA esters or free fatty acids was 

long enigmatic. The α/β hydrolase, COMPARATIVE GENE IDENTIFICATION-58 

(CGI-58), has emerged as a positive regulator of PXA1 [12]. CGI-58 interacts with PXA1 

and promotes PXA1 functions in JA and auxin biosynthesis as well as lipid metabolism in 

non-seed vegetative tissues but not in germinating seeds [12]. In addition to its transport 

function, Arabidopsis PXA1 displays intrinsic thioesterase activity that is required for fatty 

acid transport and metabolism [13], implicating CoA esters rather than free fatty acids as 

PXA1 substrates. It remains to be resolved at which side of the membrane the CoA ester 

cleavage occurs and whether CGI-58 activates the transport and/or thioesterase activity of 

PXA1.

Peroxisomes also function in stomatal opening. The SUGAR-DEPENDENT1 lipase (SDP1) 

[14] and PXA1 transporter [9,15] are required not only for lipid mobilization during 
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germination but also contribute to stomatal opening [16]. Blue-light-induced stomatal 

opening is accompanied by reduced oil body volume in Arabidopsis guard cells, and sdp1, 

pxa1, and cgi58 mutants all display slowed light-induced stomatal opening, presumably 

because impaired fatty acid catabolism reduces ATP production in these mutants and limits 

apoplast acidification [16]. These findings provide a rationale for the occurrence of stomatal 

oil bodies throughout the plant kingdom [16]. Moreover, Arabidopsis mutants deficient in 

peroxisomal NADP-dependent isocitrate dehydrogenase (pICDH) are compromised in light-

induced stomatal opening [17]. pICDH is one of the few peroxisomal matrix sources of 

NADPH, which is needed for JA biosynthesis and the peroxisomal ascorbate-glutathione 

cycle. The stomatal defect of picdh is reversible by either an antioxidant such as ascorbate or 

a nitric oxide scavenger, suggesting that pICDH regulates peroxisomal H2O2 and/or NO 

levels and that peroxisomes are needed in guard cells not only for energy metabolism [16], 

but also for signaling [17].

In addition to pICDH, the oxidative pentose phosphate pathway (OPPP) is an alternative 

source of peroxisomal NADPH. The three OPPP enzymes are each encoded by multi-gene 

families, and the isoforms are located in different compartments. Another layer of 

subcellular complexity is added for the two peroxisomal isoforms (glucose-6-phosphate 

dehydrogenase and 6-phosphogluconolactonase), which can be targeted to peroxisomes or 

plastids depending on thioredoxin and redox balance [18,19]. Despite isoform redundancy 

and the high permeability of the peroxisomal membrane for small intermediates, the third 

peroxisomal OPPP enzyme, 6-phosphogluconate dehydrogenase isoform 2, is required for 

guided growth of pollen tubes within the style as well as successful pollen tube-ovule 

interaction and fertilization [20]. This finding provides a possible biochemical rationale for a 

similar requirement of the docking peroxin PEX13 for fertilization [21]. It will be interesting 

to learn whether the peroxisomal OPPP is essential for the production of nitric oxide, JA, or 

an unknown signaling molecule.

Calcium is implicated in regulating peroxisome functions. For example, calcium regulates in 
vitro dimerization and substrate specificity of the DEG15 protease that removes the N-

terminal PTS2 from matrix proteins after entry into the peroxisome [22]. DEG15 

dimerization is mediated by the calmodulin-like protein CML3 [23], a peroxisomal protein 

[24] that contributes to peroxisome metabolism, as evidenced by the slight β-oxidation 

defects of a cml3 mutant [23]. However, unlike deg15 mutants, which exhibit a complete 

block in PTS2 processing [25,26], cml3 mutants process PTS2 proteins like wild type [23], 

suggesting that the β-oxidation defects in cml3 might stem from additional to-be-discovered 

roles for CML3 (and presumably calcium) in the peroxisome.

Systematic large-scale plant peroxisome research

Given the metabolic plasticity and diversity of plant peroxisomes (Table 1), large-scale 

systematic approaches are needed to thoroughly characterize plant peroxisome functions. 

Proteome analyses combined with in vivo protein targeting validations are established for 

plant peroxisomes [27–30] and continue to be expanded, for instance to peroxisomes 

isolated from etiolated seedlings [31].
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Most peroxisomal matrix proteins possess a C-terminal PTS1. Accurately predicting 

functional PTS1 sequences is challenging because non-canonical targeting signals in higher 

plants display high variability and few have been experimentally validated. The first plant-

specific PTS1 prediction methods uncovered many non-canonical PTS1 examples and 

corresponding novel matrix proteins [32,33]. More quantitative assessments of plant 

peroxisomal protein import are beginning, and comparing in silico predictions, semi-

quantitative in vivo targeting analyses, and in vitro PEX5 binding affinities of PTS1 variants 

reveals broad agreement [34]. The first plant-specific web server, PredPlantPTS1 

(ppp.gobics.de), for predicting plant PTS1 proteins using these models is available [35]. Due 

to challenges posed by higher motif and position variability, plant-specific PTS2 prediction 

algorithms are not yet available.

These large-scale approaches have facilitated the discovery of new peroxisome functions 

(see above). Systematic phenotypic screening has revealed β-oxidation-related functions for 

several newly identified peroxisomal proteins [36,37]. Extending mutant screens to abiotic 

stress conditions combined with co-expression analyses uncovered Arabidopsis peroxisomal 

proteins involved in drought response, including the LON2 protease (see below) and 

peroxisomal hydroxypyruvate reductase, which is involved in photorespiration [38].

Peroxisome biogenesis

A core set of peroxins is conserved in plants, fungi, and mammals. Peroxisomal matrix 

proteins are imported into the organelle by PEX5 and PEX7, which are interdependent in 

plants and form a dual receptor complex; PEX5 requires PEX7 for stability [39], and PEX7 

requires PEX5 for cargo delivery to the peroxisome [40–42]. Cargo-loaded receptors dock 

with PEX13 and PEX14 at the peroxisomal membrane (Figure 2), allowing PEX5 to enter 

the membrane to form a ligand-gated pore that transports cargo into the matrix [43]. Many 

questions regarding this process remain, including the oligomerization status of the receptors 

during import, the specific roles of the two docking peroxins, and the mechanism of cargo 

release. A novel covalent biotin label transfer method applied to in vitro peroxisomal import 

reveals that an N-terminally truncated version of PEX5, which lacks the PEX7-binding 

domain but retains PEX14-and PTS1-binding regions, initially docks in monomeric form to 

PEX14 in the peroxisomal membrane [44]. In addition to docking roles, in vitro studies 

suggest that PEX14-PEX5 interactions facilitate unloading of PTS2 cargo, but not PTS1 

cargo, into Arabidopsis peroxisomes [45]. This result implicates the other (non-homologous) 

docking peroxin, PEX13, in PTS1 cargo release. Intriguingly, PEX13 is an essential gene in 

Arabidopsis [21] whereas PEX14 null alleles are viable and display some residual matrix 

protein import [46], indicating that PEX14 facilitates but is not absolutely required for 

matrix protein import in plants.

After cargo delivery, PEX5 and PEX7 are returned to the cytosol for further import rounds. 

PEX5 recycling is mediated by monoubiquitination and requires a suite of peroxisome-

associated ubiquitination components (Figure 2): i) the ubiquitin-conjugating enzyme PEX4 

tethered to the peroxisome by PEX22 [47], ii) three PMP RING domain ubiquitin-protein 

ligases (PEX2, PEX10, and PEX12 [48]), and iii) the PEX1-PEX6 heterohexameric ATPase 

tethered to the peroxisome by PEX26 [reviewed in 49]. Single Arabidopsis mutants 
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defective in several of these peroxins inefficiently remove PEX5 from the membrane after 

cargo delivery, triggering ubiquitin-dependent PEX5 degradation in pex6 mutants [50,51] or 

PEX5 accumulation in the membrane in pex4 [51,52] and pex12 mutants [53]. PEX5 levels 

are restored in pex2 pex6 or pex4 pex6 double mutants [52,54], implicating PEX2 and PEX4 

in polyubiquitinating PEX5 for proteasomal degradation when PEX5 retrotranslocation is 

slowed in Arabidopsis, as in yeast [reviewed in 55]. Little is known about PEX7 recycling in 

plants, but PEX7 recycling and matrix protein import are impaired when GFP-PEX7 is 

expressed in Arabidopsis [56]. These defects stem from excessive degradation of unmodified 

PEX7 and can be prevented by mutation of the RabE1c GTPase [56]. It will be interesting to 

learn whether RabE1c plays a role in receptor recycling in wild-type plants.

PEX5 retention in the peroxisomal membrane appears to impair peroxisome function. For 

example, decreasing PEX5 degradation in pex6 mutants by mutating PEX4 heightens 

physiological and molecular defects [52]. Conversely, increasing PEX5 degradation by 

elevating the growth temperature ameliorates pex4 defects [51]. The ATP-dependence of in 
vitro PEX5-PEX14 docking [44] implies that ATP-driven release of endogenous PEX5 from 

the peroxisomal membrane is necessary for the docking complex to recruit new cargo-

loaded PEX5 moieties, suggesting that docking complex impedance might underlie the 

detrimental effects of excessive membrane-associated PEX5. However, slightly reducing 

PEX13 expression, which is expected to reduce PEX5 docking, ameliorates pex4 and pex6 
physiological defects without notably improving matrix protein import [52], implying that 

excessive PEX5 retention in the membrane directly impairs peroxisome metabolism, perhaps 

by allowing leakage of some peroxisome contents.

How membrane proteins reach peroxisomes is less well understood. In Saccharomyces 
cerevisiae, PEX3 and PEX19 are needed for formation of pre-peroxisomes from the ER and 

PMP insertion. PEX19 is the receptor that delivers PMPs to PEX3 for insertion. In 

mammals, PEX16, which is conserved in plants, is needed to recruit PEX3 to the ER 

[reviewed in 57]. Overexpression of PEX16 derivatives modified to slow ER-to-peroxisome 

trafficking demonstrates that Arabidopsis PEX16 can recruit PEX3 to the ER in plant cells, 

as it does in mammals [58]. Although RNAi knockdown of PEX3, PEX16, or PEX19 in 

Arabidopsis alters peroxisome morphology [59], genetic dissection of early steps in 

peroxisome biogenesis in plants has been slow because, unlike most PEX genes, PEX3 and 

PEX19 are duplicated in Arabidopsis, and mutants in these peroxins have not emerged from 

forward genetic screens. However, disrupting both PEX19 isoforms results in embryonic 

lethality [60], and PEX16 disruption confers embryonic defects [61] including loss of 

peroxisomes [62]. Future combinations of reporters that allow PMP visualization in mutants 

defective in various peroxins is expected to enhance understanding of PMP trafficking.

Matrix protein degradation and pexophagy

As peroxisomes compartmentalize oxidative reactions, peroxisomal proteins suffer oxidative 

damage and require turnover (Figure 1). The metabolic transition in germinating seedlings 

from the glyoxylate cycle to photorespiration is accompanied by the degradation of 

glyoxylate cycle enzymes [47,54,63,64]. This degradation is slowed when fatty acid β-
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oxidation is impaired [63,64] and accelerated when catalase is disrupted [64], suggesting 

that peroxisomal H2O2 promotes matrix protein degradation.

Beyond individual matrix proteins, peroxisomes themselves can be degraded via pexophagy, 

a specialized form of autophagy [reviewed in 65]. In autophagy, cellular constituents are 

packaged into autophagosomes and sent to the vacuole for degradation. Because autophagy 

is not essential for life in Arabidopsis [reviewed in 66], peroxisomes can be examined in null 

mutants incapable of autophagy, including pexophagy. Autophagy-deficient seedlings 

accumulate peroxisomes under normal growth conditions [67,68]. Similarly, tobacco cell 

cultures degrade peroxisomes via pexophagy not only in carbon-starved but also in optimal 

growth conditions [69], reflecting pexophagy activity in non-stressed cells. However, 

glyoxylate cycle enzymes are only slightly stabilized in autophagy mutants [67,70], 

suggesting that additional pathways exist to degrade these enzymes.

Relationships between pexophagy and matrix protein turnover have been illuminated 

through studies of the peroxisomal LON2 protease. LON proteins are ATP-dependent homo-

oligomeric proteases [reviewed in 71] that are cytosolic in prokaryotes and organellar in 

eukaryotes. Mutations in the Arabidopsis peroxisomal LON isoform (LON2) confer 

peroxisome-related defects [26,63] that stem from excessive pexophagy; preventing 

autophagy restores peroxisome numbers and function to lon2 mutants [70,72]. Interestingly, 

glyoxylate cycle enzymes are destabilized in lon2 mutants but are dramatically stabilized 

when LON2 and autophagy both are dysfunctional [70,72]. This synergy suggests 

complementary degradation mechanisms; these matrix proteins appear to be degraded by 

LON2 when autophagy is prevented and by pexophagy when LON2 is disabled. 

Intriguingly, a protease-dead LON2 variant can rescue the sparse peroxisome phenotype of 

lon2 mutants but fails to efficiently degrade matrix proteins [72]. In contrast, an ATPase-

dead LON2 variant fails to restore normal peroxisome numbers to lon2 but degrades matrix 

proteins with normal kinetics [72]. These findings suggest that chaperone rather than 

protease activity of LON2 normally dampens pexophagy.

The recent demonstration of pexophagy in Arabidopsis [67,68,70,73] and tobacco cells [69] 

prompts the question of which proteins or signaling molecules target peroxisomes for 

destruction. It will be interesting to identify the LON2 substrates (and perhaps their post-

translational modifications) that trigger pexophagy in lon2 mutants and to learn whether 

these proteins also promote pexophagy in wild-type plants. Inactive catalase accumulates in 

peroxisomes of autophagy-defective mutants [68,73], but aggregated catalase is not the 

pexophagy signal, because pexophagy proceeds apace even in a mutant lacking the 

predominant seedling catalase isoform [68]. Ubiquitinated PMPs can target peroxisomes for 

pexophagy in mammalian cells [74], and yeast peroxisomes are directed to pexophagy in 

mutants (e.g., pex6) that accumulate polyubiquitinated PEX5 [75], but similar plant studies 

have not been reported. It will be interesting to discover how pexophagy is impacted in 

various Arabidopsis pex mutants.

Intriguingly, Arabidopsis PEX10 and PEX6 interact with AUTOPHAGY-RELATED8 

(ATG8) [76], the ubiquitin-like protein that decorates the nascent autophagosome membrane 

to mediate autophagic cargo engulfment [reviewed in 66]. This interaction suggests that 
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certain peroxins might promote pexophagy in addition to their roles in matrix protein 

import. Strikingly, a single amino acid change (G93E) in PEX10 adjacent to the PEX10-

ATG8 interaction domain [76] confers seedling lethality when homozygous and aberrant 

peroxisome morphology when heterozygous [77]. PEX10 carrying this G93E mutation still 

interacts with ATG8 in bimolecular fluorescence complementation experiments; the 

additional negative charge suggests that PEX10-ATG8 binding would be increased, perhaps 

causing excessive targeting of peroxisomes to the autophagy machinery [76]. It will be 

interesting to learn whether disabling autophagy abrogates the lethality of the pex10-G93E 
mutant.

Peroxisome morphology dynamics

Plastids, mitochondria, and peroxisomes were traditionally considered as physically 

separated spherical or rod-shaped organelles. However, these organelles physically interact, 

and peroxisomes can alter their shape to increase interaction surfaces between collaborating 

organelles. During photorespiration, recycling phosphoglycolate to phosphoglycerate 

requires intensive metabolic intermediate exchange between chloroplasts, peroxisomes, and 

mitochondria along with coordination of photorespiratory enzyme activities. An intimate 

physical association between these three compartments can be observed by transmission 

electron microscopy [78]. Peroxisomes adjacent to chloroplasts change from spherical to 

elliptical during photorespiration in Arabidopsis leaf mesophyll cells, increasing their 

interaction area and adhesion, determined by femtosecond laser technology, to the 

chloroplast surface [79]. This inter-organellar adhesion may provide contact sites that ensure 

efficient flow of photorespiratory metabolites between organelles. Interestingly, mutations in 

the RING domain of PEX10, but not other RING peroxins, can disrupt peroxisome-

chloroplast interactions and confer photorespiration defects [77,80], again suggesting roles 

for PEX10 beyond PEX5 recycling.

Plant peroxisomes also form dynamic thin protrusions referred to as peroxules (Figure 1) 

that extend in response to H2O2 and hydroxyl radical stress and retract upon stress 

mitigation [81]. High light intensity induces ROS and increases peroxule-mitochondria 

interactions [82]. The tubulated peroxisomes become constricted and eventually undergo 

fission to increase peroxisome numbers [82]. Similarly, cadmium treatment induces 

cytosolic ROS and rapid PEX11a-dependent peroxule formation, followed by peroxisome 

elongation and division [83]. Beyond increasing surface and contact areas, peroxule-

mediated inter-organellar contacts might assist in delivering enzymes from peroxisomes to 

their final subcellular destination. For example, the major triacylglycerol lipase involved in 

lipid reserve mobilization during seedling establishment in Arabidopsis, SDP1 (see above) 

[14], localizes to the peroxisomal membrane in young seedlings before traveling to its site of 

action on the oil body surface. This relocalization is accompanied by peroxule extensions 

from peroxisomes to oil bodies and facilitated by the core retromer complex [84], which is 

best known for roles in endosomal protein trafficking [reviewed in 85]. It will be interesting 

to learn if additional instances of peroxule dynamics involve inter-organellar protein 

trafficking or the retromer complex.
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Conclusions and future directions

Although combining genetics and biochemistry with large-scale bioinformatics and 

proteomics has vastly improved our knowledge of plant peroxisome functions and dynamics, 

much remains to be discovered. The array of physiological functions of plant peroxisomes is 

amazingly wide compared to fungi and animals. Functions are unknown for several newly 

identified matrix proteins, and functional mechanisms need to be assembled from 

fragmentary information, such as the role of plant peroxisomes in biotic and abiotic stress 

responses. Several peroxisomal metabolite transporters remain to be identified, and 

deciphering the post-translational regulation that plant peroxisomes use to coordinate 

metabolite flow is only beginning. Our understanding of peroxisome biogenesis from the ER 

remains rudimentary, as neither pre-peroxisomes nor ER-derived vesicles delivering PEX 

proteins to mature peroxisomes have been imaged in plants or animals. Which proteins 

mediate pre-peroxisome budding from the ER and how cells decide between de novo 
biogenesis and fission of existing peroxisomes remain to be elucidated. It also is not known 

how peroxisomes obtain membrane lipids for expansion. Even matrix protein import is 

incompletely understood. The residual matrix protein import observed in pex14 null mutants 

[46] implies important roles for the PEX13 docking peroxin, which might be explored using 

viable pex13 partial loss-of-function alleles [53,86]. Moreover, some peroxins, such as 

PEX10, are implicated in processes in addition to matrix protein import [76,77,80] that may 

be plant-specific. We are only beginning to understand the roles of peroxules in peroxisome 

metabolism and inter-organellar communication. Now that it is clear that plant peroxisomes 

can be degraded by pexophagy, it is important to elucidate how sub-populations of “old” or 

dysfunctional peroxisomes are specifically identified, spatially separated, and targeted to the 

pexophagy machinery. As additional biological roles for the large collection of peroxisomal 

enzymes are uncovered, the importance of this fascinating organelle in diverse facets of 

plant biology becomes increasingly apparent.
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Abbreviations

AGT1, serine glyoxylate aminotransferase

ATG AUTOPHAGY-RELATED

ABC ATP-binding cassette

CAT catalase

CGI-58 COMPARATIVE GENE IDENTIFICATION-58
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DHNA 1,4-dihydroxy-2-naphthoate

ER endoplasmic reticulum

JA jasmonate

OPPP oxidative pentose phosphate pathway

PEX peroxin

pICDH peroxisomal NADP-dependent isocitrate dehydrogenase

PMP peroxisomal membrane protein

PTS peroxisome-targeting signal

PXA PEROXISOMAL ABC-TRANSPORTER

RabGAP22 Rab GTPase-activating protein 22

ROS reactive oxygen species

SDP SUGAR DEPENDENT
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Highlights

• Plant peroxisomes house a diverse and expanding array of metabolic 

functions.

• Peroxisome biogenesis involves a suite of peroxin proteins.

• Plant peroxisomes can be degraded via pexophagy.

• Dynamic peroxules facilitate peroxisome interactions with other 

organelles.
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Figure 1. Peroxisome dynamics
Peroxisomal membrane proteins (PMPs) are inserted directly into peroxisomes or into the 

ER membrane from which pre-peroxisomes can bud. PMPs include a subset of the PEX 

proteins necessary for import of matrix proteins into the organelle (Figure 2). Mature 

peroxisomes extend and retract peroxules, tubulate, and divide by fission, which is 

considered to be the predominant mode of peroxisome proliferation. Peroxisomal quality 

control includes degrading damaged or obsolete matrix proteins and eliminating 

dysfunctional or superfluous peroxisomes via pexophagy, a specialized form of autophagy.
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Figure 2. Import of matrix proteins into peroxisomes
Import of peroxisomal matrix proteins (green) is facilitated by peroxins (numbered ovals), 

some of which are integral membrane proteins (purple). The PEX5 and PEX7 receptors 

(blue) bind to PTS1 and PTS2 proteins in the cytosol, respectively, and dock at the 

peroxisomal membrane via interactions with each other and with PEX13 and PEX14. After 

cargo delivery into the matrix, the N-terminal PTS2 domain is cleaved. Membrane-

associated PEX5 is ubiquitinated, presumably with the assistance of the PEX4 ubiquitin 

(Ub)-conjugating enzyme (gray) and the PEX2-PEX10-PEX12 ubiquitin-protein ligase 

complex. PEX5 retrotranslocation back to the cytosol for reuse requires the PEX1-PEX6 

heterohexameric ATPase (pink). When retrotranslocation is impeded, PEX5 can be 

polyubiquitinated and degraded by the proteasome.
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Table 1

Plant peroxisome functions.

Functions Metabolites or proteins

Catabolic

ROS detoxification H2O2, O2
·−

Fatty acid β-oxidation Straight-chain, branched, saturated, unsaturated fatty acids

Catabolism of primary metabolites Purines, branched-chain amino acids

Catabolism of secondary metabolites Polyamines

Defense compound metabolism Indole glucosinolates

Biosynthetic

ROS generation H2O2, O2
·−, NO

Glyoxylate cycle C4 metabolite (succinate)

Photorespiration C3 metabolite and amino acids (glycerate, glycine, serine)

Hormone biosynthesis Jasmonic acid (JA) and indole-3-acetic acid

Co-factor biosynthesis (and recycling) Phylloquinone, biotin, NAD(P)H

Secondary metabolism Polyamines, benzoic acid, isoprenoids (mevalonate)

Non-metabolic

Protein processing and degradation DEG15, LON2

Reversible phosphorylation CPK1, GPK1, PP2A

Calcium signaling CML3
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