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Abstract

Born Waveform Inversion in Shot Coordinate Domain

by

Yin Huang

The goal of this thesis is to integrate Born waveform inversion, vari-

able projection algorithm and model extension concept to get a method

that can improve the long scale background model updates reliably and

e�ciently from seismic data.

Born waveform inversion is a partially linearized version of full wave-

form inversion based on Born (linearized) modeling, in which the earth

model is separated into a smooth long scale background model and an

oscillatory short scale reflectivity and both are updated to fit observed

trace data. Because kinematic variables (background model) are updated,

Born waveform inversion has the same feature as full waveform inversion:

very sensitive to initial model when solved by gradient based optimiza-

tion method (almost the only possible method because of the problem

scale). Extended Born waveform inversion allows reflectivity to depend

on additional parameters, potentially enlarging the convexity domain by

enlarging the searching model space and permitting data fit throughout

the inversion process and in turn reducing the sensitivity to initial model.

Extended or not, the Born waveform inversion objective function is

quadratic in the reflectivity, so that a nested optimization approach is

available: minimize over reflectivity in an inner stage, then minimize the



background-dependent result in a second, outer stage, which results in a

reduced objective function of the background model only (VPE method).

This thesis integrates the nested optimization approach into an inver-

sion scheme and analyzes that the accuracy of the solution to the inner

optimization is crucial for a robust outer optimization and both model

extension and the nested optimization are necessary for a successful Born

waveform inversion. And then we propose a flexibly preconditioned least

squares migration scheme (FPCG) that significantly improves the conver-

gence of iterative least squares migration and produces high resolution

images with balanced amplitude. The proposed scheme also improves the

e�ciency of the solution to the inner stage of the nested optimization

scheme and the accuracy of the gradient, and thus potentially improves

the e�ciency of the VPE method. However, a theoretical error estimate

in the gradient computation of the VPE method is still hard to obtain,

and we explain the reason and illustrate with numerical examples.
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Chapter 1

Introduction

Seismic inversion in exploration geophysics is a process to determine subsurface struc-

ture of the Earth from seismic data, usually collected at the surface and sometimes in

wells. Full waveform inversion (FWI) [Tarantola, 1984a, Virieux and Operto, 2009]

is defined as a least squares data-fitting problem, with the prediction operator related

to the solution operator of the initial and boundary values problem of a wave equation

with varying coe�cients. The structure of the earth is described by these variable

coe�cients or models , which will be determined by FWI. Models could be density,

wave speed, bulk modulus, etc, according to the wave equation we choose to simulate

the wave propagation.

This thesis will discuss methods to solve partially linearized version of FWI,

namely Born waveform inversion that aims at separately finding both the low fre-

quency components (background model) of the model, which is hard to achieve for

classic FWI method, and high frequency components (reflectivity) of the model, which

FWI is capable of once the low frequency components is close to correct. We will

combine (a) model extension concept: introduce additional degrees of freedom to the

reflectivity and (b) variable projection method: solve for reflectivity in an inner opti-

mization and then update the background model in an outer optimization, to obtain

an e↵ective and robust algorithm to solve Born waveform inversion. We use optimal
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pseudodi↵erential scaling method to construct a flexibly preconditioned conjugate

gradient scheme that produces high quality reflectivity e�ciently, that is improve the

convergence rate of the inner optimization problem and thus speed up the updates of

the background model as well. These terminologies will be explained in detail later.

Seismic data usually is collected from many seismic experiments that covers the

same domain of interest. Each seismic experiment uses a localized energy source

(shot) to initiate the motion of the ground (generate waves to propagate through the

earth). These waves travel through the ground and/or water and are refracted and/or

reflected by discontinuities and are recorded at the surface by geophones (land) or

hydrophones (marine). The recorded data is usually the displacement of particles or

pressure field. Data is usually recoded separately for each shot.

Di↵erent frequency components in the model are responsible for di↵erent aspects

in the data: high frequency components of the model (reflectivity) produce reflections

in the data and low frequency components of the model (background model) control

when these reflections appear in the data. FWI aims to find all these components

as a whole model from observed seismic data. However, without good enough initial

model (close enough to the true model), FWI usually fails to recover the low frequency

components [Plessix, 2009]. Without correct low frequency components, reflectors

will all mispositioned. Because of the problem scale, FWI is usually solved using

gradient based optimization methods, with the gradient formulated as the application

of the adjoint of the Born approximation (Frechet derivative of the forward modeling

operator) to the data residual. It is widely believed (without direct validation) that

FWI has a lot of local minima that are far from its global minimizer, which is what

people suspect when the optimization algorithm stopped. Figure 1.1 demonstrates

the shape of a classic FWI objective function.

The background model is usually hard to determine and methods intending to
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Figure 1.1: FWI objective function shape demonstration (taken from
[Warner and Guasch, 2014a]). 0% is the target model.

identify the background model are called Velocity Analysis, with Velocity referring to

the low frequency (long scale) background model. Velocity Analysis is a name for a

very broad range of methods. The one that is relevant to this thesis is Wave Equation

based Migration Velocity Analysis (WEMVA) [Shen, 2012, Shen, 2004], which is also

formulated as an optimization problem, with the objective function quantifies the

image. An image is a rough approximation to the high frequency reflectivity model

at a given background model. For a given background model, an image is produced

by applying the adjoint of Born modeling operator to the data. If the data is divided

into subsets (for example, each subset is corresponding to a shot) and we produce one

di↵erent image for each subset, the discrepancy between these images can indicate the

next update to the background model. This discrepancy can be measured by an ob-

jective function, and minimized to update the background model. Objective functions

using di↵erential operators to measure image discrepancy have been called Di↵eren-

tial Semblance (DSO) [Symes, 1986, Symes, 1990, Symes, 1993, Jervis et al., 1996,

Mulder and ten Kroode, 2002, Chauris and Noble, 2001]. For example, if the data is

-8% -4% 0% +4% +8% 
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grouped by shot coordinates, the images corresponding to di↵erent shots should be

the same at the same physical location and in this case DSO measures the di↵erence

of the images of adjacent shots. DSO objective functions are di↵erent for di↵erent

ways of dividing the data. The DSO term is also part of the objective function we

will investigate in this thesis.

The model extension concept comes exactly from this idea: find di↵erent model

to fit di↵erent subsets of data, so that the model depends on an additional axis.

Instead of introducing model extension to classic FWI [Sun and Symes, 2012], we in-

troduce model extension to the linearized version of FWI as many authors have done

[Symes and Carazzone, 1991, Kern and Symes, 1994, Biondi and Almomin, 2014]: (a)

replace forward modeling operator with Born modeling operator (first order derivative

of the forward modeling operator) by viewing the background model as a reference

model and the reflectivity as a perturbation; (b) allow only the reflectivity to be ex-

tended (c) add a DSO term to penalize the degree of extension. We call the resulting

objective function the extended Born waveform inversion.

Both the extended reflectivity and background model will be updated in the lin-

earized version of FWI with model extension. In chapter 2, I will discuss the variable

projection method to optimize this objective function. This is a nested optimization

method that updates the reflectivity in an inner stage, and then updates the back-

ground model in an outer stage. The variable projection extended Born waveform

inversion tends to be more e↵ective for the background model updates than similar

inversion methods either without variable projection or without model extension, ac-

cording to our numerical examples. However, in order for the method to converge

to the target model, a large number of iterations is necessary for the inner problem.

Computation of an accurate gradient is essential for convergence, and also depends

on the accurate enough solution of the inner problem.
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The inner problem (for a fixed background model, finding an extended reflectivity

model to fit the data) is a version of least squares migration problem [Bourgeois et al., 1989,

Chavent and Plessix, 1999, Nemeth et al., 1999, Tang, 2009, Aoki and Schuster, 2009,

Dutta et al., 2014, Luo and Hale, 2014, Valenciano et al., 2015]. In chapter 3, we

propose a flexibly preconditioned least squares migration algorithm using flexibly

preconditioned conjugate gradient method [Notay, 2000, Knyazev and Lashuk, 2006]

and optimal pseudodi↵erential scaling [Nammour and Symes, 2009, Nammour, 2009]

as a preconditioner to solve the inner problem (without DSO penalty term) in chap-

ter 2. The proposed method could improve the e�ciency of the short scale model

recovery and the quality of the resulting reflectivity or image when the background

model could correctly predict the travel time. When the background model is wrong,

the algorithm could converge fast as well and generate image gathers that more clearly

indicate the correctness of the background model and could be used to improve the

performance of the image based velocity analysis, and more importantly the variable

projection EBWI discussed in chapter 2.

In chapter 4, the flexibly preconditioned least squares migration in shot record do-

main proposed in chapter 3 is integrated into the nested optimization scheme to speed

up the inner optimization problem over the reflectivity model. With preconditioning,

the solution of the inner problem could achieve the same accuracy with less compu-

tational cost than the non-preconditioned method used in chapter 2. Preconditioning

also produces a better shaped objective function than without preconditioning: the

global minimum of the reduced problem (outer problem over background model)

is obtained at the target background model, while there are still models that have

smaller objective function value than the target model if the inner problem is solved

by a non-preconditioned method even with much more computational cost. Numer-

ical test shows that a more accurate gradient is obtained with preconditioning than



6

without preconditioning at least on the direction we tested. However, a small error

in the inner problem solution does not necessary imply a small error in the gradient

computation, at least in its current setting. We explain the reason and support with

a numerical example.

At last, in chapter 5 I will summarize methods have been talked and examined in

the thesis and discuss some potential future improvements and possible applications.

A version of chapter 2 has been accepted and presented at the SEG International

Exposition and 85th Annual Meeting, 2015 as an expanded abstract. Chapter 3 as a

paper (has coauthor: Rami Nammour) has been submitted to Geophysics . A version

of Chapter 4 will be submitted to the SEG 86th Annual Meeting, 2016 soon. Each

chapter of 2, 3 and 4 is self-contained, with literature review, theoretical development,

numerical examples, and discussion, and could be read independently of the other

Chapters.



Chapter 2

Born Waveform Inversion via Variable Projection

and Shot Coordinate Domain

A version of this chapter has been presented at SEG International Exposition and

85th Annual Meeting, 2015.

2.1 Summary

Born waveform inversion is a partially linearized version of full waveform inversion

based on Born (linearized) modeling, in which the earth model is separated into a

smooth background model and a short scale reflectivity, and both are updated to fit

observed trace data. Because kinematic variables (velocity) are updated, the region

of convexity in model space is small (on the order of a wavelength), just as it is

for Full Waveform Inversion. Extended Born waveform inversion allows reflectivity

to depend on additional parameters, potentially enlarging the convexity domain to

be wavelength-independent and enhancing the likelihood of convergence to a kine-

matically accurate model, by permitting data fit throughout the inversion process.

Extended or not, the Born waveform inversion objective function is quadratic in the
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reflectivity, so that a nested optimization approach is available: minimize over reflec-

tivity in an inner stage, then minimize the background-dependent result in a second,

outer stage. This paper uses a 2D acoustic modeling, reflectivity permitted to depend

on shot coordinates (shot record extension), a di↵erential semblance penalty to con-

trol this dependence, and the variable projection variant of nested optimization. Our

examples suggest that neither extended modeling nor variable projection alone are

su�cient to enable convergence to a global best-fitting model, but the two together

are quite e↵ective.

2.2 Introduction

Seismic full waveform inversion (FWI) is used to infer the interior structure of the

earth from observed seismic waves by posing model-based data fitting as a nonlinear

least squares problem. Studied in the 1980’s by Tarantola and others [Tarantola, 1984a],

it has recently become a viable model building strategy [Virieux and Operto, 2009]

as a result of the fast development in high performance computing and advances in

seismic acquisition technology. Because of the band-limited feature of seismic data,

the FWI objective function has a rather small domain of convexity, of diameter pro-

portional to a dominant wavelength in the data: unless the initial model predicts

arrival time of major events to within roughly a half-wavelength, convergence of local

iterative methods to a global minimizer is doubtful, and model estimates obtained

with reasonable computation e↵ort may share few features with global minimizers

[Gauthier et al., 1986].

Many methods have been introduced and investigated to enhance the convergence

of iterative methods FWI. The availability of long-o↵set and low frequency data

reduces the sensitivity of FWI to initial model [Mora, 1987, Vigh et al., 2013], and in

fact this is the approach taken in contemporary production FWI.
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This paper will discuss fundamental modifications to FWI that enhance the poten-

tial for global convergence. Our work takes place in the context of a partly linearized

version of the FWI problem, in which the model is separated into a smooth (or long

scale) background model and an oscillatory (or short scale) reflectivity [Symes, 2009],

and replace the forward modeling operator of FWI with its linearization (Born approx-

imation), treating the reflectivity as a perturbation. The Born modeling operator is

linear in the reflectivity, but nonlinear in the background model, so the FWI problem

has been partly linearized by this transformation. We call the least-squares data-

fitting problem, based on the Born modeling operator, the Born waveform inversion

(BWI) problem. It is essentially FWI with single scattering.

We study two additional modifications to the BWI problem. The first is model

extension, or addition of non-physical axes to the model parameters. Addition of

suitable axes to the reflectivity enables data fit throughout the inversion, with a

di↵erential semblance penalty [Symes, 2008b] to penalize the extension and move the

extended model towards physicality. Second, we use a nested optimization approach:

eliminate the reflectivity via solution of an inner (quadratic) optimization with the

background model fixed, then update the background model in an outer loop to

minimize the di↵erential semblance penalty. We formulate the nested optimization

by variable projection [Golub and Pereyra, 2003], as it generates more convenient

computations than alternatives.

Our numerical results indicate that both variable projection and model exten-

sion appear to be necessary for reasonably fast global convergence of Born waveform

inversion: neither technique is su�cient on its own.

We call BWI with model extension extended Born waveform inversion (EBWI), to

distinguish it from (a) least squares migration, with or without reflectivity extension,

in which only reflectivity is inverted, but the background model is held fixed, and
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(b) BWI without extension (essentially the same as the algorithm called Reflection

Waveform Inversion (RWI) by [Xu et al., 2012]), in which physical (non-extended)

reflectivity is inverted together with the background model. The salient feature of

extended linearized modeling, namely that the data can be fit relatively well with

any background model, implies that some sort of penalty must be added to EBWI, to

measure how far the extended reflectivity is from a physical model. The background

model is then adjusted to minimize this penalty. Several reflectivity extensions have

been investigated in the context of EBWI, each with its appropriate penalty term. In

the work reported here, we use the shot record model extension, in which each shot is

modeled with an independent reflectivity (but all with the same background model).

Several methods for measuring the degree of model extension have been suggested.

We could minimize the di↵erence of images from neighboring shots, which is the very

first version of di↵erential semblance optimization (DSO) [Symes, 1986, Symes, 1990,

Symes and Carazzone, 1991, Symes, 1993, Kern and Symes, 1994, Jervis et al., 1996,

Mulder and ten Kroode, 2002, Chauris and Noble, 2001]. This penalty is essentially

the only choice for the shot-record extension leading to a smooth objective func-

tion, amenable to gradient-based optimization [Stolk and Symes, 2003]. We could

maximize the similarity of images along shot record direction, by evaluating the stack

power [Ronen and Claerbout, 1985, Chavent and Jacewitz, 1995]. [Chauris et al., 1998]

compared the behavior of DSO and stack power methods: their conclusion, con-

sistent with [Stolk and Symes, 2003], was that stack power tends to exhibit small-

scale oscillations and have the same small domain of convexity as FWI, whereas

DSO appears to be smooth convex over a much larger set of models. Recently

[Chauris and Plessix, 2013] proposed a di↵erential waveform inversion scheme, where

a inverted reflectivity from on shot is used to compute the predicted data at the next

shot, and that data residual will be used to update the background model. With Born
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modeling, this approach is essentially the same as DSO. [Chauris and Plessix, 2013]

conjecture that with full waveform (rather than Born) modeling, this method may

converge to a correct velocity model even with strong surface related multiples in the

data.

A di↵erent approach to reflectivity extension uses the subsurface o↵set and/or

scattering angle as the additional axis. See [Shen and Symes, 2008, Sun and Symes, 2012,

Biondi and Almomin, 2012, Weibull and Arntsen, 2014, Lameloise et al., 2014, Biondi and Almomin, 2014]

for recent examples of EBWI (and its nonlinear analogue using full waveform mod-

eling) based on these extensions, and [Symes, 2008b] for an overview of earlier work

and the comparison of surface vs. subsurface approaches to reflectivity extension.

Reflectivity extension is not the only possible approach to enabling data fit through-

out an FWI process. Several authors have investigated the use of additional source

parameters for this purpose [Plessix et al., 2000, Plessix, 2000, Luo and Sava, 2011,

van Leeuwen and Herrmann, 2013, Warner and Guasch, 2014b]. Since the source acts

linearly within the wave modeling system, the form of these algorithms has much in

common with EBWI as presented here, although the modeling details and extension

penalty are quite di↵erent.

For any optimization problem, such as the DSO approach to EBWI, in which

some of the variables appear in a simpler way (for example, quadratically) than

others, a nested optimization approach is natural: eliminate the “simple” variables

first via an inner optimization, then optimize a function function of the “compli-

cated” variables in an outer optimization loop. In EBWI, we can optimize first over

(extended) reflectivity, to produce a background model dependent reflectivity, then

update the background model by minimizing the “reduced” extension penalty (dif-

ferential semblance, for example). This nested approach has also be applied to BWI

[Clément and Chavent, 1993, Plessix et al., 1999, van Leeuwen and Mulder, 2009, Xu et al., 2012].
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The Variable Projection Method of [Golub and Pereyra, 2003] is an attractive ap-

proach to nested optimization of such “separable” least squares problem, in that the

gradient computation of the reduced objective is relatively simple. Variable projec-

tion di↵ers from other approaches to nested optimization by using the same objec-

tive, a linear combination of data misfit and extension penalty, for both the inner

and outer optimizations. [van Leeuwen and Mulder, 2009] and [Xu et al., 2012] use

variable projection for BWI. [Kern and Symes, 1994] showed how to combine variable

projection and extended modeling, and described an adjoint state method for back-

ground model gradient computation. We integrate these components into an inversion

algorithm. We quantify the suggestion of [Kern and Symes, 1994], that the accuracy

of the solution of the inner problem, i.e. the minimization of the variable projection

cost function over reflectivity for fixed background model, tends to be crucial for the

reduced objective function to have global minimum at the target background model,

and for accuracy in the gradient computation.

We illustrate these conclusions with numerical examples based on the Marmousi

velocity model [Bourgeois et al., 1991]. The target background model is created by

smoothing the Marmousi velocity model. The target reflectivity model is the di↵er-

ence of the original model and a less stringent smoothing. We truncate and scale the

model and data in two ways, creating two inversion examples. Based on these exam-

ples, we illustrate that the inner optimization needs to be solved accurately enough

by plotting the objective function values along a line segment, on which the target

background model lies. The first inversion example provides a relatively good start-

ing model; nonetheless, its results suggest that without variable projection, neither

Born waveform inversion nor its extended variant are likely to be successful, whereas

variable projection added to either approach yields accurate inversion. The second

inversion example poses a more di�cult problem, that of convergence from a con-
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stant background velocity. Only the variable projection extended approach appears

to produce constructive velocity and reflectivity updates.

The rest of the paper is organized as follows: In the theory section, we start

from the classic full waveform inversion, and introduce the Born waveform inversion

and model extension: specifically in shot record domain, discuss variable projection

optimization method and gradient computation. In the numerical results section, we

first illustrate that the inner optimization needs to be solved accurately enough by

plotting the reduced objective function values along a line segment, on which the

target background model lies, then apply this optimization method to two examples

created from the Marmousi velocity model [Bourgeois et al., 1991] and compare its

performance with several relevant methods. We end the paper by discussing the issue

of this method and possible future improvements.

2.3 Theory

Classic full waveform inversion problem aims to find a model m that predicts the

observed seismic data d by minimizing the following objective function:

JFWI[m] =
1

2
kF [m]� dk2. (2.1)

Denote by x the physical position in 2D or 3D. Model m is a function of x. We use

M = {m(x)} to denote the physical model space, which is an admissible subset of

bounded function space. For example, if m is velocity, m(x) is positive and has an

upper bound. Denote by D = {d(x
s

,x
r

, t)} the data space, with x
s

, x
r

postions of

sources and receivers and t the time. k · k is the L2 norm in data space. F : M ! D

is a forward modeling or wave propagation operator.

We will use acoustic constant density wave equation to model the wave propaga-
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tions in this paper:

✓
1

c(x)2
@2

@t2
��

◆
u(x, t;x

s

) = !(t)�(x� x
s

). (2.2)

Let m = c2. Then F [m] = u(x
r

, t;x
s

), i.e. the solution pressure field of wave equation

2.2 sampled at receiver positions x
r

.

It is well known that FWI objective function is highly nonlinear and requires a

very good initial model to converge to a global best fitting model. The goal of this

paper is to discuss several methods to modify FWI to achieve global convergence.

2.3.1 Born Waveform Inversion

Instead of using the forward modeling operator F in FWI objective function 2.1 to

predict the observed data, a Born modeling operator, which only models the primary

reflections, is used to predict the data in Born waveform inversion.

Born modeling separates the model into a background model, still denote by m

and a perturbation �m. For wave propagation, linearized modeling is generally most

accurate when the background contains the long scales in the model and the pertur-

bation the short (wavelength) scales [Symes, 2009]. We shall call the perturbation the

reflectivity, as the background is transparent hence �m is responsible for reflections.

Denote the linearized modeling operator by F [m] = DF [m], which is the Frechet

derivative of the forward modeling operator. The least squares objective of Born

waveform inversion (BWI) is:

JBWI[m, �m] =
1

2
kF [m]�m� dk2 (2.3)

For each m, F [m] is an operator on perturbational models �m(x) 2 M . The

value of F [m]�m is the solution of the following perturbed wave equation for a given
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perturbation �m = �c2 sampled at receiver positions x
r

.
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c(x)2
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@t2
��

◆
�u(x, t;x

s

) =
�c2(x)

c2(x)
�u(x, t;x

s

), (2.4)

with u(x, t;x
s

) the solution of equation 2.2.

Di↵erent from FWI, which attempts to fit all components: direct arrivals, pri-

mary reflection, diving waves and multiple reflections, in the data, BWI only aims

at fitting the primary reflection data. All other components, such as direct arrivals

and multiple reflections are considered as coherent noise. Preprocessing techniques,

such as demultiple, may be needed to apply to the data (real data and full waveform

synthetic data) before starting Born modeling based inversion.

2.3.2 Model Extension

We refer to the model space M as the the physical model space, to distinguish it

from the extended model space M̄ = {m̄(x,h)}; in all cases, the physical model

space is identified as a subspace of the extended model space - the identification

is characteristic for each type of extended model. The variable h is a (scalar or

vector) parameter, such as shot coordinate, subsurface o↵set, or scattering angle,

which characterizes additional degrees of freedom in the extended model space. For

the shot record model extension, which will be used in this paper, m̄(x,h) defines

a member of M if it is independent of h. For the subsurface o↵set model extension

[Rickett and Sava, 2002], physical models are focused at h = 0, that is, take the form

m̄(x,h) = m(x)�(h).

The extended Born modeling operator is denoted F̄ [m]: note that background

models are not extended. For shot record model extension h = x
s

, the value of F̄ [m]
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applied to �m̄ = �c̄2 is the solution of the following wave equation sampled at x
r

:

✓
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c(x)2
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@t2
��

◆
�u(x, t;x

s

) =
�c̄2(x,x

s

)

c2(x)
�u(x, t;x

s

), (2.5)

with u(x, t;x
s

) the solution of equation 2.2. Note the only di↵erence between equation

3.3 and equation 3.2 is that the perturbation �c̄2(x,x
s

) depends on shot record, i.e.

perturbation is allowed to be di↵erent for di↵erent shot. And consequently, the adjoint

operator F̄ [m]T will output a prestack image, i.e. a reflectivity model that also

depends on x
s

, while the adjoint operator F [m]T outputs a stacked image.

The extended Born waveform inversion (EBWI) problem is: given data d, find

m 2 M , �m̄ 2 M̄ that minimizes

JEBWI[m, �m̄] =
1

2
kF̄ [m]�m̄� dk2 + ↵2

2
kA�m̄k2. (2.6)

The second term in this sum involves an operator A whose null space is precisely the

physical modelsM . Such operators are usually called annihilator [Brandsberg-Dahl et al., 2003].

Minimizing it drives extended models toward physical (non-extended) models.

For shot coordinate model extension, h = x
s

and

A = r
xs .

Thus physical models are exactly those extended models that are constant in shot

coordinate. The weight ↵ in equation 2.6 controls emphasis on physicality: as

↵ ! 1, the minimization of JEBWI resembles more and more minimization of JBWI

[Gockenbach et al., 1995].
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2.3.3 Variable Projection

Both objective functions 2.3 and 2.6 will su↵er from the same local minima problem

as the FWI objective function 2.1 if we use gradient based optimization methods to

solve them. BWI and EBWI objective function are quadratic in the reflectivity model.

Thus we could use a nested optimization approach: namely the variable projection

method [Golub and Pereyra, 2003] to solve them.

The variable projection reduced objective for Born waveform inversion, JVP[m] is

the least value attained by J [m, �m] over the model space of reflectivity �m:

JVP[m] = min
�m2M

JBWI[m, �m]. (2.7)

[van Leeuwen and Mulder, 2009] and [Xu et al., 2012] have proposed closely related

objective functions.

Similarly, define a variable projection objective function for extended Born mod-

eling by

JVPE[m] = min
�m̄2M̄

JEBWI[m, �m̄]. (2.8)

The analysis of VP objective function is similar, but simpler than VPE objective

function. Thus we use JVPE[m] as an example. The value of JVPE at a given back-

ground velocity m is the minimum value of JEBWI over �m̄ for fixed m, d. Since JEBWI

is quadratic in �m̄, its minimum value JVPE[m] is attained at �m̄ which solves the

normal equation

N [m]�m̄ = F̄ [m]T �d, (2.9)

with N [m] = F̄ [m]T F̄ [m] + ↵2ATA.

The numerical solution �m̄ of equation 2.9 involves an iterative process, which

was referred to as PICLI method in [Ehinger and Lailly, 1993] for shot coordinate
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depended operator A. In results reported in the numerical examples section, equation

2.9 both with and without model extension is solved using conjugate gradient (CG)

method.

Under some circumstances, the normal operator N [m] is closely related to a

pseudo-di↵erential operator, a type of oscillatory integral operator. This is princi-

pal because the modeling Hessian F̄ [m]T F̄ [m] has this property when the source of

the forward map F is an impulse, which leads to the smoothness of the VPE objec-

tive function 2.8. Thus a gradient based optimization method is preferable for the

background model update. This relationship is contingent on kinematic and dynamic

assumptions on the model and data: for example, for some extensions (shot-record)

multiple ray paths connecting sources and receivers with scattering points may not

occur [Rakesh, 1988a, Symes, 1998].

Assume that the inner product in the background model space takes the form

hm̄1, m̄2i
M̄

= hm̄1,⇤m̄2i, where h·, ·i is the ordinary Euclidean inner product and ⇤

is a weight or roughening operator, chosen to enforce smoothness (slow variation) of

the background models, since the Born modeling operator is more accurate when the

background model is smooth. In the examples below, ⇤ is a power of the Laplace

operator

⇤�1 = (I � L)�1,

with

L =

✓
!2
x

@2

@x2
+ !2

z

@2

@z2

◆
. (2.10)

(see Appendix A for the implementation of ⇤). Assuming also that �m̄ solves the

normal equation 2.9, then the gradient of JVPE (see Appendix B for derivation) has

the following form

rJVPE[m] = ⇤�1DF̄ [m]T [�m̄, F̄ [m]�m̄� d] (2.11)
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The DF̄ [m]T , which is the transposed second order derivative of the extended forward

modeling operator D2F̄ [m]T , has been called the tomographic or WEMVA opera-

tor [Biondi and Sava, 2004, Biondi and Almomin, 2012]. Note that both DF̄ [m] and

DF̄ [m]T depend on the background model parameter. The gradient of JVP[m] has

the same form, but without model extension.

2.4 Numerical Examples

We create a Born model (m, �m) by modifying the 2DMarmousi model [Bourgeois et al., 1991].

In this case, m is the velocity-squared field, and �m is its perturbation. We extended

the water layer to 450 m depth, then smoothed the velocity-squared field with a mov-

ing box average to produce the background velocity-squared model. The reflectivity

(�m) is the result of subtracting from the Marmousi model a less aggressive smooth-

ing. Both m and �m were resampled to the 16 m ⇥ 16 m simulation grid. Then

Born data were computed by solving the perturbational wave equation 3.2 using a

centered finite di↵erence scheme of order 2 in time and 4 in space. The source is

a (finite di↵erence version of) an isotropic point radiator with 6 Hz peak frequency

Ricker wavelet as in Figure 3.3a. Trace data were synthesized for 110 shots starting

from 1 km with spacing 64 m, depth 6 m. The receiver spread is symmetric about

zero o↵set, with 481 receivers spaced 16 m apart. Receiver depth is 10 m.

Before we show our inversion results, several aspects of the VPE method need

to be addressed. First, the formulation of the VPE method has several parameters,

among which ↵ (the weight on DSO term) is the most important one. We set ↵ to

be 0.01 in all cases, on the basis of trial-and-error: the number of CG iterations used

to solve 2.9 is fixed at 50 and we plot the value of JVPE with di↵erent value of ↵ over

a line segment of the background model and choose the one that results in a convex

curve. This ↵ is then adopted to EBWI problem.
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Figure 2.1: Marmousi example: Soure Ricker wavelet with 6 Hz peak frequency.

(a) (b)

Figure 2.2: Marmousi example: Target background model (a) target reflectivity
model (b)
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Next parameters are !
x

and !
z

in the smoothing operator ⇤�1 in equation 2.10.

Values of !
x

and !
z

control the degree of smoothness in the corresponding directions

to the gradient computed as in equation 2.11. Our rule is to choose one that is close to

the dominant wavelength in the data. We fix !
x

= !
z

= 400 m in all of the following

examples.

Figure 2.3: Marmousi example: Born shot record with index 41.

Then, we illustrate that it tends to be necessary to solve the normal equation

2.9 accurately enough with two tests: (a) plot the VPE objective function value

along a line segment of the background model space and (b) compare the directional

derivatives of JVPE computed using analytic gradient formula 2.11 and finite di↵erence

approximation. However, a quantitative criterion for the accuracy requirement might

be problem dependent. Background model in Figure 2.2a and reflectivity model in

Figure 2.2b are used to produce Born trace data (Figure 2.3 shows the shot record

with index 41), which is used as the observed data in equation 2.8. We use conjugate

gradient method to solve the linear problem 2.9 and evaluate JVPE[m] along a line
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and m0 = (1.5km/s)2. � = 0 is the position of target background model and � =

�1 is the constant model. Di↵erent number of conjugate gradient iterations are

performed. With only 10 steps of iteration, a lot of testing models give smaller

objective function value than the target model. By increasing the number of CG

iterations, the minimum points along though curves move closer and closer to the

target model. With either 50 or 60 iterations of CG, the global minimum along this

line segment is attained at the target model. Enough number of iterations, which

results in accurately enough solution to the normal equation, appears to be necessary

for a successful VPE inversion. And the closer the model is to the target model, the

more iterations may be needed for a reasonable update. A similar behavior of the

JVPE has been observed for the following truncated Marmousi example.
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Figure 2.4: Marmousi example: value of VPE objective along line segment m =
(1 + �)mtarget � �m0 with mtarget shown in Figure 2.2a and m0 = (1.5km/s)2 with
� = 0 the position of target background model.

we plot objective function values with di↵erent number of iterations of the inner

optimization problem along a line segment, on which the target background model

lies. The results indicate that without enough iteration, there are models that have

smaller objective function value than the target model, while with enough number of

iterations, the minimum objective function value is attained at the target model, at

------
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least along this line segment.
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Figure 2.5: Marmousi example: Relative error between hrJVPE[m], dmi
s

and
JVPE[m+ h ⇤ dm]� JVPE[m� h ⇤ dm]

2h
with the first one as the value of reference.

m = 0.7mtarget + 0.3m0 and dm = 0.1 (km/s)2 with mtarget shown in Figure 2.2a and
m0 = (1.5 km/s)2.

In the gradient accuracy test, we compute the relative error of the following two

quantities with di↵erent h, with the one on the right hand side as the value of reference

JVPE[m+ h ⇤ dm]� JVPE[m� h ⇤ dm]

2h
⇡ hrJVPE[m], dmi

s

(2.12)

With small number of CG iterations, the relative error could be large, regardless of

the value of h. With 50 steps of CG iteration, where the residual in equation 2.9 has

been reduced to less than 1 percent of its initial error, the relative error in gradient

accuracy test drop to below 1 percent, with h = 1 achieving the best precision (below

0.3 percent) as shown in Figure 2.5. Theoretically, Taylor expansion indicates that

the order of the finite di↵erence approximation is 2 in h.

JVPE[m+ h ⇤ dm]� JVPE[m� h ⇤ dm]

2h
= hrJVPE[m], dmi

s

+ C
h2

6
,
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with C = D3JVPE[m1]dm
3 + D3JVPE[m2]dm

3 and m1, m2 are some models in the

background model space. However, by decreasing the value of h, we do not get the

order when h is smaller than 1 in this example. The reason is that the evaluation

of JVPE involves CG iterations, which results in an error in the value of JVPE at any

background model. What we really get is

JVPE[m+ h ⇤ dm]� JVPE[m� h ⇤ dm] + ✏1
2h

= hrJVPE[m], dmi
s

+ ✏2 + C
h2

6

Note that ✏1 and ✏2 does not depend on h and depends only on the number of CG

iterations, which is fixed. Thus when h decreases,
✏1
2h

will increase. And when h is

smaller than a certain number, these noise (or error) becomes dominant.

This gradient accuracy test shows that in order to get an accurate enough gradient,

and thus a successful inversion, we need to solve the normal equation accurately.

At last, two inversion examples will be presented. The first one compares inversion

with and without variable projection. We give only the results for EBWI, as those for

BWI are similar. The second example compares extended and non-extended variable

projection. on the basis of trial-and-error. Our principal quality control display will

include: 1, the stack of the extended reflectivity

�mstack(x) =
X

h

�m̄(x, h)

in comparison to the similar stack computed at the target velocity-squared model: if

events appear in the same positions with roughly the same amplitude, the inversion

is successful; 2, common image gathers (CIGs) [Al Yahya, 1989]: if gathers are as

flat and at the same positions as that of the image computed at the true background

model, the inverted velocity-squared model is considered to be the global solution.

In the first example, we use 2.6 s data and truncate the model at 2 km depth.
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(a) (b)

Figure 2.6: Truncated Marmousi example: reflectivity model (a) and Born shot
record, shot index 41 (b).

The target (correct) background velocity-squared model for this example appears in

Figure 3.1a. Figure 2.6a shows the target reflectivity model used to compute the Born

data shown in Figure 3.3b. The initial velocity-squared chosen for the first example

(Figure 3.23) is a linear combination: 70% of the target model and 30% homogeneous

“water” ((1.5 km/s)2). Because we have limited the depth range to 2 km and the

maximum recording time to 2.6 s, the kinematic deviation from the target model is

not great: this is a relatively easy velocity estimation problem. The first di↵erence

is however great enough that the stack �mstack incorrectly positions reflectors and

faults: compare Figure 2.8a the inverted reflectivity model at true background model

and Figure 2.8b the inverted reflectivity at initial background model. Common image

gathers of the inverted reflectivity at intial background model (Figure 2.8b indicates

that the initial background model is smaller than the target background model all

over the domain.

We approximate minimization of JVPE by a very crude optimization algorithm:

steepest descent with bisection backtracking line search. The gradient is computed

by evaluating formula 2.11 using finite di↵erence implementation of the adjoint state

method, adapted to compute the tomographic operatorDF̄ [m]T [Symes and Santosa, 1988].

After 7 steps of this process, a lot of reflectors which we could not see at the initial
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(a) (b)

(c) (d)

Figure 2.8: Truncated Marmousi example: Inverted reflectivity model at true back-
ground model (a); initial background model (b); background model with 7 steps of
VPE method by solving equation(2.9) (c) and 350 steps of EBWI method (d)

model appear, and most reflectors positions are correct (Figure 2.8c). Common image

gathers at the inverted model (Figure 2.9c) resembles that at the target model (Fig-

ure 2.9a) very closely except a small di↵erence at the bottom of the gathers around

2 - 2.5 km positions.

We also attempt minimization of JEBWI (equation 2.6) simultaneously for m and

�m, without reduction by variable projection. We use the Limited Memory BFGS

algorithm [Nocedal and Wright, 1999], with the same backtracking line search used

in the VPE minimization. We re-start the algorithm every 50 steps: each block of

50 steps has cost similar to that of one variable projection iteration, so 350 steps of

LBFGS is roughly equivalent to 7 steps of variable projection optimization. The in-

verted velocity-squared background model obtained at step 350 is displayed in Figure

2.7d. The update of the velocity-squared shows no hint of kinematic correction: all

reflectors remain essentially in their initial, incorrect positions (Figure 2.8d). More

iterations will not help correcting the positions of reflectors. Common image gathers
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(a) (b)

(c) (d)

Figure 2.9: Truncated Marmousi example: Common image gathers at true back-
ground model (a); initial background model (b); b ackground model with 7 steps of
VPE method by solving equation 2.9 (c) and 350 steps of EBWI method (d).

(Figure 2.9d) at inverted background model is very similar to that at the inital model.

From this example, we conclude that minimization of JEBWI for m, �m̄ jointly is

unlikely to succeed, whereas minimization of the variable projection function JVPE

produces a useful velocity update. A similar conclusion holds for JBWI and JVP.

The second example compares extended and non-extended variable projection,

that is, minimization of JVPE and JVP. Since both appear successful for “easy”

velocity estimations, we create a more di�cult problem by using more data (4 s as

shown in Figure 2.3), the full depth range (3.5 km) in the model (Figure 2.2a), and

choosing a more drastically incorrect initial model, namely a homogenous v = 1.5

km/s. The stack �mstack of the inverted extended reflectivity at the initial model is

weak in amplitude with reflector positions are in error throughout (compare Figure

2.11a and Figure 2.11b).

For both optimizations, we use steepest descent with backtracking line search as

described above. The solution of equation 2.9 for both VP and VPE is estimated by
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(a) (b)

Figure 2.10: Marmousi example: Inverted background model from 18 steps of VPE
method (a) and 18 steps of VP method (b).

the CG method with number of iterations increasing with background model update.

This is based on our observation that when the background velocity is far from the

true model, an inaccurate gradient estimate is still adequate to produce an acceptable

update. In all cases, however, the residual error in normal equation 2.9 is reduced to

less than 5 percent of its initial size.

(a) (b)

(c) (d)

Figure 2.11: Marmousi example: Inverted reflectivity model at true background
model (a); initial background model (b); background model with 18 steps of VPE
method (c) and 18 steps of VP method (d) by solving equation 2.9.
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(a) (b)

(c)

Figure 2.12: Marmousi example: Common image gathers at true background model
(a); initial background model (b); background model with 18 steps of VPE method
(c) by solving equation2.9.

After 18 steepest descent steps for JVPE each involving 5 - 30 CG iterations per

function evaluation and several backtrack steps, positions of events down to about

1.5 km, somewhat deeper on the left, are largely corrected and amplitudes are con-

siderably improved in the stacked inversion (Figure 2.11c). Common image gathers

in Figure 2.12c at the inverted background model are more clear than that at the

initial model 2.12b. Although the inverted model at iteration 18 is not close to the

true model at below 1.5km, the trend is promising.

The first few VP updates, on the other hand, have partly repositioned the shal-

lowest reflectors, subsequent steps do not improve the kinematics of the image and

do not correct deeper events that are well-positioned by VPE (compare Figures 2.11c

and 2.11d).

Figure 2.13 shows that VPE method fits the data well for both near and far o↵set

traces, while VP method fails to fit data of medium and far o↵set traces. VP itself

does not solve local minima problem for this example. Model extension appears to
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Figure 2.13: Marmousi example: Trace comaprsion of real data (red), predicted
data by VPE (gree) and VP (blue) methods for far (top) and near (bottom) o↵sets.

be necessary for a global convergence.

2.5 Discussion

The examples presented in the last section suggest that both extended modeling,

which permits data fit throughout the inversion process, and variable projection,

which enforces it, are critical ingredients in waveform inversion. Without both of

these ingredients, gradient-based algorithms fail to constructively update kinemati-

cally inaccurate initial guesses. In particular, since the variable projection algorithms

for Born and extended Born inversion involve similar numbers of migration/modeling

pairs, the extended variant would appear to be the superior choice.

The Achilles’ heel of this approach is its overall cost: the number of modeling/mi-

gration cycles required for the rather simple 2D examples presented here was in the

hundreds, and such computational largesse is likely infeasible for industry-scale prob-

lems. Most of the cycles in these exercises go into the iterative solution of the normal

equation 2.9, which must be fairly precise in order that the global minimum is ob-

tained at the target background model and the error in the gradient formula 2.11

be controlled. Convergence of CG and other iterative methods can be accelerated

~= :1 : ~-- -·-~ : 

~=:~ :: 
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through the use of preconditioning, that is, inexpensive approximate inverse opera-

tors. Several methods for constructing preconditioners for 2.9 have been proposed

[Tang, 2009, Stolk et al., 2009a, Nammour and Symes, 2009, ], and should be evalu-

ated for their potential to accelerate the VPE algorithm.



Chapter 3

Flexibly Preconditioned Extended Least Squares

Migration in Shot Record Domain (submitted to

Geophysics)

3.1 Summary

This paper demonstrates a method for accelerating the convergence of iterative least

squares migration. The algorithm uses a pseudodi↵erential scaling (dip- and spatially-

varying filter) preconditioner together with a variant of conjugate gradient iteration

with iterate-dependent (“flexible”) preconditioning. The migration is formulated

without the image stack, thus producing a shot dependent image volume that re-

tains o↵set information useful for velocity updating and amplitude-versus-o↵set analy-

sis. Numerical experiments show that flexible preconditioning with pseudodi↵erential

scaling not only attains considerably smaller data misfit and gradient error for a given

computational e↵ort, but also produces higher resolution image volumes with more

balanced amplitude and fewer artifacts than is achieved with a non-preconditioned

conjugate gradient method.
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3.2 Introduction

While prestack reverse time migration (RTM) [Baysal et al., 1983, Loewenthal and Mufti, 1983,

Mulder and Plessix, 2004] can produce accurate images of complex subsurface struc-

ture, it can also su↵er from unbalanced amplitude and illumination artifacts, ac-

quisition footprint, and imperfect focusing of the seismic wavelet. Least squares

RTM, or LSM, an alternate name for iterative least-squares linearized inversion

[Bourgeois et al., 1989, Chavent and Plessix, 1999, Nemeth et al., 1999, Tang, 2009,

Aoki and Schuster, 2009, Dutta et al., 2014, Luo and Hale, 2014, Valenciano et al., 2015],

can resolve the aforementioned problems of RTM (its first iteration) to some extent.

Since each iteration requires a migration-modeling pair, the expense of LSM can be

considerable, yet achieving its benefits requires that su�cient iterations be performed.

In this paper, we show how to accelerate iterative LSM by combining optimal pseu-

dodi↵erential scaling [Symes, 2008a, Nammour and Symes, 2009, Nammour, 2009] with

the Flexibly Preconditioned Conjugate Gradient (FPCG) algorithm [Notay, 2000,

Knyazev and Lashuk, 2006]. Our algorithm is designed to invert each shot record

individually, and thus produce image gathers that can be used for velocity and

amplitude-versus-o↵set analysis. We argue that the theoretical properties of this al-

gorithm suggest that it should substantially reduce the number of iterations required

for good data fit and small LSM gradient, and illustrate this conclusion with a num-

ber of examples showing the benefits of accelerated LSM in better image amplitude

and phase for a given computational e↵ort.

Many previous works have addressed computational e�ciency of LSM, or lin-

earized inversion. Our work belongs to the scaling genre, in which the (computable)

action of the normal operator or Hessian F TF of the scattering operator F on

an image or set of images is used to constrain a matrix representation, which is

then inverted to approximately solve the normal linear system equivalent to least
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squares minimization. The type of algorithm explored in this paper originated in the

work of [Claerbout and Nichols, 1994], who computed an approximate inverse Hes-

sian scale factor by point-wise division of migrated image F Td by the output of the

Hessian applied migrated image, that is, (F TF )F Td. [Rickett, 2003] polished this

idea and compared it with other alternatives for replacing the migrated image in

the denominator. This type of approximation implicitly presumes that the Hessian

acts mostly by space-dependent scaling of its input, that is, as a spatially diagonal

operator: in e↵ect, that the Hessian acts mostly to modify amplitudes. However,

[Chavent and Plessix, 1999] showed that the Hessian is not spatially diagonal, or

even diagonally dominant: that is, the Hessian is also a filter of non-zero width.

They suggested taking this non-diagonality into account via a partial mass-lumping

method, that is, adding the o↵-diagonal terms to the diagonal, and then scaling the

migrated image by the inverse of resulting diagonal matrix. [Shin et al., 2001] sug-

gested another narrow-band approximation to the normal operator, which they call

the pseudo-Hessian matrix. [Guitton and Kaelin, 2006] replaced the diagonal multi-

plier of [Claerbout and Nichols, 1994] and [Rickett, 2003] with a localized filter, and

demonstrated a more accurate approximate inversion in some cases. [Symes, 2008a]

explained the non-diagonality observed by [Chavent and Plessix, 1999] and others:

under well-understood conditions, the normal operator is the product of a known

power of the Laplace operator, which is not a spatially diagonal operator, and an-

other operator that really does act as a spatially diagonal operator, at least so long

as the image has a well-defined dip field in most places, as seismic images of sedi-

mentary structures tend to do. This paper also introduced an inverse problem for

finding the optimal scaling operator, to replace pointwise division. In essence, opti-

mal scaling is possible because the normal operator (LSM Hessian) is pseudodi↵eren-

tial, that is, a space-varying filter behaving like a polynomial in spatial frequency for
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large frequencies [Beylkin, 1985, Rakesh, 1988b, ten Kroode et al., 1998, Stolk, 2000].

[Nammour and Symes, 2009, Nammour, 2009] used this observation to extend op-

timal scaling to imaging problems with conflicting dips, using an algorithm due

to [Bao and Symes, 1996] for approximating pseudodi↵erential operators e�ciently.

[Herrmann et al., 2008] implemented the same idea using a di↵erent approach to com-

puting pseudodi↵erential operators, based on their approximate diagonalization in

curvelet frames. [Demanet et al., 2012] used the low-rank property implicit in the

pseudodi↵erential nature of the normal operator to approximately constrain a ma-

trix representation by its action on a randomly chosen set of vectors, then e�ciently

inverting the matrix.

The works cited so far approximate the inverse normal operator, or approxi-

mately solve the normal equation. It is natural to think that an approximate inverse

could be used to precondition iterative methods for faster convergence, and many of

the ideas described in the last paragraph have been used in this fashion, beginning

with [Chavent and Plessix, 1999]. We mention in particular [Herrmann et al., 2009],

who based a preconditioning construction on the use of curvelet representation as

in [Herrmann et al., 2008]. See [Pan et al., 2014] for a comparison of several scaling

methods used as preconditioners.

Note that under some circumstances approximate least squares solutions can be

constructed via asymptotic analysis. The seminal paper [Beylkin, 1985] led to much

work on so-called Generalized Radon Transform inversion, which uses ray tracing

quantities to build a Kirchho↵-type integral approximating a pseudo inverse to the

scattering operator. See [Métevier et al., 2015, Lameloise et al., 2015] for recent ex-

amples of the use of asymptotic inversion based on ray-tracing to accelerate itera-

tive LSM or full waveform inversion. Recently it has been recognized that asymp-

totic approximate inverses may be constructed without any ray-trace computations
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whatsoever: see [Zhang et al., 2003, Stolk et al., 2009a, Hou and Symes, 2015b], and

[Hou and Symes, 2015a] for the use of ray-free asymptotics for preconditioning.

The scaling operator concept (and our use of it) does not rely explicitly on high

frequency asymptotics or ray tracing, or involve any ray computations. However its

justification rests on the pseudodi↵erential property of the normal operator or Hessian

of the scattering operator, and that in turn is a consequence of the ray asymptotics

of the wave equation.

Our work di↵ers from that described so far in two main respects. First, we ac-

celerate the solution of the shot record extension of linearized (or “Born”) forward

modeling, in which each shot is modeled by a reflectivity or model perturbation proper

to that shot, while sharing a background or reference model with all other shots. The

result of a least-squares Born inversion with this extended modeling principle is an

inverted extended reflectivity volume, analogous to the prestack shot-record migra-

tion image volume - which is, in fact, the result of the first iteration of most iterative

algorithms for solving the extended problem. The fixed horizontal position slices of

this migrated image volume are known as shot record common image gathers or CIGs,

and are crucial ingredients in migration-based velocity analysis and amplitude-versus-

o↵set analysis. All of the works cited so far have concerned the non-extended version

of the Born inverse problem. Our algorithm iteratively inverts the extended Born

modeling operator. The extended reflectivity volume so constructed may be similarly

sliced into higher-resolution and more artifact-free version of migration CIGs, as we

shall illustrate with several examples.

The other major innovation in our work stems from the nature of scaling algo-

rithms, which do not in general produce an approximate inverse of the modeling

operator, but rather an operator that approximately solves the least squares problem

with specific data. The scaling operator so produced likely does not solve the least
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squares problem with any data other than that used to generate it. Thus use of a

scaling operator as preconditioner requires an algorithm that admits a di↵erent pre-

conditioner each iteration. In contrast, all of the work cited so far uses conventional

(fixed) preconditioned iterations. Fortunately, algorithms using iteration dependent

preconditioning, called Flexibly (or Variably) Preconditioned, have been studied in

the computational mathematics literature [Notay, 2000, Knyazev and Lashuk, 2006].

We combine a flexibly preconditioned conjugate gradient iteration with the pseudodif-

ferential approximation of [Bao and Symes, 1996] and the optimal coe�cient selection

of [Symes, 2008a] and [Nammour and Symes, 2009, Nammour, 2009] to substantially

accelerate the conjugate gradient algorithm for shot-record Born inversion, and im-

prove the quality of its output in the bargain.

We note that the preconditioning strategy presented in [Hou and Symes, 2015a]

and related algorithms are based on the use of subsurface o↵set extension, which in-

volves more expensive modeling and migration in comparison with ordinary modeling

and migration, but functions well with highly refractive velocity models (“complex

structure”, see [Stolk et al., 2009b]). In contrast, while the shot-record extension

leads to accurate imaging only for mild lateral heterogeneity (no multipathing, see

[Stolk and Symes, 2004]), it is no more expensive than standard Born modeling and

RTM. Optimal pseudodi↵erential scaling doubles the cost of each iteration of LSM,

but considerably reduces the required number of iterations, for significant overall

reduction in computational cost, as we shall show.

The rest of the paper is organized as follows: In the theory section, we will briefly

discuss the LSM in shot record domain, illustrate its ill-condition property, then

review the pseudodi↵erential scaling optimization and describe a flexibly precondi-

tioned conjugate gradient (FPCG) method to solve the extended LSM problem in

shot record domain. In the numerical results section, we apply the FPCG method to
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two simple synthetic problems and to a Born inversion problem derived from the Mar-

mousi model, and compare its e�ciency with ordinary conjugate gradient method.

We end with a discussion of some possible future developments and applications of

FPCG-accelerated extended LSM.

3.3 Theory

We choose constant density acoustics for modeling wave propagation in the derivation

of the following theory and algorithm. The constant density acoustic wave equation

with squared velocity m(x) = c2(x) and isotropic radiator source with wavelet w(t)

at source position x
s

is

✓
@2

@t2
�m(x)r2

◆
u(x, t;x

s

) = w(t)�(x� x
s

). (3.1)

The shot-record extended Born approximation [Kern and Symes, 1994, Symes, 2008b]

allows the model perturbation �m to depend on the shot-record parameter as well as

spatial location x. Since we use shot position x
s

to parametrize the isotropic point

radiator in equation 3.1, the extended model perturbation takes the same functional

form �m(x;x
s

) as the image volume of prestack migration sorted by shot record. The

corresponding perturbational (or Born) wave equation is

✓
@2

@t2
�m(x)r2

◆
�u(x, t;x

s

) = �m(x;x
s

)r2u(x, t;x
s

) (3.2)

The extended Born modeling operator is defined by sampling the perturbation

field �u at the receiver positions x
r

corresponding to each source:

F [m]�m(x
r

, t;x
s

) = �u(x
r

, t;x
s

). (3.3)
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The adjoint operator F T of the extended Born modeling operator F is the reverse time

migration (RTM) with the standard cross-correlation imaging condition [Tarantola, 1984b],

but without the final stack over shot position: thus the output of F T is a shot-

dependent image volume field of the same type as �m. The corresponding adjoint

operator of the non-extended Born modeling operator stacks the output of the ex-

tended adjoint over shot position to produce an image (function of spatial position).

With these notational conventions, the linearized least squares, or LSM, problem

takes the following form: given a data perturbation d, find a model perturbation �m

to minimize
1

2
kF [m]�m� dk2. (3.4)

As (3.4) is quadratic in �m, the global minimizer is obtained at any stationary

point. Thus the minimizer of the problem (3.4) is equivalent to the solution of the

normal equations

F TF �m = F Td, (3.5)

Since we will fix the background modelm in almost all the cases, we write the extended

Born modeling operator as F instead of F [m] for simplicity. Due to the size of the

problem, the computation of (F TF )�1, or solution of equation 3.5, by any variant

of Gaussian elimination is infeasible even for 2D field-scale examples. Thus iterative

methods are used to solve equation 3.5. Most of these converge at rates that depend

on the spectrum of the normal operator F TF , and are faster when the spectrum has

small extent. However F TF tends to be ill-conditioned (have a spectrum spread over

a large interval) for several reasons. The limited aperture of field survey geometry

implies that some structural perturbations have no appreciable impact on the Born

seismogram, and imply existence of very small eigenvalues. The dynamic range of

geometric spreading also tends to spread the spectrum. Most dramatic in e↵ect



41

is the frequency-dependent scaling between model and data perturbation: in 2D, an

oscillatory localized plane wave component of �m, of spatial frequency k, results in an

output of F TF amplified by O(k). The analogous amplification in 3D is O(k2). This

frequency-dependent scaling has been understood since [Beylkin, 1985]. In e↵ect, the

2D version of F TF has the square root of the Laplace operator as a factor, whereas

the 3D version has the Laplace operator itself. In the continuum limit, the spectrum

is without bound; for discretization, the largest eigenvalue grows in proportion to the

Nyquist frequency.

Ill-conditioning due primarily to the frequency-dependent scaling of F TF has a

disastrous e↵ect on convergence of iterative methods for solution of equation 3.5.

While the analysis simply suggests that the condition of equation 3.5 grows worse with

increasing frequency, numerical experiment suggests that it is quite bad already for

length and frequency scales characteristic of exploration seismology. We illustrate this

e↵ect with a simple example, in which we attempt to invert for a model perturbation

�m representing a single reflector in the presence of a slow Gaussian anomaly in the

background model, as shown in Figures 3.1a and 3.1b.

(a) (b)

Figure 3.1: Slow Gaussian anomaly model: (a) background m, (b) perturbation
�m.

We use point sources with impulse wavelets bandpass filtered with corner frequen-

cies 1 Hz, 7 Hz, 28 Hz, 35 Hz. A total of 81 point sources are placed at depth 20 m
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with a spacing of 50 m. 401 fixed receivers with a spacing 10 m are placed at depth

10 m. Data is recorded until 2.4 s.
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Figure 3.2: Convergence curve of steepest descent method for the slow Gaussian
anomaly problem: (a) normalized data misfit (b) normalized gradient length.

We use a very simple iterative algorithm, the steepest descent method with fixed

step length chosen as a crude estimate of the reciprocal maximum eigenvalue of F TF

[Boyd and Vandenberghe, 2004]. Although this choice of step length guarantees de-

crease of the objective function value at each iteration, very slow convergence rate

is expected if the condition number of F TF is large. The data misfit history (Fig-

ure 3.2a) shows that there is no big decrease in the error after 3 steps of iteration.

The zigzag decrease of the normal residual (length of the di↵erence between the left

hand side and right hand side in equation 3.5, Figure 3.2b) is typical of the steepest

descent method and indicates the ill-conditioning property of the normal operator

F TF .

This simple example strongly indicates that a reformulation of equation 3.5 is

required for reasonably fast convergence of iterative solvers.

I-+- .... 
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3.3.1 Pseudodi↵erential Scaling

The second author introduced an approximate inversion by scaling [Nammour and Symes, 2009,

Nammour, 2009], based on a fundamental observation about the normal operator

F TF established by [Beylkin, 1985, Rakesh, 1988b, ten Kroode et al., 1998, Stolk, 2000],

namely that F TF is a pseudodi↵erential operator ( DO) under some conditions, a

synopsis of which appears at the end of this section. This fact underlies the e↵ective-

ness of migration as an imaging algorithm.

We point out several important properties of  DOs:

• their action preserves the location and orientation of localized oscillatory plane

waves;

• to each is associated an order, which captures the power of frequency with which

localized plane waves are scaled; and

• they are expressed via an oscillatory integral, examples below, and take the

form of a spatially variable filter.

The first of these facts explains the connection between the  DO nature of the normal

operator and the imaging property of the RTM operator F T : its e↵ect on the data

created by F �m is to recover localized oscillatory plane waves components of �m in

location and orientation.

The oscillatory integral form of the  DO F TF is

F TF �m(x) ⇡
Z

a(x,k) ˆ�m(k)eik·xdk (3.6)

The function of position and wavenumber a(x,k) is the principal symbol of F TF ; a

is homogeneous of order s in wavevector k (identical to the order of the operator,

mentioned above) and depends on the background model m. Note that if a were
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independent of x, then equation 3.6 would define a filter, and thus could be computed

inexpensively via FFT. However, the dependence on x is essential: includes geometric

amplitudes and other factors. The theory of  DOs [Taylor, 1981] requires that a is

smooth, that is, with arbitrarily many well-defined derivatives, in both x and k.

Smoothness of m implies this property for the principal symbol of F TF , under some

assumptions that will be detailed below.

The order s is dimension-dependent: for dimension d, the order is s = d � 1

[Rakesh, 1988b]. The sense of approximation suggested in equation 3.6 is asymptotic,

in the sense that the di↵erence between the two sides is O(|k|s�1), in terms of spatial

frequency.

From here on, we will consider the 2D case only. In particular, s = 1.

The pseudodi↵erential scaling problem [Nammour and Symes, 2009, Nammour, 2009]

constructs an approximate solution of equation 3.5: for a given image, for example

b = F Td with d the observed data, find a pseudodi↵erential operator Q with principal

symbol q(x,k) of order �1,

Qu(x) =

Z
q(x,k)û(k)eik·xdk, (3.7)

such that

QF TFb ⇡ b. (3.8)

That the order of Q should be �1 is a consequence of one of the rules for combining

 DOs: the product of two  DOs is another  DO, whose order is the sum of the

orders of the factors [Taylor, 1981]. Since the identity operator is a  DO of order 0

(principal symbol ⌘ 1!), and the 2D version of F TF has order 1, the approximate

inverse  DO should have order �1.

Whatever approach one might use to solve the pseudodi↵erential scaling problem,
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it is necessary to compute the actions of the operators Q and F TF , if only to gauge

success. We will use a finite di↵erence time-stepping method to approximate both

Born modeling (F ) and RTM (F T ). To approximate the action of Q, we use the

algorithm of [Bao and Symes, 1996]. This algorithm is based on the observation that

since the principal symbol q�1(x,k) of Q is homogeneous of order �1 in k = kk̂ =

(k cos ✓, k sin ✓), q�1(x,k) = k�1q�1(x, k̂) is a 2⇡-periodic smooth function of ✓, hence

approximated using its first N +1 Fourier components with exponentially small error

in N :

q�1(x, k̂) ⇡
1

2
c0(x) +

NX

n=1

c
n

(x)C
n

(k̂) + s
n

(x)S
n

(k̂) (3.9)

The spatial functions {c
n

} and {s
n

} are Fourier coe�cients, and {C
n

} and {S
n

} are

polynomials in the unit vector k̂ defined by the conditions:

C
n

(k̂) = cosn✓

S
n

(k̂) = sinn✓ (3.10)

Recursion rules derived from the sum-of-angle formulas are the easiest way to compute

{C
n

} and {S
n

}:

C
n+1(k̂) = 2k̂1Cn

(k̂)� C
n�1(k̂);C0 = 1, C1(k̂) = k̂1

S
n+1(k̂) = 2k̂2Cn

(k̂) + S
n�1(k̂);S0 = 0, S1(k̂) = k̂2 (3.11)

The reader will note that the first of these rules defines the Chebyshev polynomials

in k̂1.

It remains to discretize the equation 3.7 in x. [Bao and Symes, 1996] use cubic

spline approximation on a coarse nodal grid, taking advantage of the smoothness of

q(x,k) and the implied smoothness of {c
n

(x)} and {s
n

(x)}. In terms of a B-spline
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basis { 
j

(x) : 1  j  J},

c
n

(x) =
JX

j=1

cj
n

 
j

(x)

s
n

(x) =
JX

j=1

sj
n

 
j

(x) (3.12)

Combine equations 3.9 through 3.12 with the definition 3.7 and rearrange to obtain

the approximation of the action of Q in terms of the coe�cient sequence c = {cj
n

, sj
n

:

0  n  N, 1  j  J}:

Q[c]u(x) =

JX

j=1

 
NX

n=0


cj
n

Z
k�1C

n

(k̂)û(k)eik·xdk+ sj
n

Z
k�1S

n

(k̂)û(k)eik·xdk

� !
 
j

(x). (3.13)

Each integral inside the square bracket is actually a filter hence can be computed

with the aid of the FFT at low cost. There are only O(N) such filters to com-

pute, for a much lower total cost per application than a straightforward gridded

quadrature method applied to the definition 3.7. This reduction in cost is possi-

ble because the approximation 3.9 has replaced a joint function of x and k with

a sum of products of x and k separately, and each of these can be computed using

coarse grid computations by virtue of the smoothness of q. See [Bao and Symes, 1996,

Nammour and Symes, 2009] for a careful discussion of the computational cost of this

algorithm.

If the goal were to calculate the action of Q given the principal symbol q, then

the coe�cient array c would have to be extracted from q by FFT and solution of

a large linear system. Instead, [Nammour, 2009] simply reformulates the optimal

pseudodi↵erential scaling problem to extract c directly from its data, via solution of
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an optimization problem: given an image b, for example b = F Td, find coe�cients c

to minimize

kb�Q[c](F TF )bk2, (3.14)

Problem 3.14 is a quadratic least squares problem, and could be solved using an ap-

propriate numerical optimization method, for example conjugate gradient method.

Note that the number of unknowns here is (2N + 1)J , which could be much smaller

than the unknowns of extended LSM: based on our experience, N ⇡ O(10) is ade-

quate, and J can be taken to be 2-3 orders of magnitude smaller than the number of

grid points of the model b (or m). Given the work estimate mentioned above for each

application of Q, the optimal pseudodi↵erential scaling problem is cheap to solve,

compared with the iterative extended LSM.

[Nammour, 2009] shows that the solution of problem 3.14 satisfies

Q[c]b ⇡ (F TF )†b = (F TF )†F Td ⇡ �m, (3.15)

for b = F Td with d = F �m. (F TF )† denotes the Moore-Penrose pseudoinverse [Moore, 1920].

To summarize, to compute the optimal pseudodi↵erential scaling,

• Compute extended migration b = F Td;

• Apply normal operator to get re-migrated image (F TF )b;

• Solve problem 3.14 to get c;

• Compute Q[c]b ⇡ (F TF )�1b.

We end this discussion by mentioning the restrictions that must hold in order

that the underlying assumption of this construction, namely that F TF be a  DO,

is valid. Smoothness of the velocity model m is essential: presence of interfaces
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typically implies the well-known tendency for reflectors to be imaged in multiple lo-

cations, whereas  DOs preserve reflector locations. For the physical (non-extended)

Born operator, the necessary additional conditions are rather mild: essentially, no

rays can arrive at the receiver or source arrays tangent to the surfaces on which they

lie, and scattering over ⇡ (diving waves) must also be ruled out (or removed from the

output of F ) [Stolk, 2000]. For the shot record extension, an additional and rather

strict assumption must be satisfied, namely that the ray field associated to m have

no caustics in the region where �m 6= 0. This condition e↵ectively restricts pre-

conditioning by pseudodi↵erential scaling to models with mild lateral heterogeneity.

[Nolan and Symes, 1996, Stolk and Symes, 2004] thoroughly discuss the reasons for

this restriction, which is related to failure of shot-record extended prestack migration

to act as an imaging operator in the presence of caustics or multipathing.

3.3.2 Flexibly Preconditioned Conjugate Gradient Algorithm

Preconditioned conjugate gradient (CG) iteration [Nocedal and Wright, 1999, Golub and van Loan, 1996]

is simply the CG algorithm formulated with an inner product di↵erent from the usual

Euclidean dot product. Applied to least-squares problems such as equation 3.5, the

e↵ect is to alter the application of the adjoint operator (F T ) by appending another

operator M . If MF TF ⇡ I, convergence is much accelerated.

It is tempting to use the approximate inverse Q, computed by solving equation

3.14 as in the previous section, for M in preconditioned CG, however that does not

result in accelerated convergence. The reason is that while Q satisfies equation 3.8

approximately, it is not generally an approximation to (F TF )† - it only approximates

the action of the latter operator on a particular vector.

There is however a variant of preconditioned CG, called flexibly preconditioned CG

(FPCG), that makes use of this type of approximate solution of the normal equation
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as opposed to an approximate inverse of the normal operator. The algorithm is listed

explicitly in algorithm 1. The action of a conventional preconditioner is replaced

by an approximate solution of the normal equation at each step - thus each iteration

requires that Q, hence c, be constructed anew, and an additional application of

Hessian per iteration is required. In the algorithm listing, the construction of the

iteration-dependent preconditioning step is highlighted in red.

Algorithm 1 A flexibly preconditioned conjugate gradient method

Given data d and �m0 = 0, Born modeling operator F , RTM operator F T

Given maximum iterations MaxIter and i = 0
r0 = d, G0 = F T r0
compute c0 by solving equation 3.14 with b = G0

g0 = Q[c0]G0

p0 = g0
while (not converge && i < MaxIter) do

q
i

= Fp
i

↵
i

=
hg

i

, G
i

i
hq

i

, q
i

i
�m

i+1 = �m
i

+ ↵
i

p
i

r
i+1 = r

i

� ↵
i

q
i

G
i+1 = F T r

i+1

compute c
i+1 by solving equation 3.14 with b = G

i+1

g
i+1 = Q[c

i+1]Gi+1

� =
hg

i+1, Gi+1 �G
i

i
hg

i

, G
i

i
p
i+1 = g

i+1 + �p
i

i = i+ 1
end while

One thing to note is the formula for the direction update scalar � in algorithm

1 should be the Polak-Ribiere variant [Nocedal and Wright, 1999], as recommended

by [Notay, 2000], who proved that as long as the variation in the preconditioner is

su�ciently small, the FPCG method will have a convergence rate that is comparable

with CG method with an approximate inverse of F TF as the iteration-independent

preconditioner. While the conditions for convergence developed in [Notay, 2000,

Knyazev and Lashuk, 2006] do not appear to be verifiable in examples, the algorithm
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nontheless appears to perform reasonably well, as the examples to come will show.

We note that the behavior of the algorithm may be improved by modifying the def-

inition of F so that F TF is better approximated by a  DO. For example, appropriate

mutes and window functions to remove diving wave energy and shallow acquisition

footprint will improve the approximate solution by pseudodi↵erential scaling. High

pass filtering may also make this approximation more accurate, since we keep only

the leading order terms in frequency throughout our constructions.

3.4 Numerical examples

In this section, we show several numerical results for the FPCG method and compar-

isons with conjugate gradient and steepest descent methods.

Wave equations are discretized using regular grid finite-di↵erence scheme: 2nd

order accurate in time and 4th order accurate in space. We use free surface top

boundary condition and place sources and receivers below the surface. The choice of

free surface boundary condition and this acquisition geometry introduce two deriva-

tives to the data: vertical derivative over the source position and vertical derivative

over the receiver position [Hou and Symes, 2015b], which are approximately equiva-

lent to
@2

@t2
. Thus composing the original Born modeling operator with the square

of integral operator over time I2
t

roughly undo the e↵ect of using this free surface

boundary condition and acquisition geometry, where I
t

=

Z

t

dt.

The FPCG method used in following examples contains two steps of precondi-

tioning: first, apply I2
t

to both the input data and the source wavelet; second, apply

Algorithm 1 to the integrated data and the integrated source wavelet.

The first two examples concern recovering a single reflector under the presence

of a slow and a fast Gaussian anomaly in background model respectively. These

two simple synthetic examples are used to demonstrate the behavior of the proposed
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algorithm. The last example is the Marmousi model with 450 m extended water layer,

which is used to illustrate the capability and highlight the superiority of the proposed

method when a model has complex structures.

For each example, we show the convergence curves of solving extended LSM using

FPCG method and other methods, display the inverted extended image �m(x,x
s

).

We also show the stacked image
X

xs

�m(x,x
s

), the target data, and the data residual

(the di↵erence of the predicted and target data).

3.4.1 Slow Gaussian anomaly model

The slow Gaussian anomaly model is illustrated in Figures 3.1a and 3.1b. The acqui-

sition geometry is as described in the last section. Source and 3 shots of the data are

shown in Figures 3.3a and 3.3b.

(a) (b)

Figure 3.3: (a) source wavelet with corner frequency 1 Hz, 7 Hz, 28 Hz, 35 Hz,
used in Gaussian anomaly examples (b) 3 of 81 Born shot records for slow Gaussian
anomaly example (Figures 3.1a and 3.1b.)

Data shown in Figure 3.3b is used as the observed data in this example (81 shots -

only 3 are shown here). Figure 3.4a shows the normalized data misfit (the value of the

objective function in equation 3.4) as a function of number of Hessian applications.

Figure 3.4b plots the normalized normal residual (the L2 norm of the di↵erence of the

right hand side and the left hand side with or without preconditioning of equation
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3.5). CG with windowing is the conjugate gradient method with the forward map F

replaced by FW , the composition of F and a windowing operator W which multiplies

a smooth cuto↵ function that sets �m(x,x
s

) to zero from the surface to depth = 200

m: this is the depth range in which imaging is dominated by acquisition footprint

and large amplitude, making the Hessian more ill-conditioned. The improvement of

conditioning resulting from windowing out these e↵ects is evident in the convergence

plots, but is not su�cient to bring the residual below 40% of its initial value in 20

iterations. Unwindowed CG converges even more slowly.
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Figure 3.4: Slow Gaussian anomaly example: convergence curves of numerical meth-
ods, (a) normalized data misfit and (b) normalized gradient length.

In contrast, FPCG (Algorithm 1 applied to integrated data and the integrated

source wavelet, without windowing or muting) achieves 4% of the initial residual RMS

in 10 iterations. Note that each iteration of FPCG requires a second application of the

Hessian, hence is twice as expensive as each iteration of CG. The convergence plots

are arranged to take this expense di↵erential into account: the horizontal axis unit

is Hessian applications. In particular, note that FPCG with 2 Hessian applications

fits the data better than CG with 20 Hessian applications (and depth windowing

as described above, Figure 3.4a). In this example, FPCG is the only method to

-----+-
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approximate a stationary point of the least squares objective, reducing the gradient

length to a small fraction (0.8%) of its original value in 20 iterations (Figure 3.4b).

(a) (b)

Figure 3.5: Slow Gaussian anomaly example: inverted model perturbation cube
after 20 Hessian applications using FPCG (a) and using CG with windowing (b).

(a) (b)

Figure 3.6: Slow Gaussian anomaly example: Stacked image after 20 Hessian ap-
plications using FPCG (a) and using CG with windowing (b).

Figures 3.5a and 3.5b show the inverted extended images or extended model per-

turbations, the solutions of equation 3.5 using FPCG and CG method with window-

ing. They are 2D views of 3D volumes. The physical model axes are labeled as

”Distance” and ”Depth”. The third axis without label is the shot record. Figures

3.6a, 3.6b, 3.7a and 3.7b compare the stacked images and data residuals of FPCG

method and CG method with windowing. Figures 3.5a and 3.5b and stacked images
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(a) (b)

Figure 3.7: Slow Gaussian anomaly example: data residual, same 3 shots as in Fig-
ure 3.3b after 20 Hessian applications using FPCG (a), and using CG with windowing
(b).

in Figures 3.6a and 3.6b show that the frequency contents in the final images are

quite di↵erent with and without preconditioning. Fewer artifacts are observed in the

image from FPCG method (Figures 3.5a and 3.6a). It is obvious from Figures 3.7a

and 3.7b that preconditioning improves the data fitting significantly as well as helps

to attenuate unwanted noise.

3.4.2 Fast Gaussian anomaly model

The fast Gaussian anomaly model is shown in Figure 3.8a. The acquisition geometry,

source wavelet, and the true reflectivity model are the same as the slow Gaussian

anomaly model example. 3 shots of the data are shown in Figures 3.8b. Very similar

convergence behavior (Figures 3.9a and3.9b) as in the slow Gaussian anomaly model

example is observed in this set of tests. See Figures 3.10, 3.11 and 3.11 for the

comparison of inverted images, stacked images and data residuals by FPCG method

and CG method.
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(a) (b)

Figure 3.8: Fast Gaussian anomaly example: (a) background model, and (b) 3 of
81 Born shot records.
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(b)

Figure 3.9: Fast Gaussian anomaly example: convergence curves of numerical meth-
ods for (a) normalized data misfit and (b) normalized gradient length.

(a) (b)

Figure 3.10: Fast Gaussian anomaly example: inverted model perturbation cube
after 20 Hessian applications using FPCG (a) and using CG with windowing (b).
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(a) (b)

Figure 3.11: Fast Gaussian anomaly example: Stacked image after 20 Hessian
applications using FPCG (a) and using CG with windowing (b).

(a) (b)

Figure 3.12: Fast Gaussian anomaly example: Data residual after 20 Hessian ap-
plications using FPCG (a) and using CG with windowing (b).
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3.4.3 Marmousi model

To evaluate the potential of the FPCG algorithm to recover reflectivity with a wide

range of dips and strengths, we apply it to a model derived from the Marmousi

model [Versteeg and Grau, 1991]. We smoothed the model and added a 450 m deep

water layer to produce the smooth background model shown in Figure 3.13a. The

di↵erence between the original and a slightly less smoothed model serves as the model

perturbation or reflectivity field (Figure 3.13b). The model was gridded at 8 m in both

directions, and a finite di↵erence method used to produce Born data (Figures 3.14a,

3.14b). The source wavelet was a zero-phase bandpass filter with corner frequencies

1 Hz, 6 Hz, 25 Hz, 30 Hz. 128 point sources were located at depth 8 m with 48

m spacing. 1151 fixed receivers with 8 m spacing were placed at depth 6 m. Final

recording time was 3.4 s.

(a) (b)

Figure 3.13: Marmousi example: (a) background model, (b) model perturbation.

Although we use Born modeling to generate the observed data, diving waves

kinematics are still present since diving waves generated by the background model

are also perturbed. We have muted the diving waves, both in the target data and by

composing the modeling operator with the same mute.

As in the previous examples, we used both CG with windowing and FPCG to

invert this data. The windowing operator in this case zeroes the first 450 m in depth,
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(a) (b)

Figure 3.14: Marmousi example: (a) source wavelet with corner frequencies = 1
Hz, 6 Hz, 25 Hz, and 30 Hz. (b) Born shot record, shot index 65.
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(b)

Figure 3.15: Marmousi example: convergence curves of numerical methods, (a)
normalized data misfit and (b) normalized gradient length.
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with a smooth taper to avoid introducing high-frequency artifacts into the inversion.

Figure 3.15a shows the normalized data misfit as a function of Hessian applications.

Figure 3.15b plots the normalized normal residual or the gradient of the CG and

FPCG method. The FPCG method with 6 Hessian applications fits the data better

than the CG method with 20 Hessian applications (Figure 3.15a), similarly for the

gradient length.

(a) (b)

Figure 3.16: Marmousi example: inverted model perturbation cube after 20 Hessian
applications using FPCG (a) and using CG with windowing (b).

Figures 3.16a and 3.16b show the inverted extended model perturbations pro-

duced by these methods. The FPCG result (Figure 3.16a) shows both more accurate

amplitudes and better forused wavelet than does the non-preconditioned CG result

(Figure 3.16b). The superiority of the FPCG method is especially evident in the

gather panel: the FPCG-produced events are better separated and flatter, with fewer

artifacts contaminating the image volume, than are the CG-produced events.

Figures 3.17a and 3.17b compare the stacked version of the inverted extended im-

ages of FPCG method and CG method with windowing. We see that preconditioning

is e↵ective in mitigating artifacts and producing a better balanced amplitude in the

image,as well as improving the resolution of the image especially in the deep part

(below 2.5km).
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(a) (b)

Figure 3.17: Marmousi example: Stacked image after 20 Hessian applications using
FPCG (a) and using CG with windowing (b).
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(b)

Figure 3.18: Marmousi example: Vertical trace comparison at x = 4000 m of target
model perturbation with inverted model perturbation cube from the 44-th shot (a)
and with stacked inverted image (b) by FPCG and CG with windowing methods after
20 Hessian applications.
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Figure 3.18a compares the well logs at x = 4000 m of inverted model perturbations

from the 44-th shot data by FPCG and CG with windowing methods with the true

reflectivity model. Both FPCG and CG with windowing recover the amplitude of the

shallow part of the model, while FPCG method restores relatively better the ampli-

tude of the deep part of the model than the non-preconditioned method. The spectra

of traces of inverted images corresponding to shot 44 are shown in Figure 3.19a. It

is clear that for the wavenumber range that could be explained by these methods

(between 0.0025 1/m and 0.013 1/m), the amplitude of the inverted image by FPCG

method resembles that of the target image.
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Figure 3.19: Marmousi example: Spectrum comparison of the vertical trace shown
in Figure 3.18 of target model perturbation with inverted model perturbation cube
from the 44-th shot (a) and with stacked inverted image (b) by FPCG and CG with
windowing methods after 20 Hessian applications.

Since the LSM is in the shot record domain, the inverted image volume minimizes

the data residual, while the stack of the inverted image does not, although the stacked
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image contains a lot of useful informations as well. That is why after stacking, the

amplitude does not match the true reflectivity as shown in Figure 3.18b, but the

amplitude from FPCG method is still relatively closer to the true one than that from

CG with windowing at the deep part of the model (below 2500 m). The corresponding

spectra comparison of traces of stacked images are shown in Figure 3.19b. Note that

the traces and spectra of stacked images are for visualization purposes and have no

quantitative meaning.

(a) (b)

Figure 3.20: Marmousi example: data residual, same shot record as in Figure 3.14b,
after 20 Hessian applications using FPCG (a), and using CG with windowing (b).

Data residuals from FPCG method and CG method with windowing are shown in

Figures 3.20a and 3.20b respectively. With preconditioning, data residual is small ev-

erywhere, while the non-preconditioned CG is struggling to fit the deep part (around

and below 2s) of the data. We also see steeply-dipping events in the residual from

FPCG method, which is better modeled by the non-preconditioned CG method.

These events are close to diving wave perturbations, and are poorly explained by

the pseudodi↵erential scaling operator.

Since these straight-line events are mainly due to refracted waves, with a particular

apparent velocity, they can be suppressed through dip filtering. Figures 3.21a and

3.21b show the same data residual, but after application of a dip filter with cut-o↵

velocity 2500 m/s, so that events with slopes larger than 0.0004 s/m are excluded.
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(a) (b)

Figure 3.21: Marmousi example: data residual after dip filtering with 20 Hessian
applications using FPCG (a), and using CG with windowing (b).

Figures 3.21a and 3.21b show the data residual after application of the dip filter.
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Figure 3.22: Marmousi example: Relative power spectra of data residual (a) and
data residual after dip filtering (b) with respect to observed data.

The relative data residual power spectrum gives another way of appreciating the

e↵ect of preconditioning. FPCG method suppresses error regardless of frequency

components, while CG method fits di↵erent frequency components in the data di↵er-

ently, as can be observed in Figure 3.22a. The error spectra with dip filter (Figure

3.22b) are slightly lower in amplitude than those without dip filter.

One advantage cited earlier for extended Born modeling is ability to fit data even
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with incorrect velocity. The final example of this section illustrates this property.

The smooth background model depicted in Figure 3.23 is obtained by adding 70% of

the target model in Figure 3.13a and 30% of the constant model m = 2.25 m2/s2.

Note that the background model is scaled, thus the reflection coe�cients at the ocean

bottom is di↵erent from the target model and the refracted waves generated by the

target model will not be predicted correctly. Perturbations of these refracted waves

form a part of the data that could not be fit using shot record domain LSM, precon-

ditioned or not, which is a feature of shot record domain model extension. However,

for the part of data that could be fitted, using shot record domain model extension,

preconditioning will still significantly improve the convergence rate. We show the

convergence curves for inversion of the Marmousi-Born data (Figure 3.14b) with this

incorrect velocity model in Figure 3.24a. As was the case with correct velocity, a

reasonably good fit is obtained, with most of the remaining residual energy located

near the diving wave perturbations, and the FPCG iteration is considerably more

e�cient than the CG iteration, by about the same factor as for the correct velocity

case.

Figure 3.23: Marmousi example, incorrect background model.

Figures 3.25a and 3.25b show the inverted extended model perturbations. The

gather information is more valuable than the single shot image in this example, since
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Figure 3.24: Marmousi example, incorrect background model: convergence curves
of numerical methods, (a) normalized data misfit and (b) normalized gradient length.

(a) (b)

Figure 3.25: Marmousi example, incorrect background model: inverted model per-
turbation cube after 20 Hessian applications using FPCG (a) and using CG with
windowing (b).
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the background model is wrong. We see a better focused gather with preconditioning

(Figure 3.25a) compared with non-preconditioning (Figure 3.25b). The curvatures in

image indicate that the background model is smaller than the true model and thus

could be used to update the background model.

(a) (b)

Figure 3.26: Marmousi example, incorrect background model: Stacked image after
20 Hessian applications using FPCG (a) and using CG with windowing (b).

Figures 3.26a and 3.26b compares the stacked images of FPCG method and CG

method with windowing at wrong background model (as shown in Figure 3.23). We

see that the preconditioning is still helpful in mitigating artifacts in the image, and

produces better balanced amplitude as well as improves the resolution of the image,

although the reflector positions are wrong.

Finally, the data residuals depicted in Figures 3.27a and 3.27b, using the same

grey scales as in Figures 3.20a and 3.20b, confirm the ability of shot record extended

Born modeling to fit data very well even with incorrect velocity. Once again, the

FPCG residual is considerably smaller than the CG residual, even though the same

computational e↵ort has been expended in producing both.
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(a) (b)

Figure 3.27: Marmousi example, incorrect background model: data residual, same
shot record as in Figure 3.14b, after 20 Hessian applications using FPCG (a), and
using CG with windowing (b).

3.5 Discussion

The acceleration technique presented here su↵ers from some strict limitations on its

validity, noted in the section on pseudodi↵erential scaling: for example, it depends on

more or less unique energy paths between sources, receivers, and scattering points.

However, within the domain of validity - mild lateral velocity variation and slow

changes in spatially averaged index of refraction - it provides an inexpensive and

e↵ective way to accelerate iterative LSM.

We have examined only the simplest relevant wave physics in this paper, namely

constant density acoustics. However, the foundations have been laid long since for ex-

tension to variable density acoustics and indeed to elasticity [Beylkin and Burridge, 1990,

Burridge et al., 1998, De Hoop and Bleistein, 1997]. This extension amounts to a ra-

tional version of amplitude versus o↵set (AVO) analysis, with illumination based am-

plitude artifacts have been removed [Tarantola, 1984a, Lörtzer and Berkhout, 1989,

Castagna, 1993, Luh, 1993]. Accelerated convergence in these settings can in principle

be achieved using similar ideas - for some first steps see [Nammour and Symes, 2011].

A fast extended LSM available could be used in a form of optimization based

migration velocity analysis based on Born inversion [Liu et al., 2014, Symes, 2015,
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Huang and Symes, 2015]. In fact, inversion (as opposed to migration), with its im-

proved amplitude and especially phase, is actually essential for reliable functioning of

such objective velocity analysis algorithms [Kern and Symes, 1994, Lameloise et al., 2015].



Chapter 4

Variable Projection Extended Born Waveform

Inversion Enhanced by Preconditioned Least

Squares Migration

4.1 Summary

Born waveform inversion is a linearized version of full waveform inversion based on

Born modeling and model scale separation, in which both long scale background

model and short scale reflectivity are updated to predict the observed seismic data.

By allowing the reflectivity to depend on an extra parameter, we get the extended

Born waveform inversion (EBWI). And a penalty term that controls the degree of

dependence on this extra parameter is added to the EBWI objective function.

EBWI is quadratic on the extended reflectivity. Thus a nested optimization

scheme called variable projection method is used: minimize the objective function

over the extended reflectivity first in an inner stage (which is closely related to the

regularized least squares migration), and then minimize over the background model

in an outer stage, which we refer to as the VPE method. A flexibly preconditioned

regularized least squares migration scheme solves the inner minimization e↵ectively
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and e�ciently, and thus generated a better shaped VPE objective function and more

accurate gradient than without preconditioning based on numerical examples and

thus improve the performance of the VPE method. However, we explain that a the-

oretical estimation of the gradient computation is hard to get in its current setting

and why this is to be expected.

4.2 Introduction

Seismic full waveform inversion (FWI) [Tarantola, 1984a] is a method to get sub-

surface structures of the earth from seismic data, by solving a data-fitting prob-

lem, where wave equations are solved to compute the predicted data. Because of

the problem scale, FWI is usually solved by gradient based algorithm. When the

initial model is not far away from the true model, FWI is an e↵ective method

[Virieux and Operto, 2009]. However, gradient based FWI algorithm usually fails

to recover long scale component of the model (parameters to describe the structures

of the earth) if a good initial model is unavailable [Gauthier et al., 1986].

Born waveform inversion is a partially linearized version of full waveform inversion.

It is defined as a least squares data fitting problem, where the data is predicted using

Born modeling, based on scale separation of the model: model is explicitly separated

as a sum of long scale background model and short scale reflectivity. Both background

model and reflectivity are updated to explain the data. By introducing additional axes

to the reflectivity model (background model remains physical), we get an extended

Born waveform inversion. With additional degrees of freedom or enlarged domain of

search, it is much easier to drive the objective function to a minimum value than the

non-extended problem. Thus A DSO penalty term is added to gain some control on

the extension [Symes, 2008b].

The resulting extended Born waveform inversion is quadratic in the reflectivity
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and thus a nested optimization scheme is employed: namely the variable projection

scheme [Golub and Pereyra, 2003], that is for a fixed background model, solve for the

reflectivity in an inner stage and results in a background model only objective func-

tion [Symes and Carazzone, 1991, Symes, 1993, Kern and Symes, 1994] or the VPE

objective function, then update the background model in an outer stage. More recent

implementation and numerical results could be found in [Huang and Symes, 2015],

where they show numerically that VPE method is more stable and less sensitive to

the initial model than its non-extended analogue [van Leeuwen and Mulder, 2009],

which is also called reflection waveform inversion by [Xu et al., 2012].

Although VPE method is stable and tends to have large region of convexity in

the background model space, it requires the inner problem over the reflectivity (sim-

ilar to least squares migration (LSM) problem) to be solved accurately enough and

thus a lot of iterations are needed. This paper uses a flexibly preconditioned least

squares migration scheme (FPCG) [Huang et al., 2016] to accelerate the convergence

rate of the inner problem and thus reduce the total computational cost of the inver-

sion. The preconditioner is based on optimal pseudodi↵erential scaling, proposed in

[Nammour and Symes, 2009, Nammour, 2009].

In this paper, we present examples based on Gaussian anomaly model with one

reflector below the anomaly that show the inner problem could be solved accu-

rately enough with much less computational cost using FPCG method than the non-

preconditioned method. And also we get a better shaped VPE objective function

and more accurate gradient computation using the FPCG method than that without

preconditioning. We find however that the accuracy of the computed gradient cannot

be bounded by the error in the solution of the inner problem, and explain the source

of gradient error.
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4.3 Theory

Denoted by d the observed data, m(x) the background model (smooth with respect

to the wavelength) and �m̄(x,h) the extended reflectivity model, with x the spatial

coordinate and h the extended coordinate. We use M to denote the physical model

space and M̄ the extended model space, with M a subspace of M̄ . F̄ [m]�m̄ is the

extended Born modeling operator at background model m with perturbation �m̄. If

the additional axis is shot record, the extended perturbation means that for di↵er-

ent shot, the perturbation is allowed to be di↵erent. The extended Born waveform

inversion is defined in equation 4.1.

JEBWI[m, �m̄] =
1

2
kF̄ [m]�m̄� dk2 + ↵2

2
kA�m̄k2. (4.1)

Problem 4.1 is a separable least-squares problem since it is quadratic on the re-

flectivity model. Thus a version of nested optimization scheme: variable projection

method is an e�cient way to minimize it. The quadratic variable �m̄ is eliminated in

an inner stage by minimizing over the extended model space and results in a back-

ground model only objective function, which is referred to as the reduced objective

function or VPE objective in this paper and has the following form:

JVPE[m] = min
�m̄2M̄

JEBWI[m, �m̄] (4.2)

A non-extended version of this objective function has been investigated to update

the long scale background model by [van Leeuwen and Mulder, 2009, Xu et al., 2012].

See [Huang and Symes, 2015] for the most recent results of the VPE problem and

the comparison with other relevant methods: VPE method is more stable and less

sensitive to initial model than its non-extended version.
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4.3.1 Computation of Extended Born Modeling Operator

For di↵erent model extensions, wave equations that need to be solved to compute

the predicted extended Born modeling data are slightly di↵erent. We use the second

order constant density acoustic wave equation (equation 4.3) in this paper to describe

the wave propagation. For shot record model extension, F̄ [m]�m̄ is the solution

�u(x, t;x
s

) of the following wave equations 4.3 and 4.4 sampled at receiver positions

x
r

, with x
s

the position of source impulse (shot) and w(t) the source wavelet. m is the

velocity-squared model and is the background model and �m̄ is the velocity-squared

perturbation, allowed to be di↵erent for di↵erent source position. The perturbed

wave field �u is most accurate when the background model m is smooth and �m̄ is

oscillatory in the wavelength scale [Symes, 2009].

✓
@2

@t2
�m(x)r2

◆
u(x, t;x

s

) = w(t)�(x� x
s

).

u(x,x
s

, t) = 0, t ⌧ 0.

(4.3)

✓
@2

@t2
�m(x)r2

◆
�u(x, t;x

s

) = �m(x;x
s

)r2u(x, t;x
s

)

�u(x,x
s

, t) = 0, t ⌧ 0.

(4.4)

We use regular grid finite-di↵erence scheme to discretize wave equations 4.3 and 4.4.

To be convenient, the computational domain in 2D is a rectangle. Time interval is

discretized as t
n

= n�t. The spatial grid size and �t need to satisfy the CFL condi-

tion [Cohen, 2002]. We use second order leapfrog scheme for time discretization and

use Dirichlet boundary condition for simplicity, that is u = 0 at the four boundaries

of the computational domain. In the design of numerical experiments, we only allow

the reflected energy on the top boundary. The computational domain is extended

such that reflection energies from the rest three boundaries will never be recorded

at receivers, and thus mimics absorbing boundary condition on three sides of the
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domain. The numerical scheme that propagates wave field from time n to time n+1

by solving equation 4.3 has the following form:

un+1 = 2un � un�1 +�t2mLun +�t2!n�(x� x
s

) (4.5)

where un ⇡ u(x, tn;x
s

), L is the discretized Laplacian operator with zero Dirichlet

boundary condition and !n = !(tn). By sampling the solution {un} at receiver posi-

tions, we compute the full waveform data. For each shot position x
s

, wave equation

4.3 is solved independently.

The discretized perturbed wave field �un solves the following discretized wave

equation

�un+1 = 2�un � �un�1 +�t2mL�un +�t2�mLun,

with un the solution of the numerical scheme 4.5. For discretizing the Laplacian

operator L, we adopt the same zero Dirichlet boundary condition.

The position of sources and receivers are usually dozens of meters below the surface

of the earth or the ocean in real acquisition. Thus in the numerical experiment, we

put sources 20 meters and receivers 10 meters below the top boundary. This fact

together with the zero Dirichlet boundary condition on top (free surface) result in a

vertical derivative over the data in both the source side and the receiver side (D
zs

and D
zr with z

s

and z
r

the second coordinate of x
s

and x
r

respectively) as explained

in [Hou and Symes, 2015b]. Since these derivatives are applied to the data, which

solves wave equations, these derivatives are roughly equivalent to D2
t

=
@2

@t2
. And

thus this numerical scheme and acquisition setting introduce two additional orders to

the forward modeling operator and to the Born modeling operator F̄ [m] as will be

demonstrated in the Numerical Examples section.

The operator F̄ [m]T F̄ [m] is a pseudodi↵erential operator ( DO) under assump-
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tions: there are no caustics and multi-pathing [Beylkin, 1985, Rakesh, 1988b, Nolan and Symes, 1996,

ten Kroode et al., 1998, Stolk, 2000, Stolk and Symes, 2004]. A  DO does not move

singularities in its input and has an associated order: to what degree the singular-

ity will be scaled. Theoretically, with absorbing boundary condition, the order of

F̄ [m]T F̄ [m] is n � 1 for n-dimension problems, and we will consider 2D problem

from now on, and F̄ [m]T F̄ [m] has order 1 in this case. With free surface condition,

F̄ [m]T F̄ [m] becomes an order 5  DO: two additional orders in F̄ [m] and two addi-

tional orders in F̄ [m]T . One way to get rid of the influence of free surface condition

is to compose the extended Born modeling operator with the square of the integral

operator I2
t

, with

I
t

=

Z

t

dt.

The integral over t operator I
t

is an order �1 operator. By composing with I2
t

, we

add an additional �2 order to the modeling operator, which un-do the action of D2
t

.

This trick gives us an order 1  DO F̄ [m]T F̄ [m], with F̄ [m] the original extended

Born modeling operator composing with I2
t

.

4.3.2 Flexibly Preconditioned Least Squares Migration with

Regularization

To compute the value of the VPE objective function 4.2 at a given background model

m, a regularized least squares migration (RLSM) needs to be solved

�
F̄ [m]T F̄ [m] + ↵2ATA

�
�m̄ = F̄ [m]Td. (4.6)

We have taken care of the free surface condition and get an order 1 DO F̄ [m]T F̄ [m].
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We want to check the order of the normal operator

N [m] = F̄ [m]T F̄ [m] + ↵2ATA.

The operator ATA is a di↵erential operator (a particular case of  DO). For di↵erent

model extension, ATA might di↵erent and thus could have di↵erent order. We are

using shot record domain model extension in this paper, which requires the target

solution to be physical, in other words, constant along the extended axis. Thus a

natural choice to penalize the non-physicality of the extended reflectivity is A = r
xs ,

which is an order 1 di↵erential operator and ATA is an order 2 di↵erential operator.

Thus problem 4.6 is an ill-conditioned problem despite the choice of ↵.

Optimal pseudodi↵erential scaling method proposed in [Nammour and Symes, 2009,

Nammour, 2009] is a choice of preconditioner to improve the convergence rate of algo-

rithm to solve problem 4.6. For each vector an order s  DO applied on, the optimal

pseudodi↵erential scaling algorithm finds an order �s  DO that approximately undo

the application of the order s  DO, by solving an optimization problem.

The sum of an order 1  DO F̄ [m]T F̄ [m] and an order 2  DO ATA gives an order

2  DO. In order for the preconditioning to take into account of both operators, we

first change the operator A to

A = r
xs⇤

� 1
4 ,

with

⇤ = I � L (4.7)

and L = !2
x

@2

@x2
+ !2

z

@2

@z2
+ !2

xs

@2

@x2
s

. ⇤ is an order 2 di↵erential operator and thus A

as a  DO has order
1

2
. The resulting normal operator N [m] for this choice of A has

order 1. And then the optimal pseudodi↵erential scaling algorithm could be used to

compute preconditioner to improve the convergence of problem 4.6.
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The optimal pseudodi↵erential scaling problem is defined as: for a given b 2 M̄ ,

find an order �1  DO Q, that minimizes

kb�QN [m]bk2. (4.8)

Please refer to [Nammour, 2009] and [Bao and Symes, 1996] for the implementa-

tion and analysis of this problem. In [Nammour, 2009], it is claimed that Qb ⇡

N [m]�1b asymptotically. Note that the minimizer Q depends on b. Based on prob-

lem 4.8 and the flexible preconditioned conjugate gradient method [Notay, 2000,

Knyazev and Lashuk, 2006], we propose to use the following flexibly preconditioned

conjugate gradient (FPCG) algorithm to solve problem 4.6, which is the normal equa-

tion of the following quadratic problem over reflectivity model space

1

2
kF̂ [m]�m̄� d̂k2,

with F̂ [m] =

0

B@
F̄ [m]

↵A

1

CA and d̂ =

0

B@
d

0

1

CA.

4.3.3 Gradient Computation of JVPE

The accuracy of Born modeling as a partially linearized modeling depends on the

scale separation of the model: background model contains only long scale low fre-

quency components of the model, while the reflectivity contains only short scale high

frequency [Symes, 2009]. Thus, we enforce some smoothness in the background model

by using a weighted inner product in its space: hm1,m2iM = hm1,⇤m2i, with ⇤ as the

roughening operator defined in equation 4.7 and h·, ·i the ordinary L2 inner product.

With �m̄ the solution of 4.6 using Algorithm 2, the gradient of JVPE has the following
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Algorithm 2 A flexibly preconditioned conjugate gradient method

Given data d̂ and �m̄0 = 0, modeling operator F̂ , and adjoint operator F̂ T

Given maximum iterations MaxIter and i = 0
r0 = d̂, G0 = F̂ T r0
compute Q0 by solving equation 4.8 with b = G0

g0 = Q0G0

p0 = g0
while (not converge && i < MaxIter) do

q
i

= F̂ p
i

↵
i

=
hg

i

, G
i

i
hq

i

, q
i

i
�m

i+1 = �m
i

+ ↵
i

p
i

r
i+1 = r

i

� ↵
i

q
i

G
i+1 = F̂ T r

i+1

compute Q
i+1 by solving equation 4.8 with b = G

i+1

g
i+1 = Q

i+1Gi+1

� =
hg

i+1, Gi+1 �G
i

i
hg

i

, G
i

i
p
i+1 = g

i+1 + �p
i

i = i+ 1
end while

form

rJVPE[m] = ⇤�1DF̄ [m]T [�m̄, F̄ [m]�m̄� d]. (4.9)

The extended Born modeling operator F̄ is the first order derivative of the forward

modeling operator. Then DF̄ is the second order derivative or Hessian of the forward

modeling operator, and is a bilinear operator. By fixing one argument, we could define

its adjoint DF̄ [m]T [�m̄, ·], which is usually called tomographic or WEMVA operator

[Biondi and Sava, 2004, Biondi and Almomin, 2012]. With the gradient 4.9, we could

use a gradient based optimization algorithm to update the background model.
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4.4 Numerical Examples

4.4.1 Property of normal operator F̄ [m]T F̄ [m]

We use constant background modelm = (2km/s)2 with one reflector (Figure 4.10b) to

numerically study features of operator F̄ [m] and F̄ [m]T F̄ [m]. Since shot record model

extension does not change features of Born modeling and migration operators, we use

one shot in this test for simplicity. Models are discretized by 10 m ⇥10 m simulation

grid. The position of shot is at 20 meter depth and 2000 meter distance. We put 401

receivers at 10 meter depth. The source wavelet !(t) is shown in Figure 4.1b.

(a) (b)

Figure 4.1: Target reflectivity �m (a) and source wavelet with corner frequency 1
Hz, 7 Hz, 28 Hz, 35 Hz (b).

We compute

F [m](�m+ r
k

)

and

F T [m]F [m](�m+ r
k

)

where F [m] is the original Born modeling operator, without composing with I2
t

and

r
k

= W sin(kz).
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�m is the target reflectivity model shown in Figure 4.10b. W is a vertical windowing

operator shown in Figure 4.2. r
k

is scaled such that kr
k

k = 0.5k�mk and the scale is

the same of all k.

Figure 4.2: Windowing operator W .

We first show outputs of Born operator F [m] and normal operator N [m] =

F [m]TF [m] applied to models �m + r
k

for k = 30 and k = 70. Although the L2

norm of r
k

is the same for di↵erent k, the frequency components are very di↵erent.

Figure 4.3b shows the frequency components of r
k

with k = 30 and the corresponding

reflectivity model �m+ r
k

is shown in Figure 4.3a. The Born data and the output of

normal operator N [m] to this model are shown in Figure 4.4a and Figure 4.4b. The

error r
k

in reflectivity model produces a visible error in data, but the main signal is

still clear.

(a) (b)

Figure 4.3: Model �m+ r
k

(a) and spectrum of model r
k

(b) with k = 30.
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(a) (b)

Figure 4.4: With bandpass filtered source wavelet: (a) F [m](�m + r
k

) and (b)
N [m](�m+ r

k

) with �m+ r
k

, k = 30 shown in Figure 4.3a.

We increase the frequency in r
k

by setting k = 70 (Figure 4.5b). The correspond-

ing reflectivity model �m+r
k

is shown in Figure 4.5a. The Born data and the output

of N [m] from this model are shown in Figure 4.6a and Figure 4.6b. Although r
k

has

the same L2 norm as when k = 30, it produces a significant error in data and image.

Even the main signal is hard to distinguish.

(a) (b)

Figure 4.5: Model �m+ r
k

(a) and spectrum of model r
k

(b) with k = 70.

r
k

is considered as the error in the target reflectivity model �m. The L2 norm of

r
k

is the same for di↵erent k as shown in Figure 4.7. However, after application of

the Born modeling operator F [m], the L2 norm F [m]r
k

increases (Figure 4.7a). We

fit the curve with power law estimation. The result shows the order is 2.45067 as
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(a) (b)

Figure 4.6: With bandpass filtered source wavelet: (a) F [m](�m + r
k

) and (b)
N [m](�m+ r

k

) with k = 70.

plotted in Figure 4.7a. Apply the normal operator N [m] to the same sequence of r
k

,

and compute the relative error
kN [m]r

k

k
kN [m]�mk , we get the curve as shown in Figure 4.7b.

The similar power law estimation shows that the order is 4.85. Because we are using

free surface and put sources and receivers bellow the surface, the estimated orders

are as expected, despite some fitting errors.
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Figure 4.7: With bandpass filtered source wavelet: Green curve in both subfigures is

the relative error
kr

k

k
k�mk . (a) the relative error of Born modeling operator

kF [m]r
k

k
kF [m]�mk

and (b) the relative error of normal operator
kN [m]r

k

k
kN [m]�mk with r

k

= W sin(kz), m =

(2km/s)2.
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Integrating the source wavelet twice will take care of the two additional orders in

Born modeling operator coursed by free surface boundary condition. This is equiv-

alent to compose the Born modeling operator F [m] with I2
t

. Figure 4.8 shows the

source wavelet with twice integral over time of the wavelet shown in Figure 4.1b.

Same tests as these with bandpass filtered source wavelet are performed. We would

like to omit outputs of Born modeling operator and the normal operator with this

new source, since these outputs are very similar to these with the original source.

Figure 4.8: Source wavelet after twice integral over time of wavelet in Figure 4.1b.

The same relative error
kF [m]r

k

k
kF [m]�mk is computed with this integrated source wavelet

and shown in Figure 4.9a. We fit the curve with power law estimation. The result

shows the order is 0.476 as plotted in Figure 4.9a. Apply the normal operator N [m]

to the same sequence of r
k

with the same integrated source, and compute the relative

error
kN [m]r

k

k
kN [m]�mk , we get the curve as shown in Figure 4.9b. The similar power law

estimation shows that the order is 0.928.

As we discussed in the Theory section, the application of free surface condition is

equivalent to applying D
zs and D

zr to the data, which is only roughly equivalent to

applying D2
t

, with the approximation closest at high frequency. Thus by composing

the Born modeling operator with I2
t

, the order of the resulting operator will be 0.5

only asymptoticly. Thus we exclude the first two points (k = 10, 20) when we do the

power law fit. Despite these errors, these orders are as expected. And the normal

~ 

D .. 
0 

~ .. 
~ I 
:, . . 
~ 
.. 0 

I 

-0.-4 -0.2 0 0.2 0.-4 0.6 0.8 
Time (•) 



84

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k

 

 

relative error r
k

relative error F[m]r
k

y=7.531e−02x0.476

(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

k

 

 

relative error r
k

relative error N[m]r
k

y=1.326e−02x0.928

(b)

Figure 4.9: With twice integrated source wavelet: Green curve in both subfigures is

the relative error
kr

k

k
k�mk . (a) the relative error of Born modeling operator

kF [m]r
k

k
kF [m]�mk

and (b) the relative error of normal operator
kN [m]r

k

k
kN [m]�mk with r

k

= W sin(kz), m =

(2km/s)2.

operator has been modified to be an order 1  DO as we want.

4.4.2 Flexibly Preconditioned Least Squares Migration with

Regularization

In this section, we use fast Gaussian anomaly model (Figure 4.10a) with one reflector

(Figure 4.10b) to demonstrate the performance of the flexibly preconditioned least

squares migration with regularization.

Wave equations 4.3 and 4.4 are discretized as discussed in section 4.3.1. Isotropic

point source, with a bandpass filtered source wavelet (corner frequency 1 Hz, 7 Hz,

28 Hz, 35 Hz, Figure 4.11a) is used. A total of 81 shots are placed at depth 20 m

with a spacing of 50 m starting at 0 m on the left. 401 fixed receivers are located at

every grid points of depth 10 m. Figure 4.12 shows the computed Born data that is

used as the observed data in the following tests (3 of 81 shots are shown here).

In this subsection, we present results of solving the regularized least squares mi-

--
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(a) (b)

Figure 4.10: (a) target background model and (b) target reflectivity.

(a) (b)

Figure 4.11: (a) source wavelet with corner frequency 1 Hz, 7 Hz, 28 Hz, 35 Hz and
(b) 3 of 81 Born shot records.
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gration problem 4.6 using Algorithm 2. The first step is to compose the extended

Born modeling operator with I2
t

and get a modified normal operator with order 1.

The observed data is preprocessed by applying I2
t

(shown in Figure 4.12), in order

to be consistent with the modeling operator. This is considered as a preconditioning

method with preconditioner I4
t

. We then apply FPCG to this modified problem and

compare the performance with Conjugate Gradient (CG) methods applied to this

modified problem and the original problem.

Figure 4.12: Data integrated over t twice.

The value of ↵ is 0.005 and fixed for all tests based on the same trial-and-error as

discussed in Chapter 2 and [Huang and Symes, 2015]. We solve the above equation at

di↵erent background models: at target background model and at the constant back-

ground model ((2 km/s)2). Figure 4.13a shows the normalized residual: the relative

error of
1

2
kF̄ [m]�m̄ � dk2 + ↵2

2
kA�m̄k2 compared with the error at initial reflectiv-

ity model �m̄ = 0 at the target background model m as shown in Figure 4.10a and

Figure 4.13b shows the normalized gradient length of using two algorithms: the Al-

gorithm 2 and its non-preconditioned version. CG with windowing is the conjugate

gradient method applied to the original data, with the modeling operator composed

with a windowing operator, which smoothly zeros the top 100 m in the reflectivity

model to mitigate the acquisition footprint. The horizontal axis is the number of Hes-

sian applications, which is the number of the applications of F̄ [m]T F̄ [m] + ↵2ATA.
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Figure 4.13: At true background model: convergence curves of numerical methods,
(a) normalized residual and (b) normalized gradient length.

The first horizontal black line in Figure 4.13a is the position of the error of conju-

gate gradient method with windowing after 20 applications of Hessian, which only

achieves the error level of FPCG method with 2 applications of Hessian. CG with I2
t

is the method of applying CG to the problem with extended Born modeling operator

replaced by I2
t

F̄ [m]. For the normalized gradient norm, FPCG with 2 Hessian ap-

plication achieves the same error level of CG with I2
t

and a much smaller error level

than CG with windowing after 20 Hessian applications.

(a) (b)

Figure 4.14: At true background model: Stacked image after 20 Hessian applications
using FPCG (a) and using CG with windowing (b).

The solution of problem 4.6 is a function of x-horizontal axis, z-vertical axis and
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x
s

-shot coordinate. Thus �m̄(z, x,x
s

) is a 3D cube. Figure 4.14 shows the solution

of problem 4.6 after stacking along the shot coordinate:
X

xs

�m̄. Stacked image

(reflectivity) after 20 steps of FPCG method (Figure 4.14a) has much less artifacts

than that from CG method with windowing (Figure 4.14b).

Figure 4.15 shows 10 panels of common image gathers: �m̄(z, x,x
s

) at 10 di↵erent

x positions. Since m is the target background model, gathers should be flat. FPCG

method (Figure 4.15a) produces more clear and less artifacts gathers than CG with

windowing method (Figure 4.15b).

(a) (b)

Figure 4.15: At true background model: Common image gathers after 20 Hessian
applications using FPCG (a) and using CG with windowing (b).

(a) (b)

Figure 4.16: At true background model: data residual after 20 Hessian applications
using FPCG (a) and using CG with windowing (b).
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The data residual is shown in Figure 4.16. Note that we are solving a regularized

least squares migration problem. Fitting the data is only part of the objective. FPCG

method (Figure 4.16a) is much better than CG with windowing (Figure 4.16b in the

sense that much less residual is left during the optimization process.

Although a good image or reflectivity model is very useful by itself, the most

useful information to us is the image gathers, from which we could tell how close is

the background model to the target and in turn create methods to improve the back-

ground model. Thus we apply the FPCG method to solve the regularized extended

least squares migration problem 4.6 at a wrong background model, (2 km/s )2. The
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Figure 4.17: At constant background model ((2 km/s)2): convergence curves of
numerical methods, (a) normalized residual and (b) normalized gradient length.

convergence curves are shown in Figure 4.17. To get the same gradient reduction,

FPCG method could save at least
1

4
of the computational cost of CG with I2

t

algo-

rithm (Figure 4.17b). CG with windowing after 20 applications of Hessian could not

reduce the gradient error to the same level of that by FPCG with 2 applications of

Hessian. Figure 4.17a shows the residual by these three methods. FPCG reduces

the residual very fast at the beginning of the iteration. However, the two methods

reached the same error level eventually. This is because the background model is

wrong. And thus part of the data cannot be fitted by shot domain model extension

- --



90

methods no matter which algorithm we are using. 6 applications of Hessian by FPCG

fits the data to the same level by 20 applications of Hessian by CG with windowing

method.

Figure 4.18 shows the stacked version of the resulting reflectivity model or image.

The constant background model is slower than the target background model at the

center of the domain. Thus the position of the reflector is higher than the target one

at the center. The image from FPCG method (Figure 4.18a) has less side-lobes or

artifacts than that from CG with windowing (Figure 4.18b). The same improvement

by FPCGmethod is observed in the common image gathers by comparing Figure 4.19a

and Figure 4.19b.

(a) (b)

Figure 4.18: At constant background model ((2 km/s)2): Stacked image after 20
Hessian applications using FPCG (a) and using CG with windowing (b).

Figure 4.20a shows the data residual after 20 applications of Hessian by FPCG

method, which has less noise compared with the data residual from CG with window-

ing method (Figure 4.20b). Both the data residual and the image gather information

will be used to compute the gradient for the outer optimization over the background

model. Thus a FPCG method is preferred since it creates less noise in the solution

and thus the data residual than that by CG method.
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(a) (b)

Figure 4.19: At constant background model ((2 km/s)2): Common image gathers
after 20 Hessian applications using FPCG (a) and using CG with windowing (b).

(a) (b)

Figure 4.20: At constant background model ((2 km/s)2): data residual after 20
Hessian applications using FPCG (a) and using CG with windowing (b).
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4.4.3 Shape of JVPE[m] along a line segment

The preconditioning also improves the shape of the VPE objective function. We plot

the value of JVPE[m] along a line segment in the background model space

m = �mtarget + (1� �)m0,

with mtarget shown in Figure 4.10a and m0 = (2km/s)2. � = 1 in Figure 4.21 is the

position of target background model and � = 0 is the position of constant background

model m0.
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Figure 4.21: Value of VPE objective by di↵erent numerical methods and di↵er-
ent number of inner iterations along line segment m = �mtarget + (1 � �)m0 with
mtarget shown in Figure 4.10a and m0 = (2km/s)2 with � = 0 the position of target
background model.

We apply di↵erent number of iterations and di↵erent methods to solve the inner

problem to evaluate the objective function JVPE[m]. As shown in Figure 4.21, when

using CG method with I2
t

, even after 20 applications of Hessian, there is still a model

(� = 0.8) that gives smaller objective function value than the target model. With

FPCG method to solve the inner problem, after 10 applications of Hessian, the target

model produces the smallest objective function value among all these models we
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tested. We do not show the same test using CG with windowing method, because

it gives a very bad shape of the objective function (model that gives the smallest

objective function value is far from the target one).
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Figure 4.22: Value of VPE objective by FPCG method with di↵erent penalty weight
↵ and di↵erent number of iterations along line segment m = �mtarget + (1 � �)m0

with mtarget shown in Figure 4.10a and m0 = (2km/s)2 with � = 0 the position of
target background model.

However, the shape of the objective function depends also on the value of the

penalty weight ↵. As shown in Figure 4.22, with small ↵, the objective function is

flatter than with large ↵. And there are models around the target model that give

smaller values of objective function (� = 0.6). This indicates that when the inverted

background model is close to the target, we need to increase ↵. How to determine ↵

at each iteration of the background update is out of the range of this paper and we

will not discuss here.

This test shows that preconditioning has the ability to produce a better shaped

objective function and could potentially improve the performance of the optimization

over the background model.
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4.4.4 Gradient of VPE objective function

In this section, we compute the gradient of JVPE[m] at m =(2 km/s )2. The solution

�m̄ to the regularized LSM and the data residual as shown in Figure 4.20 are inputs

to the WEMVA operator DF̄ [m]T to compute the gradient defined by equation 4.9.

Figure 4.23a shows the output of DF̄ [m]T [�m̄, F̄ [m]�m̄ � d] with �m̄ computed

by FPCG method. Figure 4.23b shows the same output with �m̄ computed by CG

with windowing method. Then we apply ⇤�1 to Figure 4.23 and get the gradient as

shown in Figure 4.24.

(a) (b)

Figure 4.23: At constant background model (m =(2 km/s)2): output of
DF̄ [m]T [�m̄, F̄ [m]�m̄ � d] with �m̄ the solution of problem 4.6 after 20 Hessian ap-
plications using FPCG (a) and using CG with windowing (b).

The implementation is explained in Appendix A. We set the top 100 m to zero

and use odd boundary condition on the top of the domain and use even boundary

condition on the rest three boundaries for discrete Fourier transform. We choose

!
x

= !
z

= 100 in this example. The anomaly in the middle of the domain has been

successfully indicated in the gradient, although there are unwanted noise (blue color)

around the anomaly (red color)(Figure 4.24).

We also compute a gradient accuracy test as we did in Chapter 2. We compute

the relative error of the following two quantities for h = 0.2, with the one on the right
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(a) (b)

Figure 4.24: At constant background model (m =(2 km/s)2): gradient computed
by equation 4.9 with �m̄ the solution of problem 4.6 after 20 Hessian applications
using FPCG (a) and using CG with windowing (b).

Numerical methods dm1 dm2
h 0.1 0.05 0.025 0.1 0.05 0.025
FPCG 0.1108 0.0525 0.0643 0.1715 0.0814 0.1346
CG with I2

t

0.1131 0.1147 0.1105 0.0467 0.0579 0.0633
CG with windowing 0.9890 1.0088 1.0673 1.3502 1.1384 0.6748

Table 4.1: Gradient test at constant background model m = (2km/s)2 for di↵erent
dm and di↵erent numerical methods with 20 applications of LSM Hessian.

hand side as the value of reference

JVPE[m+ h ⇤ dm]� JVPE[m� h ⇤ dm]

2h
⇡ hrJVPE[m], dmi

s

, (4.10)

at the background model m =(2 km/s)2. We compute the relative error for di↵erent

directions (di↵erent dm): the anomaly in the model (denoted by dm1 in Table 4.1)

and the anomaly shifted 1000 m to the left (denoted by dm2 in Table 4.1). Relative

errors by several methods in Table 4.1 tells us that preconditioning helps to improve

the accuracy of the gradient computation, at least in directions we test. At direction

dm1, FPCG works better than CG with I2
t

as the preconditioner. At direction dm2,

CG with I2
t

produces more accurate gradient than FPCG. Both FPCG and CG with

I2
t

produce more accurate gradient than CG method without preconditioning.
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Preconditioning can significantly improve the convergence rate of the inner prob-

lem and produce high quality reflectivity and can also improve the gradient compu-

tation based on our numerical test. However, we could not estimate the error in the

gradient computation theoretically at this moment, which we will discuss the reason

in the next subsection.

4.4.5 Property of DF [m] operator

Although preconditioning improves the behavior of the objective function and makes

its computation more e�cient, and gives a computationally more accurate gradient

than without precondition, we still could not give an error estimate to the gradient

based on the error in solving the inner problem. We explain the reason by studying

the property of DF [m] operator, that is DF [m] operator is of one order higher than

F [m] operator [Symes, 2015].

We compute

DF [m][dm, �m+ r
k

]

with m = (2km/s)2, dm the fast Gaussian anomaly shown in Figure 4.26 and r
k

=

W sin(kz), as we did for the Born modeling operator and normal operator in the

Property of normal operator subsection. �m is the target reflectivity model shown

in Figure 4.10b. We follow the same one shot acquisition setting as before. W is

a vertical windowing operator shown in Figure 4.2. We perform the test for both

bandpass filtered source and the twice integral of it.

The DF [m][dm, �m + r
k

] data with di↵erent source wavelets are shown in Fig-

ure 4.27a and Figure 4.27b. The error r
k

in reflectivity model produces a visible error

in data, but the main signal is still clear.

Similar output of DF [m][dm, �m + r
k

] for k = 70 are shown in Figure 4.28a and

Figure 4.28b. Although r
k

has the same L2 norm as when k = 30, it produces a
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Figure 4.25

Figure 4.26: Fast Gaussian anomaly dm.

(a) (b)

Figure 4.27: Output of DF [m][dm, �m + r
k

] with k = 30, m = (2km/s)2 and �m
shown in Figure 4.10b with bandpass filtered source wavelet (a) and source wavelet
integrated over time twice (b).
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significant error in data. Even the main signal is hard to distinguish.

(a) (b)

Figure 4.28: Output of DF [m][dm, �m + r
k

] with k = 70, m = (2km/s)2 and �m
shown in Figure 4.10b with bandpass filtered source wavelet (a) and source wavelet
integrated over time twice (b).

The relative L2 error ofDF [m][dm, r
k

] overDF [m][dm, �m] for di↵erent k is shown

in Figure 4.29. Theoretically, the derivative of Born modeling operator is of order

3.5 if using original source wavelet, and is of order 1.5 if composing with I2
t

operator.

The power law estimation shows that the order is 3.45 for original problem and is

1.43 if composing with I2
t

.

The quotient of L2 norms of DF [m][dm, r
k

] and F [m]r
k

as a function of k is shown

in Figure 4.30, which shows that operator DF [m] is of one order higher than F [m],

as explained in [Symes, 2014, ten Kroode, 2014, Symes, 2015]. Despite some errors

in fitting the curve, the estimated orders are as expected.

The most important information Figure 4.30 reveals is that a small L2 error in

data misfit (achieved by solving preconditioned regularized least squares migration)

does not necessarily imply a small L2 error in the output of DF [m][dm, ·], and thus

does not imply a small error in the gradient computation, which depends on DF T [m].
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Figure 4.29: Green curve in both subfigures is the relative error
kr

k

k
k�mk . the relative

error of DF [m] operator
kDF [m][dm, r

k

]k
kDF [m][dm, �mk with r

k

= W sin(kz), m = (2km/s)2 and

dm the fast Gaussian anomaly shown in Figure 4.26 when using (a) bandpass filtered
source wavelet (Figure 4.1b) and (b) twice integral of bandpass filtered source wavelet
(Figure 4.8).
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Figure 4.30: Quotient of L2 norms of DF [m][dm, r
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] and F [m]r
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, when using (a)
bandpass filtered source wavelet (Figure 4.1b) and (b) twice integral of bandpass
filtered source wavelet (Figure 4.8).

- -- -



100

4.5 Discussion

We discussed a nested optimization scheme to solve the extended Born waveform

inversion: namely the variable projection method (VPE method) and proposed a way

to modify the DSO term to have the same order with the least squares Hessian. And

then the optimal pseudodi↵erential scaling could be used to accelerate the convergence

of the inner problem (FPCG algorithm) and thus reduce the over all computational

cost of the VPE method.

Numerical discretization of the wave equation influences the order of the normal

operator F̄ [m]T F̄ [m], as shown by numerical examples. Simple preconditioning by I2
t

improves the condition number of the problem with free surface boundary condition

and gives an order 1 normal operator.

Numerical results based on the fast Gaussian anomaly model indicates that the

optimal pseudodi↵erential preconditioning significantly improved the accuracy and

quality of the solution to the regularized LSM problem (inner problem) and generated

a better shaped VPE objective function and a more accurate gradient.

However, the theoretical relation between the error in solving the inner problem

and the error in the gradient computation has not been established. The reason

is that the small L2 error in the data misfit does not imply a small error in the

WEMVA operator. In other words, a small error in the inverted reflectivity model

could produce large error in the gradient, because the WEMVA operator (DF̄ [m]T )

is of one order higher than the RTM operator (F̄ [m]T ). How to give an theoretical

estimate on the error in the gradient of VPE method is still unsolved.



Chapter 5

Discussion

This thesis investigated methods to modify full waveform inversion to recover low

frequency components of the model (background model) from seismic data, which is

usually hard for FWI. We replaced the forward modeling operator in FWI with Born

modeling operator based on the scale separation of the model: the model is explicitly

separated as background model and reflectivity and and results in a Born waveform

inversion method. BWI is quadratic in reflectivity and non-linear in background

model, and thus a variable projection method could be applied: minimize over the

reflectivity model in an inner stage and result in an objective function that is of

background model only; and then minimize over the background model in an outer

stage. Variable projection method improves the iterative BWI method (as shown

in Chapter 2 and [van Leeuwen and Mulder, 2009, Xu et al., 2012]) to some extend.

Further improvement is achieved by model extension: allow the reflectivity to depend

on an extra parameter (shot coordinate in this thesis). And then add a weighted

DSO penalty term to control the degree of non-physicality in the extended reflectivity.

Examples in Chapter 2 shown that both model extension and variable projection are

necessary for a successful Born waveform inversion.

Another conclusion we draw from Chapter 2 is that the inner problem needs
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to be solved accurately enough for two reasons: first, there are models that give

smaller objective function value than the target model if the inner problem is not

solved accurately enough, and the more accurate the solution of the inner problem,

the closer the minimum to the target model; second, the accuracy of the gradient

computation relies on the accuracy of the inner problem solution. This observation

motivate us to propose a method that could solve the inner problem e�ciently.

We proposed a flexibly preconditioned conjugate gradient algorithm (FPCG) to

improve the convergence rate of least squares migration in shot record domain (very

similar to the inner problem of VPE method, by dropping the DSO term) in Chap-

ter 3. The preconditioner is the optimal pseudo-di↵erential scaling proposed by

[Symes, 2008a, Nammour and Symes, 2009, Nammour, 2009] based on the feature of

the least squares Hessian: it is a pseudo-di↵erential operator. Numerical examples

based on constant density acoustics in Chapter 3 shown that the proposed method

could achieve a smaller data misfit and gradient error with a fixed computational cost

than without preconditioning, and produced high quality image with more balanced

amplitude and less artifacts than that produced by the non-preconditioned algorithm.

Although we used acoustic constant density wave equation in the analysis and

examples, the foundations do not rely on acoustic constant density and could be ex-

tended to complex physics, such as variable density and elasticity. The resulted bal-

anced amplitude image has potential to improve the amplitude-versus-o↵set (AVO)

analysis [Tarantola, 1984a, Lörtzer and Berkhout, 1989, Castagna, 1993, Luh, 1993]

and other velocity analysis methods, such as inversion velocity analysis [Liu et al., 2014,

Symes, 2015] and VPE method discussed in Chapter 2.

In Chapter 4, we first discussed how to modify the inner problem (regularized

least squares migration in shot record domain) of VPE method to use the FPCG

method proposed in Chapter 3. Numerical results shown that the FPCG method
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improved the convergence rate of the inner optimization problem and generated a

better shaped VPE objective function and more accurate gradient computation of

VPE objective with less computational cost than without preconditioning, and may

potentially improve the overall convergence of VPE method. However, we still cannot

get a theoretical bound of the error in gradient gradient computation. We explained

the reason by analyzing the behavior of DF [m] operator: it has one more order than

the Born operator F [m]. Small L2 errors in the reflectivity may result in large error

in the gradient. Thus the error in the gradient (depends on DF [m]T in equation

4.9 ) is not controlled by the error in solving the inner problem (equation 4.6). Any

attempts to use high frequencies to invert for the model will face this problem.



Appendix A

Power of Laplace operator ⇤ and implementation

Assume we consider the problem in 2-dimensional space. We follow the analysis in

[Kern and Symes, 1994]. The anisotropic Laplace operator on m(x) with x = (x, z)

is defined as

Lm =

✓
!2
x

@2

@x2
+ !2

z

@2

@z2

◆
m.

The dicretized version of operator L

(Lm)
i,j

= !2
x

m
i+1,j � 2m

i,j

+m
i�1,j

dx2
+ !2

z

m
i,j+1 � 2m

i,j

+m
i,j�1

dz2
.

could be diagonalized by the discrete Fourier operator F , which is unitary. That is

there exists an diagonal operator ⌃ such that

F T⌃F = L.

L is a uniform elliptic operator and �L is a nonnegative operator. Thus the square

root of I � L exists and is invertible, with I being the identity operator. Define

⇤ = I � L.
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Then ⇤ = F T (I�⌃)F and I�⌃ has diagonal approximately 1+!2
x

k2dx2+!2
z

l2dz2

for small wave number kdx, ldz (number of waves that exist over the distance dx for

x direction). It is obvious that ⇤ is self-adjoint. We use FFTW software package

[Frigo and Johnson, 2005, ] in our program to compute the Fourier transform and its

adjoint (inverse).



Appendix B

Computation of the gradient of JVPE

For a background model m, the directional derivative of JVPE for a given perturbation

dm is

DJVPE[m]dm = D
m

JEBWI[m, �m̄]dm+D
�m̄

JEBWI[m, �m̄]D
m

�m̄dm

The second term in the above equation is

D
�m̄

JEBWI[m, �m̄]D
m

�m̄dm = hF̄ [m]D
m

�m̄dm, F̄ [m]�m̄� di+ ↵2hAD
m

�m̄dm,A�m̄i

= hD
m

�m̄dm, F̄ [m]T (F̄ [m]�m̄� d)i+ ↵2hD
m

�m̄dm,ATA�m̄i

= hD
m

�m̄dm, (F̄ [m]T F̄ [m]� ↵2ATA)�m̄� F̄ T [m]di

Since �m̄ satisfies the normal equation (2.9), the second term inside the angle brackets

vanishes. Thus only the first term will contribute to the final gradient of JVPE. Thus

DJVPE[m]dm = hDF̄ [m][�m̄, dm], F̄ [m]�m̄� di

Since F̄ [m] = DF̄ [m], we have DF̄ [m] = D2F̄ [m], which is the Hessian of the

extended forward operator F [m]. It takes two arguments and is a bilinear operator.
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Then by fixing one argument, we could define its adjoint operator DF̄ [m]T

DJVPE[m]dm = hdm,DF̄ [m]T [�m̄, F̄ [m]�m̄� d]i

= hdm,⇤�1DF̄ [m]T [�m̄, F̄ [m]�m̄� d]i
M̄

Thus we get the gradient

rJVPE[dm] = ⇤�1DF̄ [m]T [�m̄, F̄ [m]�m̄� d].
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