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ABSTRACT

Dynamics of brain networks during reading

by

Meagan Lee Whaley

We recorded electrocorticographic (ECoG) data from 15 patients with intractable epilepsy

during a word completion task to precisely describe the spatiotemporal brain dynamics un-

derlying word reading. Using a novel technique of analyzing grouped ECoG, cortical regions

distributed throughout the left hemisphere were identified as significantly active versus base-

line during our word stem completion task. Regions of activity spread from fusiform to frontal

regions, including pars opercularis, pars triangularis, and pre, post, and subcentral gyri dur-

ing the time period approaching articulation onset. The ECoG data recorded from electrodes

within these regions were fit into linear multivariate autoregressive models, which precisely

reveal the time, frequency, and magnitude of information flow between localized brain re-

gions. Grouped network dynamics were quantified with two metrics of evaluating statistical

significance of post-stimulus interactions compared to baseline. Results from both meth-

ods reveal bidirectional exchanges between frontal regions with fusiform, supporting theories

which incorporate top-down and bottom-up processing during single word reading.
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Chapter 1

Introduction

Reading is an elegant, important part of human interaction. A broad set of regions, situated

primarily in the left hemisphere (Price (2012); Fiez and Petersen (1998)), function together

to achieve the transformation of visually presented words into spoken output, yet how these

regions drive each other is largely unknown. With this research, we set out to address

the challenging and clinically important topic of explaining the spatiotemporal dynamics of

interregional brain interactions within a specialized set of brain regions during a word reading

task with a hybrid analysis of electrocorticographic (ECoG) recordings from 15 humans.

Orthography (visual word representation), semantics (subjective word meaning), and

phonology (word sounds) are traditionally accepted as the major processes that give rise

to word reading. Studies of language-impaired patients have led to a theory that visual

word representations are mapped to their pronunciations through two routes (Patterson and

Hodges (1992); McCarthy and Warrington (1986); Coltheart et al. (1993)): the direct route

(which maps words directly to their meanings); and the indirect route (which maps words

directly to their sounds). The routes operate interactively and in parallel with one another

(Dehaene (2009, Chapter 1, pages 40-41)). Where these routes are anatomically realized (if

they do indeed exist) is a matter of continued interest (Jobard et al. (2003)).

The Connectionist model (Seidenberg (2005)) provides an alternate framework where
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word reading is achieved through multi-layered, weighted links connecting orthographic,

phonological, and semantic units. The weights adjust as the network learns how to generate

the correct pronunciation for each input. Neither the Dual-Route nor Connectionist models

make predictions at the neural level. Additionally, empirical support for the models (Jobard

et al. (2003)) often include regions that perform multiple functions, adding to the difficulty

of validating the models (Mechelli et al. (2005)).

Perhaps the most illustrious anatomical region associated with word reading is a location

in the sulcus at the junction of ventral occipital and temporal cortices (referred to as the

occipitotemporal junction (vOT)). This area, referred to by some as the Visual Word Form

Area (Dehaene and Cohen (2011)), responds to multimodal inputs with preferential robust

activations for word and word-like stimuli within the first several hundred milliseconds fol-

lowing stimulus onset. While debate has surrounded the functional specificity of the vOT,

(Price and Devlin (2003)), it is undeniably an area of remarkable interest.

The Interactive Account hypothesizes (Price and Devlin (2011)) that vOT is involved

in dynamic feedforward and feedback interactions with “sensory and higher level regions.”

These connections enable the reading network to achieve accurate performance by integrat-

ing top-down predictions (gained from experience) with bottom-up visual information. A

clear anatomical prediction made by the Interactive Account is that bottom-up, feedforward

transmissions from vOT will exceed top-down processes for unfamiliar visual input, such as

pronounceable, meaningless letter strings or unfamiliar words. Recent evidence (Schurz et al.

(2014); Carreiras et al. (2014)) has supported the plausibility of the Interactive Account, yet
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the time course of interactions involving vOT has yet (to our knowledge) been investigating

with ECoG.

With this work, we sought to understand how the area associated with pre-lexical process-

ing engages the rest of the word reading network, thus testing the validity of the Interactive

Account.

Owing to its exceptional temporal and spatial resolution, ECoG is especially well-suited

for characterizing the fast neural activation patterns during language tasks (Nobre et al.

(1994); Mainy et al. (2008); Lachaux et al. (2012)). Broad gamma (approximately 30-

240Hz) ECoG activity has proven to be a robust task-specific indicator in a number of

language and memory tasks (Crone et al. (2001b); Lachaux et al. (2012); Edwards et al.

(2010); Conner et al. (2014); Kadipasaoglu et al. (2014)). Continuing in the spirit of a

recent electroencephalogram (EEG) study (Bedo et al. (2014)), we have pursued the goal of

determining how regions communicate during word reading, with a particular focus on the

fusiform (which is near vOT), utilizing precise maps of brain dynamics inferred from ECoG

data within the mid gamma (60-120Hz) range.

Approaches to achieve this goal include Granger Causality (Granger (1969); Brovelli et al.

(2004)), the directed transfer function (Kamiński and Blinowska (1991)), and Amplitude En-

velope Correlation (Vidal et al. (2012); Conner et al.). Korzeniewska et al. (2008) combined

two methods, partial coherence and the directed transfer function, when they introduced the

Short-time direct Directed Transfer Function (SdDTF) within the statistical testing frame-

work of the Event-Related Causality (ERC) method. SdDTF values indicate directionality,
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that is, whether a region is sending or receiving information, and connectivity, whether the

flows are direct or mediated by another region, over a desired frequency range, thus pro-

viding concise descriptions of network dynamics. It is a powerful statistical tool that treats

multiple time series as a single, multivariate system, rather than piecing together individ-

ual or bivariate components into a global model. This multidimensional design appeals to

our investigation of widespread regions across the left hemisphere. Its demonstrated ability

to reveal meaningful conclusions from individual (Korzeniewska et al. (2008), Korzeniewska

et al. (2011)) and grouped ECoG (Flinker et al. (2015)) motivated us to extend this method

to discover patterns at the group level from our word stem completion ECoG data.

During our word stem completion task, we collected ECoG data from 15 patients as

they viewed a series of partial words (stems), e.g., “ru ”. Each patient was instructed to say

aloud the first action word that came to mind (“running”). We worked under the assumption

that word stem completion and word reading involve similar processes, with the difference

that word retrieval time is slower during word stem completion (Dhond et al. (2001)). In

addition to support from neuroimaging evidence (Ojemann et al. (1998)), we confirmed that

the brain locations significantly active during our word stem task (which include fusiform,

pars triangularis, pars opercularis, precentral, subcentral, and postcentral) largely agree with

word reading networks identified by both fMRI (Price (2012)) and ECoG (Vidal et al. (2012))

and category-specific networks (Conner et al. (2014)), leading us to conclude that similar

processes are indeed recruited during both tasks.

Our grouped network analysis revealed fusiform holds dynamic conversations with pars

-
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triangularis, pars opercularis, precentral, postcentral, and subcentral regions. Fusiform re-

mains online from stimulus onset through articulation onset, sending and receiving flows

from areas associated with semantic and phonological processing. Taken together, the dy-

namic, time-varying bi-directional links fit better within the Connectionist framework (and

particularly the Interactive account from Price and Devlin (2011)) than the Dual-Route

framework.

In the sections to follow, we elaborate on the details of how we achieved our findings,

starting with the experimental ECoG data in §§2.1, 2.3, and 2.4. The pre- and post-operative

image acquisition specifications are given in §2.2. The grouped ECoG analysis technique is

discussed next in §2.5, followed by the time series methods used to model the ECoG data

in §2.6 and the SdDTF measure of information flow in §2.7. The statistical framework we

utilized is covered in Section 2.8. Chapter 3 gives the grouped ECoG results in §3.1, regional

mid-gamma activations in §3.2, and concludes with dynamics of regional interactions inferred

from ERC in §3.3. We discuss their relevance to describing the nature of word reading in

Chapter 4, offering our final remarks and conclusions in Chapter 5.
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Chapter 2

Materials and Methods

We collected ECoG from fifteen patients with intractable epilepsy (5 male; mean 32 ±

10 years; average IQ of 97 ± 13; 1 left-handed) who underwent surgical implantation of

subdural electrodes for seizure localization. Following approval by the University of Texas

Health Science Center’s committee for protection of human subjects, informed consent was

obtained from all patients to participate in this study.

2.1 Experimental data

Several days after their electrode implantation surgeries, patients performed a series of lan-

guage tasks, including word stem completion. During word stem, patients viewed 80-100

stimuli on a 15” LCD monitor presented at eye level approximately 2 feet away. Stimuli con-

sisted of black, lower-case text (font height of 100 pixels, font type of Calibri) on a 1300×800

pixel white background. Patients were instructed to complete each stem with the first action

word that came to mind. Stimuli were randomly drawn from the list in Table 2.1.

The transistor-transistor logic pulse initialized by the task presentation software recorded

the time of stimulus onset. The audio recording of each task session was used to label the

onset of articulation and measure the reaction time, RT.
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avoi bak ben blen boi brea bru brus bu buil

cal catc chas che cho clea cli clim coun craw

danc div dra drea dres drin driv dum ea eras

fal fee fl giv gro hea hel hol hun jum

kee kis knee knoc lau lea lear lis loo lov

mov pai pla pou pra prac punc pus qui rea

reac rid ru se shak sho si slee smil smok

spea stan stea sto stretc swi tak thro tou tur

visi wast wav wea wor wri

Table 2.1 : Stimuli for each patient were randomly drawn from this list.

2.2 3D surface representations

Prior to implantation surgery, a 3T whole-body MR scanner (Philips Medical Systems, Both-

ell WA) furnished with a 16-electrode SENSE head coil was used to collect the anatom-

ical MRI scans with magnetization-prepared 180 degree radio-frequency pulses and rapid

gradient-echo (MP-RATE) sequence. The scanner was optimized for gray-white matter con-

trast with 1 mm thick saggital slices and an in-plane resolution of 0.938 × 0.938 (Ellmore

et al. (2009)). Following the scans, the cortical surface representations were reconstructed

with FreeSurfer software (v5.1) (Dale et al. (1999)) which were then imported to SUMA

(Saad and Reynolds (2012)) for our analysis.
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2.3 ECoG collection

1873 total subdural electrodes (PMT Corporation; top-hat design; 3 mm diameter contact

with cortex) were implanted following methods previously published (Tandon (2008)). Figure

2.1 shows all electrodes implanted represented on a standard N27 surface. Those in white

were viable for our analysis, and those in black were excluded due to noise or close proximity

to epilepsy tissue.

Figure 2.1 : The 1873 electrodes implanted in all 15 patients are represented on a standard

surface. The electrodes in white were viable for our analysis, while those in black were

excluded for noise or close proximity to epilepsy tissue.

The ECoG data was collected at 1000 Hz using NeuroFax software (Nihon Kohden,
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Tokyo, Japan, ∆t = 1ms in Table 2.2) with a bandwidth of 0.15-300Hz or at 2000Hz using

NeuroPort NSP (Blackrock Microsystems, Salt Lake City, UT, ∆t = 0.5ms in Table 2.2)

with a bandwidth of 0.1-750Hz (see Table 2.2 for the breakdown by patient). The data from

every electrode was re-referenced to a common average which excluded those with 60Hz

noise or interictal activity when initially referenced to an artificial 0V (Crone et al. (2001a)).

Electrodes were localized following previously published techniques in Pieters et al. (2013).

436 were excluded due to 60Hz noise or epileptiform activity. Of the remaining electrodes,

a subset of 183 electrodes was selected for the network analysis based on the SB-MEMA

analysis.

2.4 ECoG processing

Patients’ videos were reviewed to exclude trials with unclear or incorrect responses. Ad-

ditionally, trials with epileptiform activity or 60Hz noise were excluded. The distribution

of each patient’s RT’s over the remaining trials are presented in Figure 2.2a, with outliers

(p<0.01) shown as red crosses.

The time from stimulus offset to the next stimulus onset randomly varied between XXX

and 8.5 s. With the aim of creating grouped, time evolving activation maps describing word

reading networks, trials with response times outside the 750-2000 ms window after stimulus

onset were excluded (see Figure 2.2b for the distributions of RT for the remaining trials).

Furthermore, we analyzed time periods for trials aligned to stimulus onset and to RT to

capture the collective cognitive processes engaged by all patients after viewing the stimulus
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(a) Distribution of all RT’s. (b) RT distribution after excluding trials.

Figure 2.2 : Boxplots showing word stem response times for all patients with the median

times as the horizontal black bars. RT’s with p<0.01 are labeled with red crosses.

and during the period leading up to articulation onset.

Table 2.2 summarizes patient behavioral data, including the total trials presented and the

number removed for incorrectness or noise (lumped into the Excluded trials column) or RT.

The mean and standard deviation (St Dev) of RT for the remaining trials is shown, as well

as the time between samples for the ECoG recordings in the last column (∆t in Equation

(2.8)).

2.5 Surface-based Mixed Effects Multilevel Analysis

To achieve statistically robust and topologically accurate analyses of individual and population-

level ECoG data, we implemented a surface-based mixed-effects multilevel analysis (SB-
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Patient
Total Excluded RT<750ms or Remaining Mean RT St Dev RT ∆t
trials trials RT>2000ms trials (ms) (ms) (ms)

1 80 39 9 32 1027 263 1
2 80 27 11 42 1027 254 1
3 80 35 6 39 1175 310 1
4 80 34 2 44 1138 205 1
5 80 46 3 31 1062 263 1
6 80 23 19 38 1519 259 1
7 80 19 9 52 1055 256 1
8 80 33 15 32 1486 228 1
9 80 31 6 43 1149 280 1
10 80 48 8 24 1451 289 0.5
11 100 67 7 26 1022 275 0.5
12 100 46 34 20 973 173 0.5
13 100 64 6 30 1340 315 0.5
14 80 27 3 50 1311 282 1
15 100 67 4 29 1045 258 0.5

Table 2.2 : Patient behavioral data summary. The table shows the total number of trials
administered, the number of trials excluded for technical, noisy, or incorrect responses, those
excluded with RT’s outside 750-2000 ms, and the mean and standard deviation of RT’s of
the remaining trials. The time between samples of the ECoG recording equipment (∆t in
Equation 2.8) is in the last column.

MEMA) (Kadipasaoglu et al. (2014)). SB-MEMA was developed to overcome challenges

in grouped ECoG analyses due to: a) individual data representation - arising from difficul-

ties in the accurate localization and spatial transformation of ECoG on convoluted cortical

topology (Miller et al. (2007); Dykstra et al. (2012); Esposito et al. (2012); Conner et al.

(2014)); b) inter-subject comparisons - arising from issues of sparse sampling and inter-

subject anatomical variability (Lachaux et al. (2003); Anticevic et al. (2008); Jerbi et al.

(2009); Oosterhof et al. (2011); Saad and Reynolds (2012)); and finally c) statistical analy-

ses of grouped datasets - arising from small sample sizes, missing data, and violations in the
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assumptions of traditional statistical models (e.g. ANOVA/t-tests) (Chen et al. (2012); Con-

ner et al. (2014); Kadipasaoglu et al. (2014)). To address these issues, we developed novel

methods to accurately represent recording electrode coverage sites and spatially transform

high-frequency ECoG activity on cortical surface models. We integrated these techniques

with surface-based co-registration to correct for inter-subject anatomical variability, and

have incorporated a mixed-effects multilevel grouped analysis to control for sparse sampling,

outlier inferences, as well as intra-and inter-subject variability (Kadipasaoglu et al. (2014)).

In sum, SB-MEMA yields increased statistical power and more accurate grouped effect es-

timates to enable the generation of multi-human brain activity maps of cognitive functions,

such as reading, that are impossible to study save in humans.

2.6 Time series analysis

For a single patient, the electrical potential recordings from each electrode during the word

stem task generate time series with Ns values per trial, which refers to the time between

stimulus onsets. After bandpass filtering the ECoG for 60 Hz noise (using a square filter with

sigmoid flanks and half amplitude roll off of 1.5 Hz), the ECoG data was divided into trials,

which were aligned to stimulus onset or RT and split into nτ windows of length ns. The trial

mean was subtracted from the data at every time point before dividing by the trial standard

deviation. Then, within each window, the (window) temporal mean was subtracted from the

entire trial before dividing by the (window) temporal standard deviation. For nt total trials,

the resulting pre-processed signal from electrode i is xi ∈ RNs×nt . The ne electrode signals
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identified with SB-MEMA for a single patient and fixed time j and trial k are organized

together in Xj,k = {x1
j,k, x

2
j,k, . . . , x

ne
j,k} ∈ Rne .

For a fixed trial k, the patient-specific multivariate time series are fit to the predictive

Multivariate Autoregressive (MVAR) model on each window

Xj,k +
m∑
`=1

A
(m)
` Xj−`,k = E

(m)
j,k . (2.1)

The model of (2.1) encodes multivariate causality in the entries of the unknown convolution

matrices A
(m)
` ∈ Rne×ne , which include information from every electrode. The model order

m, selected as the minimizer of Equation 2.4, gives the number of time points in the past

used to forecast the time series at time j. The unknown convolution matrices and model fit

error term, E
(m)
j,k ∈ Rne , are retrievable with certain assumptions on X and E.

Firstly, X and E are assumed to have zero-mean, which is guaranteed during pre-

processing. Next, we presume that X is weakly stationary and weakly ergodic. A key

property of a weakly stationary X is that its lagged trial averages (called lagged cross-

correlation matrices) only depend upon the time shift. This dependence is seen in the

definition of the cross-correlation matrix of lag u in

Ru ≡
1

nt

nt∑
k=1

Xj,kX
T
j+u,k, 1 ≤ j ≤ ns − u.

Furthermore, when we are permitted to exchange the (trial-averaged) cross-correlation with

the (time-averaged) cross-correlation from a single trial,

Ru =
1

ns − u
ns−u∑
j=1

Xj,kX
T
j+u,k,
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X is weakly ergodic (Bendat and Piersol (1971, §3.3)). Finally, we presume that the model

error is uncorrelated with the time series at all non-zero lags, so that for model order m,

nt∑
j

E
(m)
j,k X

T
j−`,k = 0, ` > 0.

Under these standard assumptions, we take the outer product of XT
j−`,k with the model

in (2.1) and upon taking averages, arrive at

R−u + A1R−u+1 + . . .+ AmR−u+m = 0, u = 1, . . . ,m, (2.2)

the Yule-Walker Equations (Ding et al. (2006, Chapter 17)). With the assumption of weak

ergodicity, the empirical cross-correlations are computed and trial-averaged

Ru =
1

nt

nt∑
k=1

(
1

ns − u
ns−u∑
j=1

Xj,kX
T
j+u,k

)
.

Given m, {A(m)
1 , . . . A

(m)
m } are determined using Equation (2.2) with the method presented in

Morf et al. (1978). The model orderm is selected as the minimizer which reduces error related

to C(m), the time-independent covariance matrix of E
(m)
i , while penalizing for over-fitting

with large orders. An expression for computing C(m) is is obtained by right-multiplying

Equation (2.1) with XT
j,k and averaging

C(m) = R0 +
m∑
`=1

A
(m)
` R`. (2.3)

With all the supporting definitions in place, the model order m is now formally defined as

the minimizer of the Bayesian Information Criterion, or BIC (Ding et al. (2006, Chapter

17)),

BIC(m) = 2 log(det(C(m))) + (2ne
2m log (nsnt))/nsnt. (2.4)

Once the model order is chosen, the superscript notation is dropped.
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2.7 SdDTF as a measure of network dynamics

The MVAR model in (2.1) allows for a smooth transition to frequency domain representations

of information transfer and connectivity, including the (directed) transfer function and partial

coherence (H and P , respectively). Combining these measures yields the Short-time Direct

Directed Transfer Function, (SdDTF), a measure of direct, directed information flow. Upon

selecting the model order m as the minimizer of Equation 2.4 (and subsequently dropping it

from the superscript notation), the MVAR model in (2.1) is rearranged

m∑
`=0

A`Xj−`,k = Ej,k. (2.5)

where A0 = Ine×ne , the ne × ne identity matrix. For arbitrary time series S ∈ RK defined

on the grid tk = k∆t, k = 0, . . . , K − 1, for the time constant ∆t, the discrete Fourier

transform at frequency fw (Bendat and Piersol (1971, §9.3.2)) is

Ŝw =
K−1∑
k=0

Sn exp(−2πifwk∆t). (2.6)

For this ∆t, frequencies up to 1/2∆t (the Nyquist frequency) are well-defined (Bendat and

Piersol (1971, §7.3.1)). ∆t is experimentally constrained because it depends on the time

between samples of the ECoG recordings (see Table 2.2) and is at most 1 ms, giving a

Nyquist frequency of 500 Hz. Frequency indices w = 1, . . . , nf match frequency values

f1, . . . , fnf , and for our analysis, fw = w∆w,∆w = 2 Hz. We focused on the mid-gamma

frequency range, so 60 Hz≤ fw ≤ 120 Hz.

Applying the discrete Fourier Transform of (2.6) to the model in (2.5) allows us to retrieve
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spectral information of the kth trial

X̂w,k = HwÊw,k. (2.7)

X̂ is the Fourier transform of X, Ê is the Fourier transform of E, and the (directed) transfer

function

Hw =

(
m∑
`=0

A`exp (−2πifw`∆t)

)−1

(2.8)

is the inverse of the Fourier transform of the A matrices. A nonzero value at the (i, j)th

index, Hw(i, j), suggests the presence of a flow from electrode j to electrode i at frequency

fw, although the flow may not necessarily be direct.

Right multiplying Equation 2.6 by X̂∗w,k and trial-averaging gives the formula used to

compute the spectral matrix of X

Sw = HwCH
∗
w. (2.9)

Let ρw(m,n) denote the (m,n)th element of S−1
w . The particle coherence function is con-

structed entry-wise

γw(m,n) =
ρw(m,n)√

ρw(m,m)ρw(n, n)
. (2.10)

A nonzero partial coherence value at frequency index w and electrode index (i, j) suggests a

direct connection between electrodes i and j at frequency fw. γ is symmetric and therefore

does not encode directionality of flow between electrodes.

H and γ are combined with their entry-wise normalized products with the SdDTF. The

SdDTF value between the mth and nth time series is

Gw(m,n) =
|Hw(m,n)||γw(m,n)|√∑nf

w=1

∑
(k,l)∈Jne

|Hw(k, l)|2|γw(k, l)|2
, (2.11)
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Jne = {(1, 2), (1, 3), . . . , (1, ne), (2, 1), (2, 3), . . . , (2, ne), . . . , (ne, 1), (ne, 2), . . . , (ne, ne − 1)}.

For electrodes m and n on the window τi (1 ≤ i ≤ nτ ) at frequency fw, the SdDTF value is

denoted Gi,w(m,n), so G·,·(m,n) ∈ Rnf×nτ . A nonzero SdDTF value suggests a direct flow

from electrode n to electrode m at frequency fw during window τi. Thus, we have a clear

quantification of the precise time, frequency, direction, and magnitude of information flow

between brain regions of interest for each patient.

When referring to the time/frequency values of G for a fixed electrode pair, we drop its

notation so Gi,w(m,n) = Gi,w. Figure 2.3 gives representational diagrams of the range of

SdDTF values (and notation) for a single patient showing how the function is evaluated for all

electrode pairs (with frequency/time window notation dropped in 2.3a) and time/frequency

values for fixed electrode pair (with electrode number notation excluded in 2.3b).

2.8 Two approaches for identifying event-related changes

Statistical significance of post-stimulus SdDTF values was evaluated with two approaches.

The discussion on the Event-related causality (ERC) technique, which was originally de-

veloped as a method for identifying post-stimulus windows where smoothed SdDTF values

significantly differ from baseline (Korzeniewska et al. (2008, 2011)) is given in §2.8.1. In

§2.8.2, we present a different approach which we adapted to evaluate significance directly

from the SdDTF values averaged by region. This approach allows for a more direct compar-

ison of interregional baseline flows with post-stimulus flows.
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G(ne, 1) G(ne, 2)

(a) SdDTF values are computed for

each pair of electrodes.

Time window

Fr
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nc

y

SdDTF values for electrodes (m,n)

1 2 nτ

f1

f2

fnf Gnτ ,nf

Gnτ ,1G1,1

G1,2

G1,nf

G1,2

G2,1

G2,nf

(b) SdDTF values are computed over time and

frequency for fixed electrode pair (one square of

Figure 2.3a).

Figure 2.3 : Representational figure of the SdDTF values computed per patient.

2.8.1 Approach 1: Smoothing spline estimates

ERC requires statistical information about the SdDTF values to test for significance. These

measures can be estimated through bootstrapping or a different, computationally efficient

approach of smoothing functions (Wang and Wahba (1994)). As such, the SdDTF observa-

tions G (Wahba and Wendelberger (1980); Korzeniewska et al. (2008)) were refined with the

smoothing function s : R2 7→ R that is related to the SdDTF values through

Gi,w = si,w + ei,w, ei,w ∼ N(0, σ2), (2.12)

. ' 

!···························· ...... C 
DOC 
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where the subscripted indices refer to point-wise evaluation at the corresponding time/frequency

((i, w) corresponds to (τi, fw), in this case). s is chosen as the function which minimizes φ

φ(s) ≡ 1

nfnτ

nf∑
w=1

nτ∑
i=1

(si,w −Gi,w)2 + λP (s), λ > 0 (2.13)

where P is the penalty function

P (q) =

∫ ∞
−∞

∫ ∞
−∞

((
∂2q

∂u2

)2

+ 2

(
∂2q

∂u∂ν

)2

+

(
∂2q

∂ν2

)2
)
du d ν. (2.14)

φ strikes a balance between finding a function which fits the data well while penalizing for

roughness. We work toward giving the well-known solution to this problem by first reindexing

our domain to simplify notation. Let M = nτnf and define di ≡ (τceil(i/nf ), fi−nffloor(i/nf )),

i = 1, . . .M . With this convention, d1 = (τ1, f1), d2 = (τ1, f2), . . ., dM = (τnτ , fnf ).

For any u, ν ∈ R2, let

ψ(u, ν) =
1

8π
‖u− ν‖2 log(‖u− ν‖) =

1

16π
‖u− ν‖2 log(‖u− ν‖2).

From ψ, define Z ∈ RM×M by its (i, j)thelement, Z(i, j) = ψ(di, dj). Form the vector g ∈ RM

from the SdDTF values, gi = Gdi , and define the matrix D ∈ RM×3 from the points on our

domain

D =



(
1 1 . . . 1

)
1×nf

(
1 1 . . . 1

)
1×nf

. . .

(
1 1 . . . 1

)
1×nf(

τ1 τ1 . . . τ1

)
1×nf

(
τ2 τ2 . . . τ2

)
1×nf

. . .

(
τnτ τnτ . . . τnτ

)
1×nf(

f1 f1 . . . fnf

)
1×nf

(
f1 f1 . . . fnf

)
1×nf

. . .

(
f1 f1 . . . fnf

)
1×nf



T

Proposition 1 If Null(D) = {0}, then, φ has a unique minimizer on the domain {d1, d2, . . . , dM}

over an appropriately defined Hilbert space for which P(s) is finite. The minimizer s takes
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the form (Wahba and Wendelberger (1980))

su =
M∑
i=1

αiψ(u, di) + β1 + β2u1 + β3u2. (2.15)

The unknown weights αi and βi obeyZ + λMIM×M D

DT 03×3


α
β

 =

 g

03×1

 (2.16)

To show how the splines were determined in practice (Green and Silverman (1994,

§8.2.1)), begin with the QR decomposition of D = QR for orthogonal Q ∈ RM×M and

upper triangular R ∈ RM×M . Next partition Q and R as

D =

(
Q1 Q2

)R1

R2

 ,

where Q1 ∈ RM×3, Q2 ∈ RM×(M−3), R1 ∈ R3×3, and R2 = 0(M−3)×3. Presuming D is

full rank, R1 is invertible. Rewrite the non-zero portion of DTα = 0 in terms of its QR-

decomposition

RT
1Q

T
1 α = 0.

From the invertibility of R1 and the orthogonality of Q1 and Q2, we conclude there is some

ν ∈ R(M−3) such that

α = Q2ν. (2.17)

Next, left-multiply (Z+λMIM×M)α+Dβ = g by QT
1 to determine a simplified expression

for β,

QT
1 (Z + λMIM×M)α +QT

1Q1R1β = QT
1 g.



21

Substituting α = Q2ν and using orthogonality of Q1 and Q2, we arrive at

QT
1ZQ2ν +R1β = QT

1 g.

Solving for β gives

β = R−1
1

(
QT

1 g −QT
1ZQ2ν

)
. (2.18)

A cleaner expression for the unknown ν is determined by again left-multiplying but this

time with QT
2 to determine an expression for the unknown ν,

(QT
2ZQ2 + λMIK×K)ν = QT

2 g. (2.19)

Determine the Cholesky decomposition, QT
2ZQ2 = LLT , where L ∈ R(M−3)×(M−3) is lower

triangular, and the Singular Value Decomposition, L = UΣV T , with unitary matrices U, V ∈

R(M−3)×(M−3) and diagonal matrix Σ ∈ R(M−3)×(M−3). Then

QT
2ZQ2 = UΣΣUT . (2.20)

Substituting these decompositions into Equation (2.19) gives

ν = U(ΣΣ + λMI(M−3)×(M−3))
−1UTQT

2 g. (2.21)

Computing ν then requires the inverse of the diagonal matrix (ΣΣ + λI(M−3)×(M−3)), which

is computationally inexpensive. From ν, α is obtained from Equation (2.17). Finally, β is

computed from Equation (2.18), which requires solving a lower triangular system.

For arbitrary, fixed λ, the pieces are in place to compute the thin plate spline estimates

for our data observations. We now resolve how λ was selected in practice using generalized
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cross validation, or GCV (Green and Silverman (1994, §§3.2, 8.2.1)). The goal of GCV is to

select the parameter λ which yields the spline with the best predictive power measured in

terms of the sum of squared error over reduced sets of data.

Begin by fixing index i and removing one observation Gdi and its corresponding time-

frequency location di from the set of total observations and the domain. The thin plate

spline computed over this reduced set of data is denoted s(λ,−di). Ideally, s
(λ,−di)
di

will be a

“good” predictor of Gdi in the sense that the squared difference(
s

(λ,−di)
di

−Gdi

)2

is minimal.

For a fixed λ, presume there is a matrix V (λ) ∈ RM×M such that(
s

(λ)
d1

s
(λ)
d2

. . . s
(λ)
dM

)T
= V (λ)g (2.22)

Then the generalized cross validation score for s(λ), GCV (s, λ), is the weighted average of

the predictive errors

GCV (s, λ) ≡ 1

M

M∑
i=1

(
1− V λ(i, i)

1−M−1trace(V (λ))

)2

(Gdi − s(λ,−di)
di

)2. (2.23)

Notice that Equation (2.23) calls for the computation V (λ) in addition to the M splines

for each reduced set of data for a total of M + 1 splines. Now, it will be shown how

to determine an equivalent formulation for GCV (s, λ) that requires significantly reduced

number of splines. For a fixed i and 1 ≤ j ≤M , construct the vector t ∈ RM

tj =


Gdj j 6= i

s
(λ,−di)
di

if j = i

.
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Then (by Lemma 3.1 in Green and Silverman (1994)),(
s

(λ,−di)
d1

s
(λ,−di)
d2

. . . s
(λ,−di)
dM

)T
= V (λ)t.

To reformulate the GCV , we expand the product of the ith row of V (λ) with t, and along

with the definition of t, we see that

V (λ)(i, :)t =
∑
j 6=i

V (λ)(i, j)tj + V (λ)(i, i)ti

=
∑
j 6=i

V (λ)(i, j)Gdj + V (λ)(i, i)s
(λ,−di)
di

Adding and subtracting V (λ)(i, i)Gdi and gathering terms gives

V (λ)(i, :)t = V (λ)(i, :)g + V (λ)(i, i)(s
(λ,−di)
di

−Gdi).

Use Equation (2.22) for V (λ)(i, :)g to see that

V (λ)(i, :)t = s
(λ)
di

+ V (λ)(i, i)(s
(λ,−di)
di

−Gdi).

Then the difference in the numerator of Equation 2.23 is

Gdi − s(λ,−di)
di

= Gdi − V (λ)(i, :)t

= Gdi − s(λ)
di
− V (λ)(i, i)(s

(λ,−di)
di

−Gdi)

Solve for Gdi − s(λ,−di)
di

,

Gdi − s(λ,−di)
di

=
Gdi − s(λ)

di

1− V (λ)(i, i)
. (2.24)

So the GCV in (2.23) is rewritten using (2.24)

GCV (s, λ) =
1

M

M∑
i=1

(
Gdi − s(λ)

di

1−M−1trace(V (λ))

)2

, (2.25)
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which reduces the computation from M + 1 splines down to 1! For a fixed λ, the weights for

s(λ) can then computed from (2.16). λ is chosen as the minimizer of Equation 2.25.

The formulation in (2.25) hinges on the existence of V (λ) which satisfies the relation-

ship in (2.22). Now we will develop an expression for such a V (λ) (Green and Silverman

(1994, §8.2.1)). Recall s
(λ)
di

= Z(i, :)α + DT (i, :)β from Proposition 1. Use Q1, Q2 from

QR-decomposition of (2.20) to expand Zα

Zα = Q1Q
T
1Zα +Q2Q

T
2Zα

and Equation (2.17) to substitute for the second α

Zα = Q1Q
T
1Zα +Q2(QT

2ZQ2ν).

Combine (2.19) (which gives a substitution for QT
2ZQ2) and ν from (2.21) to obtain

Zα = Q1Q
T
1Zα +Q2(I − λU(Σ2 + λMI(M−3)×(M−3))

−1UT )QT
2 g.

Several steps of algebra later, one can show that

Zα = Q1Q
T
1Zα +Q2UΣ2(Σ2 + λMI)−1UTQT

2 g (2.26)

Next, we expand Dβ with its QR-decomposition and substitute (2.18) for β,

Dβ = Q1R1R
−1
1

(
QT

1 g −QT
1ZQ2ν

)
.

Replace Q2ν with α,

Dβ = Q1Q
T
1 g −Q1Q

T
1Zα. (2.27)
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Upon combining the expressions in (2.26) and (2.27), the Q1Q
T
1Zα cancels, and we are left

with

Zα +Dβ =
(
Q2UΣ2(Σ2 + λMI)−1UTQT

2 +Q1Q
T
1

)
g,

showing

V (λ) =
(
Q2UΣ2(Σ2 + λMI)−1UTQT

2 +Q1Q
T
1

)
. (2.28)

This explicit formulation allows for the determination of a equivalent expressions for

trace(V (λ)) and
∑M

i=1(Gdi − s(λ)
di

)2, both of which are necessary for GCV in (2.25) (Green

and Silverman (1994, §8.2.1)).

We take the trace of the expanded version of V (λ)

trace(V (λ)) = trace

(Q1 Q2U

) I3×3 03×(M−3)

0(M−3)×3 Σ2(Σ2 + λMI)−1


 QT

1

UTQT
2


 .

The orthogonality of the Q’s together with the property that trace(AB) = trace(BA) for

any matrices A and B reduces the trace to

trace(V (λ)) = trace

 I3×3 03×(M−3)

0(M−3)×3 Σ2(Σ2 + λMI)−1


= 3 +

M−3∑
i=1

Σ(i, i)2

Σ(i, i)2 + λM
.

After adding and subtracting λM in the numerator, the trace reduces to

trace(V (λ)) =
M−3∑
i=1

− λM

Σ(i, i)2 + λM
+M. (2.29)
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Finally, we examine
∑M

i=1(Gdi−s(λ)
di

)2, which in matrix-vector form is ‖(IM×M −V (λ)g‖2.

For the matrix difference inside the norm, it is convenient to again use the expanded form

of V (λ),

IM×M − V (λ) = Q

I 0

0 U


I −

 I3×3 03×(M−3)

0(M−3)×3 Σ2(Σ2 + λIM)−1



I 0

0 U


T

QT

= Q

I 0

0 U


 03×3 03×(M−3)

0(M−3)×3 I(M−3)×(M−3) − Σ2(Σ2 + λIM)−1


I 0

0 U


T

QT

= Q

I 0

0 U


 03×3 03×(M−3)

0(M−3)×3 λ(Σ2 + λIM)−1


I 0

0 U


T

QT , where

the omitted dimensions of ( I 0
0 U ) are I3×3 03×(M−3)

0(M−3)×3 U

 .

Consolidate into the 2-norm,

‖(I − V (λ))g‖2 = gT
(
Q1 Q2

)I 0

0 U


 03×3 03×(M−3)

0(M−3)×3 λ2(Σ2 + λMI)−2


I 0

0 U


T QT

1

QT
2

 g

= gT
(
Q1 Q2U

) 03×3 03×(M−3)

0(M−3)×3 λ2(Σ2 + λMI)−2


 QT

1

UTQT
2

 g

= λ2gTQ2U(Σ2 + λMI)−2UTQT
2 g.

Now we are ready to substitute the expressions for trace(V (λ)) and ‖(IM×M − V (λ))g‖2
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into the GCV in (2.25)

GCV (s, λ) = M
gTQ2U(Σ2 + λMI)−2UTQT

2 g(∑M−3
i=1 (Σ(i, i)2 + λM)−1

)2 (2.30)

The expression in (2.30) is minimized over λ > 0 to obtain the λ parameter for the final

smoothing model. Once the penalization parameter is selected, the λ notation is dropped

from s.

From smoothing splines to Event-Related Causality

In seeking to infer significant event-related changes, time windows were classified as baseline

or post-stimulus. for ERC, baseline windows were 250ms long and non-overlapping, covering

-700ms to -200ms prior to stimulus onset. Each window was indexed by its starting value, b,

b ∈ {1, 2}. Post-stimulus windows covered two different periods, each with a window length

of 100ms and window shift 50ms. These windows have indices p, p ∈ {1, . . . , P}, regardless

of the post-stimulus period (differentiating between post-stimulus periods in the notation is

irrelevant to the current discussion of ERC).

ERC tests whether post-stimulus smoothed trends differ significantly from baseline values

by constructing joint 95% confidence around the difference of baseline and post-stimulus s

values at a fixed frequency. The uncorrected 95% confidence of the smoothed SdDTF value

at an arbitrary time/frequency point di = (τk, fw) is (Wahba (1983); Wendelberger (1981);

Wang and Wahba (1994))

sk,w ± 1.96(σ2V (λ)(i, i))1/2,

where the error variance (σ2 from (2.12)) is estimated from (Green and Silverman (1994);
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Wendelberger (1981))

σ2 =
‖g − V (λ)g‖2

trace(IM×M − V (λ))
.

Let edi = (σ2V (λ)(i, i))1/2. Then the joint 95% confidence interval for post-stimulus window

p and baseline window b is (Wang and Wahba (1994))

sb,w − sp,w ± z.025

√
e2
b,w + e2

p,w, where (2.31)

z.025 is the Bonferonni corrected z-score for 95% significance level. Under no correction, the

z-score of 1.96 corresponds to the significance level of 1−.05 (for a two-sided standard normal

distribution). To correct for multiple comparisons, z.025 is the z-score which corresponds to

the 1− .05/(ne(ne − 1)BP ) confidence level.

The interval in (2.31) was computed for b = 1, . . . , B to determine the event-related

significance in post-stimulus window p. If 0 is not contained in any of these intervals, we

can presume with 95% confidence that sp,w significantly differs from all baseline values. In

contrast to Korzeniewska et al. (2008, 2011) we retained all significant s values, whether

they were an average increase or decrease from baseline. We accounted for areas of negative

change over baseline by excluding regions which showed deactivation after stimulus onset

(negative percent change in the SB-MEMA results in Figure 3.1).

The ERC procedure for one patient terminates after all electrode pairs in Jne have been

tested. A simplified diagram of ERC is in Figure 2.4. The chart assumes that the electrode

pair (m,n) is fixed and excludes the check for p ≤ P and w ≤ nf . The s values for the

(m,n) pair of electrodes are represented as the grid in the top left. The procedure begins by

initializing baseline and post-stimulus windows. Significance of each post-stimulus window



29

at frequency fw is tested. We focus on one frequency within the diagram, and during the

actual ERC procedure, all frequencies are tested.

Initialize windows:

S

b = 1 p = 1

Within (m,n) block, select s
values at frequency fw :

S

Post-stim

Fr
eq

ue
nc

y
(H

z)

Baseline
Nonzero s values of this block represent
direct, directed flows from channel n to

channel m

Compute baseline and post-stimulus
distributions:

sb, w sp, w

Baseline: b ∈ {1, . . . , B}
Post-stimulus: p ∈ {1, . . . , P}
SdDTF spline value at fre-
quency fw and window i: si,w

Are distributions
significantly (p<0.05)

different?

Window p is NOT significant

Increment p = p + 1

Reset b = 1

Is b <= B?

B

S

Window p is significant

Increment p = p + 1

Reset b = 1

Increment b = b + 1

No Yes No

Yes

Update s values Update s values

Figure 2.4 : Diagram of the ERC testing framework showing the sequence of steps that
were followed for a fixed fw and electrode pair (m,n). Every baseline/post-stimulus pair of
windows is tested for significance. This diagram excludes the check for p ≤ P and w ≤ nf
for simplicity.
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As with SB-MEMA, trials were aligned to stimulus onset and RT. For stimulus (RT)

aligned trials, post-stimulus SdDTF values were calculated over 100ms windows with a 50ms

shift starting values from 50-650ms (RT-750ms to RT-100ms). Baseline SdDTF values were

computed over two non-overlapping 250ms windows from -700ms to -200ms. The significant

post-stimulus flows identified with the ERC method as s̃, where

s̃i,w(m,n) =


si,w(m,n) if si,w(m,n) is significant

0 otherwise

for 1 ≤ i ≤ P , 1 ≤ w ≤ nf , and 1 ≤ m,n ≤ ne.

All signals were included for the SdDTF computations, and with the goal of describing

interactions between distinct anatomical regions, flows sent and received by the same region

were excluded. We acknowledge that intraregional communication is relevant to understand

how reading processes are performed. Furthermore, grouping electrodes by anatomical loca-

tion risks losing spatial information. However as a step toward elucidating regional effective

connectivity, we believe, as others have similarly done (Flinker et al. (2015)), that focusing

on interregional flows does not diminish the language network dynamics derived and offers

valuable information about the regional dynamics.

The interregional ERC (post-stimulus) flows were integrated over 60-120Hz to compress

each flow to a time-dependent scalar value. If the integrated ERC flow during time window

i is referred to as s̃i, then the integration over frequencies from electrode k to electrode j is

calculated from

s̃i(j, k) = ∆w

nf∑
w=1

s̃i,w(j, k). (2.32)
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Finally, the frequency integrated ERC flows were averaged by region. To be clear, assume

during time window indexed by i that rn is the set of electrodes in region n (our analysis

was performed over six anatomical regions, which will be given in Chapter 3) and let s̃zi (j, k)

denote the flows from patient z between these regions. Then the average flow from region

m to region n across all patients was computed using∑15
z=1

∑
j∈rn

∑
k∈rm s̃

z
i (j, k)

length
(∑15

z=1

∑
j∈rn

∑
k∈rm s̃

z
i (j, k)

) .
2.8.2 Approach 2: statistical testing of post-stimulus, interregional SdDTF val-

ues

The ERC technique evaluates significance of post-stimulus smoothed SdDTF values at each

time/frequency value. To gain a meaningful view of the network, the remaining significant

smoothed SdDTF flows are integrated over frequencies and averaged by region. As the

baseline flows have not been reduced by any statistical test, a comparison to the frequency

integrated, regional averaged smoothed SdDTF values would be unfair at this point. Because

the state of the network at baseline is the foundation for ERC, we decided to modify the

statistical testing framework to allow for a more direct comparison between baseline and

post-stimulus frequency integrated, regional averaged SdDTF values.

For the second approach of testing event-related changes in the network, SdDTF values

were first computed on 100ms windows with a shift of 50ms over windows with starting values

from 50-650ms period following stimulus onset (for stimulus aligned trials) and for starting

values from RT-750ms to RT-100ms (for articulation aligned trials). Baseline SdDTF values
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were computed on one 500ms pre-stimulus window from -700ms to -200ms. After integrating

SdDTF values over frequencies,

Gi = ∆w

nf∑
w=1

Gi,w,

where the time window indexed by i falls within baseline or either one of the post-stimulus

periods, the average flow from region m to region n across all patients was determined via∑15
z=1

∑
j∈rn

∑
k∈rm G

z
i (j, k)

length
(∑15

z=1

∑
j∈rn

∑
k∈rm G

z
i (j, k)

) . (2.33)

rn is the set of electrodes situated in region n and Gz
i (j, k) denotes flows from electrode k to

electrode j during the time window indexed by i for patient z. A Wilcoxon signed rank test

was performed on the percent change of average interregional post-stimulus values versus

baseline (2.33) at a p=0.001 level (corrected for multiple comparisons with false discovery

rate, FDR).

2.9 Table of abbreviations for Chapter 2

We conclude Chapter 2 with a table of abbreviations.
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RT reaction time
Ns total number of samples per trial
nτ number of 100ms windows
ns number of data samples with each 100 ms

window
nt number of total trials
ne number of electrodes used in the analysis for

patient i
nf number of frequencies
∆t length of time between samples
w frequency index
fw frequency
p post-stimulus time window index
b baseline time window index

Gi,w(m,n) SdDTF value from electrode m to electrode
n at frequency fw during time window τi

si,w(m,n) smoothed SdDTF value from electrode m to
electrode n at frequency fw during time win-
dow τi

s̃i,w(m,n) significant post-stimulus smoothed SdDTF
value from electrode m to electrode n at fre-
quency fw during time window τi

SE standard error
FDR false discovery rate

Table 2.3 : Table of abbreviations.
.
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Chapter 3

Results

3.1 SB-MEMA ECoG maps

Results from the SB-MEMA are represented on the standard N27 surface in Figure 3.1. In

the 50-750ms following stimulus onset (left), positive activations are seen in the fusiform

gyrus and a ventral region at the junction of pre and postcentral gyri. As previously men-

tioned, positive activations near the fusiform gyrus during early pre-lexical processing are

a trademark of reading tasks (Nobre et al. (1994); Dehaene and Cohen (2011); Price and

Devlin (2003)). Interestingly, regions in lateral parietal cortex and the middle temporal

gyrus deactivate from baseline during this period, which contrasts with fMRI (Jobard et al.

(2003); Levy et al. (2008); Joseph et al. (2001)) and ECoG (Mainy et al. (2008)) word read-

ing analyses. Also seen are drops from baseline across extensive orbitofrontal and temporal

polar cortex.

During the 750ms prior to articulation onset (right), activity spreads anteriorly to regions

including pars triangularis and pars opercularis of Broca’s area, as well as pre, post, and

subcentral gyri. The absence of activity across the middle and superior temporal lobes differs

from many fMRI reading analyses which typically observe activations in these areas during

semantic tasks (Fiez and Petersen (1998); Price (2012)).
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Figure 3.1 : Lateral (above) and ventral (below) views of the SB-MEMA maps of post-
stimulus percent change from baseline for (left) trials aligned to stimulus onset (0ms) from
50-750ms and (right) RT-aligned trials during the 750ms leading up to RT. The heat map
shows significant (p=0.01, corrected), percent changes from baseline, which is -700ms to
-200ms prior to stimulus onset.

Despite some differences, the maps of regional activations shown in Figure 3.1 are largely

consistent with those produced from years of neuroimaging and ECoG experiments during

word reading tasks. Motivated by prior work (Korzeniewska et al. (2008, 2011)) which fo-

cused on regions with positive SdDTF changes from baseline, we continued the investigation

by focusing on quantifying the interactions of regions with positive percent changes in Figure

3.1. Those regions which showed interesting deactivations in Figure 3.1 will be revisited in

the discussion.
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3.2 Regional mid-gamma time series

Electrodes situated over locations of positive percent change during either time period of

Figure 3.1 were identified and classified by anatomical location, resulting in six total re-

gions: fusiform, precentral, postcentral, subcentral, pars opercularis, and pars triangularis.

As the SB-MEMA results provide summaries over periods exceeding 700ms, time traces of

regional averaged mid gamma percent change in power from baseline (-700ms to -200ms

before stimulus) were produced to supply insight into the transient changes prior to charac-

terizing interregional interactions with the SdDTF. To compute these time traces, the raw

ECoG data from each electrode were bandpass filtered into the mid-gamma frequency range

(IIR Elliptical Filter, 30dB sidelobe attenuation). The data were then Hilbert transformed,

and the analytic amplitude was smoothed (Savitzsky-Golay FIR, 5th order, frame length of

155 samples, Matlab 2013b, Mathworks, Natick MA). For all remaining figures, each region

is assigned a color: fusiform is green, precentral is orange, postcentral is cyan, subcentral is

purple, pars opercularis is blue, and pars triangularis is red (reference the Table in Figure

3.2).

The time traces of regional percent change in power (±1 SE in the shaded area) for all

183 electrodes identified from the SB-MEMA analysis are in Figure 3.2. The electrodes are

represented as spheres on the standard N27 surface. The number of electrodes per region is

in parenthesis. Traces for both periods are shown on the right. A Wilcoxon signed rank test

was implemented to identified times where power was significantly different from 0 (p=0.05,

corrected for multiple comparisons using false discovery rate, FDR). The bars at the bottom
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of each plot show the times where power achieved significance.

Figure 3.2 : (Left) 183 unique electrodes represented on the N27 surface were situated over
the positively activated regions in either panel of Figure 3.1. The number in parenthesis
indicates the number of electrodes included per region. (Right) Mean ±1 SE of percent
change in mid gamma power following stimulus onset (above) and leading up to RT (below).
The bars at the bottom of each plot indicate times where percent change in power of each
region is significantly different from 0 (Wilcoxon signed rank, FDR corrected, p=0.05).

Recall that no articulation occurs during the period following stimulus onset (right,

above), as trials with RT’s less than 750ms were excluded from the analysis. Immediately

following stimulus onset, fusiform signals show the earliest change in power, sharply increas-
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ing from baseline around 100ms and peaking at about 120% by 300ms. The remaining areas

gradually begin to increase beginning around the time of the fusiform decrease (≈ 300 ms),

with pars triangularis peaking around 80% by 600ms.

For trials locked to RT (right, below), pars triangularis and fusiform begin at levels

above (≈ 50%) the remaining regions (≈ 20%). Sub and postcentral areas show the greatest

increase as the period progresses, peaking around 100% by the onset of articulation (0ms).

Fusiform gradually decreases in power during the several hundred milliseconds leading up to

RT so that by RT, it is merely 15% above baseline levels. The traces from pars opercularis

and precentral are around 20% at RT-750ms and increase to about 40% by RT (0ms). The

average pars triangularis power remains steady around 50% from RT-750ms through RT-

250ms, when it gradually decreases to about 30%.

The traces in Figure 3.2 provide speculative evidence that following stimulus onset and

prior to RT, the fusiform is a driver of higher level functions performed (not necessarily

exclusively by) locations within pars opercularis, pars opercularis, pre, post, and subcentral

gyri, as their increasing power is immediately preceded by a decrease in the fusiform. It

is less clear how all of the areas interact from the traces of Figure 3.2. About 350ms from

RT, the fusiform power diverges from the others, while pars triangularis, precentral, and

pars opecularis traces are similar, and postcentral and subcentral traces are also similar. To

describe regional interactions with a quantified measure of information flow, including the

direction and degree of interaction, all 183 unique electrodes pictured in Figure 3.2 were

analyzed with the SdDTF.
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3.3 Grouped effective connectivity network dynamics

The 183 electrodes identified through the SB-MEMA analysis are listed by region and patient

in Table 3.1. Each patient’s set of electrodes, denoted in §2.6 as {x1, x2, . . . , xne}, was

analyzed with the SdDTF to characterize network dynamics during word stem completion.

Patient index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total
Fusiform 4 6 2 3 0 1 1 2 0 0 0 2 1 2 3 27

Pars Opercularis 1 3 1 2 1 0 2 2 2 1 2 0 1 2 2 22
Pars Triangularis 0 1 2 3 1 2 0 1 1 0 2 0 2 2 0 17

Postcentral 0 1 0 0 2 2 1 1 2 2 1 2 2 1 1 18
Precentral 4 4 5 2 4 7 5 6 2 5 7 5 7 5 5 73
Subcentral 2 1 3 3 4 1 1 1 2 3 1 1 1 0 2 26

Total 11 16 13 13 12 13 10 13 9 11 13 10 14 12 13 183

Table 3.1 : Electrodes organized by patient and region that were analysis with the SdDTF
to infer interregional information flow.

Frequency integrated interregional averaged values from ERC (discussed in §2.8) or

strictly SdDTF (discussed in §2.8.2) will be referred to as ERC flows and SdDTF flows, re-

spectively. In the case of ERC, significance testing occurred prior to integrating the SdDTF

values, and in the case of the SdDTF flows, significance testing occurred after integration

and regional averaging. The flows are shown (±1 standard error, or SE) in each figure to

follow. The color of each marker denotes the region receiving the flow. Each point along a

single time course corresponds to the magnitude of the same flow occurring during different

windows. The horizontal axis labels reference the first point of each 100ms time window

(e.g, the flow at 50ms was computed over the 50-150 ms window).
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3.3.1 Flows from fusiform

Relative to stimulus onset

The regional power traces in Figure 3.2 indicate that fusiform peaks in power around 300ms

after stimulus onset. The interactions determined through ERC stemming from fusiform

to all other regions relative to stimulus onset are shown in the left columns of Figure 3.3.

Feedforward flows to postcentral (3.3c) sharply increase just prior to 300ms, but their high

variability makes the change difficult to interpret. All flows from fusiform in Figure 3.3 are

lower around 300ms (compared to the 50ms window), suggesting a decrease in the feed-

forward interactions at this time. Flows to all regions increase in the final window, with

those to subcentral (3.3e) and pars opercularis (3.3a) reaching their highest average for this

timeframe.

The SdDTF flows in the left columns Figure 3.4 allow us to visualize the flows and their

baseline values simultaneously. None of the flows to pars triangularis (3.4b) and postcentral

gyrus (3.4c) reached significance from baseline, whereas nearly all those to pars opercularis

did (3.4a). Several flows to subcentral (3.4c) and many flows to precentral (3.4d) were also

identified as significantly different from baseline.

Relative to articulation onset: Figure 3.2 shows that fusiform power is decreasing to-

ward baseline levels as articulation onset approaches. In the right columns of Figure 3.3, we

see that the ERC flows from fusiform to all regions decrease following the first window (at

RT-750ms). Yet as time progresses, all flows gradually approach (or surpass) their maximum
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values during the final window, which immediately precedes the onset of articulation.

The SdDTF flows in the right columns of Figure 3.4 to pars opercularis, subcentral, and

precentral are the only ones to achieve significance during this timeframe. Those to pars

opercularis shift back and forth toward baseline. Those to subcentral primarily increase

during the time frame leading up to RT.

(a) Flows from fusiform to pars opercularis (b) Flows from fusiform to pars triangularis.

(c) Flows from fusiform to postcentral gyrus. (d) Flows from fusiform to precentral gyrus.

(e) Flows from fusiform to subcentral gyrus.

Figure 3.3 : ERC flows originating in fusiform. The left column is relative to stimulus onset,
and the right column is relative to articulation onset.
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(a) Flows from fusiform to pars opercularis (b) Flows from fusiform to pars triangularis.

(c) Flows from fusiform to postcentral gyrus. (d) Flows from fusiform to precentral gyrus.

(e) Flows from fusiform to subcentral gyrus.

Figure 3.4 : SdDTF flows originating in fusiform. The left column is relative to stimulus
onset, and the right column is relative to articulation onset. Red stars indicate time windows
that reached significance versus baseline (Wilcoxon signed rank, FDR corrected for p=0.001).
Gray bars show baseline.

3.3.2 Flows from pars opercularis and pars triangularis

Relative to stimulus onset: Mid gamma power in both pars opercularis and pars tri-

angularis regions begins to increase from baseline around 300ms (Figure 3.2). While pars

triangularis decreases after it peaks around 600ms, pars opercularis continues to follow an

upward trend. In Figures 3.5 and 3.6, we observe ERC and SdDTF flows originating from

these regions. Similar to pars opercularis ERC interactions with fusiform, those from pars

triangularis (in Figure 3.5b) increase (with their averages and standard error) during the
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several hundred milliseconds leading up to the final window. SdDTF flows from pars trian-

gularis (3.6b), on the other hand, increase earlier around 300ms, which more closely matches

the timing of the mid-gamma increase of fusiform (in 3.2).

Relative to articulation onset: As power in pars opercularis gradually increases toward

the onset of articulation (0ms in Figure 3.2), pars triangularis shifts in the opposite direction

toward baseline. Average ERC and SdDTF flows to fusiform from pars opercularis (right

columns of Figure 3.5a and 3.6a) are highly variable during the period leading up to artic-

ulation onset. Figure 3.5b shows that the ERC flows to pars triangularis reach a maximum

around 500ms prior to articulation onset. Overall, Figure and 3.6b the SdDTF flows to pars

triangularis remain above baseline around the same timeframe. Both ERC and SdDTF flows

from pars triangularis decrease around RT-550ms and dance around increases and decreases

leading up to RT.

(a) Flows from pars opercularis to fusiform. (b) Flows from pars triangularis to fusiform.

Figure 3.5 : ERC flows to fusiform from regions in the inferior frontal gyrus. The left column
is relative to stimulus onset, and the right column is relative to articulation onset.
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(a) Flows from pars opercularis to fusiform. (b) Flows from pars triangularis to fusiform.

Figure 3.6 : SdDTF flows to fusiform from regions in the inferior frontal gyrus. The left
column is relative to stimulus onset, and the right column is relative to articulation onset.
Red stars indicate time windows that reached significance versus baseline (Wilcoxon signed
rank, FDR corrected for p=0.001). The gray bar shows baseline.

3.3.3 Flows from precentral, postcentral, and subcentral gyri

Relative to stimulus onset: Similar to pars triangularis and pars opercularis, the grouped

traces in Figure 3.2 illustrate that precentral, postcentral, and subcentral regions begin their

increases in mid gamma power around 300ms. Both methods converge in showing flows

from subcentral to fusiform (3.7c and 3.8c) increase to their maxima around 300ms. SdDTF

flows from precentral to fusiform (3.8a) remain significantly above baseline, with only sub-

tle changes (similar to the ERC flows). SdDTF interactions from postcentral in 3.8b show

interesting dynamics around 300ms, similar to those from subcentral; however, none of the

postcentral flows attain significance.

Relative to articulation onset: Precentral power follows a gradually increasing pattern

during the windows leading up to articulation onset (Figure 3.2), while postcentral and

subcentral gyri dramatically increase in power (up to 100% from baseline) by articulation

onset. ERC and SdDTF flows from precentral relative to articulation onset (right columns of
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Figures 3.7a and 3.8a) and subcentral (right columns of Figures 3.7c and 3.8c), are relatively

steady. Those from postcentral are more dynamic, with several periods of brief increases

and decreases (Figures 3.7c and 3.8c); although those from the non-ERC method are largely

not significant and should not be considered different from baseline.

(a) Flows from precentral gyrus to fusiform. (b) Flows from postcentral to fusiform.

(c) Flows from subcentral to fusiform.

Figure 3.7 : ERC flows to fusiform from the three regions that border the central sulcus.
The left column is relative to stimulus onset, and the right column is relative to articulation
onset.
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(a) Flows from precentral gyrus to fusiform. (b) Flows from postcentral to fusiform.

(c) Flows from subcentral to fusiform.

Figure 3.8 : SdDTF flows to fusiform from the three regions bordering the central sulcus.
The left column is relative to stimulus onset, and the right column is relative to articulation
onset. Red stars indicate time windows that reached significance versus baseline (Wilcoxon
signed rank, FDR corrected for p=0.001). The gray bar shows baseline.
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Chapter 4

Discussion

Prior work (Price and Devlin (2011)) has hypothesized that fusiform integrates top-down

(feedback) processes with bottom-up (feedforward) processes during the presentation of vi-

sual words to facilitate correct pronunciation. This framework, termed the Interactive Ac-

count, predicts that visual stimuli that are more familiar to the subject will rely more on

feedback processes to achieve spoken response, while less familiar stimuli would rely more

on feedforward processes. We sought to describe the spatiotemporal brain dynamics during

a word completion task from 15 patients’ ECoG time series using complementary techniques

to precisely identify locations, timings, and directionality of information flow to test how our

data agree with this model of word reading.

To narrow the scope of the processes engaged across the patient cohort, our analysis

focused on the stimulus-aligned trials and articulation-aligned trials. The combined regions

of interest identified with the SB-MEMA during both periods include: fusiform, pars trian-

gularis, pars opercularis, precentral, postcentral, and subcentral (Figure 3.1). The precise

times of transient, independent regional activity were approximated by computing the time

course of average percent change in power of each region from baseline (Figure 3.2). An

explanation of brain dynamics during word stem completion (with a focus on those involv-

ing fusiform gyrus) was developed using a precise measure of information flow, the SdDTF,
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which characterizes whether information is being sent or received, and whether the flows are

direct or indirect.

Post-stimulus flows were tested for significance against pre-stimulus baseline flows using

two approaches. For Event-related Causality (ERC), SdDTF values were smoothed and

tested for significance at every time window and frequency value. The values which survived

the conservative significance test were integrated over frequencies and averaged by region.

We adapted a modified framework, where all SdDTF values were integrated over frequencies,

averaged by region, and then tested for significance (the resulting values were referred to as

SdDTF flows). This approach enabled us to test the dynamics of the network at baseline.

Our interpretations of the findings are now discussed.

4.1 Interactions relative to stimulus onset

The period when visual information enters higher level processing streams has enjoyed sig-

nificant popularity in the word reading research due to activation of the vOT, located next

to the fusiform. vOT has been proposed to be crucial to the function of the visual word form

system (Dehaene et al. (2002)). Based on studies of word form dyslexic patients, the visual

word form system was originally defined as “that which parses (multiply and in parallel)

letter strings into ordered familiar units and categorizes these units visually” (Warrington

and Shallice (1980)), forcing patients who suffer damage to this system to read in a slow,

laborious letter-by-letter basis.

Subdural electrodes cannot record from directly from vOT, as it is located in the sulcus



49

separating occipital and temporal lobes (Dehaene et al. (2002)). During word stem, signif-

icant mid gamma activity was observed from a nearby cluster of 27 electrodes in fusiform

(top right of Figure 3.2). Fusiform power peaked around 300ms after stimulus onset. By

articulation (bottom right of Figure 3.2), these electrodes’ mid gamma signals approached

baseline levels.

Results from both statistical approaches revealed exchanges involving fusiform to regions

associated with higher level processing. ERC flows from fusiform to all regions were lower

around 300ms than during the first 50ms window and final 650ms window. In the reverse

direction, the flows from subcentral, although increasing around the 300ms timeframe of the

significant mid-gamma of fusiform, are small relative to all other flows of the network, which

can be visualized in the interactions of the entire network in Figure 4.1. Pars opercularis, pars

triangularis, and subcentral regions are involved with interactions of the greatest magnitude;

however, ERC does not take variability of the flows into consideration at this point.

Traces of SdDTF flows appear to be more consistent with the timings of the mid-gamma

power traces, with those from subcentral and pars triangularis to fusiform peaking around

300ms. Figure 4.2 shows the dynamics of the entire network during three post-stimulus

windows, and highlights that fusiform and precentral are involved in many interactions of

large magnitude. We can see the prominent feedback interactions from pars triangularis,

as well as the central roles of precentral and fusiform to the the entire network, with clear

increases to fusiform from pars triangularis in the 300ms window.

Both statistical approaches revealed bidirectional interactions involving fusiform through-
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Figure 4.1 : ERC flows during three windows following stimulus onset. Top row shows lateral
and ventral surfaces, and bottom row shows lateral surface enhanced. Regions are repre-
sented by a spheres. The color and width of each arrow is proportional to flow magnitude.

out the entire period following stimulus onset. ERC flows suggest that fusiform actively

sends and receives information to all regions at various magnitudes, with many outgoing

flows decreasing around 300ms. Around the same time, incoming flows from subcentral

increase. Overall, interactions between fusiform and pars opercularis and pars triangularis

were highly variable and difficult to interpret.

SdDTF flows from pars triangularis and subcentral to fusiform appeared to be more

consistent with the patterns we observed in the fusiform mid gamma trace following stimulus

onset. Pars triangularis and subcentral to fusiform flows peaked around 300ms (as did
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Figure 4.2 : Significant SdDTF flows during three windows following stimulus onset. Top row
shows lateral and ventral surfaces, and bottom row shows lateral surface enhanced. Regions
are represented by spheres. The color and width of each arrow is proportional to its flow.

postcentral to fusiform, although they did not achieve significance at the p=0.001 level).

Overall, flows to and from precentral were above baseline levels.

4.2 Interactions relative to articulation onset

Following the peak of fusiform’s mid gamma power, power begins to increase in the anterior

locations of the network we identified as relevant to word stem completion, including pars

triangularis and pars opercularis of the inferior frontal gyrus. These two neighboring regions
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are generally associated with semantic and phonological processes, respectively (Bokde et al.

(2001)); however, neither is purely dedicated to one function (Mainy et al. (2008); Jobard

et al. (2003); Joseph et al. (2001); Sahin et al. (2009); Mechelli et al. (2005)). Because

average pars triangularis power drops after 600ms, (right column of Figure 3.2), this region

seems to be required less for phonological processing during word stem. Pars opercularis, on

the other hand, shows positive changes from baseline after stimulus onset and prior to RT

without reaching a peak of activity. Increased mid gamma response closer to articulation

suggests that it is more dedicated to processes required immediately prior to articulation,

such as those involving phonology or articulatory planning.

The ERC interactions in Figure 3.5 illustrate flows from both pars triangularis reach a

peak around 500ms prior to RT, while those from pars opercularis are inconclusive (due

to their high variability). In the reverse direction (3.3), ERC flows from fusiform to pars

triangularis increase during the 400ms leading up to RT, while those to pars opercularis

increase more gradually.

Figure 3.6 illustrates that significant SdDTF flows from both pars triangularis and pars

opercularis to fusiform are present during the period relative to articulation onset; although

neither of the traces include an clear increase, like the ERC flows from pars triangularis

to fusiform flows did. In the reverse direction, only SdDTF flows from fusiform to pars

opercularis achieved significance (3.4a).

Figures 4.3 and 4.4 show the network-level interactions deduced from both statistical ap-

proaches also include precentral, postcentral, and subcentral gyri. These three regions, which
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border the central sulcus, are also known as the primary motor and ventral somatosensensory

cortices. Their positive shifts in mid gamma activity during word stem (Figure 3.1) prior to

articulation agree with their involvement in phonological processing, as well as processing

action words. Lesion patients who have presented with categorical lexical retrieval deficits

(Damasio and Tranel (1993); Daniele et al. (1994)) have provided strong evidence for distinct

pathways for accessing nouns and verbs. These studies indicate that nouns are retrieved by

left ventral pathways, whereas verbs are accessed in left frontal regions (Damasio and Tranel

(1993); Daniele et al. (1994); Hillis and Caramazza (1995)). This phenomenon of dissociated

pathways (dorsal versus ventral) for word category (verb versus noun) has also been observed

with ECoG (Conner et al. (2014)). In addition, the pre-articulatory responses of pre and

postcentral gyri may suggest their roles in planning for feedback control during response

(Bouchard et al. (2013)).

When fusiform is at its lowest point in mid-gamma power (near articulation onset, see

3.2), its ERC flows to postcentral (3.3c), precentral (3.3d), and subcentral (3.3e) reach

their highest point. Flows to all three of these regions are overall increasing during the

400ms leading up to RT. ERC flows in the opposite direction (3.7) do not show readily

distinguishably patterns.

SdDTF flows in Figure 3.8 and 3.3 indicate bidirection flows from precentral and subcen-

tral to fusiform (and vice versa) are significant during this timeframe. Notably, interactions

between fusiform to postcentral were not significant, although they were above baseline near

RT.
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Figure 4.3 : ERC flows during three windows leading up to articulation onset. Top row
shows lateral and ventral surfaces, and bottom row shows lateral surface enhanced. Regions
are represented by a spheres. The color and width of each arrow is proportional to flow
magnitude.

Taken together, the interactions relative to articulation onset suggest fusiform is deeply

rooted in semantic, phonological, and articulatory planning processes during word stem

completion. Regions sending information include pars triangularis (ERC and SdDTF flows),

precentral (ERC and SdDTF flows), and subcentral (ERC and SdDTF flows). Pars opercu-

laris flows to fusiform were highly variable with both analyses, although SdDTF flows from

pars opercularis to fusiform were deemed significant. Important areas receiving information

from fusiform include pars opercularis (ERC and SdDTF flows), pars triangularis (ERC
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Figure 4.4 : Significant SdDTF flows during three windows leading up to articulation onset.
Top row shows lateral and ventral surfaces, and bottom row shows lateral surface enhanced.
Regions are represented by spheres. The color and width of each arrow is proportional to
its flow.

flows), postcentral (ERC flows), precentral (ERC and SdDTF flows), and subcentral (ERC

and SdDTF flows).

4.3 Limitations

Electrode coverage is a limitation that goes hand in hand with ECoG studies. Table 3.1

highlights that only three patients had coverage in all six regions. The remaining 12 patient-

specific networks were incomplete due to limitations in the number of viable electrodes to
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include. Our hope was that by averaging the flows across patients, the network dynamics

that emerged would account for the patient-specific gaps. Coverage gaps can negatively

impact the SdDTF analysis, which obviously cannot account for these excluded regions that

may be required for the task.

Middle temporal, temporal polar, and lateral parietal cortices are frequently associated

with semantic access (Joseph et al. (2001); Price (2012); Mainy et al. (2008); Dhond et al.

(2001)), and were observed to deactivate following stimulus onset (Figure 3.1). Their de-

activations could suggest that activity halted to facilitate the performance of regions more

relevant to the task at hand, including pre, post, and subcentral gyri, (further analysis would

be required to validate).

Six regions were ultimately identified through the SB-MEMA results and included in

our analysis. The word reading network undoubtedly includes regions which extend beyond

those reviewed in the current investigation. With a looser criteria for SB-MEMA (p=0.05

instead of p=0.01, for instance), more locations would have been represented. The cost of

including more regions is seen in the stringent correction in Equation 2.31), which makes it

difficult to detect significance as the number of electrodes increases. Thus, there is a trade-off

embedded within the ERC technique that penalizes as the size of the network increases.
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Chapter 5

Conclusions

In summary, we have presented the network dynamics derived from electrocorticographic

data recorded from 15 patients who participated in a word completion task. Our approach

incorporated multiple tools to evaluate the precise timing, location, and direction of informa-

tion flow from the ECoG data. We extended the findings of others (Bedo et al. (2014); Mainy

et al. (2008); Mechelli et al. (2005); Flinker et al. (2015)) to reveal temporally precise traces

of information flow, specifically focusing on those involving fusiform. The top-down and

bottom-up exchanges were realized as patients transformed visually presented, unfamiliar

alphabetic strings into spoken output of familiar words.

Overall, our findings support models which allow for feedback connections to fusiform,

such as the Interactive Account (Price and Devlin (2011)). We add to these models by

revealing the presence of intimate, bidirectional links involving fusiform and cortex associated

with higher level processing in the absence of visual input (as patients said aloud complete

words in response to visually presented incomplete word stems). With the advent of network

analysis tools, such as SdDTF, we stress the importance of their utilization in conjunction

with other analysis technique, which enable the precise approximation of timing and location

of network changes.
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