Some Improved Error Estimates for the
Modified Method of Characteristics

by
C.N. Dawson
T.F. Russell

M.F. Wheeler

Technical Report 88-2, January 1988
(Revised September 12, 1988)






Some Improved Error Estimates for the
Modified Method of Characteristics

C. N. Dawson!, T. F. Russell?, and M. F. Wheeler!

Dedication: To Professor Jim Douglas, Jr. on the occasion of his 60th birthday.

1 Introduction

The modified method of characteristics (MMOC) was first formulated for a (possibly
nonlinear multidimensional) scalar parabolic equation by J. Douglas and T. F. Russell
in [3] and then extended by Russell {10} to nonlinear coupled systems in two and
three spatial dimensions. Similar schemes have been defined by Pironneau [9] for the
incompressible Navier-Stokes equations and by Suli {12] and Morton, Priestley, and
Stli {7] for first order hyperbolic equations, with the latter technique being referred
to as the Euler characteristic Galerkin method. The intent of the method is to obtain
accurate approximations to advection-dominated problems.

Basically, in the modified method of characteristics, one combines the time deriva-
tive and the advection term as a directional derivative. In other words, the procedure
involves time-stepping along the characteristics, allowing one to use large accurate
time-steps. An algorithm combining the mixed finite element method and the modi-
fied method of characteristics was first applied to the miscible displacement problem
in porous media by Ewing, Russell, and Wheeler [5]. Recently, the scheme has been
extended by Wheeler and Dawson [14] to advection-diffusion-reaction problems. Nu-
merical results have verified that large accurate time steps are possible, and sharp
fronts have been resolved (without oscillations or numerical diffusion) by coarser grids
than standard procedures can use.

In this paper, we consider the numerical solution of advection-diffusion problems
of the following form:

~V - (50 vp) = V- u = q(x,1), xeq, tel |
u(c)

% _V.-D(u)Vc+u-Ve=§(é-c),

c(x,0) = co(x), x € {1,
u-n=D(u)Vec-9 =0, x € 09, )
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where Q is a bounded domain in %, J = (0,7T], and § = max(q,0) is nonzero at
source points only. Here 7 is the outward normal to 2. D(u) is a tensor matrix and
can be velocity-dependent. For u = (u,uy), D generally has the form

2 2 _
D(u) = Dl + — [ e ey ] + o [ Yy Thet } (1.2)

uf vy w) |7 Jul | —uewy wf

where D,, is the molecular diffusivity and ¢; and «; are the longitudinal and transverse
dispersivities, respectively. Furthermore, in (1.1) ¢ is specified at injection wells and
¢ = ¢ at production wells. Problems of this form arise in the study of reservoir
simulation and contaminant flows [5, 14].

For convenience, we assume (1.1) is Q-periodic; i.e., we assume all functions in
(1.1) are spatially Q-periodic. This is physically reasonable, since no-flow boundaries
are generally treated by reflection, and because in general interior flow patterns are
much more important than boundary effects. Thus, the no-flow boundary conditions
above can be dropped.

This paper is divided into three additional sections. In the second section we
establish notation. The modified method of characteristics for linear advection prob-
lems with u assumed to be given, is treated in Section 3. The two major results of this
section involve derivation of a suboptimal convergence result for the case D(u) > 0
(diffusion-dispersion can be zero) and an L?%(L?) error estimate which involves optimal
rate and improved (virtually optimal) norms on the solution. The results of Section
3 are generalized in Section 4 to include combining a mixed finite element approxi-
mation to (p,u) with the MMOC for approximating c. Here a suboptimal estimate is
obtained with restrictions on the order of the approximating spaces. Improved norm
estimates in L?(L?) are also derived for x independent of c.

We wish to remark that by ‘virtually optimal’ we mean that the norm estimates
are of the form

N* N*
e~ 0P at < K 3 20t + gy + O(AF)).

n=1 n=1

Here the exponent on A cannot be improved.

2 Preliminaries and notation

On , we define the following Sobolev spaces and norms:

@ ={s: [Iffdx<oo}, A= [ Iffdx,

@ ={s sl <oof, ISl =su01S]



lod
H™(Q) = {f : % /e L*(Q) for |a] < m},

fI1Z = ZjHaC,H2 m > 0,

|a|<m

ol f
W2(Q) = {f: e € L=(9Q) for |of < m},
_ olelf
| fllwg = max X |l 5 lleos  m 20

Also, we define

H(div; Q) = {f = (fo, f;) o, £,,V - £ € LAQ)},

with
EN Frainy = N2+ AP+ 1V - £12

When L? is replaced by H™ in the definition of H(div), denote the resulting space by
H™(div). The inner product on L?*() is denoted by (-,-). Also note that W2 = L*°
and H® = L2

We also use the following spaces that incorporate time dependence. Let [a,b] C J
and let X be any of the above L? or Sobolev spaces. For f(x,t) suitably smooth on
Q x [a,b], we let

H™(a,b; X) = { / Hagta [|% dt < oo, agm},

8“ t ¥
[1f 1| rrm e pix) = (Z gta )Hx dt> , m>0.

a=0"?

Similarly, W2 (a,b; X) and the norm [|f||wm(p.x) are defined. If [a,0] = J, we
simplify our notation and write L>°(W2) for L>=(0,T; WL (Q)), etc.

Let At > 0. Set t* = nAt, and let t¥" = T. Let f* = f(t*). We define, for
1 < p < o0, the discrete time-dependent norms

N.
A parny = 3 17 IRAE

n=1

and

I Wlgeoerxy = sup || f*]lx-
0<n<N*

Let L (H*) = {f : [l1flle(axy < 00}, 1 < p < o0,



We require the following assumptions on the coefficients. Let k., k*, ¢., ¢, and
K™ be positive constants such that

0<k,5%((§)15k‘, 0 < ¢. < d(x) < 97,

(2.1)
aD

Su,

Vel +

+|Z| + 11l < K-,

for some s > 1. Further assumptions will be made in individual theorems as necessary.
For convenience, we have assumed that ¢ is a smooth function. Under some
additional assumptions, our arguments could be modified to include the point source

case [6].
3 Estimates for advection-diffusion problems
In this section, we assume u in (1.1) is given. Let A > 0 and M, be a finite di-

mensional subspace of H!(2). We assume that there exists an integer £&** > 0 such
that

Jnf (I = Xl + RIS = Xl + A(1S = xlleo + RIS = Xllws,)]

< Koh'||fll, 2<1<k™+1, (3.1)
IxHwy < Koh™'xlh,  llxleo < Kok H|x]l, (3.2)
“X”l S I{Oh—IHX”’ X S /Mha (33)

where K, is independent of A. It is well known that these properties are valid for
continuous piecewise polynomials of degree < k™ on a quasi-uniform mesh of diameter
< h.

Our convergence analysis will use a technique based on comparing the finite ele-
ment approximation to an elliptic projection; see [13]. Define C(-,t) € M by

(D(u)VC, Vx) +(C, x)+(dC, x)

= (D(u)Ve, Vx) +(c, x) + (4c, x) (3.4)
= _(¢C¢7 X)‘—(U'VC, X)+(C’ X)+(q~6, X)’
XEMs, tel (3.5)

It is well known that the following elliptic projection results hold; i.e., there exists
a constant K such that for c sufficiently smooth and D(u) > D, > 0,

l(c = CYO)I| < K(D.)R* (-, )41, (3.6)

llle = Clllzasy + ADZlle = Clllzary < K™ |llellliagnsy, (3.7)
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and

(e - é)tHLz(Lz) < I\’(D.)h’“||cHH1(Hz+1), (3.8)

where 0 < | < k™=,

Moreover, in order to obtain a suboptimal estimate for D(u) > 0, we let C be the
L? projection of c, that is

(6C, X) = (¢, X), X € My,
In this case, we have
hllle = ClliZaay + HHle = Clllzaay < KA lelll 2rinny. (3.9)
The basic idea of the MMOC is to think of the term
pce+u-Ve

as a directional derivative. Let 7 denote the unit vector in the direction (u, ¢) in

) x J and set

W=

0 = [lu]* + (4(x))7]
Then one obtains
fc., — V- DVe = §(é~c),

which has the form of the heat equation. We further note the backward difference
approximation

c(x, %) — c(x — BELD Ay gn-1)

(%, %) = #(x) , (3.10)
Aty/1 + [uf?/¢(x)?
and if we let
u(x,t")
X=x- At, 3.11
560 (311
then
c(x,t") — (%, t™1)
") = . 3.12
oc-r(xat ) ¢ At ( )
The modified method of characteristics is a map
C:{%¢,....t"" =T} - M,
defined by
C°(x) = C(x,0), (3.13)
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and

cn — Cn—l

(¢ At ) X) + (D(u")VC" y VX) = (q~"(6ﬂ _ Cn) ’ X), (314)
XEMy n=l, (3.15)
where '
-1 _ Cn—l(-), n> 1’
T = { C(%,0), n=1. (3.16)

In the analysis that follows K will denote a generic positive constant and e, € and
6 small positive constants, independent of h and At.

Throughout this paper, we will make repeated use of the well-known inequality

ab$£¢12+l-

2
2 2eb ’

which holds for € > 0, a,b € R.

3.1 L%(L?) estimate

Set €™ = ¢® — C™. Before deriving an error estimate for e in L$(L?) which assumes
only positive-semidefiniteness for D(u), we prove the following lemma. Let

u(x,t")
¢(x)

We remark that, because of the smoothness and periodicity of u and ¢, G is a differ-
entiable homeomorphism of  onto itself for At sufficiently small (see [5]).

Gx,t")=%x=x— At. ‘ (3.17)

Lemma 3.1 Along with (2.1), assume that u and V - 3 have bounded first partial

derivatives in space. Then, for At sufficiently small, an arbitrary function f € L*()
satisfies

where

1
K, =K, (Hullooa ||V ($>H°°> s

K = Ky (n%nw, ||v¢||°°) |

If ¢ is constant, then K3 = K; = 0.



Proof. For each x € Q, let y = G(x,t) = H(x) for some fixed t € J, t > At.
The Jacobian of this transformation is

- () o ~5 (3)a

DH(x) =
—63:1( )At 1_3%:2(%)At

so that the determinant can be expressed as
det DH(x) =1~V - %At + O(AL). (3.18)

Because H maps the periodic domain {2 bijectively onto itself, a change of variable
yields

(65, f)

[ 0 f(v)f(y)dx

= [ 4SO Tap
= [ |+ (v 5) oar+ oy, o

Subtract (¢f, f) from both sides of (3.19) to obtain

(6f, /)= (ef, f)
= [0~ s )7) |1+ (9 2) o+ oam) ay

+ [ o121 |(7-5) (2t + 020 ay. (3.20

In the second term on the right-hand side of (3.20), write

(v-%) e = |(v:3) 09-(v-3) )]+ 3 0m + (3 95) )
= Kv-%) (x)—(V'%) (y)] q(y)+<u V3 >(>’)’

and divide by 2At to see that
o [6F . H— (@7, ]
1 u 2
= 543 /ﬂ [6(x) — 6(¥)] F(¥) f(¥) [1 + (v : ?5) (x)At + O(At )] dy

+ 3 [snmrm|(v-3) 0o - (v-5) 0] o
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+ %/ y)dy
2/ (¥ fly ( %) (y)dy

+0(An) /ﬂ BY)F(Y)f(y)dy
=T+ T+ Ts+Ti+ Ts. | (3.21)

We find bounds for the right-hand side of (3.21). In Ti, note that
[6(x) — $(¥)| < IVllaolx — ¥ < nwnwn%nmm,
so that
T < IIV¢I|ooI|%||oo(f, f)=Ka(f, f).

Similarly,

17 < 5209 (- 3 el Blal5, 1) < (67, )
Next, because ¢ < § = max(q,0), we have

Tl < 5 5 1),

For the last two terms, we find that

< 39 (5)lhetes, 1= at67, )

|Ts] = O(At)(of , f) < e(of, f).

Putting the above bounds together, the lemma follows. If ¢ is constant, an in-
spection reveals that Ty = Ty = 0, so that K; and K3 can be zero.

Our basic idea is to compare C with the L? projection C defined by (3.9) and
then note that

1 1 1
67 elllzoowy < WS CNILoe(2) + 1187 €N Lo (12), (3.22)

whereC=C—é,and§=c—é



Subtracting (3.4) from (3.14) and setting x = (™, we obtain

Cn Cn_ n n n n ~ N n
S )+ (D)Er, 96 + (37 )
fn—-1 __ ¢gn-1
=(", (") - w%i_t_é_ , ¢7)
+(D(u™)VEr, V) + (g€, (M), (3.23)
where
n n n " -t
= [pcf +u" - V'] - ¢ N (3.24)
By standard backward difference error analysis [5], we have
o™ < KAtlerr|Za (et inp2y- (3.25)

Applying Lemma 3.1 with f = (!, the Schwartz inequality, and (3.25) we deduce
that
1 1 n = - = n n S5 /n
57 (197 IR = NIg3¢™ 1P + 11DF (u) V¢ + llgFen?
l.n n
< KAt [err||3a(enm1 gm0y + 1162¢711° + K€

‘En 1 f"_l 2
+ K|l¢t——|

+ Sl 4 elghe P
+ K| 4+ (1 4+ Ko)|I¢™ Y P
1 1— n n 1 ‘— n n
+ S 1DF W)V + S| D () Ve, (3.26)

where the functional dependence of K, and K is described by Lemma 3.1. In par-
ticular if ¢ is constant then K; = 0. We observe that by definition of ¢ that

L& —e

|l¢2 | < Klu™ - V&1 < K(w)][VEH]. (3.27)

Moreover,
I1D? (u™)VeEr|| < K(u)]|Ver]]. (3.28)

Multiplying (3.26) by 2At, using (3.27) and (3.28), and summing on n, n =
1,..., N, we see that

N
¥ ¢NI12 + 32 [IIDF (u™)VEr12 + 11g2 ¢ 12| A
n=1
< K [(A)lerrlFazay + 1R e
N
+3 [+ KolleF¢UII? + 21+ K)lI6™]1P] At (3.29)

n=1



where K; = K; = 0 if ¢ = const. Recall from (3.13) that ¢® = 0. Using the bounds
for ¢ given by (2.1) to write (1 + K2)||¢"|]® £ U%QIM%("H:’ and applying Gronwall’s
Lemma in (3.29), we have

1167 ¢ mzay < K (AL + [11EN o ) - (3.30)

Thus, by applying the estimate (3.9) for ¢, and using (3.22), we have the following
theorem.

Theorem 3.1 Let the hypothesis of Lemma 3.1 hold. Assume
c € H¥(L*) N L (H™Y),
for some 3 > 1. Then for At sufficiently small
|||¢%6|H%oo(m) < Ks [Aﬁllcvflﬁz(u) + hzrlHCHl%?(Hm)] )

where r = min(k**,s) and K3 depends on K, and K;, among other quantities, but
has no dependence on a positive lower bound for D(u). If ¢ is constant, then the
Gronwall growth in K3 depends only on ¢. = ¢.

3.2 L3%(L?) estimate for e

We now derive an estimate for |||e|||z2z2). In this estimate we assume D is positive
definite with lower bound D. > 0. Again set e = ¢* —C", then from (1.1) and (3.14)
we deduce that

e — én—l

==

» xX) + (D(u™)Ver, Vx) + (e, x) = =(¢", x), x € M», (3.31)

where o™ is given by (3.24).
We recall that G(x,t") as given by (3.17) is a differentiable homeomorphism of
onto itself. We therefore define

ZMx) = G7Y(x,t™). (3.32)

Let §(x) = g(Z™'(x)).
We first need a technical lemma.

Lemma 3.2 Set ¥° =0, and forn=1,...,N* define " by

¢Y™(x) — $9"~ ! det(DZ""1(x))

At
— V- D(u™)Vy'(x) + §"(x) = ge™(x), x €1, (3.33)
Du™)Vy"-n=0, xe€99, (3.34)
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where DZ"'(x) denotes the Jacobian matriz of Z™'(x). Let the hypothesis of
Lemma 3.1 hold, assume u, ezists and is bounded and D(u) is positive definite with
lower bound D. > 0. Then, there ezxists a constant K4 > Q0 such that

N zoe sy + 1] 2y < KalllFe™|lla(z2)- (3.35)

Proof. We have for y € H!(9),

n _ .,n~1
(L2 0+ (DT, V) + (@, ) - (6", )
_ (;512;71—1 det('DZn—l) _ ¢,¢)n-1
- ( At ’ X)
e X(GMY) —x
= (¢p™ 1, Y VI )-

The second step above is obtained by a change of variables argument which again
involves the periodicity assumptions made earlier, see [5]. Hence,

(L= 0+ (D) V8", ¥x)
= (@, 0 + (e, )+ (o, XE 2
< K (i + lobenl) ol + ow D=2, (3.36)

Following arguments given in [5), we now demonstrate that

XED Xy < kil (337
Thus, consider

G = x, L[ MG =X ]
DX = sup [ [ M= g

By a change of variables we have

A X(Gn—l(Z)t) - X(x) g(x)dx

= = [ %032 det D27 (x)ix = [ x()a(x)ex]
-1 [ /Q % (3)g(x)(det DZ"}(x) — 1)dx

+ [ x((6(277 ) = go)) det D2 (x)dx].

11



Thus

x(G™1) - X
At -t

1 1 -
< Eges;ll}()m [W /Q x(x)g(x)(det DZ" "} (x) — l)dx]

! 1 n~1 n-1
+E ges;;lllzn) [Wg_”: _/Q X(X)(g(Z (X)) - g(X)) det DZ (x)dx]

= W) + W (3.38)

By (3.17), (3.32), and (3.18) and the assumptions on u and ¢ there exists a
constant Ks such that

|det D2} (x) ~ 1] < ||V - %nwm + O(AL?) < KsAt (3.39)
and
Ix — 2" 1(x)] < ||§||°°At < KsAt. (3.40)
Hence,
IWi| < Ks sup [x! all/ Mgl < KsIx]l. (3.41)

Next, let z be the unit vector in the direction of x — Z"~1(x), and let z € [0, 1]
parametrize the line segment from x to Z"~!(x). Then

K 1 . -1
Wil < a5 sup [ [ x(elx - 2 ] (3.42

where

§(x) = /1 é)‘q((l - 2)Z" Y (x) + z2x)dz.

o 0z
Moreover, since Z"~1(x) is continuous and differentiable, we have
lgll < K1|Vgl|. (3.43)
Thus, combining (3.42)-(3.43) and (3.40) we find
|Wa| < K Ks|lxll, (3.44)

and (3.37) now follows by combining (3.38), (3.41), and (3.44).

12



Returning now to (3.36), let x = (¥ —y""')/At, then manipulating and applying
(3.37) we obtain

LYt — Pt
ot i + 5 1D ~ 1D ) v ]
_<_1<1|¢%e"112+an"n%+KK;’W*H% et e
T %- n— ne n—
45 ((DFW™) = DR vyt | wygne)
1 1 " — Pl
< K(Ks, llulllomm) 071 + KIIE + Kllghen)f + Lot o2y
< Ko™~ + 18711 + Kllgher? + Hiot 20" e (3.45)

Multiplying (3.45) by At, summing on n and applying the discrete Gronwall
Lemma we find

z 16 AL 0l < Kl e (3.46)
where
Kr = Kr(Ks, luelllzqzmy, (D)), (3.47)
For an H? estimate of 1, rewrite (3.33) as

=V (Du")Vyi(x)) = $e"(x) — §¥"(x)

$(x)p™(x) — $(x)yp""1(x) det DZ"1(x)
At ’

From elliptic regularity there exists a constant Kg = Kg(D., (1) such that

I 4 bt + v

¢¢"-1 — ¢! det DZ
I =7 INE

™13 < Ks |1¢

(3.48)

Consider the last term on the right-hand side of (3.48). We have

B(x)pm1(x) = $(x)§"(x) det DZ™1(x)
At
= 10U () (1 ~ det D27 ()

+det DZ Y (x)($(x)9" "1 (%) — S(x)"H(x))].

13



Thus

Y™ — 5,"2;7;—1 det DZ"-1

I = I

n-1 _ n—1
< Atllw (1 —detDZ" )|
I8 = §9m) det D27
=Ws + W,. (3.49)
By (3.39), we have
Wa < KKs||vp™™Y). (3.50)

Furthermore, by essentially the same argument which led to (3.44) we obtain

Wi < KKsll¢p™ ||y
< KKslly™ |l (3:50)

Substituting (3.49)-(3.51) in (3.48) we find

17z < K(Ks, Ks) <H¢’e"||2+ "1+ 112 + 162 ——— el W_ — |l ) :

Multiplying above by At, summing on n, and applying (3.46), we obtain (3.35). Note
that

1(4 = I\,4(I<5, 1(7, Kg), (352)

where K is given by (3.39) and (3.40), K7 by (3.47), and Kz by (3.48).

We now derive an estimate for Il|¢%elllL2(L2), utilizing a parabolic lift argument
similar to one developed by Palmer in [8] for a Galerkin approximation of the con-
taminant transport problem.

Let yN™t! =0, and for n =0,..., N*, let ¥" satisfy the ‘backward’ equation

$(x)P"(x) — (2™ (x))p" 1 (27 (x)) det DZ™*(x)

At
— V- (D(u")Vy*(x)) + ¢¥"(x) = ge™(x), x €,  (3.53)
D(u™)Vy™-p =0, x € 0N. (3.54)

Then, by the lemma just proved applied to 4* = ¢¥"V"+!~" we have a bound for
Wil Loo(arry + ||[¥]l| L2(pr2) of the form (3.35).

14



Multiplying (3.53) by e™(x), integrating over 2, multiplying by At and summing
on n we obtain

R N* n _ Znt1)yntl n+1 n+1
o elll2azey = Z(WJ ¢( )Y At(Z ydet DZ N
n=1
N* N°*
+ 3 (D(™)Vy", VeAt + > (9", eM)At. (3.55)
n=1 n=1

Consider the first term on the right-hand side of (3.55). We want to show this
term is equal to

Z(¢ T AL+ (68, BY).
Thus
N. en—enm!
n;(d’—&_’ YA
Ne
=$7§1[/‘; d(x)e™ (x)yp"(x)dx — /¢ G(x, ™))" (x)dx]At
N
= érg [/{; ¢(X)6n(X)¢n(x)dx—A¢(x)en(c(x, tn+1))¢n+1(x)dx] At
- d)éo ’ d)l)
N* n n+1 n+1 n+1 n+1
=3 (e, $p" — 6(Z2™ )Y Lt(Z *)detDZ™ (3.56)
~(¢é07 d’l),

where, in the second step above, we utilized the fact that PN+ = 0.
Hence, by (3.55), (3.56), and (3.31), we have

N* n
lotellltawn = (8= ¥IAL+ 21 u)Ver, V)AL
n=1 n=
+ Z(tie", YA+ (¢€°, 1)
n=1
n-1
= 2(¢ S " XA+ (8, )
N* n—-1 __ zn-1
+ (¢e Ate ’ d)n - Xn)At
n=1
N*
+ Y (D(u)Ver, V(g™ — x")At
n=1
N* N*
+3 (g™, p" — x")AL - Y (o™, xM)At, x" € Mx(3.57)
n=1 n=1

15



Let x™ = 9}, where 9} is the interpolant of ™ in M}, then from approximation
theory there exists a constant Ky such that

Ho™ — o7l € Koh®> ||y l2—t, 0< 1< 2. (3.58)

Thus, by (3.57), (3.58), and (3.35), and applying negative norm estimates to the
second term in (3.57), we obtain

1
o2 elllZz(z2)
n e1'1.—1

Nl
e —
< KK Koh*' S || ——
n=1 At

+K K4 KsKoh?||| 6% €]||2 g2y + K Kalle®||?

PAt + K Ky Koh?|||DF(u™) Ve |12 1)

. 1
+K Ks|llo|l|Zaay + 51”45%6”&2(1,2)- (3.59)

Combining (3.59) and (3.25), we have an estimate for H|¢%GHIL2(L2), given in the
following theorem.

Theorem 3.2 . Assume the hypothesis of Lemma 3.2 holds. Then, there ezists a
constant Ko such that

N* n _ pn—1 % 1
lotelllaany < KiofAt+ A7 (Zne——d‘j—-—u’m) + hlll¢Fell L=z
n=1

+ hll| D () Velllaza) + 1€ 3, (3.60)
where Kip = K1o( Ko, K5, Ky, l|ce+||2(22))-
We now derive estimates for the terms on the right-hand side of (3.60). We
compare C with the elliptic projection C defined by (3.4).

Let 8,f™ = (f* — f1)/At. Recall, by subtracting (3.4) from (3.14) and setting
(=C—C and € = ¢ — C, we obtain

(0C™ , x) + (D(u™)V(™, Vi)
= (0", x) + (#3:£™, x) = (€*, x) = (§"¢C", x)

fn=1 __ ¢n—-1 fn—1 __ sn=1
S 0 0, xe M, (6D

and we note that

16 elllLo(zy + [11DF (W) Velllzaza) + 1110eelllzaz)
< NS3¢ Lozay + 1DF W)V zazay + 110 2oz
+1163€] ||z 22y + 1DF (@) V€| lacay + 110 zaczay- (3.62)
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Setting x = (™ in (3.61), we have
(0™, ¢*) + (D(u™)V(™, V(T)
= (0", (") + (0™, (") — (€™, (") —(a"¢", (™)

én-—l _ €n— Cn-— <n- .
N Yy ) (3.9

Thus, applying the inequality 5(b—c) > 1(b* — ¢?) and manipulating (3.63) we obtain

s (651 ~ 18517 + 1D ) v
< Kllo™2 + K ([167¢™1 + 11€™11 + 11e¢]] 11o#¢™]1)
Fn-—1 n— n-l n-—
2 et + 1 e (360

Using the time difference estimate for £ derived in 4], we have that

1071 g3l < K (a0 Rl6d (L
Also, by (3.37) and inverse assumptions (3.3) we note that
1 e < KRG+ L b, (3.66)
and |
I et < KRR + S sdee. @)

Substituting (3.25), (3.65)-(3.67) into (3.64), we deduce that

57 (193¢ = 11831 P] + (D3 () v eni?
< K (Jler R enay At + 182712 + EM2 + NS3¢ + (€77
+ (AR | 2o gpnes gnigry) + ERTHIGECE (3.68)

Multiplying (3.68) by 2At and summing on n, we obtain
L AN12 al Lin nii2
o7 ¢MI2 + 2 11D (u™)VE™|PAt
n=1

< K (llerrIBagzn A2 + 1ENBazay + BNl F2zn))
+ (K + eh )| |[67 ¢ 10)- (3.69)

17



Noting above that N is arbitrary, multiplying (3.69) by h? and substituting (3.7)
and (3.8) into (3.69) we see that

116211312y + R2IIIDF () V|32 12)
< KR (AL err| Rz + (KA + o)l ¢Fell2aay
+ I<h2(r+1) [(h2 + e)lllc”l%Q(Hr-{-l) + ||ICH|311‘(H"'1)] s (370)

where r = min(k**, s), and s involves smoothness assumptions on ¢ and is defined
below.

We now estimate |||0se|||z2(z2). In (3.61), setting x = 8,{", we obtain
(69:C™ , 8:¢™) + (D(u™) V(™ , VOC™)
= (0", 0C") + (89", 9C™) — (€7, 8CT) — (§°C™, OCT)

én—l _ €n—l . Cn—l _ Cn—l n
- (¢_—At— , 0C™) + (¢T , 0C™). (3.71)

Thus

197 0,C™ |17 + (D(u™) V(™ , V™)
< |l 0™ I + K 110e€™ | 118:¢™ ] + [1€™1] 110e<™ Il + 1@l ooz [1C™1] 110

# &1 (1 + 1 ). 1)
Now
(DM)VC™ , Vo")
= (DY, 9¢™) = (D@MVE™, V¢™)
= = [(DE"¥er, ¢ - (D) 9et, ¢

—(8,D(u*)V¢™ T, V) 4+ At(D(uM) VL™, VOL™)
—(D(u™)Va™, VM. (3.73)

We use inverse assumptions to treat the following terms; that is
(0:D(u)V¢™, V) < KEGh™luellool €712 (3.74)
and

(D(u")VaC™, V¢™) < Koh™ (18] 11 D2 (u™) V| (3.75)
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Hence by (3.72)-(3.75) we find that

1 1 1 1
1830:C71* + <7 [I1DF (M) V| = [|DF (u™) Ve ]

A Ye - n— - n— n-— n
{ el Koh=21¢™ 12 + K2A72 (1IC™ 12 + [1E™1112) + 1IC™I P

B
+EM? + Atllerr|Zagen-1 22y + (A8 T €l Fagen-1 enip2 }
KKZh™?
+ == IDF () V| ~ ALl DE (™) VLT
+ 6¢]|0.¢™| 1%, (3.76)
where € > 0. We now choose € = % and hide the last term on the right-hand side of
(3.76).
Multiplying the result by At and summing on n, we derive the following

<

218 azn) + 11D} (a™) VN 1P
<K [h_zlllC”ﬁz(L?) + R 122 ey + (A1) lerrl|Taqra) + ||§t||22(m)]
+ KK2h™2)|| D% (0) V|| 22r2)- (3.77)

Thus, multiplying (3.77) by A%, dividing by 4./2 and combining the result with (3.70),
(3.7), and (3.8) we obtain

1
10Nz < KRHA lerrllTan + KKS(A? + €)ll|67ell|Lzze)
+KR*D((R? + e)lllell|Zagarsry + lellinaen)- (3.78)

Combining (3.60), (3.62), (3.70), and (3.78), and noting the ||e°|] = ||¢°|| =
O(h™+1) by (3.14), (3.6), and (2.1), we find that

oFelan < KK [A8+h 0+ (ellagrerny + el + 1€1150)]
+ KK} K2(h* + €)|||¢%5|H%2(L2)°

We now choose € and h so that K K2 KZ(h* +¢€) = 3.
Thus, we obtain the following result.

Theorem 3.3 Let the hypothesis of Lemma 3.2 hold. Assume
ce H¥(IYHnLy(H* )Y nHY (H™)
for some s > 1. Then for h sufficiently small
7 elllzazey < Kn [hrH (|||C|||L2(Hr+1) + |ledl|L2qur-1y + ||Co|lr+1) + AtHCrrHLZ(L?)] :
where r = min(k**, s), and

1{11 = I\’n(l{o, 1(4, 1(5, 1{6, 1{7, 1{3, 1(9, 1{10).
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4 Extensions

Now assume in (1.1) that g4 = u(c) is smooth, and we approximate u by a mixed
finite element method. Let V* C H(div;Q) and W* C L?(Q) be mixed finite
element spaces that approximate to order h';“ in H(div) and L?, respectively, with
div V*» C Wh». Thus, given a concentration approximation C™ at time t", we find
U™ € V* and P™ € W"» such that

(HEUR, v) — (P, V.v) =0, veVh, }

(v : Un’ w) = (q", w), we Whp‘ (41)

_ Existence and uniqueness of U™ and P" is proved in {2]. By defining projections
U € Vh», P € Wk via

(@Q’V)_(pvv'v)=0, vevhp, (42)
(V-U, w)=(¢", w), w € Whe, '
one can show [2]
llu = Ullzsgaiy + 1P = Pllosca
< Kh’;“ (”UHL-(HH!(&;U)) + HPHL'(H"'H)) ) (4.3)

where 1 < s < co. We remark that different mesh spacing can be used for V*» and
Wh» than for My,_; i.e., we can have two different quasi-uniform meshes for pressure-
velocity and concentration with diameters < h, and h., respectively.

Moreover, comparing (4.1) and (4.2) one obtains

10" = U lsai) + [1P™ = P < K(1 4+ [[U][o)l[e” = C]]. (4.4)

We remark that in the case u(c) = constant then U* = U™ and P" = P™.

We now solve the pressure-velocity and concentration equations in (1.1) sequen-
tially. This sequential procedure is defined as follows. For simplicity, assume pressure-
velocity and concentration are approximated using the same time-step At. Thus,
given C™!, we calculate U™"! and P*~! as in (4.1). Before calculating C™ via the
MMOC, we define an extrapolated velocity EU"™ by

L [ 2Uurt U2, n> 1,
EU" = { ue°, n=1.

We remark that different time steps can be used for the calculation of U and P
than for C. In many practical problems the vector U may change less rapidly in time
than C, even if the characteristics are taken into account. Thus, it is appropriate to
use a larger time step for (4.1) than for (3.14). Partition J into pressure time steps
0=ty <t <...<tpy =T with At, = t,, — tm_1. Each pressure step is assumed
to also be a concentration step; i.e., for each m there exists n such that ¢, =¢". In
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general At, > At.. In this case we modify our definition of EU" for n > 1 and m > 2
as

Define
. _ . EU(x) . Eu™(x)
Xx=x () , X=x- ey At, (4.5)
and
Crl(x) =C™' (%), C"M(x) = C"Y(x). (4.6)
Then, C™, n > 1 is given by
cr — CAvn—l - n s
(¢T ’ X) + (D(EU )VC 1 VX) = (qn(cn - Cn) ’ X)’ (47)

Xtha nzl’

4.1 LF(L?) estimate

In Theorem 3.1, we derived a suboptimal L%(L?) estimate for the concentration error
e that allowed D to go zero but assumed a given velocity u. We now consider the
additional complications that arise when u is approximated by a mixed finite element
solution U. For simplicity, let At, = At, = At. The theorem is as follows.

Theorem 4.1 Let the assumptions of Theorem 3.1 hold with the extra assumption
c€ LA(WL)YNL®(H"). Let the numerical velocity U and the projection U be defined
by (4.1) and (4.2) and assume u € L}(H**(div)), p € L*(H**'), and uy € L*(L?).

If u is independent of ¢ (as in the contaminant-transport problem), and D is
independent of u (i.e., D can be zero or can consist of molecular diffusion only),
then, with the additional assumption that

k 2
BEFL = O(hY), (4.8)
we obtain the estimate
ellloay € K(h + RET + At). (4.9)
If D depends on u, the estimate takes the form
lelllzoqzzy < K (AL + RITREY + RTVAL? + At); (4.10)

assuming (4.11) below, (4.9) still holds.
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If u = p(c) and D is independent of u, then (4.9) holds provided that (4.8) holds

and
r >3, hl;"'l = o(Rh?), At =o(h?), (4.11)

where r = min(s, &**).
If u depends on ¢ and D takes the following form that includes a nonzero hydro-
dynamic dispersion term,

~2 A ~2 —
D(x,u)=Dm(x>+a,|u|ﬂ[ b “f’i”]+at:u1"[_§y ] (4.12)

Urlly Uy
where no lower bound is assumed for D,, and i, and i, represent the direction cosine
and sine of u, then (4.9) holds provided that (4.8) and (4.11) are satisfied and

oy <a" <00, adlfy<La <o, B2 (4.13)

Proof. We add the necessary details to the proof of Theorem 3.1. Some manipu-
lations lead to an analogue of (3.26), where D(EU™) replaces D(u™) on the left-hand
side and the right-hand side has the additional terms

([u" = Eu"]- Ve*, () + ([D(u") — D(EUM)]VC™, V()

C -C 4'-1;-1 _ én—l

’ Cn)_(¢ At ’ Cn)

= T2 + T3 + (T7 + Ts) + Tg; (414)

the terms are numbered in accordance with the corresponding terms in [5]. The result
will follow as in Theorem 3.1 once we estimate the new terms.
As in [5], we have

|T| lu” — Eu™|| {|VeleolI¢™ ]

<
< KO\ ual Bagnes eman IV + KIICIE. (4.15)

Arguments like those in [5] also show that

IT:+ Ts| < K|V |l E(u™ = UM [IC7]]
K||E(u™ - U)|]* + K|I¢™|?

<
< Kh¥*? 4 K||EU™ - EU™||* + K||¢"]|. (4.16)

For T3, note first that T3 = 0 if D is independent of u. Otherwise, we write

T3 = / [/1 @(Gu" +(1- O)EU")dO] (u* — EUMVC"V("dx. (4.17)
a {Jo Odu
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The factor u™ — EU™ can be written as
u® — EU™ = (u” - Eu™) + (Eu" — EU™) 4+ (EU™ — EU™); (4.18)

we note that the last term is zero if y is independent of ¢. Using bounds on dD/du
and VC™ with an inverse inequality for V (", we obtain

|Ts] < KhZ? (A |[usel|Fa(en- m,2) + BEF?) + K|IC) (4.19)

when 4 is independent of c.
If 4 depends on ¢, we write T3 in the form

Ty = / / [—(0 "4+ (1-6)EU") — —-(EU")] do(u™ — EUMVC™V (¢ dx

+ / ————(EU")( " _ EUMVE V(" dx

Assuming 82D/8u? is bounded, we have (using inverse inequalities)

92D
W, < K ny2 n
Wil < K (22) i - B
< KhZ?|u™ — EUMP|ICM]. (4.21)
With r > 3, since we ultimately show that ||¢*|| = O(A] + Ai*! + At), (4.11) implies

that we ha.ve RZ2||C™| = o(1) in (4.21); thus W, falls under the estimates for 7 and
T7 + Tg above.
For W;, we consider the strategy

1
< - n n n
W,| < Q/QD(EU )WV V(M dx
2

l ny-1 oD n n ny2 An 2
+2/QD(EU ) |S=(BU)| u" = EUPIVCdx. (4.22)

With (4.13), we show that D~!'|Dy|? is bounded, so that the first term in (4.22)
hides on the left-hand side of the analogue of (3.26) and the second term leads to
K|lu™ — EU"||% thus W,, like W, is covered by the T, and T7 + Tg estimates.

The one-dimensional analogue of (4.12) is D(z,u) = Dn(z) + a(z)|ul?, so that

oD\’
D™=
(5)
which is bounded for § > 2. We seek a bound similar to (4.23) in two dimensions.

To see the form of (Dy)?, assume for simplicity that u is oriented in the z-direction
(rotation of coordinates will not affect the size of (Dy)?). Then

D = Dm+||"[ 0] D! <(|-ﬁ{ 3 91},

< o Mul"(Baful’!)? = BPaful’?, (4.23)

0 « 0 o
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oD ~ Blup- [ a 0 ] oD _ |u|ﬂ_1[ 0 a,—at]

Ouy 0 o Ou, ap — o 0

1 [0D ? 2 2]l a O (o) — a)? 0
o (&) = (5 ]+ [T e ])

The desired bound follows as long as (4.13) holds.
Finally, Ty leads to (via inverse inequalities)

Tol < KIIVECTHHE™ = UM IC o
KRZZ|E(u™ = U™ 16| 11¢™]

<
< KRZH(RSTU 4+ |[ET™ = EUMDICTYTIC) (4.24)

If u is independent of ¢, the U — U term does not appear in (4.24), so that (4.8)
implies

ITol < K (JIC™H 112+ 11¢717) - (4.25)

Note that the constant in (4.25) depends on pressure-related quantities only, which
are independent of ¢, so that O(h?) suffices in (4.8) and o(h?) is not necessary. On
the other hand, if u depends on ¢, we need the estimate

NET" — EUM|| < K (JE™ M1+ 11€m211 + 11¢™ M1 + 11¢™21)
< K (RHC M+ 11em2) - (4.26)

Using (4.11) as in the W) estimate, we substitute (4.26) into (4.24) to obtain (4.25).
Now, however, the constant contains hJ2?||(||; the {-dependence requires that this be
o(1) in order to avoid unbounded growth when Gronwall’s Lemma is applied. We
also use (4.26) in (4.16) to obtain

2
o+ Tl < K (B9 424 361 (1.27)
1=0

Combining (4.14), (4.15), (4.19), (4.25), and (4.27) in the appropriate cases, and
recalling that W, and W, are covered by 7, and 77 + T3, we derive the theorem.

Remarks. The assumptions on o; and o, are in accord with physical reality (usu-
ally oy = 10a;), but the assumption on 3 is not. Typical values of 3 are in the range
of 1 to 1.2 [11] ((1.2) corresponds to § = 1, which would not allow the D~! integral to
be bounded. However, the trouble appears only where u is small, in which case little
is happening physically. It would seem that practical computations could modify «
and B for small u such that D still depends smoothly on u but 8 > 2 for small u;
this would satisfy the conditions of the theorem without significantly changing the
physics.
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4.2 L%(L?) estimate

Under the assumption u is independent of ¢, we derive an estimate for {||e|||z2(z2),

where C™ is defined by (4.7) and U™ by (4.1). Recall from (4.5)

Eu™(x)
$(x)

and Z"(x) again denotes G~1(x,t"). We again let ", n = 0,1,..., N*+1, be defined
as in (3.53). The bound (3.35) still holds and by emulating the arguments of Section

.3, i.e. (3.53)-(3.59) with M), = M,;, and ¢r an H! projection of ¥, we find for
e =" — C",

x=G(x,t")=x-

n_

ot elll2azsy = ):{(qs , ") + (D(uM)Ve™, V™) + (§*¥", €")}At

sn=—1

= zl{ 6=y — ) + (D), V(" — 7))
+(qe LU —YF) + (66°, %)

+(a™, ¥7) = (", V¥T)}AL, (4.28)
where
~n cr — ! n n n n n n én—l - C’n—l
o = _¢T+(¢01+EU V)| + (u" = Eu™) - Ve +¢T
= o] +o03 + 03, (4.29)
and
p" = (D(u™) - D(EU™))VC". (4.30)
Now
(6", 1) A . A
. . . . Cn—l N Cn—l . 611—1 _ én—l .
= (o7, ¥7) + (03, ¥7) + (¢T’ ¥y) — (¢‘T, ¥T)
én-—l — én— 1 n . 31)
As before
(o7, ¥ < KAt |errlFagenos gmirzy + SR (4.32)

Moreover, we have

(o7, ¥ < KAL) |lusllzzpmos iV oo 1971,
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thus
N* ,
Z (o7, ¥T)AL < I(AtiAﬂ|utt|l§,7(L2)HICIHLL’R(WOIO) + 5|||¢|HL°°(H1)- (4.33)
n=1

Following arguments given in [5], we see that the last three terms in (4.31) are

bounded by

[E(™ — UM (lgelloo 1971 + lgell 1187110 + [lgell 1T 1loo) (4.34)
where
1 ggn-1t
go(x) = | 5 ((1 = 2)x + zx)dz,

with z the unit vector in the direction of X — %. It was shown that
llgsll < K|[V6™ |,
and
llg6llee < K[V0™ |0
It is also well known (see Bramble [1]) that for x € My,
lIxlleo < K| log hel*|Ix] |1 (4.35)
Thus we see that (4.34) is bounded by
KNE@" = U")|| (19" |oo + log hclF (1191 + 19¢™1 D) 11871
hence
N.
> loglat
n=1
< K|||E(u— U)l“%mﬂ) [chllﬁﬂ(w;c) + |log hc|(|||VCH|i2(L2) + l”vfmi?(m))]
+ 81191170 any (4.36)
Combining (4.31), (4.32), (4.33), and (4.36), we find that
N‘
>, vhlAt
n=1
< K{At|crrl[Fa(ray + AtSAL Junl|Faia)llell 2wy,

+ I1E(u - U)”I%?(L?) [|||C|||%2(wgo) + |log h0|(|”vClH%2(L7) + |||V€H|i2(m))]}
+ 38|31 o arr)- (4.37)
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We have

(o™, Vy7)l
< [((D(u™) = D(EUM)) V™, VT)| + [((D(u™) = D(EU™))Ve™ , Vi)
< K||Dulo|[VY™|] [Ju™ — EU™|

x (11Vefoo + | og he[F(/[VEM| + [V¢7]])) . (4.38)
Now
lu® — EU™|| < [ju" — Eu*|| + ||E(u” — U™))|
< KA uall 2t g tmitry + || E(u™ = UM)]]. (4.39)

Combining (4.38) and (4.39) we see that

-
> 1o, Vup)lat
< K [JI1E(u = U)|Bazsy + AAL el Farz)]
x (lllelllzagwy + Hog kel (HVENEa 22y + NIVCIEa(zs)))
+ 6”"/"”%“(}{1), (4.40)

where K = K (|| Duyl|oo)-
From (4.28), (4.37), and (4.40), and Lemma 3.2 we deduce that

|||6|Hi2(m)
< K{A|err||Tar2y + A1OeelllTa(r2) + B2|lell|Foo(z2)
+ hzl”d”i?(m) + 1€l }
+ K (1" = U™ lEaqzey + AtAG uel Faro]

X (|||C|||%2(wg°) + [log he|(HVEINZ 2022y + IHVC”'%’(B))) . (4.41)
We now estimate h.|||el||z2(m1), Belllel]|lLe(r2y, and h2|||Oiell|L2(z2). We have

(60:C™ , x) + (D(EUM)VE™, Vx) + (¢, x) )
= —(o7, x)+ ([u" = Eu"]- V", x) + ([D(u™) — D(EUM)|]VC™, V)
+ (¢at€n y X) - (En ) X)

gn—1 _ gn-1 én—-l _ én-—l

x0T x) (¢

{'n-l — é-n—l C'n—l _ Cn-l

- (¢__At—__’ x) + (45——&——, X), X € My, (4.42)

Frn—1 Fn—1
"~ (
Sl A7 » X)

where o7 is given by (4.29).
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There are five terms in (4.42) not present in (3.63); namely

=n—1 _ ~n-1

(¢g__ﬁa X)’ g=gc, €a C’

([u* — Eu™]- Ve, x)

Y

and
([D(u™) — D(EU™)]VC™, V).

To estimate hc||le|||zo(z2), and hc||le}}|L2m1) in (4.41) we set x = (" in (4.42).
In addition, to estimate h2|||O:e|||L2(z2) we set x = 8,("™ in (4.42) and then use the
triangle inequality.

As in the derivation of the bound for (4.31), we see that

én—l — on-

= N8

HE—— ¢

< NE@™ = UM (VS + 19+ 119D 11 oo-

En—l _ én—l

T; = (¢ -

, ¢

Applying inverse assumptions we have

TP < K|E(" — UM (IVE1 + 19012 + (Ve )
+ehZ 21",

Thus by approximation theory on £, inverse assumptions on (, and Schwarz’s inequal-
ity

N
B2 Y TrAL < K (R2(llellFagany + HICHE ) lllu = Ul gz + elllCHEags)- (4.43)

n=1

Now
Te = |([u” = Eu™]- V™, (") < AL [usell 2ty tmiz) 1V oo 11C7]]

and

N.
R2Y TpAt < KRIAS||ualliswallellliagwyy + KRHICH o (1a).  (4.44)

n=1

Similarly

((D(u™) = D(EUMVC™, V¢™)| < (I DGlleollu™ = EU|| [IVC™ eI
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and by inverse assumptions and approximation theory, we see that

e
h X_: [(D(u™) = D(EU™))VC™, V(¢™)|At
N

<K [I1Dglle (lu* = Eu™j| + ||Eu® — EUM|)) ||V [I¢™]| At

n=1

< K|||Du|||L°°(L°°) (Atﬁuunniuuﬂ||C|||22(H1) + |flu— Ul“%*(L’)IHCHI%A(Hl))
+ elllCl oz (4.45)
Combining (4.42)-(4.45) and (3.69) we obtain, for arbitrary N < N*,
2|1 4% N2 2 z !
hellr¢MIP + A2 3 | D3 (EU™)VEPAt
n=1
< KhiA e a2y + (e + KRNI Fa (22
+ K(l|lelllZe ) + M 2oy llu — U3 22
+ KA sl Fa oy |lell|Zagany + BENIEN F2z2y + RENIEN 2122
+ I{hEAtg”uttl|22(L2)|||C“|22(Wg°)‘ (4.46)

Hence, combining (4.46) with (3.70) and (4.3) and assuming
1<z < K, (4.47)
we have
1 N 2 N 1
RA1o2CY|1P + 23 IDI(EU™M VP At
n=1
< Kh:AtzuchHi?(U) + (3¢ + Kh2)||lef||Z2(z2
+ Kh’;“ (||u||L4(H~+1(diu)) + HP”L*(H"'H))
+ KA (Ilueel Bagoa el Bageny + B211Iel 22w, )
+ KR [(B2 + €)||lel|Bagarssy + Hellin ) - (4.48)

Combining (4.48) with the triangle inequality and using estimates for ¢ and lower
bounds on ¢ and D we find

he(lllelllzmqzs) + llelllzam) S K(RZF + R + AL/ + At)
+(e + Kh)|lell|az2)- (4.49)

Similarly, in the estimate of h2|||0:(|||2(z2), we have the following:

gn=1 _ an-1 En—l _ gn—l

N. c n n
h:; At (|(¢T, ™) + |(¢—A—t—’ 9:¢™)|
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C'n—l _ CA'n—l .
+K¢T, 0i¢ )|)

< eh 101 Ta 2y + K A2 = U7 1y el e gany

+ 11¢Z 22y — Ull1Z422), (4.50)
N.
hy > Atl([u™ — EU™ - Ve, ™)
n=1
< Kh2AG ueel(Fa oy el Za gy + RS2 (12 (4.51)

and

B %; At|([D(u™) — D(EU™)VC™, V(™)

n=1
< K|||Du|||L°°(L°°) (Atgllutt”iZ(m)“M“izmx) + {[lu — Ullli«(u)chlHi«(m))
+ ehg]|10:C 122 (1a)- (4.52)
Combining (4.50)-(4.52) and (3.77)-(3.78) we find
hed 10112222
< K{R2ICIzaea) + B2I1IENIEa(zay + RENDF(EU™ V| 3azn) + hEAL lerr[a12)
+ helléllZa 20y} + 4€RS110C I T2 1y
+ K (|l = Ull{Zazay [B2NellZaqery + NIz
+ |||Du|||%,°°(z,°°) (Atilluttllium)n|C|||%,2(m) + ljlu - U|||i4(m)|||c|||i4(m))
+ he At ueel 7o oy el |22y} (4.53)

Thus, substituting the approximation results for £ and u — U and combining with
(4.47) and (4.48) we have

)10 2222y
< K(RXUHD 4 200 4 A2 4+ AL%) + K(e+ hD)|llellFore).  (4.54)

Finally, combining (4.54) and (4.49) with (4.41) and choosing ¢ and h. above
sufficiently small, we obtain the following results.

Theorem 4.2 Assume 0 < D, < D(u) < D* for some constant D,., D*, and D
is Lipschitz continuous with respect to u. Assume the smoothness assumptions on u
and ¢ given in Lemmas 3.1 and 3.2 hold, and assume u, p and c satisfy the following
additional smoothness assumptions, namely

ce LE(WL)N LY(HY N LL(H*™) N H¥} (L)) N HY (H*™Y),
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for some s > 1;
u,p € LH(H**') n Lp(H*),
for some k > 0 and
u, € L*(L*Y).
Moreover, assume ¢ = C — C satisfies
ICIZe(zzy + Nog kel HCIHE2¢any < K.
Then
lelllzazsy < K(AIH + BEF 4+ AS/2 4 At),
where r = min(k**, s).

Remark. A bound for ||||||z=(z2) + |log ke |||¢|l|z2(1) can be obtained by stan-
dard arguments given in (5] assuming ||€||12(L2), At, and At2/? are all O(|log he(?),
and |||u — Ul||Leo(L2) is o(|log hc|). Note that |||u — Ul||pe(z2) is O(hy) if u and p are
n L%"(Hl), and Hft“ﬂ([ﬂ) is O(h.) if c; € Lz(Hl).
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