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1 Introduction 

The modified method of characteristics (MMOC) was first formulated for a (possibly 
nonlinear multidimensional) scalar parabolic equation by J. Douglas and T. F. Russell 
in [3] and then extended by Russell [10] to nonlinear coupled systems in two and 
three spatial dimensions. Similar schemes have been defined by Pironneau [9] for the 
incompressible Navier-Stokes equations and by Siili [12] and Morton, Priestley, and 
Siili [7] for first order hyperbolic equations, with the latter technique being referred 
to as the Euler characteristic Galerkin method. The intent of the method is to obtain 
accurate approximations to advection-dominated problems. 

Basically, in the modified method of characteristics, one combines the time deriva
tive and the advection term as a directional derivative. In other words, the procedure 
involves time-stepping along the characteristics, allowing one to use large accurate 
time-steps. An algorithm combining the mixed finite element method and the modi
fied method of characteristics was first applied to the miscible displacement problem 
in porous media by Ewing, Russell, and Wheeler [5]. Recently, the scheme has been 
extended by Wheeler and Dawson [14] to advection-diffusion-reaction problems. Nu
merical results have verified that large accurate time steps are possible, and sharp 
fronts have been resolved ( without oscillations or numerical diffusion) by coarser grids 
than standard procedures can use. 

In this paper, we consider the numerical solution of advection-diffusion problems 
of the following form: 

-V · e\~JVp) = V · u = q(x, t), 

¢>~~ - V · D(u)Vc + u ·Ve= q(c - c), 

c(x, 0) = C-O(x), 

u · TJ = D( u) V c · TJ = 0, 
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x E 0, t E J, 

XE 0, t E J, 

x E 0, 

x E an, 

(1.1) 



where n is a bounded domain in ?R2, J = (0, T], and ij = max(q, 0) is nonzero at 
source points only. Here T/ is the outward normal to n. D( u) is a tensor matrix and 
can be velocity-dependent. For u = ( Ux, uy), D generally has the form 

where Dm is the molecular diffusivity and a, and O'.t are the longitudinal and transverse 
dispersivities, respectively. Furthermore, in (1.1) c is specified at injection wells and 
c = c at production wells. Problems of this form arise in the study of reservoir 
simulation and contaminant flows [5, 14). 

For convenience, we assume (1.1) is 0-periodic; i.e., we assume all functions in 
( 1. 1) are spatially 0-periodic. This is physically reasonable, since no-flow boundaries 
are generally treated by reflection, and because in general interior flow patterns are 
much more important than boundary effects. Thus, the no-flow boundary conditions 
above can be dropped. 

This paper is divided into three additional sections. In the second section we 
establish notation. The modified method of characteristics for linear advection prob
lems with u assumed to be given, is treated in Section 3. The two major results of this 
section involve derivation of a suboptimal convergence result for the case D(u) ~ 0 
(diffusion-dispersion can be zero) and an L2 (L2 ) error estimate which involves optimal 
rate and improved ( virtually optimal) norms on the solution. The results of Section 
3 are generalized in Section 4 to include combining a mixed finite element approxi
mation to (p, u) with the MMOC for approximating c. Here a suboptimal estimate is 
obtained with restrictions on the order of the approximating spaces. Improved norm 
estimates in L2 (L2 ) are also derived for µ independent of c. 

We wish to remark that by 'virtually optimal' we mean that the norm estimates 
are of the form 

Here the exponent on h cannot be improved. 

2 Preliminaries and notation 

On n, we define the following Sobolev spaces and norms: 

11111 2 = k IJl 2
dx, 

L
00

(0) = {1: s~p Ill< 00}' llflloo = sup lfl, 
n 
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iv~ ( n) = { J : ~:; E L 00 ( n) for I a I ~ m} , 
llfllwm = max 11

8
8

1011
1100, m::::: 0. 00 lol~m X 0 

Also, we define 

H(div; n) = { f = Ux, fy) : fx, fy, y' • f E L2(D)}, 

with 

llfll~(div) = llfxll2 + llfyll2 + llv'. r11 2
• 

When L2 is replaced by Hm in the definition of H(div), denote the resulting space by 
Hm(div). The inner product on L2(D) is denoted by(·,·). Also note that W~ = L00 

andH0 =L2 • 

We also use the following spaces that incorporate time dependence. Let (a, b] C J 
and let X be any of the above LP or Sobolev spaces. For J(x, t) suitably smooth on 
0 X [a, b], we let 

m ( b ) { f lb 11 ao f (.' t) 112 H a, ; X = : la ato X dt < oo, 

( 

m lb ao J( ·, t) 2 ) ½ 
llfllHm(a,b;X) = I;1a II ato llx dt , m::::: 0. 

Similarly, W~( a, b; X) and the norm I Ill lw~(a,b;X) are defined. If [a, b] - J, we 
simplify our notation and write L00 (W!i) for L00 (0,T; W!i(D)), etc. 

Let 6..t > 0. Set tn = n6..t, and let tN· = T. Let fn = J(tn). We define, for 
1 ~ p < oo, the discrete time-dependent norms 

N• 

IIIJlll~P(Hk) = L llfnll:6..t 
n=l 

and 

Let L1;(Hk) = {J: IIIJIIILP(H") < oo}, 1 ~ P ~ oo. 
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We require the following assumptions on the coefficients. Let k., k*, ¢., ¢*, and 
I<* be positive constants such that 

0 < k. ~ :((~~ ~ k*, 0 < </). ~ </)( X) ~ </)*, } 

iv'¢!+ Ii~ I+ l*I + iic0 IL,+1 ~ J{*, 

(2.1) 

for some s ~ 1. Further assumptions will be made in individual theorems as necessary. 
For convenience, we have assumed that q is a smooth function. Under some 

additional assumptions, our arguments could be modified to include the point source 
case [6]. 

3 Estimates for advection-diffusion problems 

In this section, we assume u in (1.1) is given. Let h > 0 and Mh be a finite di
mensional subspace of H 1 (n). We assume that there exists an integer k** > 0 such 
that 

inf [11! - xii+ hllf - xiii+ h(IIJ - xlloo + hllf - xllw 1 )] 
xEMh 00 

~ I<oh1llfll1, 2 ~ l ~ k** + 1, (3.1) 

(3.2) 

(3.3) 

where I<0 is independent of h. It is well known that these properties are valid for 
continuous piecewise polynomials of degree ~ k** on a quasi-uniform mesh of diameter 
~ h. 

Our convergence analysis will use a technique based on comparing the finite ele
ment approximation to an elliptic projection; see (13]. Define C(·, t) E ,\,th by 

(D(u)v'C, v'x) + (C, x) + (qC, x) 
= (D(u)v'c, v'x) + (c, x) + (qc, x) 

= -( <fact , X) - ( u · v' c , X) + ( c , X) + ( q c , X), 

XE Mh, t E J. 

(3.4) 

(3.5) 

It is well known that the following elliptic projection results hold; i.e., there exists 
a constant I< such that for c sufficiently smooth and D(u) ~ D. > 0, 

ll(c- C)(t)II ~ I<(D.)h1+1 llc(·, t)ll1+1, (3.6) 
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and 

(3.8) 

where O :S l :S k**. 
Moreover, in order to obtain a suboptimal estimate for D(u) 2: 0, we let C be the 

L2 projection of c, that is 

( cpC , X) = ( cpc , X), X E M h. 

In this case, we have 

hlllc - Cllll2(Hl) + Ille - CIIIL2(L2) ~ I<h1
+

1 lllc!IIL2(H'+1)· 

The basic idea of the MMOC is to think of the term 

rpct+u·Vc 

(3.9) 

as a directional derivative. Let T denote the unit vector in the direction (u, ,p) in 
!1 X J and set 

1 

0 = [lul 2 + (,p(x)) 2
] l'. 

Then one obtains 

0c-r - V · DVc = q(c - c), 

which has the form of the heat equation. We further note the backward difference 
approximation 

(3.10) 

and if we let 

_ u(x, tn) 
X = X - cp(x) 6-t, (3.11) 

then 

(3.12) 

The modified method of characteristics is a map 

o 1 N* } C:{t,t, ... ,t =T -+Mh 

defined by 

c0 (x) = C(x, o), (3.13) 
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and 

en_ (;n-1 
(</> 6.t , x) + (D(un)ven, Vx) = (<r(cn - en), x), (3.14) 

X E A-1h, n 2: 1, (3.15) 

where 

c;n-l(x) = { ~n~
1
(x), n > l, 

e(x, 0), n = l. (3.16) 

In the analysis that follows I{ will denote a generic positive constant and €, l, and 
8 small positive constants, independent of h and 6.t. 

Throughout this paper, we will make repeated use of the well-known inequality 

€ 1 
ab< -a2 + -b2 

- 2 2€ ' 

which holds for € > 0, a, b E ?R. 

3.1 Ln(L2 ) estimate 

Set en= en - en. Before deriving an error estimate fore in Lv(L2 ) which assumes 
only positive-semidefiniteness for D(u), we prove the following lemma. Let 

G( 
n) _ u(x, tn) 

X, t = X = X - </>(x) At. (3.17) 

We remark that, because of the smoothness and periodicity of u and </>, G is a differ
entiable homeomorphism of n onto itself for .6.t sufficiently small (see [5]). 

Lemma 3.1 Along with (2.1}, assume that u and V · ~ have bounded first partial 

derivatives in space. Then, for .6.t sufficiently small, an arbitrary Junction J E L2(0) 
satisfies 

where 

2~t [ ( </> J ' !) - ( </> f ' J)] 

~ ~(qf, J) + €(</>f, J) + K1(</>f, J) + I<2(f, J), 

I<1 = I<1 (ilulloo, IIV ( ¼) lloo) , 

I<2 = K2 (11;1100,IIV</>lloo) · 

If</> is constant, then K1 = K2 = 0. 
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Proof. For each x E n, let y = G(x, t) = H(x) for some fixed t E J, t ~ 6.t. 
The Jacobian of this transformation is 

[ 

1 - __§_ (]±1.) 6.t 
8x1 ,J, 

DH(x) = 
_ __§_ (.!!.2.) 6.t 

8x1 ,J, 

_ __§_ (]±1.) 6.t l 8x2 4> 

1 - __§_ (.!!.2.) 6.t ' 
8x2 4> 

so that the determin.ant can be expressed as 

u 
det DH(x) = 1 - V · <P 6.t + 0(6.t2

). (3.18) 

Because H maps the periodic domain n bijectively onto itself, a change of variable 
yields 

( ¢>], j) - lo </>(x)J(y)f(y)dx 

- lo </>(x)J(y)f(y) <let ;H(x) dy 

- k </>(x)J(y)f(y) [1 + ( V · ~) (x)6.t + 0(6.t2
)] dy. (3.19) 

Subtract (<Pf, f) from both sides of (3.19) to obtain 

( <P j ' ]) - (<Pf ' f) 

= k [</>(x) - </>(y)] f(y )f(y) [ 1 + ( V · ; ) (x)6.t + 0(6.t2
)] dy 

+ 1n </>(y)f(y)f(y) [ ( V ·:) (x)6.t + 0(6.t2
)] dy. (3.20) 

In the second term on the right-hand side of (3.20), write 

( '7. ; ) (x) - [ ( '7 · ; ) (x) - ( '7 · ; ) (y)l + ¼('7 · u)(y) + ( u · '7 ¼) (y) 

- [ ( V · ~) (x) - ( V · ; ) (y)l + ¼q(y) + ( u · V ¼) (y), 

and divide by 26.t to see that 

2~t [(<1>J, J) - (<l>f, n] 

= 
2
~t h [</>(x) - </J(y)] f(y)f(y) [1 + ( V ·:) (x)6.t + 0(6.t

2
)] dy 

+~lo ,f,(y)J(y)J(y) [ ( '7. : ) (x) - ( '7. : ) (y)l dy 
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+ i k q(y)f(y)f(y)dy 

+ ~ k ¢(y)f(y)J(y) ( u. v7 ¼) (y)dy 

+ O(~t) k ¢(y)J(y)f(y)dy 

= T1 + T2 + T3 + T4 + Ts, 

\Ve find bounds for the right-hand side of (3.21). In T1 , note that 

so that 

Similarly, 

Next, because q ~ q = max(q,0), we have 

For the last two terms, we find that 

ITsl = O(~t)( </>J, J) ~ E( </>J, !). 

(3.21) 

Putting the above bounds together, the lemma follows. If </> is constant, an in
spection reveals that T1 = T4 = 0, so that 1(1 and 1(2 can be zero. 

Our basic idea is to compare C with the L2 projection C defined by (3.9) and 
then note that 

(3.22) 

where c = c - 6, and e = c - C. 
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Subtracting (3.4) from (3.14) and setting x = (n, we obtain 

where 

(</> (n ~t-1 '(n) + (D(un)V(n' V(n) + (q(n' C) 

=(an, (n)- (</>tn-1;,_/n-1, (n) 

+ (D(un)VC, V(n) + (ijC, C), (3.23) 

en _ cn-1 
O"n = [¢c; +Un. Ven] - <P At . (3.24) 

By standard backward difference error analysis [5], we have 

llanii2 :5 K Atl lcTTI li.2(tn-1,tn;£2)· (3.25) 

Applying Lemma 3.1 with f = (n-1 , the Schwartz inequality, and (3.25) we deduce 
that 

-
1 

[ll¢½(nll2 - ll¢½c-1112] + 11n½(un)V(nll2 + llq½(nll2 
2At 

:5 KAtlleTTlli2ctn-1,tn;L2) + ll4,½(nii2 + Kllenw 
+ Kll¢½{n-1 - en-1112 

At 

+ !11q½c-1112 + tll¢½(n-lll2 
2 

+ I<1ll¢½C-11!2 + (1 + K2)ll(n-ill 2 

+ ~IID½(un)V(nii2 + ~IID½(un)VCll2, (3.26) 

where the functional dependence of K1 and K 2 is described by Lemma 3.1. In par
ticular if ¢ is constant then K 2 = 0. We observe that by definition of { that 

11¢½ !n-i ;;,_/n-i 11 :5 I<I lun · ven-1 I I :5 I<( u) 11vc-1 I I- (3-27) 

Moreover, 

(3.28) 

Multiplying (3.26) by 2At, using (3.27) and (3.28), and summing on n, n = 
1, ... , N, we see that 

N 

11¢½(Nii2 + ~ [IID½(un)V(nii2 + llq½(nii2] At 
n=l 

:5 K [(At)2llcTTlli2cp) + 111e111i2(H1)] 
N 

+ I: [(2 + K1)ll¢½(nll2 + 2(1 + K2)ll(nll2] At, (3.29) 
n=l 
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where K1 = K2 = 0 if¢= const. Recall from (3.13) that ( 0 = O. Using the bounds 
for <P given by (2.1) to write (1 + K2)ll(nii2 :S 1

~~2 l!4>½(n!!2 and applying Gronwall's 
Lemma in (3.29), we have 

(3.30) 

Thus, by applying the estimate (3.9) for~' and using (3.22), we have the following 
theorem. 

Theorem 3.1 Let the hypothesis of Lemma 3.1 hold. Assume 

for some s :::: 1. Then for 6.t sufficiently small 

lli4Jeilliooc£l) :5 Ka [6.t2llc1"1"llil(£2) + h2r!llcllli:icw+1)], 

where r = min(k**,s) and Ka depends on K 1 and K 2 , among other quantities, but 
has no dependence on a positive lower bound for D( u). If </> is constant, then the 
Gronwall growth in !(3 depends only on ¢. = </>. 

3.2 L2a(L2) estimate for e 

We now derive an estimate for lllelllL2(L2)· In this estimate we assume Dis positive 
definite with lower bound D. > 0. Again set en= en -en, then from (1.1) and (3.14) 
we deduce that 

where an is given by (3.24). 
\Ve recall that G(x, tn) as given by (3.17) is a differentiable homeomorphism of n 

onto itself. We therefore define 

Let g(x) = g(zn- 1(x)). 
We first need a technical lemma. 

Lemma 3.2 Set 'lj;0 = 0, and for n = 1, ... , N* define tpn by 

<l>t/Jn(x) - J;j;n-l det(-vzn-l ( x)) 
6.t 

(3.32) 

- v'. D(un)v't/Jn(x) + qt/Jn(x) = q>en(x), x E !1, (3.33) 

x E an, (3.34) 
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where vzn-1(x) denotes the Jacobian matrix of zn-1(x). Let the hypothesis of 
Lemma 3.1 hold, assume Ut exists and is bounded and D( u) is positive definite with 
lower bound D .. > 0. Then, there exists a constant I<4 > 0 such that 

(3.35) 

Proof. We have for x E H1(f!), 

'lpn _ 'lpn-1 
(<I> 6-t 'x) + (D(un)v''I/Jn' v'x) + (ij'I/Jn' x) - (</>en' x) 

i;;,,n-1 det(vzn-1) - </>'I/Jn-1 
= ( D.t ' x) 

= ( </>?/Jn-1 , x( an-t) - X ). 
D.t 

The second step above is obtained by a change of variables argument which again 
involves the periodicity assumptions made earlier, see [5]. Hence, 

(</> '1/Jn ~tn-1 'x) + (D(un)v'?/Jn' v'x) 

= -(q'I/Jn, x) +(</>en' x) + (<fnpn-1' x(Gn~1; _ X) 

$ K (11?/Jnll + 11¢>½enll) ll<f>½xll + ll¢>¢n-tll1llx(Gn~?-xll-1- (3.36) 

Following arguments given in [5], we now demonstrate that 

Thus, consider 

llx(cn-1)- xll-1 = sup [-1- r x(cn-l(x))- x(x) g(x)dx]. 
6-t gEHl(O) llglh Jn D.t 

By a change of variables we have 

k x(cn-1(:)/- x(x) g(x)dx 

= ~t [.l x(x)g(x) det vzn-l (x)dx - .l x(x)g(x)dx] 

= _l [ r x(x)g(x)( det vzn-l (x) - 1 )dx 
D.t ln 

+ lo x(x)(g(zn-1(x)) - g(x)) det vzn-1(x)dx]. 

11 
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Thus 

llx(Gn~[- xll-1 

:s '~t sup [-,, 1,, 1 x(x)g(x)(det vzn-1 (x) - l)dx] 
u gEH1(0) 9 1 0 

+ ;t sup [-
11

1

11 
I x(x)(g(zn- 1(x)) - g(x)) det vzn- 1 (x)dx] 

u gEHl(O) g 1 Jo 
= W1 + W2, (3.38) 

By (3.17), (3.32), and (3.18) and the assumptions on u and ¢> there exists a 
constant Ks such that 

and 

(3.40) 

Hence, 

IWd $ Ks sup [llxll llgll/llglli] :S Ksllxll-
gEH1 

(3.41) 

Next, let z be the unit vector in the direction of x - zn-1 (x), and let z E (0, 1] 
parametrize the line segment from x to zn- 1 (x). Then 

K [11 - l 1iVi1 :s ilt :::1 119111 n x(x)g(x)lx - zn-l(x)ldx ' (3.42) 

where 

g(x) = fo
1 ::((1 -z)zn-1 (x) + zx)dz. 

Moreover, since zn-1(x) is continuous and differentiable, we have 

ll911 $ Kliv'gll. (3.43) 

Thus, combining (3.42)-(3.43) and (3.40) we find 

(3.44) 

and (3.37) now follows by combining (3.38), (3.41), and (3.44). 
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Returning now to (3.36), let x = ('l/Jn-?j)n- 1 )/At, then manipulating and applying 
(3.37) we obtain 

111J 1/Jn - lpn-l 112 + - 1- [11n½(un)v"1/Jnll2 -11n½(un-l)v"1/Jn-l!i2] 
At 2~t 

~ Kll</>½enl!2 + J<jj1/Jnlli + KK;ll1/Jn-llli + }11</>½ 1/Jn ~:n-l 112 

1 1 1 + 
2
A/[D 2 (un) _ D2 (un-l)Jv"1/Jn-l, v"?j)n-1) 

~ J<(Ks, lllutli1L00 (L00 ))1l'l/Jn-llli + 1<ll1/Jnll: + Kll4>½enll2 + ~114>½ 1/Jn - 7/Jn-l 11 2 

2 At 

:5 J<6(11¢'n-lll~ + lltlinll~) + Kll</Jenll 2 + ½111>½ 'lpn ~:n-l 11 2 • (3.45) 

Multiplying (3.45) by At, summing on n and applying the discrete Gronwall 
Lemma we find 

N° ?pn 1/Jn-1 
~ 114>½ ~t i!2At + 1111/Jlll~oo(Hl) ~ K1lll</>½enlll{2(L2)· (3.46) 

where 

For an H 2 estimate of¢, rewrite (3.33) as 

-v" · (D(un)v7¢n(x)) = </>en(x) - q1/Jn(x) 
4>(x)¢n(x) - J(x);f;n-1(x) <let vzn-1(x) 

At 

From elliptic regularity there exists a constant ]{8 = K8(D., n) such that 

111/>"II) '.S Ks [ 114> ,p• ~;°-1 

II'+ ii,t,le"II' + IIWII' 

</>1/Jn-1 _ J;f;n-1 <let vzn-1 2] 
+ II At II . 

Consider the last term on the right-hand side of (3.48). We have 

</>(x)7/Jn-1(x) - J(x);f;n-l(x) <let vzn-1 (x) 
At 

= ]__[4>(x)¢n-l(x)(l - det vzn-1(x)) 
At 

+ det vzn-l (x)( 4>(x)¢n-l(x) - J(x);f;n-1(x))]. 
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Thus 

</>1/Jn - J>~n-1 det vzn-1 
II 6.t II 

~ ~tll</>1/Jn-l(l -detVZn-l)II 

1 V V 

+-11( <i>l/Jn-1 - <i>l/Jn-1) det vzn-111 
6.t 

= W3 + iVi. 

By (3.39), we have 

Furthermore, by essentially the same argument which led to (3.44) we obtain 

iVi ~ K Ks 11</>1/Jn-t 111 

~ KKslll/Jn-lllt-

Substituting (3.49)-(3.51) in (3.48) we find 

(3.49) 

(3.50) 

(3.51) 

Multiplying above by 6.t, summing on n, and applying (3.46), we obtain (3.35). Note 
that 

(3.52) 

where Ks is given by (3.39) and (3.40), K7 by (3.47), and K 8 by (3.48). 

vVe now derive an estimate for lll<f>½elllv(L2), utilizing a parabolic lift argument 
similar to one developed by Palmer in [8] for a Galerkin approximation of the con
taminant transport problem. 

Let 1/)N"+l = 0, and for n = 0, ... , N*, let 1/)n satisfy the 'backward' equation 

<f>(x)l/Jn(x) - ¢>(zn+1(x))it,n+t(zn+1(x)) det vzn+l(x) 
6.t 

- V · (D(un)Vl/Jn(x)) + qipn(x) = <j)en(x), x E f!, (3.53) 

D(un)Vl/Jn · T/ = 0, x E an. (3.54) 

Then, by the lemma just proved applied to ,n = 1/)N*+t-n, we have a bound for 

llll/illlL00 (H1 ) + llll/illlv(H2) of the form (3.35). 

14 



Multiplying (3.53) by en(x), integrating over n, multiplying by 6.t and summing 
on n we obtain 

w <f>'lj)n - <1>(zn+1 )¢n+1(zn+1) det vzn+i 
II I q> ½ e I I li2 ( £2) = L (------'---"'---'---'---- , en )6.t 

n=l 6.t 
N* N* 

+ L(D(un)\7'1/)n, \7en)6.t + L(q'lj)n, en)6.t. (3.55) 
n=l n=l 

Consider the first term on the right-hand side of (3.55). We want to show this 
term is equal to 

N* n ·n-1 
'°'( e - e n o 1 
Li </> 6.t ' 'IP )6.t + ( </>e ' 1P ). 
n=l 

Thus 

N* n •n-1 

I:(<1/ -; , ¢n)6.t 
n=l 6,. 

1 N* 
= ~ L [1 </>(x)en(x)'lj)n(x)dx -1 </>(x)en-1(G(x, tn))'lj)n(x)dx] 6.t 

t n=l n n 

= ; t [ f </>(x)en(x)'lj)n(x)dx - f </>(x)en(G(x, tn+l))'lj)n+t(x)dx] 6.t 
ut n=l Jn Jn 

-(</>eo' lj}) 

N* n </n/Jn - </>(Zn+l )t/Jn+l(zn+l) det vzn+I 
= I: ( e , 6.t )6.t (3.56) 

n=l 
-(</>eo, t/;1), 

where, in the second step above, we utilized the fact that ¢N*+t = 0. 
Hence, by (3.55), (3.56), and (3.31), we have 

N* n •n N* 

I II</>½ el I lf2(£2) = L ( </> e - e , t/Jn)6t + L (D(un )\7 en, \71/Jn)6t 
n=l 6.t n=l 

N* 

+ I:(<ien, ¢n)6.t + (<l>eo, ¢1) 
n=l 

N* n n-1 

L(<I> e ~: , ¢n _ xn)6.t + (<l>eo, ¢1) 
n=l 

N* n-1 ·n-1 

+ L(<l>e ~/ 't/Jn - Xn)6.t 
n=l 
N* 

+ L(D(un)vren' \7(t/Jn - xn))6t 
n=l 
N* N* 

+ L(qen, t/Jn - xn)6.t - I:(o-n, xn)6.t, xn E Mh(3.57) 
n=l n=l 
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Let Xn = -rpj, where -rpj is the interpolant of -rpn in Mh, then from approximation 
theory there exists a constant J{9 such that 

(3.58) 

Thus, by (3.57), (3.58), and (3.35), and applying negative norm estimates to the 
second term in (3.57), we obtain 

N° n n-I 

s-; l( /{4/{9h
4 I: II e ~: 112 D.t + l( K4K9h2111n½(un)v'en1m,2(£2) 

n=I 

+KK4KsK9h2 111¢½elllioo(L2) + KK41ie0 ii 2 

+ K K9 II lo-I 1112(£2) + i I I j<p½ el 1112(£2). (3.59) 

Combining (3.59) and (3.25), we have an estimate for 111¢½elllu(L2), given in the 
following theorem. 

Theorem 3.2 . Assume the hypothesis of Lemma 3.2 holds. Then, there exists a 
constant K 10 such that 

l 

Kio{~t + h2 (t llen ~en-l ll2~t) 2 

+ hlll<f>½ell!L00 (£2) 
n=l t 

+ hlllD½(u)v'elllL2(L2) + lle0
11 }, (3.60) 

We now derive estimates for the terms on the right-hand side of (3.60). vVe 
compare C with the elliptic projection 6 defined by (3.4). 

Let otfn = un - in-I)/ D.t. Recall, by subtracting (3.4) from (3.14) and setting 
( = C - C and { = c - C, we obtain 

(</Jot(n, x) + (D(un)v'(n, v'x) 
= (o-n, x) + (</>otC, x) - (C, x) - (qn(n, x) 

en-I _ en-I (n-I _ ,n-1 
- (</> ~t , x) + (</> ~t , x), XE Mh, (3.61) 

and we note that 

lll<t>½elllL00 (£2) + IIID½(u)v'elllL2(L2) + lllfJtelllu(L2) 
s-; 1111>½(IIIL00 (L2) + 111n½(u)v'(IIIL2(£2) + lllfJt(nlllu(L2) 

+111¢½elllL00 (L2) + IIID½(u)v'elllL2(L2) + lll8tenlllL2(L2)· (3.62) 
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Setting X = (n in (3.61 ), we have 

(</>Ot(n, (n) + (D(un)V(n, VC) 

= ( o-n , (n) + ( </>Bten , C) - ( en , C) - ( qn C , C) 
(n-I _ en-I n en-I _ (n-I n 

- ( </> At ' ( ) + ( </> At ' ( ). (3-53) 

Thus, applying the inequality b( b- c) 2: ½( b2 
- c2 ) and manipulating (3.63) we obtain 

_1 [11<1>½(nll2 - llef>½(n-Ill2] + 11n½(un)v(nll2 
2At 

:5 Kllo-nil 2 + K (ll<1>½(nll2 + IICll2 + llotell llef>½CII) 
en-I _ en-1 ,n-1 _ c-1 

+ II At ll-1ll<t>Clh + II At ll-1ll<t>(nll1- (3.64) 

Using the time difference estimate for e derived in [4], we have that 

Also, by (3.37) and inverse assumptions (3.3) we note that 

and 

Substituting (3.25), (3.65)-(3.67) into (3.64), we deduce that 

-
1 [11<1>½(nll2 -11<1>½c-Ill2] + 11n½(un)v(nll2 

2At 
:5 I< (llcnlli2<t"-1,tn;£2) At+ ll<ti½Cll 2 + IICll2 + li<tJ(n-i 11 2 +IIC-1

112 

+ (At)-1h2 lletlli2(tn-1,tn;L2)) + th-2 !1¢½Cll2- (3.68) 

Multiplying (3.68) by 2At and summing on n, we obtain 

N 

11<1>½(Nll 2 + L 11n½(un)v(nll2At 
n=l 

:::; K (llcT1·lli2<£2)At2 + 111e11112(£2) + h2 iletlli2(£2)) 
+ (K + th-2 )111</,½(IIII-2(£2)· (3.69) 
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Noting above that N is arbitrary, multiplying (3.69) by h2 and substituting (3.7) 
and (3.8) into (3.69) we see that 

h2 lll¢>½(lllioo(£2) + h2 IIID½(u)V(llli2(£2) 

::S Kh2(6.t)2llcnlll2(£2) + (Kh 2 + t:)111¢>½elll12(L2) 

+ Kh 2
(r+I) [(h2 + t:)lllclllf2(w+1) + lllclllif1(Hr-1)], (3.70) 

where r = min( k**, s ), and s involves smoothness assumptions on c and is defined 
below. 

We now estimate lll8telllL2(£2)· In (3.61), setting x = 8t(n, we obtain 

(</>8t(n, 8t(n) + (D(un)V(n, V8t(n) 

= (o-n, 8tC) + (</>8tC, 8t(n) - (C, 8t(n) - (,f(n, 8t(n) 
en-1 _ en-1 n ,n-1 _ ,n-1 n 

- (¢> 6.t , 8t( ) + (</> 6.t , 8t( ). (3.71) 

Thus 

Now 

(D(un)V(n, V8t(n) 

= ~t ((D(un)VC, V(n) - (D(un)V(n , V(n-1) 

= ~t [(D(un)V(n' V(n) - (D(un-t)V(n-1' vc-t)] 

-(8tD(un)V(n-i, V(n-1 ) + 6.t(D(un)V8t(n, V8tC) 

-(D(un)V8t(n, V(n). (3.73) 

We use inverse assumptions to treat the following terms; that is 

(3.74) 

and 
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Hence by (3.72)-(3.75) we find that 

11<1>½at(nJl2 + ~t [11n½(un)vcn11 2 -11n½(un-1)V(n-111 2
] 

K 
~ t { lludl00Koh-2 ll(n-ill 2 + K6h- 2 (11(n-iJl2 + IIC-1Jl2) + ll(nJl2 

+ 11en11 2 + ~tllc7"7"1li.2(tn-l,tn;L2) + (~t)-1lletlli2(tn-l,tn;£2) } 

+ I< I<~h-
2 

IID½(un)V(nJl2 - ~tllD½(un)V8tCll 2 

f_ 

+ 6tllBtCll2, (3.76) 

where l > 0. We now choose l = f½ and hide the last term on the right-hand side of 
(3.76). 

Multiplying the result by ~t and summing on n, we derive the following 

~- lll8t(llli2cL2) + 11n½(uN)V(Nl12 

~ I{ [h-2 lll(llli_2(L2) + h-2 111e111i2(L2) + (~t) 2 llc7"7"lli.2(L2) + ll!tlli2(L2)] 
+ K K6 h-2

11 ID½ (u)V (I I li2cu)· (3. 77) 

Thus, multiplying (3. 77) by h4 , dividing by 4>./2 and combining the result with (3. 70), 
(3.7), and (3.8) we obtain 

IIIBt(lllucu) ~ Kh2(~t)2llcTTlll2cu) + K KJ(h 2 + t)ll14>½elll12cL2) 
+Kh2<r+1)((h2 + t)lllcllli2cw+1) + llcll~1cw-1)). (3.78) 

Combining (3.60), (3.62), (3.70), and (3.78), and noting the l!e0
11 = lie0

11 = 
O(hr+1 ) by (3.14), (3.6), and (2.1), we find that 

1114>½ eillhcu) ~ K Kio [~t 2 + h2
(r+l) (lllcllli,2cH<•+l)) + llclli1(H•-l) + llc0 11~+1)] 

+KK;0 K6(h 2 + t)lll<t>½ellli2cu)· 

We now choose t and h so that K K;0 KJ(h2 + t) = ½-
Thus, we obtain the following result. 

Theorem 3.3 Let the hypothesis of Lemma 3.2 hold. Assume. 

c E H2 (L2
) n Lb(Hs+l) n H1(H"-1

) 

for some s ~ 1. Then for h sufficiently small 

ll14>½elllL2(L2) ~ Kn [hr+l (111clllu(w+1) + llctllL2(W-1) + llc0 llr+i) + ~tllcTTIIL2 (L2)], 

where r = min( k**, s), and 

Kn= Kn(Ko, K4, Ks, K6, K1, Ks, 1(9, K10). 
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4 Extensions 

Now assume in ( 1. 1) that µ = µ( c) is smooth, and we approximate u by a mixed 
finite element method. Let Vhp C H(div; fl) and Whp C L2 (0) be mixed finite 
element spaces that approximate to order h;+i in H( div) and L2, respectively, with 
div Vhp C Whp. Thus, given a concentration approximation en at time tn, we find 
un E Vhp and pn E Whp such that 

(1'(~n)un, v)-(Pn, V-v)=O, vEVhp, } 
(V ·Un, w) = (qn, w), w E WhP. ( 4.1) 

_ Existe~ce and uniqueness of un and pn is proved in [2]. By defining projections 
U E Vhp, P E Whp via 

(~U,v)-(?,V-v)=O, vEVh,.,} 
(V·V,w)=(qn,w), wEWh,., (4.2) 

one can show [2] 

J Ju - UJ IL•(H(div)) + J Jp - ?J 1£•(£2) 
::; I<h;+i (11ullL•(H"+1 (div)) + IIPIIL•(H"+1)), ( 4.3) 

where 1 ::; s ::; oo. We remark that different mesh spacing can be used for Vhp and 
Whp than for Mhci i.e., we can have two different quasi-uniform meshes for pressure
velocity and concentration with diameters ::; hp and he, respectively. 

Moreover, comparing (4.1) and (4.2) one obtains 

We remark that in the case µ(c) = constant then un = iJn and pn = fan. 
vVe now solve the pressure-velocity and concentration equations in (1.1) sequen

tially. This sequential procedure is defined as follows. For simplicity, assume pressure
velocity and concentration are approximated using the same time-step !::,.t. Thus, 
given en-1 , we calculate un-1 and pn-1 as in (4.1). Before calculating en via the 
MMOC, we define an extrapolated velocity EVn by 

EUn= ' ' { 
2un-l - vn-2 n > 1 
U 0

, n = 1. 

We remark that different time steps can be used for the calculation of U and P 
than for C. In many practical problems the vector U may change less rapidly in time 
than e, even if the characteristics are taken into account. Thus, it is appropriate to 
use a larger time step for (4.1) than for (3.14). Partition J into pressure time steps 
0 = t 0 < t1 < ... < tM = T with !::,.tr> = tm - tm-l· Each pressure step is assumed 
to also be a concentration step; i.e., for each m there exists n such that tm = tn. In 
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general Atp > Ate. In this case we modify our definition of £Un for n > l and m ?: 2 
as 

Define 

A_ _ EUn(x) A 

x - x 4>(x) ut, 
• Eun(x) A 
x=x----ut 

4>(x) ' 
( 4.5) 

and 

( 4.6) 

Then, en, n ?: 1 is given by 

en_ en-I 
(¢, At , X) + (D(EVn)VCn, Vx) = (qn(cn - en), x), (4.7) 

XE Mh, n?: 1, 

4.1 L0(L 2) estimate 

In Theorem 3.1, we derived a suboptimal Lr](L2 ) estimate for the concentration error 
e that allowed D to go zero but assumed a given velocity u. We now consider the 
additional complications that arise when u is approximated by a mixed finite element 
solution U. For simplicity, let Atp =Ate= At. The theorem is as follows. 

Theorem 4.1 Let the assumptions of Theorem 3.1 hold with the extra assumption 
c E L 2(W~)nL 00 (H1

). Let the numerical velocity U and the projection Ube defined 
by (4-1} and (4-2} and assume u E L 2(Hk+l(div)), p E L2(Hk+1 ), and Utt E L 2(L 2 ). 

Ifµ is independent of c ( as in the contaminant-transport problem}, and D is 
independent of u (i.e., D can be zero or can consist of molecular diffusion only), 
then, with the additional assumption that 

hk+i = O(h2
) p C l 

we obtain the estimate 

If D depends on u, the estimate takes the form 

lilelllL00 (£2) ~ K(h: + h-; 1 h;+l + h-; 1 At2 + At); 

assuming (4- 11} below, (4-9} still holds. 
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Ifµ= µ(c) and D is independent of u, then (4.9) holds provided that (4.8) holds 
and 

r ~ 3, hk+l = o(h2
) p C l 6.t = o(h~), ( 4.11) 

where r = min( s, k**). 
Ifµ depends on c and D takes the following form that includes a nonzero hydro

dynamic dispersion term, 

(4.12) 

where no lower bound is assumed for Dm and Ux and Uy represent the direction cosine 
and sine of u, then (4.9) holds provided that (.4-8) and (4.11} are satisfied and 

( 4.13) 

Proof. We add the necessary details to the proof of Theorem 3.1. Some manipu
lations lead to an analogue of (3.26), where D(EUn) replaces D(un) on the left-hand 
side and the right-hand side has the additional terms 

(4.14) 

the terms are numbered in accordance with the corresponding terms in [5]. The result 
will follow as in Theorem 3.1 once we estimate the new terms. 

As in [5], we have 

IT2I < llun - Eunll llVcnlloollCII 
< K 6.t31 !Uttllh(tn-2,tn;£2) I IV cnl i!, + Kl l(nl 12 

• ( 4.15) 

Arguments like those in [5] also show that 

IT1 + Tsl < KIIVC,n-llloollE(un - un)II IICII 
< I<IIE(un - un)ll2 + I<ll(nll2 

< I<h;k+2 + KIIEiJn - Eunw + J<ll(nll2. (4.16) 

For T3 , note first that T3 = 0 if D is independent of u. Otherwise, we write 

T• = lo [l ~~(Ou"+ (1 - 0)EU")d0] (u" - EU")VC"V("dx. (4.17) 
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The factor Un - Eun can be written as 

un - EUn = (un - Eun)+ (Eun - gfJn) + (EiJn - EUn); (4.18) 

we notE: that the last term is zero if µ is independent of c. Using bounds on a D / au 
and vcn with an inverse inequality for V(n, we obtain 

IT31 ::;; Kh;2
(~t

3
!!uttllf2(t"-2,tn;L2) + h;k+2) + KIIC!i2 

when µ is independent of c. 
Ifµ depends on c, we write T3 in the form 

( 4.19) 

T3 = lo fo1 
[~~(Oun+ (1 - 0)EUn) - ~~ (EUn)] d0(un - EUn)v'Cnv'Cdx 

+lo~~ (EUn)(un - EUn)v'Cnv'(ndx 

- l-Vi + W2, ( 4.20) 

Assuming a2 D / au 2 is bounded, we have ( using inverse inequalities) 

IW1I ::;; K ( !~) llun - EUnll2IIV(nlloo 

::; Kh;2iiun - EUnll 2ii(nll- (4.21) 

With r :2: 3, since we ultimately show that ll(nll = O(h~ + h;+l + ~t), (4.11) implies 
that we have h;2ll(nll = o(l) in (4.21); thus W1 falls under the estimates for T2 and 
T1 + Ts above. 

For W2 , we consider the strategy 

IW2I ::; 1 lo D(EUn)v'(nv'(ndx 

+! f D(EUn)-1 laD (EUn)l
2 

lun - EUnl 2lv'Cnl 2dx. (4.22) 
2 Jo OU 

With (4.13), we show that n-11Dul2 is bounded, so that the first term in (4.22) 
hides on the left-hand side of the analogue of (3.26) and the second term leads to 
Kllun - EUnll 2

; thus W2, like W1 , is covered by the T2 and T1 + Ts estimates. 
The one-dimensional analogue of (4.12) is D(x,u) = Dm(x) + a(x)lul.B, so that 

n-• ( ~~ )' '.S o -1 iul-P(/9olulp-1 )' = ;9'olulP-'' (4.23) 

which is bounded for f3 :2: 2. We seek a bound similar to ( 4.23) in two dimensions. 
To see the form of (Du)2, assume for simplicity that u is oriented in the x-direction 
(rotation of coordinates will not affect the size of (Du)2). Then 

D = Dm + iuip [ ~1 1.], n-• '.S iui-P [ or 
0

~1 l, 
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an = ,Blul/3-1 [ 0:/ 0 ] • 
OUx O O:t 

The desired bound follows as long as (4.13) holds. 
Finally, T9 leads to ( via inverse inequalities) 

IT91 < KIIV(n-111 IIE(un - un)II IIClloo 
< Kh; 2 IIE(un - Un)ll ll(n-ill ll(nll 
< Kh-; 2 (h;+l + IIE"Un - EUnll)ll(n-l1111,n11. (4.24) 

Ifµ is independent of c, the U - U term does not appear in (4.24), so that (4.8) 
implies 

( 4.25) 

Note that the constant in ( 4.25) depends on pressure-related quantities only, which 
are independent of c, so that O(h~) suffices in (4.8) and o(h~) is not necessary. On 
the other hand, if µ depends on c, we need the estimate 

IIEUn - EUnll < I< (llen-1 11 + IIC-2 11 + ll(n-tll + IIC-2 11) 
< K (h~ + ll(n-lll + ll(n-2 11) • (4.26) 

Using (4.11) as in the W1 estimate, we substitute (4.26) into (4.24) to obtain (4.25). 
Now, however, the constant contains h;2 ll(II; the (-dependence requires that this be 
o(l) in order to avoid unbounded growth when Gronwall's Lemma is applied. We 
also use ( 4.26) in ( 4.16) to obtain 

IT1 + Tsl ~ K ( h;k+2 + h~r +?; 11,n-i112) . (4.27) 

Combining (4.14), (4.15), (4.19), (4.25), and (4.27) in the appropriate cases, and 
recalling that W1 and i,v2 are covered by T2 and T7 + T8 , we derive the theorem. 

Remarks. The assumptions on o:1 and O:t are in accord with physical reality ( usu
ally 0:1 ::::::: lOo:t ), but the assumption on /3 is not. Typical values of /3 are in the range 
of 1 to 1.2 [11] ((1.2) corresponds to /3 = 1, which would not allow the n-1 integral to 
be bounded. However, the trouble appears only where u is small, in which case little 
is happening physically. It would seem that practical computations could modify o: 
and /3 for small u such that D still depends smoothly on u but ,8 ~ 2 for small u; 
this would satisfy the conditions of the theorem without significantly changing the 
physics. 
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4.2 L1J(L2
) estimate 

Under the assumption µ is independent of e, we derive an estimate for \\\e\\\£2(£2), 
where en is defined by (4.7) and un by (4.1). Recall from (4.5) 

~ _ n Eun(x) 
x = G(x, t ) = x - </>(x) ~t 

and zn(x) again denotes a-1 (x, tn). \Ve again let 'ljJn, n = 0, 1, ... , N* + 1, be defined 
as in (3.53). The bound (3.35) still holds and by emulating the arguments of Section 

. 3, i.e. (3.53)-(3.59) with Mh = Mhc and "PI an H 1 projection of 'ljJ, we find for 
en= en - en, 

N• n •n-1 
- ~{(¢/ ~: 'tt,n) + (D(un)"v'en' Vtt,n) + (f'tµn' en)}~t 

n=l 

N• n •n-1 
- E{(<l,e ~: ''lpn - 'ljJ'i) + (D(un)ven' V('ljJn - 'ljJ'i)) 

n=l 

+(<ten, 'lpn _ 'ljJ'i) + (</>eo, tt,1) 

+(an, 1P'i) - (pn, V'ljJ'i)}~t, (4.28) 

where 

[ 
en _ cn-1 l (;n-1 _ cn-1 

an - -</> ~t + (</>e; +Eun· Ven) + (un - Eun)· Ven+</> ~t 

_ O'~ +a-;+ a-;, ( 4.29) 

and 

( 4.30) 

Now 

·n-1 •n-1 e - e 
+ ( 4> ~t ' 'ljJ'i). ( 4.31) 

As before 

( 4.32) 

Moreover, we have 
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thus 

N• 

L l(o-;, ¢j1)JL\t :S KL\t;L\tJJuttlll2(£2)iiiclill2(wJo) + 81117/illllc,.,(Hl)· (4.33) 
n=l 

Following arguments given in (5], we see that the last three terms in (4.31) are 
bounded by 

where 

1 aon-1 
g11(x) = fo a;--((1 - z)x + zx)dz, 

with z the unit vector in the direction of x - x. It was shown that 

,:.nd 

It is also well known (see Bramble [1]) that for XE Mhc, 

l llxlloo :S Kl log hcl 2 llxlli-

Thus we see that ( 4.34) is bounded by 

hence 

N• 

I: io-;IL\t 
n=l 

( 4.35) 

:S KIIIE(u - U)llli2(£2) [lllcllli,2(wJo) + J log hcl(lllv'(llli2(£2) + lllv'~llli2(£2))] 
+ 8JJl7/illli,oo(Hl) (4.36) 

Combining (4.31), (4.32), (4.33), and (4.36), we find that 

N• 
I: l(an, ¢7)JL\t 
n=l 

:S K { L\t21 Jc1"7"1 li2(L2) + L\t!L\tl Juttl li2(£2)l I lei I li2(WJo) 
+ IIIE(u - U)l1112(£2) [liicilli2(wJc,) + I log hcl(lllv'(llli2(L2) + lllv'~llli2(L2))]} 

+ 3<51117/illlioo(Hl)· (4.37) 
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We have 

j(pn, V¢1)I 

Now 

$ l((D(un) - D(EUn))Vcn, V¢J)I + l((D(un) - D(EUn))Ven, V¢7)1 
$ I<l!Dulloo!IV¢nll llun - EUnll 

X (IIVcnlloo + I log hcl½(11ven11 + IIV(nll)). (4.38) 

llun - EUnll $ llun - Eunll + IIE(un - un)II 

$ I< ~t;12 11uttllL2(tm-2,tm;L2) + IIE(un - un)II- (4.39) 

Combining (4.38) and (4.39) we see that 

N• 

I: l(Pn, V¢1)l~t 
n=l 

$ I< [IIIE(u - U)lllh(L2) + ~t~t;lluttlll.2(L2)] 
X (IIJcllli2(wJc,) + I log hcl(IIIV{llli2(L2) + IIIV(lllh(L2))) 

+ 81111/Jllli,oo(Hl), (4.40) 

where /{ = K(IIDulloo)-
From (4.28), (4.37), and (4.40), and Lemma 3.2 we deduce that 

lllellli2(£2) 

$ I< {~t2 !lc'r7"lli2(L2) + h4 jjl&tellli2(£2) + h2 lllelllioo(£2) 

+ h2 lllellli2(Hl) + lle0 !12} 
+ K [IIIE(un - un)llli2(£2) + ~t~t;lluttlli,2(£2)] 

X (lllclllh(wJ.,) + lloghcl(IIIV{llli2(£2) + IIIV(llli2(L2))) · (4.41) 

We now estimate hclllel!IL2(H1), hclllelllLoo(L2), and h~lll8telllv(£2)· We have 

where o-1 is given by ( 4.29). 
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There are five terms in ( 4.42) not present in (3.63); namely 

•n-1 •n-1 

( ,..9 - 9 ) t ( 
'I-' 6t ' X ' g = c, ._' ' 

and 

To estimate hclllelllLoo(L2), and hclllelllP(Hl) in (4.41) we set X = (n in (4.42). 
In addition, to estimate h~lll8telllv(L2) we set x = 8t(n in (4.42) and then use the 
triangle inequality. 

As in the derivation of the bound for (4.31), we see that 

rpn = 
.15 -

Applying inverse assumptions we have 

T; :5 KIIE(un - un)ll2 (llv'C-1 112 + llv'(n-l112 + llv'cn-l112) 
+t:h;211(nl!2. 

Thus by approximation theory one, inverse assumptions on(, and Schwarz's inequal
ity 

N 

h~ L Tsn6t :5 K (h~lllcllli•(Hl) + lll(llli•(L2)) lllu - Ullli•(L2) + t:lll(llli2(L2)·(4.43) 
n=l 

Now 

and 

N• 

h~ L T;6t < Kh~6t;lluttllh(L2)lllclllh(wJo) + Kh~lll(lllh(L2)· (4.44) 
n=l 

Similarly 
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and by inverse assumptions and approximation theory, we see that 

N• 

h~ L l((D(un) - D(EUn))v'C'n, v'(n)l6t 
n=l 

N• 

$KL IID~lloo (llun - Eunll + IIEun - EUnll) llv'cnll ll(nll6t 
n=l 

$ KIIIDulllL00 (L00
) (6t;lluttm,2(£2)illcllil2(Hl) + lllu - Ullli•(L2)1iicllli•(Hl)) 

+ tll 1(111£2(£2) · ( 4.45) 

Combining (4.42)-(4.45) and (3.69) we obtain, for arbitrary N $ N", 

N 

h~ll<P½(Nii2 + h~ L IID½(EUn)v'(nll 26t 
n=l 

$ Kh~6t2 licnlil.2(£2) + (3t + Kh~)lll(llih(L2) 
+ K(liicllil.•(H1 ) + ill(illl.•(L2))illu - Ullll.•(£2) 
+ K6t;ilutt1il.2(L2)1iicilll.2(Hl) + h~liieliil.2(£2) + h!illetllll2(L2) 

+ I< h~6t;l luttlli2(L2) 11 lcl m,2(WJ.,)· ( 4.46) 

Hence, combining (4.46) with (3.70) and (4.3) and assuming 

( 4.47) 

we have 

N 

h~ll¢>½(Nii2 + h~ L IID½(EUn)v'Cll26t 
n=l 

$ Kh~6t2 llcnlli2(£2) + (3€ + Kh~)lllellli2(£2) 
+ Kh;+t (llullL•(H"+1(div)) + IIPIIL•(H"+1)) 
+ K6t; (lluttlli2(£2)lllcllli2(Hl) + h~llicllli2(wJ.,)) 
+ Kh~(r+t) [(h~ + t)lllcllll2(w+1) + 1icllif1(w-1)]. (4.48) 

Combining ( 4.48) with the triangle inequality and using es'timates fore and lower 
bounds on ¢, and D we find 

hc(llielllL00 (£2) + lllelll£2(H1)) $ K(h;+l + h;+l + 6t;12 + 6t) 

+(t + Kh~)lllelll£2(£2)· (4.49) 

Similarly, in the estimate of h~lll8t(lll£2(£2), we have the following: 

N° ( •n-1 •n-1 ln-1 tn-1 
h1 I; 6t I(</> C ;,./ , Ot(n)I +I(</> ;,.t , Ot(n)I 
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+1(/n-l ~/"-l , a,c)1) 

:S lh!lll8t(lll£2(£2) + Kh~lllu - UIIIL4(£2)111cllli4(Hl) 
+ lll(llli4(£2)111u - Ullli,4(£2), (4.50) 

N" 

h! I: D.tl([un - EUn] ·Ven, 8t(n)I 
n=l 

and 

N" 

h! E 6-tl([D(un) - D(EUn)]Vcn' VotC)I 
n=l 

:5 KIIIDulllL00 (L00
) (6.t!Jlutt\\i,2(£2)iilcllli2(Hl) + lllu - U\lli4(£2)1ilcllli4(Hl)) 

+ lh!lll8t(llli2(£2)· (4.52) 

Combining ( 4.50)-( 4.52) and (3. 77)-(3. 78) we find 

h14>-I I l8t( I I li2(£2) 
:5 J{ {h~lll(IIIL2(£2) + h~lllellli,2(£2) + h~IIID½(EUn)V(lllh(L2) + h!6.t2 llc-r-rlli2(£2) 

+ h!Jletl\£2(£2)} + 4th!l118t(llli2(L2) 
+ K {11\u - UJ\li,4(£2) [h~\liciii£4(Hl) + lll(llli,4(£2)] 

+ IIIDullli00 (L00 ) (6.t;Jluttllh(L2)illcllli2(Hl) + lllu - Ullli4(£2)1ilcllli4(Hl)) 
+ h~6.t;lluttlli2cL2)ll\cllli2cH1)}. (4.53) 

Thus, substituting the approximation results for e and u - U and combining with 
( 4.4 7) and ( 4.48) we have 

h! 11 l8t(I I li2(£2) 
:5 K(h~(r+i) + h;(k+l) + 6-t; + D.t2

) + K(t + h~)lllellli2(£2)· (4.54) 

Finally, combining (4.54) and (4.49) with (4.41) and choosing f. and he above 
sufficiently small, we obtain the following results. 

Theorem 4.2 Assume 0 < D. :5 D(u) :5 D* for some constant D., D*, and D 
is Lipschitz continuous with respect to u. Assume the smoothness assumptions on u 
and</> given in Lemmas 3.1 and 3.2 hold, and assume u, p and c satisfy the following 
additional smoothness assumptions, namely 
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for some s ~ 1; 

for some k ~ 0 and 

Moreover, assume ( = C - C satisfies 

Then 

where r = min(k**,s). 

Remark. A bound for lll(IIIL"°(L2) + I log hcl lll(IIIL2(Hl) can be obtained by stan
dard arguments given in [5] assuming lletllL2(£2), ~t, and ~t;l2 are all O(l log hcl½), 
and lllu - UIIIL"°(L2) is o(l log hcl). Note that lllu- UIIILoo(£2) is O(hp) if u and pare 
in L'n(H1

), and lletllL2(£2) is O(hc) if Ct E L2(H1
). 
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