RICE UNIVERSITY

Effective Static Debugging
via
Componential Set-Based Analysis

by

Cormac Flanagan

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Matthias Felleisen
Professor of Computer Science

Robert S. Cartwright

Professor of Computer Science

J. E. Dennis
Noah Harding Professor of Computational
and Applied Mathematics

Houston, Texas

May, 1997

Abstract

Effective Static Debugging
via
Componential Set-Based Analysis

by Cormac Flanagan

Sophisticated software systems are inherently complex. Understanding, debug-
ging and maintaining such systems requires inferring high-level characteristics of the
system’s behavior from a myriad of low-level details. For large systems, this quickly
becomes an extremely difficult task.

MrSpidey is a static debugger that augments the programmers ability to deal
with such complex systems. It statically analyzes the program and uses the results
of the analysis to identify and highlight any program operation may cause a run-time
fault. The programmer can then investigate each potential fault site and, using the
graphical explanation facilities of MrSpidey, determine if the fault will really happen
or whether the corresponding correctness proof is beyond the analysis’s capabilities.
In practice, MrSpidey has proven to be an effective tool for debugging program under
development and understanding existing programs.

The key technology underlying MrSpidey is componential set-based analysis. This
is a constraint-based, whole-program analysis for object-oriented and functional pro-
grams. The analysis first processes each program component (eg. module or package)
independently, generating and simplifying a constraint system describing the data
flow behavior of that component. The analysis then combines and solves these sim-
plified constraint systems to yield invariants characterizing the run-time behavior of
the entire program. This component-wise approach yields an analysis that handles
significantly larger programs than previous analyses of comparable accuracy.

The simplification of constraint systems raises a number of questions. In par-
ticular, we need to ensure that simplification preserves the observable behavior, or
solution space, of a constraint system. This dissertation provides a complete proof-

theoretic and algorithmic characterization of the observable behavior of constraint

1

systems, and establishes a close connection between the observable equivalence of
constraint systems and the equivalence of regular tree grammars. We exploit this
connection to develop a complete algorithm for deciding the observable equivalence
of constraint systems, and to adapt a variety of algorithms for simplifying regular
tree grammars to the problem of simplifying constraint systems. The resulting con-
straint simplification algorithms yield an order of magnitude reduction in the size of

constraint systems for typical program expressions.

Acknowledgments

Many people have contributed to making my graduate career rewarding and enjoyable.
First, and foremost, I would like to thank my advisor, Matthias Felleisen. He got me
started in research, taught me a great deal about programming language semantics
and pragmatics (with the occasional detour into philosophy or economics), spent hours
giving me feedback on research ideas and papers, and inspired much of MrSpidey’s
user interface. I would also like to thank my other committee members: Robert
(Corky) Cartwright, for valuable feedback on this and other research, and for the
class he taught on fully abstract denotational semantics, which led to some of the key
ideas of this thesis; and John Dennis, for taking time off his already busy schedule to
serve on my committee.

My research environment at Rice was valuably enriched by my collogues in the
programming languages theory group. I would like to thank all the members for
their various contributions, including Matthew, Shriram, and Robby, who provided
the DrScheme infrastructure without which the development of MrSpidey would have
been impossible, and Amr, Andrew, Bruce, Mike and John, who helped me get started
on research when I arrived at Rice.

Outside the programming languages group there are many other people at Rice
whose valuable support and friendship helped me see this thesis through to comple-
tion, and who made my time at Rice more enjoyable.

Finally, this research would not have been possible with the support of Rice
University, the Professional Activities Committee of the Association for Computing
Machinery’s Special Interest Group on Programming Languages, and the National
Science Foundation.

I gratefully acknowledge all this help.

Contents

Abstract

Acknowledgments

The Need for Static Debugging

1.1 Reliability and Safetyo

1.2 MrSpidey

1.3 Componential Set-Based Analysis
1.3.1 Set-Based Analysis oL
1.3.2 Constraint Simplification
1.3.3 Componential Set-Based Analysis

1.4 Thesis Overview o o e,

Set-Based Analysis
2.1 The Source Language
2,11 Syntax
2.1.2 Semantics
2.2 The Constraint Language,
2.3 The Meaning of Set Constraints
2.3.1 The Semantic Domain
2.3.2 The Semantics of Constraints
2.4 Deriving Constraints Lo oo
2.5 Soundness of the Derived Constraints
2.6 Solving Set Constraints o o
2.6.1 Computing the Least Solution
2.7 An Implementation of Set-Based Analysis
2.7.1 Representation of constraint systems
2.7.2 Closing constraint systems

2.7.3 Deriving constraints Lo

i

o~ =~ Ut Ut N — =

3 Extending Set-Based Analysis

3.1 Additional Selectors. oo
3.2 Analysisof Pairs0
3.2.1 Semantics
3.2.2 Analysiso
3.3 Analysis of First-Class Continuations
3.3.1 Semantics
3.3.2 Analysiso
3.4 Analysis of Assignable Variables0 0.
3.4.1 Semantics
3.4.2 Analysiso
3.5 Analysis of Assignable Boxes o0 oL
3.5.1 Semantics
3.5.2 Analysiso
3.6 Analysisof Units o
3.6.1 Semantics
3.6.2 Analysis
3.7 Analysisof Classes oo
3.7.1 Semantics
3.7.2 Anmalysiso

4 Using Set-Based Analysis for Static Debugging

4.1 The Type Language
4.2 Computing Type Information
4.3 Identifying Unsafe Operations

5 User Interface to the Static Debugger

5.1 Displaying Unsafe Operations
5.2 Pop-UpMenu
5.3 Presenting Type Information
5.4 The Value Flow Browser
5.5 A Sample Debugging Session oL

6 Constraint Simplification

6.1 Conditions for Constraint Simplification

vi

29
29
31
31
31
33
34
34
37
37
38
38
39
40
42
43
44
45
46
46

49
49
50
33

55
Hb)
56
57
38
61

62

6.2 The Proof Theory of Observable Equivalence
6.3 Deciding Observable Equivalence,
6.3.1 Regular Grammars L oL
6.3.2 Regular Tree Grammars
6.3.3 Staging
6.3.4 The Entailment Algorithm
6.4 Practical Constraint System Simplification
6.4.1 Empty Constraint Simplification.
6.4.2 Unreachable Constraint Simplification
6.4.3 Removing e-Constraints L L.
6.4.4 Hopcroft’s Algorithm
6.5 Simplification Benchmarks 0000000

7 Componential Set-Based Analysis
7.1 Componential Set-Based Analysis
7.2 Experimental Results o000
7.3 User Interface for Multi-File Programs
7.4 Efficient Polymorphic Analysis L.

8 Evaluation of MrSpidey
8.1 Verifyinga Web Servero oo
8.2 Verifyinggunzip
8.3 Verifying an Extended Direct Semantics Interpreter
8.4 Statically Debugging HHL 0.

9 Related Work
9.1 Static Debuggers L
9.2 Constraint Simplification L 00000

10Limitations and Future Work
10.1 Size of Types o
10.2 Accuracy of the Analysiso Lo
10.3 State in the User Interface
10.4 Signatureso L e

Vil

80
80
81
82
84

88
88
88
90
91

93
93
94

Vil

A Proofs for Chapter 3 99
A.1 Subject Reduction Proof 99
A.2 Proofs for Computing Set-Based Analysis. 107

B Proofs for Chapter 5 112
B.1 Correctness of MkType o 112

C Proofs for Chapter 6 114
C.1 Proofs for Conditions for Constraint Simplification 114
C.2 Proofs for Proof Theory of Observable Equivalence 114
C.3 Proofs for Deciding Observable Equivalence 122
C.4 Correctness of the Entailment Algorithm 126
C.5 Correctness of the Hopcroft Algorithm 129

D MrSpidey Reference Manual 132
D.1 Using MrSpidey oo 132

D.1.1 The Program Window 133
D.1.2 The Summary Window 138

D.2 Preferences 138
D.2.1 MrSpidey Analysis Preferences Window 138
D.2.2 MrSpidey Type Display Preferences Window 140

D.3 Analysis of Large Programs 0. 142
D.3.1 Inter-File Arrowso 143

D.4 The Type Language 145
D.4.1 Accurate Numeric Operations 147

D.5 Extensions to DrSchemeo o000 147
D.5.1 Type Assertions oL Lo 147
D.5.2 Polymorphic Annotations 147
D.5.3 Declaring New Primitives 148
D.5.4 Declaring Constructors 148
D.5.5 Declaring New Types 148

D.6 Restrictions on Source Programs L. 148
E Implementation Details 150

E.1 Zodiac s 150

E2 MrEd o
E.3 Multiple-Arity Functions
E.4 Multiple Values 000
E.5 Checking Scheme Primitives
E.5.1 Type Schemas
E.5.2 New Constraint Classes
E.5.3 Converting Type Schemas to Constraints

F Notations

Bibliography

X

150
151
151
152
153
153
156

157

160

Chapter 1

The Need for Static Debugging

Sophisticated software systems are inherently complex. A typical program such as
a compiler or a word processor contains an enormous amount of detail. Developing,
maintaining, or debugging this kind of system requires inferring high-level charac-
teristic of the system’s behavior from a large number of low-level details. For large
systems, this quickly becomes an extremely difficult task, particularly since program-
mers, being human, have finite limits in the amount of complexity they can manage.

MrSpidey is a static debugger for Scheme that augments the programmers ability
to deal with such complex systems. It statically analyzes the program and uses
the results of the analysis to identify and highlight any program operation that may
cause a run-time error. The programmer can then investigate each potential fault site
and, using the graphical explanation facilities of MrSpidey, determine if the fault will
really happen or whether the corresponding correctness proof is beyond the analysis’s
capabilities. In practice, MrSpidey has proven to be an effective tool for debugging a
variety of programs, including a staged interpreter, a hardware verifier, and portions
of Rice’s Scheme program development environment.

The following section describes the kinds of program errors that MrSpidey helps
identify; the next section shows how MrSpidey presents information concerning these
potential errors to the programmer; and section 1.3 describes the underlying analysis
that MrSpidey uses to infer that information. The last section provides an overview
of the rest of the thesis.

1.1 Reliability and Safety

A reliable program does not mis-apply program operations. Addition always operates
on numbers, not strings. Concatenation works with strings, not numbers. To avoid
the abuse of program operations, most languages impose a restrictive type system,
which forbids the syntactic formation of certain faulty program phrases. However,

type systems are too coarse to solve the general problem, which includes indexing an

array outside of its proper bounds, division by zero, dereferencing of null pointers,
and jumping to non-function pointers. These problems are beyond the capabilities
of standard type systems, and different languages deal with such run-time errors in
different ways.

Unsafe languages like C [31] ignore the problem and leave it to the programmer
to insert checks where appropriate. As a result C programs are notoriously prone to
inexplicable crashes [33], or, worse, inexplicable, correct-looking results. In contrast,
safe languages such as SMI, [34], Scheme [5], and Java [22] equip program operations
with appropriate run-time checks where necessary. These checks guarantee that a
misapplied program operation immediately raises an error signal, instead of returning
a random bit-pattern. Although this solution ensures that programs don’t produce
random results, it is unsatisfactory because certain errors are not signaled until run-
time.

A better approach is to verify the pre-conditions of each program operation stat-
ically. If we can prove that that a particular program operation is only applied to
appropriate arguments, we say that that operation is safe. In the absence of such
a proof, we have to consider that operation unsafe, since it may be applied to in-
appropriate arguments. Verifying the safety of program operations requires inferring
invariants describing the sets of values that may occur at different points in the pro-
gram. These invariants could be inferred manually, but for large systems this quickly
becomes an extremely difficult and error-prone task. What is needed instead is a
static analysis tool that assists the programmer in inferring invariants and reasoning
about the safety of program operations. We call this kind of tool a static debugger.

Past research on static debuggers mainly focused on the synthesis of the invari-
ants [3, 8]. However, the presentation and, in particular, the explanation of these
invariants were neglected. We believe that synthesizing invariants is not enough.
Instead, a programmer must be able to inspect the invariants and browse their un-
derlying proof. Then, if some invariant contains an unexpected element, the pro-
grammer can determine whether the element results from a flaw in the program or

approximations introduced by the proof system.

1.2 MrSpidey

MrSpidey is a static debugger for Scheme that allows the programmer to browse pro-

gram invariants and their derivations. On demand, MrSpidey statically analyzes the

program and uses the resulting invariants to identify and highlight program opera-
tions that are not provably safe (according to MrSpidey’s underlying proof system).

Associated pop-up menus provide access to additional information, including:
e a value-set invariant for each expression and variable, and
e a graphical explanation for each invariant.

The programmer can investigate each unsafe operation and determine whether (a)
the fault will really happen, or (b) the corresponding correctness proof is beyond
MrSpidey’s capabilities. MrSpidey’s graphical explanation facilities make it easy to
distinguish these two situations.

As an illustration of MrSpidey’s explanatory capabilities, consider the program
sum. ss shown in figure 1.1. The program defines a function that sums binary trees.
A tree is either a leaf node, represented as a number, or an internal node, represented

as a cons-cell containing two subtrees.

% MrSpidey: sum.ss =] E3
File Edit Show Clear Filter

[} sum.=s -
; Sums leaves in a binary tree

{define (sum tree)
{if (number? tree)
tree
{+ {sum {car tree))
{sum {cdr tree)l)})

{sum {cons {cons nil 1) 2))

I |
Weleame to MrSpidey, wersion S062:251. H

CHECKS :

car check in file "sum.z=" line 8

TOTAL CHECKS: 1 {of 10 possible checks iz 10,0%) H
|

Figure 1.1 The program sum.ss

The mark-ups in in figure 1.1 indicate that the operation + is provably safe, since it

is not underlined. Conversely, car, which is underlined, is unsafe. That is, MrSpidey’s

proof system is unable to verify that this operation is only applied to appropriate
arguments. Indeed, the proof system yields an invariant for car’s argument tree that
contains values that are inappropriate arguments for car. Clicking on the argument
variable tree displays that invariant, as shown in figure 1.2. The invariant shows
that tree may be bound to the value nil, which is outside the domain of car.
Using MrSpidey’s explanatory facilities to investigate the source of this erroneous
value results in the display shown in figure 1.3. The displayed arrows show how
nil originated in the argument to sum. Since the argument is not actually a correct
binary tree, we have identified the original source of the problem, and can now fix

the program by providing a correct tree as the argument to sum.

% MrSpidey: sum.ss =] B3
File Edit Show Clear Filter

[sum.=s —
7 Sums leaves in a binary tree

{define (sum tree)
{if (number? tree)
tree

{+ {sum {(car tree|{uniocn {(cons {(cons nil num) num; [}
fcons nil num)
nil)

{sum {cdr tree)))))

{sum {cons {cons nil 1) 2))

Figure 1.2 The value set invariant for tree

Although sum.ss is a trivial program, MrSpidey also works reasonably well on
substantially larger programs. The key problem in developing a static debugger for
large programs is developing an underlying proof system that can infer accurate invari-
ants for such programs. MrSpidey is based on a componential,” or component-wise,

analysis that can effective handle programs of up to tens of thousands of lines of code.

*componential a. of or pertaining to components; spec. (Ling.) designating the analysis of
distinctive sound units or grammatical elements into phonetic or semantic components (New Shorter
Ozford English Dictionary, Clarendon Press, 1993)

% MrSpidey: sum.ss =] B3
File Edit Show Clear Filter

[sum.=s —
7 Sums leaves in a binary tree

{define (sum gtree)
{if (numbe ree)
tree

{+ {sum Jcar tree|{uniocn {cons {(cons nil num) num;} [}
fcons nil num)
nil)

{sum {c treel))}

{sum {cons {cons 'pil 1) 2))

Figure 1.3 The flow of nil

1.3 Componential Set-Based Analysis

The key technology underlying MrSpidey is componential set-based analysis. This
analysis is a derivative of Heintze’s set-based analysis of ML, programs [24]. We begin
with a discussion of Heintze’s analysis and its limitations, and then describe how
we can develop a componential variant of Heintze’s analysis that overcomes those

limitations.

1.3.1 Set-Based Analysis

Heintze’s original set-based analysis is a constraint-based, whole-program analysis for
functional and object-oriented programming languages. It consists of two co-mingled
phases: a specification phase and a solution phase. During the specification phase, the
analysis tool derives constraints on the sets of values that program expressions may
assume. These constraints describe the data-flow relationships amongst the expres-
sions in the analyzed program. During the solution phase, the analysis produces finite
descriptions of the potentially infinite sets of values that satisfy these constraints. The
result provides an approximate set of values for each expression in the program.

We initially used set-based analysis as the underlying proof system for MrSpidey,

for the following three reasons:

o Set-based analysis produces accurate program invariants for Scheme-like lan-

guages, even in the presence of complex control-flow and data-flow patterns.

o Set-based analysis is intuitive to the programmer. The analysis interprets pro-
gram operations as naive set-theoretic operations on sets of run-time values,
and propagates these sets of values along the program’s data-flow paths, in a

manner that is easily understood by the programmer.

e By exploiting the set-based analysis algorithm, we can provide a supporting

explanation for each invariant produced by the analysis.

In practice, set-based analysis has proven highly effective for debugging pedagogic
programming, which includes programs of several hundreds to 2,000 lines of code.

However, it becomes less useful for debugging larger programs for three reasons:

e Set-based analysis has an O(n”) worst-case time bound. Although the con-
stant on the cubic element in the polynomial is small, it becomes noticeable for

programs of several thousand lines.

e Large programming projects tend to re-use functions in a polymorphic fashion.
To avoid merging information between unrelated calls to such functions, the
analysis must duplicate the constraints for each call site. This duplication is
expensive because the size of the constraint system is at best linear, and possibly

quadratic, in the size of the function.

o MrSpidey presents value set invariants to the programmer that are computed
from the information produced by the analysis, and as the constraints get larger

these invariants become extremely verbose.

A closer look at these three obstacles quickly reveals that the major limitation
of set-based analysis is the size of the constraint system describing the data-flow re-
lationships of a program. If we could develop an algorithm for reducing the size of
a constraint system without affecting the solution space that it denotes, we could
simplify constraint systems at intermediate stages and thus reduce the analysis time.
In particular, simplifying the constraint system for each module would substantially
reduce the cost of solving the combined system of constraints for a modularized pro-
gram; similarly, simplifying the constraint system of a polymorphic function would
substantially reduce the cost of duplicating that constraint system at each polymor-

phic reference.

1.3.2 Constraint Simplification

The simplification of constraint systems raises both interesting theoretical and practi-
cal questions. On the theoretical side, we need to ensure that simplification preserves
the observable behavior, or solution space, of a constraint system. In this disserta-
tion, we provide a complete proof-theoretic and algorithmic characterization of the
observable behavior of constraint systems. In the course of this development, we es-
tablish a close connection between the observable equivalence of constraint systems
and the equivalence of regular tree grammars (RTGs).T Exploiting this connection,
we develop a complete algorithm for deciding the observable equivalence of constraint
systems. Unfortunately, the problem is PSPACE-hard, and hence the algorithm takes
exponential time.

Fortunately, a minimized constraint system is not necessary for our purposes. The
practical question concerns finding algorithms for simplifying, though not necessarily
minimizing, constraint systems. To answer this question, we exploit the correspon-
dence between the minimization problems for RTGs and constraint systems to adapt
a variety of algorithms for simplifying RTGs to the problem of simplifying constraint
systems. The resulting constraint simplification algorithms yield an order of magni-

tude reduction in the size of constraint systems for typical program expressions.

1.3.3 Componential Set-Based Analysis

We exploit these simplification algorithms to develop a componential set-based anal-
ysis algorithms. The componential analysis first processes each program component
independently, deriving and simplifying the constraint system for that component and
saves the simplified system in a constraint file, for use in later runs of the analysis.
This step can be skipped for each program component that has not changed since the
last run of the analysis, since the component’s constraint file can be used instead.
The analysis then combines and solves these simplified constraint systems, thus
propagating data-flow information between the constraint systems for the various
program components. The resulting solution yields invariants characterizing the run-

time behavior of the entire program.

TA number of researchers, including Reynolds [39], Jones and Muchnick [29], Heintze [24], Aiken [2],
and Cousot and Cousot [7] previously exploited the relationship between RTGs and the least solution
of a constraint system. We present an additional result, namely a connection between RTGs and
the observable behavior (i.e., the entire solution space) of constraint systems.

This component-wise approach yields an analysis that can handle significantly
larger programs than previous analyses of comparable accuracy. The new analysis
also performs extremely well in an interactive setting because it exploits the saved
constraint files where possible and thus avoids re-processing many program compo-

nents unnecessarily.

1.4 Thesis Overview

This dissertation establishes that the results of set-based analysis can be effectively
used to statically debug real programs. In the course of this investigation we present a
new derivation of set-based analysis that is significantly more extensible that Heintze’s
original derivation; we show how to present the invariants and derivations of the
analysis to the programmer in a natural and easily-accessible manner; and we evaluate
the effectiveness of the resulting static debugging system on a variety of programs,
including a staged interpreter and a hardware verifier.

Since real programs also tend to be large, we develop a componential variant of set-
based analysis that performs significantly better on large programs. The development
of this analysis requires an investigation of the observable equivalence of constraint
systems. We provide a complete proof-theoretic and algorithmic characterization of
the observable behavior of constraint systems and establish a close connection be-
tween the observable equivalence of constraint systems and the equivalence of RTGs.
We then exploit this connection to develop a complete algorithm for deciding the
observable equivalence of constraint systems, and to adapt a variety of algorithms for
simplifying RTGs to the problem of simplifying constraint systems.

The next chapter describes set-based analysis in the context of an idealized A-
calculus-like language. This analysis is extended in chapter 3 to a number of ad-
ditional features typically found in real program languages, such as pairs (or other
compound data structures), first-class continuations, assignable variables, mutable
data structures, modules and classes.

Chapter 4 explains how MrSpidey uses the analysis results to compute useful static
debugging information, and chapter 5 describes how this information is presented to
the programmer in a natural and intuitive manner.

Chapters 6 and 7 introduce componential set-based analysis. Chapter 6 describes
our investigation of the observable equivalence of constraint systems and the devel-

opment of the constraint simplification algorithms. Chapter 7 shows how to exploit

these simplification algorithms in a componential analysis. These two chapters also
contain experimental results describing the behavior of both the simplification algo-
rithms and the componential analysis.

Chapter 8 evaluates the effectiveness of MrSpidey on a variety of programs, in-
cluding a staged interpreter and a hardware verifier. Chapter 9 describes related
work on static debugging, constraint simplification and program analysis. The final
chapter examines of some of the problems and limitations of MrSpidey, and suggests
directions for future work.

The thesis includes six appendices. The first three appendices present proofs for
chapters 2, 4, and 6, respectively. The fourth appendix is a reference manual for
MrSpidey. The fifth appendix describes a number of details concerning the imple-
mentation of MrSpidey, and the sixth appendix contains a list of the mathematical

notations and symbols used in this dissertation.

10

Chapter 2

Set-Based Analysis

MrSpidey’s underlying analysis is derived from Heintze’s set-based analysis of ML
programs [23, 24]. The analysis is a constraint-based, whole-program analysis for
functional and object-oriented programming languages. It consists of two co-mingled
phases: a specification phase and a solution phase.* During the specification phase,
the analysis tool derives constraints on the sets of values that program expressions
may assume. These constraints describe the data flow relationships amongst the ex-
pressions in the analyzed program. During the solution phase, the analysis produces
finite descriptions of the potentially infinite sets of values that satisfy these con-
straints. The result provides an approximate set of values for each labeled expression
in the program.

In this chapter, we provide a formal description of set-based analysis for a ideal-
ized, A-calculus-like language with constants. The following chapter extends the anal-
ysis to realistic language features including pairs, first-class continuations, assignable
variables, mutable data structures, modules and classes. Since it is difficult to extend
Heintze’s development of set-based analysis beyond a functional core language, we
develop Heintze’s ideas using an alternative formulation and semantics. Specifically,
whereas Heintze’s development is based on “natural” semantics, which cannot easily
accommodate non-local control operators and destructive data structure manipula-
tions, our alternative formulation is based on an extensible reduction semantics. This
change of framework also simplifies the derivation of the constraint simplification
algorithms.

Section 2.1 introduces our idealized, A-calculus-like language. Section 2.2 intro-
duces the constraint language, and section 2.3 defines the meaning of those con-
straints. Section 2.4 describes how we derive appropriate constraints for a program,

and section 2.5 proves the correctness of the derived constraints. Section 2.6 shows

*Cousot and Cousot showed that set-based analysis can alternatively be formulated as an abstract
interpretation computed by chaotic iteration [7].

11

how to solve the derived constraints to yield information about the program’s run-

time behavior. Section 2.7 contains an outline implementation of set-based analysis.

2.1 The Source Language

We develop the analysis for an idealized, A-calculus-like language A with constants

and labeled expressions. This section introduces the syntax and semantics of A.

2.1.1 Syntax

Syntax:
M € A = 2|V |(MM)|(let (zV) M) | M (Expressions)
Ve Value = b| (Na.M) (Values)
x € Var = {z,y,2,...} (Variables)
b € BasicConst (Basic Constants)
t € FnTayg (Function Tags)
[€ Label (Expression Labels)

Figure 2.1 The source language A

Expressions in the language are either variables, values, applications, let-expressions,
or labeled expressions: see figure 2.1. Values include basic constants and functions.
Each function has an identifying tag so that MrSpidey can reconstruct the textual
source of function values from the results of the analysis. We use let-expressions
to introduce polymorphic bindings, and hence restrict these bindings to syntactic
values [48]. We use labels to identify those program expressions whose values we wish
to predict.

We work with the usual conventions and terminology of the A,-calculus when dis-
cussing syntactic issues. In particular, the substitution operation M[z < V] replaces
all free occurrences of x within M by V, and A® denotes the set of closed terms, also

called programs.

12

2.1.2 Semantics

We specify the meaning of programs based upon three notions of reduction:

(Mz.M)V) — Mz — V] (Gy)
(let (x V) M) — Mz~ V] (Blet)
Vi — VvV (unlabel)

The 3, and), rules are the conventional rules for the A-calculus. The unlabel rule
simply removes the label from an expression once its value is needed.
An evaluation context £ is an expression containing a hole [] in place of the next

sub-term to be evaluated:
E=[1IEM|(VE]|E

For example, in the term (N M), the next expression to be evaluated lies within
N, and thus the definition of evaluation contexts includes the clause (£ M). An
evaluation context always contains a single hole [], and we use the notation £ M |
to denote term produced by filling the hole in €& with the term M.

The standard reduction relation — is the compatible closure of — with respect

to evaluation contexts:
E[M]— &[N] iff M — N

The relation ——* is the reflexive, transitive closure of ——. The semantics of the

language is defined via the partial function eval on programs:

eval + A° —, Value
eval(M) =V ifM—*V

2.2 The Constraint Language

To simplify the later derivation of the constraint simplification algorithms (see chap-
ter 6), we express the constraint language in terms of selectors, instead of the more
usual constructors. Specifically, a set expression T is either a set variable; a constant;

or one of the “selector” expressions dom(7) or rag(7):

T € SetFxp = o c|dom(r) | rng(r)
o, € SetVar O Label
¢ € Const = BasicConst U Fn'Tag

13

By using selector expressions, we can specify each “quantum” of the program’s
data-flow behavior independently; using constructors would combine several of these
quanta into one constraint. For example, we specify a function’s behavior via the
two constraints {dom(a) < oy, ay < rng(a)} instead of the combined constraint
{(a1 = ag) < a}.

The meta-variables «, 3,y range over set variables, and we include program labels
in the collection of set variables. Constants include both basic constants and function

tags. A constraint C € Constraint is an inequality 7 < 7, relating two set expressions.
C € Constraint = 7 <7y

We sometimes enclose constraints inside square brackets for clarity: [r < m]. A

constraint system S € ConstraintSystem is a collection of constraints.
S € ConstraintSystem = Pg,(Constraint)

We use SetVar(S) to denote the collection of set variables in a constraint system S.
In some cases, the relevant constraints in a constraint system are those that only
mention certain set variables. The restriction of a constraint system to a collection

of set variables F is:

S|lg = {Ce&S|Conly mentions set variables in F}

2.3 The Meaning of Set Constraints

Intuitively, each set expression 7 denotes a set of run-time values, and each constraint
71 < Ty denotes a corresponding set containment relationship. We formalize the
meaning of set constraints by mapping syntactic set expressions onto a semantic
domain. The next subsection describes the precise structure of the semantic domain,

and the second subsection describes the mapping from set expressions to that domain.

2.8.1 The Semantic Domain

A set expression denotes a collection of values. For our sample language, the collection
consists of basic constants and functions and is therefore best represented as a triple
X = (C,D,R). The first component C' € P(Const)! is a set of basic constants and

TP denotes the power-set constructor.

14

function tags. The second and third components of X denote the possible arguments
and results of functions in X, respectively. Since these two components also denote

value sets, the appropriate model for set expressions is the solution of the equation:
D =P(Const) x Dx D

The solution D is equivalent to the set of all infinite binary treest with each node
labeled with an element of P(Const). This set can be formally defined as the set of
total functions f : {dom,rng}* — P(Const), and the rest of the development can
be adapted mutandis mutatis [36]. For clarity, we present our results using the more
intuitive equational definition instead.

We use the functions const, dom, and rng to extract the respective components

of an element in D:
const : D — P(Const)

const (C,D,R)) = C

dom : D — D
dom ((C,D,R)) = D

mg:D — D

rmg ((C,D,R)) = R
Fach element of D represents a set of run-time values (relative to a given program)
according to the set of basic constants and function tags in its first component. The

set of values represented by an element X € D is defined through the relation V' in X:

bin (C,D,R) iff beC
(Maz.M) in (C,D,R) iff teC

We order the elements of D according to a relation that is anti-monotonic in the

domain position:
(C1, D1, Ry) C(Ca, Dy, Ry) it Cy CCy, D C Dy Ry C Ry

This ordering is anti-monotonic in the domain position because information about

argument values at an application needs to flow backward along data-flow paths to

{In order to analyze languages with additional data structures, we later extend D to infinite n-ary
trees, where n is the number of selectors (e.g.. dom, rng) corresponding to the extended language.

15

the formal parameter of the corresponding function definitions. To illustrate this idea,
consider a program that binds a function f to a program variable ¢g. This behavior
is described in the semantic domain as the inequality X; C X, where X; and X
describe the values sets for f and ¢ respectively. Since the possible argument set for
f must contain all values to which ¢ is applied, the inequality dom (X,) C dom (X})

must also hold. Thus the domain D should satisfy the inference rule:
X;C X,
dom (X,) C dom (Xy)

which is why the ordering C needs to be anti-monotonic in the domain element.
Under the defined ordering, the set D forms a complete lattice; the top and bottom

elements are the solutions to the equations:

T = (Const, L,T)
L = @T,L)

respectively. The least upper bound and greatest lower bound operations are recur-

sively defined as:

<Cl, Dl, Rl> L <CQ, DQ, RQ> - <Cl U CQ, D1 1 DQ, Rl L RQ>
<Cl, Dl, Rl> 1 <CQ, DQ, RQ> - <Cl N CQ, D1 L DQ, Rl 1 RQ>

2.3.2 The Semantics of Constraints

The semantics of constraints is defined with respect to a set environment p, which

specifies an element of D for each set variable in a constraint:
p € Setknv = SetVar — D

The collection of set environments forms a complete lattice SetEnv under the point-
wise extension of the ordering relation C on D.
For each set environment p, we define the following unique extension p* that

specifies a meaning for set expressions:

p*: SetExp — D
p*(a) = plo)
(o) = (T, 1)
(dom(T)) = dom (p*(7))
)

= g (p(7))

16

Where there is no confusion, we remove the asterisk and simply use p to denote p*.
A set environment p satisfies a constraint C = [y < 7] (written p | C) if

p(11) C p(72). Similarly, p satisfies S, or p is a solution of S (written p = S) if p = C

for each C € S. The relation |= is obviously reflexive and transitive. The solution

space of a constraint system S is:

Soln(S)=A{p | p =S}

A constraints set Sy entails Sy (written Sy = Sq) iff Soln(S1) C Soln(Ssz), and Sy is
observably equivalent to Sy (written S; = Sy) iff Sy =S and Sy Sy

The restriction of a solution space to a collection of set variables F is:
Soln(S) | = {p | 3p’ € Soln(S) such that p(a) = p'(a) Va € E}

There are actually more set environments in the restricted solution space, since these
additional environments can specify arbitrary domain elements for all set variables
that are not in K.

We extend the notion of restriction to the entailment and observable equivalence

of constraint systems.

Definition 2.3.1. (Restricted Entailment, Restricted Observable Fquivalence)

o If Soln(S1) | C Soln(Sz2) |, then Sy entails Sy with respect to E (written
Si Er S2).

o IfS; =g Sy and S; =g Sy then that Sy and Sy are observably equivalent with
respect to I/ (written Sy Zg Ss) .

2.4 Deriving Constraints

The specification phase of set-based analysis derives constraints on the sets of values
that program expressions may assume. Following Aiken et al. [2] and Palsberg and
O’Keefe [36], we formulate this derivation as a proof system.

The derivation proceeds in a syntax-directed manner according to the constraint

derivation rules presented in figure 2.2. Fach rule infers a judgment of the form

I'EM:a, S, where:

17

F'u{e: oo, {8 <a} (var)
I'Fb:a,{b<a} (const)
'=M:p3,8 (label)

F'-M:a SU{B<Il,3<a}

Fu{e:ai} b M:ayS

(abs)

t < «
I'E(NMz.M):a,S§U{ dom(a) < a
ay < rngla)
app
. By < dom(f)
F"(Ml MQ).O(,SlUSQU{rng(ﬁl) S a
'EV:ay, Sy

a = SetVar(Sv) \ (FV[range(TI')] U Label)
F'u{z:Va.(ay,Sv)}FM: 3,8
'k (let (x V) M): 53,8

(let)

Y is a substitution of set variables for @

MU {z:va. (av,Sv)}Fa: 8,¢(Sv) U {¢(av) < B}

(inst)

Figure 2.2 Constraint derivation rules.

. the derivation context I' maps the free variables of the expression M to either

set variables or constraint schemas (see below);
.« names the value set of M; and

. the constraint system S is a simple constraint system (see below) describes the

data-flow relationships of M, using «.

18

The constraint derivation rules only generates a certain subset of the constraint

language, called simple constraints. Simple constraints have the form:

C € SitmpleCon = c<f

S € SimpleConSystem = Pg,(SimpleCon)

A collection of such simple constraints forms a simple constraint system. We use the
calligraphic letters C and § as meta-variables ranging over simple constraints and
simple constraint systems, respectively.

The constraint derivation rule (var) derives appropriate constraints for a variable
reference x. This rule generates the constraint § < a, where 3 describes the value set
of z, and o denoting the value set for this reference to . The constraint derivation
rule (const) generates the constraint b < «a, which ensures that the value set for
a constant expression contains that constant. The rule (label) records the possible
values of a labeled expression M' in the label /.

The rule (abs) for functions records the function’s tag, and also propagates values
from the function’s domain into its formal parameter and from the function’s body
into its range. The rule (app) for applications propagates values from the argument
expression into the domain of the applied function and from the range of that function
into the result of the application expression. The correctness of the rules (abs) and
(app) relies on the anti-monotonicity of the underlying ordering C in the domain
position.

The rule (let) produces a constraint schema o = Va. (3,S) for polymorphic, let-
bound values [2, 42]. The set variable 3 names the result of the value; the simple
constraint system S describes the data-flow relationships of the value, using 3; and
the set @ = {ay, ..., a,} contains those internal set variables of the constraint system

that must be duplicated at each reference to the let-bound variable via the rule (inst).

19

The derivation context I' maps program variables to either set variables or con-

straint schemas:

I' e DerivCtet = Var —, SetVar U ConSchema
o € ConSchema = Va.(3,S)

We use F'V[range(I')] to denote the free set variables in the range of I'. The free set
variables of a constraint schema Va. (3, S) are those in § but not in @, and the free
variables of a set variable is simply the set variable itself.

Many of the constraint derivation rules contain meta set variables. For example,

the rule (const):
I'Fb:a,{b<a} (const)

mentions the meta set variable . Any time this rule is applied, we need to choose an
appropriate set variable for this meta variable. Choosing a fresh set variable not used
elsewhere in the derivation yields a more accurate analysis. A most general constraint
derivation is one that always uses fresh set variable for these meta variables, and a
most general constraint system for an expression is one produced by a most general
constraint derivation. However, the use of fresh variables is not strictly necessary for
the correctness of the analysis. As an extreme example, we could perform the entire
analysis using a single set variable, although this would yield extremely coarse results,
and would be of no practical use. But the ability to consider constraint derivations
that re-use certain set variables significantly simplifies the subject reduction proofs

of the following section.

2.5 Soundness of the Derived Constraints

Let P be a program such that § - P : a,S. Typically, S has many solutions. Each
solution p of § correctly approximates the value sets of labeled expressions in P.
That is, if p is a solution of S and V is a possible value of some expression M! in P,
then V' in p(l). We prove this property using a subject reduction proof [13], following
Wright and Felleisen [47] and Palsberg [35].

Main Lemma 2.5.1 (Soundness of the Derived Constraints). If)+ P : «a,S and
p =S and P—*&[V'] then V in p(l).

Proof: The Subject Reduction for — Lemma (2.5.2) shows that standard reduction

steps preserve entailment. Hence, since P+——* E[V'], there exists some S’ such that

20

0 & V'] :a,S8 and S = 8. The derivation of this judgment must contain a

sub-derivation concluding:

Fl‘V:ﬁ,SV
TEV B, Svu{B<iy

(label)

Except for the rule (let), each application of a constraint derivation rule can
only extend the constraint system produced by its sub-derivation. Since definition of
evaluation contexts does not contain a clause for let-expressions, there cannot be any
let-expressions on the spine from V! to [V!]. Hence Sy U{3 <1} C &'

Since p ES, S E S, and &' O Sy U {3 < [}, we have that p E Sy U {3 < [}.
Hence V' in p(3) by the Value Typing Lemma 2.5.6. But p(3) C p({), hence V in p(l),

as required.

The proof of the above result relies on the following lemma showing that standard

reduction steps preserves the entailment of the derived constraint systems.

Lemma 2.5.2 (Subject Reduction for —). I T'F My : o, S and My — M,, then
' M;: a,8 where §; E S,.

Proof: Follows from the Subject Reduction Lemma 2.5.3 and the Replacement

Lemma 2.5.4. 1«

Lemma 2.5.3 (Subject Reduction for —). M T'F My :o,5 and My — My, then
' M, : a,8; such that S E S,.

Proof: See Appendix A.1. »
Lemma 2.5.4 (Replacement). If:
1. D is a deduction concluding I' - E[My] : o, Sy,
2. Dy is a sub-deduction of D concluding I" = M, : 3,S],
3. Dy occurs in D in the position corresponding to the hole ([]) in £, and
4. '+ My : B,8) where S| = S,

then ' = &[] My | : a,S; where S§; E Ss.

Proof: Follows the proof idea of Hindley and Seldin [25:page 181].

21

The Flow Lemma describes conditions under which we can replace the result set

variable returned by the constraint derivation rules.

Lemma 2.5.5 (Flow). IfI'F M : «a,S then for all v € SetVar, I' = M : v, 8" with
SU{a <~} ES.

Proof: See Appendix A.1. »

The Value Typing Lemma simply states that any solution to the constraint system
for a syntactic value always corresponds to a value set invariant that includes that

value.
Lemma 2.5.6 (Value Typing). IT'FV:a,8 and p =S, then V in p(a).

Proof: By considering the two cases V =band V = (Nz.M).

2.6 Solving Set Constraints

Every simple constraint system admits the trivial solution p'¢ defined by:

where T is recursively defined as:
T, = (Const, Ts, Ts)
The domain element T represents the set of all run-time values, including functions
that can take any value as an argument, and return any value as a result.
Lemma 2.6.1 If S is a simple constraint system then p'* = S.
Proof: By a case analysis showing that p'« = C for any simple constraint C. u

Since T, represents all run-time values, this solution is highly approximate and
thus utterly useless. Fortunately, simple constraint systems yield many additional
solutions that more accurately characterize the value sets of program expressions.

To illustrate this idea, consider the program P = (Az.z). According to the

constraint derivation rules of figure 2.2, this program yields the constraint system:

{t < ap,dom(ap) < oy, a, < ay,an < rnglap)}

22

In addition to the trivial solution p'+, this constraint system admits a number of

other solutions, including:

pPr = {aP = <{t}7 1, J—>7al’ = Lo J-}
P2 = {aP = <{t}7 T, T>7ax = T, an T}
p3 = {OéPH<{tvcl}7X7X>7al"_>X7aM'_>X}

where X = ({2}, L, 1), and ¢; and ¢y are arbitrary constants. Because we assume
P to be the entire program, the function tagged ¢ is never applied, and hence the
set of run-time values for x is simply the empty set. The solution p; describes this
(empty) set of run-time values of x more accurately than either py or ps. Yet these
three solutions are incomparable under the ordering C, since the ordering models the
flow of values through a program, but does not rank set environments according to
their accuracy.

Therefore we introduce an alternative ordering C; on D that ranks environments

according to their accuracy. This ordering is monotonic in the domain position:
(Cy,D1, Ry T (Cy, Dy, Ry) it Cy CCo, Dy Cs Dy, Ry C Ry
The maximal and minimal elements of D under C; are the solutions to the equations:

T, = (Const, Ts, Ts)
J—s - <®7 J—sa J—s>

respectively. The least upper bound and greatest lower bound operations are recur-

sively defined as:

<017D17R1> |—|s <027D27RQ> = <CIU027D1 |—|s D?le |—|s RZ>
<017D17R1> l_ls <027D27RQ> = <Clm027D1 l_ls D?le l_ls RZ>

Under the ordering C;, a simple constraint system has both a maximal solution
(pT+ above) and a minimal solution. The minimal solution exists because the greatest

lower bound My with respect to 4 of two solutions is also a solution [24].

Lemma 2.6.2 (Least Solution of Simple Constraint Systems). Fvery simple con-

straint system has a solution that is least with respect to C,.
Proof: See Appendix A.2. »

Using Lemma 2.6.2, it makes sense to define LeastSoln(S) as the least solution

of the simple constraint system S under the ordering C,. Since this solution yields

23

the most accurate invariants consistent with the constraints S, we define set-based
analysis as the function that extracts the possible values for each labeled expression

from this least solution.

Definition 2.6.3. (sba : A° — (Label — P(Value))) I QF P:a,S is a most

general derivation, then
sba(P)(1) ={V | V in LeastSoln(S)(l)}

By Lemma 2.5.1, sba(P) correctly characterizes the possible value sets for each labeled

expression.
Theorem 2.6.4 If P+——*E[V'] then V € sba(P)(l).

Proof: Follows from Lemma 2.5.1. &

2.6.1 Computing the Least Solution

To compute sba(P), we derive the most general constraint system for P and close
that constraint system under the rules © described in figure 2.3. Intuitively, these
rules infer all the data-flow paths in the program, which are described by constraints
of the form 3 < v (for 3,y € SetVar), and propagate values along those data-
flow paths. Specifically, the rules (s1), (s2), and (s3) propagate information about
constants, function domains and function ranges forward along the data-flow paths
of the program. The rule (s4) constructs the data-flow paths from actual to formal
parameters for each function call, and the rule (s5) similarly constructs data-flow
paths from function bodies to corresponding call sites. We write S Fg C if S proves
C via the rules O, and use O(S) to denote the closure of S under 0, i.e., the set
{C | § o C}. An algorithm for computing ©(S) is included in the next section.
This closure process propagates all information concerning the possible constants
for labeled expressions into constraints of the form ¢ < [. Hence, we can infer sba(P)

from O(S) according to the following theorem.

Theorem 2.6.5 If Pc A°and O F P :a,S is a most general constraint derivation
then:
sba(P)(l) = {b|Steb<lI}
U {(NMz.M)|Stet<I}

Proof: See Appendix A.2. »

24

c<y
a<rng(d) By ()
o < rng(y) ’
dom(ff) <a B<xy (55)
dom(v) < « ’
o <rng(B) rng(B) <~ ()
a <7 .

o <dom() don() <
a <y

Figure 2.3 The rules © = {s1,...,s5}

2.7 An Implementation of Set-Based Analysis

We conclude this chapter with an outline implementation in MzScheme [17] of the

analysis described above. The implementation is presented in figures 2.4, 2.5 and 2.6.

2.7.1 Representation of constraint systems

Since the most computationally-intensive part of the analysis is closing the constraint
system under the rules ©, we choose a representation for constraint systems that
simplifies this task. If we take a closer look at ©, we see that each rule in ® combines
a lower and upper bound for some set variable « into a single constraint, where the

lower bound on a must be of the form:
c<a f<rngla) dom(a)<fj
and the upper bound on a must be of the form:
a<f f<doma) rngla)<p

We represent the above lower and upper bounds for each set variable o separately.

That is, a constraint system is represented as two mappings: one mapping from set

25

variables to their lower bounds, and a second mapping from set variables to their

upper bounds. FEach kind of lower bound on « corresponds to a structure in the

implementation:
c < « c-leg-this
< rng(a) x-leq-rng-this
dom(ar) < f3 dom-this-leg-x

In a similar fashion, each kind of upper bound on « also corresponds to a structure

in the implementation:

a < f this-leq-x
B < dom(a) x-leq-dom-this
rng(a) < S rng-this-leq-x

2.7.2 Closing constraint systems

Set-based analysis consists of a specification phase and a solution phase. In this
implementation, these two phases are co-mingled in that the constraint derivation
algorithm keeps the derived constraint system closed under ©. That is, whenever the
constraint derivation algorithm adds a new constraint to the current constraint sys-
tem, any consequences of the new constraint under © are also added to the constraint
system.

Constraint systems are extended via the functions add-lower-bound+close! and
add-upper-bound+close!. The function combine! checks if a new consequent can be

inferred from a lower and upper bound for a set variable.

2.7.3 Deriving constraints

The function derive is a straightforward implementation of the constraint derivation
rules described in figure 2.2. This function takes as arguments a constraint derivation
context gamma, an expression M, and a constraint system S. The function then
extends S with additional constraints and returns a set variable denoting the result
value set of M. For simplicity, the implementation does not support let-expressions

or constraint schemas, but these are straightforward to add.

26

;; —— Main analysis function
(define (sba M)
(let ([S (create-constraint-system)])
(derive (make-empty-derivation-context) M)

5))

;; —— Abstract syntax structures
(define-struct Var (z))
(define-struct Const (b))
(define-struct Lam (t © M))
(define-struct App (fn arg))
(define-struct Labeled (M 1))

;3 — Deriving constraints
(define (derive gamma M S)
(let ([alpha (gen-set-var)])
(match M
[($ Var z)
(add-upper-bound+close! S (lookup gamma x) (make-this-leq-z alpha))]
[($ Const b)
(add-lower-bound+-close! S alpha (make-c-leg-this b))]
[($ Labeled M 1)
(let ([beta (derive gamma M S)])
(add-upper-bound+-close! S beta (make-this-leg-z 1))
(add-upper-bound+-close! S beta (make-this-leq-z alpha)))]
[($ Lam t N)
(letx ([alphal (gen-set-var)]
[alpha?2 (derive (extend gamma z alphal) N S)])
(add-lower-bound+close! S alpha (make-c-leg-this t))
(add-lower-bound+-close! S alpha (make-dom-this-leq-x alphal))
(add-lower-bound+-close! S alpha (make-z-leg-rng-this alpha?2)))]
[($ App fn arg)
(let ([betal (derive gamma fn S)]
[beta2 (derive gamma arg S)])
(add-upper-bound+-close! S betal (make-z-leg-dom-this beta?2))
(add-upper-bound+close! S betal (make-rng-this-leq-z alpha)))])
alpha))

Figure 2.4 Deriving constraints

27

;3 —— Structures for constraints
(define-struct c-leg-this (c))
(define-struct dom-this-leg-z (z))
(define-struct z-leg-rng-this (z))

(define-struct this-leg-z (z))
(define-struct z-leg-dom-this (z))
(define-struct rng-this-leq-z (z))

;; — Extending and re-closing constraint system
;; For clarity, we have not abstracted over the following two functions
(define (add-lower-bound+-close! S alpha low-bound)
(unless (has-lower-bound? S alpha low-bound)
(add-lower-bound! S alpha low-bound)
(for-each
(lambda (up-bound) (combine! S low-bound up-bound))
(upper-bounds S alpha))))

(define (add-upper-bound+close! S alpha up-bound)
(unless (has-upper-bound? S alpha up-bound)
(add-upper-bound! S alpha up-bound)
(for-each
(lambda (low-bound) (combine! S low-bound up-bound))
(lower-bounds S alpha))))

;3 —— Adding consequents of two constraints
(define (combine! S low-bound up-bound)
(match (list low-bound up-bound)
;; The following cases applies rules (s1) through (s5), respectively
[(($ c-leg-this _) ($ this-leq-x gamma))
(add-lower-bound+close! S gamma low-bound)]
[(($ dom-this-leq-x _) ($ this-leg-z gamma))
(add-lower-bound+close! S gamma low-bound)]
[(($ a-leg-rng-this _) ($ this-leq-x gamma))
(add-lower-bound+close! S gamma low-bound)]
[(($ a-leg-rng-this alpha) ($ rng-this-leq-z gamma))
(add-upper-bound+close! S alpha (make-this-leq-x gamma))]
[(($ dom-this-leg-z gamma) ($ z-leq-dom-this alpha))
(add-upper-bound+close! S alpha (make-this-leq-x gamma))]

[~ (void)]))

Figure 2.5 Representing, extending and closing a constraint system

28

;; —— Functions for manipulating constraint systems

(define (gen-set-var) ...)
;; Creates a fresh set variable

(define (create-constraint-system) .. .)
;; Creates an empty constraint system

(define (add-lower-bound! S alpha low-bound) ...)

;; Extends the constraint system S with an additional lower bound for alpha

(define (has-lower-bound? S alpha low-bound) ...)
;; Checks if the constraint system S already has the given lower bound for alpha

(define (lower-bounds S alpha) ...)

;; Returns a list of lower bounds for alpha in the constraint system S

(define (add-upper-bound! S alpha up-bound) ...)
(define (has-upper-bound? S alpha up-bound) ...)
(define (upper-bounds S alpha) ...)

;; Ditto for upper bounds

;; —— Functions for manipulating derivation contexts

(define (make-empty-derivation-context) ...)
;; creates an empty derivation context

(define (extend gamma x alpha) ...)
;; extends the derivation context gamma to map x to alpha

(define (lookup gamma z) ...)
;; looks up the binding for x in the derivation context gamma

Figure 2.6 Manipulating constraint systems and derivation contexts

29

Chapter 3

Extending Set-Based Analysis

Realistic programming languages provide a variety of additional facilities on top of
the idealized core language A. These facilities typically include pairs (or other com-
pound data structures such as C’s structs or Pascal’s records), assignable variables,
mutable data structures, and possibly objects, modules and non-local control oper-
ators. Since MrSpidey is designed to assist in the development of realistic Scheme
programs, we need to extend the underlying set-based analysis to encompass these
additional features of practical programming languages. This extension also suggests

how MrSpidey can be adapted to other safe languages such as Java.

3.1 Additional Selectors

Most of the additional programming constructs mentioned above introduce additional
kinds of values into the language. Modeling these additional values in the analysis
requires the introduction of additional selectors into the constraint language and the
corresponding extension of the underlying domain D and the set of operations and
relations defined on D.

To simplify this process, we first abstract over the collection of selectors in the
constraint language. The constraint language currently contains a single monotonic
selector, rng, and a single anti-monotonic selector, dom. We generalize the constraint
language with two sets, Selt and Sel™, of monotonic and anti-monotonic selectors,

respectively, which are currently defined as the singletons:
Selt = {rng}
Sel” = {dom}

We use the meta-variables selt, sel™ and sel to range over selectors in Selt, Sel™,
and SelTUSel™, respectively. Expressed in terms of these meta-variables, the langnage

of set expressions becomes:

T € SetFzp = a|c|sel®(r)]| sel (1)

30

and a simple constraint is of the form:

C € SimpleCon = c<

These constraints have their expected semantics on an extended domain D that con-

tains a product for each selector in the constraint language:

D=P(Const) xDx -+ xDXxDx---xD

sel—€Sel™ seltelelt

This reformulation simplifies the process of extending the analysis to cope with ad-
ditional programming constructs. The remainder of the derivation from chapter 2
can be adapted to the modified formulation, mutandis mutatis. In particular, the

appropriate inference rules © for the modified formulation are described in figure 3.1.

Figure 3.1 The adapted rules © = {sy,...,s5}

31

3.2 Analysis of Pairs

Let AP be the following extension of A with immutable pairs.

M e AP = ...
| (cons M M)
| (car M)
| (edr M)
Ve Value = ...
| (cons V' V)

3.2.1 Semantics

The additional syntactic forms have their usual Scheme semantics, which we formalize

via two additional notions of reduction:

(car (cons Vi V3)) — Vi (car)
(edr (cons Vi V3)) — V4 (edr)

To allow the evaluation of sub-expressions inside the syntactic forms cons, car and

cdr, we extend the notion of evaluation contexts as follows:
E=...|(cons & M) | (cons V &) | (car &) | (cdr €)

The standard reduction relation — and the evaluator eval for the extended language

AP can now be defined in the usual manner, following section 2.1.2.

3.2.2 Analysis

The analysis of the extended language AP requires two additional monotonic selectors

car and cdr:
Selt = {rng,car,cdr}

Sel” = {dom}
These additional selectors yield corresponding products in the domain D. Each el-
ement X € D is now a b-tuple (C, D, R, A1, A2), where the additional components
Ay and A, describe the possible car and cdr fields of pairs represented by X. We

introduce the special tag pair € Const, which denotes that an element of D also

32

represents pairs, and we extend the relation V' in X to describe the pairs represented

by an element X = (C, D, R, Ay, A3) in D as follows:

bin X iff beC
(Maz.M) in X iff teC
(cons V; V) in X iff paire O, Vi in Ay, Va in As

The constraint derivation rules for the new syntactic forms are described in fig-
ure 3.2. The rule (cons) records both the pairs tag and the possible values for each
component of the pair. The rules (car) and (edr) extract the appropriate component

from the set variable for the argument expression.

't MZ : Ozi,SZ'

I'F (cons My My): 3,51 U8 U {pair < 3,04 < car(f),ay < cdr(f)} (cons)
'EM:a, S

T+ (car M): 3,8 U{car(a) < 3} (car)
'EM:a, S

(edr)

I'F(cdr M) : 3,5 U {cdr(a) < g}

Figure 3.2 Constraint derivation rules for pairs

The soundness proof for set-based analysis is easily adapted to the extended
language. The Replacement (2.5.4), Value Typing (2.5.6), and Soundness (2.5.1)
Lemmas are straightforward to adapt, and we extend the Subject Reduction for —»
Lemma (2.5.3) as follows.

Lemma 3.2.1 (Subject Reduction for —s on A?). IfT'F My : o, Sy and My — M,
then I' F M, : a, Sy such that Sy | S.

Proof:
The proof proceeds by case analysis according to the relation My — M,.
e Suppose M; — M, via (car). Then:
M; = (car (cons Vi \3))
My = Vi

33

The typing derivation on M; must be of the following form:
'=Vv:a,S!
I'F(cons Vi V3):3,5;USUS
I'eM :v,S;US,USUS

(cons)

(car)

where:

S = {t<p,a; <car(ff),as < cdr(f)}

S = {car(f) <~}
Hence S U S’ E {a; < v}, and by the Flow Lemma 2.5.5, I' F Vj : 4, S; where
SiUSUS' E Ss, as required.

e The case for the reduction rule (edr) is similar.

The set-based analysis function sba for the extended language AP is defined fol-
lowing definition 2.6.3. As in section 2.6, we can compute sba(P) from the closure of

S under O:

sba(P)(l) = {b|Steb<lI}
U {(NMz.M)|Stet<I}
U {(cons V; V5) | Ste pair </,
SFo ag <car(l), Vi € sba(P)(ay)
SFo ay < cdr(l), Vi € sba(P)(az2)}

3.3 Analysis of First-Class Continuations

Consider the following language A°, which extends AP with first-class continuations

in addition to functional core language and pairs:
M € A* = ... |(abort M) | (callec’ M)

An abort-expression evaluates its sub-expression, and returns the resulting value
as the result of the entire computation. The callcc-expression (callee’ M) first
evaluates its argument M to a function, then captures the current evaluation context
(or continuation) surrounding the expression, and applies the function produced by M
to this evaluation context. An invocation of a captured evaluation context causes the
current evaluation context to be discarded and replaced by the captured context. Just
like a function expression, a callec-expression has an identifying tag so that MrSpidey
can reconstruct the textual source of the corresponding continuation values from the

results of the analysis.

34

3.3.1 Semantics

We define the semantics of the abort and callcc constructs by extending the stan-
dard reduction relation with the following rules for aborting and capturing evaluation

contexts:

gl (abort M) | — M (abort)
El (callec M)] = E[(M (Mz.(abort &] =])))] (callee)

The evaluator for the extended language is defined in the usual manner, following

section 2.1.2.

3.3.2 Analysis

Figure 3.3 introduces the additional derivation rules for abort and callcc expressions.
An abort expression never returns, so the derivation rule (abort) introduces a fresh
type variable for these expressions. The least solution (under Cy) for this type variable
is 14, denoting the empty set of values.

The rule (callee) introduces a new type variable ¢ to denote the captured contin-

uation. The rule records that:

1. the type variable § contains the tag ¢ from the callce expression;
2. § is the argument to the function (denoted by «) that is returned by M;
3. the result value this function becomes the result of the callce expression;

4. argument values to § are also returned as results of the callce expression.

In addition, the rule adds the “dummy” constraint v < rng(§). This dummy con-
straint is required in order that the constraint derivation rules satisfy the subject
reduction lemma. That is, the (callcc) reduction rule produces a contractum contain-
ing the syntactic term (Az.(abort [])), which is not present in the (callec)-redex.
Applying the constraint derivation rules to this contractum yields a number of con-
straints, including the constraint v < rng(d), where v describes the value set for
(abort & x]), and § describes the value set for the A-expression. The subject reduc-
tion lemma requires that this constraint is entailed by the constraint system for the
(callee)-redex. In order to satisfy this requirement, we include that constraint in the

redex’s constraint system.

35

'e=M:a,S
(abort)
I' (abort M) : 3,8
'e=M:a,S p
<5 (callee)
§ < dom(«)
I't (callec’ M):3,SU< rngla) < B
dom(d) < f3
v < rng(d)

Figure 3.3 Constraint derivation rules for first-class continuations

The Replacement (2.5.4), Value Typing (2.5.6), and Soundness (2.5.1) Lemmas
are easily adapted to the extended language. We extend the Subject Reduction for

— Lemma (2.5.2) to account for the additional standard reduction rules as follows.

Lemma 3.3.1 (Subject Reduction for — on A°). MO F M : a,S and My— My,
then) F M, : 3,8, such that S; = S.

Proof: The proof proceeds by case analysis according to the relation My — M,.
Since the cases for the (3,) and (unlabel) rules are the same as before, we only consider

the cases for the additional rules (abort) and (callce).
e Suppose My —— My via (abort). Then:
M, = &] (abort M,)]

The derivation on M; must include a sub-derivation concluding I' = M, : 3,5,
where S; C 8. Since M, is closed, so is M,, and hence) = M, : 3, S,.
e Suppose My —— M; via (callec). Then:
M, = &[(callec’ M)]
My, = E[(M (Mz.(abort] z])))]
The derivation on M; must include a sub-derivation concluding;:

' M:an,Sv
Ik (callcct M):B3,SuUSc

(callee)

36

where:
t < 4§
§ < dom(an)
Sc =14 rnglay) < [
dom(d) < f3
v < rng(d)

Let S¢ be the additional constraints generated by the derivation on M; due
to the context & surrounding (callec’ V). Then S = S¢ U Sy U Se, and the

following derivation holds:

PU{z:f}ha: 340 <5)
F'U{e:pBIFE 2] a,S¢
F'U{z:p}F (abort E[z]) : v, 8¢
I'F (Mz.(abort E] x])) : 6, Sy,

(abort)

(abs)

where:
Sp, =8 U{t <4,dom(d) < 3,7y < rng(d)}
Hence:
' (M ()\tx.(abort Elz 1)) :8,8,
where:

Sy =8 U8y U{d§ < dom(an), rng(an) < B}

Therefore, by the Replacement Lemma 2.5.4:
't M2 : 6/782

where:

Sy =8:US]

Since S contains Sz, 81 = S, and the lemma holds for this case.

The set-based analysis function sba for the extended language A is defined as in
definition 2.6.3, and can be computed in the usual fashion based on the closure of the

derived constraint system under ©.

37

3.4 Analysis of Assignable Variables

Next we consider the set-based analysis of a language with assignable variables. Let

A" be the following extension of A?:

M ¢ A = (Expressions)
| (letrec (D*) M)
| (set! =z M)
| 2
D € Defines = (define z V) (Definitions)
z,w € AssignVar (Assignable Variables)

The extended language contains assignable variables, in addition to the regular, im-
mutable variables. These assignable variables are introduced by a letrec-expression
(letrec (D*) M), where D* is a sequence of definitions of the form (define = V).
Each assignable variable in these definitions is bound in the entire letrec-expression,
and we work with the usual conventions concerning a-renaming for assignable vari-
ables. An assignment expression (set! z M) first evaluates M to some value, assigns

the variable z to that value, and then returns the value.

3.4.1 Semantics

We evaluate programs within an enclosing letrec containing a heap and an expres-
sion. The heap is a sequence of definitions containing all currently defined assignable

variables:

H € Heap = D~

All references and assignments to assignable variables operate on this heap. We use
the functional notation H(z) to extract the value bound to z in the heap H.
To allow the evaluation of sub-expressions inside the set! form, we extend the

notion of evaluation contexts as follows:
E=...|(set! 2 &)

We extend the standard reduction relation with the following additional cases for

the new syntactic forms. To evaluate an internal letrec, we lift its definitions out

38

into the global heap, ensuring that the appropriate hygiene conditions are satisfied:
(letrec (H) &[(letrec (D*) M)])

— (letrec (HU D*) E[M) (letrec)
if dom(H) N dom(D*) =)
(letrec (H) E[z]) +— (letrec (H) E[V]) if H(z) =V (ref)
(letrec (H U (define z V)) & (set! =z V')])
— (letrec (H U (define = V")) E[V']) (set!)

The semantics of the extended language is defined via the partial function eval on
programs. This evaluator now returns a pair consisting of a heap and a value, where

the heap provides bindings for the assignable variables in the value.

eval : N\° —, Heap x Value
eval(M) = (H,V) if (letrec () M) +—> (letrec (H) V)

3.4.2 Analysis

The analysis of the extended language A'is based on the additional constraint deriva-
tion rules described in figure 3.4. The rule (letrec) extends the derivation context I' to
map each assignable variable z; to a fresh set variable «;; and generates constraints for
both the defined values and the letrec-body using the extended derivation context.
The rule (set!) simply propagates all possible assigned values into the value set for
the assigned variable. A constraint derivation context now maps variables to either
set variables or constraint schemas, as before, and now also maps assignable variables
to set variables.

Adapting the soundness proof for the extended analysis is straightforward. The
Replacement (2.5.4), Value Typing (2.5.6), and Soundness (2.5.1) Lemmas are eas-
ily adapted to the extended language. It is straightforward to extend the Subject
Reduction for — Lemma (2.5.2) with cases for the additional reduction rules. The
set-based analysis function sba for the extended language A' can be defined and com-

puted in the usual fashion.

3.5 Analysis of Assignable Boxes

Next, we extend our sample language with assignable boxes, where are somewhat

more difficult to analyze than assignable variables. Let A” be the following extension

39

FU{ZZOéZ}l_‘/Zﬁ“SZ
Fudz o} EM:~, S

let
I' - (letrec ((define z; V;)...(define z, V,,)) M) (fetrec)
3’)/,SU81U"'USnU{ﬁZ'§OQ |1§Z§n}
Fruf{z:0tFz:0,8U{a<g} (ref)
'EM:a, S
(set!)

I'F(set! z M):a,SU{a <TI(2)}

Figure 3.4 Constraint derivation rules for assignable variables

of A':
M e A = (Expressions)

| (box M)
| (unbox M)
| (set-box! M M)

V € Value = (Values)
| (box z)

3.5.1 Semantics

The additional syntactic forms have their usual Scheme semantics. The value (box z)
denotes a box containing the value bound to the assignable variable (or location) z.
We formalize this semantics by extending the standard reduction relation as follows:
(letrec (H) &[(box V)])
— (letrec (H U (define z V)) &[(box z)]) (box)
if z & dom(H)

(letrec (H) &[(unbox (box z)))
— (letrec (H) E[V']) ifH(z)=V (unbox)

(letrec (H U (define z V)) & (set-box! (box z) V') |)
— (letrec (H U (define = V")) E[V']) (set-box!)

40

The rule (box) allocates a new assignable variable, or location, z, that is not already
bound in the heap, binds this location to the boxed value in the heap, and returns
a new kind of value, (box z) as the result of the box expression. The rules (unbox)
and (set-box!) are analogous to the rules (ref) and (set!) described in the previous
section, except that the new rules operate on box values of the form (box z), instead
of directly on assignable variables.

To allow the evaluation of sub-expressions inside the syntactic forms box, unbox

and set-box!, we extend the notion of evaluation contexts as follows:
E=...|(box &) | (unbox &) | (set-box! &€ M) | (set-box! V &)

The semantics of the extended language is defined via the partial function eval

on programs, in the same manner as in the previous section.

3.5.2 Analysis

The assignable boxes of the extended language A’ are first-class values. Unlike
assignable variables, these boxes can be passed around between various parts of the
analyzed program. This flexibility makes assignable boxes significantly more difficult
to analyze than assignable variables. *

As a first attempt, we could try to analyze boxes by extending the constraint
language with an single additional selector, box, such that box(7) describes the set
of values contained in the boxes denoted by 7. Unfortunately, this approach does not
work very well. To illustrate the problem with this approach, consider the data-flow
path in the analyzed program represented by the constraint o < 3. In order to ensure
that boxed values flow forward along this data-flow path in the appropriate manner,
we need to require that box(a) < box(3), which implies that box is monotonic. But

now suppose that a set-box! operation is performed on the value set described by

*We could alternatively define the semantics of the additional syntactic forms in A® by macro-
expanding them into the following A' expressions:

(box M) — (letrec ([z M]) (cons (Ad.z) (Az. (begin (set! z) z))))
(unbox M) — ((car M) 1)

(set-box! My, M) — ((edr My) M)

The analysis of these macro-expanded forms yields results are analogous to that produced by the
analysis described in this section for the original forms.

41

[, thus increasing the set of possible boxed values at 3. To insure that this effect
is reflected in the boxed values of «, we need to require that box(8) < box(a),
which implies box is also anti-monotonic. Hence the constraint o < (3 can hold if
and only if box(a) = box(f). In practice, this means that any two boxed values
that reach the same program point are unified. Unfortunately, our experience with
Soft Scheme [45] indicates that the results of unification-based analyses are often
unintuitive and difficult to explain.

In order to produce a more intuitive and accurate analysis, we introduce the notion
of split boxes', which uses the following two additional selectors for the analysis of

boxes:

1. a monotonic selector box™ that models how boxed values flow forward along
data-flow paths;
Selt = {...,box*}

and

2. an anti-monotonic selector box™ that models how the values assigned to boxes

flow backward along data-flow paths.
Sel™ = {...,box"}

Appropriate constraint derivation rules for the new syntactic forms, based on the
two selectors box* and box™, are described in figure 3.5. The rule (boz) introduces a
set variable ¢ to describe the set of values possibly contained in the newly constructed
box. The set expression box*(/3) describes values that are contained in the box, and
box~ () describes values that are assigned to the box. Both the initial value of the
box («) and any values assigned to the box (box™(/)) must be contained in §, and §
is contained in the set of values (box™(3)) that can be extracted from the box. The
rules (unbox) and (set-box!) are straightforward.

Proving the soundness of the new analysis is straightforward. The Replacement
(2.5.4), Value Typing (2.5.6), and Soundness (2.5.1) Lemmas are easily adapted to the
extended language, and the Subject Reduction for — Lemma (2.5.2) can be extended
with cases for the additional reduction rules. The set-based analysis function sba for

A’ is defined and computed in the usual fashion.

TThis idea was also independently discovered by Scott Smith and Valerie Trifinov, and by Francois
Pottier (private communications, ICFP’96), and earlier by Reynolds [40].

42

'EM:a, S ;
o <3 (box)
' (box M):3,S§US box™ () < §
§ < boxt(f)
'EM:a, S
° (unbox)
['F (unbox M) : 3,8 U {box™(a) < 5}
't MZ : Z’,SZ'
° (set-box!)

't (set—box! M1 Mg) : 6,81 U 82 U {Oég S bOX_(Oél),OéQ S 6}

Figure 3.5 Constraint derivation rules for boxes

3.6

Analysis of Units

Realistic programming languages typically have a module system to help organize

large software systems. In MzScheme [17], the module system is based on units [19].

In this section we consider the analysis of a simplified version of MzScheme’s unit

system. The language A* extends A' as follows:

M e A = (Expressions)
| (link" M M)
| (invoke M z)

V € Value = (Values)
| (unitt w1 DM wz)

A unit expression (unit’ w; D* M w,) consists of:

1.

2.

an identifying tag t;
a single imported assignable variable w;
a series of definitions D* binding assignable variables to syntactic values;

an expression M that may mutate those assignable variables, if required; and

43

5. an exported assignable variable w,.

Assignments to the imported variable are syntactically disallowed.

A link clause contains an identifying tag and two sub-expressions. These sub-
expressions should evaluate to units, which the link clause then combines into a
single (compound) unit. Both units and link clauses have identifying tags so that
MrSpidey can reconstruct the textual source of various unit values from the results
of the analysis. An invoke clause consists of an expression that should evaluate to a
unit, and an assignable variable that becomes the imported variable of the unit, after

which the definitions in the unit are evaluated in order.

3.6.1 Semantics

We specify the semantics of the new syntactic forms via the reduction rules:

(lil’lkt (unittl w1 DY M1 wz) (unittz) Wo D; M2 wg))
— (unit’ w; D¥.D; (begin My M) ws) (Biing)

(invoke (unit’ z D* M w) z)
— (letrec (D*) (begin M w)) (invoke)

The rule (3y;,,;.) for link expressions combines two units to produce a compound unit.
The imported variable of the compound unit is the imported variable of the first sub-
unit, the exported variable of the first sub-unit is connected to the imported variable
of the second sub-unit, and the exported variable of the second sub-unit becomes the
exported variable of the compound unit. The syntax (begin M; M;) is shorthand
for ((Nd.My) M), where d ¢ F'V[M,]. The rule (invoke) converts a unit value into
a letrec-expression, which is then evaluated as described in the previous section.
We augment the definition of evaluation contexts to permit evaluation of the sub-

expressions in link and invoke forms:
£=...](link' & M) | (link' V &) | (invoke & 2)

This semantics can easily be extended to handle mutually-recursive units by al-
lowing units to have two imported variables, such that a link clause connects the
exported variable of the first sub-unit to one of the imported variables of the second

unit, and vice-versa.

44

3.6.2 Analysis

The analysis of the extended language A" requires additional selectors ui and ue that

extract the imported and exported value sets of a unit:

Selt = {...,ue}
Selm = {...,ui}

The additional constraint derivation rules for the new syntactic forms are described
in figure 3.6. The rule (unit) for unit expressions introduces a number of additional
set variables, including a set variable v; for the imported variable wy; set variables
at,...,q, for the defined variables zy,..., z,; set variables (3y,..., 3, for the initial
values Vi,...,V,; and a set variable v denoting the result of the unit expression. The

rule (unit) then ensures that
o the set variable 4 includes the identifying tag ¢ of the unit;

e the imported value set of the unit is contained in the value set of the imported

variable;

e the value set of the exported variable wy is contained in the exported value set
of the unit; and

e the set variable 3; (describing V;) is contained in «; (describing z;).

The rule (link) ensures that the set variable o for the link expression includes
the identifying tag ¢; that the imported value set of the resulting compound unit is
contained in the imported value set of the first unit; that the exported value set of
the first unit is contained in the imported value set of the second unit; and that the
exported value set of the second unit is contained in the exported value set of the
resulting compound unit.

The rule (invoke) ensures that the value set of the argument variable is contained
in the imported value set of the unit; and that the exported value set of the unit
becomes the result value set of the invoke expression.

We extend the relation V' in X describing the set of run-time values represented
by an element X € D (relative to a given program) with the following additional

clause for unit values:

(unit' = D* M y) in (C,...) iff teC

45

IM=TU{w :y1,21 i apy .oy 20t}
MV :3,S;, fori=1,....n
"M vy, Sur

it
I'F (unit’ w, (define z; V;)...(define z, V) M wy) (unit)
t < v
. ui(y) <
PSHUSIUUS UG 2
Bi < o 1<i<n
F"MZﬁZ,SZ fori:1,2 .
PR, (link)
- , ui(e) < ui(f)
I'F (link" My M) : 0,5 US; U we(B) < ui(h)
ue(Fy) < ue(a)
'=M:p5.8
(invoke)

I'F (invoke M z): a,SU{I'(z) <ui(f), ue(f) < a}

Figure 3.6 Constraint derivation rules for units

The soundness proof for set-based analysis can be adapted to the extended lan-
guage.
3.7 Analysis of Classes

In this section, we outline the extension of set-based analysis to a simple class system.
Let A¢ be the following extension of A*:

M € A° =
| (class N (z1...2k) [2kt1 Vig1] .- [2n Va])
| (make-obj M)
| M.z

In the class expression:

(class N (z1...2k) [2e41 Vid1] .- [20 Vi)

46

N describes the super-class; z1,..., z, are instance variables inherited from that super-
class; and zgiq,..., 2, are additional instance variables in the new class. These new
instance variables are initialized to the values Vjiyy,..., V), respectively.

The special form (make-obj M) creates new objects of the class described by M.
Although the make-obj form does not allow arguments to be passed to the class, such
arguments can be simulated by extending the class with additional instance variables
that are initialized to the appropriate argument values. The special form M.z extracts

the value bound to the instance variable z in the object described by M.

3.7.1 Semantics

We do not provide a formal semantics for this class system. Instead, we refer the

interested reader to a paper on the formal semantics of a related class system [20].

3.7.2 Analysis

The analysis of programs in A¢ requires that we add a number of additional selectors
to the constraint language. For describing the behavior of class values, we introduce
an additional, monotonic selector, cl-obj(+), such that c1-obj(7) describes objects
produced by classes in 7.

We also introduce additional selectors for describing the behavior of objects.
Objects are similar to the assignable boxes of section 3.5, except that whereas boxes
have a single assignable field, an object may have multiple assignable instance vari-
ables. The analysis of boxes required two additional selectors, box* and box™, which
model how boxed values flow both forward and backward along data-flow paths. In
a similar manner, for each instance variable z, we introduce two additional selectors,
ivar} and ivar]. These additional selectors model how values for an instance vari-
able z of an object flow both forward and backward along the data-flow paths of the
object.

The additional constraint derivation rules for classes are described in figure 3.7.
The rule (class) is the most complex, and introduces a number of new set variables,

which have the following meaning:
e the set variable o, describes the super-class;

o the set variables 3y, ..., 3, describe the value set of the corresponding instance

variables zy,..., z,;

47

I'EN:a,S;
Ulz1: Bryeeszn: B F Vi, S fori=k+1,...,n (class)
I'F (class N (z1...2k) [2kt1 Viga] - [20 Va)) crass
cl-obj(as) < a,
ivar!(a,) < B
ca, S USpU---US, U G; < ivar;,(ozo)
v < B
a, < cl-obj(a)
I'EM:(3,8;s ,
. . (make-0bj)
I' F (make-obj M) : a,S U{cl-obj() < a}
I'EM:p3,8; .
't M.z:a,SU{ivar!(3) < a} (var)
Figure 3.7 Constraint derivation rules for classes
o the set variables y41,...,7, describe the value set of the corresponding initial-

ization expressions Viiq,...,V,; and
e the set variable a, describes objects of the new class.

The rule (class) first derives constraints for the super-class expression N, and then
derives constraints for each initialization expression V; in an appropriate derivation

context. It then ensures that:

e that the current object (a,) contains instance variable values defined in the

super class (as), via the constraint cl-obj(as) < ay;
e that the values in [3; for the instance variable z; reflect the values from «a,;

o that the initial value Vj, described by +;, is contained the value set described
by f3;; and

o that the resulting class, described by «, correctly refers to objects of the new

class, which are described by a,.

48

The rule (make-0bj) extracts the c1-obj(-) component from the set variable de-
scribing the class; and the rule (ivar) extracts the instance variable component from
the set variable describing the object.

We do not provide a soundness proof for the extended analysis, but we conjecture
the Subject Reduction for — Lemma (2.5.2) could be appropriately extended to the

new analysis, based on suitable rewriting semantics for the extended language.

49

Chapter 4

Using Set-Based Analysis for Static Debugging

The constraint system inferred by set-based analysis provides information about the

behavior of the analyzed program. MrSpidey uses this constraint system to:

e compute a compact and intuitive value set invariant, or type, for each expression

in the program; and
o identify potentially unsafe program operations.

This chapter describes how this information is inferred from the results of the analysis.

4.1 The Type Language

The simple constraint system computed by set-based analysis is not suitable for pre-
sentation to the programmer. Simple constraint systems are well-suited for efficiently
representing and manipulating information about a program’s run-time behavior, but

are difficult for programmers to interpret, for two reasons.

e The constraints are expressed in terms of “selectors”, instead of the conventional

“constructors”, which are familiar to most programmers.

e Simple constraint systems use set variables extensively as indirection pointers.
For example, the constraint o < rng(rng(/3)) is represented as the simple con-
straint system {o < rng(v),v < rng(3)} with an indirection through ~. This

extensive use of indirections makes constraint systems difficult to interpret.

To avoid the need for programmers to interpret constraint systems, MrSpidey uses
a conventional type language for communication with programmers. We present the
type language in the context of the programming language AP described in section 3.2.
This type language includes constants, set variables, the empty type L, functions,
pairs, unions and recursive type definitions: see figure 4.1. The scope rules for recur-

sive type definitions are analogous to Scheme’s letrec construct. The notions of free

50

and bound variables in types are defined in the usual manner, and we use Type® to

denote the set of closed types.

w € Type = c

|

| L

(@ =7 w)

| (cons w w)

| wUw

| (rec ([og wi] ... [on wy]) W)
T C FnTag

Figure 4.1 The type language Type.

The semantics of closed types is specified via the meaning function M that maps
each closed type into D. The semantics of open types is specified via a related function
M, where the additional set environment p specifies the meaning of the free variables
in the type. These two functions are defined in figure 4.2. The semantics of the types

¢, a, and 1, are straightforward. The type (w; —7

wy) denotes an element of D
with function tags T and whose dom and rng components are described by wy and ws,
respectively. The type (cons w; wy) denotes an element of D with whose car and cdr
components are denoted by w; and w,, respectively. The type wyUwsy denotes the union
(or least upper bound) of wy and wy. The recursive type (rec ([oq wi] ... [a, wy]) w)
denotes the element of D described by w, where each «; is bound to the element

denoted by w;.

4.2 Computing Type Information

MrSpidey infers a type for each program expression from the constraint system S
computed by set-based analysis. The least solution LeastSoln(S) of this constraint
system is a set environment mapping set variables to elements of the domain D.
For each labeled expression M' in the program, LeastSoln(S)(l) describes the set of

possible run-time values of M'. To communicate this value set to the programmer,

51

M) : Type® — D
Mlw] = M,[u]
(the choice of p does not affect the defn.)

M.]]: Setbnv x Type — D

Mylel = ({e}, Ls, L, L, L)
Mle] = pla)
M,[L] = L,
Myfwr =T w)] = (T.plwr), p(wn), L, Ls)
M[(conswy wa)] = ({pair}, L, Ly, M, [wi], M,[ws])
Mylwi Uwy] = Mw] Uy M,Jw,]
M(rec ([ar @] - Jon wi]) @)l = My[w]

where p" = Ifp(Ap. ploi = M, [wi]])
under the ordering C;

Figure 4.2 The semantics of types.

MrSpidey computes a type invariant describing LeastSoln(S)(l) from the program’s

constraint system. This type invariant is computed in three steps.

Step 1

MrSpidey first uses one of the simplification algorithms from section 6.4 to simplify
the constraint system S with respect to the external variable [, while preserving

LeastSoln(S)(1).

Step 2

MrSpidey then computes a type from the simplified constraint system according to

the function MkType : SimpleConSystem x SetVar —s Type®:

MkType(S,a) = (rec ([ag wi] ... [on wya]) @)
where {aq,...,a,} = SetVar(S)
and w; = MkType'(S, a;)

The auxiliary function MkType’ maps a constraint system S and a set variable o; to

an open type that may refer to other set variables from &. The function MkType

52

then links the open types for each set variable in S together in a single rec type, thus
producing an appropriate closed type.
The auxiliary function MkType' : SimpleConSystem x SetVar — Type is defined

as:
MkType'(S,a) = wy,Uw,Uwy;

where wy = {b€ BasicConst | Steob<a}

Wp

(cons wear Wear)
Wear = {0]|SFte B <car(a)}
wear = {0]|SFte B <cdr(a)}
wi = (Wdom —T wrng)
T = {teFnTag | Stet<a}
wam = {88 Fo a; < 5,0 < don(s)}

: wemg = {B|SFte B <rngla)}
The auxiliary function MEkType’ returns a union of three types. The first type wy
describes the basic constants in LeastSoln(S)(a); the second type w, describes pairs
in LeastSoln(S)(«a); and the last type w; describes the function tags and argument
and results sets in LeastSoln(S)(a). In the definition above, we use a set of types to
denote the corresponding union type, i.e., the set of types {w,wy, w3} denotes the
union type wy; Uwsy Uws, and the empty set denotes the type L.
The type produced by MkType(S, a) correctly describes LeastSoln(S)(«).

Lemma 4.2.1 (Correctness of MkType). 1f S is a simple constraint system then:

M[MkType(S,)] = LeastSoln(S)(«)

Proof: See Appendix B.1. n

33

Step 3

Finally, MrSpidey uses the following reductions on Type to simplify type expressions.

wUl, — w
l;Uw — w
(cons Ly L) — L,
(L, =2 1) — 1,
(rec () w) — w
(rec ([wi] ... o, wy]) w) —
(rec ([o wi] ... oy wicq][@ipr Wig1] .. [an wi]) w)[ou — wi]

provided «; & SetVar(w;)

MrSpidey produces a type that is in normal form with respect to these reductions,

each of which preserves the meaning of type expressions.

Lemma 4.2.2 (Correctness of Type Reductions). If w; — wy then M Jwi] =

M, [ws] for any set environment p.
Proof: By case analysis on the reductions w; — ws.

The type produced by this three-step processes provides a compact description of
the corresponding value-set invariant, and is more easily understood by the program-

mer than the original constraint system produced by set-based analysis.

4.3 Identifying Unsafe Operations

Unsafe program operations are a natural starting point in the static debugging pro-
cess. MrSpidey identifies these unsafe operations using the results of set-based anal-
ysis. We consider the problem of identifying unsafe operations in the language AP.
To identify these unsafe operations, MrSpidey considers in turn each operation in the

program.

e Suppose the operation is of the form (car M'). Then MrSpidey considers the
set of constants {c | [¢ <[] € S}, where S is the constraint system for the
program closed under ©. If this constant set only contains the tag pair, then,
according to the definition of the relation V in X, the value set invariant for
M" contains only pairs. Hence the operation (car M') is safe, and can never

raise an error during an execution.

54

Conversely, if the constant set contains additional constants such as function
tags or basic constants, then the expression M’ may return values other than
pairs, in which case operation (car M') is unsafe, since it may raise an error at

run-time.
e Operations of the form (edr M') are dealt with in a similar manner.

e Suppose the operation is an application of the form (M! N). If the constant
set {c | [e < 1] € 8} for M" only contains function tags, then M' only returns

functions, and the application will always succeed.

Conversely, if the constant set contains additional constants such as basic con-
stants or the tag pair, then M! may return values other than functions. Hence

the application unsafe, and may raise an error at run-time.

Since car, cdr and function application are the only operations in the language
that may cause errors in AP, the above analysis will identify all unsafe operations.
Appendix E.5 describes how MrSpidey extends this idea to detect unsafe opera-

tions in full Scheme.

Hb)

Chapter 5

User Interface to the Static Debugger

A useful static debugger must fit seamlessly into a programmer’s work pattern, and
should provide the programmer with useful information in a natural and easily ac-
cessible manner. For these reasons, we integrated MrSpidey with DrScheme, Rice’s
program development environment for Scheme.

On demand, MrSpidey analyzes the current project and uses the resulting con-

straint systems to infer useful static debugging information. Specifically, MrSpidey:

1. identifies unsafe program operations;
2. derives an appropriate type for each program expression; and

3. provides a graphical explanation of each derived invariant.

MrSpidey presents this information to the programmer using program mark-ups.
These mark-ups are simple font and color changes that provide information about the
analysis results without disturbing the familiar lexical and syntactic structure of the
program. Additional information is available via a pop-up menu associated with each
marked-up token. The programmer can thus browse through the derived information,
and can resume program development based on an improved understanding of the

program’s execution behavior.

5.1 Displaying Unsafe Operations

Unsafe program operations that may raise run-time errors are natural starting points
in the static debugging process. MrSpidey highlights these unsafe operations via font
and color changes. Any primitive operation that may be applied to inappropriate
arguments, thus raising a run-time error, is highlighted in red (or underlined on
monochrome screens). Conversely, primitive operations that never raise errors are
shown in green. Any function definition that may be applied to an incorrect number of

arguments is highlighted by displaying the lambda keyword in red (again, underlined

56

on monochrome screens), and any application expression where the function position
may yield a non-function is highlighted by displaying the enclosing parentheses in red
(or underlined). Figure 5.1 contains an example of each of these three kinds of unsafe
operations.

MrSpidey also presents summary information describing each unsafe operation,
together with a hyper-link to that operation. The tab key moves the focus forward
to the next unsafe operation, and the shift-tab key moves the focus backward to
the previous unsafe operation. By using these facilities, the programmer can easily

inspect the unsafe operations in a program.

% MrS3pidey: sum.ss = =] B3
File Edit Show Clear Filter
; Sum. ss -
7 Sums leaves in a binary tree
{define sum
{lambda {tree) ; bLpplied to bad # arguments
{if (number? tree) ; number? is =safe
tree
{(+ {sum {(car tree)) ; Unsafe car will orash
{sum {cdr tree)))))) ; Zafe odr, =since
; car wvalidates tree
{sum {cons {cons nil 1) 2)) ; Bad tree => error on car
{sum) ; bLpplies sum to bad # args
{'not-a-function 5 ; Invoking a non-functicon !
[[]
CHECKS ¢

Arity check in file "sum.z=" line &
car check in file "sum.z=" line 9
Application check in file "sum,==" line 17

TOTA ST, . - F S N Sy T R o L I L T a Y

Figure 5.1 Identifying unsafe operations

5.2 Pop-Up Menu

MrSpidey also provides a significant amount of additional information for each ex-

pression in the analyzed program. This information cannot be immediately displayed,

57

since it would simply result in “information overload”. Instead, MrSpidey provides
this information on a demand-driven basis via a pop-up menu associated with each
program variable and expression. Figure 5.2 shows the pop-up menu displayed by
clicking on the variable tree. The information available through the menu is described

in the following sections.

% MrSpidey: sum.ss =] E3
File Edit Show Clear Filter

[sum.=s -
; sums leaves in a binary tree

{define (sum tree)
{if (number? tree)
tree
{+ {sum {car tree))
{sum {cdr show value set

{sum {(cons {cons Parents

A ncestors

Path to Source

Figure 5.2 The pop-up menu

5.3 Presenting Type Information

MrSpidey lazily computes a type for each program expression, as described in sec-
tion 4.2. The selection of the Show Value Set option from an expression’s menu causes
MrSpidey to compute the corresponding type, and to display that type in a box in-
serted to the right of the expression in the buffer. For example, figure 5.3 shows the

inferred type for the variable tree.

38

% MrSpidey: sum.ss =] B3
File Edit Show Clear Filter

[sum.=s —
7 Sums leaves in a binary tree

{define (sum tree)
{if (number? tree)
tree

{+ {sum {(car tree|{uniocn {(cons {(cons nil num) num; [}
fcons nil num)
nil)

{sum {cdr tree)))))

{sum {cons {cons nil 1) 2))

Figure 5.3 Displaying type information

5.4 The Value Flow Browser

During the constraint derivation phase of the set-based analysis, MrSpidey infers
subset constraints of the form [a <] that describe the flow of values between
various points in the program.

Since the type invariant of an expression is derived from the values propagated
along the incoming subset constraints to that expression, the collection of all subset
constraints for a program provides an explanation of the derivation of type invariants
for that program. MrSpidey can display each subset constraint as an arrow overlaid
on the program text. Because a large numbers of arrows would clutter the program
text, these arrows are presented in a demand-driven fashion. The Parent option in
the pop-up menu for an expression allows the programmer to view incoming edges for
that expression in the value-flow graph. For example, figure 5.4 shows the incoming
edges for the parameter tree.

Hyper-links associated with the head and tail of each arrow provide a fast means of
navigating through textually distinct but semantically related parts of the program,
which is especially useful on large programs. Clicking on the head of an arrow moves

the focus to the term at the tail of the arrow, and vice versa.

39

% MrSpidey: sum.ss =] E3
File Edit Show Clear Filter

[sum.=s -
; sums leaves in a binary tree

{define (sum tree)
{if (numbe tree)

tree

{+ {su c¢ar tree|i{union f(cons (cons nil num) num) [}
fcons nil num)
nil)

cdr tree)))})

{sum fcons {cons nil 1} 2))

Figure 5.4 Value source information

Using these facilities, a programmer who encounters a surprising value set invari-
ant can proceed in an iterative fashion to expose arrows that describe the derivation of
that invariant. To expedite this iterative process, MrSpidey also provides an Ancestors
facility that automatically exposes all portions of the value flow graph that influence
a particular invariant, thus providing the programmer with a complete explanation
of the derivation of that invariant. For example, figure 5.5 shows the ancestors of the
argument variable tree.

In some cases, the number of arrows presented by the ancestor facility is exces-
sive. Since the programmer is typically only interested in a particular class of values,
MrSpidey incorporates a filter facility that allows the programmer to restrict the dis-
played arrows to those that affect the flow of certain kinds of values. This facility is
extremely useful for quickly understanding why a primitive operation may be applied
to inappropriate argument values. Figure 5.6 shows how to configure the filter facility
to consider only values corresponding to a particular constructor.

By using an appropriate combination of the ancestor and filter facilities, the pro-

grammer can quickly view the flow of a particular class of value through the program.

60

% MrSpidey: sum.ss =] B3
File Edit Show Clear Filter
; Sum. ss -
; Sums leaves in a binary tree
{define (sum gtree)
{if {(numb ree)
tree ig
{+ {sum Jcar“tree))
dr tree))))
{sum 3
Figure 5.5 Ancestors of tree
% MrSpidey: sum.ss =] B3

File Edit Show Clear Filter

; sum. =8 4 Mo filter
;o 2ums leaves in g

w4 MUm
Ldswm

w4 ST

4 woid

. undefined
i True

. false

wd DO

4 TONs

iveC

Figure 5.6 Configuring the filter facility

For example, figure 5.7 shows the derivation of the nil component in the value set

invariant for tree.

Finally, MrSpidey also provides Children and Descendants options on the pop-up

menu for each expression. These options allow the programmer to view possible uses

of the expression’s return value.

61

% MrSpidey: sum.ss =] B3
File Edit Show Clear Filter

[sum.=s —
7 Sums leaves in a binary tree

{define (sum gtree)
{if (numbe ree)
tree

{+ {sum Jcar tree|{uniocn {cons {(cons nil num) num;} [}
fcons nil num)
nil)

{sum {c treel))}

{sum {cons {cons 'pil 1) 2))

Figure 5.7 Flow of nil

5.5 A Sample Debugging Session

To illustrate how the explanatory capabilities of MrSpidey can be used to identify
and eliminate bugs, we describe how this tool could be used on the program sum.ss.
When MrSpidey is invoked, it highlights the primitive operation car as unsafe (see
Figure 5.1), indicating that this operation may raise a run-time error. Inspecting
the type invariant for the operation argument, tree, shows that this set includes
the inappropriate argument nil (see Figure 5.3). By using the ancestor and filter
facilities, we can view how this erroneous value flows through the program, resulting
in the display shown in figure 5.7. The displayed information makes it obvious that
the error is caused by application of sum to the ill-formed tree (cons (cons nil 1) 2).

Although the example program sum presented in this section is trivial, it does
provide a good example of the explanatory capabilities of MrSpidey. Before we can
discuss how MrSpidey’s explanatory capabilities scale to significantly larger programs,
we must first deal with the problem of analyzing those larger programs, which is the

topic of the following two chapters.

62

Chapter 6

Constraint Simplification

The traditional set-based analysis described in chapters 2 and 3 has proven highly
effective for programs of up to a couple of thousand lines of code. Unfortunately,
it is useless for larger programs due to its nature as a whole-program analysis and
due to the size of the constraint systems it produces, which are quadratic in the
size of (large) programs. Storing and manipulating these constraint systems can be
extremely expensive.

To overcome this problem, we have developed algorithms for simplifying con-
straint systems. A simplified version of a constraint system contains significantly
fewer constraints, yet still preserves the essential characteristics of the original sys-
tem. Applying these simplification algorithms at strategic points during the con-
straint derivation, e.g., to the constraint system for a module definition or a poly-
morphic function definition, significantly reduces both the time and space required
by the overall analysis.

The following section shows that constraint simplification does not affect the anal-
ysis results, provided the simplified system is observably equivalent to the original
system. Section 6.2 presents a proof-theoretic formulation of observable equivalence,
and section 6.3 exploits this formulation to develop a complete algorithm for decid-
ing the observable equivalence of constraint systems. The insights provided by this
theoretical development lead to the practical constraint simplification algorithms of

section 6.4.

6.1 Conditions for Constraint Simplification

Let us consider a program P containing a program component M, where M may
be a module definition or a polymorphic function definition. Suppose the constraint

derivations for M concludes:

I'eM:a S

63

where &p is the constraint system for M. Our goal is to replace &1 by a simpler
constraint system, say Sy, without changing the results of the analysis.

Let the context surrounding M be C, ie., P = C[M]. Since the constraint
derivation process is compositional, the constraint derivation for the entire program

concludes:

@I—P:ﬁ,SCUSl

where S¢ is the constraint system for /. The union of the sets S¢ and §; describes
the space of solutions for the entire program, which is the same as the intersection of

the two respective solution spaces:
Soln(Sc U 81) = Soln(Sc) N Soln(S)

Hence Soln(Sy) describes at least all the properties of Sy relevant to the analysis, but
it may also describe solutions for set variables that are not relevant to the analysis.

In particular:
e sba(P) only references the solutions for label variables; and

e an inspection of the constraint derivation rules shows that the only interactions
between S¢ and &; are due to the set variables in {a} U F'V[range(T')].

In short, the only properties of S; relevant to the analysis is the solution space for its

external set variables:
FE = Label U {a} U FV[range(T)]

For our original problem, this means that we want a constraint system S, whose

solution space restricted to F is equivalent to that of S restricted to F:
Soln(S1) |g = Soln(Ss3) |&
or, with the notation from section 2.2, §; and S, are observably equivalent on F:
S1 % Sy

We can translate this compaction idea into an additional rule for the constraint

derivation system:

ke M:a,8 S1 g Sy where E = Label U F'V[range(I')] U {a}
'Fa M:a,S,

(=)

64

This rule is admissible in that any derivation (denoted using F~) in the extended con-
straint derivation system produces information that is equivalent to the information

produced by the original analysis.
Lemma 6.1.1 (Admissibility of (22)). {0 F~ P:«a,S is a most general constraint

derivation then:

sba(P)(l) = const(LeastSoln(S)(1))

Proof: See Appendix C.1. »

6.2 The Proof Theory of Observable Equivalence

~J

Since the new derivation rule () involves the semantic notion of observably equiv-
alent constraint systems, it cannot be used in an algorithmic manner. To make this
rule useful, we must first reformulate the observable equivalence relation (or some
conservative approximation thereof) as a syntactic proof system.

The key properties of the observational equivalence relation are reflections of the
reflexivity and transitivity of the ordering relation (C) and the monotonicity and
anti-monotonicity of the functions rng and dom, respectively. We can reify these
properties into a syntactic proof system via the following inference rules A:

T <T TST K1 < K2
a<a (reflex) (trans.) (compat)
71 < Ty rog(k1) < rng(kz)

dom(ky) < dom(ky)

The meta-variables k, k1, kK range over non-constant set expressions:
K,K1,k2 = a | dom(k) | rng(k)

This restriction avoids inferring useless tautologies. For example, without this restric-
tion, the constraint ¢ < o would yield the constraint rng(c) < rng(a) via (compat),
which is a tautology since rng(c) = L.

The rules (reflex) and (trans,) capture the reflexivity and transitivity of the or-
dering relation C; (compat) reflects the monotonicity and anti-monotonicity of the
functions rng and dom, respectively. Since many of the inferred constraints lie out-
side of the original language of simple constraints, we define an extended compound

constraint language that includes all of the inferred constraints:

C € CmpdConstraint = ¢<k|r<k
S € CmpdConSystem = Pq.(CmpdConstraint)

65

We use the boldface roman letters C and S as meta-variables ranging over compound
constraints and compound constraint systems, respectively.
The proof system A completely captures the relevant properties of the ordering

C and the functions rng and dom. That is, A is both sound and complete.

Lemma 6.2.1 (Soundness and Completeness of A). For a compound constraint

system S and a compound constraint C:

SFAC «— SEC

Proof: See Appendix C.2. »

This lemma implies that A(S) contains exactly those compound constraints that
hold in all environments in Soln(S). Hence, if we consider a collection of external
set variables F, then A(S) |g contains all compound constraints that hold in all

environments in Soln(S) |g. Therefore the following lemma holds.
Lemma 6.2.2 For a compound constraint system S, S 2 A(S) |5.
Proof: See Appendix C.2. »

We could use this result to define a proof-theoretic equivalent of restricted entail-

ment as follows:
S FX Sy if and only if A(S)) |z 2 A(Sy) |k

and then show that &; l—g Sy if and only if §; Er S;. However, this definition
based on the proof system A does not lend itself to an efficient implementation.
Specifically, checking if two potential antecedents of (¢rans;) contain the same set
expression 7 involves comparing two potentially large set expressions. Hence we
develop an alternative proof system that is more suitable for an implementation, yet
infers the same constraints as A.

The alternative system consists of the inference rules W described in figure 6.1,
together with the rules © from figure 2.3. The rules (compose, ,) of W replace
a reference to a set variable by an upper or lower (non-constant) bound for that
variable, as appropriate. The rules (reflex) and (compat) of U are as described above.
The rule (trans,) of U provides a weaker characterization of transitivity than the
previous rule (trans,), but, provided we start from with a simple constraint system,

the additional rules, ® and (compose; ,), compensate for this weakness. That is,

66

o < rng(n) (compose,)

a < dom(/3) B>k
o < don() (compose,)

a > rng(f) B>k
o> rog(n) (composes)

a > dom(/3) B <k
o> don() (compose,)
a<a reflex
< (reflex)

<« a < Ty
< (trans,)
k1 < kK

Lo (compat)

Figure 6.1 The inference rule system W

suitable combinations of these additional rules allow us to infer any constraint that

could be inferred by the rule (trans.).

Lemma 6.2.3 (Fquivalence of Proof Systems). For a simple constraint system S:
A(S) =T0(S)

Proof: See Appendix C.2. »

We could use this result to define a proof-theoretic equivalent of restricted entail-

ment as follows:
S Fhg Sy if and only if UO(S)) |z D ¥O(S,) |k

and then show that & l—ge Sy if and only if §; Er S;. However, this definition

is needlessly inefficient. Because (compat) does not eliminate any variables, any

67

(compat)-consequent in WO(S,) |z is subsumed by its antecedent. If we define:
I =W\ {compat}

then this argument implies that VO(Sz) |g = 110(S;) |g. Hence we get the following
lemma.

Lemma 6.2.4 VO(S) |p = 11O(S) |E.

Proof: See Appendix C.2. »

Together, Lemmas 6.2.2, 6.2.3 and 6.2.4 provide the basis to introduce proof-

theoretic equivalents of restricted entailment and observable equivalence.

Definition 6.2.5. (Hf]@, :ff]@)
o S\ Fhg Sy if and only if UO(S)) |g D 1O(S,) |&,
o S =k Syifand only if §; FEg S, and S, Fig Si.

The two relations Ffg and =E£g completely characterize restricted entailment and

observable equivalence of constraint systems.

Theorem 6.2.6 (Soundness and Completeness of FE o and =54).
1. S Fhg S,y if and only if §; =g Ss.

2. & 259 Sy if and only if S; =g Ss.

Proof: See Appendix C.2. »

6.3 Deciding Observable Equivalence

While the relation =% completely characterizes the model-theoretic observable equiv-
alence relation =g, an implementation of the extended constraint derivation system
needs a decision algorithm for =J.

Given two simple constraint systems §; and Sy, this algorithm needs to verify that
VO(S1) |g = VO(S2) |g. If S; and Sy are first closed under ©, then the algorithm
only needs to verify that U(S1) |z = U(Sz2) |g. The naive approach to enumerate

and to compare the two constraint systems U(S;) | and ¥(Sz) |g does not work,

68

since they are typically infinite. For example, if S = {a < rng(a)}, then ¥(S) is the
infinite set {o@ < rng(a), @ < rng(rng(a)),...}.
Fortunately, the infinite constraint systems inferred by W exhibit a regular struc-

ture, which we exploit to decide observable equivalence as follows:

1. We generate regular grammars describing the upper and lower bounds for each

set variable.

2. We extend these regular grammars to regular tree grammars (RTGs) describing
all constraints in TI(Sy) |g and II(Sz) |g. This representation allows us to use
a standard RTG containment algorithm to decide if 1I(S1) |z 2 T(S2) |&-

3. Based on the RTG containment algorithm, we develop an extended algorithm
that decides the more difficult entailment question ¥U(Sy) |z 2 1(S2) | by

allowing for the additional (compat) inferences on Sj.

By checking entailment in both directions, we can decide if two constraint systems

are observably equivalent. These steps are described in more detail below.

6.3.1 Regular Grammars

Our first step is to describe, for each set variable o in a simple constraint system &,

the following two languages of the lower and upper non-constant bounds of a:

{k | [k <a] €lI(S) and SetVar(x) C E}
{k | [a < k] €TI(S) and SetVar(x) C E}

These languages are generated by a regular grammar. For each set variable «, the
grammar contains the non-terminals oy, and ag7, which generate the above lower and
upper bounds of «a, respectively.

To illustrate this idea consider the program component P = (My.((Mz.1) y)),
where f and g are function tags, and take £ = {af}. The constraint system Sp for
P (closed under ©) is described in figure 6.2, together with the productions in the
corresponding regular grammar. This grammar describes the upper and lower non-
constant bounds for each set variable in II(Sp) |g. For example, the productions:

oy = of
o+ dom(af})

P P
OéUP—>Oé

69

imply that o} —* dom(ap). This lower bound for means that the value set for

must include all values to which the function P is applied.

Additional productions
Constraints Sp Grammar G,(Sp, F) in G¢(Sp, E)
7 < o R [f <af]
dom(af) < a® af +— dom(ey;)
1 < ot R [1 < a}]
ol < rglal) [ab o rnglad)
mg(ef) < a® | af > mglal)
ay < o afy = ol ol oy
a” < dom(af) |a}, — dom(af)
g < af R [g < af]
dom(af) < ¥ oY+ dom(af))
0t < mga?) |af — rmglal)
o < a” ag; af af —al
al < a® af = afy af —ak
1 < a° R [1<al]
af s af af=af | R o < ap] Va € SetVar(Sp)

Figure 6.2 The constraint system, regular grammar, and
regular tree grammar for P = (My.((Mz.1) y))

The productions of the grammar are determined by Sp and II. For example,
the constraint [a! < rng(af)] € Sp implies that for each upper bound of o,
the rule (compose,) infers the upper bound rng(x) of a'. Since, by induction, a/’s
upper bounds are generated by oz{], the production af; — rng(oz{]) generates the
corresponding upper bounds of a'.

More generally, the collection of productions:

{av > rog(Bv) | [a < rng(F)] € S}

describes all bounds inferred via (compose,) on a simple constraint system . Bounds
inferred via the remaining (compose) rules can be described in a similar manner.
Bounds inferred via the rule (reflex) imply the productions oy +— o and af — «
for a € E. Finally, consider the rule (trans,), and suppose this rule infers an upper
bound 7 on «a. This bound must be inferred from an upper bound 7 on 3, using the
additional antecedent [a < f#]. Hence the productions {ay — Gy | [a < 5] € S}

70

generate all upper bounds inferred via (trans,). In a similar fashion, the productions

{Br, = ar, | [o < 3] € S} generate all lower bounds inferred via (trans,).
Definition 6.3.1. (Regular Grammar G.(S,F)) Let S be a simple constraint

system and F a collection of set variables. The regular grammar G, (S, F') consists of

the non-terminals {ar, ay | a € SetVar(S)} and the following productions:

oy oa, ag, = a Vackl

ay = By, Br, — ar, Viae<ples

ay — dom([3r,) Vo <dom(B)] €S
ay — rag(fu) Vo <rng(B) €S
B, — dom(ay) V [dom(ar) < B] € S
81 > englar) V [rng(o) < 6] € S

The grammar G,.(S, F) generates two languages for each set variable that describe
the upper and lower non-constant bounds for that set variable. Specifically, if —F,
denotes a derivation in the grammar (7, and L (2) denotes the language {7 | 2 —¢, 7}

generated by a non-terminal x, then the following lemma holds.

Lemma 6.3.2 Let G = G, (S, E). Then:

La(ar) = {k|[rk <a] €ll(S) and SetVar(rk) C E}
Lolay) = {r]|[a <k] €ll(S) and SetVar(xk) C E}

Proof: See Appendix C.3. n

6.3.2 Regular Tree Grammars

The grammar G, (S, E) does not describe all constraints in TI(S) |g. In particular:

e (.(S, F) does not describe constraints of the form [¢ < 7]. Thus, for example,
the regular grammar for the example program component P does not describe
the constraint [1 < rng(a®)] in TI(Sp) |-

e (.(S,F) does not describe constraints inferred by the (trans,) rule that are
not bounds of the form [k < a] or [0 < k]. To illustrate this idea, consider the

program () = (Mz.x) whose constraint system is:

So = {t < a®,dom(a?) < ", a” < rng(a?)} .

71

The regular grammar (,(Sg, F) for Q describes the constraints {dom(a?) <
a”, a® < rng(a®?)} in 11(Sg) |k, but it does not describe the trans, consequent
[dom(a?) < rng(a?)] of those constraints, which is also in TI(Sg) |z

For an arbitrary constraint system &, we represent the constraint system II(S) |g
by extending the grammar G.(S, F) to a regular tree grammar G4(S, F). The ex-
tended grammar combines upper and lower bounds for set variables in the same
fashion as the (trans,) rule, and also generates constraints of the form [¢ < 7] where
appropriate.

Definition 6.3.3. (Regular Tree Grammar Gy(S,FE)) The regular tree gram-
mar G4(S, F) extends the grammar G, (S,) with the root non-terminal R and the

additional productions:

R [ar, < ap] Vo€ SetVar(S)
R~ [c < ay] Vie<ales

where [- < -] is viewed as a binary constructor. u

The extended regular tree grammar G4(S, F) describes all constraints in TI(S) |g.
Lemma 6.3.4 Let G = G(S, E). Then II(S) |r = La(R).
Proof: See Appendix C.3. n

The grammar G4(Sp, /) for the example program component P is described in
figure 6.2. This grammar yields all constraints in II(Sp) |g. For example, the pro-
ductions:

R— [l <af] of; + rog(at;) ab = af

imply that R +* [I < rng(a®’)], or that the constant 1 is returned as a possible result
of the function P.

6.3.3 Staging

Before we can exploit the grammar representation of II(S) |z, we must prove that the
closure under @ UTTU {compat} can be performed in a staged manner. The following
lemma justifies this staging of the closure algorithm. In particular, it states that Il
does not create any additional opportunities for rules in ©, and (compat) does not

create any additional opportunities for Il or 0.

72

Lemma 6.3.5 (Staging). For any simple constraint system S:

VO(S) = ¥(O(S)) = compat(11(O(S)))

Proof: See Appendix C.3. n

6.3.4 The Entailment Algorithm

We can check entailment based on lemmas 6.3.4 and 6.3.5 as follows. Given &; and

83, we close them under © and then have:

Sy Hhe Si
VO(S,) |g 2 O(Sy) |k by defn FE o
U(O(S2)) |g 2 T(O(S1)) | by lemma 6.3.5
U(Ss) |g 2 H(S1) |& as S; = 0(S))
compat(11(S3) |g) 2 H(S1) |z by lemma 6.3.5
compat(La,(R)) D Lo, (R) by lemma 6.3.4
where G; = G4(S;,)

1111y

The containment question:

’CG2 (R) 2 ’CGl (R)

can be decided via a standard RTG containment algorithm [21]. To decide the more
difficult question:
compat(La,(R)) 2 La, (R)

we extend the RTG containment algorithm to allow for constraints inferred via
(compat) on the language L, (R).

The extended algorithm is presented in figure 6.3. It first computes the largest
relation Rg, s, such that Rs, s,[or, Bu, C, D] holds if and only if:

L([ar < Bu]) C compat(L(C)) U L(D)

where ap, B describe collections of types; €', D describe collections of constraints;
and L([ag, < Bu]) denotes the language {[r, < 7] | ar —=* 7, Bu —=* 7w}. The
first case in the definition of R uses an RTG containment algorithm to detect if

L([ar, < pu]) C L(C)U L(D). The two remaining cases handle constraints of the

form [rng(a}) < rng(fy)] or [dom(ar;) < dom(531)], and allow for inferences via

73

The Entailment Algorithm

In the following, Pg, denotes the finite power-set constructor.

Let:
Gi = Gi(S1,F) L; = {op| o€ SetVar(S;)}
Gy = Gt(827E) U, = {OéU | o€ SetVar(Si)}

Let Gy and (G5 be pre-processed to remove e-transitions.

For C' € Py, (Lo x Uy), define:
Ly (C) = Al < 7] | (ar, fv) € C, ar =a, T, Bu—a, U}
The relation Rg, s,[-, -, -,] is defined as the largest relation on
L1 X Uy X Pan(La X Ug) X Pan(La x Us)
such that if:

R$1,$2[aL7ﬁU707 D]
oy, —a, X
v —a, Y

then one of the following cases hold:
1. Lo, ([X <Y]) C L, (CUD).
2. X =rng(a}), Y = rng(fy) and Rs, s, By, C, D], where
D" ={(y1,,90) | (v2,00) € CUD,y1 —q, rng(v1), v —a, rog(dy)}
3. X =dom(ay;), Y = dom(f}) and Rs, s,[07, o1, C, D], where
D" ={(0L,v) | (v2,00) € C'UD,y1 —q, dom(yy), 6u —rc, dom(d7,)}
4. In no other cases does Rs, s,[ar, fur, C, D] hold.
The computable entailment relation Sy I—ﬁg Sy holds if and only if:
1. VR »q, [ar, < ayl. Rs, s, [on, av, {{(yr,vu) | v € SetVar(S2)}, 0], and

2. VR =g, [c < avl. La, (av) C L, {w | R=a, [e <qul}).

Figure 6.3 The computable entailment relation l—ﬁg

74

(compat). The relation R can be computed by starting with a maximal relation (true
at every point), and then iteratively setting entries to false, until the largest relation
satisfying the definition is reached.

Based on this relation, the algorithm then defines a computable entailment relation
i

; on constraint systems. This relation is equivalent to HE,

Theorem 6.3.6 (Correctness of the Entailment Algorithm). S, FL Sy if and only
if S Fli, Si.

Proof: See Appendix C.4. n

The entailment algorithm takes exponential time, since the size of R is exponential
in the number of set variables in S;. Although faster algorithms for the entailment
may exist, these algorithms must all be in PSPACE, because the containment prob-
lem on NFA’s, which is PSPACE-complete [1], can be polynomially reduced to the
entailment problem on constraint systems.

By using the entailment algorithm in both directions, we can now decide if two
constraint systems are observable equivalent. Thus, given a constraint system, we
can find a minimal, observably equivalent system by systematically generating all
constraint systems in order of increasing size, until we find one observably equivalent
to the original system. Of course, the process of computing the minimal equivalent
system with this algorithm is far too expensive for use in practical program analysis

systems.

6.4 Practical Constraint System Simplification

~J

Fortunately, to take advantage of the rule (%) in program analysis algorithms, we
do not need a completely minimized constraint system. Any simplifications in a
constraint system produces corresponding reductions in the time and space required
for the overall analysis.

For this purpose, we exploit the connection between constraint systems and RTGs.
By Lemma 6.3.4, any transformation on constraint systems that preserves the lan-
guage:

L, os),5)(R)

also preserves the observable behavior of & with respect to F. Based on this obser-
vation, we have transformed a variety of existing algorithms for simplifying regular

tree grammars to algorithms for simplifying constraint systems. In the following

75

subsections, we present the four most promising algorithms found so far. We use
G to denote G4(S,F), and we let X range over non-terminals and p over paths,
which are sequences of the constructors dom and rng. Fach algorithm assumes that
the constraint system S is closed under ©. Computing this closure corresponds to
propagating data-flow information locally within a program component. This step is
relatively cheap, since program components are typically small (less than a thousand

lines of code).

Constraints Production Rules Non-empty Reachable
fo< o = [f < af]
dom(af) < a® aj — dom(a{])
I < af R = [1<a}] 1 <al 1 <al
o < mmgla!) |al mglal)
mgal) < a® | af > rmglal)
a¥ < o afy = ol af —al a¥ < a"
a” < dom(af) | af, dom(ai)
g < of R — [g<al] g <aPf g <af
dom(af) < ¥ oY dom(af)) dom(a®) < a¥
ot < rga”) |af glah) 0t < rng(aP) | a® < rugla”)
a” < af ay = oap af —af a” < a”
al < a® af = afy af = al al < at al < at
1 < o R — [1<af] 1<at 1<at
of s af af = af

Figure 6.4 The constraint system, grammar and
simplified systems for P = (My.((Mz.1) y))

6.4.1 Empty Constraint Simplification

A non-terminal X is empty if Lo(X) = (. Similarly, a production is empty if it
refers to empty non-terminals, and a constraint is empty if it only induces empty
productions. Since empty productions have no effect on the language generated by
(7, an empty constraint in S can be deleted without changing S’s observable behavior.

Let us illustrate this idea with the program component P = (My.((Mz.1) y)) we
considered earlier. Although this example is unrealistic, it illustrates the behavior

of our simplification algorithms. The solved constraint system Sp for P is shown in

76

figure 6.4, together with the corresponding grammar G4(Sp,) where E = {a”}. An

inspection of this grammar shows that the set of non-empty non-terminals is:

P P y a r 1 z
{aL s Qrs O, Oy, O, Oy, A R}
Five of the constraints in Sp are empty, and are removed by this simplification algo-

rithm, yielding a simplified system of eight non-empty constraints.

6.4.2 Unreachable Constraint Simplification

A non-terminal X is unreachable if there is no production R — [V < Z]or R [7 <
Y] such that L&(Y) # 0 and Z —% p(X). Similarly, a production is unreachable if it
refers to unreachable non-terminals, and a constraint is unreachable if it only induces
unreachable productions. Unreachable productions have no effect on the language
La(R), and hence unreachable constraints in S can be deleted without changing the
observable behavior of S.

In the above example, the reachable non-terminals are af;, af; and of;. Three
of the constraints are unreachable, and are removed by this algorithm, yielding a

simplified system with five reachable constraints.

6.4.3 Removing ¢-Constraints

A constraint of the form [a < 3] € S is an e-constraint. Suppose a € E and the only
upper bound on «a in § is the e-constraint [a <], i.e., there are no other constraints
of the form o < 7, rng(a) < v, or v < dom(e) in S. Then, for any solution p of S,

the set environment p’ defined by:

ey) p(0) ifdFa
p((s)_{p(ﬂ) if§ =a

is also a solution of S§. Therefore we can replace all occurrences of o in § by while
still preserving the observable behavior Soln(S) |g. This substitution transforms
the constraint [< (] to the tautology [3 <], which can be deleted. Dually, if
[< 3] € S with 8 ¢ E and 3 having no other lower bounds, then we can replace /3
by a, again eliminating the constraint [a@ < f3].

To illustrate this idea, consider the remaining constraints for P. In this system,

the only upper bound for the set variable o' is the e-constraint [a! < a“]. Hence this

77

algorithm replaces all occurrences of a' by a®, which further simplifies this constraint
system into:
{1 <a"0" <rngla”),g < o}

This system is the smallest simple constraint system observably equivalent to the

original system O(S).

6.4.4 Hopcroft’s Algorithm

The previous algorithm merges set variables under certain circumstances, and only
when they are related by an e-constraint. We would like to identify more general
circumstances under which set variables can be merged. To this end, we define a
valid unifier for S to be an equivalence relation ~ on the set variables of § such that
we can merge the set variables in each equivalence class of ~ without changing the
observable behavior of §. Using a model-theoretic argument, we can show that an
equivalence relation ~ is a valid unifier for S if for all solutions p € Soln(S) there
exists another solution p’ € Soln(S) such that p’ agrees with p on F and p'(a) = p'(3)
for all o ~ f3.

A natural strategy for generating p’ from p is to map each set variable to the least

upper bound of the set variables in its equivalence class:

plle)= L pla’)

OZ/NOZ

Figure 6.5 describes sufficient conditions to ensure that p’ is a solution of §, and hence
that ~ is a valid unifier for §. To produce an equivalence relation satisfying these
conditions, we use a variant of Hopcroft’s O(nlgn) time algorithm [27] for computing
an equivalence relation on states in a DFA and then merge set variables according to
their equivalence class.*

The following theorem states that this simplification algorithm preserves the ob-

servable behavior of constraint systems.

Theorem 6.4.1 (Correctness of the Hoperoft Algorithm). Let S be a simple con-
straint system with external variables F; let ~ be an equivalence relation on the set

variables in a constraint system S satisfying conditions (a) to (e) from figure 6.5; let

*A similar development based on the definition p'(«) = M{p(a’) | &« ~ &'} results in an alternative
algorithm, which is less effective in practice.

78

1. Use a variant of Hopcroft’s algorithm [27] to compute an equivalence relation
~ on the set variables of S that satisfies the following conditions:

If [« < rng(B)] € S then YVa ~ o' 33 ~ ' such that [/ < rng(s’)] € S.
If [rng(a) <] € S then Ya ~ o' 33 ~ ' such that [rng(a’) < p'] € S.
If [< dom(3)] € S then YVa ~ o' V(3 ~ ' such that [/ < dom(3’)] € S.

2. Merge set variables according to their equivalence class.

Figure 6.5 The Hoperoft algorithm

the substitution f map each set variable to a representation element of its equivalence
class; and let &' = f(S), i.e., S’ denotes the constraint system S with set variables

merged according to their equivalence class. Then § =5 §'.

Proof: See Appendix C.5. n

6.5 Simplification Benchmarks

To test the effectiveness of the simplification algorithms, we extended MrSpidey
with the four algorithms that we have just described: empty, unreachable, e-removal,
and Hopcroft. Each algorithm also implements the preceding simplification strategies.
The first three algorithms are linear in the number of non-empty constraints in the
system, and Hopcroft is log-linear.

We tested the algorithms on the constraint systems for nine program components
on a 167TMHz Sparc Ultra 1 with 326M of memory, using the MzScheme compiler [17].
The results are described in figure 6.6. The second column gives the number of lines
in each program component, and the third column gives the number of constraints in
the original (unsimplified) constraint system after closing it under the rules ©. The
remaining columns describe the behavior of each simplification algorithm, presenting
the factor by which the number of constraints was reduced, and the time (in mil-

liseconds) required for this simplification. Since MzScheme is a byte code compiler,

79

empty unreachable e-removal Hopcroft
Definition lines size ||[factor | time ||factor | time |/factor | time |[factor | time
map 5 221 3] <10 6 20 11 30 13 30
reverse 6 287 4| <10 8 20 20 10 20 30
substring 8 579 12 10 64 10 64 10 96 20
gsort 41| 1387 15 | <10 15 30 58 50 66 40
unify 89 | 2921 10 10 11 80 55 1 120 65 | 150
hopcroft 201 | 8429 25 10 42 1 100 118 | 100 124 | 200
check 237 | 21854 4 50 4 | 1150 26 | 370 168 | 510
escher-fish | 493 | 30509 187 10 678 40 678 40 678 80
scanner 1209 | 59215 3| 180 17| 840 45 | 2450 57 | 2120

Figure 6.6 Behavior of the constraint simplification algorithms.

porting the simplification algorithms to a native code compiler could be expected to

produce a speed-up of roughly a factor of 5.

The results demonstrate the effectiveness and efficiency of our simplification algo-

rithms. The resulting constraint systems are typically at least an order of magnitude

smaller than the original system. The cost of these algorithms is reasonable, particu-

larly considering that they were run on a byte code compiler. As expected, the more

sophisticated algorithms are more effective, but are also more expensive.

80

Chapter 7

Componential Set-Based Analysis

Equipped with the simplification algorithms, we can now return to our original prob-
lem of extending set-based analysis to handle significantly larger programs. These
programs are typically constructed as a collection of program components (e.g. mod-
ules, packages or files). Exploiting this component-based structure is the key to
analyzing such programs efficiently.

The following section describes componential set-based analysis. Section 7.2
presents experimental results on the effectiveness of the analysis, and section 7.3
describes how MrSpidey presents the analysis results for multi-component programs
to the programmer.

The constraint simplification algorithms also enables an efficient polymorphic, or
context-sensitive, analysis that only duplicates a simplified constraint system for each
reference to a polymorphic function. A description of this polymorphic analysis is
presented in section 7.4, together with experimental results on the behavior of the

analysis.

7.1 Componential Set-Based Analysis

Componential set-based analysis processes programs in three steps.

1. For each component in the program, the analysis derives and simplifies the
constraint system for that component and saves the simplified system in a con-
straint file, for use in later runs of the analysis. The simplification is performed
with respect to the external variables of the component, excluding expression
labels, in order to minimize the size of the simplified system. Thus, the simpli-
fied system only needs to describe how the component interacts with the rest of
the program, and the simplification algorithm can discard constraints that are
only necessary to infer local value set invariants. These discarded constraints

are reconstructed later as needed.

81

This step can be skipped for each program component that has not changed
since the last run of the analysis, and the component’s constraint file can be

used instead.

2. The analysis combines the simplified constraint systems of the entire program
and closes the combined collection of constraints under ©, thus propagating
data-flow information between the constraint systems for the various program

components.

3. Finally, to reconstruct the full analysis results for the program component that
the programmer is focusing on, the analysis tool combines the constraint system
from the second step with the unsimplified constraint system for that compo-
nent. It closes the resulting system under ©, which yields appropriate value set

invariants for each labeled expression in the component.

The new analysis can easily process programs that consist of many components.
For its first step, it eliminates all those constraints that have only local relevance,
thus producing a small combined constraint system for the entire program. As a
result, the analysis tool can solve the combined system more quickly and using less
space than traditional set-based analysis [24]. Finally, it recreates as much precision
as traditional set-based analysis as needed on a per-component basis.

The new analysis performs extremely well in an interactive setting because it
exploits the saved constraint files where possible and thus avoids re-processing many

program components unnecessarily.

7.2 Experimental Results

We implemented four variants of componential set-based analysis. Fach analysis uses
a particular simplification algorithm from chapter 6 to simplify the constraint sys-
tems for the program components. We tested these analyses with five benchmark
programs, ranging from 1,200 to 17,000 lines. For comparison purposes, we also
analyzed each benchmark with the standard set-based analysis that performs no sim-
plification. The analyses handled library functions in a context-sensitive, polymorphic
manner according to the constraint derivation rules (let) and (inst) to avoid merging
information between unrelated calls to these functions. The remaining functions were
analyzed in a context-insensitive, monomorphic manner. The results are documented

in figure 7.1.

82

The fourth column in the figure shows the maximum size of the constraint system
generated by each analysis, and also shows this size as a percentage of the constraint
system generated by the standard analysis. The analyses based on the simplification
algorithms produce significantly smaller constraint systems, and can also analyze
more programs, such as sba and poly, for which the standard analysis exhausted
heap space.

The fifth column shows the time required to analyze each program from scratch,
without using any existing constraint files.* The analyses that exploit constraint
simplification yield significant speed-ups over the standard analysis because they
manipulate much smaller constraint systems. The results indicate that, for these
benchmarks, the e-removal algorithm yields the best trade-off between efficiency and
effectiveness of the simplification algorithms. The additional simplification performed
by the more expensive Hopcroft algorithm is out-weighed by the overhead of running
the algorithm. The tradeoff may change as we analyze larger programs.

To test the responsiveness of the componential analyses in an interactive setting
based on an analyze-debug-edit cycle, we re-analyzed each benchmark after changing
a randomly chosen component in that benchmark. The re-analysis times are shown in
the sixth column of figure 7.1. These times show an order-of-magnitude improvement
in analysis times over the original, standard analysis, since the saved constraint files
are used to avoid reanalyzing all of the unchanged program components. For example,
the analysis of zodiac, which used to take over two minutes, now completes in under
four seconds. Since practical debugging sessions using MrSpidey typically involve
repeatedly analyzing the project each time the source code of one module is modified,
e.g., when a bug is identified and eliminated, using separate analysis substantially
improves the usability of MrSpidey.

The disk-space required to store the constraint files is shown in column seven.
Even though these files use a straight-forward, text-based representation, their size is

typically within a factor of two or three of the corresponding source file.

7.3 User Interface for Multi-File Programs

We extended MrSpidey’s user interface to cope with programs consisting of multiple
source files, or components. MrSpidey first analyses the program, using the compo-

nential set-based analysis described above, and then displays an annotated version of

*These times exclude scanning and parsing time.

83

Num. of Analysis | Re-analysis | Constraint
Program lines | Analysis constraints time time file (bytes)
scanner 1253 | standard 61K 14.1s 7.7s 572K
empty 24K (39%) 12.0s 3.1s 189K
unreachable 15K (25%) 9.7s 2.0s 39K
e-removal 14K (23%) 9.5s 1.7s 28K
Hopcroft 14K (23%) 10.4s 1.7s 25K
zodiac 3419 | standard 704K 133.4s 110.6s 1634K
empty 62K (9%) 34.1s 8.1s 328K
unreachable 21K (3%) 28.8s 4.5s 169K
e-removal 13K (2%) 28.8s 3.8s 147K
Hopcroft 11K (2%) 31.4s 3.8s 136K
nucleic 3432 | standard 333K 83.9s 51.2s 2882K
empty 90K (27%) 52.8s 17.8s 592K
unreachable 68K (20%) 48.4s 14.6s 386K
e-removal 56K (17%) 48.3s 13.1s 330K
Hoperoft 56K (17%) 60.9s 13.25 328K
sba 11560 | standard *, >5M * * *
empty 1908K (<38%) | 181.5s 65.5s 1351K
unreachable 105K (<2%) | 149.5s 43.3s 920K
e-removal 76K (<2%) | 147.1s 42.2s 770K
Hopcroft 65K (<1%) | 156.8s 41.1s 716K
mod-poly | 17661 | standard | *, >5M * * *
empty *, >5M * * *
unreachable 201K (<4%) | 259.6s 26.9s 1517K
e-removal 68K (<1%) | 239.6s 13.3s 1038K
Hopcroft 38K (<1%) | 254.1s 10.9s 907K

* indicates the analysis exhausted heap space

Figure 7.1 Behavior of the modular analyses.

the program’s main file with the usual static debugging mark-ups. The programmer
can also view annotated versions of any other source file by using the File|Open ...
dialog box (shown in Figure 7.2) to select the source file of interest.

In multi-file programs, the source (or destination) of an arrow may sometimes
refer to a program point in a separate file. In this case MrSpidey draws an arrow
originating (or terminating) in the left margin of the program, as shown in figure 7.3.

Clicking on the arrow provides the option to zoom to and highlight the term at the

84

% Open Unit E

Select referenced unit file to open

fafasiafasiafcormacs/Spidey/Unit/Tacs /2 farithA5T 55
fafasiafasiafcormacs/Spidey/Unit/Tacs /2 farithmM.ss
fafasiafasiafcormacsSpidey/Unit/Tacs/2/haseAsST.55
fafasiafasiafcormacs/Spidey/Unit/Tacs /2 /baseM.ss
fafasiafasiafcormacs/Spidey/Unit/Tacs /2 /chvAST.c5
fafasiafasiafcormac/Spidey/Unit/Tacs /2 /chvM.5s
fajasiafasialfcormacsSpidey/Unit/Tacs /2 /control45T.55
fafasiafasiafcormacsSpidey/Unit/Tacs /2 fcontrolM.ss
fafasiafasiafcormac/Spidey/Unit/Tacs /2 fglobal.ss
fafasiafasiafcormac/Spidey/Unit/Tacs /2 /main.ss
fafasiafasiafcormacsspidey/Unit/Tacs 2/ program.ss
fafasiafasiafcormacsSpidey/Unit/Tacs /2 fstorebST.55
fafasiafasiafcormac/Spidey/Unit/Tacs /2 fstoreM.ss
fafasiafasiafcormacs/Spidey/Unit/Tacs /2 top.ss
fafasiafasialcormac/Spidey/ Unit/ Tacs /2 fst.ss

O_kl Cancel'

Figure 7.2 The FilelOpen ... dialog box

other end of the arrow, as shown in figures 7.4 and 7.5. These facilities are useful for

following the flow of values through multi-file programs.

7.4 Efficient Polymorphic Analysis

The constraint simplification algorithms also enables an efficient polymorphic, or
context-sensitive, analysis. To avoid merging information between unrelated calls to
functions that are used in a polymorphic fashion, a polymorphic analysis duplicates
the function’s constraints at each call site. We extended MrSpidey with five polymor-
phic analyses. The first analysis is copy, which duplicates the constraint system for
each polymorphic reference via a straightforward implementation of the rules (/et) and
(inst).! The remaining four analyses are smart analyses that simplify the constraint

system for each polymorphic definition.

TWe also implemented a polymorphic analysis that re-analyzes a definition at each reference, but
found its performance to be comparable to, and sometimes worse than, the copy analysis.

85

. Mr3pidey: controlM.ss =] B3
File Edit Show Clear Filter

funit/sig language”
{import globkal™ control-A3T" {(prev : language™) {(top : lan

{define Interpreter
.'/ﬁ(am/bd/a,(exp env)
match ezp
[{5 catch x exp)
{inCon
{lambda (k)

{Handler {(top:Interpreter exp {(Extend env x {i
[(% throw = exp)

Figure 7.3 Source in another file

. Mr3pidey: controlM.ss =] B3
File Edit Show Clear Filter

funit/sig language”
{import globkal™ control-A3T" {(prev : language™) {(top : lan

{define Interpreter
./ﬁlam/bd/a,(exp env,
match exn
Zoom to parent in "sto X exXp)
(1

{lambda (k)
{Handler {(top:Interpreter exp {(Extend env x {i
[{$ throw z exp)

Figure 7.4 Zooming to the source in another file

We tested the analyses using a standard set of benchmarks [28]. The results of
the test runs are documented in figure 7.6. The second column shows the number of
lines in each benchmark; the third column presents the time for the copy analysis;
and columns four to seven show the times for each smart polymorphic analysis, as
a percentage of the copy analysis time. For comparison purposes, the last column

shows the relative time of the original, but less accurate, monomorphic analysis.

86

% MrSpidey: storeM.ss O] =]
File Edit Show Clear Filter

funit/sig language”™
{import global™ store-AST™ (prev : language”™) {(top : langu

{define Interpreter

‘/il‘?inﬂa/(exrz' env)
match exp

[{§ ref exp) (Handler {top:Interpreter exp env, inRe

[{5 deref exp)

tHandler {(top:Interpreter ezp env)
{Tambhda (=)

Figure 7.5 The source in the other file

copy Relative time of smart polymorphic analyses | Mono.
Program | lines | analysis || empty | unreachable | e-removal | Hopcroft || analysis
lattice | 215 4.2s 39% 36% 35% 38% 42%
browse 233 2.5s 76% 76% 76% 81% 5%
splay 265 7.9s 5% 73% 70% 2% 83%
check 281 || 50.1s 21% 23% 14% 14% 23%
graphs 621 2.8s 85% 85% 82% 87% 82%
boyer 624 4.3s 46% 46% 49% 50% 40%
matrix 744 7.5s 64% 57% 51% 52% 45%
maze 857 6.2s 64% 59% 58% 61% 54%
nbody 880 || 39.6s 57% 25% 25% 26% 28%
nucleic | 3335 * * 243s * 42s * 42s * 44s * 36s

* indicates the copy analysis exhausted heap space,
and the table contains absolute times for the other analyses

Figure 7.6 Times for the smart polymorphic
analyses, relative to the copy analysis.

The results again demonstrate the effectiveness of our constraint simplification
algorithms. The smart analyses that exploit constraint simplification are always sig-
nificantly faster and can analyze more programs than the copy analysis. For example,
while copy exhausts heap space on the nucleic benchmark, all smart analyses suc-

cessfully analyzed this benchmark.

87

Again, it appears that the e-removal analysis yields the best trade-off between
efficiency and effectiveness of the simplification algorithms. This analysis provides the
additional accuracy of polymorphism without much additional cost over the coarse,
monomorphic analysis. With the exception of the benchmarks browse, splay and
graphs, which do not re-use many functions in a polymorphic fashion, this analysis
is a factor of 2 to 4 times faster than the copy analysis, and it is also capable of

analyzing larger programs.

88

Chapter 8

Evaluation of MrSpidey

We evaluated the usefulness of MrSpidey as static debugging tool using a number of

programs.

8.1 Verifying a Web Server

Rice’s web server software consists of a normal, fully-functional web server and a
simple backup server. The backup server consists of a 76 line Scheme program that

accepts connections to the web port, and returns a HTML page saying:

The Rice University computer science department’s Web server has
been disconnected temporarily.

We used MrSpidey to statically debug the backup server. MrSpidey detected a
single, potentially unsafe operation, where the analysis suggested that the end-of-
file value could be returned by read-line and then passed as an argument to the
operation string-length. An inspection of the program revealed that this behavior
could never actually occur. After simplifying two lines of code, MrSpidey was able to

verify the safety of the string-length operation, and produced the summary:

TOTAL CHECKS: 0 (of 56 possible checks is 0.0%)

8.2 Verifying gunzip

MzScheme’s standard library contains Scheme code for inflating deflated (PKZIP’s
method 8 compressed) data. The code consists of a single 800 line file inflate.ss,
translated directly from the gzip source distribution. MrSpidey initially reported
that out of the 650 operations in the program, it was unable to verify the safety of
27 (or 5%) of them.

The majority of these unsafe operations were vector-ref operations that, accord-

ing to MrSpidey’s analysis, could be applied to non-vector values. We used MrSpidey’s

89

filter and path-to-source facilities to identify the source of these erroneous, non-vector

values.

e Some of these non-vector values came from the third field in a structure called
huft. This field contains a number in some situations and a vector in others. By
splitting the field into separate fields for numeric and vector values, we reduced

the unsafe operation count to 18.

e Some non-vector values came from a stack of tables, each of which should be
a vector. However, the stack was initialized as a vector of zero’s. By changing
the initial value of the stack to a vector of empty vectors, we reduced the unsafe

operation count by one to 17.

e The non-vector value null value was mistakenly passed as an argument to a
function huft _build, instead of the empty vector. Changing the program to

pass the empty vector instead reduced the unsafe operation count by two to 15.

e The non-vector value null also was the initial value of a variable that was later
assigned to a vector. Initializing the variable to the empty vector reduced the

unsafe operation count by three to 12.

Some of the remaining unsafe operations were caused by an extremely complicated
return protocol from the function huft_build. The function returns a tuple where
the type of some fields depends on the value of other fields. We simplified the return
protocol of the function by using exceptions to handle erroneous conditions. This
reduced the unsafe operation count by three to 9.

Minor rewriting to produce a cleaner coding style further reduced the unsafe
operation count by two to 7. All of the remaining unsafe operations are actual errors
that resulted from failing to detect and handle a truncated input file. Thus the
original program would crash on a truncated input file with a message such as:
> (gunzip "~ /tmp/t")
char=7: expects type <character> as 1st arg;
given \#<eof> (type <eof>); other args: \#\0

By adding code to check of the end-of-file case, we finally reduced the unsafe
operation count to 0, and the resulting statically debugged program gracefully handles
truncated input files:
> (gunzip "~ /tmp/t")

gunzip: Unexpected end of input file

90

8.3 Verifying an Extended Direct Semantics Interpreter

Extended direct semantics is a format for denotational language specifications that
accommodates orthogonal extensions of a language without changing the denotations
of existing phrases [4]. The semantics of a language is specified in this format using
a tower of interpreters. The tower starts with a basic interpreter, which can only
interpret certain trivial expressions. This basic interpreter is then composed with
additional interpreters for the various constructs in the language.

We used MrSpidey to statically debug an interpreter expressed in this style. In

addition to the basic interpreter, this program contains interpreters for:
e Arithmetic operations (integer constants, add1 and sub1)
e Call-by-value functions (variables, functions and applications)
e Control operations (catch and throw)
e Assignments (ref, deref and setref)

Each interpreter consists of two units: one unit defining the abstract syntax struc-
tures and a second unit that specifies how to interpret the new abstract syntax. An
additional five units specify global definitions and test cases, for a total of 15 units
in 15 separate files.

Porting the program to MzScheme’s unit system introduced an error, where one

of the units was defined to take three input signatures:

(unit/sig (Program)
(import global”™ language ™ arith-AST ")

but was only passed two signatures in the main compound-unit clause:

[PROGRAM
: Program”

((reference-unit "program.ss") GLOBAL TOP)]

When this program was analyzed, MrSpidey produced the warning:

Warning: Unit takes 47 imports, given 26 in file "program.ss" line 2

91

together with a hyper-link to the relevant unit.
After this bug was fixed, MrSpidey was able to verify the safety of the program,

and produced the following summary:

main.ss CHECKS : 0 (of 39 possible checks is 0.0%)
program.ss CHECKS : 0 (of 4 possible checks is 0.0%)
top.ss CHECKS : 0 (of 1 possible checks is 0.0%)
storeM.ss CHECKS : 0 (of 161 possible checks is 0.0%)
controlM. ss CHECKS : 0 (of 49 possible checks is 0.0%)
cbvM.ss CHECKS : 0 (of 40 possible checks is 0.0%)
arithmM.ss CHECKS : 0 (of 24 possible checks is 0.0%)
baseM.ss CHECKS : 0 (of 21 possible checks is 0.0%)
storeAST.ss CHECKS : 0 (of 11 possible checks is 0.0%)
controlAST.ss CHECKS: 0 (of 5 possible checks is 0.0%)
arithAST.ss CHECKS : 0 (of 2 possible checks is 0.0%)
cbvAST.ss CHECKS : 0 (of 2 possible checks is 0.0%)
baseAST.ss CHECKS : 0 (of 1 possible checks is 0.0%)
global.ss CHECKS : 0 (of 41 possible checks is 0.0%)
tst.ss CHECKS : 0 (of 46 possible checks is 0.0%)

Part of the reason that MrSpidey is so successful on this program is that the
program had already been carefully written so that Soft Scheme [46] could verify
its safety, and thus the style of the program was already well-suited for automatic

analysis techniques.

8.4 Statically Debugging HHL

We used MrSpidey to statically debug a program under development. This program,
called HHL, is a hardware verifier using heterogeneous logic. It consists of 3312 lines
of Scheme code distributed over 12 files, and interfaces to the Omega calculator [38].

We used MrSpidey to analyze the entire program, and then concentrated on stat-
ically debugging one file, prover.ss, containing 500 lines of code. MrSpidey initially
reported that out of 466 operations in the file, it was unable to verify the safety of 17

(or 4%) of them. Nine of these unsafe operations were caused by bugs in the program.

o Two unsafe string-append operations were caused by a variable being erro-

neously initialized with void, instead of with a string.

92
o An arity check was caused be a two-argument function being applied to a single
argument.

e An unsafe car operation was applied to the result value of read, which is not

necessarily a pair.

o Three other unsafe string operations were applied to the result of read-line,

which can return the end-of-file value in addition to strings.

e On two occasions, the primitive andmap was applied to a single argument.

The remaining eight unsafe operations appear to be caused by limitations in the

underlying analysis.

93

Chapter 9

Related Work

9.1 Static Debuggers

A number of interactive analysis tools and static debugging systems have been de-
veloped for various programming languages. Some address different concerns; none
provide an explanation of the derived invariants.

Syntox [3] is a static debugger for a subset of Pascal. Like MrSpidey, it associates
run-time invariants, i.e., numeric ranges, with statements in the program. Because
Syntox does not provide an explanation of these invariants, it is difficult for a pro-
grammer to decide whether an unexpected invariant is caused by a weakness in the
proof system or a flaw in the program. In addition, the existing system processes
only a first-order language, though Bourdoncle explains how to extend the analy-
sis [3:Section 5].

Several environments [30, 6, 26, 44, 41] have been built for parallel programming
languages to expose dependencies, thus allowing the programmer to tune programs to
minimize these dependencies. In particular, the ParaScope [6, 30] and D editors [26]
have many similarities to MrSpidey. Both MrSpidey and the editors provide infor-
mation at varying levels of granularity; both retain source correlation through trans-
formations; and both depict dependencies graphically. However, unlike MrSpidey,
the editors process a language with extremely simple control- and data-flow facili-
ties, and therefore do not need to provide a supporting explanation for the derived
dependencies.

The Extended Static Checking system (ESC) [8] is a static debugger designed
to detect program errors such as nil dereferences, out-of-bound array accesses and
deadlocks, and race conditions. If an error may occur, then ESC returns a counter-
example in the form of an assignment of values to program variables that can cause
the error. ESC is based on an automatic theorem prover that is more powerful than
MrSpidey’s constraint-based approach, but which is also more expensive. Hence ESC

cannot analyze large programs, and is restricted to working on a per-procedure basis.

94

Therefore, this approach requires that the programmer annotates the program with
specifications for the interfaces between procedures, which significantly increases the
start-up cost of using ESC. In contrast, MrSpidey can be immediately applied to
existing programs without the need for any additional annotations.

Microsoft’s Program Analysis Group has developed a static debugger for small C
programs.” In a fashion similar to MrSpidey, this debugger analyzes programs and
uses the resulting invariants to identify potential bugs. However, it cannot explain
the derivation of the resulting invariants, and only works on small programs of up to

a few hundred lines of code.

9.2 Constraint Simplification

A number of researchers have investigated the problem of constraint simplification in
order to derive faster and more scalable analyses and type systems.

Deutsch and Heintze [9] examine constraint simplification for set-based analysis.
They discover two simplification algorithms, which are analogous to our empty and
unreachable constraint simplification algorithms, but do not present results on the
cost or effectiveness of these simplification algorithms.

Fahndrich and Aiken [12] examine constraint simplification for an analysis based
on a more complex constraint language. They develop a number of heuristic algo-
rithms for constraint simplification, which they test on programs of up to 6000 lines.
Their fastest approach yields a factor of 3 saving in both time and space, but is slow
in absolute times compared to other program analyses.

Pottier [37] studies an ML-style language with subtyping. Performing type infer-
ence on this language produces subtype constraints that are similar to our constraints.
Pottier defines an entailment relation on constraints, and presents an incomplete al-
gorithm for deciding entailment. In addition, he proposes some ad hoc algorithms for
simplifying constraints. He does not report any results on the cost or effectiveness of
these algorithms.

Trifonov and Smith [43] present constrained types that are similar to our constraint
systems, and they describe an incomplete algorithm for deciding the subtyping rela-
tion between constrained types. They do not discuss constraint simplification. Eifrig,
Smith and Trifonov [11] discuss constraint simplification in the context of type infer-

ence for objects. They present three algorithms for simplifying constraint systems,

*Personal communication: Daniel Weise (February 97).

95

two of which which are similar to the empty and e-removal algorithms, and the third
is a special case of the Hoperoft algorithm. They do not present results on the cost
or effectiveness of these algorithms.

Duesterwald et al [10] describe algorithms for simplifying data-flow equations.
These algorithms are similar to the e-removal and Hoperoft algorithms. Their ap-
proach only preserves the greatest solution of the equation system and assumes that
the control flow graph is already known. Hence it cannot be used to analyze pro-
grams in a componential manner or to analyze programs with advanced control-flow
mechanisms such as first-class functions and virtual methods. The paper does not

present results on the cost or effectiveness of these algorithms.

96

Chapter 10

Limitations and Future Work

Although MrSpidey has proven to be an effective tool for statically debugging a variety
of programs, including the programs described above, there are several aspects of

MrSpidey that could be improved.

10.1 Size of Types

The constraint simplification algorithms can reduce the size of type invariants by a
significant factor, but in some cases the resulting types are still excessively large.
This problem could be partly remedied by developing more aggressive constraint
simplification algorithms. However, more aggressive algorithms may not completely
solve the problem, because for a given constraint system, even the smallest equivalent
system may yield an excessively large type.

Traditional static type systems avoid this problem by introducing a new type name
each time a new datatype is declared. For example, the Standard ML declaration

corresponding to the binary trees we considered earlier is:

datatype tree = Leaf of int

| Node of tree * tree

This declaration introduces the type name tree that can be used as a shorthand
for describing any valid tree build using Leaf and Node. By comparison, in MrSpidey
the corresponding type expression would need to explicate the combination of Leaf
and Node constructors used to build the tree.

As a partial solution to this problem, MrSpidey allows the programmer to con-
figure the type display algorithm to avoid displaying the types for the fields of a
structure or for the instance variables of an object (see appendix D.2.2). Since most
excessively large types involve either structures or objects, selecting this option keeps

the size of types manageable, even for complicated programs.

97

10.2 Accuracy of the Analysis

Componential set-based analysis infers reasonably accurate invariants describing the
value sets for program expressions, even in the presence of complex control-flow and
data-flow patterns. However, since the actual run-time behavior of a program is un-
decidable, these invariants are necessarily approximate, and there are some situations
where the invariants are overly coarse.

A serious limitation of MrSpidey is that it does not perform any analysis of integer
subranges. Thus, MrSpidey cannot detect errors that may occur due to an array index
being out-of-bounds. Other static debuggers [3, 8] can detect this kind of error, but

it is not clear how well these debuggers scale up to large, complex programs.

10.3 State in the User Interface

For the most part, MrSpidey’s graphical user interface presents static debugging in-
formation in a natural and intuitive manner. However, the filter facility (described in
section 5.4) introduces some hidden state into the user interface. That is, although
the currently selected filter affects the behavior of the interface, this filter is not dis-
played. Hence it is easy for the programmer to forget which filter is currently selected,
and to be confused by the displayed value flow.

There are two possible solutions to this problem. The first is simply to display
the currently selected filter. However, state can be confusing in a user interface, even
when it is displayed. Therefore, a better solution would be develop an alternative
interface that does not require this state information.

One such approach is to allow the programmer to click on the internal components
of a type invariant, yielding a pop-up menu as before, and then to have options in
that menu that display the value flow only for values corresponding to the selected
component of the type. This approach would remove the need for state in the user in-
terface, and would hopefully provide programmer with better access to the derivation

of the program’s invariants.

10.4 Signatures

All the constraint simplification algorithms we considered preserve the observable
behavior of constraint systems, and thus do not effect the accuracy of the analysis.

If we were willing to tolerate a less accurate analysis, we could choose a simplified

98

constraint system that does not preserve the observable behavior of the original sys-
tem, but only entails, or conservatively approximates, that behavior. This approach
allows the use of smaller constraint systems, and hence yields a faster analysis.

A promising approach for deriving such approximate constraint systems is to
rely on a programmer-provided signature describing the behavior of a polymorphic
function or module, and to derive the new constraint system from that signature.
After checking the entailment condition to verify that signature-based constraints
correctly approximates the behavior of the module, we could use those constraints in

the remainder of the analysis. The appropriate constraint derivation rule is:

'eM:a S Sy Er &1 where E = Label U FV[range(I')] U {a}
I'EM: a8

(approx)

Since the signature-based constraints are expected to be smaller than the derived
ones, this approach could significantly reduce analysis times for large programs. It
would also allow for a program component to be statically debugged with respect to

its signature, without needing to access the entire source program.

99

Appendix A

Proofs for Chapter 3

A.1 Subject Reduction Proof

Lemma 2.5.3 (Subject Reduction for —). IfI'+ My : o, S and My — My, then
I'F M, : a,8; such that S = Ss.

Proof: The proof proceeds by case analysis according to the relation My — M.

o Suppose M; —s M, via (3,). Then:
M, = ((M2z.N) V)
My = Nz V]
The typing derivation on M, is of the form:
Fuf{e: B} F N By, Sy

T e N LS,)
' M : a8

r'=v: ﬁv,SV
(app)

where:

St = SyU{t <G, dom(By) < B,, By < rng(B)}
S = SiUSy U{pyv < dom(f:),rng(:) < a}
By the Substitution Lemma A.1.1:

't M, : BN, S, where Sy USy U{By <8} ES,
By the Flow Lemma 2.5.5:
THM:a,S, where S,U{By<allS
Since §; O Sy U Sy, we have that §; = Sy U Sy. Also:

S 2 {ﬁv < dom(ﬁt)v dom(ﬁt) < ﬁx} |: {ﬁv < ﬁx}
S1 2 {8y <rng(B), rng(B) <o} E {Ov <o}

Hence S; | S,, as required.

100

o Suppose My — M, via ((3},;). Then:
M; = (let (z V) N)
The typing derivation on M is of the form:
'EV:ay, Sy
a = SetVar(Sy) \ (FV[range(T')] U Label)
F'u{z:Va.(av,Sv)} - N: 3,8
F |_ M1 . 6,8
By the Subject Reduction for let Lemma A.1.2:

(let)

F |_ M2 . 6,8
as required.

e Suppose My — M; via (unlabel). Then:
M, = V!
My, =V
The typing derivation on M is of the form:
I'EV:a,Sy
TV 3,8y U{a<la< 3}

Hence I' F V : o, Sy, and by the Flow Lemma 2.5.5, '+ V : 3,83 where §; E
Ss.

(label)

Lemma A.1.1 (Substitution). If

Fr'vf{z:a,}FN:ay,Sn
'EV:ay, Sy

then
I'F N[z —V]:an,S§ where SyUSyU{ay <a,}ES

Proof: The proof proceeds by induction on the number of let-expressions in N, and
on the size of N:
Fr'vf{z:a,}FN:ay,Sn

101

If ¢ FV[N], then N[z — V] = N, § = Sy and the lemma trivially holds.
Otherwise we proceed by case analysis on the constraint derivation rule used in

the last step in the derivation.

e (var): Since € FV[N], N = . Hence Sy ={a, < an}, Nz — V] =V and
this case holds via the Flow Lemma 2.5.5.

e (const): This case cannot occur since = € F'V[N].
e (label): This case is straightforward.
e (abs): In this case N = (AM'y.M), and the constraint derivation is:

Fu{z:amy:o b B Moy, Sy
Tu{z:a,} - (MNy.M):an, Sy

(abs)
where:
Sy =Su U{t < an, dom(an) < oy, ay < raglan)}
Since © € FV[N], # y. Hence N[z — V] = (A'y.M[z — V]). By induction:
TUu{z:agy:a,tk Mz— V]:aum Sy
where:
SM USV U {Ozv S Oéx} |: S]/W

Hence, via (abs):

I'F N[z V]:an,S

where:
S =38y U{t <an, dom(an) < a,, ayn < raglan)}

Since Sy U Sy U{ay < a,} E S, the lemma holds for this case.

e (app): In this case M = (M; M), and the constraint derivation is:

F'u{a:a,}F M : 5,8
Fu{z:a.} B (M, M) :an,Sy

(app)
where
Sy =81 US; U{fBy < dom(f),rng(f1) < an}

By induction,

where
SZ' U SV U {Ozv S Oéx} |: SZ/
Hence
I'F Mz — V]:an,S
where

S =8 US;U{B; <don(f),rng(f) < an}

Obviously, Sy USy U{ay < a,} = &, and the lemma holds for this case.
(let): Tn this case N = (let (y W) M), where W € Value. Hence:
PU{z:a,}F (let (y W) M) :ay,Sy
and therefore by the following Subject Reduction for let Lemma A.1.2:
PU{z:a,}F My W]:ay, Sy

By induction:
I'FMly— Wllz—V]:an,S

where Sy U Sy U{ay < a,} E S. Since:
My — W[z — N| = M[z — Nlly — W[z — N]|

we have that:

' Mz = Vl]y— Wx—V]]:an,S
and therefore, by the Subject Reduction for let Lemma A.1.2:
I'E(let (y W[z — V]) Mz — V]): an,S

or, equivalently:

L'k (let (y W) M)[z— V]:an,S

and thus the lemma holds in this case.

102

(inst): This case cannot occur since € FV[N] and x is bound to a set variable

in the derivation context.

103

The constraint derivation rules uses constraint schemas to accurately analyze poly-
morphic let-expressions. The constraint system for a let-expression is actually equiv-
alent to the constraint system for the corresponding 3;.;-expanded expression™. The

following lemma demonstrates this equivalence of constraint systems.

Lemma A.1.2 (Subject Reduction for let).
I't(let (x V) N):an,Sn
if and only if
' Nz w—V]:an,Sy
Proof: The derivation I' - (let (z V) N): an, Sy holds if and only if:

'EV:ay, Sy
a = SetVar(Sy) \ (FV[range(T')] U Label)
o =Vva.(av,Sv)
F'{z:o} b N:an,Sy

The proof of both directions proceeds by induction on the number of let-expressions
in NV, and on the size of N:

If ¢ FV[N], then N[z — V] = N and the lemma trivially holds.

Otherwise we proceed by case analysis on the constraint derivation rule used in

the last step in the derivation:
F'{z:o} b N:an,Sy

e (var): This case cannot occur since @ € F'V[N] implies N = z, but x is bound

to a schema in the derivation context and so the rule (inst) applies.
e (const): This case cannot occur since = € F'V[N].
e (abs): In this case N = (M'y.M), and the typing derivation is:

F'u{z:oy:ayb b M:apy,Su
Tui{z:o}t (Ny.M):an,Sy

(abs)

*This equivalence contrasts with the situation for the other reduction rules, where the constraint
system for the redex only entails the constraint system for the contractum, as shown in the Subject
Reduction for — Lemma 2.5.3.

104

where:
Sy =Su U{t < an, dom(an) < oy, ay < raglan)}

Since x € FV[N], # # y. Hence N[z — V] = (M'y.M[z — V]). By induction,
Fuf{z:oy:aytt Mz V]:au,Su

Hence, via (abs):

I'+ N[l‘l—> V] :OéN,SN
The reasoning for the converse direction is similar.
(app): In this case M = (M; M,), and the typing derivation is:

Fr{a:o} bt M : 3,8
F'U{z:o} b (My M) :an,Sn

(app)

where:
Sy =81 US; U{fBy < dom(f),rng(f1) < an}

By induction,

Hence

F"M[$I—>V]2QN,SN

as required. The reasoning for the converse direction is similar.
(label): This case is straightforward.

(let): In this case N = (let (y W) M), where W € Value. Hence:
FTu{z:o}t (let (y W) M) :ay,Sy
Since M has fewer let-expressions than N, by induction:
F'U{a:o} b Mly— W]:an,Sy
Since M[y — W] has fewer let-expressions than N, by induction:
L'k My — Wiz — V]:an,Sy

Since:

My — W[z — N| = M[z — Nlly — W[z — N]|

105

we have that:

I'F Mz — Vl]y— Wz~ V]]:an,Sn

Since M[z — V][y — W[z — V]] is smaller than N, by induction:
I'F(let (y W[z — V]) Mz — V]): an,SNn

or, equivalently:

I'F(let (y W) M)[z— V]:an,Sn

and thus the lemma holds in this case.

(inst): Since x € FV[N], N = 2, and the derivation on N must be:
F'u{z:o}bFa:an,Sn

where 1 is a substitution of fresh variables for @ and Sy = ¥(Sv) U {¢(ay) <
OéN}.

If D is the derivation concluding
'EV:ay, Sy
then ¢ (D) is an analogous derivation concluding
M=V glav), v(Sv)
Now N[z + V] =V, and by the Flow Lemma 2.5.5:
'EV:an, Sy

as required.

Lemma 2.5.5 (Flow). IfT'F M :a,8 then for all v € SetVar, 't M : ~, S8 with
SU{a <~} ES.

Proof: By induction on the derivation I' = M : a, S and by case analysis on the last

step in this derivation.

106

e (var): In this case the derivation for M = x is:
I'{z:0traz:a,8
where § = {# < a}. For any v € SetVar, let S’ = {# < v}, and then:
Iz : 8 Fa:v,8
with SU{a <~} E &', as required.
e (const): This case follows by reasoning similar to the (var) case.
e (label): The derivation for M = N' must conclude:

I'EN:(,8n

———— (label
I'-N:ad8 (label)
where S = Sy U {3 <[, < a}. Let "= {8 <[,5 <~}, and then:

'EN:(.8
% (label)
' N:v,8§

with SU{a <~} E §".
e (abs): The derivation for M = (A'z.N) must conclude:

F'uf{z:ai} b N:ay, Sy
I'E(AM2.N):a,S

(abs)
where § = {t < a,dom(a) < a1, 2 < rng(a)}.
Let § = {t <~v,dom(y) < a1, a2 < rng(v)}, and then:

F'uf{z:ai} b N:ay, Sy
I'F(A*N.2)y, S

(abs)

with SU{a <~} E §".
e (app): This case follows by reasoning similar to the (app) case.

e (let): This case follows by induction.

107

e (abs): The derivation for M = 2 must be:
PU{z:Va (av, S)} Fa:a,8
where 8 = ¥(Sv) U {tb(av) < al, and 1 is a substitution of set variables for @.
Let 8" =1(Sv) U{(av) <~}. Then
PU{z:Va (av, Sy)} F o v, S
with SU{a <~} E §".

A.2 Proofs for Computing Set-Based Analysis

Lemma 2.6.2 (Least Solution of Simple Constraint Systems). Fvery simple con-

straint system has a solution that is least with respect to Cj.

Proof: Let S be a simple constraint system, and define p = (,S0ln(S), using the
pointwise extension of (N, to set environments. We prove that p € Soln(S) by showing

that p satisfies any constraint C € §. The proof proceeds by case analysis on C.
e The case where C = [< (3] follows from Lemma A.2.1.

e Suppose C = [¢ <]. Then ¢ € const (p'(3)) for all p' € Soln(S), therefore
¢ € const (p(f)) and p EC.

e Suppose C = [a < rng(3)]. Then:
pla) = N, /o)

p'eSoln(s)

C N, p(rng(B))
p'eSoln(s)
by Lemma A.2.1, since p'(a) C p'(rng(3))

= rng Ns p'(3) by definition of M
p'eSoln(s)

= g (p(B))

= p(rng(B))

Hence p | o < rng(f).

108

The remaining cases are similar. Hence the set of environments satisfying S has a

least element N,{p | p ES}.

The following lemma describes some properties about how the two orderings C

and C, defined on D interact.

Lemma A.2.1 Let [be an index set, and let x;,y; € D for all 7 € I.

o If x; Cy, for all « € I, then:

ﬂs Z; E ﬂs Yi
el iel
I_Is €T E I_Is Yi
el iel
o If z; T, y, for all 7 € I, then:
Mo, T, My
el iel
Uz Cs Uy
el iel

Proof: The proof is based on the interpretation of D as the set of total functions
f :{dom,rng}” — P(Const)

and proceeds by showing the appropriate relation holds between the sets of constant

elements at any path in {dom, rng}*.
To prove the first relation, assume x; C y; for all « € I, and let p be a path in

{dom, rng}*. If p is monotonic, then p(x;) C p(y;). Hence:

P ﬂs Xy == ﬂs p(xl)
el el
el

= p|Ns ¥
=2

109

Conversely, if p is anti-monotonic, then p(a;) J p(y;). Hence:

p r]5 X = r]5 p(aﬁ)
el el
el

= p|Ns ¥
=2

Hence

ﬂs Z; E ms Yi
el el

as required.

Theorem 2.6.5 If P € A° and 0+ P : «,S is a most general constraint derivation

then:
sba(P)(l) = {b|Stkeb<l}
U {(Ma.M)|Stet <}
Proof:
Stoc<a <— SkEc<a by lemma A.2.2

— VpES. pEc<La
< Vp € Soln(S). ¢ € const(p(a))
< ceN{const(p(a)) | p € Soln(S)})
> cé€ const(N({p(a) | p € Soln(S)}))
< c€ const(N({p | p € Soln(S)})())
<= ¢ € const(LeastSoln(S)(«))

The correctness of this theorem then follows from definition 2.6.3. »

Lemma A.2.2 (Soundness and Completeness of ©). For any simple constraint
system S:
SEc<a <— Stec<a

110

Proof: The soundness of © is straightforward. To prove the completeness of ©,

assume S = ¢ < a. Let p be any fixpoint of the functional I' defined as:

F: Setkhhv — SetFnv
Flp)(a) = ({c|SFec<al,
LH{p(7) | S Fo a <74, v < dom(d)},
LH{p(7) | S Fe v < rng(a)})
where the notation § Fg § <* § means there exists some 4y,...,0, with § = §; and
d, = d such that:
Ste{d <dy1, |1 <i<n}

The asymmetry between the definition of the domain and range components
F(p)(«) arises from the rules ©. These rules propagate set variables denoting the
result of functions in « forward along data-flow paths into constraints of the form
v < rng(«). However, the same propagation does not occur for set variables denot-
ing argument values to functions in a, and hence this propagation in performed in
the definition of F'(p)(a) by finding all 4 such that v < dom(¢) and a <* .

If p = S, then p = ¢ < a and hence S Fg ¢ < a by the definition of p, as required.

Thus it just remains to prove that p | S. We proceed by case analysis on constraints

Cces.

e Suppose C = [a < F]. We need to show that the correct ordering holds between

the corresponding components of p(a) and p(3). For the first component, by
(81), which is the first rule in O:

{e]SFtec<al C {c[Stec<p}
const (p(a)) T const (p(3))
For the second (domain) component, by (s3):

- {p(v) [Ste B <76, v < dom(d)
U{p(y) | Ste 8 <76, v < dom(d)

dom (p(§3)
For the third (range) component, by (s2):
]

{p(v) | Ste a <* 4, v < dom(d)}
L{p(7) | S Fo a <* 4, ¥ < dom(d)}
dom (p(a))

mon N 4

]
}
}
)

~—

[S Fo v < rng(a)

{r(7) | Ste v < rng(a
L{p(7) | S Fe v < rng(a
rng (p(a)

[S Fe v < rng(3)]

{p(v) | Steo v < rng(3)}
U{p(7) | S e v < rng(B)}
rng (p(B))

mon N 4

}
}
)

111

e Suppose C = [¢ < 7]
p(B) I ({c|Stec<p},T,1)
3 {eh, T, 1)
= p(c)
e Suppose C = [a < rng(f3)].
{rla)} € {p(7) | Stey <rng(f)}
- pla) T He(v) [Ste vy < rng(B)}

p(rog(5))

Suppose C = [rng(a) < 3]. Then

p(3) 3 p(v) VSte vy <
p(B) 3 Wpe(y) | Stey < B}
3 WHp(y) | SFe v <rng(a)} by (s4)

p(rng(a))

Suppose C = [a < dom(/3)]. Then

L{p(7) | SFe v < dom(3)}
L{p(7) | Ske 8 <* 4, v < dom(d)}
p(dom(f3))

pla)

[

Suppose § = [dom(ar) < f].

L{p(7) | Ste a <* 4, v < dom(d)} by (s3)
U{p(7) | S Fe dom(d) < 3, v < dom(d)}

Us{p(v) | SFe v < B}

p(B)

p(dom(a))

et

Hence p E S, and the lemma holds.

112

Appendix B

Proofs for Chapter 5

B.1 Correctness of MkType

Lemma 4.2.1 (Correctness of MkType). If S is a simple constraint system then:

M[MkType(S,)] = LeastSoln(S)(«)

Proof: By the definition of M and MkType:
MMk Type(S, a)] = ps(a)
where p; is the least fixed point under C; of the functional:
p = M[METype'(S, a;)]

where a; ranges over SetVar(S) = {ay,...,a,}. Hence p; is the least solution to the

system of equalities:

play) = M, [METype'(S. o;)]

But (ignoring pairs to simplify the presentation):

Mp[MkType'(S,ozi)] = < {b | S "@ b S ozi} U {t | S "@ t S ozi},
LAp(8) | S Fe ai < 6,8 < dom(d)},
UAp(B) | S Fe B < rng(as)})

Equating each component of p(«;) with the corresponding component of the above

tuple, we see that ps must be the least solution to the system of equalities (1):

const(p(e;)) = {c|Stec< i}
dom (o0)) = L{o(B) | & Fo o <* 6.5 < don(8))
rng (p(ai)) = Udp(B) | Ske B < rnglai)}

113

An inductive argument shows that the system of equalities (1) holds if and only if

the following system of equalities (2) also holds, where p ranges over paths:
const(p(p(ai))) = {c | SFa ¢ < plai)}

Hence ps is also the least solution to (2). But:
const(p(p(ei))) = {e | p e < plai)}

hence p; is the least solution for p to the following condition (3):
pEc<pley) = Skac<play)

But (3) holds if and only if p E S. Therefore LeastSoln(S) = ps, since p; is the least

solution to (3), and hence:
M[MkType(S,)] = LeastSoln(S)(«)

as required.

114

Appendix C

Proofs for Chapter 6

C.1 Proofs for Conditions for Constraint Simplification

The following lemma demonstrates that the rule () is admissible in that any deriva-
tion in the extended constraint derivation system produces information equivalent to

that produced by the original analysis.

Lemma 6.1.1 (Admissibility of (=)). If0 F~ P: «a,S is a most general constraint

derivation then:

sba(P)(l) = const(LeastSoln(S)(1))

Proof: This lemma follows from the induction hypothesis:

T ke M:a,81,and E = FV]range(T')]U{a} U Label, then there exists
Sy such that ' M : o, 85 and S =5 Ss.

We prove this hypothesis by induction on the derivation I' F~ M : a, Sy, and by case

analysis on the last step in the derivation.

o If the last step in the derivation I' Fo M : a,S; uses a derivation rule other

that (22), then the lemma holds based on the induction hypothesis.

e Suppose I' Fo M : o, & via (=) because I' Fo M : o, S5 and S5 =5 S;. By
induction, I' - M : a, 84 where S3 =g §4. Since = is an equivalence relation,

S1 =g S;, and hence the lemma holds.

C.2 Proofs for Proof Theory of Observable Equivalence

The following proofs require a number of auxiliary definitions.

Definition C.2.1. (Paths)

115

o A path p,q € Path is a sequence of the constructors dom and rng. We use € to

denote the empty sequence, and p.q to denote the concatenation of the paths p

and ¢.

e The arity of a path p, denoted mp, is the number of dom’s in p, taken modulo

2. If mp is 0, we say p is monotonic, otherwise p is anti-monotonic.

e For a path p, the notation p(7) denotes the set expression 7 enclosed in the

dom’s and rng’s of p, i.e., if p = rng.dom, then p(a) = rng(dom(a)).

e The relations <o and <; denote < and >, respectively.

e The relations Cqy and £ denote C and I, respectively.

o The relations Jy and Iy denote J and C, respectively.

e The relations Cy and C; denote C and D, respectively.

e The operations | |, and | |; denote | | and MM, respectively.

e For a path p and a domain element X € D, the notation p(X) extracts the

component of X at the position p. This notation is formalized as follows:

«(X) = X
(rng.p)(X) = rng(p(X))
(dom.p)(X) = dom (p(X))

e For a path p and a domain element X' € D, the notation XQp is defined as

follows:

‘@ :D x path — D

X@e = X
X@(dom.p) = (0, X,
Xa(rgp) = (0,1,

Lemma 6.2.1 (Soundness and Completeness of A).

system S and a compound constraint C:

SFAC «<— SEC

1)

9

Qp
X)@p

For a compound constraint

116

Proof: The soundness of A is straightforward. To demonstrate the completeness of

A, we assume S = C and prove that S o C by case analysis on C.
e Suppose C = [¢ < k]. Define p by:
Vp € Path. Ya € SetVar. const(p(p(e))) ={c|Stac<pla)}

We prove p = S by a case analysis showing that p satisfies every constraint

C e8S.

— Suppose C’' = [¢ < ¢()]. Then, by the definition of p, ¢ € const(p(q(3))),
and hence p = ¢ < ¢(5).

— Suppose C' = [p(a) < ¢(B)]. We need to show that p(p(a)) T p(q(3)).
We prove this inequality by showing that for any path r:

const(r(p(p(a)))) Crr const(r(p(q(B))))

If r is monotonic, then:

const(r(p(p(a))))
const(r(p(p(a))))
{c|Skac<r(pla))}

{c]Skac<r(q(B))}

via (trans.), since [p(a) < q(f)] € S

and hence S Fa r(p(a)) < r(q(8)) via (compat)
— const(r(a(p(3)

— const(r(p(a(3))))

The case where r is anti-monotonic follows by a similar argument.

M

Hence p = S. But since S = ¢ < &, p |E ¢ < k. Since k = p(a) for some p and

a, then we have that:

¢ € const(p(p(a))
— const(p(pla))
— {c|SFac<pla))

Hence, S Fa ¢ < k, as required.

117

e Suppose C = [k < kg]. Let ¢ be a constant not used in S or C; let S =
S U {e < k1};and let p = LeastSoln(S'). Since p = C, we have that:

,0|: {Cﬁfﬁa K1 Sliz}

Hence p = ¢ < k3 and by the first part of this proof, S’ Fa ¢ < ka.
We now show that for any ', 8’ Fa ¢ < &’ if and only if S Fa k1 < k'. We
prove this hypothesis by induction on the derivation of 8’ A ¢ < &'.
— Suppose S’ Fa ¢ < &' because [¢ < k'] € §'. Then £’ = k4, and by the rule
(reflex), S Fa k1 < K1, as required.

— If [e < k'] € 8, then 8’ FA ¢ < &’ must be derived via the rule (trans,)
based on the antecedents S’ Fa {¢ < k", k" < «'}. By induction, S Fa

k1 < k”. Hence S Fa k1 < &' via (trans,), as required.

Since S’ FA ¢ < kg, the above induction hypothesis implies that S Fa #1 < ko,

as required.

Lemma 6.2.2 For a compound constraint system S, S =5 A(S) |g.

Proof: We need to show that S =25 A(S) |g, i.e.:
Soln(S) |5 = Soln(A(S) |r) |&

Since the rules A are sound:

Soln(S) | = Soln(A(S)) |g
C Soln(A(S) |r) |k

because the solution space increases as the constraints A(S) are restricted to F.
To show the containment in the other direction, assume p = A(S) |g. Without
loss of generality, assume p(a) = L for all @ € E. We extend p to a super-

environment p’ that satisfies S as follows:
Vp € Path. Vo € SetVar. const(p(p = [J{const(p()) | Ska T < p(a)}

We show that p’ = S by case analysis on the constraints C € S.

118

e Suppose C = [¢ < ¢(3)]. Then

const(q(8)) = U{const(p(t)) | Ska T <q(B)}
2 A{c}

as required.

e Suppose C = [p(a) < ¢(B)]. Then for any path r, S Fa r(p(a)) <. r(q(3)).

Hence:
Ufconst(p(7)) | SFa 7 < r(p(a))}
Crr Ufconst(p(r)) | SFa 7 <r(q(53))}
Therefore:
const(p'(r(p(e)))) Crr const(p'(r(q(B))))
Hence:

p'(p(e)) E p'(a(B))
And hence p' = C, as required.

Thus p’ = S. It remains to show that p and p’ agree on E. Let o € E and r € Path.
Then:

const(p'(r(a))) = Uleonst(p(r)) | Star<r(a)}
by definition of p’
= Ufconst(p(t)) | Ska 7 <r(a),SetVar(r) C F}
since p(f) = Lsfor & E
and hence p(7) = L, for SetVar(r) Z £

= U{const(p(r)) | 7 <r(a) € A(S) [r}

— const(p(r(a)))
since [r(a) < r(a)] € A(S) |g by (reflex) and (compat), and for [7 < r(a)] € A(S) |g,
const(p(7)) C const(p(r(a))). Thus p and p’ agree on F, and the lemma holds.

Lemma C.2.2 For any p € Path and X € D, p(X@p) = X.

Proof: By induction on the length of p, and by case analysis on the top constructor

inp. n
Lemma 6.2.3 (Fquivalence of Proof Systems). For a simple constraint system S:

A(S) = 1O(S)

119

Proof: We show that WO(S) C A(S) by induction on the derivation of C € UO(S).
For the base case, if C € UO(S) because C € S, then C € A(S). Otherwise we
proceed by case analysis on the last rule used in the derivation of C € UO(S).

e (compose,): In this case C = [a < rng(x)] is derived from the antecedents
{a < rng(B), f < k} € UO(S). By induction, these antecedents are also in
A(S), and hence the following derivation shows that C € A(S):

B<&

rng(ff) < rng()
a < rng(k)

o < rng(0) (compat)

(trans,)

e (compose,), (composes), (composes): These cases follow by similar reasoning.

(reflex), (trans,), (compat): These rules are either equivalent to or subsumed

by corresponding rules in A.

e (31), (84), (85): For these cases C € A(S) via (trans,).

(82), (83): These rules are special cases of the rules (compose;) and (compose,),

respectively.

There are no other possibilities for the derivation C € WO(S) \ A(S), and hence
UO(S) C A(S).

We prove the converse inclusion A(S) C WO(S) by induction on the derivation of
C € A(S). Again, for the base case, if C € A(S) because C € S, then C € VO(S).

Otherwise we proceed by case analysis on the last rule used in the derivation of

C e A(S).

o (reflex), (compat): These rules are also in W and, by induction, the antecedents

are in WO(S), hence C € ¥O(S).

e (lrans;): The last step in the derivation must be:

(trans.)

We proceed by case analysis on 7 to show that [r < 7] € UO(S).

120

— The case 7 = ¢ is impossible, since [Ty < ¢] is not a compound constraint.

— If 7 € SetVar, then [1 < 1) € WO(S) via (trans,).

— Suppose T = rng(7’). If 7/ € SetVar then [m < 7] € PO(S) via (84).
Otherwise 7 < rng(7’) and rng(7') < 7 are not simple constraints, and

we proceed by considering the derivation of these constraints in A(S). The

last step in the derivation of 7 < rng(7’) is either via:

a1 < rog(fh) B<r
ay; < rng(7)

(compose,)

where 71 = ay, or:

<7

i
rmg(r]) < roglr) P

where 71 = rng(7{). Similarly, the last step in the derivation of rng(7’) <

T9 1s either via:

T < By rng(f) < oy

rng(”) < on (composes)
where 75 = a9, or:
<7
t
rng(7) < rog(rg) "

where 7, = rng(7;). We consider the four possible combinations for the

derivations of 71 < rng(7’) and rng(7’) < o

* Suppose 71 < rng(7’) is inferred via (compose;) and rag(r') < 7 is
inferred via (compose;). Then {fy < 7,7/ < B3} C A(S), and there-
fore [B1 < (32] € A(S) via (trans,). By induction, [3; < 3] € PO(S),
and the following derivation then shows that [y < 7] € UO(S).

oy < rng(f) p1 < B (s9) rog(fs) < g

oy < rng(ﬁz)
ay < aj (84)

« Suppose 71 < rng(7’) is inferred via (compose;) and rag(r') < 7 is
inferred via (compat). Then {5 < 7',7" < 75} C A(S), and therefore

121

(61 < 7] € A(S) via (trans,). By induction, [#; < 73] € ¥O(S), and
the following derivation shows that [r <] € PO(S).

ap <rng(B) i<
oy < rng(7;)

(compose,)

« Suppose 11 < rng(7') is inferred via (compat) and rang(7’) < 7 is
inferred via (composes). This case holds by similar reasoning to the
previous case.

« Suppose 11 < rng(7') is inferred via (compat) and rang(7’) < 7 is
inferred via (compat). Then {rf < 7', 7" <715} C A(S), and therefore
[r1 < 13] € A(S) via (trans,). By induction, [r] < 73] € ¥O(S), and
therefore a (compat)-inference shows that [ry < 7] € UVO(S).

There are no other possibilities for the derivations of 71 < rng(7’) and

rog(7') < 7.

— Suppose 7 = dom(7’). This case holds by similar reasoning to the previous

case where 7 = rng(7’).
There are no other possibilities for 7.

There are no other possibilities for the derivation of C € A(S), and hence A(S) C
VO(S).

Lemma 6.2.4 VO(S) |z = 11O(S) |g.

Proof: Since the rule (compat) does not create any Il or © opportunities, VO(S) =
compat (11O(S)), and hence we just need to show that:

compat(11O(S)) |g Z T1O(S) |

Now:

compat(116(S)) O(S)
compat(11O(S)) |k He(S) |
compat(11O(S)) | E HO(S) |&
To prove the converse direction, let p = TO(S) |g. If p = compat(11O(S)) |g, then
let C be the constraint in compat(I1O(S)) |g with the smallest derivation such that
p = C. Then the last step in the derivation of C must be via (compat). Let C’ be

)
)

122

the antecedent of this rule in compat(I1O(S)). Then SetVar(C') = SetVar(C) C F,
and hence C’ € compat(110(S)) |g with a smaller derivation. Therefore p = C’, and
hence since (compat) is sound, p = C. Thus p & compat(11O(S)) |g, as required. »

Theorem 6.2.6 [Soundness and Completeness of F}g and =£]
1. 8 FEo Sy if and only if S =g Ss.

2. 8 259 Sy if and only if S| =g Ss.

1. Suppose §; Egr S3. Then

S1 Er A(S:) by the soundness of A
Si1 Fr A(S:) |6

VC e A(S,) |r- SiEC

VC € A(S2) |g. S1HaC by Lemma 6.2.1

VC e IO(Sy) | Si1kal by Lemma 6.2.3

VC e IO(S2) |g. Sitwe C by Lemma 6.2.3

VC € IO(S,) |g. C € ¥O(S) |k
VO(S) | 2 TO(SY) |k
St Hf]@ S,

Conversely, suppose S; F¥o S;. Then

VO(S)) | D TO(S,) |k

Soln(VO(Sy) |g) C Soln(T1O(Ss) |k)

Soln(VO(S)) |g) |i C Soln(11O(S3) |1) |5

Soln(S1) |g C Soln(Ss) |k

by Lemmas 6.2.2, 6.2.3 and 6.2.4, since Soln(S;) |g = Soln(I1O(S;) |r) |&
S Fr S

2. Follows from part 1.

C.3 Proofs for Deciding Observable Equivalence

We repeat definition 6.3.1 here, to avoid having to refer back to the original definition

earlier in the text.

123

Definition 6.3.1 (Regular Grammar G,.(S, F)) Let S be a simple constraint system
and E a collection of set variables. The regular grammar G, (S, F) consists of the

non-terminals {ay, ap | a € SetVar(S)} and the following productions:

oy oa, ag, = a Vackl

ay = By, Br, — ar, Viae<ples

ay — dom([3r,) Vo <dom(B)] €S

ay — rag(fu) Vo <rng(B) €S
B, — dom(ay) V [dom(ar) < B] € S

81, rnglar) ¥ [eng(a) < 5] € §

Lemma 6.3.2 Let G = G,(S, E). Then:

La(lar) = {k|[r<a] €ll(S) and SetVar(k) C E}
Lolov) = Ak |Ja <k] €Il(S) and SetVar(r) C F}

Proof: We prove the left-to-right inclusion by induction on the derivation of the
constraint C € W(S), and by case analysis on the last step in that derivation.

e Suppose C € U(S) because C € §. We proceed by case analysis on C.

— Suppose C = [a < f]. Then a € FE, so B, — ar and aj — « are
productions in the grammar. Hence @ € L(5r,). Similarly, 8 € Lo (ar).

The remaining cases for C follow by similar reasoning.

e Suppose C = [a < rng(k)] is inferred via (compose;) from the antecedents
[< rng(B)] and [# < k]. Then ay — rng(fBur), and by induction [y —* k.

Hence ay — rng(k), as required.

The remaining cases follow by similar reasoning.
We prove the right-to-left inclusion by induction on the derivation ay —* k or
ay —* k, and by case analysis on the last step in the derivation. The reasoning for

each case is straightforward. u

We repeat definition 6.3.3 here, to avoid having to refer back to the original

definition earlier in the text.

124

Definition 6.3.3 (Regular Tree Grammar G4(S, F)) The regular tree grammar
G4(S, F) extends the grammar G.(S, F') with the root non-terminal R and the addi-

tional productions:

R [ar, < ap] Vo€ SetVar(S)
R [e < ay] Vie<ales

where [- < -] is viewed as a binary constructor. u

Lemma 6.3.4 Let G = Gy(S, E). Then II(S) |g = La(R).

Proof: We prove the left-to-right inclusion by case analysis on C € TI(S) |g.

e Suppose C = [a < k]. Then by Lemma 6.3.2, ayy —% k. Since SetVar(C) C F,
a € F, and hence af, —¢ a. Thus R —¢ [ar < ap] =% [< k], and hence
[< k] € La(R).

e The case where C = [k < a] follows by similar reasoning.

e Suppose C=[c<k]. fC €S, then k =, a € F, and
Rw—¢ [c<ap]—ag e < al

as required.

If C ¢ S, then an examination of the inference rules in Il shows that C can
only be inferred via (trans,), based on the antecedents [¢ < o] and [a < k.
By Lemma 6.3.2, ay, =% ¢ and ay —% k. Hence R — [¢ < k], and hence
[c < K] € La(R), as required.

o Otherwise C = [k < k3], where k1,62 & SetVar. An examination of the
inference rules in II shows that C can only be inferred via (trans,), based on
the antecedents [k1 < o] and [< k3]. By Lemma 6.3.2, o —§ k1 and
ap ¢ ko Hence R+ [k1 < k3], and hence [y < k3] € Lg(R), as required.

We prove the right-to-left inclusion by case analysis on C € L (R).

e Suppose C = [k; < Ky]. Then for some a, ay, —% k1 and ay —5 ke By
Lemma 6.3.2, {r1 < a, a < ky} C U(S) and SetVar(k;) C E. By Lemma 6.3.5,
{r1 < a, a <k} CI(S). Hence [k1 < ky] € TI(S) |g, as required.

125

e Otherwise C = [¢ < k]. Then for some «a, [¢ < o] € § and ay —§ k.
By Lemma 6.3.2, {a < &} C ¥(S) and SetVar(k) C FE. By Lemma 6.3.5,
{a <k} CI(S). Hence [¢c < k] € TI(S) |g, as required.

Lemma 6.3.5 (Staging) For any simple constraint system S:

VO(S) = ¥(O(S)) = compat(11(O(S)))

Proof: The equality ¥(O(S)) = compat(II(O(S))) holds since (compat) does not
create any Il or © opportunities.

The inclusion ¥O(S) D U(O(S)) obviously holds. To prove the inclusion ¥O(S) C
U(O(S)) holds, we suppose S Fgo C, and prove O(S) Fy C by induction on the

derivation § Fge C, and by case analysis on the last step in this derivation.

e Suppose S Fygo C via some rule in U. By induction, the antecedents of this

rule are in W(O(S)), and hence C is also in ¥(O(S)).

e Suppose S Fye C via one of the rules (s1), (s2) or (s3). These rules are sub-
sumed by (trans,), (compose,) and (compose,), and hence this case is subsumed

by the previous case.

e Suppose S Fye C via (s4), based on the antecedents {or < rng(/3), rng(3) < v}.
By induction, these antecedents are in W(O(S)). An examination of W shows
that W can only infer [o < rng(3)] if there exists o/, 3’ such that ©(S) contains
the constraints:

a<td o <mgd) F <

Similarly, U can only infer [rng(3) < 4] if there exists 3”,4" such that O(S)

contains the constraints:
<" rmg(BY) <4 A <y
Hence:

S Feo o <rng(p”) via multiple applications of (s3)
Stea <4 via (s4)
O)y a <y via multiple applications of (trans,)

126

e The case for (s5) holds by similar reasoning.

C.4 Correctness of the Entailment Algorithm
Theorem 6.3.6 (Correctness of the Entailment Algorithm). S, B4 Sy if and only
if Sy bl St

Proof: The definitions of the computable entailment relation and the relation R
are shown in figure C.1. We prove this theorem based on the following invariant

concerning the relation Rg, s,[*, ", ",]:

Rsyslon,fu, €. D] <= L(lar < fu]) C compat(L(C)) U L(D)
Assume this relation holds, and that S, 2 S;. Then T1(Sy) |5 C compat(T1(S3)) |-
By lemma 6.3.4, TI(S,) |5 = La, (R), and hence:

L, (R) C compat(La,(R))
Thus, for all R =g, [ar, < ay]:

compat (La (R))

-
C compat(Le, {{(vr,yv) | v € SetVar(Ss2)}))

Hence:

R51752 [aLv ay, {<7L7 7U> | 7€ SetVCLT(SQ)}, @]
Also, from Lg, (R) C compat(Le,(R)), we have that for all R ¢, [¢ < ap]:

L ([e<ap]) C compat(Le,(R))
La([e<ay]) C Lea(R)
La (av) C La,({w | R=a2le <wl})
Hence S, l—ﬁg 81 holds. The proof of the converse implication that Sy l—ﬁg S1 implies

S, FL Sy proceeds by a similar argument.
It remains to show that the invariant concerning R holds. To prove the left-to-

right direction, suppose Rs, s,[or, Bu, C, D] and:

ay —a X Hgl TI,
ﬁU L de Y I—>81 T

127

The Entailment Algorithm

In the following, Pg, denotes the finite power-set constructor.

Let:
Gi = Gi(S1,F) L; = {op| o€ SetVar(S;)}
Gy = Gt(827E) U, = {OéU | o€ SetVar(Si)}

Let Gy and (G5 be pre-processed to remove e-transitions.

For C' € Py, (Lo x Uy), define:
Ly (C) = Al < 7] | (ar, fv) € C, ar =a, T, Bu—a, U}
The relation Rg, s,[-, -, -,] is defined as the largest relation on
L1 X Uy X Pan(La X Ug) X Pan(La x Us)
such that if:

R$1,$2[aL7ﬁU707 D]
oy, —a, X
v —a, Y

then one of the following cases hold:
1. Lo, ([X <Y]) C L, (CUD).
2. X =rng(a}), Y = rng(fy) and Rs, s, By, C, D], where
D" ={(y1,,90) | (v2,00) € CUD,y1 —q, rng(v1), v —a, rog(dy)}
3. X =dom(ay;), Y = dom(f}) and Rs, s,[07, o1, C, D], where
D" ={(0L,v) | (v2,00) € C'UD,y1 —q, dom(yy), 6u —rc, dom(d7,)}
4. In no other cases does Rs, s,[ar, fur, C, D] hold.
The computable entailment relation Sy I—ﬁg Sy holds if and only if:
1. VR »q, [ar, < ayl. Rs, s, [on, av, {{(yr,vu) | v € SetVar(S2)}, 0], and

2. VR =g, [c < avl. La, (av) C L, {w | R=a, [e <qul}).

Figure C.1 The computable entailment relation l—ﬁg

128

We prove by induction on 7, that
L([r, < 7v]) C compat(L(C)) U L(D)
One of three cases in the definition of R must hold.
1. £(Jar, < f]) C £(C U D). This case is trivial.

2. In this case:

X = rng(a}) aL =G, T 71, = rng(Tr)

Y = rng(fy) By =&, o T = rg(Ty)

and Rs, s,[of, B, C, D], where

D' = {<7/Lv 5{]> | <7L7 5U> e CUD, =Gy rng(’ylL)v o e rng((S{])}
By induction, [r7, < 7] € compat(L(C)) U L(D').

o If [r; < 7] € L(D') then there exists (y7,dy) € D such that v7 —¢, 77
and d;; ¢, 7. By the definition of D', there exists (yr,dy) € C'U D
such that vz ¢, 71 and 6y =g, 7. Therefore [r, < 7] € L(C'U D), as

required.

o If [r] < 1}] € compat(L(C)) then [r;, < 1] € compat(L(C)), as required.

3. The proof for the third case of the definition of Rg, s,[-, -, -,] is similar to that

for the second case.

To prove the right-to-left direction, suppose:
L([ar, < Bu]) C compat(L(C)) U L(D)

and that the relation Rs, s,[or, Bu, C, D] does not hold. Hence there exists X, Y such
that ar, —¢a, X and (B —¢, Y and none of the three conditions in figure C.1 hold.
Furthermore, since R is the largest relation satisfying the conditions in figure C.1,
there exists a finite proof that none of the three conditions hold.

Of all possible such counter-examples {(ay, By, X,Y,C, D), we pick the one with
the smallest proof that the relation Rs, s,[or, Bu, C, D] does not hold, and proceed

by case analysis on the last step in this proof.

129

e Suppose Rs, s,[ar,Bu,C, D] does not hold because of condition one. Then
L([X <Y])Z L(C U D), which contradicts the assumptions above.

e Suppose Rg,.s,[ar, B, C, D] does not hold because of condition 2. Then X =
rng(at) and Y = rng(3];). Consider any pair of set expressions 7, and s
such that of 7, 71 and §; =g, 7. We consider the two possibilities for
[rng(7r) < rng(mv)] € compat(L(C)) U L(D) separately.

— If [rng(7) < rng(m)] € L(C) U L(D), then there exists (yz,dpy) € CU D
such that:
VL —G, Tg(7L,) G, Tng(Tr)
S —a, Tng(dyr) =, rog(m)

Hence [17, < 7] € L(D'), where:
D' = {<7/Lv(si]> | <7L75U> e CUD, =Gy rng(’ylL)v(sU =Gy rng((S{])}
— Otherwise [rng(7r,) < rng(T)] € compat(L(C)) \ L(C), and hence [r;, <
] € compat(L(C)).

Hence

L(e, < Bi)) € compat (L(C)) U L(D')

The proof that Rs,s,[ar, Bu,C, D] does not hold cannot rely on a smaller
proof that Rs, s,[a%, Bir, C, D'] does not hold, since that would yield a counter-

example with a smaller proof.

e The case where Rg, s,[ar, B, C, D] does not hold because of condition 3 is also

impossible via similar reasoning.

Thus the invariant on R is true, and thus the lemma holds.

C.5 Correctness of the Hopcroft Algorithm

Theorem 6.4.1 (Correctness of the Hoperoft Algorithm). Let S be a simple con-
straint system with external variables E; let ~ be an equivalence relation on the set
variables in a constraint system S satisfying conditions (a) to (e) from figure 6.5; let

the substitution f map each set variable to a representation element of its equivalence

130

class; and let " = f(S), i.e., §' denotes the constraint system S with set variables

merged according to their equivalence class. Then § =g S'.

Proof: Let p be a solution of S. Define p’ by:

plla)="U pla')

OZ/NOZ

Obviously p, p’ agree on E by condition (a) on ~. We claim that p’ |=C for allC € S

by case analysis on C.

e Suppose C = [< rng(3)]. Then for all &’ such that o ~ ' there exists 3’ such
that 3 ~ (3" and:

pla’) E p(rng(8')

Hence for all o ~ o'
pla’) © U p(rng(8))
B'~p
and therefore:

L p(e’) © U plrng(d))
o'~ BB

Hence:
plla) = U pla)

OZ/NOZ

C U plrng(8))
B~

= mg | U p(8)
Binp

= g (p'(3))

= p'(rng(B))

and thus p’ = C, as required.
e The cases where C = [a <] and C = [rng(a) <] follow by similar reasoning.

e Suppose C = [a < dom(f3)]. Then Yo ~ o' V3 ~ ' such that:

pla’) E p(don(5))

Hence Vo ~ o':

and therefore:

Hence:

Suppose C = [dom(3) < «]. Then:
p'(dom(53))

Suppose C = [¢ < a]. Then

p'(a)

I e

I

131

132

Appendix D

MrSpidey Reference Manual

MrSpidey is an interactive, static debugger for Scheme designed to help programmers
understand and debug complex programs. It automatically infers information about
the run-time behavior of programs, and uses this information to identify potential

“danger-points” in those programs. Specifically, MrSpidey:

o infers a type, or value set invariant, describing the set of possible values for each

program expression;

e uses this information to identify unsafe program operations that may cause

run-time errors; and
e provides a supporting graphical explanation for these invariants.

MrSpidey supports almost all of DrScheme, which is an extension of R4RS Scheme
with structures, a module system, an object system, and a GUI toolbox. For further

information on the technology underlying MrSpidey, see [14, 15, 16, 13].

Thanks: Many thanks to both Matthew Flatt and Robby Findler for MrEd, and to
Shriram Krishnamurthi for Zodiac, his source-correlating macro-expander. MrSpidey
crucially depends on both of these packages. Thanks also to Stephanie Weirich for
work on the first implementation of MrSpidey, and to Matthias Felleisen, Corky
Cartwright, Jeremy Buhler, and the Rice University Spring 96 COMP311 program-
ming languages class for their feedback and help.

The typesetting sources for this manual are taken from Reference Manual for

wr Windows 1.60: a portable C++ GUI toolkit.

D.1 Using MrSpidey

MrSpidey is an integrated portion of DrScheme. To analyze the current program in

DrScheme, click on DrScheme’s Analyze button. MrSpidey analyzes the program and

133

displays the analysis results in a new frame. This frame contains two sub-windows: a
program window and a summary window. The display of these windows is controlled

via the Show menu.

D.1.1 The Program Window

The program window contains an annotated version of original program. The addi-
tional annotations present information about the results of the analysis, as described

below.

Unsafe Operations

An unsafe operation is one which may be applied to inappropriate arguments, thus
raising an error. Unsafe operations are a natural starting point for static debugging.

MrSpidey highlights these unsafe operations via font and color changes, as follows:

e Any primitive operation that may be applied to inappropriate arguments, thus
raising a run-time error, is highlighted in red (or underlined on monochrome
screens).* Conversely, primitive operations that never raise errors are shown in

green.

e Any function that may be applied to an incorrect number of arguments is high-

lighted by displaying the lambda keyword in red (or underlined).

e Any application expression where the function position may return a non-
function is highlighted by displaying the enclosing parentheses in red (or under-
lined).

Figure D.1 contains examples of these three different kinds of unsafe operations. The
tab key moves the focus forward to the next unsafe operation, and the shift-tab key
moves the focus backward to the previous unsafe operation. These keystrokes make

it easy to inspect the unsafe operations in a program.

*Certain unsafe operations, such as a vector-ref operation whose index argument may be out-of-
range, are not detected. A list of such operations is contained in section D.6.

134

% MrS3pidey: sum.ss = =] B3
File Edit Show Clear Filter
; Sum. ss -
7 Sums leaves in a binary tree
{define sum
{lambda {tree) ; bLpplied to bad # arguments
{if (number? tree) ; number? is =safe
tree
{(+ {sum {(car tree)) ; Unsafe car will orash
{sum {cdr tree)))))) ; Zafe odr, =since
; car wvalidates tree
{sum {cons {cons nil 1) 2)) ; Bad tree => error on car
{sum) ; bLpplies sum to bad # args
{'not-a-function 5 ; Invoking a non-functicon !
[[]
CHECKS ¢

Arity check in file "sum.z=" line &
car check in file "sum.z=" line 9
Application check in file "sum,==" line 17

TOTA ST, . - F S N Sy T R o L I L T a Y

Figure D.1 Identifying unsafe operations

Popup Menus

MrSpidey also computes significant additional information for each analyzed expres-
sion. This information is available on a demand-driven basis via pop-up menus.
MrSpidey associates a pop-up menu with all program variables, which are marked in
bold, and also with the opening parenthesis of each expression, which is also marked
in bold: see figure 5.2. Clicking on one of these bold tokens displays the associated
menu, which then provides access to additional type and value flow information, as

described below.

Type Information

MrSpidey provides an inferred type for each program expression. To view the type of
an expression, select the Show Value Set option of the expression’s menu. Mrspidey

then computes the expression’s type and displays it in a box inserted to the right of

135

% MrSpidey: sum.ss =] E3
File Edit Show Clear Filter

[sum.=s -
; sums leaves in a binary tree

{define (sum tree)
{if (number? tree)
tree
{+ {sum {car tree))

{sum (cdr show value set
{sum {(cons {cons Parents
A ncestors

Path to Source

Children
Descendants

Close Menu

Figure D.2 The pop-up menu

the expression, as illustrated in figure D.3. See Section D.4 for a complete description
of the type language. The type box is deleted by selecting the Close Value Set option
from the popup menu. Alternatively, selecting Clear| Types deletes all type boxes in
the buffer.

The Value Flow Browser

MrSpidey can also explain the derivation of each value set invariant, or type. This
explanation describes how the flow of values through the program yields a particular
value set invariant. The collection of all potential paths along which value may flow
through the program forms the program’s value flow graph. MrSpidey describes each
edge in the data-flow graph as an arrow overlaid on the program text that connects
the relevant points of the program. Because a large number of arrows would clutter
the program text, these arrows are presented in a demand-driven fashion. FEach
expression’s popup menu provides facilities for inspecting relevant portions of the

value flow graph.

% MrSpidey: sum.ss =] B3
File Edit Show Clear Filter

136

|

r

{define (sum tree)

{sum {cons {cons nil 1) 2))

Sum. ss —
Sums leawes in a binary tree

{if (number? tree)
tree

{+ {sum {(car tree|{uniocn {(cons {(cons nil num) num; [}
fcons nil num)
nil)

{sum {cdr tree)))))

Figure D.3 Displaying type information

Parents: exposes arrows indicating the immediate parents of the current expres-
sion in the value flow graph. For example, figure 1.4 shows the incoming edges

for the parameter tree in the program sum.

o Ancestors: exposes all ancestors of the current expression in the value flow graph.

e Path to Source: finds the shortest path in the value flow graph from a constructor

expression to the current expression.

e Children: exposes the immediate children of the current expression in the value

flow graph.

e Descendants: exposes all descendants of the current expression in the value flow

graph.

All of the above options can be customized to show only the flow of certain values

by selecting the appropriate set of values from the Filter menu. This option is par-

ticularly useful in conjunction with the Path to Source facility for inspecting the flow

of an unexpected value through the program. For example, in the program sum, the

unexpected value for tree is nil. Setting the filter to this value, and then selecting

Path to Source for tree results in the explanation described in figure D.5.

X Mr3pidey: sum.ss

137

=] B3
File Edit Show Clear Filter
[sum.=s -
; sums leaves in a binary tree
{define (sum tree)
{if (numbe tree)
tree
{+ {su c¢ar tree|i{union f(cons (cons nil num) num) [}
fcons nil num)
nil)
cdr tree)))})
{sum fcons {cons nil 1} 2))
Figure D.4 Parents of tree
% MrSpidey: sum.ss =] B3

File Edit Show Clear Filter

[sum.=s
7 Sums leaves in a binary tree

{define (sum gtree)
{if (numbe ree)
tree

{+ {sum Jcar tree|{union {cons {(cons nil num) num)

fcons nil num)
nil)

{sum {c treel))}

{sum {cons {cons 'pil 1) 2))

Figure D.5 Flow of nil

138

Clicking on the head or tail of an arrow with the left mouse button moves the
current focus to the term at the other end of the arrow, which can be useful for
following the flow of values through large programs. Clicking on the head or tail
of an arrow with the right mouse button deletes the arrow. Alternatively, selecting

Clear| Arrows deletes all arrows in the buffer.

D.1.2 The Summary Window

The summary window lists all unsafe operations in the program, together with hyper-
links to those operation. It counts the number of unsafe operations, and expresses
that number as a percentage of the total number of operations in the program. This
window also contains warning about unbound variables and failed type assertions. A

typical summary window is show in figure D.1.

D.2 Preferences

The Edit|Preferences ... menu item menu allows users to configure a variety of
DrScheme options. Two of the preferences windows, MrSpidey Analysis and MrSpidey

Type Display, control aspects of MrSpidey’s behavior. (These windows are only avail-
able after MrSpidey is loaded.)

D.2.1 MrSpidey Analysis Preferences Window

The MrSpidey Analysis preferences window configures MrSpidey’s analysis of pro-

grams. An example of this window is shown in figure D.6, and the controls are

described below.

e Accurate constant types: When this button is off (default), then character, sym-
bolic and numeric constants are given the types char, sym or num respectively.
If the button is on, then these constants are typed accurately, i.e., the number

4 is assigned the type 4, etc.

e Constant merge size: Large quoted values in Scheme can yield large types that
significantly increase the analysis time. To overcome this problem, MrSpidey
generates approximate types for such constants. The Constant merge size slider
controls how large constants can get before MrSpidey starts to approximate

their type.

139

» Preferences

Fa
Fa
s
o
Fa
Fa

> » <

Figure D.6 MrSpidey Analysis preferences window

e If splitting: If this button is on (default), MrSpidey is smart about conditional
expressions such as (if (number? z) ...). MrSpidey only propagates numeric

values for x in the then-part, and non-numbers in the else-part.

e Flow sensitivity: If this button is on (default), then after an expression such as

(car x), MrSpidey knows that the value of x must be a pair.

e Accurate analysis of numeric operations: When this button is off (default), then
numeric operations such as + simply return the type num. If the button is
on, then the numeric operations are typed more accurately, as described in
subsection D.4.1.

140

o Polymorphism: This radio box controls how polymorphic expressions are ana-

lyzed.

— No polymorphism: polymorphic annotation is ignored;
— Simplify constraints: The constraint system for the polymorphic expression

is simplified (see below); and

— Reanalyze: The polymorphic expression is re-analyzed for each polymorphic

reference.

e Polymorphism simplification algorithms: This radio box controls which constraint
simplification algorithm is used to simplify the constraint system of polymor-
phic expression, provided the Polymorphism control is set to Simplify constraints.

These constraint simplification algorithms are described in section 6.4.

e Save .za files in: MrSpidey generates and saves constraint (.za) files during the
analysis of multi-file programs. This radio box controls where these constraint
files are stored, either in the same directory as the corresponding source file

(default), or in a temporary directory.

D.2.2 MrSpidey Type Display Preferences Window

The MrSpidey Type Display preference window controls how MrSpidey computes and
displays type information. An example of this window is shown in figure D.7, and

the controls are described below.

e Show types as: Types can be displayed either as basic types (default), which just
show the range of functions, or as type schemas, which show how the domain
and range of a function are related (e.g. (X1 — > X1)). Basic types contain
less information, but are more compact, which is an important benefit when
working with large programs. With basic types, users can also choose whether
or not to show instance variables and structure fields. For large programs, it
is often best not to show these components, in order to produce reasonably

compact types.

e Constraint simplification algorithms: This radio box controls which constraint
simplification algorithm is used to simplify the constraint system of an ex-
pression, before converting that constraint system to a type. These constraint

simplification algorithms are described in section 6.4.

141

» Preferences

.
e
.
s
.
e

L

Figure D.7 MrSpidey Type Display preferences window

e Type naming: This parameter controls what types are named in a rec type

expression, and can be:

Recursive: Names just enough types to express recursive types.

— Multiple: (default) Names every type that is referred to more than once

Non-Trivial: Names every type except trivial types such as num, sym, etc.

— All: Names all types.
e Primitive types: This parameter can be:

— (prim ...): Displays primitive types as (prim car) etc.

142

— Given types: Displays the given types of primitives, e.g., ((cons a b) -> a).

— Inferred types: (default) Displays the inferred domain and range of primitive

functions, e.g.: ((cons num 4) -> num).

e Use equivalences to simplify types: If this control is on (default), then a number

of rewriting rules are used to simplify types before they are displayed.

e Use equivalences that make types tidy: If this control is on (default), then some
of the type rewriting rules will merge types into disjoint unions, thus losing a

certain amount of type information in order to produce a more compact type.

D.3 Analysis of Large Programs

Large programs in DrScheme are typically split into multiple source files, where each
source file contains a unit (or unit/sig) expression. The main file for the program
then refers to each source file via the reference-unit (or reference-unit/sig)
form, and links these multiple units together into a single compound-unit that is then
invoked.

To provide a quick turn-around time when statically debugging such programs,
MrSpidey uses a componential analysis to avoid re-analyzing source files where pos-

sible. When each referenced unit file is first analyzed, MrSpidey:

1. derives a constraint system that describes the data-flow behavior of the unit;

2. simplifies the constraint system while preserving the externally-visible informa-

tion about the unit’s data-flow behavior; and

3. saves the simplified constraint system in a constraint file named file .za (where

file . ss is the name of the source file).

Although the use of constraint files does not reduce the time required for the first
analysis, on subsequent analyses MrSpidey can use the saved constraint files to avoid
the re-analysis of referenced unit files that have not been modified. This approach
substantially reduces re-analysis times.

Once the analysis is completed, MrSpidey displays the program’s main file with
the usual static debugging mark-ups. To view other source files, select the File|Open

. option from the MrSpidey window. This option displays a dialog box containing

143

all the program’s source files, and allows the programmer to select the file of interest.

A typical dialog box is contained in figure D.8. Alternatively:
e The File|Open All option opens a MrSpidey windows for each source file; and

e The File|Load All option loads all source files into memory but does not imme-

diately display them.

The File| Close All option closes all the MrSpidey windows.

% Open Unit E

Select referenced unit file to open

fafasiafasiafcormacs/Spidey/Unit/Tacs /2 farithA5T 55
fafasiafasiafcormacs/Spidey/Unit/Tacs /2 farithmM.ss
fafasiafasiafcormacsSpidey/Unit/Tacs/2/haseAsST.55
fafasiafasiafcormacs/Spidey/Unit/Tacs /2 /baseM.ss
fafasiafasiafcormacs/Spidey/Unit/Tacs /2 /chvAST.c5
fafasiafasiafcormac/Spidey/Unit/Tacs /2 /chvM.5s
fajasiafasialfcormacsSpidey/Unit/Tacs /2 /control45T.55
fafasiafasiafcormacsSpidey/Unit/Tacs /2 fcontrolM.ss
fafasiafasiafcormac/Spidey/Unit/Tacs /2 fglobal.ss
fafasiafasiafcormac/Spidey/Unit/Tacs /2 /main.ss
fafasiafasiafcormacsspidey/Unit/Tacs 2/ program.ss
fafasiafasiafcormacsSpidey/Unit/Tacs /2 fstorebST.55
fafasiafasiafcormac/Spidey/Unit/Tacs /2 fstoreM.ss
fafasiafasiafcormacs/Spidey/Unit/Tacs /2 top.ss
fafasiafasialcormac/Spidey/ Unit/ Tacs /2 fst.ss

O_kl Cancel'

Figure D.8 The File|Open ... dialog box

D.3.1 Inter-File Arrows

In multi-file programs, the source (or destination) of an arrow may sometimes refer to
a program point in a separate file. In this case MrSpidey draws an arrow originating
(or terminating) in the left margin of the program: see figure D.9. If a margin arrowis

painted red, then it refers to an expression in a file that has not yet been loaded, and

144

clicking on the arrow provides the option to load the file. A blue margin arrow refers
to an expression in a file that has been loaded. Clicking on a blue arrow provides the
option to zoom to and highlight the term at the other end of the arrow, as shown
in figure D.10. These facilities are useful for following the flow of values through

multi-file programs.

. Mr3pidey: controlM.ss =] B3
File Edit Show Clear Filter

funit/sig language”
{import globkal™ control-A3T" {(prev : language™) {(top : lan

{define Interpreter
.'/ﬁ(am/bd/a,(exp env)
match ezp
[{5 catch xz exp)
{inCon
{lambda (k)

{Handler {(top:Interpreter exp {(Extend env x {i
[(% throw = exp)

Figure D.9 Source in another loaded file

% MrSpidey: storeM.ss O] =]
File Edit Show Clear Filter

funit/sig language”™
{import global™ store-AST™ (prev : language”™) {(top : langu

{define Interpreter

‘/il‘?inﬂa/(exrz' env)
match exp

[{§ ref exp) (Handler {top:Interpreter exp env, inRe

[(5 deref exp)

tHandler {(top:Interpreter ezp env)
{Tambhda (=)

Figure D.10 The highlighted source in the other file

145

D.4 The Type Language

The language of basic types in MrSpidey is defined as follows:

type is one of:
set-variable
empty
zeroary-constructor
(constructor type --- type)
(union type --- type)
(rec ([set-variable typel ---) type)
(class [ivar typel ---)
(object [Livar typel ---)
function-type

type-abbreviation

set-variable is:
identifier

zeroary-constructor is one of:

nil num sym str char void true false bool eof

constructor is one of:
zeroary-constructor

vec box promise mvalues iport oport Unary constructors

cons Binary constructors

define-structure-constructor

user-defined-constructor

define-structure-constructor is:
identifier

user-defined-constructor is:
identifier

function-type is one of:
(type - - - type => type)
(type - - type *=> iype)
(type --- type =>* type)
(type - - type *=>* iype)

(lambda type type)

type-abbreviation is one of:

(MU set-variable type)
noarg

(arg type type)
(1ist type --- type)
(listof type)

null

bool

atom

sexp

146

Rest argument

Return value list

Rest argument and
return value list

same as (type *->* lype)

Abbreviates

(rec ([set-variable typel) set-variable)
nil

(cons type type)

(cons type (cons ---(cons type nil)))
(MU 1 (union (cons type 1) nil))

nil

(union true false)

(union nil num sym str char bool)

(MU x (union atom (comns x x) (vec x)))

The behavior of primitive operations is defined using multiple-arity schemas.

For each reference to a primitive operation, MrSpidey retrieves the corresponding

multiple-arity schema and selects the schema appropriate for the number of arguments

given to the primitive (or the last schema if the primitive is used in a higher-order

manner). It then instantiates the schema by replacing the quantified set variables by

set variables, and converts the resulting basic type into a constraint system. Multiple-

arity schemas are defined as follows:

multiple-arity-schema is one of :

schema

(case-> schema ---)

schema is one of:

type

147

(forall (set-variable ---) type)

D.4.1 Accurate Numeric Operations

When the Accurate numeric operations control in the MrSpidey Analysis preferences
window is turned on, MrSpidey performs a more accurate analysis of numeric opera-
tions, as follows.

The type language is extended with the unary constructors apply+, apply-,
apply* and apply/. The return type of the numeric operations +, =, *, and / record
information about the numeric operation and its argument value sets. For exam-
ple, the type returned by the operation + is (apply+ arglist), where arglist is the
argument list to +. The resulting types are simplified before being presented to the
programmer. For example, type (apply+ (list x1 ... xn)) is transformed into
(+ x1 ... xn), etc.

In addition, the binary constructors =, not=, <, <=, > and >= are added to the type
language. The meaning of the type (< X Y) is the set of numbers z in X such that
there exists some y in Y with < y. MrSpidey generates these types for if-expressions

where the predicate is one of zero?, =, <, <=, > or >=.

D.5 Extensions to DrScheme
D.5.1 Type Assertions

The form (: exp type) is an assertion that the values produced by exp must be con-
tained in type. If MrSpidey is unable to prove that the type assertion is satisfied,

then a warning is reported in the summary window. These : forms evaluate to void.

D.5.2 Polymorphic Annotations

The form (polymorphic exp) causes the expression exp to be analyzed in a poly-
morphic manner. That is, if the result of (polymorphic exp) is immediately bound
to an identifier (e.g. by let or define), then all references to that identifier that occur

below that binding will be polymorphic. The annotation has no runtime effect.

148

D.5.3 Declaring New Primitives

The form (type: multiple-arity-schema) declares new primitive of type multiple-arity-

schema. Some example definitions are:

(define my-car (type: (forall (a) ((cons a _) -> a))))

(define my-map (type: (forall (a r) ((a -> r) (listof a) -> (listof r)))))

The expression (type: ...) evaluates to void.

D.5.4 Declaring Constructors

The form (define-constructor name modes ...) adds a new type constructor to the
type language. The arguments mode ... are all booleans, each specifying whether the

corresponding field in the constructor is mutable.

D.5.5 Declaring New Types

The form (define-type name type) adds a new type name that can later be used in

type expressions.

D.6 Restrictions on Source Programs

The following DrScheme facilities are not handled.

e Primitives for dynamic loading and evaluation: load, load/cd, load-relative,
load/use-compiled, current-load, require-library-use-compiled,

compile, eval, current-eval, expand-defmacro and expand-defmacro-once.

e Primitives that dynamically manipulate the top-level environment: undefine,

global-defined-value, invoke-open-unit and invoke-open-unit/sig.
e MzScheme’s interfaces, exception system and exception hierarchy.

e Primitives that access structures without the appropriate selectors: struct-ref

and struct->vector.
o MrSpidey doesn’t know about DrScheme language levels.

e Primitive names should not be assigned or defined.

149

Certain potential errors are not detected:
e Returning an inappropriate number of multiple values to a single value context.
e Index out of bounds on vector, string and list operations.

e compound-unit errors. Since unit’s are normally used in a first-order manner,

these errors are typically easy to detect using the evaluator.

e The arguments to primitive-name and primitive-result-arity are only

checked to be procedures, not primitive procedures.
e Errors in read due to ill-formed s-expression on the input port.
The analysis of certain kinds of code is not completely sound:
e Values passed to exception handlers.
o Tracking values through parameters.
o Tracking values through will executors.

o MrSpidey doesn’t translate unit/sig into unit, as MzScheme does.

150

Appendix E

Implementation Details

E.1 Zodiac

A useful interface for MrSpidey must present the results of the program analysis in
terms of the original source program. Hence, the environment requires a front-end
for processing source text that can correlate the internal representation of programs
with their source location. For Scheme, this correlation task is complicated by the
powerful macro systems of typical implementations because macros permit arbitrary
rearrangements of syntax.

MrSpidey exploits Zodiac [32] for its front-end. Zodiac is a tool-kit for generat-
ing language front-ends that are suitable for interactive environments. It includes a
hygienic high-level macro system that relates each expression in the macro-expanded
code to its source location. MrSpidey exploits this information to associate value set
invariants with expressions in the source program and to present portions of the value

flow-graph as arrows relating terms in the program text.

E.2 MrEd

MrSpidey’s graphical component is implemented using MrEd [18], a Scheme-based
engine for constructing graphical user interfaces. The core of the engine is a C+4-
like object system and a portable graphics library. This library defines high-level GUI
elements, such as windows, buttons, and menus, which are embedded within Scheme
as special primitive classes.

MrEd’s graphical class library includes a powerful, extensible text editor class.
This editor class is used in MrSpidey to display analyzed programs, including the
boxes containing type invariants and the arrows describing the value flow graph. Type
invariant boxes are easily embedded in the program text because an editor buffer can
contain other buffers as part of its text. The arrows used to present flow information

are not part of the editor’s built-in functionality, but it was straightforward to ex-

151

tend the editor class with arrow drawing capabilities using other components of the
graphical library.

MrEd’s object system provides a robust integration between the Scheme imple-
mentation and the underlying graphical class library. The integration of the library
through the object system is easily understood by GUI programmers. The object
system also provides an important tool for designing and managing the components
of a graphical interface. Because the implementation of MrSpidey exploits this object
system, it can absorb future enhancements to the editor and it is easily integrated
into the DrScheme environment.

Applications developed with MrEd—including MrSpidey and DrScheme—are fully
portable across the major windowing systems (X—Windows, Microsoft Windows, and
MacOS). MrEd’s portability, its object system, and its rich class library enabled us

to focus on the interesting and novel parts of MrSpidey’s implementation.

E.3 Multiple-Arity Functions

In contrast to the idealized languages of chapters 2 and 3, realistic languages such
as Scheme [5] provide more flexible parameter passing mechanisms. In particular,
Scheme allows multiple arguments to be passed to a function. It also allows a list of
arguments to be passed, via the apply primitive, and it allows for the incoming list

of arguments to be bound to a formal parameter, via the syntax
(lambda z ...)

To cope with these multiple argument passing and binding possibilities, MrSpidey
models each function as taking a single argument, which is a list of the function’s
actual arguments. Thus the function (lambda (z y) ...) takes an argument list [,
extracts the car of [into z, and the cadr of [into y. Conversely, at an application
site, the arguments to the callee are wrapped up in a list, which is then passed as the
single argument to the callee. Thus the application (f = y) actually applies fto (list
z y). The various other parameter passing and binding modes of Scheme, including

the apply primitive, can also be modeled within this framework.

E.4 Multiple Values

Scheme [5] allows expressions to return a collection of multiple values, which can be

converted into an argument list via the call-with-values primitive.

152

To cope with multiple values, MrSpidey models each expression as returning a list
of return values, in a manner analogous to the way functions take a list of argument

values. Thus, the expression:
(values 1 2)

is modeled in MrSpidey as returning the value:
(list 1 2)

Similarly, the expressions (values 1) and 1 (which are equivalent) both return (list 1).

Thus each expression must return a list of multiple values, and each context needs
to expect such a list. This convention substantially simplifies the analysis, but it does
cause problems in explaining of the program’s value flow. If we consider the binding

expression:
(let ([« M])...)

then we would expect that there should be a value flow arrow from the expression
M to the variable z. In the absence of multiple values, this arrow corresponds to a
subset constraint [y < o] in the solved constraint system, where ap; and a, are
the set variables for M and x, respectively.

Once we introduce multiple values, this direct correspondence between the intu-
itive value flow arrows and subset constraints no longer exists. That is, in the presence

of multiple values, the constraint corresponding to the above let expression is:
car(ay) < a,

since ayr actually denotes a list of multiple values, which in this case should contain
a single element, and that element should be extracted and bound to the variable z.

In order to produce intuitive value flow arrows that do not correspond to subset
constraints, MrSpidey needs to preserve additional information for certain binding

constructs such as the above let expression.

E.5 Checking Scheme Primitives

Section 4.3 describes how to identify unsafe operations in the idealized language
A?. However, realistic languages such as MzScheme [17] contains a large number of
primitive procedures in addition to those in A?. The set of valid argument values for

each of these primitives is often more complicated than for the simple primitives car

153

and cdr. For example, the primitive procedure member requires two arguments, the
second of which must be a list, and each element of the list must be a pair. MrSpidey
uses type schemas to describe both the behavior of each primitive procedure and the

appropriate argument set for that primitive.

E.5.1 Type Schemas

Type schemas are used to describe the behavior and domain of primitive procedures,
and have the form:

i € Schema = VYaw

For example, the operation car has the associated type schema:

flear = ¥3,7.((cons 3 v) ==)

where car is the function tag associated with the primitive car.
We define the semantics of type schemas via the function M.[-] : Setknv x
Schema — P(D):

M, Vaoq,...,a,w] = {Myw] | p = plas = X,], X; € D}
Thus the meaning of a type schema Vayq,...,a,.w is the set of meanings for w as
the universally quantified variables aq, ..., «, range over elements of D. For a closed

type schema p, we define:

Mu] = M, [u]

where p can be chosen arbitrarily, and does not affect the definition.

E.5.2 New Constraint Classes

For each reference to a primitive operation, MrSpidey needs to translate the corre-
sponding type schema into a constraint system. To assist in this process, we introduce

two new classes of constraints: checking constraints and constructor constraints.

Checking Constraints: A checking constraint is of the form:
a<(C
for some ' C Const, and the semantics of checking constraints is defined by:

pEa<C << const(p(a)) CC

154

Checking constraints are used to describe restrictions on the set of appropriate ar-
guments to a primitive operation. For example, suppose the program refers to the
primitive procedure car, and that « is the set variable corresponding to that refer-
ence. Then the data-flow behavior of car can be extracted from the corresponding

type schema fic,r as the simple constraint system:
{car < a,dom(a) < ay, car(ay) < B, cdr(ag) < 7,0 < rng(a)}

and the restriction on appropriate arguments to car can also be extracted from pcar

as the checking constraint:

ag < {pair} .

Constructor Constraints: A constructor constraint is of the form:

and the semantics of constructor constraints is defined by:

p EF w<a = M,
p EF asw = pla)

pla)

C
C MP[W]

A constructor constraint can be converted into an equivalent collection of simple and

checking constraints via the function CS described in figure E.1. That is:
¢ p|E CS[w < alifand only if p F w < «, and

e pE CS[a <w]ifand only if p F a <w.

The cases for constructor constraints of the form w < « are straightforward. The
cases for constructor constraints of the form o < w are more complicated. The func-
tion CS first extracts all the top-level constants in w via the function call TLC[w], and
creates a checking constraint that ensures that o only contains constants in TLC[w].
It then calls the function CS’[a < w] to handle containment within subcomponents

of w.

155

CS[e < a]

CS[3 < o

CS[Ls < o]

CS[(wg =T w,) < a]

CS[(cons w, wq) < @]

CSfwy Uw, < @]
CS[(rec ([wi] ... [an wn]) w) < @]

CSla < w]

CS'[a < O]
[< L]

CS'[a ' < e
CS'la < (w =T w)]
CS'[a < (cons w, wy)]

CS/[Oé S Wi U CUQ]

{c<a}

{8 <o}

0

{T < a,dom(ar) < ag, o, < rng(a)}
UCS[MT S Oér] U CS[Oéd S wd]

where ag4, o, are fresh

{a, < car(a), o, < rng(a)}
UCS[wa S Oéa] U CS[wd S ozd]

where a,, ay are fresh

CS[wr < a]U CSlw, < a

CS[O&Z S wi] U CS[CUZ S ozi] U CS[w S a]

{a < TLC[W]} U CS'[a < W]

om(a), rag(a) < o}
ag) U CSla, < W]
aq, cdr(a) < ag}
wa] U CS[Oéd S wd]
U CS'[a < ws

£ ININA

Figure E.1 Converting constructor
constraints to simple and checking constraints

The auxiliary function TLC : Type — P(Const) extracts the top level constants

in a type, and is defined as follows:

TLC[(cons w w
TLCw Uw
TLC[(rec ([og wi] ...

~— N ~— e

[on wn]) w

TLC[wlUU,, TLC[(rec ([ar wi] ...

{
0
0

¢}

T

fpair}
TLC[w]U TLC[ws]

[arn wn]) wj)]

where «; is mentioned at top level in w

156

E.5.3 Converting Type Schemas to Constraints

For each reference to a primitive operation, MrSpidey converts the corresponding type
schema into collection of simple and checking constraints. This conversion process

involves two steps.

Instantiating the Type Schema: First, the type schema is instantiated. For
@ = Va.w, this instantiation involves replacing references in w to the universally

quantified variables ay,...,a, by fresh variables, producing an instantiated type w'.

Converting the Instantiated Type into Constraints: Second, the instanti-
ated type w’ is converted into a collection of simple and checking constraints via the
function CS. That is, if « is the set variable for the primitive procedure reference,
then:

SUS = CS[w' < a

where § is a simple constraint system and S is a checking constraint system.

Thus MrSpidey converts each reference to a primitive operation into two constraint
systems: a simple constraint system and a checking constraint system. The simple
constraint system is passed on to the set-based analysis algorithm and the analysis
proceeds as usual. The analysis later terminates, yielding a closed constraint system
S for the analyzed program. Since this constraint system is closed under 0, it is
straightforward to check if the least solution of this constraint system satisfies the
checking constraints for the primitive operation. Specifically, LeastSoln(S) satisfies

the checking constraint o < €' if and only if:
{elle<alestce

If the least solution satisfies the checking constraints for a primitive operation,
then that operation is only applied to valid arguments at run-time, and hence that
operation is safe. Conversely, if the least solution does not satisfy the checking con-
straints, then the primitive operation may be applied to erroneous arguments at

run-time, and the operation should be marked as unsafe.

Symbol

MeA

V € Value

x e Var

b € BasicConst
t € FnTag

[€ Label

Bus Blep, unlabel
—

&
—, —"

eval

T € SetFKxp

a,3,... € SetVar

c € Const
dom, rng

C € Constraint

S € ConstraintSystem

S |e

P

D

const, dom, rng
in

C,T, L, U,

Appendix F

Notations

Meaning

Terms

Values
Variables

Basic constants

Function tags

Labels

Reduction rules

Reduction relation
Evaluation contexts
Standard reduction relation

Evaluator

Set expressions

Set variables

Constants

Type expression constructors
Constraints

Constraint systems

Restriction of a constraint system

Power set constructor

Domain for constraints

Extract components of element of D

Values described by constants

Section

2.1
2.1
2.1
2.1
2.1
2.1

2.1.2
2.1.2
2.1.2
2.1.2
2.1.2

2.2
2.2
2.2
2.2
2.2
2.2
2.2

2.2

2.3.1
2.3.1
2.3.1

Ordering, elements and operations on D 2.3.1

157

Page

11
11
11
11
11
11

12
12
12
12
12

12
12
12
12
12
12
13

13
14
14
14
14

p € SetFnv

I' € DerivCtat
o € ConSchema
FV]range(T')]
C € SimpleCon

S € SimpleConSystem

Loy Tsy Ly Us, s
sbha

LeastSoln
O={s1,....8.}
Fe

Sel™, Sel™
selt, sel™, sel
AP

pair € Const
car, cdr

Ace

Al

D € Defines
z,w € AssignVar
H € Heap

AP

box™, box™

Set environment
Extended set environment
Satisfies, or entails
Solution space

Observable equivalence
Restricted entailment

Restricted solution space

Restricted observable equivalence

Constraint derivation rules

Set variable context

Constraint schema

Free variables in the range of I’
Simple constraints

Simple constraint systems

Alternative ordering on domain
Analysis function

Least Solution

Inference rules

Deduction via ©

Sets of selectors

Selectors

Language A plus pairs

Tag for pairs

Selectors for pairs

Language A plus continuations
Language AP plus assignments
Definitions

Assignable variables

Heap of definitions

Language A' plus boxes

Selectors for boxes

2.3.2
2.3.2
2.3.2
2.3.2
2.3.2
2.3.2
2.3.2
2.3.2

2.4
2.4
2.4
2.4
2.4
2.4

2.4
2.6.3
2.6
2.6.1
2.6.1

3.1
3.1
3.2
3.2.2
3.2.2
3.3
3.4
3.4
3.4
3.4.1
3.5
3.5.2

158

15
15
16
16
16
16
16
16

17
16
18
19
18
18

18
23
22
24
23

29
29
31
31
31
33
37
37
37
37
38
41

Au
ui, ue
AC

cl-obj, ivar]

z

FE
A
K
C € CmpdConstraint
S € CmpdConSystem
Y
I

E _EKE
l_‘IJG)v —Uvoe

G
G
or, oy

La(X)

3 QO

,lvar,

Language A' plus units
Selectors for units
Language A' plus objects

Selectors for classes

External variables

Inference rules on constraint systems
Non-constant set expression
Compound constraints

Compound constraint systems
Inference rules on constraint systems
Inference rules on constraint systems

Relations on constraint systems

Grammar

Function producing regular grammar
Grammar non-terminals

Language for X in G

Function producing RTG

Root non-terminal

Relation for computing entailment

Paths

Arity function
Fither < or >
Fither C or
Fither C or D
Either [| or M

Injection function

3.6
3.6.2
3.7
3.7.2

6.1
6.2
6.2
6.2
6.2
6.2
6.2
6.2

6.3.1
6.3.1
6.3.1
6.3.1
6.3.3
6.3.3
6.3.4

C.2
C.2
C.2
C.2
C.2
C.2
C.2

63
64
64
65
65
66
67
67

70
70
70
70
71
71
72

114
114
114
114
114
114
114

1]

2]

[4]

[5]

[6]

160

Bibliography

AHo, A., J. HOPCROFT AND J. ULLMAN. The Design and Analysis of Com-
puter Algorithms. Addison-Wesley, Reading, Mass., 1974.

AIKEN, A., WIMMERS, E. L., AND LAaksHMAN, T. K. Soft typing with
conditional types. In Proceedings of the ACM Sigplan Conference on Principles
of Programming Languages (1994), pp. 163-173.

BOURDONCLE, F. Abstract debugging of higher-order imperative languages. In
Proceedings of the ACM SIGPLAN 93 Conference on Programming Language
Design and Implementation (June 1993), pp. 46-55.

CARTWRIGHT, R., AND FELLEISEN, M. Extensible denotational language spec-
ifications. In Theoretical Aspects of Computer Software.

CLINGER, W., AND REES, J. (EDS.). The revised* report on the algorithmic
language scheme. ACM Lisp Pointers 4, 3 (July 1991).

CoopPEeRr, K. D., HarLL, M. W., Hoob, R., KEnNNEDY, K., MCKINLEY,
K., MELLOR-CRUMMEY, J., TORCZON, L., AND WARREN, S. The Parascope

parallel programming environment. Proceedings of the IEEFE (February 1993),
244-263.

Cousort, P., AND CousoT, R. Formal language, grammar, and set-constraint-
based program analysis by abstract interpretation. In Proceedings of the 1995

Conference on Functional Programming and Computer Architecture (1995),

pp- 170-181.

DETLEFS, D. An overview of the extended static checking system. In Proceedings
of The First Workshop on Formal Methods in Software Practice (January 1996),
ACM (SIGSOFT), pp. 1-9.

DreuTscH, A., AND HEINTZE, N. Partial solving of set constraints. Unpublished

manuscript.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

161

DUESTERWALD, E., GUpPTA, R., AND SOFFA, M. L. Reducing the cost of
data flow analysis by congruence partitioning. In International Conference on
Compiler Construction (April 1994).

EIrrIG, J., SMITH, S.; AND TRIFONOV, V. Sound polymorphic type inference

for objects. In Conference on Object-Oriented Programming Systems, Languages,

and Applications (1995).

FAHNDRICH, M., AND AIKEN, A. Making set-constraint based program analy-
ses scale. Technical Report UCB/CSD-96-917, University of California at Berke-
ley, 1996.

FLANAGAN, C., AND FELLEISEN, M. Set-based analysis for full Scheme and its
use in soft-typing. Technical Report TR95-254, Rice University, 1995.

FraNaGcaN, C., AND FELLEISEN, M. Modular and polymorphic set-based

analysis: Theory and practice. Technical Report TR-96-266, Rice University,
1996.

FraNnaGcaN, C., AND FELLEISEN, M. Componential set-based analysis. In
Proceedings of the ACM SIGPLAN 97 Conference on Programming Language
Design and Implementation (June 1997), pp. 235-248.

FraNnacan, C.; FratT, M., KRISHNAMURTHI, S., WEIRICH, S., AND
FELLEISEN, M. Finding bugs in the web of program invariants. In Proceedings
of the ACM Conference on Programming Language Design and Implementation
(1996), pp. 23-32.

FLATT, M. MzScheme Reference Manual. Rice University.

FraTtT, M. MrEd: An engine for portable graphical user interfaces. Technical
Report TR-96-258, Rice University, 1996.

FrLAaTT, M., AND FELLEISEN, M. First-class compilation units. Unpublished

manuscript.

FraTtT, M., KRISHNAMURTHI, S., AND FELLEISEN, M. Mixins for java.
POPL’97 submission.

[21]

[22]

23]

[24]

[29]

[30]

31]

32]

162

GECSEG, F., AND STEINBY, M. Tree Automata. Akadémiai Kiadé, Budapest,
1984.

GosLING, J., Joy, B., AND STEELE, G. The Java Language Specification.
Addison-Wesley, 1996.

HEINTZE, N. Set Based Program Analysis. PhD thesis, Carnegie Mellon Uni-
versity, 1992.

HEINTZE, N. Set-based analysis of ML. programs. In Proceedings of the ACM
Conference on Lisp and Functional Programming (1994), pp. 306-317.

HINDLEY, R. J., AND SELDIN, J. P. Introduction to Combinators and -
Calculus. Cambridge University Press, 1986.

HIRANANDANI, S., KENNEDY, K., TSENG, C.-W., AND WARREN, S. The D
editor: A new interactive parallel programming tool. In Proceedings of Super-
computing (1994).

HopcrOFT, J. E. An n log n algorithm for minimizing the states of a finite
automaton. The Theory of Machines and Computations (1971), 189-196.

JAGANNATHAN, S.; AND WRIGHT, A. K. Effective flow analysis for avoiding
run-time checks. In Proc. 2nd International Static Analysis Symposium, LNCS
983 (September 1995), Springer-Verlag, pp. 207-224.

JONES, N., AND MUCHNICK, S. A flexible approach to interprocedural data
flow analysis and programs with recursive data structures. In Conference Record
of the Ninth Annual ACM Symposium on Principles of Programming Languages
(January 1982), pp. 66-74.

KENNEDY, K., MCKINLEY, K., AND TSENG, C.-W. Interactive parallel pro-
gramming using the ParaScope Editor. IEEFE Transactions on Parallel and Dis-

tributed Systems 2, 3 (July 1991).

KERNIGHAN, B. W., AND RiITCHIE, D. M. The C Programming Language.
Prentice-Hall, 1988.

KRISHNAMURTHI, S. Zodiac: A programming environment builder. Technical
Report TR-96-259, Rice University, 1996.

33]

[35]

[36]

[40]

[41]

[42]

[43]

[44]

163

MILLER, B., Koski, D., LEE, C. P., MAGANTY, V., MURTHY, P., NATARA-
JAN, A., AND STEIDL, J. Fuzz revisited: A re-examination of the reliability

of unix utilities and services. Computer Science Department, University of Wis-

consin, 1995.

MILNER, R., TOFTE, M., AND HARPER, R. The Definition of Standard ML.
The MIT Press, Cambridge, Massachusetts and London, England, 1990.

PALSBERG, J. Closure analysis in constraint form. Transactions on Program-
ming Languages and Systems 17, 1 (1995), 47-62.

PALSBERG, J., AND O’KEEFE, P. A type system equivalent to flow analysis. In
Proceedings of the ACM SIGPLAN 95 Conference on Principles of Programming
Languages (1995), pp. 367-378.

PoTTIiER, F. Simplifying subtyping constraints. In Proceedings of the 1996
ACM SIGPLAN International Conference on Functional Programming (1996),
pp- 122-133.

PucH, W. The omega test: a fast and practical integer programming algorithm
for dependence analysis. In Supercomputing (1991).

REYNOLDS, J. Automatic computation of data set defintions. Information
Processing’68 (1969), 456-461.

REYNOLDS, J. C. The essence of ALGOL. Algorithmic Languages (1981),
345-372.

SHEI, B., AND GANNON, D. Sigmacs: A programmable programming environ-
ment. In Advances in Languages and Compilers for Parallel Computing. The
MIT Press, August 1990.

TorTE, M. Type inference for polymorphic references. Information and Com-
putation 89, 1 (November 1990), 1-34.

TRIFONOV, V., AND SMITH, S. Subtyping constrained types. In Third Inter-
national Static Analysis Symposium (LNCS 1145) (1996), pp. 349-365.

WoLFE, M. J. The Tiny loop restructuring research tool. In Proceedins of the
1991 International Conference on Parallel Processing (August 1991).

164

[45] WRIGHT, A. Practical Soft Typing for Scheme. PhD thesis, Rice University,
1994.

[46] WRIGHT, A., AND CARTWRIGHT, R. A practical soft type system for scheme.
In Proceedings of the ACM Conference on Lisp and Functional Programming
(1994), pp. 250-262.

[47] WRIGHT, A., AND FELLEISEN, M. A syntactic approach to type soundness.
Information and Computation 115, 1 (1994), 38-94.

[48] WRIGHT, A. K. Simple imperative polymorphism. Lisp and Symbolic Compu-
tation 8, 4 (Dec. 1995), 343-356.

