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Abstract

We consider solving minimization problems with `1-regularization:

min ‖x‖1 + µf(x),

particularly for f(x) = 1
2‖Ax − b‖

2
M , where A ∈ Rm×n and m < n. Our goal is to con-

struct efficient and robust algorithms for solving large-scale problems with dense data, and
our approach is based on two powerful algorithmic ideas: operator-splitting and contin-
uation. This paper establishes, among other results, q-linear convergence rates for our
algorithm applied to problems with f(x) convex, but not necessarily strictly convex. We
present numerical results for several types of compressed sensing problems, and show that
our algorithm compares favorably with several state-of-the-art algorithms when applied to
large-scale problems with noisy data.

Keywords: `1 regularization, fixed point algorithm, q-linear convergence, continuation,
compressed sensing.
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1 Introduction

Under suitable conditions, minimizing the `1-norm is equivalent to minimizing the so-called
“`0-norm”, that is, the number of nonzeros in a vector. The former is always computationally
more tractable than the latter. Thus, minimizing or limiting the magnitude of ‖x‖1 has long
been recognized as a practical avenue for obtaining sparse solutions x. Some early work is in
the area of geophysics, where sparse spike train signals are often of interest, and data may
include large sparse errors [8, 31, 46, 48]. The signal processing and statistics communities use
the `1-norm to describe a signal with just a few waveforms or a response variable with just a
few explanatory variables, respectively [36, 7, 49, 19]. More references on `1-regularization for
signal processing and statistics can be found in [38].

As a general principle, a sparse solution x ∈ Rn to an under-determined linear system of
equations Ax = b may be obtained by minimizing or constraining the `1-norm of x. If the
“observation” b is contaminated with noise, then an appropriate norm of the residual Ax − b
should be minimized or constrained (which norm to use depends on the nature of the noise).
Such considerations yield a family of related optimization problems. If there is no noise in b,
but the solution x should be sparse, then it is appropriate to solve the basis pursuit problem [7]

min
x∈Rn

{‖x‖1 |Ax = b} . (1)

However, if there is Gaussian noise in b, the `1-regularized least squares problem

min
x∈Rn

‖x‖1 +
µ

2
‖Ax− b‖22, (2)

would be appropriate, as would the Lasso problem [49]

min
x∈Rn

{
‖Ax− b‖22 |‖x‖1 ≤ t

}
, (3)

which is equivalent to (2) given appropriate constants µ and t. Similarly, other formulations
of interest may be generated by choosing appropriate norms and variously specifying that the
resulting terms be minimized or constrained.

1.1 `1-Regularization and Compressed Sensing

Compressed Sensing is the name assigned to the idea of encoding a large sparse signal using a
relatively small number of linear measurements, and minimizing the `1-norm (or its variants)
in order to decode the signal. New results reported by Candes et al [4, 2, 3], Donoho et al [12,
53, 13] and others [45, 51] stimulated the current burst of research in this area. Applications
of compressed sensing include compressive imaging [56, 57, 47], medical imaging [34], multi-
sensor and distributed compressed sensing [1], analog-to-information conversion [52, 27, 30, 29],
and missing data recovery [58]. Compressed sensing is attractive for these and other potential
applications because it reduces the number of measurements required to obtain a given amount
of information. The trade-off is the addition of a non-trivial decoding process.

In brief, compressed sensing theory shows that a sparse signal of length n can be recovered
from m < n measurements by solving any appropriate variant of (1), (2), (3), etc., provided
that the m× n measurement matrix A possesses certain “good” properties. To date, random
matrices and matrices whose rows are taken from orthonormal matrices (such as partial dis-
crete cosine transform (DCT) matrices) have been proven to be “good”. These matrices are
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invariably dense, which contradicts the usual assumption made by conventional optimization
solvers that large-scale problems appear with sparse data. Thus it is necessary to develop ded-
icated algorithms for compressed sensing signal reconstruction. Further, the size and density
of the data involved suggest that those algorithms should not require large linear system solves
or matrix factorizations, and should take full advantage of available fast transforms like FFT
and DCT.

In this work, we present an algorithmic framework and related convergence analysis for
solving general problems of the form:

min
x∈Rn

‖x‖1 + µf(x), (4)

where f : Rn → R is differentiable and convex, but not necessarily strictly convex, and µ > 0.
Our numerical studies, on the other hand, are focused on the following generalization of (2):

min
x∈Rn

‖x‖1 +
µ

2
‖Ax− b‖2M , (5)

where M ∈ Rm×m is a positive definite matrix, ‖x‖M :=
√
x>Mx is the associated M -norm,

A ∈ Rm×n is dense, m ≤ n or even m � n, and n is large. We emphasize that our algorithm
does not require any linear system solves or matrix factorizations—we restrict ourselves to
vector operations and matrix-vector multiplications.

1.2 Our Approach and Main Results

The objective function in (4) is the sum of two convex functions. While the `1-norm term is not
smooth, it is easily transformed into a linear function plus some linear constraints, such that
standard interior-point methods utilizing a direct linear solver can be applied to our problem of
interest, (5). However, this standard approach is too costly for large-scale problems with dense
data. Alternative algorithms include utilizing an iterative linear solver in an interior-point
framework [26], and using a gradient projection method [23].

Our approach is based on operator splitting. It is well known in convex analysis that
minimizing a convex function φ(x) is equivalent to finding a zero of the subdifferential ∂φ(x),
i.e., finding x such that 0 ∈ ∂φ(x) := T (x), where T is a maximal monotone operator [44]. In
many cases, one can split φ into a sum of two convex functions, φ = φ1 + φ2, which implies
the decomposition of T into the sum of two maximal monotone operators T1 and T2, i.e.,
T = T1 + T2. For some τ > 0, if T2 is single-valued and (I + τT1) is invertible, then

0 ∈ T (x) ⇐⇒ 0 ∈ (x+ τT1(x))− (x− τT2(x))
⇐⇒ (I − τT2)x ∈ (I + τT1)x
⇐⇒ x = (I + τT1)−1(I − τT2)x. (6)

Equation (6) leads to the forward-backward splitting algorithm for finding a zero of T :

xk+1 := (I + τT1)−1(I − τT2)xk, (7)

which is a fixed point algorithm. For the minimization problem (4), T2 = µ∇f and (I+τT1)−1

is component-wise shrinkage (or soft shresholding), the details of which are given in Sections
3 and 4 below.
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The forward-backward splitting method was first proposed by Lions and Mercier [32], and
Passty [42] around the same time in 1979. Over the years, this scheme and its modifica-
tions have been extensively studied by various authors including, to name a few, Mercier [37],
Gabay [24], Eckstein [17], Chen and Rockafellar [6], Noor [39], and Tseng [54]. However, the
idea of splitting operators can be traced back to the works of Peaceman and Rachford [43] and
Douglas and Rachford [16] in the mid 1950’s for solving second-order elliptic and parabolic
partial differential equations.

General convergence theory has been developed for forward-backward splitting methods [37,
24, 6]. Unfortunately, the existing theory requires rather strong conditions on T2, or on T as
a whole. In short, when reduced to our setting, with φ1 = ‖x‖1 and φ2 = µf(x), the existing
convergence theory requires either f or the whole objective in (4) to be strictly convex. Stronger
convergence results generally require modifications to the basic algorithm [54].

Daubechies et al [10] (see also [20, 9]) recently proposed the application of the fixed point
algorithm (7) to the problem (2). In [10], the authors derived the fixed point scheme through a
surrogate function, apparently unaware of the connection to operator splitting. They analyzed
the quadratic model (2), as opposed to the more general model (4), and proved global conver-
gence for a specific choice of τ without any strict convexity requirement, but did not analyze the
rate of convergence. The authors concluded in [10] that when applied to large-scale problems
with dense data, the cost of the fixed point algorithm (7) “may be too heavy, computationally,
to compete effectively with, e.g., modern high-dimensional optimization methods.”

In the present work, we aim to addresses the following two questions. Can strong conver-
gence results, especially on rate of convergence, be obtained for algorithm (7) applied to the
general problem (4)? Can algorithm (7) be made computationally competitive for problem
(5)? Our answers to both questions are affirmative.

On the theoretical side, we have obtained global convergence, even finite convergence for
some quantities, and a q-linear rate of convergence without assuming strict convexity, nor
uniqueness of solution. Furthermore, we show that the rate of convergence is not determined
by the conditioning of the Hessian of f , as normally is the case for gradient-type methods, but
by that of a reduced Hessian whose condition number can be much smaller than that of the
Hessian when A has many fewer rows than columns.

On the computational side, we have devised a continuation strategy that significantly re-
duces the number of iterations required for a given value of µ. Our numerical results indicate
that our algorithm is especially suited for large-scale instances of problem (2) when A is a par-
tial transform matrix such as a DCT matrix. In comparison with several recently developed
algorithms, our algorithm is clearly most robust, and in many cases also the fastest.

1.3 Several Recent Algorithms

Orthogonal Matching Pursuit (OMP) [36, 50] and its successor Stagewise Orthogonal Match-
ing Pursuit (StOMP) [15] do not solve (5) per se, but use a greedy approach to identify which
columns of A were used to construct the linear combination b = Axs, where xs is the origi-
nal sparse signal. Both rely on the residual vector r = b − Bx̂, where B is a matrix whose
columns are a subset of the columns of A, and x̂ is the solution to the least squares prob-
lem minx ‖Bx− b‖22. The algorithms identify columns of A to add to B by examining the
correlations AT r. The primary computational costs of OMP and StOMP are matrix-vector
multiplications and the solution of the least squares problems. Since the size of the least
squares problems depends primarily on the number of columns of B, these algorithms should
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be fast for very sparse signals. Conceptually, StOMP represents a variant of OMP in that
more than one column may be added to B during a given iteration, so that fewer iterations
are required. Meanwhile, StOMP has a reduced probability of solving (5) exactly, and it is
not trivial to specify an appropriate thresholding scheme and the associated tuning parameter
when applying StOMP to novel A matrices, or in the presence of noise.

There are some algorithms for solving (2) whose main computational costs are matrix-
vector multiplications. Gradient Projection for Sparse Reconstruction (GPSR) was recently
proposed by Figueiredo, Nowak and Wright [23]. They reformulate (2) as a bound-constrained
quadratic program, and then apply projected gradient steps, optionally using a variant of
Barzilai-Borwein steps (GPSR-BB) in order to accelerate convergence. We mention that de-
spite the success of the BB steps for unconstrained optimization, not much is known about its
convergence behavior for constrained optimization.

The algorithm of Kim, Koh, Lustig and Boyd [26] was developed for a large-scale least
squares problem with `1 regularization that is slightly different than, but completely equivalent
to (2). The authors employ a specialized interior-point method that uses a preconditioned
conjugate gradient (PCG) method to approximately solve linear systems in a truncated-Newton
framework. The authors exploit the structure of the involved Hessian to construct their pre-
conditioner and show that accurate solutions for Magnetic Resonance Imaging (MRI) problems
can be obtain with around a hundred PCG steps. The Matlab code for their algorithm is named
l1−ls.

Some earlier algorithms that either utilize PCG or just use matrix-vector multiplications
include [7, 28, 21, 22]. However, numerical results reported in [15, 23, 26] indicate that these
earlier algorithms are not as efficient as the more recent ones mentioned above. In Section 7,
we will compare our algorithm to the three recent algorithms: StOMP, GPSR and l1−ls.

1.4 Notation and Organization

For simplicity, we let ‖ ·‖ := ‖ ·‖2, the Euclidean norm, unless otherwise specified. The support
of x ∈ Rn is supp(x) := {i : xi 6= 0}. Let

g(x) := ∇f(x)

be the gradient of f(x); in particular, g(x) = A>M(Ax− b) for f defined by (5), that is

f =
1
2
‖Ax− b‖2M . (8)

For a set E, we use |E| to denote that its cardinality. For any matrix M ∈ Rn×n, we denote its
eigenvalues as λi(M), i = 1, . . . , n, and its maximum and minimum eigenvalues as, respectively,
λmax(M) and λmin(M).

The signum function of t ∈ R is

sgn(t) :=


+1 t > 0,
0 t = 0,
−1 t < 0;

while the signum multifunction (i.e., set-valued function) of t ∈ R is

SGN(t) := ∂|t| =


{+1} t > 0,
[−1, 1] t = 0,
{−1} t < 0,

6
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which is also the subdifferential of |t|. For x ∈ Rn, we define sgn(x) ∈ Rn and SGN(x) ⊂ Rn

component-wise as (sgn(x))i := sgn(xi) and (SGN(x))i := SGN(xi), i = 1, 2, · · · , n, respec-
tively. Clearly,

sgn(x) = sgn(x′) ⇐⇒ SGN(x) = SGN(x′), ∀ x, x′.

For x, y ∈ Rn, let x�y ∈ Rn denote the component-wise product of x and y, i.e., (x�y)i = xiyi.
Furthermore, vector operators such as |x| and max{x, y} are defined to operate component-
wise, analogous with the definitions of sgn and SGN.

For any index set I ⊆ {1, 2, . . . , n} (later, we will use index sets E and L), xI is defined as
the sub-vector of x of length |I| consisting only of components xi, i ∈ I. Similarly, if g is a
vector-valued function, then gI(x) denotes the sub-vector of g(x) consisting of gi(x), i ∈ I.

This paper is organized as follows. In Section 2, we recall the classic optimality (or in
general, stationarity) conditions for problem (4), and then characterize the optimal solution
sets of problems (4) and (5). In Section 3, we present a fixed point optimality condition for
(4). This optimality condition motivates a fixed point algorithm and introduces a shrinkage
operator, the properties of which conclude Section 3. In Section 4, we present our results on
the convergence and rate of convergence of the fixed point algorithm; the proofs of the main
results are given in Section 5. We motivate and propose a continuation method in Section
6 and briefly discuss a number of possible extensions. Section 7 contains the details of our
implementation of the fixed point algorithm as applied to (5) and numerical results comparing
our method to others. Finally, we conclude the paper in Section 8.

2 Optimality and Optimal Solution Set

Recall that f(x) in (4) is convex and let X∗ be the set of optimal solutions of (4). It is
well-known from convex analysis (see, for example, [44]) that an optimality condition for (4)
is

x∗ ∈ X∗ ⇐⇒ 0 ∈ SGN(x∗) + µg(x∗), (9)

where 0 is the zero vector in Rn; or equivalently,

x∗ ∈ X∗ ⇐⇒ µgi(x∗)


= −1, x∗i > 0,
∈ [−1, 1], x∗i = 0,
= 1, x∗i < 0.

(10)

It follows readily from (10) that 0 is an optimal solution of (4) if and only if µ‖g(0)‖∞ ≤ 1,
or in other words,

0 ∈ X∗ ⇐⇒ µ ≤ 1
‖g(0)‖∞

. (11)

Therefore, it is easy to check whether 0 is a solution of (4).
The following theorem establishes some properties of X∗ that are of interest in their own

right, but will also be useful in later developments.

Theorem 2.1. Let f ∈ C2 be convex and X∗ be the set of optimal solutions of (4), which is
nonempty.

i. If x1 ∈ X∗ and x2 ∈ X∗, then g(x1) = g(x2).
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ii. x∗ ∈ X∗ if and only if g(x∗) ≡ g∗, where for i = 1, 2, . . . , n,

µg∗i


= −1, max{xi : x ∈ X∗} > 0,
= +1, min{xi : x ∈ X∗} < 0,
∈ [−1, 1], otherwise.

(12)

iii. X∗ is contained in a single orthant of Rn, namely

X∗ ⊂ O := {x ∈ Rn : −sgn+(g∗i )xi ≥ 0,∀i}, (13)

where sgn+(·) is equal to sgn(·) except sgn+(0) = 1, i.e.,

sgn+(t) :=

{
+1 t ≥ 0,
−1 t < 0.

(In addition, we let sgn+(x) be defined component-wise for any x ∈ Rn.)

Furthermore, if f(x) is defined as in (8), then

iv. If x1 ∈ X∗ and x2 ∈ X∗, then Ax1 = Ax2.

v. ‖x∗‖1 and ‖Ax∗ − b‖M are constant for all x∗ ∈ X∗.

vi. X∗ is a bounded polyhedron, i.e., a polytope.

Proof. We prove the statements one by one.

i. This part will be proven later as Corollary 4.1 under Assumption 1, which is slightly
weaker than what is assumed for this theorem. That proof is independent of this theorem
and the results that follow from it.

ii. (12) follows directly from i. and (10) applied to all x∗ ∈ X∗.

iii. From (9) and (12), if there exists an x∗ ∈ X∗ with a strictly positive (negative) x∗i , then
µg∗i = −1 (µg∗i = 1), so all other x ∈ X∗ must satisfy xi ≥ 0 (xi ≤ 0). Consequently, X∗

lies in the orthant O.

iv. From i. and for f(x) so specified, g(x1)−g(x2) = A>MA(x1−x2) = 0, which immediately
implies that A(x1 − x2) = 0, given that M is symmetric positive definite.

v. From iv., Ax∗ is constant over X∗, and so ‖Ax∗ − b‖M must be as well. Since (5) has a
unique optimal objective value, ‖x∗‖1 must also be constant.

vi. Defining p = −sgn+(g∗), from the definition of O we have

p>x = ‖x‖1, ∀x ∈ O.

Consider the linear program

min
x
{p>x : Ax = c, x ∈ O} (14)

where c = Ax∗ for any x∗ ∈ X∗. It is easy to verify that an optimal solution x̄ of (14)
satisfies both ‖x̄‖1 = ‖x∗‖1 and ‖Ax̄ − b‖M = ‖Ax∗ − b‖M for any x∗ ∈ X∗ and vice
versa. So (14) is equivalent to (2), as long as c and O (or equivalently, g∗) are known.
Consequently, X∗, as the solution set of the linear program (14), must be a polyhedron
and must be bounded since ‖x∗‖1 is constant for all x∗ ∈ X∗.

This completes the proof.

8

D 



3 A Fixed-Point Algorithm

3.1 Optimality as a Fixed-Point Equation

We start by stating another optimality condition for problem (4). Although this condition can
be derived from an operator-splitting argument, here we give a simple and direct proof.

Proposition 3.1. Recall that X∗ is the set of optimal solutions of (4). For any scalar τ > 0,
x∗ ∈ X∗ if and only if

x∗ = sgn(x∗ − τg(x∗))�max
{
|x∗ − τg(x∗)| − τ

µ
,0
}
. (15)

Proof. Assume that x satisfies equation (15). When xi > 0, we have sgn(xi − τgi(x)) = 1 and
xi − τgi(x)− τ/µ > 0, from which it follows that

xi = sgn(xi − τgi(x)) max {|xi − τgi(x)| − τ/µ, 0} (16)
= xi − τgi(x)− τ/µ,

and µgi(x) = −1. On the other hand, when xi > 0, µgi(x) = −1 also gives (16).
Similarly, (16) is equivalent to µgi(x) = 1 when xi < 0.
When xi = 0, xi satisfies (16) if and only if

|xi − τgi(x)| = |τgi(x)| = τ |gi(x)| ≤ τ/µ,

which is equivalent to µgi(x) ∈ [−1, 1].
Since we considered all cases for the sign of xi, (15) is equivalent to (10) and thus (9).

Remark. Proposition 3.1 still holds if the strictly positive scalar τ is replaced by any mapping
d : Rn → {x ∈ Rn : x > 0}, and (15) by

x∗ = sgn(x∗ − d(x∗)� g(x∗))�max
{
|x∗ − d(x∗)� g(x∗)| − d(x∗)

µ
,0
}
. (17)

The proof of Proposition 3.1 will carry over to this more general result as it is based on the
component-wise analysis. The algorithm and analysis below based on (15) can also be extended
in a similar way with little effort.

The right-hand side of the fixed point equation (15) is a composition of two mappings sν
and h from Rn to Rn defined as:

h(·) := I(·)− τg(·), (18)
sν(·) := sgn(·)�max{| · | − ν, 0}, where ν > 0. (19)

Intuitively, h(·) resembles a gradient descent step (for decreasing f(x)), and sν(·) reduces the
magnitude of each nonzero component of the input vector by an amount less than or equal to ν,
thus reducing the `1-norm. Later we will also use sν as a mapping from R to R in composition
with which hi(·) = (h(·))i from Rn to R.

For solving the equation (15) and thus the minimization problem (4), it is natural to
consider the fixed point iterations:

xk+1 = sν ◦ h(xk), (20)

9
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for ν = τ/µ.
Although we originally derived the fixed point scheme (20) from a totally different approach,

we later found that it is just the forward-backward splitting algorithm (7) with

T1(x) = ∂‖x‖1/µ, T2(x) = g(x).

Through simple calculations we can derive

sν = (I + τT1)−1, h = I − τT2.

However, some special properties of the operator sν , given below, allow us to obtain strong
convergence results that cannot be directly inferred from the existing theory for forward-
backward splitting algorithms applied to more general operators.

3.2 Properties of Shrinkage Operator

It is easy to verify that sν(y) is the unique solution of

min
x∈Rn

ν‖x‖1 +
1
2
‖x− y‖2

for any y ∈ Rn. Wavelet analysts refer to sν(·) as the soft-thresholding [11] or wavelet shrinkage
(see [5], for example) operator. For convenience, we will refer to sν(·) as the shrinkage operator.

The two lemmas below establish some useful properties of the shrinkage operator. Both
make immediate use of the component-wise separability of sν , that is, for all indices i

(sν(y))i = sν(yi).

The alternative representation of sν in Lemma 3.1 will be used to prove Lemma 3.2. Lemma
3.2 proves a number of component-wise properties of sν , including non-expansiveness. These
results will be used in the component-wise convergence analysis of the iteration sequence {xk}
in Section 4.

Lemma 3.1. Let [x]+ := max{x,0} denote the orthogonal projection of a vector x ∈ Rn onto
the first orthant. We have

sν(y) = y − νsgn(y) + sgn(y)� [ν − |y|]+, for any y ∈ Rn. (21)

Furthermore, if ν − |yi| > 0, then (sν(y))i = sν(yi) = 0.

Proof. To prove (21), we choose a component index i and show that the corresponding left-
hand and right-hand side components equal each other for the two cases |yi| ≥ ν and |yi| < ν.
First assume |yi| ≥ ν. Then

(sν(y))i = sgn(yi) max{|yi| − ν, 0}
= sgn(yi)(|yi| − ν)
= yi − νsgn(yi) + sgn(yi) · 0
= yi − νsgn(yi) + sgn(yi) [ν − |yi|]+

= (y − νsgn(y) + sgn(y)[ν − |y|]+)i.

The second case, |yi| < ν, is immediately clear since both sides reduce to zero.

10
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Lemma 3.2. The operator sν(·) is component-wise non-expansive, i.e., for any y1, y2 ∈ Rn,∣∣sν(y1
i )− sν(y2

i )
∣∣ ≤ ∣∣y1

i − y2
i

∣∣ , ∀i. (22)

Consequently, sν is non-expansive in any `p (quasi-)norms, for p ≥ 0, and if h is non-expansive
in a given norm, then sν ◦ h is as well. Moreover, consider the case when

|sν(y1
i )− sν(y2

i )| = |y1
i − y2

i |, (23)

which we refer to as the no-shrinkage condition. We have, for each index i:

i. (23) =⇒ sgn(y1
i ) = sgn(y2

i ), sν(y1
i )− sν(y2

i ) = y1
i − y2

i .

ii. (23) and y1
i 6= y2

i =⇒ |y1
i | ≥ ν, |y2

i | ≥ ν and |y1
i | 6= |y2

i |.

iii. (23) and |y2
i | < ν =⇒ |y1

i | < ν, y1
i = y2

i , sν(y1
i ) = sν(y2

i ) = 0.

iv. (23) and |y2
i | ≥ ν =⇒ |y1

i | ≥ ν.

v. |y2
i | ≥ ν and sgn(y1

i ) 6= sgn(y2
i ) =⇒ |sν(y1

i )− sν(y2
i )| ≤ |y1

i − y2
i | − ν.

vi. sν(y1
i ) 6= 0 = sν(y2

i ) =⇒ |y1
i | > ν, |y2

i | ≤ ν, |sν(y1
i )− sν(y2

i )| ≤ |y1
i − y2

i | − (ν − |y2
i |).

The proof of this lemma, which is straightforward but rather lengthy and tedious, is given
in the Appendix.

4 Convergence Analysis

In this section, we study the convergence of the fixed point iterations (20) as applied to our
general `1-regularized minimization problem (4) and the quadratic case (5). Assumption 1,
which states that f is a convex function with bounded Hessian in a neighborhood of an optimal
solution of (4), is sufficient for our global convergence result and will apply throughout. Further
assumptions (primarily on the rank of a particular minor of the Hessian of f) will be made to
obtain linear convergence rate results in Section 4.2.

Assumption 1. Problem (4) has an optimal solution set X∗ 6= ∅, and there exists a set

Ω = {x : ‖x− x∗‖ ≤ ρ} ⊂ Rn

for some x∗ ∈ X∗ and ρ > 0 such that f ∈ C2(Ω), H(x) := ∇2f(x) � 0 for x ∈ Ω and

λ̂max := max
x∈Ω

λmax(H(x)) <∞. (24)

For simplicity, we will use a constant parameter τ in the fixed point iterations (20): xk+1 =
sν(xk − τg(xk)), where ν = τ/µ. In particular, we will always choose

τ ∈
(

0, 2/λ̂max

)
, (25)

which guarantees that h(·) = I(·) − τg(·) is non-expansive in Ω, and contractive in the range
space of H in the quadratic case. Our analysis can be extended to the case of variable τ , but
this would require more complicated notation and a reduction of clarity.
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4.1 Global and Finite Convergence

From the mean-value theorem, we recall that for any x, x′ ∈ Ω

g(x)− g(x′) =
(∫ 1

0
H(x′ + t(x− x′)) dt

)
(x− x′) := H̄(x, x′)(x− x′). (26)

In the lemma below, we verify that the operator h is non-expansive and show that if applying
h to two points in Ω does not incur any contraction on their distance, then the gradients of f
are equal at the two points.

Lemma 4.1. Under Assumption 1 and the choice of τ specified in (25), h(·) = I(·)− τg(·) is
non-expansive in Ω, i.e., for any x, x′ ∈ Ω,

‖h(x)− h(x′)‖ ≤ ‖x− x′‖. (27)

Moreover, g(x) = g(x′) whenever equality holds in (27).

Proof. Let H̄ := H̄(x, x′). We first note that

h(x)− h(x′) = x− x′ − τ(g(x)− g(x′)) = (I − τH̄)(x− x′).

Hence, in view of (25),

‖h(x)− h(x′)‖ = ‖(I − τH̄)(x− x′)‖
≤ max{|1− τλmax(H̄)|, |1− τλmin(H̄)|}‖x− x′‖
≤ max{|1− τ λ̂max|, 1}‖x− x′‖
≤ ‖x− x′‖.

Let s := x− x′ and p := H̄1/2s. Then

‖h(x)− h(x′)‖ = ‖x− x′‖ ⇐⇒
∥∥s− τH̄s∥∥ = ‖s‖

⇐⇒ −2τ sT H̄s+ τ2sT H̄2s = 0
⇐⇒ τpT H̄p = 2pT p

=⇒ τ
pT H̄p

pT p
= 2 if p 6= 0,

which contradicts (39) since pT H̄p
pT p

≤ λ̂max. Hence, p = 0, so that

g(x)− g(x′) = H̄1/2p = 0,

which completes the proof.

Since any two fixed points, say x and x′, of the non-expansive mapping sν ◦ h must satisfy
the equality

‖x− x′‖ = ‖sν ◦ h(x)− sν ◦ h(x′)‖ = ‖h(x)− h(x′)‖, (28)

Lemma 4.1 shows that g(x) = g(x′) as well. Hence, we have the following corollary and the
first statement of Theorem 2.1.
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Corollary 4.1 (Constant optimal gradient). Under Assumption 1, there is a vector g∗ ∈ Rn

such that
g(x∗) ≡ g∗, ∀x∗ ∈ X∗ ∩ Ω. (29)

We will make use of the following partition of all indices into L and E, and obtain finite
convergence for components in L but linear convergence for components in E.

Definition 1. Let X∗ 6= ∅ be the solution set of (4) and g∗ be the vector specified in Corol-
lary 4.1. Define

L := {i : µ|g∗i | < 1} and E := {i : µ|g∗i | = 1}. (30)

It is clear from the optimality condition (10) that L ∪ E = {1, 2, · · · , n},

supp(x∗) ⊆ E, and x∗i = 0, ∀i ∈ L, ∀x∗ ∈ X∗. (31)

There are examples in which supp(x∗) ( E, so the two vectors |x∗| and 1 − µ|g∗| are always
complementary but may not be strictly complementary.

The positive scalar ω defined below will also play a key role in the finite convergence
property of the fixed-point iterations (which is proven in Theorem 4.1):

Definition 2. Let g∗ be the vector specified in Corollary 4.1. Define

ω := min{ν(1− µ|g∗i |) : i ∈ L} > 0. (32)

In view of (31), we have for all x∗ ∈ X∗ and all i ∈ L

ν(1− µ|g∗i |) = ν − τ |g∗i | = ν − |x∗i − τgi(x∗)| = ν − |hi(x∗)|,

and consequently, for any x∗ ∈ X∗,

ω = min{ν − |hi(x∗)| : i ∈ L} > 0. (33)

We now claim that Assumption 1 is sufficient for obtaining convergence of the fixed point
iterations (20) and finite convergence for components in L.

Theorem 4.1 (The general case). Under Assumption 1, the sequence {xk} generated by the
fixed point iterations (20) applied to problem (4) from any starting point x0 ∈ Ω converges to
some x∗ ∈ X∗ ∩ Ω. In addition, for all but finitely many iterations, we have

xki = x∗i = 0, ∀i ∈ L, (34)
sgn(hi(xk)) = sgn(hi(x∗)) = −µg∗i , ∀i ∈ E, (35)

where, for ω defined in (32), the numbers of iterations not satisfying (34) and (35) do not
exceed ‖x0 − x∗‖2/ω2 and ‖x0 − x∗‖2/ν2, respectively.

The proof of Theorem 4.1 is rather lengthy and thus relegated to the next section.
In light of this theorem, every starting point x0 ∈ Ω determines a converging sequence {xk}

whose limit is a solution of (4). Generally, the solutions of (4) may be non-unique, as it is
not difficult to construct simple examples for which different starting points lead to different
solutions.

We recall that xE and g∗E are defined as the sub-vectors of x and g∗ with components xi
and g∗i , i ∈ E, respectively. Without loss of generality, we assume E = {1, 2, · · · , |E|}, and let
(xE ; 0) denote the vector in Rn obtained from x by setting the components xi for i ∈ L equal
to 0. The following corollary enables one to apply any convergence results for the gradient
projection method to the fixed point iterations (20).

13



Corollary 4.2. Under Assumption 1, after a finite number of iterations the fixed point itera-
tions (20) reduce to gradient projection iterations for minimizing φ(xE) over a constraint set
OE, where

φ(xE) := −(g∗E)>xE + f((xE ; 0)), and (36)

OE = {xE ∈ R|E| : −sgn(g∗i )xi ≥ 0, ∀i ∈ E}. (37)

Specifically, we have xk+1 = (xk+1
E ; 0) in which

xk+1
E := POE

(
xkE − τ∇φ(xkE)

)
, (38)

where POE
is the orthogonal projection onto OE, and ∇φ(xE) = −g∗E + gE((xE ,0)).

Proof. From Theorem 4.1, there exists K > 0 such that for k ≥ K (34)-(35) hold. Let
k > K. Since xki = 0 for i ∈ L, it suffices to consider i ∈ E. For i ∈ E, we have xki ≥ 0 if
sgn(hi(xk−1)) = 1 (equivalently, g∗i < 0) and xki ≤ 0 if sgn(hi(xk−1)) = −1 (g∗i > 0). Therefore,
for any i (−g∗i xki ) ≥ 0 for all k > K. Hence, xk ∈ O according to the definition (13) of O and
xkE ∈ OE .

For i ∈ E, we calculate the quantity

yk+1
i := xki − τ(∇φ(xk))i

= xki − τ(−g∗i + gi(xk))
= hi(xk)− ν (−µg∗i )
= (−µg∗i )(|hi(xk)| − ν)
= sgn(hi(xk))(|hi(xk)| − ν),

where (35) was used to obtain the last two expressions. Clearly, the fixed point iterations (20)
restricted to the components i ∈ E are

(
xk+1
E

)
i

= sν ◦ hi(xk) =

{
yk+1
i , −g∗i y

k+1
i ≥ 0

0, otherwise.

Equivalently, (
xk+1
E

)
i

=
(
POE

(xkE − τ∇φ(xkE))
)
i
,

which completes the proof.

Finally, a stronger global convergence result for convex quadratic functions, the cases in
problems (2) and (5), follows directly from the general convergence result. We note that
Assumption 1 is no longer necessary if the convex quadratic is bounded below. Due to the
importance of the quadratic case, we state a separate theorem.

Theorem 4.2 (The quadratic case). Let f be a convex quadratic function that is bounded
below, H be its Hessian, and τ satisfy

0 < τ < 2/λmax(H). (39)

Then the sequence {xk}, generated by the fixed point iterations (20) from any starting point
x0, converges to some x∗ ∈ X∗. In addition, (34)–(35) hold for all but finitely many iterations.
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4.2 Linear Rate of Convergence

We showed in Subsection 4.1 that {xk} generated by the fixed point iterations (20) converges
to some point in X∗ ∩ Ω. Throughout this subsection, we let

x∗ := lim
k→∞

xk,

and study the rate of convergence of {xk} to x∗ under different assumptions. Recall that a
sequence {‖xk − x∗‖} converges to zero q-linearly if its q1-factor is less than one, i.e., if

q1 := lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

< 1;

while it is r-linearly convergent if it is bounded by a q-linearly convergent sequence.
As we will show, under appropriate assumptions q-linear convergence holds for any τ ∈

(0, 2/λ̂max). However, the q1-factor may vary with different choices of τ . In particular, we will
consider choices of the form

τ(λ) :=
γ(λ)

γ(λ) + 1
2

λ̂max

, γ(λ) :=
λ̂max

λ
, (40)

where λ̂max is defined in (24) and λ > 0 will take different values under different assumptions.
It is easy to see that τ(λ) ∈ (0, 2/λ̂max) since γ(λ) > 0.

Some of our assumptions will involve the matrix HEE :

Definition 3. Let H(x) denote the Hessian of f , and

HEE(x) := [Hi,j(x)]i,j∈E

denote the square sub-matrix of H corresponding the index set E defined in (30).

We first make use of Corollary 4.2 by applying existing results for the gradient projection
method to (38), which yields:

Proposition 4.1. Let Assumption 1 hold. If (i) HEE(x∗) has full rank, or (ii) f is defined as
in (8), then {‖xk‖1 + µf(xk)} converges to ‖x∗‖+ µf(x∗) q-linearly and {xk} converges to x∗

r-linearly.

Under the first condition, the above result follows from [41] and [33], while under the second
condition it follows from [33]. However, by directly analyzing the original fixed point iterations,
we can strengthen the convergence rate of {xk} from r-linear to q-linear. Theorem 4.3 does
this under the assumption that HEE(x∗) is full rank; Theorem 4.4 assumes that supp(x∗) = E
instead. We first define

H̄k ≡ H̄(xk, x∗) :=
∫ 1

0
H(x∗ + t(xk − x∗)) dt. (41)

Theorem 4.3. Let Assumption 1 hold, and assume that

λEmin := λmin(HEE(x∗)) > 0. (42)

Then for any τ ∈ (0, 2/λ̂max), {xk} converges to x∗ q-linearly. Moreover, if τ is chosen as in
(40) with λ = λEmin, then the q1-factor satisfies

q1 ≤
γ(λEmin)− 1
γ(λEmin) + 1

. (43)
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Proof. Without loss of generality, we assume that all iteration counts, k, are large enough
such that xki = x∗i = 0 for all i ∈ L, and that the spectrum of H̄k

EE falls in the interval
[λEmin− ε, λ̂max] for an arbitrary ε > 0. (The first assumption on k is valid because of the finite
convergence properties of Theorem 4.1; the second follows from the continuity of the Hessian.)
Since xki = x∗i = 0, ∀i ∈ L, the mean-value theorem yields

hE(xk)− hE(x∗) = xkE − x∗E − τ(gE(xk)− gE(x∗)) = (I − τH̄k
EE)(xkE − x∗E).

Recall that xk+1 = sν ◦ h(xk) and sν(·) is non-expansive. Hence,

‖xk+1 − x∗‖ ≡ ‖xk+1
E − x∗E‖

≤ ‖hE(xkE)− hE(x∗E)‖
≤ ‖I − τH̄k

EE‖‖xkE − x∗E‖
≤ max{|1− τ λ̂max|, |1− τλEmin|+ τε}‖xkE − x∗E‖
≡ max{|1− τ λ̂max|, |1− τλEmin|+ τε}‖xk − x∗‖.

Clearly, max{|1 − τ λ̂max|, |1 − τλEmin| + τε} is less than one for any τ ∈ (0, 2/λ̂max) and ε
sufficiently small; In particular, it equals the right-hand side of (43) plus τε with the choice
τ = τ(λEmin). Since ε is arbitrary, (43) must hold.

Theorem 4.4. Let Assumption 1 hold, and also assume that x∗ satisfies (i) supp(x∗) = E or,
equivalently, that the strict complementarity condition

|x∗|+ (1− µ|g∗|) > 0, (44)

is satisfied, and (ii) the range space R(HEE(x)) of HEE(x) is invariant in a neighborhood N∗

of x∗. Whenever HEE(x∗) 6= 0, let

λRmin := λmin(V >HEE(x∗)V ) > 0, (45)

where V is any orthonormal basis of R(HEE(x∗)).
If HEE(x∗) = 0, then xk = x∗ for all k sufficiently large; otherwise {xk} converges to x∗

q-linearly for any τ ∈ (0, 2/λ̂max). In the latter case, if τ is chosen as in (40) with λ = λRmin,
then the q1-factor satisfies

q1 ≤
γ(λRmin)− 1
γ(λRmin) + 1

. (46)

The proof of this theorem is given in Section 5.2. We note that R(HEE(x)) is invariant
near x∗ if either f is a quadratic function or HEE(x∗) has full rank.

Since Assumption 1 is not required in the proof of global convergence for convex quadratic
f , we can directly derive the following results for this case, which is the situation one encounters
with compressed sensing. The proof, which is similar to those of Theorems 4.3 and 4.4, is left
to the reader.

Corollary 4.3. Let f be a convex quadratic function that is bounded below, and {xk} be the
sequence generated by the fixed point iterations (20) with τ ∈ (0, 2/λmax(H)).

i. If HEE has full rank, then {xk} converges to x∗ q-linearly. Moreover, if τ is chosen as
in (40) with λ = λmin(HEE), then the q1-factor satisfies

q1 ≤
γ(λmin(HEE))− 1
γ(λmin(HEE)) + 1

.
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ii. Let x∗ satisfy the strict complementarity condition (44). Then if HEE = 0, {xk} con-
verges to x∗ in a finite number of steps; otherwise {xk} converges to x∗ q-linearly. More-
over, if τ is chosen as in (40) with λ := λmin(V >HEEV ), where V is an orthonormal
basis for the range space of HEE, then the q1-factor satisfies

q1 ≤
γ(λmin(V >HEEV ))− 1
γ(λmin(V >HEEV )) + 1

.

4.3 Discussion

The assumptions of Theorems 4.3 and 4.4 usually hold for compressed sensing reconstruction
problems posed as in (5) or (2), in which case A is often a Gaussian random matrix or has rows
randomly chosen from an orthonormal matrix such as the FFT, DCT, or wavelets transform
matrix. It is well-known that a randomly generated matrix is full rank with probability one
(unless elements of the matrix are generated from a restricted space) [18]. Therefore, when
A ∈ Rm×n is a random matrix, the reduced Hessian for problem (5), i.e., A>EMAE , where AE
consists of columns of A with indices in E, will have a full rank with probability one as long as
|E| ≤ m, which is generally the case in practice. A similar argument can be made for partial
orthonormal matrices. We believe that the strict complementarity assumption in Theorem 4.4
should also hold for random matrices with a prevailing probability, though we do not currently
have a proof for this. We have observed the general convergence behavior predicted by our
theorems empirically in computational studies.

In our convergence theorems, the choice of τ is restricted by the upper bound 2/λ̂max,
where λ̂max is an upper bound for the largest eigenvalue of the Hessian. In compressed sensing
applications, the quantity λ̂max is often easily obtained. When A is a partial orthonormal ma-
trix and M = I, then λ̂max = λmax(A>A) = 1 and τ ∈ (0, 2). When A is a standard Gaussian
random matrix (with elements independently drawn from the standard normal distribution),
then from well-known random matrix theory (see [25] or [18], for example) we have

n

(
1−

√
m

n

)2

≤ λi(A>A) ≤ n
(

1 +
√
m

n

)2

with prevailing probability for large n. In either case, upper bounding for τ is not an issue.
For simplicity, we have used a fixed τ ∈ (0, 2/λ̂max) in our analysis. However, this require-

ment could be relaxed in the later stage of the iterations when the actions of the mapping
h = I − τg concentrate on a “reduced space”. In this stage, h can remain contractive even
if the upper bound on the Hessian is replaced by that on the reduced Hessian, which will
generally increase the upper bound on τ . For example, consider the quadratic problem (2)
where A is a partial orthonormal matrix. Then λmax(A>A) = 1, but λmax(A>EAE) < 1, such
that τ can be chosen close to 2/λmax(A>EAE) > 2, and h remains contractive. Such a dynamic
strategy, though theoretically feasible, is not straightforward to implement. It should be an
interesting topic for further research.

5 Proofs of Convergence Results

In this section, Theorems 4.1 and 4.4 are proved through a sequences of technical results that
lead to the final arguments.
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5.1 Proof of Theorem 4.1

The following lemma establishes sufficient conditions for xi, i ∈ E and x ∈ Ω, to be stationary
with respect to the fixed point iterations (20).

Lemma 5.1. Let Assumption 1 and the following four conditions hold for some x ∈ Ω.

i. ‖h(x)− h(x∗)‖ = ‖x− x∗‖,

ii. |hi(x)| ≥ τ/µ, ∀i ∈ E,

iii. sgn(hi(x)) = sgn(hi(x∗)), ∀i ∈ E,

iv. hi(x) = hi(x∗), ∀i ∈ L.

The first three conditions imply that

xi = (sν ◦ h(x))i , ∀i ∈ E, (47)

and the last one implies that
0 = (sν ◦ h(x))i, ∀i ∈ L. (48)

Proof. By Lemma 4.1, the first condition implies that g(x) = g(x∗). We note that ν = τ/µ.
The proof of (47) is the following calculation, for which i ∈ E.

sν ◦ hi(x) = sgn(hi(x))(|hi(x)| − ν)
= hi(x)− ν sgn(hi(x))
= xi − ν(µg∗i + sgn(hi(x∗)))
= xi − ν · 0
= xi,

where the second equality follows from Condition 2, the fourth from Conditions 1 and 3, and
the fifth from the optimality of x∗. In particular, the optimality of x∗ implies that

sgn(hi(x∗)) =
{

sgn(x∗i ), x∗i 6= 0
sgn(0− τg∗i ), x∗i = 0

}
= sgn(−g∗i ) (49)

and, by the definition of E,

µg∗i + sgn(hi(x∗)) = 0, ∀i ∈ E. (50)

Finally, the last statement of the lemma is evident, since |hi(x∗)| = |τgi(x∗)| < ν for all
i ∈ L.

The four conditions of Lemma 5.1 do not involve the operator sν , and are not sufficient
to guarantee that (sν ◦ h(x))i = xi for all i ∈ L. However, we show in the next lemma that
a single non-contractiveness condition not only implies the four conditions in Lemma 5.1, but
also ensures (sν ◦ h(x))i = xi for all i ∈ L.

Lemma 5.2. Under Assumption 1, if

‖sν ◦ h(x)− sν ◦ h(x∗)‖ ≡ ‖sν ◦ h(x)− x∗‖ = ‖x− x∗‖, (51)

then x is a fixed point (and therefore a solution of (4)), that is,

x = sν ◦ h(x). (52)
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Proof. Recall that sν is component-wise non-expansive and h is non-expansive in ‖ ·‖. Clearly,
from (51),

‖x− x∗‖ = ‖sν ◦ h(x)− sν ◦ h(x∗)‖ ≤ ‖h(x)− h(x∗)‖ ≤ ‖x− x∗‖. (53)

Hence, both inequalities hold with equality. In particular, the no-shrinkage condition (23)
holds for y1 = h(x) and y2 = h(x∗), so the part i of Lemma 3.2 gives us

sν ◦ h(x)− sν ◦ h(x∗) = h(x)− h(x∗).

Rewriting this equation, we get

sν ◦ h(x) = x− τ(g(x)− g(x∗)).

Finally, as the last inequality in (53) also holds with equality, we have g(x) − g(x∗) = 0
according to Lemma 4.1.

The next lemma establishes the finite convergence properties of {xki } stated in Theorem
4.1.

Lemma 5.3. Let Assumption 1 hold and let {xk} be generated by the fixed point iterations
(20) starting from any x0 ∈ Ω. Then

i. xki = 0 ∀i ∈ L for all but at most ‖x0 − x∗‖2/ω2 iterations;

ii. sgn(hi(xk)) = sgn(hi(x∗)) = −µg∗i , ∀ i ∈ E, for all but at most ‖x0−x∗‖2/ν2 iterations.

Proof. We fix any x∗ ∈ X∗ and consider xki 6= 0 for some i ∈ L. In view of the non-
expansiveness of sν(·) and the related properties given in Lemma 3.2, we have∣∣∣xk+1

i − x∗i
∣∣∣2 =

∣∣∣sν ◦ hi(xk)− sν ◦ hi(x∗)∣∣∣2
≤

(
|hi(xk)− hi(x∗)| − (ν − hi(x∗))

)2

≤
∣∣∣hi(xk)− hi(x∗)∣∣∣2 − ω2,

where the last inequality follows from (33). The component-wise non-expansiveness of sν(·)
and the non-expansiveness of h(·) imply that

‖xk+1 − x∗‖2 ≤ ‖h(xk)− h(x∗)‖2 − ω2 ≤ ‖xk − x∗‖2 − ω2.

Therefore, the number of iterations where xki 6= 0 for some i ∈ L cannot be more than
‖x0 − x∗‖2/ω2. This proves the first statement.

For the second statement, we note that if i ∈ supp(x∗),

0 6= x∗i = sgn(hi(x∗)) max{|hi(x∗)| − ν, 0},

so that |hi(x∗)| > ν for i ∈ supp(x∗). On the other hand,

|hi(x∗)| = τ |g∗| = τ/µ = ν, ∀i ∈ E \ supp(x∗).

Therefore,
|hi(x∗)| ≥ ν, ∀i ∈ E.
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Now if sgn(hi(xk)) 6= sgn(hi(x∗)) for some i ∈ E, then Lemma 3.2 implies∣∣∣xk+1
i − x∗i

∣∣∣2 =
∣∣∣sν ◦ hi(xk)− sν ◦ hi(x∗)∣∣∣2

≤
(
|hi(xk)− hi(x∗)| − ν

)2

≤
∣∣∣hi(xk)− hi(x∗)∣∣∣2 − ν2.

Hence, the number of iterations for which sgn(hi(xk)) 6= sgn(hi(x∗)) for some i ∈ E cannot be
more than ‖x0 − x∗‖2/ν2. Moreover, it follows directly from (50) that sgn(hi(x∗)) = −µg∗i for
all i ∈ E.

Proof of Theorem 4.1

Proof. Based on these lemmas, we are now ready to prove Theorem 4.1. To show that {xk}
converges, we (i) show that {xk} has a limit point, (ii) argue that it must be a fixed point
because it satisfies the condition (51) of Lemma 5.2, and (iii) prove its uniqueness.

Since sν ◦ h(·) is non-expansive, {xk} lies in a compact subset of Ω and must have a limit
point, say,

x̄ = lim
j→∞

xkj .

Since for any given fixed point x∗ the sequence {‖xk−x∗‖} is monotonically non-increasing,
it has a limit which can be written as

lim
k→∞

‖xk − x∗‖ = ‖x̄− x∗‖, (54)

where x̄ can be any limit point of {xk}. That is, all limit points, if more than one exists, must
have an equal distance to any given fixed point x∗ ∈ X∗.

By the continuity of sν ◦ h(·), the image of x̄,

sν ◦ h(x̄) = lim
j→∞

sν ◦ h(xkj ) = lim
j→∞

xkj+1,

is also a limit point of {xk}. Therefore, from (54) we have

‖sν ◦ h(x̄)− sν ◦ h(x∗)‖ = ‖x̄− x∗‖,

which allows us to apply Lemma 5.2 to x̄ and establish the optimality of x̄.
By setting x∗ = x̄ ∈ X∗ in (54), we establish the convergence of {xk} to its unique limit

point x̄:
lim
k→∞

‖xk − x̄‖ = 0.

Finally, the finite convergence results (34)–(35) were proved in Lemma 5.3.

5.2 Proof of Theorem 4.4

The next lemma gives a useful update formula for k sufficiently large and i ∈ supp(x∗).

Lemma 5.4. Under Assumption 1, after a finite number of iterations

xk+1
i = xki − τ(gi(xk)− g∗i ), ∀i ∈ supp(x∗). (55)
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Proof. Since xk → x∗ ∈ X∗ ∩ Ω and h(·) is continuous component-wise, hi(xk)→ hi(x∗). The
fact that |hi(x∗)| > ν for i ∈ supp(x∗) implies that after a finite number of iterations we have
|hi(xk)| > ν for i ∈ supp(x∗). This gives

xk+1
i = sgn(hi(xk))(|hi(xk)| − ν)

= hi(xk)− ν sgn(hi(xk))
= xki − τgi(xk)− (τ/µ) (−µg∗i )
= xki − τ(gi(xk)− g∗i ),

for any i ∈ supp(x∗).

Proof of Theorem 4.4

Proof. Without loss of generality, we can assume that k is sufficiently large so that (55) holds
and xk ∈ N∗, where N∗ is defined in Theorem 4.4. Since xki = 0 for any i ∈ L, it suffices to
consider the rate of convergence of xki for i ∈ E = supp(x∗), where equality follows from the
strict complementarity assumption on x∗.

Let H̄k be defined as in (41). By assumption, the range and null spaces of H̄k
EE are now

invariant for all k. Let P = V V > ∈ R|E|×|E|, the orthogonal projection onto the range space
of HEE(x∗). Then I − P is the orthogonal projection onto the null space of HEE(x∗). Also
recall that xE denotes the sub-vector of x corresponding to the index set E.

Since E = supp(x∗), Lemma 5.4 implies that

xk+1
E = xkE − τ(g(xk)− g(x∗))E = xkE − τH̄k

EE(xkE − x∗E). (56)

At each iteration the update, −τH̄k
EE(xkE − x∗E), stays in the range space of HEE(x∗). This

implies that the null space components of the iterates have converged to the null space com-
ponents of x∗, namely, for all k sufficiently large,

(I − P )(xkE − x∗E) ≡ 0. (57)

If HEE(x∗) = 0, then the range space is empty and the update vanishes such that xk = x∗

after a finite number of steps.
Now we assume that HEE(x∗) 6= 0 so that λRmin > 0 exists. It suffices to consider the rate

of convergence of {PxkE} to Px∗E . It follows from (56) and (57) that

xk+1
E − x∗E = P (xk+1

E − x∗E) = P (I − τH̄k
EE)P (xkE − x∗E). (58)

By a routine continuity argument, we know that there exists an arbitrarily small constant
ε > 0 such that for all k sufficiently large the eigenvalues of V >Hk

EEV satisfy

λ̂max ≥ λi
(
V >Hk

EEV
)
≥ λRmin − ε > 0, ∀i.

Consequently, given the definition of τ in (40) and noting that P 2 = P = V V >, we calculate
from (58):

‖xk+1
E − x∗E‖ ≤ ‖P (I − τH̄k

EE)P‖ ‖xkE − x∗E‖
= ‖I − τV >H̄k

EEV ‖ ‖xkE − x∗E‖ (59)

= max
{
|1− τ λ̂max|, |1− τλRmin|+ τε

}
‖xkE − x∗E‖

=
(
γ(λRmin)− 1
γ(λRmin) + 1

+ τε

)
‖xkE − x∗E‖,

21

D 



which implies (46) since ε can be arbitrarily small.

6 A Continuation Method

Our algorithm for solving (4), that is,

min
x∈Rn

‖x‖1 + µf(x), (60)

consists of applying the fixed-point iterations

xk+1 = sν ◦ h(xk) := sgn(xk − τg(xk))�max{|xk − τg(xk)| − ν, 0}, µν = τ

(see (20) and (25)) within the continuation (or path-following) framework described below.
Further extensions that may improve our algorithm are certainly possible, but are beyond the
the scope of this paper. Indeed, a strength of this algorithm is that a simple implementation
is sufficient to obtain good results. Our implementation will be fully described in the next
section.

6.1 Homotopy Algorithms in Statistics

Statisticians often solve (2) (which is (4) with f(x) = 1
2‖Ax − b‖

2) in the context of regres-
sion. In Bayesian terminology, this corresponds to maximizing the a posteriori probability for
recovering the signal x from the measurement b = Ax + ε, where the prior on x is Laplacian
and ε is Gaussian white noise. Practically, such a procedure may be preferred over standard
least squares because a sparse solution of (2) explicitly identifies the most significant regressor
variables.

As intimated in the Introduction, variations on (2) may be used in different applications
and contexts. For example, problem (2) is closely related to this quadratically constrained
`1-minimization problem:

min
x

{
‖x‖1

∣∣∣∣ 1
2
‖Ax− b‖2 ≤ σ2χ2

1−α,m

}
, (61)

which is often used when an estimated noise level σ is available. Alternatively, one can constrain
‖x‖1 and minimize the sum of squares of the residual Ax− b:

min
x

{
1
2
‖Ax− b‖2

∣∣∣∣ ‖x‖1 ≤ t} . (62)

Statisticians often refer to the above problem as the Least Absolute Shrinkage and Selection
Operator (LASSO) [49].

Problems (2), (61) and (62) are equivalent in the sense that once the value of one of µ, σ,
or t is fixed, there are values for the other two quantities such that all three problems have the
same solution. For a detailed explanation, please see [44].

Least Angle Regression (LARS) (see [19], for example) is a method for solving (62). LARS
starts with the zero vector and gradually increases the number of nonzeros in the approximation
x. In fact it generates the full path of solutions that results from setting the right-hand side
of the constraint to every value in the interval [0, t]. Thus, LARS is a homotopy algorithm.
The construction of the path of solutions is facilitated by the fact that it is piecewise linear,
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such that any segment can be generated given the solutions at turning points, which are the
points at which at least one component changes from zero to non-zero or vice versa. Thus
LARS and other homotopy algorithms [35, 40, 55] solve (62) by computing the solutions at the
turning points encountered as t increases from 0 to a given value. These algorithms require
the solution of a least squares problem at every iteration, where the derivative matrix of the
residuals consists of the columns of A associated with the nonzero components of the current
iterate. For large scale problems, solving these intermediate least squares problems may prove
costly, especially when A is a partial fast transform matrix that is not stored explicitly, and/or
the solution is only moderately sparse.

We found it helpful for our algorithm to adopt a continuation strategy similar to homotopy
in the sense that an increasing sequence of µ values is used. However, our algorithm does
not track turning points or solve any least squares sub-problems, and so only approximately
follows the solution path.

6.2 A Continuation Strategy

The convergence analysis indicates that the speed of the fixed point algorithm is determined
by the values of ν = τ/µ and ω (see Theorem 4.1), and the spectral properties of the Hessian
of f(x) (see Theorems 4.3 and 4.4). The signs of hi(xk) evolve to agree with those of hi(x∗) for
i ∈ E faster for larger ν (equivalently, for smaller µ). Similarly, large ω implies fast convergence
of the |xki |, i ∈ L, to zero. Once the finite convergence properties of Theorem 4.1 are satisfied,
all action is directed towards reducing the errors in the E components, and the (worst-case)
convergence rate is dictated by ‖I−τH̄EE‖, which can be considerably smaller than ‖I−τH̄‖,
especially when |E| � n.

In general, we have little or no control over the value of ω, nor the spectral properties of
the Hessian. On the other hand, we do have the freedom to choose τ and ν = τ/µ. For fixed
τ we found τ ∈ [1/λ̂max, 2/λ̂max) to be superior to τ ∈ (0, 1/λ̂max). Beyond this, τ does not
have much effect on ν and can be chosen empirically or based on considerations concerning
||I − τH̄EE ||. µ, on the other hand, while it must eventually be equal to some specified value
µ̄, can in the meantime be chosen freely to produce a wide range of ν values. Thus, since
larger ν are desired, we propose a continuation strategy for µ. In particular, if problem (60) is
to be solved with µ̄, we propose solving a sequence of problems (60) defined by an increasing
sequence {µj}, as opposed to fixing ν = τ/µ̄. When a new problem, associated with µj+1, is to
be solved, the approximate solution for the current (µj) problem is used as the starting point.
In essence, this framework approximately follows the path x∗(µ) in the interval [µ1, µ̄], where
for any given µ value x∗(µ) is an optimal solution for (60). This path is well-defined if the
solution to (60) is unique for µ ∈ [µ1, µ̄]. Even if this is not the case, it is reassuring to observe
that the algorithm itself is well-defined. A formal statement of our fixed point continuation
method is given in Algorithm 1.

Our computational experience indicates that the performance of this continuation strategy
is generally superior to that of directly applying the fixed point iterations (20) with the specified
value µ̄. This is also in line with the observations of [14, 49, 40, 35]. Moreover, since x∗(µ)
tends to be sparser for smaller µ, the reduced Hessian H̄EE tends to be smaller and better
conditioned in this case, such that the continuation strategy should improve the convergence
rate for those components in E in addition to the rate of finite convergence of sgn(hi(xk)),
i ∈ E.

In principle, our fixed point continuation algorithm can be used to solve problems (61) and
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Algorithm 1 Fixed Point Continuation (FPC) Algorithm
Require: A, b, x0, and µ̄
1: Select 0 < µ1 < µ2 < · · · < µL = µ̄. Set x = x0.
2: for µ = µ1, µ2, · · · , µL do
3: while “not converged” do
4: Select τ and set ν = τ/µ
5: x← sν ◦ h(x)
6: end while
7: end for

(62) in addition to (60). Take the LASSO problem (62) as an example. When we start our
algorithm with a small µ value, the corresponding optimal ‖x‖1 value is also small. As we
gradually increase µ, the optimal ‖x‖1 value increases. We can stop the process once ‖x‖1
approximately equals t, backtracking if necessary. As interesting as such extensions may be,
they are not in the scope of the current paper.

7 Numerical Results

We demonstrate the effectiveness of Algorithm 1 for the case of compressed sensing, that is for
solving

min
x∈Rn

‖x‖1 +
µ̄

2
‖Ax− b‖2M , (63)

where the second term enforces approximate satisfaction of Ax = b, an underdetermined linear
system, and b was generated from a sparse signal xs. In particular, A ∈ Rm×n, m ≤ n,
k = |supp(xs)| ≤ m, and

b = A(xs + ε1) + ε2, (64)

where ε1 (ε2) is a vector whose elements are i.i.d. distributed as N(0, σ2
1) (N(0, σ2

2)), that is,
both the signal and the measurements may be corrupted with Gaussian noise. As described
in Section 1.1, M is an m × m weighting matrix. If M = I then the second term of (63)
becomes the familiar least squares objective µ

2‖Ax−b‖
2
2. The above compressed sensing model

(64) suggests a particular form for M from which we derive appropriate values of µ. We also
present relevant simplifications and scalings.

Our results are restricted to two types of A matrices: Gaussian matrices whose elements
are i.i.d. standard normal (randn(m,n) in Matlab), and partial DCT matrices whose m rows
are chosen at random (uniformly) from the n×n discrete cosine transform (DCT) matrix; both
are “good” matrices for compressed sensing. While Gaussian matrices are explicitly stored,
partial DCT matrices are implicitly stored fast transforms for which matrix-vector products
cost just O(n log n) flops. Furthermore, partial DCT matrices have orthonormal rows such
that AAT = I.

7.1 Selection of M and µ

The statistical model (64) implies that the error Axs − b is normally distributed with zero
mean and covariance σ2

1AA
T + σ2

2I such that

Prob
(
(Axs − b)T (σ2

1AA
T + σ2

2I)−1(Axs − b) ≤ χ2
1−α,m

)
= 1− α, (65)
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where χ2
1−α,m is the 1 − α critical value of the χ2 distribution with m degrees of freedom.

Therefore, it is appropriate to try to recover xs by solving (5) with

M = (σ2
1AA

T + σ2
2I)−1, (66)

which is a positive definite matrix as long as σ2 is non-zero or σ1 is non-zero and AAT is
nonsingular.

An estimate for µ may be derived by considering the optimality conditions for (63), see
(10), which imply that for any solution x of (63), ‖g(x)‖∞ =

∥∥ATM(Ax− b)
∥∥
∞ ≤ 1/µ. Then

since ‖·‖2 ≤
√
n ‖·‖∞ and

∥∥ATM(Ax− b)
∥∥2

2
= ‖Ax− b‖2MAATM , if we let

σ2 = λmin(M1/2AATM1/2),

we have
σ2 ‖Ax− b‖2M ≤ ‖Ax− b‖

2
MAATM ≤

n

µ2
, (67)

such that setting

µ =
1
σ

√
n

χ2
1−α,m

(68)

guarantees that ‖Ax − b‖2M ≤ χ2
1−α,m at optimality with probability 1 − α or greater. Note

that this µ is well-defined as long as A and M are full rank, since this gives σ2 > 0.
In two important cases it is possible to set M = I. For simplicity of implementation we

also scale the quadratic term so that the condition 0 < τ < 2/λmax(ATMA), (39), becomes
0 < τ < 2. This yields three cases.

Case 0. When σ1 > 0 and AAT 6= I, M must be explicitly constructed, and we require
estimates of σ2 = λmax(M1/2AATM1/2) and σ2 = λmin(M1/2AATM1/2) (obtainable
with Lancozs iterations). Then an equivalent problem to (63) with M and µ defined in
(66) and (68) is obtained by substituting the following quantities for µ, A and b:

µ =
σ2

σ

√
n

χ2
1−α,m

, Ã =
1
σ
A, b̃ =

1
σ
b. (69)

This yields λmax(ÃTMÃ) = 1, as desired, since the nonzero eigenvalues of M1/2AATM1/2

and ATMA are equal.

Case 1. If σ1 = 0 and AAT 6= I, we set M = I, σ2 = λmax(AAT ), σ2 = λmin(AAT ) and

µ =
σ2

σ2σ

√
n

χ2
1−α,m

, Ã =
1
σ
A, b̃ =

1
σ
b. (70)

Note that for Gaussian A matrices we have the bounds(
1−

√
m

n

)2

n ≤ σ2 ≤ σ2 ≤
(

1 +
√
m

n

)2

n,

with a prevailing probability, which become tight as n→∞.

Case 2. If AAT = I, then by setting M = I and

µ =
1√

σ2
1 + σ2

2

√
n

χ2
1−α,m

, (71)

we automatically arrive at 0 < τ < 2, without any scaling of A and b.
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7.2 Implementation

In addition to M and µ, FPC (Algorithm 1) requires an initial guess x0; a method for choosing
µ1, µ2, . . . , µL−1; a convergence criterion; and a method for choosing τ . Below we describe
our default choices for these quantities, and discuss a post-processing procedure.

7.2.1 Basic Algorithm

Since the performance of compressed sensing algorithms varies with the number of measure-
ments, m, and the number of non-zeros of xs, k, algorithm parameters are best evaluated
by computing phase plots like in, that is, plots that depict some performance statistic as a
function of

δ = m/n and ρ = k/m, (72)

as is done in [15]. In this work, we recorded mean statistics on the speed and accuracy of FPC
at a number of equally spaced grid points (δ, ρ) ∈ [0, 1]× [0, 1] for each parameter combination
of interest, and used the results to parameterize FPC and set default values. The results are
described below, but it may be possible to improve upon the cited values as our implementation
continued to evolve after the defaults were set.

Experiments showed that if τ is fixed, τ should be large (near 2) when δ is moderate
to small (approximately δ ≤ 0.4) and should decay to 1 as δ increases. In all cases, τ ≥ 1
performed better than τ < 1. Thus we set τ according to

τ = min{1 + 1.665(1− δ), 1.999}. (73)

We set the initial iterate to x0 = τATMb since this quantity contains problem-specific
information and is simple to compute. Also note that it is the minimum norm solution to
min ‖Ax− b‖2 when AAT = I = M and τ = 1.

We initialize µ1 so that τ
µ1

= γ‖x0‖∞, where 0 < γ < 1 is a user-defined constant. This
choice ensures that sν will shrink most components of h(x) to 0; only components larger
than γ‖x0‖∞ will remain non-zero. We also found it convenient and effective to set µ2, . . . , µL
according to the modified geometric progression µi = min{µ1β

i−1, µ̄}, where β > 1 is a suitable
multiplier and L is the first integer i for which µi = µ̄. Our default choices for γ and β are
γ = 0.99 and β = 4. In general, γ did not impact the accuracy of FPC, but γ = 0.99 resulted
in faster CPU times as compared to γ = 0.5 and γ = 0.9. We also found γ = 0.9 and β = 2
to be an effective pairing, which suggests that γ and β should be adjusted so as to keep L
approximately constant.

The outer iteration corresponding to µi is terminated when

‖xk+1 − xk‖
max{‖xk‖, 1}

< xtol and µi‖g(xk)‖∞ − 1 < gtol.

The first criterion requires the last step to be small relative to xk; the second checks to see if
complementarity roughly holds at the current iterate. Empirically, the presence of the second
condition greatly improves accuracy, but gtol can be fairly large, and should be to obtain fast
convergence. We use xtol =1E-4 and gtol = 0.2.

We are now in a position to comment on the computational complexity of Algorithm 1
(FPC) as applied to compressed sensing. The approximate amount of storage (number of
array elements) and number of floating point operations (flops) per inner iteration are listed in
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Table 7.2.1 for three situations of interest. In the first two, the mn elements of A are explicitly
stored and matrix-vector multiplications cost O(mn) flops. The third case refers to partial
fast transform matrices for which A is identified by listing the m rows of the n× n transform
matrix (FFT, DCT, etc.) that were used to compute b. In this case, matrix-vector operations
cost O(n log n), which is the cost of a full transform.

Table 1: Complexity of Algorithm 1 for three types of compressed sensing problems.

Problem Type Required Storage Flops per Iteration
Explicit A, M = I mn+O(n) O(mn)
Explicit A, M 6= I mn+m2 +O(n) O(mn)

Fast transform A, M = I O(n) O(n log n)

Of course the total cost of Algorithm 1 depends on the number of inner iterations, a
quantity that varies with δ, ρ, µ̄, and problem instance. For compressed sensing we found
that convergence usually occurs within 1000 iterations, most times far less, when the original
signal is sparse enough to be accurately reconstructed. Furthermore, the number of iterations
is approximately independent of the signal length, n.

7.2.2 De-biasing

Unless otherwise stated, all of the FPC results are the output of Algorithm 1 applied to (63)
with the recommended values of M and µ. However, since the original signal is truly sparse in
this work, the accuracy of the reconstruction was often improved by post-processing the results
of Algorithm 1 with the de-biasing procedure of Algorithm 2. This procedure is similar to the
post-processing step recommended by the designers of GPSR [23], and to the calculation of xk

during each iteration of StOMP [15].
Based on the µ and timing studies below, and an implementation of Algorithm 2 that

used tol = 3σ, where σ = sqrt(mean(diag(M))) in the most general case, it seems to be
advantageous to use the de-biasing procedure with all DCT-A problems, and with Gaussian-
A problems for which there is no signal noise (σ1 = 0). Furthermore, when there is very
little noise in the system we recommend using the de-biasing algorithm in combination with
a smaller value of µ̄, as this recovers most of the accuracy at a reduced cost. In the following
it is sometimes appropriate to refrain from de-biasing in order to obtain more meaningful
comparisons. Therefore we will state which results reflect de-biasing and which do not.

Algorithm 2 De-Biasing
Require: A, b, and x from Algorithm 1
1: S = {i | |xi| > tol}
2: if 1 ≤ |S| ≤ m then
3: Z = {1, . . . , n} \ S
4: xZ = 0
5: xS = arg minx ‖ASx− b‖22
6: end if
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7.3 Computational Details

In addition to the two types of A matrices, Gaussian and DCT, we considered four noise sce-
narios. The resulting eight combinations are listed in Table 7.3 along with their classifications
(in the last column) according to Section 7.1 and abbreviations that will be used throughout
the remainder of this section. The original signal for a given problem instance was generated by
choosing the locations of xs’s k nonzeros uniformly at random, and then taking those nonzero
values from the N(0, 4) distribution. b was calculated according to (64).

Table 2: The eight compressed sensing scenarios studied in this section.

Abbrev. Matrix Type Noise Scenario (N*) σ1 σ2 Case
GN1 Gaussian (G*) 1 - small measurement 0 1E-8 1
GN2 2 - medium on both 5E-3 1E-3 0
GN3 3 - medium measurement 0 5E-3 1
GN4 4 - large signal 1E-2 1E-8 0
DN1 DCT (D*) 1 - small measurement 0 1E-8 2
DN2 2 - medium on both 5E-3 1E-3 2
DN3 3 - medium measurement 0 5E-3 2
DN4 4 - large signal 1E-2 1E-8 2

All calculations were completed using Matlab 7.3 on a Dell Optiplex GX620 with a 3.2
GHz processor and 4 GB RAM. Normally and uniformly distributed pseudo-random numbers
were generated as needed using the Matlab commands randn and rand.

Below we compare the performance of Algorithm 1 (Fixed Point Continuation or FPC) to
three other recently proposed compressed sensing algorithms: StOMP, GPSR-BB and l1 ls.
As described in Section 1.3, StOMP does not solve (63) at all, but uses a greedy approach to
reconstruct xs. GPSR-BB and l1 ls were designed for problems equivalent to (63), but only
if M = I. This inconsistency was corrected by multiplying A and b on the left by M1/2 as
appropriate.

StOMP, on the other hand, relies on the scaling of the A matrix, and so, while there is no
discrepancy with regards to the DCT scenarios, the G* scenarios for StOMP do not correspond
exactly to those shown for the other three algorithms. In particular, in order for its thresholding
schemes to work properly, StOMP requires Gaussian A matrices to be further processed so
that either (a) the columns are scaled to unit norm or (b) a matrix with orthonormal rows is
obtained via QR factorization [15]. We chose option (a) for this work, that is, G* for StOMP
refers to solving (63) with M = I and a Gaussian A matrix whose columns have been scaled
to unit norm.

All four algorithms use fast transforms instead of explicit matrix operations when A is a
partial DCT matrix. In particular, for StOMP we used its iterative solver option to solve the
required least squares problems.

7.4 Quality of Compressed Sensing Reconstructions

Similar to [15], we evaluated the suitability of Algorithm 1 for compressed sensing by generating
phase plots for each of the cases listed in Table 7.3. A selection is presented in Figure 1;
similar phase plots for StOMP are in Figure 2. Both sets of phase plots depict the number of
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Figure 1: Phase plots for Algorithm 1 (FPC). Subplots (a) and (d) depict the number of
elements in the original signal that were not recovered within 1E-4 relative error. The intensities
in subplots (b-c) and (e-f) indicate the relative 2-norm error between the recovered signal and
the original signal. Black is used for any relative 2-norm error greater than or equal to 1;
quantities less than or equal to 1E-2 are shaded white. In all cases δ = m/n, the ratio of
measurements to signal length and ρ = k/m, the number of nonzeros in the original signal
divided by the number of measurements.

Figure 2: Phase plots for StOMP. This figure is analogous to Figure 1.

components not recovered to a relative tolerance of 1E-4 in the *N1 cases (with little noise)
and the relative 2-norm error ‖x − xs‖/‖xs‖ in the remaining cases (with substantial noise).
Each (δ, ρ) point in each phase plot represents an average over 30 runs with n = 512.

All of the phase plots show that the original signal is recovered well as long as it is sparse
enough and there are enough measurements. However, the location of the transition curve,
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Figure 3: Phase plots for FPC, Scenario DN4 (σ1 = 1E-2, σ2 = 1E-8). Plot (a) shows the
relative 2-norm error for the FPC results without debiasing. (b) is analogous, but includes
de-biasing, that is, post-processing with Algorithm 2.

and its qualitative shape, depends on the recovery algorithm, type of A matrix and noise level.
The FPC results for GN1 and DN1 are the result of setting µ̄ = 5000 and applying the

de-biasing procedure to the FPC output. µ was set to its recommended value for the remainder
of the plots, however, the DN2 and DN4 results also include de-biasing, while the GN2 and
GN4 results do not, following the recommendations of Section 7.2.2. The DN4 results without
and with de-biasing are shown in Figure 3 to demonstrate the advantages of de-biasing when
it works.

Note that the StOMP results were generated with the maximum number of stages set
to 30, FAR thresholding, and α = 0.015. The strange island shapes in StOMP’s DN2 and
DN4 results (also present for DN3, although this case is not shown) seem to be attributable
to StOMP reaching the maximum number of stages. This serves to highlight some of the
difficulties of working with StOMP—while the case of (scaled) Gaussian A and σ1 = σ2 = 0
is well-characterized in [15], the authors do not clearly describe how to set the thresholding
parameters and number of stages when different A are used or noise is added to the system.
We were obviously able to obtain good results for the scenarios listed in Table 7.3, but this
required some trial and error on our part. For instance, we found it necessary to deviate from
the default settings of 10 stages, FDR thresholding and q = 0.5.

The designers of StOMP claim some robustness to measurement noise in [15], but do not
discuss this situation in great detail. They do show a phase plot for problems with scaled
Gaussian A matrices and measurement noise for which the signal to noise ratio ‖xs‖/‖AT ε2‖
is equal to 10. By generalizing the signal to noise ratio to ‖xs‖/‖ε1 +AT ε2‖, we report average
signal to noise ratios for the cases shown in Figure 2 in Table 3.

Table 3: Average signal-to-noise ratios ±2 standard deviations for phase plots in Figure 2.

*N1 *N2 *N4
G* 9E7 ± 1E7 180 ± 40 90 ± 20
D* 1E8 ± 4E6 180 ± 40 90 ± 20

Finally, we emphasize FPC’s ability to recover a sparse signal in the presence of noise in
Figure 4, which depicts xs, xs + ε1 and the recovered signal x (without de-biasing) for a small
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Figure 4: The original, noisy and recovered signals for a compressed sensing problem with a
partial DCT A matrix of size 128× 256, k = 32, and σ1 = σ2 = 0.1.

problem (n = 256, m = 128, ρ = 32) with DCT A, σ1 = 0.1 and σ2 = 0.1, which corresponds
to a signal to noise ratio of 4.4.

7.5 Sensitivity to µ: A Comparison with GPSR and l1 ls

Intuitively we know that µ̄ should be inversely proportional to ‖Axs−b‖, a fact that is reflected
in the recommendations of Section 7.1. But is the recommended value of µ̄ overly conservative,
how sensitive is the `1-regularized problem (63) to µ, and how does this sensitivity translate
into the accuracy required of the σ1 and σ2 estimates? Furthermore, do FPC, GPSR-BB and
l1 ls perform well for all µ values of interest?

To answer these questions, we solved randomly generated compressed sensing problems for
a wide range of µ values. For simplicity we set n = 1024, m = 512, and varied the sparsity
level among ρ = 0.01 (k = 5), 0.1 (51) and 0.2 (102). Experiments were conducted for every
combination of algorithm (FPC, GPSR, l1 ls) and noise scenario (Table 7.3). All data points
represent an average over 10 problems.

A representative sample of the experimental results is shown in Figures 5 and 6, which
depict relative 2-norm error and CPU times for all algorithms and noise scenarios as a function
of µ. Figure 5 does this for Gaussian A matrices with ρ = 0.2; Figure 6 shows results for partial
DCT matrices and ρ = 0.1. Note that these results do not include any accuracy gains from
de-biasing, nor do the CPU times include anything other than solving (63).

Several conclusions may be drawn from this data. First of all, l1 ls is robust to µ and
produces accurate reconstructions, but is significantly slower than both FPC and GPSR-BB.
As shown in the next section, this conclusion holds for all values of n.

Second, GPSR-BB is not robust to µ. Invariably, as µ is increased one reaches a point
where GPSR-BB fails, that is, GPSR-BB is no longer able to recover the original signal. Since
FPC and l1 ls do recover xs to a reasonable accuracy at these µ values, we must conclude that
GPSR-BB is no longer converging to a solution of (63). Although not depicted here, the full
results clearly show that GPSR-BB is able to tolerate larger µ values when xs is sparser (ρ is
smaller).
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Figure 5: Relative recovery error and CPU times versus µ for Gaussian A and ρ = 0.2. Each
data point is the average over 10 compressed sensing problems solved with FPC (solid lines),
GPSR-BB (dashed lines) or l1 ls (dash-dot lines). The vertical dotted lines represent the µ
values recommended in Section 7.1 (computed with true noise levels and α = 0.5). GPSR-BB’s
CPU times are not shown for µ values greater than that at which GPSR-BB’s accuracy curve
degrades from those of FPC and l1 ls.
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Figure 6: Relative recovery error and CPU times versus µ for DCT A and ρ = 0.1. Each
data point is the average over 10 compressed sensing problems solved with FPC (solid lines),
GPSR-BB (dashed lines) or l1 ls (dash-dot lines). The vertical dotted lines represent the µ
values recommended in Section 7.1 (computed with true noise levels and α = 0.5). GPSR-BB’s
CPU times are not shown for µ values greater than that at which GPSR-BB’s accuracy curve
degrades from those of FPC and l1 ls.
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The results also support the values of M and µ specified in Section 7.1, as the dotted
lines, which represent the recommended µ values, generally lie close to the smallest µ value
for which maximum accuracy is attained. Of course, these recommended M and µ values
made use of the true noise levels σ1 and σ2, which are not generally known, and a critical
χ2 value, which depends on the parameter α. It turns out that µ̄ is not very sensitive to
α. For example, when n = 1024 and m = 512,

√
n/χ2

1−α,m = 1.34, 1.38, 1.42, 1.44, and 1.49
when α = 0.05, 0.25, 0.5, 0.75 and 0.95, respectively, such that any α ∈ [0.05, 0.95] produces
comparable µ̄ values. With regards to noise levels, Figures 5 and 6 indicate that order of
magnitude estimates are sufficient for achieving good accuracy in a reasonable amount of time.
In general one should err on the side of larger µ (smaller noise estimates) as this ensures
accurate recovery. The only exception to this guideline is very sparse problems. Our results
for ρ = 0.01 indicate that the relative error versus µ curve has a more distinct minimum, and
that the recommended µ value tends to overestimate that minimum, when the original signal
is very sparse. However, even in this case an order of magnitude estimate will give reasonable
results.

Finally, note that the FPC and GPSR-BB solution times are quite comparable at µ values
for which the original signal is recovered and GPSR-BB is able to converge to a solution of
(63). In particular, whether FPC or GPSR-BB is faster is both problem-specific and depends
on µ. Thus, based purely on timing, it would be hard to choose between the two methods.
However, GPSR-BB often fails at µ values smaller than what is necessary for accurate recovery.
As mentioned in the Introduction, we suspect that this problem has its origins with the use of
Barzilai-Borwein steps in a constrained setting.

Before discussing the next set of experiments, we take this opportunity to support the
de-biasing recommendations of Section 7.2.2. Figure 7 shows FPC results with and without
de-biasing for two cases: DN1 and DN2 with ρ = 0.2. In the first case, when there is no signal
noise and little measurement noise (σ2 =1E-8), post-processing with Algorithm 2 is inferior
the FPC results at the recommended µ value because of the iterative solver tolerance used in
the de-biasing algorithm. However, running FPC with µ̄ = 5000 and then de-biasing provides
acceptable results (relative error of 7E-6) in significantly less time as compared to running
FPC with µ̄ =1E8. The DN2 results are representative of de-biasing in the case of DCT A and
noisy measurements: de-biasing provides more accuracy at low cost. In contrast, de-biasing
performs well for Gaussian A when σ1 = 0, but degrades the results when σ1 6= 0 and n is
moderate to large.

7.6 Computational Time Comparison

In this section we investigate the performance of FPC, StOMP, GPSR-BB and l1 ls as a
function of problem size. The experimental set-up is identical to that in the previous section,
except that µ is fixed, n is incrementally increased, and each data point is the average of five
runs rather than 10.

The FPC and StOMP results for Gaussian A matrices, noise scenarios two and three,
and ρ = k/m = 0.2 and 0.1 are shown in Table 4. (δ = m/n = 0.5 in all cases.) The
non-parenthetical numbers in the body of Table 4 are CPU times, either the time it took to
generate the problem data (data), or to solve the problem with the given method (solve). The
parenthetical numbers are the corresponding CPU times divided by the minimum CPU time,
where the minimum is taken over the two methods. For instance, for GN2, n = 512 and ρ = 0.2,
the StOMP problem data is generated faster than FPC’s so that the parenthetical numbers
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Figure 7: Relative recovery error and CPU times versus µ for DCT A and ρ = 0.2. Each
data point is the average over 10 compressed sensing problems solved with FPC without (solid
lines) and with (dashed lines) de-biasing. The vertical dotted lines represent the µ values
recommended in Section 7.1.

for the data CPU times are 1.17/0.014 = (84) for FPC and .014/.014 = (1) for StOMP, but
FPC’s solve time is faster, so the parenthetical numbers in this case are 0.050/0.050 = (1) for
FPC and 0.119/0.050 = (2.4) for StOMP. The numbers below the method names are average
relative 2-norm errors plus or minus one standard deviation. Note that the relative error is
generally independent of problem size.

Following our previous discussions, the FPC results use the recommended M and µ values;
the GN3 (σ1 = 0 and σ2 =5E-3) results include de-biasing, but the GN2 (σ1 = 5E-3 and
σ2 =1E-3) results do not. The data times for FPC include that for generating A = randn(m,n)
and calculating M and µ. StOMP’s data times include generating A = randn(m,n) and scaling
A’s columns to unit norm.

The entirety of the Gaussian data (all noise scenarios and sparsity levels) reveals that both
algorithms behave differently depending on whether or not there is noise on the original signal.
As expected, it takes much longer to generate the FPC problem data when σ1 6= 0, because
in this case M and the extreme eigenvalues of M1/2AATM1/2 must be calculated outright.
However, the solve times in this case are actually faster than when the overall noise level is
similar but σ1 = 0, which is evident when one compares the GN2 and GN3 results in Table
4. In particular, the GN2 solve times tend to be 3-7 times faster than the corresponding GN3
solve times.

StOMP, on the other hand, has fairly constant data generation times, but takes longer to
solve problems for which σ1 6= 0. Again, it is best to compare GN2 and GN3; doing so reveals
the GN3 solve times to be about twice as fast as the corresponding GN2 solve times.

For the noise-free signal cases (GN1 and GN3), FPC always has the fastest data-generation
times, and has relatively better solution times for larger, sparser problems, as compared to
StOMP. FPC boasts the fastest solution times for the largest problems reported in each case,
except for GN1 and ρ = 0.2. When there is noise on the original signal (GN2 and GN4),
FPC always has the fastest solve times (up to 28 times faster in the most favorable cases), but
has very slow data-generation times, especially for larger n. An alternative formulation that
addresses this issue is investigated below.

Continuing with the Gaussian scenarios, we ran analogous time trials for l1 ls and GPSR-
BB with the recommended M and µ values, when possible. Based on our µ study results, l1 ls
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Table 4: Timing study results for Gaussian A matrices. The FPC GN3 accuracy and solve
time results include de-biasing, but the GN2 results do not. For purposes of comparison, note
that de-biasing never represents more than three percent of the reported solve time.

GN2 ρ = 0.2 ρ = 0.1
FPC StOMP FPC StOMP

9.2E-3 ± 2.1E-4 9.9E-3 ± 5.2E-4 8.9E-3 ± 3.4E-4 1.2E-2 ± 5.5E-4
n data solve data solve data solve data solve

512 1.17 (84) 0.089 (1) 0.014 (1) 0.119 (1.3) 1.17 (83) 0.057 (1) 0.014 (1) 0.108 (1.9)
1024 11.5 (240) 0.267 (1) 0.049 (1) 0.593 (2.2) 11.9 (240) 0.178 (1) 0.048 (1) 0.618 (3.5)
2048 95 (510) 0.916 (1) 0.185 (1) 8.59 (9.4) 94.5 (510) 0.620 (1) 0.185 (1) 4.99 (8.0)
4096 772 (1000) 3.88 (1) 0.730 (1) 71.6 (18) 747 (1000) 2.32 (1) 0.730 (1) 48.3 (21)

GN3 ρ = 0.2 ρ = 0.1
FPC StOMP FPC StOMP

3.0E-4 ± 1.4E-4 6.5E-3 ± 6.1E-4 3.9E-4 ± 2.1E-4 7.4E-3 ± 6.1E-4
n data solve data solve data solve data solve

512 0.010 (1) 0.395 (5.3) 0.013 (1.3) 0.075 (1) 0.010 (1) 0.166 (3.2) 0.014 (1.3) 0.052 (1)
1024 0.030 (1) 1.28 (2.9) 0.049 (1.6) 0.447 (1) 0.030 (1) 0.674 (2.3) 0.049 (1.6) 0.298 (1)
2048 0.110 (1) 4.84 (1.3) 0.185 (1.7) 3.80 (1) 0.110 (1) 2.29 (1) 0.185 (1.7) 2.92 (1.3)
4096 0.428 (1) 19.1 (1) 0.797 (1.9) 31.6 (1.7) 0.427 (1) 9.16 (1) 0.761 (1.8) 19.3 (2.1)

was tested for all scenarios, but GPSR-BB was limited to noise scenario, ρ combinations of
(GN2, 0.01), (GN4, 0.1) and (GN4,0.01), which are generally characterized by noisy, sparse
signals. Note that, following Section 7.3, l1 ls and GPSR-BB have the same data-generation
times as FPC and give similar accuracy results before de-biasing.

Overall, l1 ls is much slower than FPC in all cases. Its solve times are sometimes faster
than StOMP’s, in particular when there is noise on the original signal and the problem is large.
The best ratio of an l1 ls solve time to the best solve time between FPC and StOMP is 3.6
(for GN2, ρ = 0.2 and n = 4096). A ratio of 10-20 is more typical; and the worst is 1040 (for
GN1, ρ = 0.01 and n = 512).

As stated in Section 7.5, GPSR-BB has solve times comparable to those of FPC when it
works. For the Gaussian A cases mentioned above, GPSR-BB is about 50% slower than FPC
for the second noise scenario (and ρ = 0.01), and is 15-50% slower in the fourth noise scenario,
achieving its best relative solve times when the original signal is large and sparse (n = 4096
and ρ = 0.01).

One question raised by this data is whether or not reasonable results can be obtained for
the noisy signal scenarios (GN2 and GN4) if M is set to an appropriate multiple of I, rather
than to (σ2

1AA
T + σ2

2I)−1, which is itself expensive to calculate, and also gives rise to a µ̄
estimate that contains the largest and smallest eigenvalues of M1/2AATM1/2. To this end we
repeated our GN2 and GN4 timing runs with

M = (σ2
1σ

2I + σ2
2I)−1, (74)

where σ2 =
(
1 +

√
m
n

)2
n is an upper bound approximation to λmax(AAT ). Following the

developments of Section 7.1, the corresponding µ̄ estimate is

µ̄ =
σ2

σ
√
σ2

1σ
2 + σ2

2

√
n

χ2
1−α,m

, (75)
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Table 5: Timing study results for Scenario GN4 and ρ = 0.1. Comparison of FPC with M as
in (66), FPC with an approximate M (74), and StOMP.

FPC FPC Approx. StOMP
1.7E-2 ± 7.4E-4 1.9E-2 ± 6.2E-4 2.5E-2 ± 6.4E-4

n data solve data solve data solve
512 1.16 (120) 0.059 (1) 0.010 (1) 0.148 (2.5) 0.013 (1.3) 0.110 (1.9)

1024 11.6 (380) 0.180 (1) 0.030 (1) 0.459 (2.6) 0.048 (1.6) 0.518 (2.9)
2048 94.5 (860) 0.614 (1) 0.109 (1) 1.55 (2.5) 0.185 (1.7) 6.67 (11)
4096 742 (1700) 2.37 (1) 0.429 (1) 6.19 (2.6) 0.729 (1.7) 49.4 (21)
8192 - - 1.71 (1) 27.2 (1) 2.87 (1.7) 358 (13)

which matches (70) in the case that σ1 = 0. Relevant timing results for GN4, ρ = 0.1, are
shown in Table 5.

The data show that the approximate M largely accomplishes all we could hope for. While
the FPC solve times are about two times slower with the approximate, rather than the full,
M matrix, the data times are hundreds of times faster, and FPC retains its advantage over
StOMP. Thus we recommend using the full M matrix when many problems of the same size
and noise characteristics are to be solved, and an approximate M when any of m, n, σ1 or σ2

vary.
Tables 6 and 7 list FPC, StOMP and GPSR-BB data for two noise scenarios with DCT

A . In this case there is no weighting matrix M , and the problems solved by each algorithm
(including StOMP) are completely equivalent. Therefore, we do not show the data-generation
times, which were about two orders of magnitude smaller than the solution times. The third
and fourth noise scenarios’ data are not shown because the trends in those data are very similar
to those seen in DN2. De-biasing was applied to FPC and GPSR-BB in all cases; for DN1,
µ̄ = 5000. GPSR-BB results are only shown when GPSR-BB can successfully solve (63) with
the same µ̄ as FPC.

FPC and StOMP have comparable solution times in the low-noise DN1 scenarios, with
FPC preferred when the original signal is large and less sparse. StOMP does best when the
original signals are very sparse, and preferably small, both in the DN1 case, and with noisy
measurements, as in DN2, DN3 and DN4. In all cases FPC is relatively faster, as compared to
StOMP, with increasing n. While FPC never overtakes StOMP with DN1 and ρ = 0.01 for the
problem sizes shown, it is apparent that it would do so at larger values of n; for the remainder
of the noise scenarios, FPC was faster than StOMP for all problems with n = 1048576 or
greater, often surpassing StOMP for smaller n when ρ = 0.1 or 0.2.

This section supports the observation in Section 7.5 that FPC and GPSR-BB solve times
are generally comparable when GPSR-BB is able to recover the original signal. Table 7 contains
a sampling of the relevant data; comparable GPSR-BB data was also generated for the pairs
(DN3, ρ = 0.01), (DN4, ρ = 0.1), and (DN4, ρ = 0.01). For large n, FPC was faster than
GPSR-BB in the (DN3, ρ = 0.01) and (DN4, ρ = 0.1) cases, and GPSR-BB was faster in the
(DN4, ρ = 0.01) case; the two algorithms never differed by more than 30%. As in Section 7.5,
l1 ls proved to be slower than the other algorithms; it was typically three to ten times slower
than the fastest algorithm.
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Table 6: Timing study results for Scenario DN1 and all sparsity levels. The FPC accuracy
and solve time results were computed with µ̄ = 5000 and de-biasing.

ρ = 0.2 ρ = 0.1 ρ = 0.01
FPC StOMP FPC StOMP FPC StOMP

n 7.5E-6 ± 9.7E-7 6.2E-6 ± 1.2E-6 7.1E-6 ± 1.1E-6 7.3E-6 ± 1.5E-6 2.2E-6 ± 1.4E-6 1.7E-6 ± 7.5E-7
512 0.106 (1) 0.106 (1) 0.070 (1.2) 0.057 (1) 0.036 (3.0) 0.012 (1)

1024 0.192 (1) 0.193 (1.0) 0.111 (1.1) 0.104 (1) 0.064 (2.9) 0.022 (1)
2048 0.475 (1.3) 0.357 (1) 0.223 (1.0) 0.221 (1) 0.131 (2.1) 0.063 (1)
4096 0.724 (1) 0.801 (1.1) 0.422 (1) 0.449 (1.1) 0.254 (2.1) 0.123 (1)
8192 1.37 (1) 1.56 (1.1) 0.845 (1) 0.879 (1.0) 0.482 (1.6) 0.305 (1)

16384 2.56 (1) 2.97 (1.2) 1.58 (1) 1.81 (1.2) 0.949 (1.8) 0.538 (1)
32768 5.32 (1) 6.66 (1.2) 3.29 (1) 3.64 (1.1) 2.06 (1.8) 1.14 (1)
65536 12.6 (1) 14.2 (1.1) 7.94 (1) 8.11 (1.0) 4.71 (1.9) 2.52 (1)

131072 26.2 (1) 29.0 (1.1) 16.4 (1.0) 15.8 (1) 9.59 (1.4) 7.02 (1)
262144 53.1 (1) 64.2 (1.2) 33.2 (1) 33.2 (1) 19.8 (1.6) 12.4 (1)
524288 107 (1) 119 (1.1) 66.9 (1.0) 64.4 (1) 40.4 (1.3) 30.2 (1)

1048576 227 (1) 257 (1.1) 140 (1) 141 (1.0) 84.5 (1.3) 63.3 (1)
2097152 450 (1) 511 (1.1) 281 (1.0) 268 (1) 168 (1.3) 128 (1)

Table 7: Timing study results for Scenario DN2 and all sparsity levels. The FPC and GPSR
accuracy and solve time results include de-biasing.

ρ = 0.2 ρ = 0.1 ρ = 0.01
FPC StOMP FPC StOMP FPC GPSR StOMP

n 4.6E-3 ± 8.0E-5 4.3E-3 ± 1.8E-4 4.3E-3 ± 8.4E-5 4.2E-3 ± 1.4E-4 6.4E-3 ± 7.3E-4 3.3E-2 ± 3.2E-3 5.9E-3 ± 1.0E-3
512 0.093 (1) 0.109 (1.2) 0.068 (1.2) 0.055 (1) 0.041 (2.7) 0.053 (3.4) 0.015 (1)

1024 0.158 (1) 0.189 (1.2) 0.112 (1.1) 0.100 (1) 0.076 (2.8) 0.083 (3.1) 0.027 (1)
2048 0.345 (1) 0.443 (1.3) 0.233 (1) 0.283 (1.2) 0.158 (2.0) 0.190 (2.4) 0.078 (1)
4096 0.649 (1) 0.837 (1.3) 0.454 (1) 0.518 (1.1) 0.308 (2.0) 0.369 (2.4) 0.156 (1)
8192 1.28 (1) 1.78 (1.4) 0.867 (1) 0.990 (1.1) 0.590 (1.4) 0.681 (1.6) 0.421 (1)

16384 2.54 (1) 3.45 (1.4) 1.70 (1) 2.15 (1.3) 1.17 (1.4) 1.27 (1.5) 0.865 (1)
32768 5.03 (1) 7.24 (1.4) 3.56 (1) 4.38 (1.2) 2.35 (1.3) 2.68 (1.5) 1.77 (1)
65536 11.2 (1) 19.9 (1.8) 7.50 (1) 11.2 (1.5) 5.07 (1.1) 6.54 (1.4) 4.58 (1)

131072 23.2 (1) 40.7 (1.8) 16.2 (1) 27.0 (1.7) 10.6 (1.0) 13.7 (1.3) 10.5 (1)
262144 46.8 (1) 91.8 (2.0) 32.4 (1) 65.9 (2.0) 20.9 (1) 27.5 (1.3) 25.6 (1.2)
524288 95.2 (1) 199 (2.1) 65.1 (1) 128 (2.0) 45.1 (1) 50.4 (1.1) 56.1 (1.2)

1048576 199 (1) 466 (2.4) 138 (1) 298 (2.2) 90.3 (1) 103 (1.1) 145 (1.6)
2097152 397 (1) - 274 (1) 685 (2.5) 197 (1) 206 (1.0) 327 (1.7)
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7.7 Summary of Numerical Results

FPC, StOMP and l1 ls all give accurate reconstruction results for a wide variety of compressed
sensing problems, even in the face of noisy signals and measurements. For easy reconstructions,
any of these algorithms should be sufficient with regards to accuracy, however, the phase
transitions for StOMP differ from those of FPC (which are the same as l1 ls’s since they are
both based on the formulation (63)), and so phase plots should be consulted in borderline
cases. In general, noise reduces StOMP’s “good” region (with regards to acceptable m/n and
k/m) far more than FPC’s.

The current version of GPSR-BB, on the other hand, is not robust with respect to the
parameter µ̄ in the sense that for any given problem, there is some µ value above which
GPSR-BB no longer converges to a solution of (63). In many cases, this cut-off value is not
sufficiently large to produce an accurate compressed sensing reconstruction. GPSR-BB is most
likely to perform as well as FPC and l1 ls when the original signal is very sparse, and the noise
levels are high.

With regards to speed, l1 ls is nearly always the slowest algorithm of the four. For the
cases studied in this work, FPC will always be faster than StOMP for large enough problems.
For Gaussian A matrices and σ1 = 0 (no signal noise), StOMP performs best for smaller, less
sparse signals. StOMP is considerably slower than FPC when there is signal noise, even if an
approximate M matrix (a multiple of the identity) is used in order to avoid expensive data
preparations. For partial DCT A matrices, the trends for StOMP relative to FPC are similar
(chiefly, the larger the problem size is, the slower is StOMP relative to FPC), except that in
this case the ratios of StOMP time vs. FPC time are better when signals are sparser, and the
presence or absence of signal noise longer significantly affects the running time of StOMP.

When GPSR-BB is able to solve (63) at the desired value of µ̄, its solve times are very
comparable to FPC’s. For the scenarios considered in this work, FPC was 15-70% faster than
GPSR-BB when A was a Gaussian matrix, but 25% slower to 40% faster than GPSR-BB when
A was a partial DCT matrix. (In the latter case, GPSR-BB was significantly faster than FPC
only at the highest noise and sparsity levels.)

8 Conclusions

We investigated the use of the forward-backward splitting technique, combined with a con-
tinuation (path-following) strategy, for solving `1-norm regularized convex optimization prob-
lems. Our theoretical analysis yields convergence results stronger than what could be obtained
from applying existing general theory to our setting. In particular, we have established finite
convergence for some quantities and a q-linear convergence rate without a strict convexity as-
sumption. Interestingly, our rate of convergence results imply, in a general sense, that sparser
solutions correspond to faster rates of convergence, which agrees with what has been observed
in practice.

We conducted a comprehensive computational study comparing our fixed point contin-
uation (FPC) algorithm with three state-of-the-art compressed sensing recovery algorithms.
Extensive numerical results indicate that, overall, FPC outperforms the other algorithms, es-
pecially when the data are noisy and the problem is large. The strong performance of FPC
as applied to compressed sensing lends support to our belief that the fixed point continuation
framework should also yield robust and efficient algorithms for more general `1-regularized
optimization problems, which is a topic of further research.
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[35] D. Malioutov, M. Çetin, and A. Willsky. Homotopy continuation for sparse signal repre-
sentation. In Prceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing, volume 5, pages 733–736, Philadelphia, PA, 2005.

[36] S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing, 41(12):3397–3415, 1993.

[37] B. Mercier. Inéquations Variationnelles de la Mécanique. Publications Mathématiques
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A Appendix

Proof of Lemma 3.2

Proof. For ease of notation, we drop the subscript i by letting p1 = y1
i , p

2 = y2
i .
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First, when sgn(p1) = sgn(p2) 6= 0,

|sgn(p1) max{|p1| − ν, 0} − sgn(p2) max{|p2| − ν, 0}|
= |max{|p1| − ν, 0} −max{|p2| − ν, 0}|

=



∣∣|p1| − |p2|
∣∣ , |p1| ≥ ν, |p2| ≥ ν∣∣|p2| − ν

∣∣ , |p1| < ν, |p2| ≥ ν∣∣|p1| − ν
∣∣ , |p1| ≥ ν, |p2| < ν

0, |p1| < ν, |p2| < ν

≤
∣∣|p1| − |p2|

∣∣
= |p1 − p2|,

where the inequality holds as an equality if and only if both |p1| ≥ ν and |p2| ≥ ν.
Second, when sgn(p1) = sgn(p2) = 0, (22) holds as an equality trivially for p1 and p2.
Third, when sgn(p1) 6= sgn(p2) and both nonzero,

|sgn(p1) max{|p1| − ν, 0} − sgn(p2) max{|p2| − ν, 0}|
(∵ sgn(p1) = −sgn(p2)) = |max{|p1| − ν, 0}+ max{|p2| − ν, 0}|

= |max{|p1|+ |p2| − 2ν, |p1| − |p2|, |p2| − |p1|}|
(∵ sgn(p1) = −sgn(p2)) ≤

∣∣max{|p1 − p2| − 2ν, |p1 + p2|}
∣∣

< |p1 − p2|.

Last, when one and only one of sgn(p1) and sgn(p2) vanishes,

|sgn(p1) max{|p1| − ν, 0} − sgn(p2) max{|p2| − ν, 0}| < |p1 − p2|

follows from |sgn(p) max{|p|−ν, 0}| < |p| for p 6= 0. Therefore, we have proved the component-
wise non-expansiveness of sν(·).

Next, we prove Parts 1 through 6 one by one.

i. The first result, sgn(p1) = sgn(p2), directly follows from (23) and the fact that whenever
sgn(p1) 6= sgn(p2), (22) holds with strictly inequality, which has been shown above.

To obtain the second result, sν(p1) − sν(p2) = p1 − p2, we consider two cases: p1 = p2

and p1 6= p2.

If p1 = p2 then sν(p1)− sν(p2) = p1 − p2 = 0 holds obviously.

If p1 6= p2, we assume p1 > p2 without loss of generality. Under this assumption, we shall
show sν(p1) ≥ sν(p2). In fact, it is trivial to verify from the definition of sν that in all
of the following cases: 0 ≥ p1 > p2, p1 ≥ 0 > p2, p1 > 0 ≥ p2, and p1 > p2 ≥ 0, we have
sν(p1) ≥ sν(p2).

Therefore, (23) gives sν(p1)− sν(p2) = p1 − p2.

We state an additional result for the rest of proof below: whenever (23) holds (hence,
sgn(p1) = sgn(p2)), we have

sν(p1)− sν(p2) = p1 − p2 + sgn(p1)([ν − |p1|]+ − [ν − |p2|]+) = p1 − p2, (76)

which follows from the expression (21) in Lemma 3.1.
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ii. From (23), sgn(p1) = sgn(p2), which cannot be zero (otherwise, p1 = p2 = 0 contradicts
p1 6= p2). Therefore, [ν − |p1|]+ = [ν − |p2|]+ follows from (76). Since p1 6= p2 from (b),
the only case that [ν−|p1|]+ = [ν−|p2|]+ can hold is [ν−|p1|]+ = [ν−|p2|]+ = 0; hence,
|p1| ≥ ν and |p2| ≥ ν. Therefore, the two conditions give ν ≤ |p1| 6= |p2| ≥ ν.

iii. If p2 = 0, then sgn(p1) = sgn(p2) = 0, so p1 = 0. Then, the result follows trivially.

If p2 6= 0, then sgn(p1) = sgn(p2) 6= 0, so (76) gives

[ν − |p1|]+ = [ν − |p2|]+. (77)

Since ν − |p2| > 0, it follows from (77) that ν > |p1| and |p1| = |p2|. Together with the
fact that sgn(p1) = sgn(p2), we have p1 = p2.

Altogether, we have |p1| = |p2| < ν, p1 = p2, and hence sν(p1) = sν(p2) = 0 from Lemma
3.1.

iv. From (23) and |p2| > ν, sgn(p1) = sgn(p2) 6= 0 and thus holds (77) above. Also from
|p2| > ν, [ν − |p1|]+ = [ν − |p2|]+ = 0; therefore, |p1| ≥ ν.

v. If p1 = 0, the result holds with equality trivially.

If p1 6= 0, we assume p1 > 0 and p2 < 0 without loss of generality. From Lemma 3.1 and
because of sgn(p1) > 0 and sgn(p1) < 0, we have

|sν(p1)− sν(p2)| = sν(p1)− sν(p2)
=

(
p1 − ν + [ν − |p1|]+

)
−
(
p2 + ν − [ν − |p2|]+

)
=

(
p1 − ν + [ν − p1]+

)
−
(
p2 + ν

)
= p1 − p2 − 2ν + [ν − p1]+

≤ p1 − p2 − ν
= |p1 − p2| − ν,

where the first and last equalities both follow from p1 > p2, and the inequality from
p1 > 0 and thus [ν − p1]+ ≤ ν.

vi. The given conditions are equivalent to |p1| > ν and |p2| ≤ ν. Without loss of generality,
we assume p1 > 0; therefore, we have p1 > ν ≥ p2 and sν(p1) > 0 following from the
assumption. Consequently, we get

|sν(p1)− sν(p2)| = sν(p1)
= p1 − νsgn(p1) + sgn(p1)[ν − |p1|]+

= p1 − ν
= p1 − p2 − (ν − p2)
= |p1 − p2| − (ν − p2)
≤ |p1 − p2| − (ν − |p2|).

It is easy to see that the above result holds with equality if p1 > ν, p2 ≥ 0 or p1 < −ν,
p2 ≤ 0.
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