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Abstract 

A deflation procedure is introduced that is designed to improve the conver­
gence of an implicitly restarted Arnoldi iteration for computing a few eigenvalues 
of a large matrix. As the iteration progresses the Ritz value approximations of 
the eigenvalues of A converge at different rates. A numerically stable scheme is 
introduced that implicitly deflates the converged approximations from the itera­
tion. We present two forms of implicit deflation. The first, a locking operation, 
decouples converged Ritz values and associated vectors from the active part of the 
iteration. The second, a purging operation, removes unwanted but converged Ritz 
pairs. Convergence of the iteration is improved and a reduction in computational 
effort is also achieved. The deflation strategies make it possible to compute multi­
ple or clustered eigenvalues with a single vector restart method. A Block method 
is not required. These schemes are analyzed with respect to numerical stability 
and computational results are presented. 

AMS classification: Primary 65F15; Secondary 65G05 

Key Words : Arnoldi method, Lanczos method, eigenvalues, defla­
tion, implicit restarting . 

1 Introduction 

The Arnoldi method is an efficient procedure for approximating a subset of the eigen­
system of a large sparse n x n matrix A. The Arnoldi method is a generalization of 
the Lanczos process and reduces to that method when the matrix A is symmetric. 
After k steps the algorithm produces an upper Hessenberg matrix H k of order k. The 
eigenvalues of this small matrix H k are used to approximate a subset of the eigenvalues 

*This work was supported in part by ARPA (U.S. Army ORA4466.01), by the Department of En­
ergy (Contract DE-FG0f-91ER25103) and by the National Science Foundation (Cooperative agreement 
CCR-9120008.) 
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of the large matrix A. The matrix H k is an orthogonal projection of A onto a partic­
ular Krylov subspace and the eigenvalues of Hk are usually called Ritz values or Ritz 
approximations. 

There are a number of numerical difficulties with Arnoldi/Lanczos methods. In [33] 
a variant of this method was developed to overcome these difficulties. This technique, 
the Implicitly Restarted Arnoldi iteration (IRA-iteration) may be viewed as a truncation 
of the standard implicitly shifted QR-iteration and shares a number of its desirable 
properties. Because of this connection, we are motivated to take advantage of the well 
understood deflation rules of the QR-iteration and to adapt these to the IRA-iteration. 
These deflation techniques are extremely important with respect to convergence and 
numerical properties. Deflation rules have contributed greatly to the emergence of the 
practical QR algorithm as the method of choice for computing the eigen-system of dense 
matrices. 

This paper introduces deflation schemes that may be used within an IRA-iteration. 
This iteration is designed to compute a selected subset of the spectrum of A such as the 
k eigenvalues of largest real part. We refer to this selected subset as wanted and the 
remainder of the spectrum as unwanted. As the iteration progresses some of the Ritz 
approximations to eigenvalues of A may converge long before the entire set of wanted 
eigenvalues has been computed. These converged Ritz values may be part of the wanted 
or the unwanted portion of the spectrum. In either case it is desirable to deflate the 
converged Ritz values and corresponding Ritz vectors from the unconverged portion of 
the factorization. If the converged Ritz value is wanted then it is necessary to keep it 
in the subsequent Arnoldi factorizations. This is called locking. If the converged Ritz 
value is unwanted then it must be removed from the current and subsequent Arnoldi 
factorizations. This is called purging. These notions will be made precise during the 
course of the paper. For the moment we note that the advantages of a numerically 
stable deflation strategy include: 

• Reduction of the working size of the desired invariant subspace. 

• The ability to determine clusters of nearby eigenvalues without need for a Block 
Arnoldi method [20, 32]. 

• Preventing the effects of the forward instability of the Lanczos algorithm [28, 39]. 

The fundamentals of the Arnoldi algorithm are introduced in § 2 as well as the 
determination of Ritz value convergence. The IRA-iteration is reviewed in § 3. Deflating 
within the IRA-iteration is examined in § 4. The deflation scheme for converged Ritz 
values is presented in § 5. The practical issues associated with our deflation scheme 
are examined in § 6. These include block generalizations of the ideas examined in § 5 
for dealing with clusters of Ritz values, avoiding the use of complex arithmetic when 
a complex conjugate pair of Ritz values converges. An error analysis of the deflated 
process in presented in § 7. A brief survey of other deflation strategies is given in § 8. 
An interesting connection with the various algorithms used to re-order a Schur form of 
matrix is presented in § 9. Numerical results are presented in § 10. 

Capital and lower case letters denote matrices and vectors while lower case Greek 
letters denote scalars. The j-th canonical basis vector is denoted by ej. The norms 
used are the Euclidean and Frobenius denoted by II · II and II · IIF, respectively. 
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2 The Arnoldi Factorization 

Arnoldi's method [2] is an orthogonal projection method for approximating a subset 
of the eigensystem of a general square matrix. The method builds, step by step, an 
orthogonal basis for the Krylov space, 

for A generated by the vector v 1 . The original algorithm in [2] was designed to reduce 
a dense matrix to upper Hessenberg form. However, the method only requires knowl­
edge of A through matrix vector products, and its ultimate value as a technique for 
approximating a few eigenvalues of a large sparse matrix was soon realized. When the 
matrix A is symmetric the procedure reduces to the Lanczos method [24]. 

Over a decade of research was devoted to understanding and overcoming the numer­
ical difficulties of the Lanczos method [27]. Development of the Arnoldi method lagged 
behind due to the inordinate computational and storage requirements associated with 
the original method when a large number of steps are required for convergence. Not 
only is more storage required for H k when A is nonsymmetric, but in general more 
steps are required to compute the desired Ritz value approximations. The explicitly 
restarted Arnoldi iteration (ERA-iteration) was introduced by Saad [30] to overcome 
these difficulties. The idea is based on similar ones developed for the Lanczos process 
by Paige [26], Cullum and Donath [12], and Golub and Underwood [19]. Karush [23] 
proposes what appears to be the first example of a re-started iteration. 

The Arnoldi method is introduced in this section and implicit restarting is presented 
in the following section. 

After k steps, the Arnoldi algorithm computes a truncated factorization 

(2.1) 

of A E Rnxn to upper Hessenberg form where V[Vk = h- The vector fk is the residual 
and is orthogonal to the columns of Vi- The matrix Hk E Rkxk is an upper Hessenberg 
matrix that is the orthogonal projection of A onto Range(Vi) = Kk(A, v1 ). 

The following procedure shows how the factorization is extended from length k to 
k+ p. 

Algorithm 2.1 
function [Vi+p, Hk+p, fk+Pl = Arnoldi (A, Vi, Hk, fk, k,p) 

Input: AVi - VkHk = fkef with V[Vi = Ik, V[ fk = 0. 
Output: AVi+p - Vi+pHk+p = fk+pef+P with v[,_pVk+p = h+p, and V{+pfk+P = 0. 

1. For j = 1,2 ... p 

2. fh+j ,- llh+j-1 II; if /3k+j = 0 then stop; 

:J. Vk+j ,- fk+j-i/3k~j; Vi+j ,- [Vi+j-1, Vk+jl; 

4- w - Avk+j; 

5. hk+j - Vf+j-l w; ak+j ,- vf+jw ; 
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6. 

Hk+j +-

If k = 0 then Vi = v1 represents the initial vector. In order to ensure V{ fk ~ 0 in fi­
nite precision arithmetic the above algorithm requires some form of re-orthogonalization 
at step 7 [33]. 

In exact arithmetic the algorithm continues until fk = 0 for some k :::; n. All 
of the intermediate Hessenberg matrices Hj are unreduced for j :::; k. A Hessenberg 
matrix is said to be unreduced if all of its main sub-diagonal elements are nonzero. 
The residual vanishes at the first step k such that dimKk+1 (A, vi) = k and hence is 
guaranteed to vanish for some k :::; n . The following result indicates when an exact 
truncated factorization occurs. This is desirable since the columns of Vi form a basis 
for an invariant subspace and the eigenvalues of H k are a subset of those of A. 

Theorem 2.2 Let (2.1) define a k-step Arnoldi factorization of A, with Hk unreduced. 
Then fk = 0 if and only if v1 = Qky where AQk = QkRk with Q1/ Qk = h and Rk is 
an upper triangular matrix of order k. 

Proof: See [33]. D 

In Theorem 2.2, the span of the k columns of Q k represent an invariant subspace for 
A. The diagonal elements of Rk are eigenvalues of A. We call AQk = QkRk a partial 
Schur decomposition of A. In particular, if the initial vector is a linear combination 
of k linearly independent eigenvectors then the k-th residual vector vanishes. It is 
therefore desirable to to devise a method that forces the starting vector v1 to be a 
linear combination of eigenvectors corresponding to the wanted eigenvalues. 

The algorithms of this paper are appropriate when the order of A is so large that 
storage and computational requirements prohibit completion of the algorithm that 
produces Vn and Hn. Working in finite precision arithmetic generally removes the 
possibility of the computed residual ever vanishing exactly. 

As the norm of h decreases, the eigenvalues of H k become better approximations 
to those of A. Experience indicates that 11h11 rarely becomes small let alone zero. But 
as the order of H k increases certain eigenvalues of H may emerge as excellent estimates 
to eigenvalues of A. Since the interest is in a small subset of the eigensystem of A, 
alternate criteria that allow termination for k ~ n are needed. Let H kY = y0 where 
IIYII = 1. Define the vector x = Vy to be a Ritz vector and the scalar 0 to be Ritz 
value. Then 

(2.2) 

IIAx - x0II, 
llfkll le{ YI, 

indicates that if the last component of an eigenvector for H k is small the Ritz pair ( x, 0) 
is an approximation to an eigenpair of A. This pair is exact for a nearby problem: it 
is easily shown that (A+ E)x = x0 with E = -(efy)fkxH. The advantage of using 
the Ritz estimate (2.2) is to avoid explicit formation of the quantity A Viy- Viy0 when 
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accessing the numerical accuracy of an approximate eigenpair. Recent work by Chatelin 
and Fraysee [10, 11] and Godet-Thobie [16] suggests that when A is highly non-normal, 
the size of ef y is not an appropriate guide for detecting convergence. If the relative 
departure from normality defined by the Henrici number [[AAT - AT A[[F/[[A21[F, is 
large, the matrix A is considered highly non-normal. Assuming that A is diagonalizable, 
a large Henrici number implies that the basis of eigenvectors is ill-conditioned [10]. 
Bennani and Braconnier compare the use of the Ritz estimate and direct residual 
l[Ax - x0II in Arnoldi algorithms [6]. They suggest normalizing the Ritz estimate 
by the norm of A resulting in a stopping criteria based on the backward error. The 
backward error is defined as the smallest, in norm, perturbation ~A such that the Ritz 
pair is an eigenpair for A+ ~A. Scott [32] presents a lucid account of the many issues 
involved in determining stopping criteria for the unsymmetric problem. 

3 The Implicitly Restarted Arnoldi Iteration 

Theorem 2.2 motivates the selection of a starting vector that will lead to the construc­
tion of an approximate basis for the desired invariant subspace of A. The best possible 
starting vector would be a linear combination of a Schur-basis for the desired invariant 
subspace. The IRA-iteration iteratively restarts the Arnoldi factorization with the goal 
of forcing the starting vector closer and closer to the desired invariant subspace. The 
scheme is called implicit because the updating of the starting vector is accomplished 
with an implicitly shifted QR mechanism on Hk. This will allows us to update the 
starting vector by working with orthogonal matrices that live in Rkxk rather than in 
Rnxn. 

The iteration starts by extending a length k Arnoldi factorization by p steps. Next, 
p shifted QR steps are performed on Hk+p· The last p columns of the factorization are 
discarded resulting in a length k factorization. The iteration is defined by repeating the 
above process until convergence. As an example, suppose that p = 1 and k represents 
the dimension of the desired invariant subspace. Letµ be a shift and let Hk-µI = QkRk 
with Qk orthogonal and Rk upper triangular matrices, respectively. Then from (2.1) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(A - µI)Vi - Vk(Hk - µI) 

(A - µI)Vk - VkQkRk 

(A - µI)(ViQk) - (ViQk)(RkQk) 

A(VkQk) - (ViQk)(RkQk + µI) 

fke[, 

fke[, 

fker Qk, 

fke[Qk. 

The matrices are updated via Vi +-- ViQ k and H k +-- RkQ k + µI and the latter ma­
trix remains upper Hessenberg. However, equation (3.4) is not a legitimate Arnoldi 
factorization. Partitioning the matrices in this equation results in 

(3.5) 

The relation (3.4) fails to be an Arnoldi factorization since the matrix fke[ Q k has a 
non-zero (k - 1)-st column. Equating the first k - 1 columns of (3.5) we have 

(3.6) AVi-1 
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where ak = e{ Q kek-1. Performing the update fk-1 f--- f3kvk + akfk and noting that 
V{_ifk-1 = 0 it follows that equation (3.6) is a k - 1 step Arnoldi factorization. 

We now show that the IRA-iteration is equivalent to forming the leading portion 
of an implicitly shifted QR-iteration. Note that equations (3.1)-(3.4) are valid for 
1 :::; k :::; n. In particular, extending the factorization of equation (3.1) by n - k 
steps gives f n = 0 and AVn - VnH n = 0 defines a decomposition of A into upper 
Hessenberg form. Let QnRn = Hn - µI where Qn and Rn are orthogonal and upper 
triangular matrices of order n, respectively. Since Q k and Rk are the leading principles 
sub-matrices of order k for Qn and Rn, respectively, VnQnRne1 = ViQkRke1 and 
e[ Rne1 = e[ Rke1 follow. Post multiplication of equation (3.2) with e1 exposes the 
relationship 

where P11 = e[ Rke1 and v1 = Vie1. In words, the first column of the updated k step 
factorization matrix is the same as the first column of the orthogonal matrix obtained 
after a complete QR step on A with shift µ. Thus, the IRA-iteration may be viewed as 
a truncated version of the standard implicitly shifted QR-iteration. This idea may be 
extended for up top> l shifts [33]. One cycle of the iteration is pictured in Figures 1-
3. Application of the shifts may be performed implicitly as in the QR algorithm. If 
the shifts are in complex conjugate pairs then the implicit double shift can be used to 
avoid complex arithmetic. 

Numerous choices are possible for the selection of the p shifts. One immediate 
choice is to use the p unwanted eigenvalues of H k+p. In exact arithmetic, the last p 
off diagonal elements of H k+P are zero and the Arnoldi factorization decouples. The 
reader is referred to [33] and [9] for further information. 

The number of shifts to apply at each cycle of the above iteration is problem de­
pendent. At present there is no a-priori analysis to guide the selection of p relative 
to k. The only formal requirement is that 1 :::; p :::; n - k. However, computational 
experience indicates that p ~ k is preferable. If many problems of the same type are 
to be solved, experimentation with p for a fixed k should be undertaken. This usu­
ally decreases the required number matrix-vector operations but increases the work 
and storage required to maintain the orthogonal basis vectors. The optimal cross-over 
with respect to CPU time varies and must be determined empirically. Further research 
is needed to understand how to estimate this optimal value a-priori. 

Among the several advantages an implicit updating scheme possess are: 

• fixed storage requirements. 

• The ability to maintain a prescribed level of orthogonality for the columns of V 
since k is of modest size. 

• The incorporation of the well understood numerical and theoretical behavior of 
the QR algorithm. 

In particular, application of a shift may result in one of the sub-diagonal elements of H 
becoming small. The impact of the deflation strategies associated with the QR-iteration 
upon the IRA-iteration are addressed. The next section examines what deflation is 
within an Arnoldi factorization. 
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Figure 1: The set of rectangles represents the matrix equation Vi+PH k+p + fk+pef+P of 
an Arnoldi factorization. The unshaded region on the right is a zero matrix of k + p- 1 
columns. -p-
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Figure 2: After performing p implicitly shifted QR steps on H k+p, the middle set of 
pictures illustrates Vi+PQQT H k+pQ + fk+pef+PQ. The last p+ 1 columns of fk+pef+PQ 
are non-zero because of the QR-iteration. 

+ 

·------------k- -k-
Figure 3: After discarding the last p columns, the final set represents ViH k + fke[ of 
a length k Arnoldi factorization. 
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4 Deflation within an IRA-iteration 

As the iteration progresses the Ritz estimates (2.2) decrease at different rates. When a 
Ritz estimate is small enough, the corresponding Ritz value is said to have converged. 
The converged Ritz value may be wanted or unwanted. In either case, a mechanism to 
deflate the converged Ritz value from the current factorization is desired. Depending 
on whether the converged Ritz value is wanted or not, it is useful to define two types of 
deflation. Before we do this, it will prove helpful to illustrate how deflation is achieved. 
Suppose that after m steps of the Arnoldi algorithm we have 

( 4.1) A[Vi, Vil 

where Vi E Rnxj, H 1 E Rjxj for 1 S: j < m. If f is suitably small then the factorization 
decouples in the sense that a Ritz pair (y, 0) for H1 provides an approximate eigen pair 
(x = Viy, 0) with a Ritz estimate of IEef YI- Setting E to zero splits a nearby problem 
exactly and setting f = 0 is called deflation. If Eis suitably small then all the eigenvalues 
of H1 may be regarded as converged Ritz values. 

4.1 Locking 

If deflation has taken place and all of the deflated Ritz values are wanted then they are 
considered locked. This means that subsequent implicit restarting is done on the basis 
Vz. The sub-matrices effected during implicit restarting are G, H 2 and Vz. However, 
during the phase of the iteration that extends the Arnoldi factorization from k to k + p 
steps , all of the columns of [Vi, Vil participate just as if no deflation had occurred. This 
assures that all of the new Arnoldi basis vectors are orthogonalized against converged 
Ritz vectors and prevents the introduction of spurious eigenvalues into the subsequent 
iteration. Moreover, this provides a means to safely compute multiple eigenvalues when 
they are present. A block method is not required if deflation and locking are used. The 
concept of locking was introduced by Jennings and Stewart [37l as a deflation technique 
for simultaneous iteration. 

4.2 Purging 

If deflation has occurred but some of the deflated Ritz values are unwanted then an­
other mechanism, purging, must be introduced to remove the unwanted Ritz values 
and corresponding vectors from the factorization. In exact arithmetic this would not 
be necessary because the implicit shift technique would accomplish the removal of 
the unwanted Ritz pair from the leading portion of the iteration. However, in finite 
precision it may be impossible to accomplish the removal due to the forward instabil­
ity [28, 39l of the QR algorithm. The basic idea of purging is perhaps best explained 
with the case of a single deflated Ritz value. 

Let j = 1 in ( 4.1) and equate the first columns of both sides to obtain 

( 4.2) 

where v1 = Vi e1 and H 1 = 01. Equation ( 4.2) is an Arnoldi factorization of length 
one. The Ritz value o 1 has Ritz estimate IEI. 
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Equating the last m - 1 columns of ( 4.1) results in 

( 4.3) 

Suppose that O't represents an unwanted Ritz value. If A were symmetric then G = Ee[ 
and equation ( 4.3) would become 

(A+ E)Vi 

where E = -£v1(Vie1f-£(Vie1)vf. Since 11£11 =£equation (4.3) defines a length 
m - 1 Arnoldi factorization for a nearby problem. The unwanted Ritz pair ( v1 , a 1 ) may 
be purged from the factorization simply by taking V = Vi and H = H 2 and setting 
G = 0 in (4.3). If A is not symmetric, the 1 X (m - 1) matrix G couples v 1 to the rest 
of the basis vectors Vi. This vector may be decoupled using the standard Sylvester 
equation approach [3, 17]. Purging then takes place as in the symmetric case. However, 
the new set of basis vectors must be re-orthogonalized in order to return to an Arnoldi 
factorization. This procedure is developed in § 5 and § 6 including the case of purging 
several vectors. 

4.3 Complications 

An immediate question is: Do any sub-diagonal elements in the Hessenberg matrix 
of the factorization ( 4.1) become negligible as an IRA-iteration progresses ? Since a 
cycle of the Arnoldi iteration involves performing a sequence of QR steps, the question 
is answered by considering the behavior of the QR-iteration upon upper Hessenberg 
matrices. In exact arithmetic under the assumption that the Hessenberg matrix is 
unreduced, only the last sub-diagonal element may become zero when shifting. But 
the other sub-diagonal elements may become arbitrarily small. 

Computing in finite precision arithmetic, however, complicates the situation. A 
robust implementation of the QR algorithm sets a sub-diagonal element to zero if it is 
in magnitude less than some prescribed threshold and this technique is also adopted 
for deflation. This deflation overcomes the technical difficulty associated with tiny 
sub-diagonals and improves the convergence of the IRA-iteration. However, there are 
further difficulties. 

The phenomena of the forward instability of the tridiagonal QR-iteration [28] is 
explored by Parlett and Le. They observe that while the implicitly shifted QR-iteration 
is always backward stable, there are cases where severe forward instability can occur. 
It is possible for a single QR-iteration to result in a computed Hessenberg matrix with 
entries that have no significant digits in common with the corresponding entries of 
the Hessenberg matrix that would have been determined in exact arithmetic. The 
implication is that the computed sub-diagonal entries may not be reliable indicators 
for decoupling the Arnoldi factorization. Le and Parlett's analysis implies that the 
Hessenberg matrix may lose significant digits when the shift used is nearly an eigenvalue 
of H, and the last component of the normalized eigenvector is small. This indicates 
that it may be impossible to filter out unwanted eigenvalues with the implicit restarting 
technique using exact shifts and this is the motivation for developing both the locking 
and purging techniques. 
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5 Deflating Converged Ritz Values 

During an Arnoldi iteration, Ritz values may converge with no small sub-diagonal 
elements appearing on the sub-diagonal of Hk. However, when a Ritz value converges, 
it is always possible to make an orthogonal change of basis in which the appropriate 
sub-diagonal of H k is zero. The following result indicates how to exploit the convergence 
information available in the last row of the eigenvector matrix for H k · For notational 
convenience, all subscripts are dropped on the Arnoldi matrices, V, H and f, for the 
remainder of this section. 

Lemma 5 .1 Let Hy = y0 where H E R k x k is an unreduced upper H essenberg matrix 

and 0 E R with 11 y 11 = 1 . Let W be a Householder matrix such that W y = e1 r where 

lrl = 1. Then 

(5.1) 

where Jlwll s; v'21ef YI and 

( 5.2) 

efw T T 
ek + w , 

Proof: The required Householder matrix has the form 

where 1 = (1 + le[ Yl)-1 . A direct computation reveals that 

(5.3) e{W = 

where wT = ,ef y( re[ - yT). Estimating 

le{ YI 
llwll = 1 + le[ YI IIY - re1 II, 

lef YI / I T I 
1 + lefyly2(1 + el y ), 

< V2JefyJ, 

establishes the bound on llwll- The final assertion (5.2) follows from 

r- 1 wT Hy, 

r-10wT Y, 
T- 10Wy, 

0e1. 

0 

Lemma (5.1) indicates that the last row and column of W differ from the last row 
and column of h by terms of order lef YI. The Ritz estimate (2.2) will indicate when 
it is safe to deflate the corresponding Ritz value 0. Rewriting (2.1) as 

AVW = vwwTnw+Je{W, 
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and using both (5.1) and (5.2) and partitioning we obtain 

(5.4) [ 
0 h7 l AVW = VW O iJ + Je[ + fwr. 

Equation ( 5.4) is not an Arnoldi factorization. The matrix fI of order k - 1 needs to 
be returned to upper Hessenberg form. Care must be taken not to disturb the matrix 
f ef and the first column of WT H W. To start the process we compute a Householder 
matrix Yi such that 

with ef_1 Y1 = ef_1. The above idea is repeated resulting in Householder matrices 

Y1, Y2, ... , Yk-3 that return fI to upper Hessenberg form. Defining 

it follows by the construction of the Yj that ef Y = ef and 

(5.5) 

The process of computing a similarity transformation as in equation (5.5) is not new. 
Sections 20-25, chapter 9 of [40] discusses the more general notion of deflating with 
invariant subspaces. Wilkinson references the work of Feller and Forsythe [15] who 
appear to be the first to use elementary Householder transformations for deflation. 
Problem 7.4.8 of [17] addresses the case when working with upper Hessenberg matrices. 
What appears to be new is the application to the Arnoldi factorization for converged 
Ritz values. 

Since 

llfwTYII = IIJII IIYT wll = IIJll llwll, 
the size of llfwTII remains the unchanged. Making the updates 

V .- VWY, 

H .- yTwTHWY 
' 

we obtain the relation 

(5.6) AV= VH+Jef+Jwr. 

A deflated Arnoldi factorization is obtained from ( 5.6 ) by discarding the term JwT. 
The following theorem shows that the deflated Arnoldi factorization resulting from 

this scheme is an exact k-step factorization of a nearby matrix. 
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Theorem 5.2 Let an Arnoldi factorization of length k be given by (5.6) where Hy = y0 
and V21ef YI IIJII :S EIIAII for f > 0. Then there exists a matrix EE Rnxn such that 

(5. 7) (A+E)V = VH+Jef, 

where 

Proof: Subtract fwT from both sides of equation (5.6). Set E = -f(Vwf and then 

EV -f(VwfV, 

-fwT, 

and equation (5.7) follows. Using Lemma 5.1 

IIEII llfllllwll, 
v'2ief YI llf\l, 

< EIIAII-

0 

If A is symmetric then the choice E = - f (V w f - (V w )JT results in a symmetric 
perturbation. If f is on the order of unit roundoff then the deflation scheme introduces 
a perturbation of the same order to those already present from computing the Arnoldi 
factorization in floating point arithmetic. 

Once a converged Ritz value 0 is deflated, the Arnoldi vector corresponding to 0 is 
locked or purged as described in the previous section. The only difficulty that remains 
is purging when A is nonsymmetric. 

If A is not symmetric then the Ritz pair may not purged immediately because of 
the presence of ll. A standard reduction of H to block diagonal form is used. If 0 is 
not an eigenvalue of if, then we may construct a vector z E Rk-l so that 

(5.8) [ 
0 Ji: l [ 1 zT l 

H h-1 

Solving the linear system 

(5.9) 'T (H - 0Ik-1 )z h, 

determines z. Define 

z = [ 
1 zT l 

h-1 . 

Post multiplication of equation ( 5.6) by Z results in 

AVZ = VZ [ 
0 il] +fef +fwrz, 
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since er Z = er. Equating the last k - 1 columns of the previous expression results in 

(5.10) 

Compute the factorization ( using k - 1 Givens rotations) 

(5.11) 

where Q E Rkxk-I with QTQ = h-1 and R is an upper triangular matrix of order 
k - 1. Since the last k - 1 columns of Z are linearly independent, R is nonsingular. 
Post multiplying equation (5.10) by R-1 gives 

(5.12) 

where Pk-1 = eL1Rek-1· The last term lwTQ in (5.12) is discarded by the deflation 
scheme and this relation shows that the discarded term is not magnified in norm by the 
purging procedure. The matrix RH R-1 remains upper Hessenberg since R is upper 
triangular. Partitioning Q conformally with the right side of equation ( 5.11) results in 

and it follows that R-1 = Q21 . A tedious derivation also shows that IPk-l I > 1 and 
hence the Arnoldi residual is not amplified by the purging. The final purged Arnoldi 
factorization is 

(5.13) 

The similarity transformation that produces the new upper Hessenberg matrix also 
affects the eigenvectors and thus the Ritz estimates. If Hu = uv then RH R-1 Ru = 
Ruv. Normalizing this vector to have unit length gives the new Ritz vector as fl = 
Ru/llRull- The new Ritz estimate is given by 

(5.14) 

(lp;;21 eL1 Rul/llRull) 11111, 
(leL1 ul/llRull) 11111-

We claim that this estimate is the same as the Ritz estimate for the original unde­
flated problem. In the original problem, the vector 

is an eigenvector of the original H. The norm of this vector is J uT u + ( zT u )2 • There­
fore the original Ritz estimate for the Ritz value v is 

(5.15) 
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However, from equation (5.11), 

and the two Ritz estimates (5.15) and (5.14) are the same before and after the purging 
operation. 

Performing the set of updates 

V ,_ VQ, 

H <- RHQ21, 

f -1 f ,_ Pk-1 , 

defines equation ( 5.13) as an Arnoldi factorization of length k - l. Theorem 5.2 implies 
this is an Arnoldi factorization for a nearby matrix. It is easily verified that VT J(ef_ 1 + 
wT) = 0 and that H is an upper Hessenberg matrix of order k - l. 

6 A Practical Deflating Procedure for the Arnoldi Fac­
torization 

The practical issues associated with a numerically stable deflating procedure are ad­
dressed in this section. These include: 

1. Performing the deflation in real arithmetic when a converged Ritz value has 
a non-zero imaginary component. 

2. Deflation with more than one converged Ritz value. 

3. Error Analysis. 

Section 6.2 presents two algorithms that implement the deflation schemes. The error 
analysis of the two deflation schemes is presented in the next section. 

6.1 Deflation with Real Arithmetic 

Suppose H(y+iz) = (0+iµ)(y+iz) where y and z are unit vectors in R\ HE Rkxk 

and µ =/- 0. Thus 

H[y, z] = [y, z] [ !µ ~ ] = [y, z]C. 

Factor 

( 6.1) [y, z] = U [ ~ ] , 

where UT U = h and T is an upper triangular matrix. It is easily shown that y and 
z are linearly independent as vectors in R k since µ =/- 0 and the nonsingularity of T 
follows. Performing a similarity transformation with U on [y, z] gives 
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Suppose that H corresponds to an Arnoldi factorization of length k and that le{ YI = 
0( 1:) = le{ zl. In order to deflate the complex conjugate pair of eigenvalues from the 
factorization in an implicit manner, we require that e{U = e{ + uT where llull = 0(1:). 

We now show that the magnitudes of the last components of y and z are not 
sufficient to guarantee the required form for U. Suppose that z = y cos</> + r sin¢ 
where r is a unit vector orthogonal to y and ¢ measures the positive angle between y 
and z. Lemma 5.1 allows a Householder W matrix such that 

T[ ] [ T . ] _ [ T1 ( l W y, z = r1 e1 , r1 e1 cos </> + W r sm </> = 
0 

z , 

where lr1 I = 1 and the last column and row of W and h are order e{ y equivalent. To 
compute the required orthogonal factorization in equation (6.1) another Householder 

matrix Q = [ ~ ~], is needed so that {Fz = ±llzlle1 . But Lemma 5.1 only results 

in ef_1Q = ef_1 +qT with llqll = 0(1:) if ef_1z is small relative to llzll- Unfortunately, 
if ¢ is small, WT z ~ r 1 e1 and llzll ~ ¢. Hence we cannot obtain the required form for 
U=WQ. 

Fortunately, when y and z are nearly aligned, µ may be neglected as the following 
result demonstrates. 

Lemma 6.1 Let H(y + iz) = (0 + iµ)(y + iz) where y and z are unit vectors in Rk, 
H E Rkxk and µ f 0. Suppose that </> measures the positive angle between y and z. 
Then 

(6.2) lµI :::; sin </>IIH II-

Proof: Let z = y cos¢> + r sin¢ where r is a unit vector orthogonal to y and ¢ 
measures the positive angle between y and z. Equating real and imaginary parts of 
H(y + iz) = (0 + iµ)(y + iz) results in Hy= y0 - zµ and Hz= yµ + z0. The desired 
estimate follows since 

2µ = yT Hz - zT Hy= sin ¢>(YT Hr - rT Hy), 

results in lµI:::; sin</>IIHII-
D 

For small ¢, y and z are almost parallel eigenvectors of H corresponding to a nearly 
multiple eigenvalue. Numerically, we set µ to zero and deflate one copy of 0 from the 
Arnoldi factorization. 

A computable bound on the size of the angle ¢ is now determined using only the 
real and imaginary parts of the eigenvector. The second Householder matrix Q should 
not be computed if 

(6.3) 

Recall that Lemma 5.1 gives efW = ef + wT where wT 

, = (1 + le[ Yl)-1 . Thus 
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where the symmetry of W is used. The estimate 

llzll = ll[O, zTf II = IIWT rll sin <P =sin¢, 

follows smce W 1s orthogonal and r is a unit vector. Rewriting equation (6.3), we 
obtain 

sin¢ < 

( 6.4) 

as our computable bound. 
Suppose that H X = X D where X E Rkxj and D is a quasi-diagonal matrix. The 

eigenvalues of H are on the diagonal of D if they have zero imaginary component and 
in blocks of two for the complex conjugate pairs. The columns of X span the eigenspace 
corresponding to diagonal values of D. For the blocks of order two on the diagonal the 
corresponding complex eigenvector is stored in two consecutive columns of X, the first 
holding the real part, and the second the imaginary part. If we want to block deflate 
X, where the last row is small, from H, then we could proceed as follows. Compute 

the orthogonal factorization X = Q [ ! ] via Householder reflectors where QTQ = I, 

and RE Rkxk is upper triangular. Then the last row and column of Q differ from that 
of h with terms on the same order of the entries in the last row of X if the condition 
number of R is modest. Thus if the columns of X are not almost linearly dependent, 
an appropriate Q may be determined. Finally, we note that when H is a symmetric 
tridiagonal matrix, an appropriate Q may always be determined. 

6.2 Algorithms for Deflating Converged Ritz Values 

The two procedures presented in this section extend the ideas of§ 4 to provide deflation 
of more than one converged Ritz value at a time. The first purges the factorization 
of the unwanted converged Ritz values. The second locks the Arnoldi vectors corre­
sponding to the desired converged Ritz values. When both deflation algorithms are 
incorporated within an IRA-iteration, the locked vectors form a basis for an approxi­
mate invariant subspace of A. This truncated factorization is an approximate partial 
Schur decomposition. When A is symmetric, the approximate Schur vectors are Ritz 
vectors and the upper quasi-triangular matrix is the diagonal matrix of Ritz values. 

Partition a length m Arnoldi factorization as 

(6.5) 

where Hj and Hm-j are upper quasi-triangular and unreduced upper Hessenberg ma­
trices, respectively. The matrix Hj E Rjxj contains the wanted converged Ritz values 
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[il Locked Vectors 

D Active Factorization 

Figure 4: The matrix product VmHm of the factorization upon entering Algorithm 6.2 
or 6.3. The shaded region corresponds to the converged portion of the factorization. 

of the matrix Hm. The columns of Vj E Rnxj are the locked Arnoldi vectors that rep­
resent an approximate Schur basis for the invariant subspace of interest. The matrix 
Hm-j designates the trailing sub-matrix of order m - j. Analogously, the last m - j 
columns of Vm are denoted by Vm-j· We shall refer to the last m - j columns of (6.5) 
as the active part of the factorization. Finally, G.i E Rjxm-j denotes the sub-matrix 

in the north-east corner of Hm, Figure 4 illustrates the matrix product VmHm of 
equation (6.5). 

If A is symmetric the two deflation procedures simplify considerably. In fact, purg­
ing is only used when A is nonsymmetric for otherwise Gj = 0jxm-j and both Hj and 
Hm-j are symmetric tridiagonal matrices. Both algorithms are followed by remarks 
concerning some of the specific details. 

Algorithm 6.2 
function Wm, Hm, !ml= Lock (Vm, Hm, fm, xi,j) 

INPUT: A length m Arnoldi factorization AVm = VmHm + fme;,,,. The first j 
columns of Vm represent an approximate invariant subspace for A. The leading princi­
pal submatrix Hj of order j of Hm is upper quasi-triangular and contains the converged 
Ritz values of interest. The columns of Xi E Rm-jxi are the eigenvectors corresponding 
to the eigenvalues that are to be locked. 

OUTPUT: A length m Arnoldi factorization defined by Vm, Hm and fm where the 
first j + i columns of Vm are an approximate invaraint subspace for A. 
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1. Compute the orthogonal factorization 

where Q E Rm-jxm-j using Honseholder matrices ; 

2. Update the factorization 

A T A A A 

Hm-j f- Q Hm-.iQ ; Vm-j f- Vm-jQ ; Gj f- GjQ ; 

:J. Compute an orthogonal matrix PE Rm-j-ixm-j-i 11sing Householder matrices 

that restores Hm-j-i to 11pper Hessenberg form ; 

4. Update the factorization 

A T A A A 

Hm-j-i f- p Hm-j-iP ; Vm-j-i f- Vm-j-iP ; Gj+i f- Gj+iP ; 

Line 1 computes an orthogonal basis for the eigenvectors of Hm-j that correspond 
to the Ritz estimates that are converged. The matrix of eigenvectors in line 1 satisfies 
the equation Hm-jXi = X;Di where Di is a quasi-diagonal matrix containing the eigen­
values to be locked. From the § 6.1, we see that the leading sub-matrix of QT Hm-jQ 
of order i is upper quasi-triangular. The required relation e;.Q = e;. + qr, with llqll 
small is guaranteed if the condition number of Ri is modest. Since i is typically a small 
number, we compute the condition number of Ri. The number of vectors to be locked 
is assumed to be such that the condition number of Riis small. In particular, if Hm is 
a symmetric tridiagonal matrix, Q always has the required form. Lines 3-4 return the 
updated iI m-j to upper Hessenberg form. 

Before entering Purge, the unwanted converged Ritz pairs are placed at the front 
of the factorization. A prior call to Lock places the unwanted values and vectors to the 
beginning of the factorization. Unlike Lock, the procedure Purge requires accessing 
and updating the entire factorization in the nonsymmetric case. Thus, for large scale 
nonsymmetric eigenvalue computations, the amount purging performed should be kept 
to a minimum. 

Algorithm 6.3 
Junction [Vm-i, Hm-i, fm-i] = Purge (Vm, Hm, fm,J, i) 

INPUT: A length m Arnoldi factorization AVm = VmHm + fme;.. The first i + j 
columns ofVm represent an approximate invariant subspace for A. The leading principal 
submatrix Hi+j of order i+j of Hm is upper quasi-triangular and contains the converged 
Ritz vafoes. The i unwanted converged eigenvafoes are in the leading portion of Hi+j. 
The converged complex conjugate Ritz pairs are stored in 2 x 2 blocks on the diagonal 

of Hi+j· 
OUTPUT: A length m - i Arnoldi factorization defined by Vm-i, Hm-i and fm-i 

purged of the unwanted converged Ritz values and corresponding Schnr vectors. 

Lines 1-3 purge the factorization of the unwanted converged Ritz values contained 
in the leading portion of H m ; 
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1111 Vectors to be Purged 

[] Locked Vectors 

D Active Factorization 

Figure 5: The matrix product VmHm of the factorization just prior to discarding in 
Algorithm 6.3. The darkly shaded regions may now be dropped from the factorization. 

1. Solve the Sylvester set of equations, 

ZHm-i - HiZ Gi, 

for Z E Rixm-i that a.rise from block diagonalizing Hm 

2. Compute the orthogonal factorization 

QRm-i = [ Q~~. l Rm-i = [ I,:_, ] . 

where Q E Rmxm-i using Householder ma.trices ; 

8. Update the factorization and obtain a length m - i factorization ; 

At the completion of Algorithm 6.3 the factorization is of length m - i and the 
leading sub-matrix of order j will be upper quasi-triangular. The wanted converged 
Ritz values will either be on the diagonal if real or in blocks of two for the complex 
conjugate pairs. Figure 5 shows the structure of the updated VmHm just prior to 
discarding the unwanted portions. 
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The solution of the Sylvester equation at line 1 determines the matrix Z that block 
diagonalizes the spectrum of Hm into two sub-matrices. The unwanted portion is in 
the leading corner and the remaining eigenvalues of Hm are in the other block. A 
solution Z exists when the H; and Hm-i do not have a common eigenvalue. If there 
is an eigenvalue is shared by H; and Hm-i, then Hm has an eigenvalue of multiplicity 
greater than one. The remedy is a criterion that determines whether to increase or 
decrease i, the number of Ritz values that require purging. Analysis similar to that in 

:::''.~:, ~~:::ns::':;,:h ::n~::: :::, 3R~:i ~'.':,:::::;~;:, f:;n::.,:::e~:::;:s (::J 
is of full column rank and that IP~~i,m-i I ~ 1. 

7 Error Analysis 

This section examines the numerical stability of the two deflation algorithms when 
computing in finite precision arithmetic. A stable algorithm computes the exact solu­
tion of a nearby problem. It will be shown that Algorithms 6.3 and 6.2 deflate slightly 

perturbed matrices. . [ Hu H
12 

l 
For ease of notat10n H = H

21 
H

22 
replaces Hm E Rmxm used by procedures 

Lock and Purge of§ 6.2. The sub-matrix Hu is of order i and H21 is zero except for 
the sub-diagonal entry of H located in the north-east corner. Analogously, fI repre­
sents H after the similarity transformation performed by Lock or Purge, partitioned 
conformably. 

7.1 Locking 

The locking scheme is considered successful if the desired eigenvalues end up in Hu 
and H21 is small in norm. The largest source of error is from computing an orthogonal 
factorization from the approximate eigenvector matrix containing the vectors to be 
locked. 

The matrix pair ( X, D) represents an approximate quasi-diagonal form for H. The 
computed eigenvalues of H are on the diagonal of D if they have zero imaginary com­
ponent and in blocks of two for the complex conjugate pairs. The computed columns 
of X span the right eigenspace corresponding to diagonal values of D. For the blocks 
of order two on the diagonal the corresponding complex eigenvector is stored in two 
consecutive columns of X, the first holding the real part, and the second the imaginary 
part. We assume that Xis a non-singular matrix and that each column is a unit vector. 

Standard results give IIDX - H XII ~ E1 IIH II where E1 is a small multiple of machine 
precision for a stable algorithm. Defining the matrix E = (DX - H X)YT where 
x- 1 = yT it follows that (H + E)X = X D. If a-,;;;,1(X) is the smallest singular value 
of X then IIX-1 II = a-,;;;,1(X). Since each column of X is a unit vector, IIXII ~ -Jrri,. If 
h:( X) = IIX 11 IIX-1 II is the condition number for the matrix of approximate eigenvectors, 
IIEII ~ E1h:(X)IIHII- If X is a well conditioned matrix then the approximate quasi­
diagonal form for His exact for a nearby matrix. In particular, if H is symmetric then 
E is always a small perturbation. As the columns of X become linearly dependent, 
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am(X) decreases and E may represent a large perturbation. 
The following result informs us that locking is a conditionally stable process. 

Theorem 7.1 Let H E Rmxm be an unreduced upper Hessenberg matrix with distinct 

eigenvalues. Suppose that X = [ X 1 X2 ] and D = [ ~ 1 i
2 

] are an approximate 

quasi-diagonal form for H that satisfies (H + E)X = X D where IIEII ::::; E1K(X)IIHII­
Let Q1R1 = X1 E Rmx.i where Q[Q1 = 11. If the QR factorization of X 1 is computed 
using Householder reflectors then QR= X1 + E where {JT{J = Im and II.Ell::::; E2IIX1II­
Both E1 and E2 are small multiples of the machine precision EM. Let E = max( E1, 2E2) 
and let K(Ri) = IIR1IIIIR11II be the condition number for R1 where 

µ = 

If 0 = E(K(X) + Eµ(l + EµK(Ri))) < l then there exists a matrix CE Rmxm such 
that 

where fI 11 is an upper quasi-triangular matrix similar to D 1 and 

(7.1) 

A few remarks are in order. 

1. If H is symmetric H12 = 0 and H11 is diagonal. Procedure Lock is stable since 
noted previously, K(X) = 1 andµ:=::: 1. 

2. If only one column is locked, then µ = l + 0( E) and IICII 1s small relative to 
K(X)IIHII-

3. If K(R1) is large, the columns of X1 are nearly dependent. In this case, K(X) 
will also be large and locking introduces no more error into the computation than 
already present from computing the quasi-diagonal pair (X, D). The factor ofµ 
may be minimized by decreasing j the number of columns locked. 

4. A conservative strategy locks only one vector at a time. The only real concern is 
when locking two vectors corresponding to a complex conjugate pair. If the real 
and imaginary part of the complex eigenvector are nearly aligned, µ will be large 
and locking may be unstable. But as § 6.1 explains, the complex conjugate pair 
may be numerically regarded as a double eigenvalue with zero imaginary part. 
Only one copy is deflated and µ :=::: 1. 

Proof: 

Partition X = [ X 1 X 2 ] and D = [ ~1 i
2 

] . The i columns of X 1 are a basis 

for the right eigenspace to be locked and D1 contains the corresponding eigenvalues. 
We assume that the eigenvalues of D1 and D2 are distinct and that X is non-singular. 

21 



Let yT = [ ~:~ ] denote the inverse of X. The rows of Yt span the left eigenspace 

associated with X 1 and D1. 
Let the product QR be an exact QR factorization of a matrix near X1: QR = 

[ Q1 Qz ] [ 11 ] = X1 +E where 11£11::; E2IIX1II- Using Theorem 1.1 of Stewart [36], 

since \\R11II\IE\I < 0 < 1 there exists matrices W1 E Rmxj and Fi E Rjxj such 

that (Q1 + Wi)(R1 +Fi)= Q1R1 where QR= [ Q1 Q2] [ ~
1 

] = X1 and (Q1 + 

W1f(Q1 + W1) = Ij. Define F = [ ~1 
] and W = [ W1 0 ] . The matrices Wand F 

are the perturbations that account for the backward error E produced by computation. 
Partitioning W conformably with Q gives 

(7.2) 

QTXDYTQ-QTEQ, 
'T T T ' 'T ' Q (X1D1Y1 + X2D2Y2 )Q - Q EQ, 

[ Zf l (X1D1Yt + X2D2Yl) [ Q1 Q2 ] + 

WT(X1D1Yt + X2D2Y[) [ Q1 Q2 ] + 

[ 
Q[ l T T 'T ' QI (X1D1Y1 + X2D2Y2 )W - Q EQ, 

where the second order terms involving W are ignored. From the decomposition X1 = 
Q1R1 it follows that Q1 = X1R11 which gives QI X1 = 0. The equality yT = x-1 

implies that Y? X1 = I for l = 1, 2 and Yl X1 = 0 = Yt X2 and hence Y[Q1 = 0. 
Using these relationships, equation (7.2) becomes 

(7.3) 

(7.4) 

[ R1D~R1
1 

iI+c, 
where the matrix C absorbs the three matrix products involving W or E on the right 
hand side of equation (7.2). We note that if H is symmetric, Q[ X2 = 0 = Y? Qz, 
R1 is a diagonal matrix and hence R1 D1 Rf = D1. Thus iI is also a symmetric 
matrix. Defining C = QCQT equation (7.4) is rewritten as QT(H - C)Q = iI. Since 
QH = (X1D1Yt + X 2D2Yl)Q and using the definition of C from equation (7.2), 

(7.5) c = wr Qil + Qrw iI - Qr EQ, 

it follows that \ICI\::; 2\IWTQ\I\IH\I + \IE\\. The result of Theorem 1.1 of Stewart [36] 
also allows the estimate 

where 0( E3
) terms are ignored. For modest values ofµ, W is numerically orthogonal 

to Q. From equation (7.5) 

IICII = IICII, 
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< 2E2µ(l + f2µK(R1))IIHII + f1K(X)IIHII, 

< 2E2µ(l + E2µK(R1))(IIHII + IICII) + f1K(X)IIHII, 

< f(K(X) + µ(l + Eµi-,(R1)))IIHII + Eµ(l + Eµi-,(R1))IICII, 

0IIHII + OIICII, 

where the second inequality uses equation (7.4). Since 0 < 0, rearranging the last 
inequality gives IICll(l-0):::; 0IIHII- Ignorning 0(02) terms IICII:::; 0IIHII- The estimate 
on the size of C in equation (7.1) now follows since 0 = E(K(X) + µ(l + EµK(X))) :::; 
f(K(X) + 11,) + 0(E2). 

D 

7.2 Purging 

The success of the purging scheme depends upon the solution of the Sylvester set of 
equations required by Algorithm 6.3. We rewrite the Sylvester set of equations in 
Algorithm 6.3 as ZH22 - H11 Z = H 12 . The job is to examine the effect of performing 
the similarity transformation RH22 R-1 where 

QR = [ ~t l R = [ ~ l = S. 

The last relation implies that R-1 = Q[. In actual computation, this equality obviates 
the need to solve linear systems with R necessary for the similarity transformation. For 
the error analysis, that follows R-1 is used in a formal sense. 

Let Z be the computed solution to the Sylvester set of equations. In a similar 
analysis, Bai and Demmel [3] assume that the QR factorization of S is performed 
exactly and we do also. The major source of error is that arising from computing Z. 

Suppose that QR= [ f ] = S. Write Z = Z + E where Eis the error in Z. If 

QR= Sand IIR-1IIIIEII < 1, then Theorem 1.1 of Stewart [36] gives matrices Wand 
F such that (Q + W)(R + F) = QR where (Q + Wf (Q + W) = Im. The result gives 
the bound IIFII :::; IIRIIIIEII + O(IIEll 2). Up to first order perturbation terms, 

RH22R-1 = (R + F)H22(R + F)- 1 = RH22R-1 + RH22R-1 F R-1 + F H22R-1. 

Defining the error matrix C = H 22R-1 F + R-1 F H 22 it follows that 

A A -1 -1 
RH22R = R(H22 + C)R . 

Ignoring second order terms, we obtain the estimate 

The invariance of II· II under orthogonal transformations gives K(S) = IIR-1 II IIRII- Since 
the singular values of S are the square roots of the eigenvalues of sT S it follows that 

1 + a;,ax(Z) 
1 t a!in(Z)' 
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where a max( Z) and a max( Z) are the largest and smallest singular values of Z. Since 
zT Z is a symmetric positive semi-definite matrix, Amax(ZT Z) = 11Zlj2, and then 
""(S) ~ Jl + IIZll 2, with equality if zero is an eigenvalue of zT z. 

The previous discussion is summarized in the following result. 

Theorem 7 .2 Let Z be the computed solution to the Sylvester set of equations, Z H 22 -
H11Z = H1 2, where the eigenvalues of Hn and H22 are distinct. Let Z = Z + E where 

Eis the error in Zand suppose that IIR-1IIIIEII < 1 where QR= [ ~ l · 
Then there exists a matri:r C such that 

where 

(7.6) IICII ~ 2j1 + IIZll 2 IIEII IIHII-

If IIEII is a modest multiple of machine precision and the solution of the Sylvester's 
equations is not large in norm, then purging is backward stable since IICII is small 

relative to IIHII-
The two standard approaches [5, 18] for solving Sylvester's equation show that 

IIFIIF ~ E3(IIH11IIF + IIH22IIF)IIZIIF where F = H12 - ZH22 + H11Z and E3 is a 
modest multiple of machine precision. Standard bounds [10, 17] also give IIZIIF ~ 

sep-1 (H11, H22)IIH12IIF where 

is the separation between H 11 and H 22 . Although 

sep(H11, H22) ~ ITJ,ip i>..k(H11) - >..1(H22)I, 
, 

Varah [38] indicates that if the matrices involved are highly non-normal, the smallest 

difference between the spectrums of H11 and H22 may be an over estimate of the 
actual separation. Recently, Higham [21] gives a detailed error analysis for the solution 
of Sylvester's equation. The analysis takes into account the special structure of the 

equations involved. For example, Higham shows that IIEIIF ~ sep-1(H11, H22)IIFIIF 
but this may lead to an arbitrarily large estimate of the true forward error. For use in 
practical error estimation, "LAPACK-style" software is available. 

A robust implementation of procedure Lock determines the backward stability by 

estimating both IIZII and IIEII-

8 Other Deflation Techniques 

Saad [31] discusses several deflation strategies used with both Arnoldi's method and 
simultaneous iteration. Algorithm 6.2 is an in place version of one of these schemes1. 
Saad's version explicitly orthonormalizes the newly converged Ritz vectors against the 

1 Algorithm 6.4, page 181 of (31] 
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already computed approximate j Schur vectors. This is the form of locking used by 
Scott [32]. Instead, procedure Lock achieves the same task implicitly through the use 
of Householder matrices in Rmxm. Thus we are able to orthogonalize vectors in Rn 
at a reduced expense since m <t: n. As Saad notes, the Arnoldi factorization (6.5) 
is equivalent to applying Arnoldi's method to the matrix (I - Vj V{)A with the first 

column of Vm-j as the starting vector. 
Other deflation strategies include the various Wielandt deflation techniques [31]. 

We briefly review those that do not require the approximate left eigenvectors of A or 
complex arithmetic. Denote by A1 , ... , Ak the wanted eigenvalues of A. The Wielandt 
and Schur-Wielandt forms of deflation determine a rank j modification of A, 

(8.1) A· J 

where ~j E Rjxj is a diagonal matrix of shifts. The value of j represents the dimension 
of the approximate invariant subspace already computed. The idea is to choose shifts 
so that Aj will converge to the remainder of the invariant subspace desired. 

Both forms of deflation differ in the choice of Uj. The Wielandt variant uses con­
verged Ritz vectors while the Schur-Wielandt uses the approximate Schur vectors. 
With either form of deflation, the eigenvalues of Aj are Ai - ai for i ::; j and Ai oth­
erwise and both forms leave the Schur vectors unchanged. Braconnier [8] employs the 
Wielandt variant and discusses the details of deflating a converged Ritz value that has 
nonzero imaginary part in real arithmetic. 

The cost of matrix vector products with Aj increases due to the rank j modifications 
of A required. Additionally, every time an approximate Schur vector or a Ritz vector 
converges, the iteration needs to be explicitly restarted with Aj. The two deflation 
techniques introduced in this paper allow the iteration to be implicitly restarted­
avoiding the need to build a new factorization from scratch. 

The idea of deflating a converged Ritz value from a Lanczos iteration is also dis­
cussed by Parlett and Nour-Omid [29]. They present an explicit deflation technique by 
using the QR algorithm with converged Ritz values as shifts. Parlett indicates that this 
was a primary reason for undertaking the study concerning the forward instability of 
the QR algorithm [28]. 

9 Reordering the Schur Form of a Matrix 

We now establish a connection between the IRA-iteration with locking and the algo­
rithms used to re-order the Schur form of a matrix. Suppose a matrix A is reduced to 
upper quasi-triangular form by the QR algorithm : 

(9.1) 

where Q is the orthogonal matrix computed by the algorithm. Equation (9.1) is a 
Schur form for A of order p + q where the sub-matrices T11 and T22 are of order p and 
q, respectively. Assume that the spectrums of T11 and T22 are distinct. In practice, the 
order in which the computed eigenvalues of A appear on the diagonal of Tis somewhat 
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random. The first p columns of Q are an orthogonal basis for the unique invariant 
subspace corresponding to the eigenvalues of T11 . If eigenvalues of interest are located 
in T22 and an orthonormal basis for them is wanted then we must either increase the 
number of columns of Q used or somehow place them at the top of T. Algorithms for re­
ordering a Schur form accomplish this task by using orthogonal matrices that move the 
wanted eigenvalues to the top of T. The recent work of Bai and Demmel [3] attempts 
to correct the occasional numerical problems encountered by Stewart's algorithm [35] 
EXCHNG. Both algorithms swap consecutive 1 X 1 and 2 X 2 blocks of a quasi-triangular 
matrix to attain the desired ordering. 

Let both T11 and T22 of equation (9.1) be matrices of at most order two. When 
swapping adjacent blocks of order one, p = 1 = q, EXCHNG constructs a plane rotation 
that zeros the second component of the eigenvector corresponding to the eigenvalue 
A2 = T22. A similarity transformation is performed on T with the plane rotation and 
the diagonal blocks are interchanged. We refer to a strategy that constructs an orthog­
onal matrix and performs a similarity transformation to interchange the eigenvalues 
as a direct swapping algorithm. Consider the following alternate iterative swapping 
algorithm: Perform a similarity transformation on T with an arbitrary orthogonal ma­
trix followed by one step of the QR-iteration with shift equal to A2. The arbitrary 
orthogonal similarity transformation introduces a non-zero off-diagonal element in the 
2, 1 entry so that the transformed Tis an unreduced upper Hessenberg matrix with the 
diagonal blocks now coupled. The standard convergence theory of the QR algorithm 
dictates that A1 and A2 are switched and the 2, 1 entry is zero. If the order of T22 is 
equal to two, EXCHNG uses the iterative swapping strategy using a standard double 
shift to re-order the diagonal blocks. The direct swapping algorithm, instead, computes 
an appropriate orthogona.l matrix by computing the QR factorization of a basis of two 
vectors that span the desired invariant subspace. For example the factorization used in 
equation ( 6.1) in § 6.1 may be used. The reader is referred to [3, 14] for further details. 

The iterative swapping algorithm is equivalent to the implicit restarting technique 
used by the IRA-iteration since both depend upon an implicitly shifted QR step applied 
to an unreduced upper Hessenberg matrix to interchange T11 and T22 . The direct 
swapping algorithm is equivalent to the locking technique. An orthogonal matrix is 
constructed from a basis for the invariant subspace corresponding to T22. When this is 
applied as a similarity transformation the diagonal blocks of T are swapped. In exact 
arithmetic, both swapping variants result in a matrix that is upper quasi-triangular 
with the blocks interchanged. 

The following example demonstrates that the two variants may produce drastically 
different output matrices when computed in floating point arithmetic. The following 
experiment was carried out in MATLAB, Version 4.2a, on a SUN SPARC station IPX. 

The floating point arithmetic is IEEE standard double precision with machine precision 
of fM = 2-52 ~ 2.2204 · 10-16 . Let 

An eigenvector corresponding to A2 = 1 is [ l~f~ l · Denote by Z the plane rotation 

that transforms this eigenvector to a multiple of the first column of the identity matrix 
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in R 2 x 2 • Let 

u = -5EM l 
1 ' 

so that U is orthogona.l to a small multiple of machine precision. The matrix U acts 
as the arbitrary orthogonal transformation required by the iterative algorithm. Let T 
denote the matrix computed by performing one step of the explicit QR-iteration to the 
matrix UTTU with shift equal to )q = 1 + lOEAf. The two computed matrices are: 

[ ~ l + ~~EM l 1 

T [ 
1.400000000000003 

2.000000000000002 · 10-1 
- 7.999999999999996 · 10-1 l 
6.000000000000001· 10-1 . 

The computed eigenvalues of Z are 1.000000033320011 and 9.999999666799921 · 10-1 

which both lost eight digits of accuracy. If we perform another explicit QR-step on 

h · j . h h ,, h"f [ l.000000000000003 l.000000000000001 ] · t e matnx wit t e sames It, ~ 1.0
9

. 
10

_15 1 
1s com-

puted. Nate that the off-diagonal element is slightly larger than machine precision so 
that a standard QR a.lgorithm does not set it to zero. But even if the off-diagonal 
element is set to zero, the iterative swapping algorithm fails to interchange the eigen­
values. Continuing to apply explicit QR-steps with the shift equal to A1 does not result 
in a properly interchanged matrix. 

The explanation why the iterative algorithm fails to work is simple enough. The 
matrix T constructed is poorly conditioned with respect to the eigenvalue problem since 
the eigenvectors are nearly aligned. The eigenvalues of UTTU are 1.000000033320011 
and 9.999999666799921 · 10-1 . Thus the small relative errors on the order of machine 
precision that occur when computing urru produce a nearby matrix in which both 
the eigenvalues differ by eight digits of accuracy. Performing an explicitly shifted QR 
step with A1 incurs forward instability since the last components of the eigenvectors 
for UTTU are on the order of ftiij. This is the necessary and sufficient condition of 

Parlett and Le [28]. Auother QR step with the same shift on T almost zeros out the 
sub-diagonal element since the last components of the eigenvectors for Tare order 10-1 

and the shift is almost the average of the eigenvalues of T and quite close to both. 
Bai and Demmel [3] present an example which compares their direct swapping 

approach with Stewart's algorithm EXCHNG. The matrix considered is 

A(r) 
[ 

7.001 -87 39.4T 22.2T l 
5 7.001 -12.2T 36.0T 
0 0 7.01 -11.7567 . 
0 0 37 7.01 

When T = 10, ten iterations QR-iterations are required to interchange the two blocks. 
As before, the eigenvalues undergo a loss of accuracy. The iterative swapping algorithm 
fails for the matrix A( 100). The explanation for the failure is the same as for the 
previous example. Using a direct algorithm, the eigenvalues of A(lO) and A(lO0) are 
correctly swapped and the eigenvalues lose only a tiny amount of accuracy. 

27 



1. Initialize an Arnoldi factorization of length k 

2. Main Loop 

3. Extend an Arnoldi factorization to length k + p 

4. Check for convergence 

Exit if k wanted Ritz values converge 

Let i and j denote the wanted and unwanted converged 

Ritz values, respectively 

5. Lock the i + j converged Ritz values 

6. Implicit application of shifts resulting in an 

Arnoldi factorization of length k + j 
7. Purge the j unwanted converged Ritz values. 

Table 1: Formal description of an IRA-iteration 

Bai and Demmel presents a rigorous analysis of their direct swapping algorithm. 
Although backward stability is not guaranteed, it appears that only when both T11 and 
T22 are both of order two and have almost indistinguishable eigenvalues [7] is stability 
lost. In this case, the interchange is not performed. Bojanczyk and Van Dooren [7] 
present an alternate swapping algorithm that appears to be backward stable. 

10 Numerical Results 

An IRA-iteration using the two deflation procedures of section 6.2 was written in 
MATLAB, Version 4.2a. An informal description given parameters k and p is given in 
Table 1. The codes are available from the first author upon request. A high-quality and 
robust implementation of the deflation procedures is planned for the Fortran software 
package ARPACK [25]. 

In the examples that follow Q k and Rk denote the approximate Schur factors for an 
invariant subspace of order k computed by an IRA-iteration. All the experiments used 
the starting vector equal to randn(n, 1) where the seed is set with randn( 'seed', 0) 
and n is the order of the matrix. The shifting strategy uses the unwanted eigenvalues 
of Hk+p that have not converged. An eigenpair (0, y) of Hk+p is accepted if its Ritz 
estimate (2.2) satisfies, 

(10.1) 

The value of T/ is chosen according to the relative accuracy of the Ritz value desired. 

10.1 Example 1 

The first example illustrates the use of the deflation techniques when the underlying 
matrix has several complex repeated eigenvalues. The example also demonstrates how 
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IRA-iteration for C4so 

k = 12 and p = 16 with convergence tolerance is T/ = 10-10 

Iteration Ritz values Locked Ritz values Purged 

9 2 0 
10 2 0 
12 2 0 

13 2 0 
17 2 0 
21 0 2 
24 2 0 
28 0 2 
31 2 0 

Totals 14 4 

Number of matrix vector products 436 

IIC450Q12 - Q12R12II ~ 10-12 

IIQf2C450Q12 - R12II ~ 10-11 

II Qt 2Q12 - Ii2II ~ 10-14 

IID12 - Adi=~ 10-lS 

Table 2: Convergence history for Example one 

the iteration locks and purges blocks of Ritz values in real arithmetic. A block diagonal 
matrix C was generated having n blocks of order two. Each block was of the form 

[ 
(1 T/l l 

-ry1 lz ' 

where 

X[=i+.i-1 
· 2 i1r · 2( j1r ) 

4 Slll ( ( ) ) + 4 Slll ( ) , 2n+l 2n+l 

for 1 ~ i, j ~ n and T/1 = v[i. The eigenvalues of C are (1 ± ryzi where i = J=I. Since 
the eigenvalues of a quasi-diagonal matrix are invariant under orthogonal similarity 
transformations, using an IRA-iteration on C with a randomly generated starting vector 
is general. An IRA-iteration was used to compute the k = 12 eigenvalues of C450 with 
smallest real part. The number of shifts used wasp= 16 and the convergence tolerance 
T/ was set equal to 10-10 . With these choices of k and p, the iteration stores at most 
twenty eight Arnoldi vectors. 

There are four eigenvalues with multiplicity two. Table 2 shows the results attained. 
Let the diagonal matrix D 12 denote the eigenvalues of the upper triangular matrix R12 

computed by the iteration. The diagonal matrix A12 contains the wanted eigenvalues. 
After twenty four iterations twelve Ritz values converged. But the pair of Ritz val­
ues purged at iteration twenty one was a previously locked value which the iteration 
discarded. This behavior is typical when there are clusters of eigenvalues. 
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10.2 Example 2 

Consider the eigenvalue problem for the convection-diffusion operator, 

-~u(x,y)+p(ux(x,y)+uy(x,y)) = >..u(x,y), 

on the unit square [O, 1] x [O, 1] with zero boundary data. Using a standard five-point 
scheme with centered finite differences, the matrix Ln2 that arises from the discretiza­
tion is of order n2 where h = 1/ ( n + 1) is the cell size. The eigenvalues of Ln2 are 

. . 
~ i7r ~ J7r 

Aij = 2v 1- - r cos(--)+ 2v 1 - ,cos(--), 
n+l n+l 

for 1 :::; ·i, j ::; n where 1 = ph/2. An IRA-iteration was used to compute the k = 6 
smallest eigenvalues of L 625 where p = 25. The number of shifts used was p = 10 and 
the convergence tolerance T/ was set equal to 10-8 • With these choices of k and p, the 
iteration stores at most sixteen Lanczos vectors. Let the diagonal matrix D6 denote the 
eigenvalues of the upper triangular matrix R6 computed by the iteration. The diagonal 
matrix A5 E R 6 x 6 contains the six smallest eigenvalues. We note that there are two 
eigenvalues with multiplicity two. Table 3 shows the results attained. The diagonal 
matrix D6 approximates A6 • After thirty iterations six Ritz values converged. But the 
Ritz value purged at iteration twenty four was a previously locked value. The other 
purged Ritz values are approximations to the eigenvalues of L625 larger than >..6 . 

Figure 6 gives a graphical interpretation of the expense of an IRA-iteration in terms 
of matrix vector products when the value of p is increased. For all values of p shown, 
the results of the iteration were similar to those of Table 3. The results presented 
in Table 3 correspond to the value of p that gave the minimum number matrix vector 
products. For the value of p = 1, the iteration converged to the five smallest eigenvalues 
after nine hundred ninety nine matrix vector products. But the iteration was not able 
to converge to the second copy of >.. 5 . For p = 2, the only form of deflation employed 
was locking. All others values of p shown demonstrated similar behavior to that of 
Table 3. 

In order to determine the benefit of the two deflation techniques, experiments were 
repeated without the use of locking or purging. In addition, all the unwanted Ritz 
values were used as shifts, converged or not. The first run used the same parameters 
as given in Table 3. After 210 matrix vector products, the iteration converged to six 
Ritz values. But the second copy of the fifth smallest eigenvalue was not among the 
final six. The value of p was increased to twenty three with the same results. 

10.3 Example 3 

The following example shows the behavior of the iteration on a matrix with a very ill 
conditioned basis of eigenvectors. Define the Clement tridiagonal matrix [22] of order 
n+l 

0 n 0 
1 0 n - 1 

0 n 0 
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IRA-iteration on L52s 
k = 6 and p = 10 with convergence tolerance is 17 = 10-s 
Iteration Ritz values Locked Ritz values Purged 

14 1 0 
16 1 0 
19 1 0 
21 1 0 
23 1 1 
24 0 1 
30 1 0 
35 0 1 
38 1 1 

Totals 7 4 

Number of matrix vector products 325 
IIL525Q5 - Q6R611 ::::; 10-9 

II Qi L525Q5 - R611 ::::; 10-9 

IIQi Q5 - 1611 ::::: 10-14 

IID6 - A5lloo ::::; 10-7 

Table 3: Convergence history for Example two 
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Figure 6: Bar graph of the number of matrix vector products used by an IRA-iteration 
for Example 2 as a function of p. 
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IRA-iteration on B1000 

k = 4 and p = 16 with convergence tolerance is T/ = 10-5 

Iteration Ritz values Locked Ritz values Purged 

76 1 0 
85 1 0 
91 2 0 

Totals 4 0 

Number of matrix vector products 1423 

IIB1000Q4 - Q4R4II/IIB10ooll ~ 10-5 

IIQ~ B1000Q4 - R4II ~ 10-5 

IIQ~ Q4 - l4II ~ 10-14 

IID4 - A4lloo/llB1ooolloo ~ 10-5 

Table 4: Convergence history for Example three 

The eigenvalues are ±n, ±n - 2, · · ·, ±1 and zero if n is even. We note that Bn+l 
Sn+1An+1S~J 1 where 5~+1 = diag(l,¾",¾"-n21,···,;t) is a diagonal matrix. Thus the 
condition number of the basis of eigenvectors for Bn+l is IISn+l 11 IIS~J111 which implies 
that the eigenvalue problem for Bn+l is quite ill conditioned. An IRA-iteration was 
used to compute the k = 4 largest in magnitude eigenvalues of B1000 . The number of 
shifts used was p = 16 and the convergence tolerance T/ was set equal to 10-6 . With 
these choices of k and p, the iteration stores at most twenty Arnoldi vectors. Let the 
diagonal matrix D4 denote the eigenvalues of the upper triangular matrix R4 computed 
by the iteration. The diagonal matrix A4 E R 4x 4 contains the four largest in magnitude 
eigenvalues. Table 4 shows the results attained. 

Although the iteration needed a large number of matrix vector products, the iter­
ation was able to extract accurate Ritz values given the convergence tolerance. 

10.4 Example 4 

Finally, we present a dramatic example of how the convergence of an IRA-iteration 
benefits from the two deflation procedures. A matrix T of order ten had the values 

10- 6 . 10-:3 1 T1 = , Ti=2:8 = i . , T9:10 = , 

on the diagonal. Since the eigenvalues of a matrix are invariant under orthogonal 
similarity transformations, using an IRA-iteration on T with a randomly generated 
starting vector is genera.I. An IRA-iteration was used to compute an approximation to 
the smallest eigenvalue. The number of shifts used was p = 3 and the convergence 
tolerance 17 was set equal to 10-3

_ Table 5 shows the results attained. 
Another experiment was run with the locking and purging mechanisms turned off. 

Additionally, all unwanted Ritz values were used as shifts. The same parameters were 
used as in Table 5 but the iteration now consumed forty one matrix vector products. 
As in the results for Table 5, the modified iteration converged to one of the dominant 
eigenvalues after one iteration. After six iterations, the leading block of H4 split off, 
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IRA-iteration on T 

k = l and p = 3 with convergence tolerance is 77 = 10-3 

Iteration Ritz values Locked Ritz values Purged 

1 0 1 
15 1 1 

Totals 1 2 

Number of matrix vector products 32 
IITQ1 - Q1R1ll/71 ~ 10-3 

IIQ{ TQ1 - R1ll/71 ~ 10-3 

IIQ'f Q1 - Ii 11 ~ 10-15 

IIR1 - 71 ll=/71 ~ 10-3 

Table 5: Convergence history for Example four 

having converged to the invariant subspace corresponding to 7 9 ,10. But since purging 
was turned off, the modified iteration had to continue attempting to converge to 71 

using only the lower block of order two in H 4. Incidently, if the iteration instead 
simply discarded the leading portion of the factorization corresponding to 79,10 after 
the sixth iteration, convergence to 7 1 never occurred. Crucial to the success of an 
IRA-iteration is the ability to deflate converged Ritz values in a stable manner. Both 
purging and locking allow faster convergence. 

11 Conclusions 

In the paper, we developed deflation techniques for an implicitly restarted Arnoldi iter­
ation. The first technique, Locking, allows an orthogonal change of basis for an Arnoldi 
factorization which results in a partial Schur decomposition containing the converged 
Ritz values. The corresponding Ritz value is deflated in an implicit but direct man­
ner. The second technique, Purging, allows implicit removal of unwanted converged 
Ritz values from the Arnoldi iteration. Both deflation techniques are accomplished by 
working with matrices in the projected Krylov space which for large eigenvalue prob­
lems is a fraction of the order of the matrix from which estimates are sought. Since 
both deflation techniques are implicitly applied to the Arnoldi factorization the need 
for explicit restarting associated with all other deflation strategies is avoided. Both 
techniques were carefully examined with respect to numerical stability and computa­
tional results were presented. Convergence of the Arnoldi iteration is improved and a 
reduction in computational effort is realized. The numerical examples demonstrate how 
the deflation techniques remove the requirement for a block Arnoldi/Lanczos method 
to compute approximations to multiple or clustered eigenvalues. 
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