
RICE UNIVERSITY

Maestro: Achieving Scalability and Coordination in
Centralized Network Control Plane

by

Zheng Cai

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Dr. T. S. ugen
Associate Professor,
Computer Science

Dr. Alan L. Cox,
Associate Professor,
Computer Science

rrr:LillZh(;ng,
Assistant Professor,
Electrical and Computer Engineering

HOUSTON, TEXAS

AUGUST, 2011

ABSTRACT

Maestro: Achieving Scalability and Coordination in Centralized

Network Control Plane

ZhengCai

Modem network control plane that supports versatile communication services (e.g. per­

formance differentiation, access control, virtualization, etc.) is highly complex. Different

control components such as routing protocols, security policy enforcers, resource alloca­

tion planners, quality of service modules, and more, are interacting with each other in

the control plane to realize complicated control objectives. These different control com­

ponents need to coordinate their actions, and sometimes they could even have conflicting

goals which require careful handling. Furthermore, a lot of these existing components are

distributed protocols running on large number of network devices. Because protocol state

is distributed in the network, it is very difficult to tightly coordinate the actions of these

distributed control components, thus inconsistent control actions could create serious prob­

lems in the network. As a result, such complexity makes it really difficult to ensure the

optimality and consistency among all different components.

Trying to address the complexity problem in the network control plane, researchers have

proposed different approaches, and among these the centralized control plane architecture

has become widely accepted as a key to solve the problem. By centralizing the control

functionality into a single management station, we can minimize the state distributed in

the network, thus have better control over the consistency of such state. However, the

centralized architecture has fundamental limitations. First, the centralized architecture is

more difficult to scale up to large network size or high requests rate. In addition, it is equally

important to fairly service requests and maintain low request-handling latency, while at the

same time having highly scalable throughput. Second, the centralized routing control is

neither as responsive nor as robust to failures as distributed routing protocols. In order to

enhance the responsiveness and robustness, one approach is to achieve the coordination

between the centralized control plane and distributed routing protocols.

In this thesis, we develop a centralized network control system, called Maestro, to solve

the fundamental limitations of centralized network control plane. First we use Maestro as

the central controller for a flow-based routing network, in which large number of requests

are being sent to the controller at very high rate for processing. Such a network requires

the central controller to be extremely scalable. Using Maestro, we systematically explore

and study multiple design choices to optimally utilize modem multi-core processors, to

fairly distribute computation resource, and to efficiently amortize unavoidable overhead.

We show a Maestro design based on the abstraction that each individual thread services

switches in a round-robin manner, can achieve excellent throughput scalability while main­

taining far superior and near optimal max-min fairness. At the same time, low latency even

at high throughput is achieved by Maestro's workload-adaptive request hatching. Second,

we use Maestro to achieve the coordination between centralized controls and distributed

routing protocols in a network, to realize a hybrid control plane framework which is more

responsive and robust than a pure centralized control plane, and more globally optimized

and consistent than a pure distributed control plane. Effectively we get the advantages

of both the centralized and the distributed solutions. Through experimental evaluations,

we show that such coordination between the centralized controls and distributed routing

protocols can improve the SLA compliance of the entire network.

Acknowledgment

First and foremost, I would like to thank my advisor, Dr. T. S. Eugene Ng, for his

insights in helping guide the direction of this thesis. I am greatly indebted to him for his

guidance, vision, and the freedom he has given to me to pursue my research interests. He

has been incredibly patient to me from the very beginning of my graduate studies at Rice

University. I feel very fortunate for having the chance to work closely with him.

I wish to thank Dr. Alan L. Cox who is a major contributor to the work done in my

thesis. It is Dr. Cox's illuminating advices and guidance on both high level and details that

make this work to go in its right direction. He always gives accurate insights which ensures

I do not miss the correct big picture.

I really want to thank Dr. Lin Zhong for his offer to serve on my Ph.D. thesis committee.

I really appreciate his time and consideration.

I am grateful to my fellow members in our group, Florin Dinu and Jie Zh.eng. It is their

hard work on design and implementation of the system that makes this project progress in

a more efficient and effective way.

I also want to thank Bo Zhang and Guohui Wang who give me great constructive sug­

gestions when I encounter problems. Their experience and knowledge really speeds me up

in solving problems.

In addition my thanks go to all my family and my friends who always believe in me and

give me encouragement when I encounter troubles.

Contents

List of Illustrations

List of Tables

1 Introduction

1.1 The Approach of Centralization

1.1.1 Pioneers of Centralization in IP Networks

1.1.2 Advantages of Centralization

1.1.3 Fundamental Limitations of Centralization

1.2 Thesis Statement

1.3 Contributions . .

1.3.1 Addressing the Scalability Problem

1.3.2 Achieving Coordination Between Centralized and Distributed

Controls ...

1.4 Thesis Organization .

2 Related Work

2.1 Evolution of Centralized Network Control Systems

2.1.1 The Routing Control Platform (RCP)

2.1.2 The 4D Architecture

2.1.3 SANE.

2.1.4 Ethane

2.1.5 Tesseract, A 4D Network Control Plane

2.1.6 OpenFlow

2.1.7 NOX and Beacon .

ix

xi

1

1

2

2

4

5

5

5

6

7

9

9

9

11

13

14

15

17

19

vi

2.1.8 HyperFlow and Onix . . 21

2.1.9 DIFANE 22

2.1.10 Uniqueness of Maestro . 23

2.2 High Performance Concurrent Systems . 23

2.2.1 SEDA 24

2.2.2 RouteBricks 25

2.3 SLA Compliance 26

3 Background Discussion of the Maestro Programming Frame-

work 28
3.1 Traditional Way of Realizing Network Functionalities . 28

3.1.1 Lack of Components Management . 29

3.2 The Maestro Programming Framework . 31

3.2.1 View 31

3.2.2 Application . 32

3.2.3 Drivers 32

3.2.4 DAG 33

3.2.5 Environments . . . 34

3.3 Programming Language Used 35

4 Balancing Fairness, Latency and Throughput in

the OpenFiow Control Plane 37

4.1 Introduction . 37

4.1.1 Fundamental Problem of Centralized Flow-based Routing Networks 37

4.1.2 Fundamental requirements

4.2 Design of the Maestro System . .

4.2.1 Overview of the Maestro system .

39

40

40

4.2.2 Achieving fair capacity allocation while having scalable throughput 42

vii

4.2.3 Achieving controllable latency while having high throughput . . 48

4.3 Evaluation

4.3.1 Experiment setup and methodology

4.3.2 Fairness of capacity allocation

4.3.3 Effectiveness of the ffiT adaptation algorithm . .

4.3.4 Throughput and delay scaling .

4.4 Summary

5 Coordinating Centralized and Distributed Controls to Build a

Responsive and Robust Hybrid Control Plane with Global Op-

53

53

55

57

62

72

tilllality Jr"
5.1 Introduction .

5 .1.1 Lack of Coordination .

5 .1.2 Limitations of the Centralized Solution

5.1.3 The CONTRACT Framework

5.2 Examples of Coordination Problems .

5.2.1 Need for IGP and Load Balancing Coordination ..

5.2.2 Need for IGP and Traffic Policing Coordination .

5.3 CONTRACT: The Framework

5.3.1 IGP and Load Balancing Coordination.

5.3.2 IGP and Traffic Policing Coordination .

5.3.3 CONTRACT Properties

5.3.4 Applications and DAGs Design

5.4 Evaluation

5.4.1 Methodology

5.4.2 Environment Variables

5.4.3 Performance Evaluation

5.4.4 Overhead Evaluation ..

74

74

75

76

77

77

78

79

80

85

89

90

91

91

92

93

98

5.5 Summary .

6 Future Work and Conclusion

6.1 Future Work .

viii

.. 101

102

. . 102

6.1.1 Scalability in More Complicated Scenarios 102

6.1.2 Resource Aware Routing 103

6.1.3 Maestro for Clouds and Data Centers 104

6.2 Conclusion 105

Bibliography 107

Illustrations

3.1 DAG examples 33

4.1 Learning switch functionality . 40

4.2 Routing functionality . . . 41

4.3 Re-partitioning algorithm . 44

4.4 IBT adaptation algorithm . 50

4.5 Microbenchmark for output hatching. 52

4.6 Experiment platform setup ... 54

4.7 Distribution of flow request rates 55

4.8 Fairness result of scenario one 56

4.9 Fairness result of scenario two 57

4.10 Fairness: with and without extra skip handling . 58

4.11 4 million rps request rate 58

4.12 1.4 million rps request rate 59

4.13 0.85 million rps request rate 60

4.14 Dynamic IBT under changing request rate 61

4.15 IBT distribution upon different request rate 61

4.16 Absolute throughput values, 79- uniform 63

4.17 Absolute throughput values, 79 - skewed . 64

4.18 Absolute throughput values, 1347 - uniform 64

4.19 Absolute throughput values, 1347- skewed 65

4.20 Throughput scalability, 79 - uniform 66

4.21 Throughput scalability, 79 - skewed . .

4.22 Throughput scalability, 1347- uniform .

4.23 Throughput scalability, 1347- skewed .

4.24 Probing delay in log scale, 79 - uniform

4.25 Probing delay scalability, 79 - skewed .

4.26 Probing delay scalability, 1347 - uniform .

4.27 Probing delay in log scale, 1347 - skewed

4.28 Absolute throughput values, 4 switches .

X

66

67

67

68

68

69

69

70

4.29 Absolute throughput values, 5% source switches in the 1347-node topology 70

5.1 Local autonomous adaptation algorithm 82

5.2 Distributed coordination protocol for IGP routing 83

5.3 Specification of Locally _adjusLfilter_configuration(...) 87

5.4 Actions to be taken when receiving filter configuration 88

5.5 Applications and DAGs for CONTRACT. 90

5.6 Number of SLA violations vs. SLA delay guarantee in terms of multiples

of minimum propagation delay . 95

5.7 Number of SLA violations vs. SLA delay guarantee in terms of multiples

of minimum propagation delay . 96

Tables

4.1 Throughput(rps) and probing delay under different request rates(rps) 62

4.2 Improvement made by memory management 72

5.1 Number of flows with packet loss for varying average flow rate . . 94

5.2 Number of flows with packet loss for varying variance of flow rate 95

5.3 Number of flows with packet loss for varying noise level in the traffic matrix 96

5.4 Number of flows with packet loss for varying optimization time budget. 97

5.5 Number of flows with packet loss for varying hold down timer 98

5.6 Performance for varying change frequency 100

1

Chapter 1

Introduction

1.1 The Approach of Centralization

Nowadays, computer network operation has become more and more complicated than only

best effort packets forwarding. For example, the routing decisions within one autonomous

system are usually controlled by IGP protocols such as OSPF, and routing decisions across

different autonomous systems are usually made by BGP protocols. Traffic filters are put

in the network to block unintended or malicious traffic to enforce security policies. VPN

tunnels are set up in the network to provide virtual private networking environment and

resource reservation. The problem caused by such complexity is that, as more and more

control components are being added into the network, there lacks a unified way of orches­

trating these components. Interactions among components are realized in ad hoc ways by

manually tuning protocol parameters or so. Such indirect interaction is the root for many

configuration errors and network failures [SG05].

Furthermore, the nature that these control components are distributed in the network

makes the problem even worse. Routers/switches from different vendors usually have dif­

ferent interfaces, which makes it more difficult to manage all the distributed devices in the

network. In addition, because state and parameters of these components are also distributed

in the network, it is more difficult to guarantee the network state consistency among all the

distributed devices. As a result, inconsistent control decisions could be introduced. For

example, inconsistent routing decisions are generated from inconsistent topology informa­

tion collected and used by routing protocols, and they could lead to forwarding loops in the

network which could cause serious performance and correctness problems.

2

1.1.1 Pioneers of Centralization in IP Networks

Because of the fundamental difficulties of orchestrating network control components via a

distributed approach, in recent years, many works have been done in considering refactor­

ing the network control plane, by a centralized approach. For example, RCP [CCF+05] is a

centralized solution for controlling inter-domain routing in IP networks to replace today's

distributed iBGP. The 4D architecture [GHM+05] proposes decomposition of the network

into four planes: the Data, Discovery, Dissemination and Decision planes. In particular, the

decision plane is proposed to be a solution for centralizing network control components.

SANE [CGA +o6] proposes a solution for enforcing strong security policies in enterprise

networks by requiring every flow to be checked by a central controller before it is allowed

in the network. Tesseract [YMN+07] is a system that realizes all planes of the 4D archi­

tecture. Details of all these previous works will be discussed in Chapter 2. Based on this

trend, we argue that centralization is one promising solution for orchestrating network state

dependency and consistency among network control components.

1.1.2 Advantages of Centralization

We argue that the centralization approach has fundamental advantages which are the root

reasons for the trend of centralization.

By centralization, we can minimize the amount of distributed state to manage. For

example, instead of having distributed routing protocols running and each of them main­

taining a distributed copy of the link state database [Moy97], all the link state information

collected can be centralized in one single place. Such centralized link state database will

less likely contain inconsistent information, and routing decision based on this will less

likely introduce inconsistent behavior such as forwarding loops. However, it is impossible

to centralize all network state. For example, the packet forwarding function still needs to be

implemented by distributed devices such as routers and switches, and these devices need to

maintain some state to realize the function, such as forwarding tables, packet filters, packet

queues, etc. We argue that if we are able to centralize complicated inter-dependent high

3

level functions and network state, we can also orchestrate the low level functions and state

which cannot be centralized, because they are directly controlled and decided by the high

level functions and state.

In addition, by centralization, we can minimize the delay for synchronizing network

state. Such delay is a fundamental unavoidable feature of the network, and it complicates

the process of synchronizing network state. In order for distributed control functions to

work consistently, distributed network state synchronization has to be ensured, but it is

very difficult because the network delay will create transient inconsistent time period. In

contrast, if the network state is centralized, we can save half of one trip delay decided by

the network diameter. Minimal delay leads to minimal transient period, which can translate

to better control over the consistency of network state. Also the centralized solution only

requires 0 (n) communication between the central controller and the distributed devices,

while the distributed solution requires O(n2) communication among all distributed devices

to synchronize the network state.

Furthermore, by centralization and providing a unified framework to orchestrate net­

work control functions, we can explicitly and directly control the interaction among control

components. One fundamental inefficiency of the traditional way is the lack of a unified

framework to design and compose control components. Many inter-dependent distributed

control components are glued together by either ad-hoc hacks or manual efforts, which

could very likely introduce potential errors or mis-configurations. One example is the

complicated behavior introduced by the ad hoc composition of intra-domain routing and

inter-domain routing as shown in [TR06]. The key idea is that a single local link failure

within an AS can make the inter-domain routing unstable. Indirect control components

composition makes it very difficult to predict the behavior of network controls, as shown

in [SG05]. Instead, if all control components are centralized, there is a much better chance

to provide such a unified framework for network developers to implement components

which are designed to have clearly-defined interfaces to interact with each other, and all

such interactions can be directly enforced.

4

1.1.3 Fundamental Limitations of Centralization

Centralization also has fundamental limitations. These limitations need to be carefully

solved, and sometimes a particular requirement might not be suitable to be addressed by

centralization because of these fundamental problems. Careful evaluation must be done to

weigh the trade-offs before taking the centralized approach.

First, centralized systems usually lack scalability. Because more functionalities are

centralized at a single entity, or a single set of entities, more computing power and 110

throughput is required. When the network grows to very large, as large as thousands or

even millions of nodes, whether the central control can scale up enough is a critical prob­

lem. Furthermore, achieving good scalability means more than just hitting the highest ag­

gregate events handling throughput. The capacity of the centralized system must be "fairly"

allocated among all sources, and the system must have controllable latency while maintain­

ing high throughput. The performance of the system must also be scalable on multi-core

processors.

Second, there is lack of coordination between numerous centralized control tasks and

distributed control protocols. In general, centralized systems can achieve much better

global optimality and consistency, because of the advantages shown in the previous sec­

tion. While distributed systems are more responsive, if only distributed local actions are

enough to handle network events and achieve global objectives effectively, then because

distributed controls can be much closer to the events compared to the centralized control,

they can react faster. Furthermore, distributed systems are considered more robust than

centralized systems, because do not have a single point of failure. As a result, to get the

advantages of both the centralized and the distributed system, we need to have a hybrid

control plane framework to achieve such coordination.

5

1.2 Thesis Statement

The thesis statement is that, it is practical to build a centralized system for control plane

functionalities to explicitly manage state consistency and dependency, at the same time the

system has good scalability by exploring parallelism within one single machine, and it is

also practical to build a hybrid control plane to achieve coordination between centralized

and distributed controls, which gives us both the benefit of global optimality and consis­

tency, and the benefit of good responsiveness and robustness.

1.3 Contributions

The existing Maestro programming framework provides unified interfaces to write control

components and to manage network state, and interface to compose and directly manage

interactions among control components. The Maestro programming framework enables

explicit control over network state consistency and dependency among modularized control

components. In this thesis, we address the scalability problem by exploring parallelism,

and we show how to achieve coordination between centralized and distributed controls to

address the responsiveness and robustness problems, based on the Maestro programming

framework.

1.3.1 Addressing the Scalability Problem

By exploring parallelism and taking advantage of multi-core technology, we show that

Maestro can achieve excellent scalability in working as a central controller for a flow based

routing network, where the throughput of the controller is critical for the performance of

the network. Maestro provides the low level interfaces for interacting with the flow based

network, enables the composition and concurrent execution of user applications, and en­

sures the consistent usage and update of shared data. Through our initial study we show

that, to achieve scalable throughput performance on multi-core processors, it is critical to

minimize cross-core overhead by binding threads to processor cores and binding requests

6

to threads. It is also fundamentally necessary to amortize the overhead of socket read/write

system calls and the overhead of managing network state consistency and dependency

among modularized control components, to achieve much better throughput performance.

Many strategies of this nature could generally be called hatching. Then, we present four

workload distribution designs termed shared-queue, static-partition, dynamic-partition, and

round-robin. These designs represent different trade-off points between complexity, fair­

ness, and scalability. We also compare Maestro designs against two other available con­

trollers, NOX [GKP+QS] and Beacon [bea], both currently employ a static-partition design.

Through extensive experimental evaluation, we find that the round-robin design achieves

far superior and near optimal fairness while having excellent scalability, second only to

the dynamic-partition design. Furthermore, we present a workload-adaptive request hatch­

ing algorithm that automatically selects the granularity for hatching requests for improved

throughput while ensuring request handling latency is well controlled. The key to the

algorithm is to use actual throughput and latency measurements at run-time to control the

dynamic adaptation. Experimental results show that the algorithm is very effective at main­

taining high throughput while restraining latency regardless of the workload. In contrast,

the static hatching algorithm currently employed by NOX and Beacon leads to unneces­

sarily large latency at heavy load. Together, our designs, algorithms and experimental

evaluations provide extensive and quantitative insights on balancing fairness, latency, and

throughput in the control plane of the flow based routing network.

1.3.2 Achieving Coordination Between Centralized and Distributed Controls

By trying to coordinate centralized and distributed control functions, we show that Maestro

can be applied in such a mixed network to get the advantages of both centralized and dis­

tributed network controls. This helps us solve the responsiveness and robustness problems

of a pure centralized solution, and to solve the lack of global optimality and consistency

of a pure distributed solution. We show a creative algorithm for such coordination which

we use to ensure that Maestro and distributed devices coordinate their actions based on

7

synchronized network state. Whenever the network state changes, distributed devices will

report their current network state (optimized by only sending fingerprint of that state) to

Maestro. Maestro will check whether the state reports from all devices are consistent with

each other and with the state observed by Maestro. Maestro will only evaluate state that is

consistent among all entities including Maestro, to prevent inconsistent actions from tak­

ing effects. We show the design which minimizes the impact of local actions that could

have uncertain global effects, by putting locally rerouted traffic to lower priority queue.

These local actions will be sent to Maestro for evaluation, and only upon approval the lo­

cally rerouted traffic will be brought back to normal priority. Furthermore, we show an

algorithm which enables distributed devices to locally adjust their traffic filter configura­

tions, trying to be able to keep blocking malicious traffic even such traffic is rerouted and

bypasses the original filters because of the local routing action. The coordinated actions be­

tween Maestro and distributed devices minimize the chance and time that malicious traffic

could get leaked in the network. Finally, through evaluation we show that such coordinated

controls can achieve much better SLA compliance than pure distributed controls with no

coordination. We also show that such coordinated controls by design can reduce the time

taken to respond to network events, and prevent the network from single point of failure.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 provides discussion of related works. It starts from the evolution of central­

ized network control systems, and includes details about important pioneer works along

this path. In addition it also shows the difference of the work done in this thesis compar­

ing to these existing works. Furthermore, it also includes additional works related to high

performance concurrent system, and SLA compliance.

Chapter 3 describes the overall design of the Maestro system. It includes all the key

notions and features developed for Maestro that are going to be used for the rest of this

thesis. More specifically, it shows how the programming framework of Maestro helps the

8

programmers directly and explicitly control the network state dependency and synchro­

nization among control components.

Chapter 4 shows how Maestro can be applied in a flow based routing network, to

achieve a scalable control plane. We explore parallelism in every comer within a single

machine, to build a high throughput OpenFlow controller with near linear scalability. We

evaluate four designs which represent different trade-off points between complexity, fair­

ness, and scalability. We also compare Maestro designs against two other available con­

trollers, NOX and Beacon. Such exploration helps us study how to address the fundamental

scalability problem of centralization.

Chapter 5 shows how Maestro can be applied in a traditional network, and coordinate

the centralized controls with distributed controls, to address the fundamental responsive­

ness and robustness problem of centralization. Furthermore, it also shows that through such

coordination, disadvantages of distributed controls can also be solved, thus we effectively

get the best of both worlds.

Chapter 6 summaries the conclusions of this thesis, and discusses the proposed future

work.

Chapter2

Related Work

2.1 Evolution of Centralized Network Control Systems

2.1.1 The Routing Control Platform (RCP)

9

In the internal Border Gateway Protocol (iBGP), because it requires a full mesh iBGP con­

nections among all routers within one autonomous system (AS), it prevents the network

from scaling up to very large size. The route-reflector solution although can alleviate the

scalability problem, it could potentially lead to problems such as protocol oscillations and

persistent loops. RCP [CCF+05] on the other hand, takes a centralized approach to solve

this problem. In RCP, there is a central server which talks to all routers that it has connec­

tivity to, to collect eBGP route updates, and computes BGP routes on behalf of all routers

in the AS. Such BGP routes computation is also based on the IGP information the central

server learns by participating in the link state routing. Such centralized BGP routes compu­

tation eliminates the need for full mesh connections, but only requires each router to have

one connection with the central server, thus provides better scalability.

In designing and implementing the prototype, they develop a data structure to store

eBGP routes and computed BGP routes, which can save a lot of memory, because only

one copy for each eBGP route needs to exist in the memory, and the all relations among

these routes are indexed by pointers. Such data structure can also expedite the process

of finding affected routes upon either BGP updates or IGP path cost changes, by linking

all related information together. The authors also argue that because the behavior of the

BGP routes computation is deterministic, if the central server is replicated, and given the

same IGP information and BGP updates which will be received during steady state of the

10

network, they will always compute the same BGP route results. In this way it can prevent

inconsistency.

RCP shows the advantages of centralization in the area of iBGP routes computation,

and that it is practical to have a centralized system built with reasonable scalability perfor­

mance. Maestro does share some same ideas with RCP when trying to coordinate central­

ized control with distributed IGP routing protocols. These ideas are, for example, Maestro

also participates in the link state routing to collect link state information to know about the

actual IGP routing state in the network. Maestro could also potentially borrow ideas from

RCP such as their data structure for storing BGP routes more efficiently. We argue that all

these ideas can be applied when building Maestro applications to solve similar problems.

But RCP has some limitations. First, the scalability of the central server is still a po­

tential problem, especially the part of computing the routes upon IGP changes. This is

because changes in the path costs can affect a lot of BGP routes previously computed, thus

they require a lot of computing power to handle. In the evaluation RCP also shows about

192 seconds of decision delay caused by the insufficient capacity of the central server. We

argue that, because such computation is highly parallelizable, ideas developed in Maestro

can be applied to solve such scalability problem. In addition, although in RCP they prove

that replicated servers and the routers will achieve consistent decisions during steady state,

they have not considered carefully for the case of transient state. This problem can be

serious especially when the iBGP sessions between the server and routers fail because of

network congestion or configuration error, because such failure can lead to long time of

transient state where servers and routers could have inconsistent information. We think

synchronization for ensuring state consistency is still necessary for correctness of routes

computation. The ideas of network state fingerprint which we develop in Section 5.3.1 can

be applied here to help optimize the synchronization process by reducing the amount of

data that needs to be transmitted.

11

2.1.2 The 4D Architecture

In the 4D [GHM+Q5] work, the authors argue that the root reason for the network being

fragile and difficult to manage is the complexity of the control and management planes of

today's network. More specifically, it is because control logics are coupled with packet for­

warding functions distributed among elements in the network. There lacks way for repre­

senting and enforcing network-wide objective, but instead management goals are achieved

by ad hoc ways of manual scripting or interactive commands, to glue different control com­

ponents together. Such way is highly error prone whenever there are some changes in some

components, because there lacks network-wide objective to coordinate the interactions of

these components. In addition, there lacks network-wide view to help achieving network­

wide objective and optimization. Furthermore, there lacks direct control, and all control

functions are realized through indirect and implicit parameters tuning. Moreover, manage­

ment and monitoring tools rely on data plane working correctly to talk to routers/switches,

which requires the data plane to be successfully set up before any management functions

can take effect. This creates a circular dependency between the data plane and the manage­

ment plane.

Trying to address all these existing problems, the authors propose the complete refac­

toring of the functionalities of computer networks, an extreme design which they call "4D".

The 4D comes from the proposed four planes of this architecture: decision, dissemination,

discovery, and data. The 4D architecture completely separates a network's decision logic

from distributed protocols that handle basic packet forwarding. The network-wide objec­

tives are specified in the decision plane, based on the network-wide view collected from

the underlying network. Such network-wide objectives are then translated by specific al­

gorithms into actual direct control configurations for routers/switches, which form the data

plane. The data plane is about basic processing functions for data packets, such as packet

forwarding, packet filtering, packet queuing, address translating, etc. Such low level func­

tions are directly controlled by the decision plane, to fulfill the network-wide objectives.

The dissemination plane serves as a robust and efficient communication mechanism be-

12

tween the desicion plane and the data plane. The dissemination plane should no rely on

correctness of the data plane. This is because the data plane need to be configured correctly

first and then be able to work, and it could change when policies for data plane change.

Instead, the dissemination should require zero pre-configuration, and should be reliable

no matter what changes there are in the data plane. The discovery plane is responsible

for discovering the physical components in the network, and creating logical identifiers

to represent them. Also it is in charge of collecting measurement data to construct the

network-wide view for the decision plane to achieve network-wide objectives. The discov­

ery plane also needs to be designed so that zero pre-configuration is required, and security

can be enforced in the bootstrap phase by exchanging secret keys.

Although 4D is only a position work and does not have any real prototype built, it

brings researchers' attention to the existing serious problems in today's network control

and management plane, and creates discussions and trend towards re-designing the net­

work architecture from a clean-slate approach. Maestro exactly belongs to the decision

plane research area proposed in 4D. 4D only stays at high level, to point out that network­

wide objective and view are important. But Maestro really dives into details in how can

such objectives and views be realized in a systematic and consistent way, what properties

need to be enforced, and fundamental challenges in designing such a desicion plane. As

Maestro is only a solution for the decision plane, it needs the other planes' support to work

correctly. Thus, Maestro can benefit from other works that focus on dissemination plane,

data plane, and discovery plane. Furthermore, Maestro also tries to address the scalabil­

ity, responsiveness and robustness problems of the 4D decision plane if it is centralized.

As pointed out by 4D, many research opportunities have been created by the trend of 4D,

and we are confident that Maestro can contribute insightful ideas to the research area of

decision plane.

13

2.1.3 SANE

SANE [CGA +o6] argues that in the enterprise network environment, security is critical,

centralized control is normal, and uniform consistent policies are important. The existing

solutions for network security usually involves actions of both routing and access control,

which are separeted but also carefully coordinated to achieve the right security policies.

They argue such solutions is problematic because these coupled actions need to be coordi­

nated. Instead, they proposed an extreme design, in which there is only a single protection

layer that governs all connectivity within the enterprise. By default, communications be­

tween end hosts are disallowed, unless they are explicitly verified and allowed by a central­

ized controller. If allowed, end hosts will get capabilities which contain encrypted onion

source routes to talk to each other. Switches will only forward packets that have such secure

source routes. Through this strong enforcement of security, the authors claim that SANE

can solve majority of security problems in today's network.

SANE is inspired by 40, and it takes a clean-slate approach by separating routing (con­

trol plane) from packet forwarding (data plane). Furthermore, SANE also centralizes the

routing and security policies control as 40 does. In addition, SANE uses a separate chan­

nel to carry control plane traffic between switches and the central controller by a spanning

tree rooted at the central controller. Such spanning tree is similar to the role of the dis­

semination plane proposed in 40. However, SANE is different from 40 in the sense that,

SANE by default does not allow communication between end hosts. The security policies

are achieved by controlling whether or not the capabilities should be issued, not by packet

filters or firewalls like 40 does. SANE argues that its way is better than the other one,

because it requires no interaction between the routing and filter/firewall control. We think

that although such security policies enforcement is very strong, it on the other hand limits

the functionalities that with filters/firewalls a network can realize. For example, with fil­

ters/firewalls, not only malicious traffic an be blocked, but legitimate traffic can be shaped

or modified, to achieve different goals.

In addition, there are some fundamental limitations of SANE. First of all, because all

14

data plane traffic is routed by source route issued from the central controller, end hosts need

to be modified to at least have a proxy to translate IP packets to packets using source route.

Such modification not only prevent end hosts from being able to plug-and-play, it also

introduces overhead in processing each packets, thus increases the latency experienced by

users. Second, although the switches in SANE only need to simply forward packet based on

the source route, the encryption/decryption computation for the secure onion source route

requires a large amount of computing power. Such computation can also lead to increased

queuing delay. Third, although the authors claim that the central controller of SANE can

handle a network with tens of thousands of nodes, they are based on the assumption that

there are not frequent requests generated in the network, for example, 200 requests per

second. In today's enterprise network, especially with the introduction of large scale data

center, both the size of the network and the requests incoming rate can be large. Since the

central controller is really critical in SANE, whether it can scale up its throughput is very

important. Again we argue that, ideas developed in Maestro in Chapter 4 can be applied to

solve such scalability problem.

2.1.4 Ethane

Ethane [CFP+07] is a follow up work of SANE. The biggest difference is that Ethane

takes a less ambitious approach than SANE. In Ethane, the end hosts do not need to be

changed, because source route is no longer used, thus the proxy to translate IP addresses to

source routes is no longer needed. It is also possible to couple Ethane flow-based switches

with Ethernet switches, thus it enables incremental deployment. Ethane again emphasizes

the importance of binding entities to their locations for enforcing security, thus the source

address spoof problem can be directly addressed. Ethane also uses a central controller to

enforce security policies and compute routes for flows in the network as SANE does, and

they argue that different ways of replication can be applied to improve the robustness of the

system. They provide a policy composition language called Pol-Eth for programming the

security policies based on identity bindings.

15

The most important contribution of Ethane is the real deployment of the system. They

have deployed Ethane at Stanford's Computer Science department, to be able to gain

real experience from designing and evaluating such a clean-slate and centralized solution.

More specifically, they build different types of Ethane switches, such as wireless switches,

hardware-accelerated wired switch, and pure software wired switch. They use Ethane to

achieve the security policies that used to be in the campus network. They evaluate the per­

formance of Ethane under the work load of that campus network. They also estimate the

burden which will be put on the central controller, with a network as large as 22,000 hosts,

and they claim that one central controller is enough to handle all the requests for such a

network.

However, Ethane still has some limitations. First, the central controller is a monolithic

control plane, that is, it can only support existing functionalities and modify them. If users

want to add other features into the controller plane, or replace existing features with other

implementations, it might not be easy. These control components, such as security policies

checking, shortest path routing, etc, are not modularized. The interactions among these

components are hard-wired together, which makes it difficult to manage and to evolve.

Actually the authors also recognize this problem, and try to address it with a follow up

work called NOX, which will be discussed later. Second, as the same as SANE, the central

controller of Ethane cannot scale up very well. Since we already discussed about this

problem in the previous section, we are not going to expand on this issue again.

2.1.5 Tesseract, A 4D Network Control Plane

Tesseract [YMN+07] is a direct follow up work of 4D, and it designs and implements all of

the four planes. Different from SANE and Ethane, Tesseract works towards more classical

and more general ways of routing, that is, non-flow-based routing. The central controller, or

called decision element in Tesseract, pre-computes forwarding paths for all allowed traffic,

and configures routers/switches whose responsibilities are forwarding packets. Tesseract

can work with both IP network, and Ethernet network. Tesseract shows that it is practical to

16

separate decision logics from classical packet-based routing network, and to centralize such

decision logics with reasonable scalability and convergence performance upon network

failures.

The most important contribution of Tesseract is the design and implementation of a se­

cure dissemination service for the dissemination plane. In particular, such dissemination

service is an in-band control traffic channel specially tailored for the few-to-many commu­

nication between routers/switches and the centralized decision elements. Such dissemina­

tion service is important in the sense that, it is separated from the data plane, so circular

dependency between correct data plane behavior and working control channel does not

exist as in the case that control channel relies on data plane. This dissemination service

is achieved by source routing, mainly for two reasons. First, the decision elements have

flexibly control over how should routers/switches communicate with them since they can

easily modify the source routes to be used by the routers/switches. Second, by deploying

onion encryption in the source routes, strong security properties can be achieved, such as

compromised routers/switches cannot learn about the topology of the network, they cannot

generate fake source routes to attract traffic to a black hole, etc. As a result, the reliable and

secure dissemination services Tesseract provides can benefit Maestro since Maestro also

needs such a dissemination plane to communicate with routers/switches.

Furthermore, such dissemination service has lead to the work of MMS (Meta­

Management System) [MNG+Q7]. Originally, MMS is specifically targeting at the

GENI [NSF] project. MMS establishes and maintains a secure and robust communica­

tion channel between GENI components and the GMC as long as there is physical network

connectivity. MMS uses the same ideas developed from the dissemination plane of Tesser­

act, to provides such communication channel which has features fundamentally important

for managing a network like GENI. These features are, first, MMS runs as a self-contained

lightweight service. The operation of MMS does not depend on the correctness of the

data plane, and is robust against network components failures. Second, MMS bootstraps

with minimal configuration. Only public/private key pairs need to be exchanged between

17

the management authorities(MA) and distributed network elements(NE), and MAs will re­

cursively authenticate with NEs. Third, MMS can be applied to heterogeneous network

devices. Fourth, MMS can provide management tools with unified socket interface, so that

these tools do not need to be modified. Different from the dissemination of Tesseract, MMS

is implemented in kernel space, and is provided as a self-contained stand-alone service. In

the follow up work [GGM+IO], the authors show that MMS has excellent performance,

and it is practical to deploy MMS which can also benefit other systems beside GENI.

On the decision plane side, Tesseract includes different control components such as

incremental shortest path routing, traffic engineering, spanning tree algorithm, and filter

placement algorithm. By gluing all these components together Tesseract can achieve joint

control of routing and filtering, and better Ethernet switching in a link cost driver approach.

However, the decision plane of Tesseract is a monolithic system, with all components more

or less coupled with each other. There is no abstraction for network-wide state, and for

managing the interactions among different control components. This is not the focus of

Tesseract, and Maestro targets specifically at these problems unsolved by Tesseract. Fur­

thermore, in Tesseract they touched some features which Maestro provides clear and sys­

tematic solution. For example, Tesseract specifically uses a push timer to replace the hold

down timer for OSPF, to minimize the delay of computing new routing tables upon topol­

ogy changes. However, Maestro interprets this as a more general problems of managing

the execution of control components upon consecutive incoming events. Maestro makes

it possible to program the behavior of such execution. For example, the execution can be

either allowed or not allowed to be preempted. Furthermore, timers can be set for the exe­

cution to control how often it should send out its computation results. By doing this, users

can adopt different approach for different practical requirements.

2.1.6 OpenFlow

The success of SANE and Ethane drives the proposal for OpenFlow [MAB+09], an open

standard for programmable flow-based Ethernet switch. An OpenFlow switch's main func-

18

tionality is forwarding packets according to a flow table. The flow table is a set of match­

ing rules for packet headers, and each rule in the table defines what action to be taken

for the matched pacekts. The flow table is programmable by a logically centralized con­

troller. Each OpenFlow switch maintains a secure control channel, like the dissemination

plane of 40, to talk to the central controller. By having such programmable feature, Open­

Flow provides a possibility for researchers to run experimental protocols on heterogeneous

OpenFlow-enabled switches in a uniform way at line-rate and with high port-density. Open­

Flow also creates new opportunities to realize rich networking functions, by allowing the

users to flexibly program control plane functionalities on the OpenFlow controller, and to

freely control the data plane of the switch devices. Furthermore, OpenFlow also proposes

to support the feature to separate experimental traffic from production traffic, so that the

exploration work of researchers will not affect the normal behavior of production traffic.

The success of OpenFlow can be seen from the large number of recent use cases. For

example, in the field of programmable network testbeds, the authors in [HKK09] propose

an approach to develop a service-oriented Future Internet testbed, which is an early design

of testbed platform which combines hardware accelerated programmable networking and

computing/networking virtualization; Flow Visor [Sec+ 10] is a special purpose OpenFlow

controller that allows multiple researchers to run experiments safely and independently on

one same production OpenFlow network; OpenRoads [YKU+09] also features a testbed

that allows multiple network experiments to be conducted concurrently in a production net­

work testbed in Stanford. In the field of data center network designs, PortLand [NMPp+09]

provides solution for a scalable, fault tolerant, and easy to manage layer 2 routing and for­

warding protocol for data center environments, using OpenFlow; [TCKS09] demonstrates

how can an OpenFlow controller called NOX flexibly implementing existing networking

architectures (PortLand for example) that can scale up to a hundred thousand servers and

millions of VMs; Hedera [AFRR+10] is a scalable and dynamic flow scheduling system

that adaptively schedules a multi-stage switching fabric to efficiently utilize aggregate net­

work resourse. In the field of enterprise network designs, Resonance [NRFC09] is a system

19

for securing enterprise network, where the network elements themselves enforce dynamic

access control policies based on both flow-level information and real-time alerts; authors in

[NSM+09] proposes ident++ which allows central administrator to delegate some secu­

rity enforcement tasks to users and end-hosts; [FNK+lO] describes their ongoing deploy­

ment efforts to build a campus network testbed where trial designs for solving the access

control and information flow control problem can be deployed and evaluated. In the field of

network measurement systems, OpenSafe [BRAlO] is a solution for enabling the arbitrary

direction of traffic for security monitoring applications at line rate; OpenTM [TGGlO] uses

built-in features provided in OpenFlow switches to directly and accurately measure the

traffic matrix for OpenFlow networks.

The flexibility of OpenFlow is based on one fundamental feature, which is that the

controller is responsible for establishing every flow in the network. The first packet of a

flow, which we call a flow request from now on, is always bounced to the controller for

processing. We can imagine that in a large scale network, there will be tremendous amount

of flow requests sent to the controller at very high rate. To make an OpenFlow network

capable of scaling up to such large network size, the central controller really needs to be

able to have good scalability. As a result, in Maestro we target at solving the scalability

problem of the OpenFlow controller, by exploring parallelism within one single machine.

We expect systems built on Maestro to leverage such features to achieve good scalability.

The details will be discussed in Chapter 4.

2.1.7 NOX and Beacon

These works shown previously all have a monolithic central control plane, in which all

the functionalities are more or less "hard-coded". It is difficult for the users to replace or

rewrite a specific control components to reach special control goals. A modularized and

flexibly programmable centralized control plane framework will make it much easier for

users to realize complicated and flexible network management goals. NOX [GKP+08] is a

follow up work of SANE and Ethane, and concentrates on providing such a modularized

20

and flexible framework for users to write control components, to realize the complicated

control plane goals using OpenFlow switches.

Because of the fundamental feature of OpenFlow, which is the controller is responsible

for establishing every flow in the network, if the central controller does not have enough

capacity in handling all the requests, it will become the bottleneck of the network. Unfortu­

nately, the current main stream version of NOX lacks such throughput scalability, because

it can only utilize one CPU core. Although in NOX cooperative-threading is used to re­

duce the overhead introduced by waiting for 1/0 operations, it is not really multi-threaded

to leverage multi-core processing. Furthermore, NOX processes each request individu­

ally, thus there is huge amount of overhead introduced by such separate processing. These

problems are addressed by Maestro in Chapter 4.

However, a multi-threaded version of NOX (branch destiny-fast, lead by Amin

Tootoonchian) is already available. Furthermore, Beacon [bea] is also a multi-threaded,

programmable OpenFlow controllers writen in Java developed in parallel to Maestro. NOX,

Beacon and Maestro all allow users to write simple single threaded applications and can

run them in parallel to scale up throughput on multi-core processors. While there are far

too many design and implementation differences between NOX, Beacon and Maestro to

enumerate, a focused comparison with respect to the way they distribute the request work­

load among worker threads could be made. In this regard, NOX and Beacon turn out to

be quite similar. NOX and Beacon both statically assign the requests from a fixed subset

of the network switches to each worker thread. This design maximizes parallelism and is

conceptually ideal when requests are uniformly arriving from all switches. However, as we

experimentally show, because not all worker threads run at exactly the same rate in prac­

tice, even under a uniform workload, there could be arbitrary performance bias. And when

the workload is not uniform, this design suffers from poor fairness and potentially subop­

timal throughput due to the under-utilization of some worker threads. NOX and Beacon

both adopt a static granularity for request hatching for improving the throughput of an indi­

vidual worker thread, though the actual batch sizes used do differ. Although both systems

21

achieve impressive raw aggregate throughput, as expected, such a static hatching strategy

leads to unnecessarily large request handling latency when the system is under heavy load.

We hope the solutions that we present within Maestro for balancing fairness, latency and

throughput could inform future development of NOX and Beacon.

2.1.8 HyperFlow and Onix

Complementary to solutions that aim at maximizing the performance of each physical

controller machine, several recent works have aimed at enabling a cluster of controller

machines to work as a single logical controller to further improve scalability. Hyper­

Flow [TGlO] extends NOX into a distributed control plane. By synchronizing network­

wide state among distributed controller machines in the background through a distributed

file system, HyperFlow ensures that the processing of a particular flow request is localiz­

able to an individual controller machine, thus minimizing the control plane response time

to data plane requests, and at the same improve the whole system's throughput. However,

because now the control plane is again distributed, and HyperFlow does not provide strong

guarantee against network state inconsistency, it still has the problems that distributed con­

trols have.

Onix [KCG+to] further provides a general framework for building distributed coordi­

nating network control plane, especially for the case of OpenFlow controllers. More specif­

ically, Onix provides a Network Information Base which gives users access to several state

synchronization frameworks with different consistency and availability requirements.

The techniques employed by HyperFlow and Onix are orthogonal to the design of single

physical controller platform, thus, they can also enable Maestro to become fully distributed

to attain both better scalability and availability. On the other hand, the design ideas in

Maestro can be fully deployed in the individual distributed controllers in HyperFlow and

Onix, to more efficiently scale each distributed controllers.

22

2.1.9]))]?~

DIFANE [YRFWlO] presents another approach to improve flow-based networks' control

plane performance. However, the security model is quite different from that of NOX and

Ethane. Instead of only verifying flows and computing paths for them upon request, DI­

FANE proactively computes wildcard matching rules for flows based on high level policies.

Such rules are distributed among authority switches in the network, to improve both scala­

bility and robustness, and at the same reduce the length of the path that needs to be taken by

the first packet of a flow. In such a design, switches are not only responsible for data plane

functionalities, but also responsible for control plane functionalities. The central controller,

now is only responsible for partitioning and distributing rule partitions among these author­

ity switches, and does not need to be involved in matching packets against these rules as

in OpenFlow.. Such distribution needs to be even, and to be able to minimize the TCAM

memory usage.

Through evaluation, the authors show that DIFANE can achieve very good scalability

in throughput of handling flow requests, compared to the centralized OpenFlow controller

NOX. However, the throughput comparison to NOX is unfair, since the security model is

changed. In NOX the security model is strong, such that all flows are explicitly controlled

and managed by the central controller. While for the case of DIFANE, since it is rule pre­

computation and distribution, there could be state inconsistency among the control plane

of authority switches, and in the rule cache of ordinary switches. Such inconsistency can

further increase the chance that attackers can direct their traffic through in the network.

Such static solution of rule pre-computation also cannot dynamically control the security

policies flexibly as OpenFlow does, to achieve much finer granularity. Furthermore, DI­

FANE requires switches to have enough CPU resources to realize the extra control plane

functionalities, which puts a large requirement on switch vendors. This is quite opposite

to the principle proposed by OpenFlow, which is switches should focus on providing only

data plane functionalities with good performance, thus the complexity and cost of building

switches can be greatly reduced. Ultimately, the techniques proposed by DIFANE to of-

23

fload policy rules matching onto switches and our techniques to increase the performance

of the controller are highly complementary.

2.1.10 Uniqueness of Maestro

Maestro also derives its design principles from 40. That is, separation of control functions

from data forwarding functions, and centralizing the control plane. Furthermore, Maestro

tries to solve the problems in the existing works of centralized network control plane. First

of all, Maestro is a flexible programming framework for composing centralized network

control functions for different types of networks. Maestro can be applied in a classical

packet-based routing network, in a flow-based routing network like OpenFlow, or even in

a network to coordinate centralized controls with distributed routing protocols. Secondly,

Maestro provides explicit and direct control over interactions among control components,

and over network state synchronization. This important feature has not been provided by

any of these related works. Thirdly, Maestro also tries to solve the scalability problem of

the centralization, but focuses on a single machine solution by exploring parallelism pro­

vided by recent multi-core technology. Maestro's goal on this aspect is to build the best

performance single machine OpenFlow controller. Lastly, we use Maestro to coordinate

centralized and distributed network controls to solve the responsiveness and robustness

problems of a pure centralized solution. We design the coordination algorithm to synchro­

nize the state between the central controller and distributed routers, and to limit the impact

from local actions of routers which could have uncertain global effects.

2.2 High Performance Concurrent Systems

In this section, we are going to discuss works about high performance concurrent systems,

not in the field of centralized control for flow-based routing networks. We hope to be able

to leverage contributions of these works, and apply them to improve Maestro to make it

more scalable and efficient.

24

2.2.1 SEDA

SEDA [WCBOl] proposes a staged event-driven architecture for highly concurrent Internet

services. More specifically, in SEDA, different components in handling HTIP requests

are implemented as modularized applications. Applications are controlled by a network

of event-driven stages connected by explicit queues. They argue that such a modularized

design is easy to program, flexible to make changes, and effective in monitoring perfor­

mance of applications since lengths of queues can indicate where the bottleneck is in the

whole network. Maestro shares the same philosophy on this issue, but pushes it to a further

level. In Maestro, not only applications are modularized and connected by explicit queues,

but also the interactions among applications are explicitly managed, to provide state syn­

chronization enforcement, as shown in Chapter 3. SEDA does not have such requirement

because in SEDA different components do not have shared state as in Maestro, thus there

is no need to synchronize these shared state.

Having such modularized application stages and explicit queues, SEDA can dynami­

cally adjust the behavior of stages based on different conditions. More threads can be added

to work on a stage if it is saturated, to improve the throughput of potential bottlenecks in

the stage network. SEDA also adapts the hatching technique to improve performance of

processing aggregated events, by reducing the overhead with processing each individual

event. Such hatching behavior is also dynamically adjusted according to the run-time per­

formance monitoring. Through evaluation, the authors show that SEDA which is writen in

Java can out-perform its competitors, Apache and Flash writen in C. SEDA achieves much

better fairness in serving all clients, thus leading to graceful linear performance degradation

upon heavy load, instead of letting unlucky clients wait for very long time.

SEDA is limited in the aspect that, it has not fully studied the effect of multi processor

scheduling of threads. One reason is that during the time the work was done, multi-core

technology had not yet emerged. As shown in Section 4.2.2.5, binding threads to specific

CPU cores, and bind processing of one request to a specific thread is critical in scaling

up the throughput with increasing number of CPU cores. Furthermore, SEDA has not

25

addressed the effect of accumulating too many events in queues on the performance of the

Java memory system. However, SEDA does have advanced features which Maestro does

not. For example, the design and implementation of high performance asynchronous socket

1/0 and file 1/0. Currently Maestro uses the blocking socket 1/0 provided by Java, which

could potentially lead unnecessary overhead. We plan to work on this in the future work.

2.2.2 RouteBricks

RouteBricks [DBA +o9] tries to provide a solution for scalable software switches. More

specifically, they want to break the limited scalability of current software switch solution

of 1-5Gbps. The key solution for such scalability problem is exploring parallelism. First,

they use server clusters to parallelize the workload distribution among multiple servers.

Assuming a full-mesh network among servers, they use Direct VLB algorithm to distribute

outgoing traffic from the ingress server among all other servers. By doing this internal links

are not required to be as fast as more even faster than external links, thus each server can

use slower internal links to achieve larger server fanout. Then because each server can can

only have limited fanout, to build larger clusters with more capacity, they use multi-hop

interconnect topologies to provide a full-mesh network among ingress and egress servers.

Second, they also explore parallelism within one single machine, to make it possible

for one server to achieve the required capacity to fulfill its responsibility within the server

cluster. They have findings are confirmed by our study of Maestro. For example, it is

important to bind the processing of one packet to one specific CPU core, thus reducing

the overhead of cross core synchronization. Also, they use hatching techniques to process

multiple packets more efficiently. They also discover that multi-queue NIC cars are critical

in scaling up the performance of a server, because it can eliminate the overhead of state

synchronization if only one input/output queue is supported by the NIC card. In Maestro

we have not studied what effect will the multi-queue NIC have on the performance of

Maestro. We argue that this could be a potential advantage Maestro can also borrow, and

plan to explore it in the future.

26

The design of our solutions in Maestro has been somewhat influenced by RouteBricks.

Whenever appropriate, Maestro liberally borrows from the insights from RouteBricks, such

as the importance of hatching workload, and the importance of minimizing cross-CPU -core

synchronization overhead and cache contention overhead. But there is major difference

between Maestro and RouteBricks, because the problem domains are completely different.

For RouteBricks the main functionality is data plane packets forwarding, which is relatively

simple because no new configuration messages need to be computed and sent out from the

router. However, for Maestro the main functionality is control plane decision making,

which is relatively more complex because any input packet can lead to a different number

of CPU cycles required, and a different number of configuration messages to send out. Thus

the design for workload distribution, for memory management, and for other optimization

features are corresponding different.

2.3 SLA Compliance

Because we use SLA compliance to evaluate the effectiveness of the coordination between

centralized Maestro and distributed protocols, in this section we show tome related work

on how other approaches are taken to improve the SLA compliance of a network under net­

work changes. We compare the difference between these approaches and the coordination

approach we propose.

There are a number of routing approaches for improving a network's SLA compliance

under failures if coordination is not available. Nucci et al. [NBTD07] developed techniques

to compute a single set of link costs that achieve good load balance both during normal

operation and after any single link failure. Although this work represents a breakthrough,

its scope is restricted to single link failures. The jury is still out on whether a single set

of link costs can achieve good load balance for other common types of failures, such as

linecard failures and router failures.

If routing is not restricted to link-state IGP, that is, if MPLS routing is em­

ployed, then nearly optimal routing that is oblivious to traffic demand can be com-

27

puted [AC03][AC06][ACF+04]. Moreover, with MPLS routing, Applegate et al. [ABC04]

showed that by carefully choosing the failure restoration paths, nearly optimal performance

after a network failure can be achieved even with little knowledge of traffic demand. How­

ever, computing restoration paths in advance for all possible failure scenarios is computa­

tionally expensive. Furthermore, MPLS routing is not as widely used in practice as IGP

routing.

In contrast, the Maestro coordination framework is aimed at improving SLA compli­

ance regardless of the type of network failure experienced. Furthermore, the Maestro co­

ordination framework takes SLA compliance, routing, load balancing, and traffic policing

into account holistically, which is not possible with the previous routing only approaches.

The dependency between traffic policing and an IGP as a potential security problem

has been known for a long time [Cha92]. The two can be decoupled if traffic policing is

pushed to the very edge of the network where there are natural traffic choke points [Bel99].

However, as discussed, routers have limited ability to support access control rules and these

rules in practice are often distributed to internal network links [MXZ+Q4]. Implementing

redundant access control rules along the potential fail-over paths of traffic may help guard

against some problems but will require precious router computation resources that may not

be available. Our coordination mechanisms prevent unwanted traffic from bypassing access

control rules even when the rules are distributed to internal network links.

Chapter3

Background Discussion of the Maestro Programming
Framework

28

In this chapter, we are going to show the overall design of the Maestro programming frame­

work which enables network control components to be programmatically composed, and

provides explicit control over network state consistency and dependency among modular­

ized control components. Such programming framework was developed in [Cai09], so it

is not the contribution of this thesis. However, because our work in this thesis is a fol­

low up, and it depends on the programming framework of Maestro, to make this thesis

self-contained we are going to discuss the programming framework in this chapter. Such

discussion serves to provide necessary background information.

3.1 Traditional Way of Realizing Network Functionalities

At the very beginning when computer networks were first introduced, they were mainly

deployed just as simple data communication channels to enable data exchange among com­

puters. How should data flows or packets be forwarded in the network was the main con­

trol decision in the operation of computer networks. Nowadays, computer networks are

no longer just simple communication channels. They also are very important in enforcing

security policies, such as blocking malicious traffic, and detecting distributed attacks. They

play significant roles in providing guarantee for the performance of applications, such as

balancing the load distribution in the network to prevent network congestion. Also they

can support value added services such as providing virtual private networking, and enable

data center virtualization.

As the result, the operation of computer networks has become considerably more com-

29

plex than just making routing decisions. To cope with this complexity, network designers

have taken a modular approach, addressing each control decision individually in isolation

from the others. Today, many modular network control components have been developed to

make a wide range of control decisions. For example, in an enterprise network, we may find

that routing decision within the enterprise is made through the OSPF protocol component,

while global routing decision is made separately through the BGP protocol component;

traffic blocking decision is made through a packet filter placement and configuration com­

ponent; a traffic redirection component is used to balance the load on a set of servers, and

to redirect suspicious traffic to an intrusion detection system; a quality of service routing

component is used to ensure voice over IP traffic experiences low delay and low loss rate;

a traffic tunneling component is used to establish virtual private intra-networks, and so on.

The technology trend is that the network will continue to assume more and more critical

functions. As a result, the complexity of network operation will likely keep on growing

overtime.

3.1.1 Lack of Components Management

Although the use of modular network control components helps to decompose the com­

plex operation of a network into more manageable pieces, it is critical to recognize that

fundamentally, network control components concurrently modify the behavior of the un­

derlying shared physical network. In other words, modular network control components

are in reality not isolated from or independent of one another. The decision of one com­

ponent may depend on the decision of another component (e.g. best-effort routing may

determine the residual bandwidth available for voice over IP traffic). Thus, components

need to communicate their decisions with each other, and their execution schedule must be

managed. The network behavior (e.g. network load distribution) caused by one compo­

nent may inadvertently change the input conditions for another control component. Thus,

unintended feedback and implicit dependency is possible and must be managed. Concur­

rent actions of inter-dependent network control components may lead to an inconsistent

30

network state. Thus, concurrency must be managed. The control decision a component

makes may fail to be implemented due to network hardware outages, and transient effects

may be observed during a network state transition. Thus, the implementation of control

decisions must ensure the correct transition of network state despite failures and transient

effects. In summary, we identify the network state dependency and consistency to be the

critical problems that must be solved to ensure network operation correctness.

Given the fundamental nature of these problems, it is surprising that there exists so little

support for solving these problems. The widely used Simple Network Management Pro­

tocol (SNMP) and Common Management Information Protocol (CMIP) provide general

interfaces to retrieve and set network device state. These protocols are analogous to low

level device drivers; they provide the means for network control components to interact

with the network, but they are not meant to solve the higher level problems that we artic­

ulated. SNMP and CMIP are used by many network management tools, including HP's

Open View, IBM's Tivoli, and CA's Unicenter. These tools serve to assist a human operator

to monitor the network and to carry out simple network configuration changes. For exam­

ple, they help a human operator recognize and analyze changes in the network load, and

they enable the human operator to analyze the effects of changing the network topology

based on past or present network conditions. However, these network management tools

do not manage the interactions among modular network control components at run time.

The problems we have identified are not caused by flaws in individual network control

components but rather by their dynamic interactions. It should be quite clear that it will take

a system that orchestrates the network control components to solve these problems. Such

a system is analogous to a network "operating system". But unlike a traditional operating

system (e.g. Linux, FreeBSD) that manages applications running on an individual device,

a network "operating system" will orchestrate the network control components that govern

the behavior of a network of devices. However, because of the distributed nature of these

individual network control components, such a network "operating system" is much harder

to design than a traditional operating system. Determined by the speed of light, there

31

is ineliminable delay in the network no matter how fast the network can be built, and this

fundamentally makes it a complex task to collect and synchronize the state and information

distributed among individual components across the entire network.

3.2 The Maestro Programming Framework

The goal of Maestro is to give network operators a unified platform to compose different

control components to realize complicated network control functionalities. In this section

we assume that the network is controlled by a centralized control components, and Maestro

is such a central system that provides a layer of indirection between all the centralized

control components and the underlying network of devices.

3.2.1 View

Each of these network control components uses some subset of the network state as input

and modify some subset of the network state to realize their control decisions. Thus, Mae­

stro must provide ways to access the network state. Since Maestro manages the network

state, providing access is not hard. The key question is at what granularity should such

access to network state be supported. The decision should be guided by Maestro's goals,

namely to enable modularized network control componentss to co-exist and interact in a

consistent way. At one extreme, we can simply present the whole network state as one

piece to the control components. Such coarse-grained access obviously creates unneces­

sary state access conflicts between concurrent different control componentss and thus is not

suitable for concurrent execution. At the other extreme, we can provide a very fine-grained

attribute-value lookup and insertion interface for representing network state.

Maestro strikes a balance between the two extremes. We observe that network state

usually falls into natural subsets, based on what type of state it is and what control objec­

tive the state achieves. For example, one common type of state is a routing table, which

determines how data packets are forwarded in the network. Routing table state is naturally

disjoint from packet filter state, which is another type of state which determines how data

32

packets should be blocked, altered, etc. Generalizing this observation, Maestro provides

the view abstraction for grouping related network state into a subset, and for accessing the

state in that subset. Each view is a Java class that can be dynamically defined and created

in Maestro by programmers. A view can contain any arbitrary data structure to represent a

particular subset of network state. For example, we can create a view which is a hash table

structure that holds all pair shortest path routing information for the network. The view

is the minimal granularity at which Maestro synchronizes control components' concurrent

execution. We will provide more details in Section 3.2.4.

3.2.2 Application

Each network control component is represented as one application in Maestro, which is

also a Java class that contains the code for the control function. Maestro interacts with

applications via a simple and straightforward API. First, an application statically declares

the input views it takes from Maestro, and the output views it will produce to modify

the corresponding state in the network. Second, an application provides an entry point

for Maestro to invoke it, and upon return the application will pass its output views as

return values back to Maestro. An application is not allowed to interact with Maestro or

other applications via other interfaces. By doing this, Maestro can enforce explicit control

over the interactions among applications, thus it avoids any implicit dependence between

applications on network state that is external to Maestro.

3.2.3 Drivers

The driver is for implementing the low level functions to synchronize network views with

the underlying distributed network devices (routers/switches), for a particular type of net­

work. When there are new events coming from the network devices, the driver needs to

translate the event packets into data structures in corresponding network views. Then Mae­

stro will trigger DAGs (shown in Section 3.2.4 that are activated by such views, to handle

the network events contained in them. When DAGs finish and generate output views to

33

modify the corresponding network state, the driver need to translate the views into actual

network configuration messages if necessary, to update the network devices. The drivers

are usually provided in Maestro to hide the low level details of the underlying networks,

thus they serves as a flexible way for Maestro to be able to control different kinds of net­

works.

3.2.4 DAG

I Driver lA ~[App 1 J C ~[App 2J E •I Commit I
DAG 1 - Read: A, B, D Write: C, E

I Driver I 8 ~[App 1 ~ Commit I
DAG 2 - Read: A, B Write: F

Commit

DAG 3 -- Read: D, G, I Write: C, H, E, J

Figure 3.1 : DAG examples.

The DAG abstraction is Maestro's solution to enable explicit control over interactions

among applications. Figure 3.1 shows examples of application DAGs. An application DAG

is a Directed Acyclic Graph that specifies the composition of applications. It defines the ex­

ecution sequence of applications (black arrows). The execution flow in a DAG may branch,

as DAG 3 in the figure. All branches may run concurrently. Applications (round-comer

boxes) are inter-connected in a DAG together with their input and output views specified.

By specifying input and output views, applications can communicate by sharing views with

34

each other. For example, in DAG 1, the output view of App 1 will be the input of App

2, thus there is an explicit communication relation between the two applications. This is

the only way two applications are allowed to communicate. A DAG is either triggered by

the driver which receives events from the network and changes the corresponding view, as

in DAG 1 and DAG 2, or triggered by a timer, as in DAG 3. When a DAG finishes, all the

output views generated by applications in this DAG will be committed to update Maestro's

global environment (explained in Section 3.2.5, and thereafter modify the corresponding

network state through the driver.

Maestro synchronizes the concurrent execution of DAGs at the granularity of view.

Maestro knows all the views that one DAG is going to read (union of all input views of

applications), and all the views that one DAG is going to write (union of all output views of

applications). For example, again in Figure 3.1, we show that views that each of the three

DAGs will read and write. Before starting one DAG to execute, Maestro checks whether

this DAG has read/write or write/write conflict with current running DAGs in the system. If

such conflict exists, this new DAG is queued, and needs to wait for the running DAG which

it has conflict with to finish before it can start execute. For example, DAG 1 and DAG 2

have no conflict, so they can run concurrently, while the executions of DAG 1 and DAG 3

have to be serialized.

3.2.5 Environments

Several applications in one DAG could use the same input view. As DAG 3 again in Fig­

ure 3.1, both App 4 and the App 2 uses View C as input. If during the execution of this

DAG, after App 4 finishes and before App2 starts, View Cis changed because there is

a link failure in the network, then the two applications will generate inconsistent results

because they are using inconsistent View C. For example, packet filters could be installed

at a wrong location. We have to make sure that all applications should base their output on

consistent input views, even if such input views are outdated. Next time the DAG can run

again to accommodate the latest changes, and it is important to ensure all computations are

35

based on the consistent input views. People may ask that why not just stop the currently

running DAG and immediately run a new one for the new changes. We argue that network

state could change so frequently that not a single DAG can finish execution before the new

changes come. In this case if we allow the current DAG to be preempted, then Maestro

will never be able to perform any reactions. Instead, if we do not allow preemption, at least

Maestro can react to changes as often as possible. To fulfill such requirement, we propose

the abstraction of view environments.

In Maestro there is the global environment which contains all of the up-to-date views

available in the system. These views are accessible to all application DAGs(with the right

permission). When one DAG starts to execute, Maestro creates a local environment for

this DAG by taking a snapshot of the current global environment. The local environment

will remain unchanged throughout the execution of this DAG, unless modified by appli­

cations within this DAG. This is to ensure that applications within this DAG must base

their computation on a consistent set of input views derived from the global environment.

When an application is invoked, the input views specified in the application are taken from

the local environment of the DAG and passed to the application. After this application

instance finishes, its output views are put back to the local environment. By doing this,

Maestro realizes the communication among applications within DAG through the local en­

vironment. Finally when a DAG finishes, all the output views in the local environment will

be committed to update the global environment.

3.3 Programming Language Used

We choose Java to be the programming language for Maestro, and there are several reasons.

First, Java programs are considered to be easy to write and to maintain. Java programs

are more secure, so it is relatively more easy to debug. Also Java can support dynamic

loading of views, applications and drivers without recompiling and restarting the whole

system more easily, so it will make Maestro very flexible to extend. Second, it is very

easy to migrate Java code to different platforms as long as there is Java Virtual Machine

36

support on that platform. Usually the code needs very little or even no modification to

work on another platform, which makes Maestro more flexible. Third, although Java is

considered to be less efficient than C or C++, but we argue and show by evaluation that,

Maestro can achieve good performance and scalability by incorporating the right design

and optimization techniques.

Chapter4

Balancing Fairness, Latency and Throughput in
the OpenFlow Control Plane

4.1 Introduction

4.1.1 Fundamental Problem of Centralized Flow-based Routing Networks

37

Flow-based routing has the advantage of realizing flexible and finer granularity routing

policies, by giving users the ability of controlling the routing decision for each individ­

ual flow in the network. For example, different security policies can be realized by con­

trolling whether a flow should be allowed or not in the network; dynamic traffic engi­

neering can be achieved because the network operators now have the ability to flexibly

route the flow traffic in any arbitrary way that they consider optimal; network operators

can also dynamically route flows through any arbitrary middle-boxes in the network, for

monitoring and measuring purposes. In general there are two ways of controlling such

flow-based routing. One is a centralized solution where one central controller is responsi­

ble of managing all flow routing decisions in the network. The other one is a distributed

solution, where the routers/switches themselves manage the flow routing decisions. For

example, SANE [CGA +o6] and Ethane [CFP+07] are centralized solutions for control­

ling flow-based switches, to enforce strong security policies in enterprise network. DI­

FANE [YRFWlO] on the other hand provides a solution for distributing flow routing de­

cision making to switches themselves, to improve the scalability of the decision making

process. Despite the scalability improvement, DIFANE increases the burden of each in­

dividual switch, and cannot achieve the same level of flexibility and consistency in flow

request decision making as SANE and Ethane do. These flexible and dynamic ways of

38

managing the network shown previously cannot be easily realized in DIFANE because it is

difficult to synchronize the routing state distributed among all switches.

As a result, flow-based routing network usually takes the centralized solution. The

emerging OpenFlow [MAB+09] is a commercial switch architecture standard based on

SANE and Ethane. OpenFlow separates the two main functions of a classical router/switch:

data plane packet switching and control plane routing decision making. The OpenFlow

switch devices only implement the data plane packet switching functionality. The central

controller machine takes charge of the control plane functionality by installing and deleting

flow entries on switch devices. OpenFlow creates new opportunities to realize richer net­

working functions, by allowing the users to flexibly program control plane functionalities

on the OpenFlow controller, and to freely control the data plane of the switch devices.

One fundamental feature of OpenFlow (also true for other centralized flow-based rout­

ing networks) is that, the controller is responsible for establishing every flow in the network.

Whenever a switch sees a the first packet of a flow, because there is no flow entry config­

ured on the switch to match this flow, the first packet will be forwarded to the controller.

We call this first packet a "flow request". The controller runs user defined applications to

process a flow request, for example the controller computes a path for this flow and installs

flow entries on every switch along the chosen path, so that subsequent packets of this flow

can be handled by the switches locally. Finally, the packet itself will be sent back to the

origin switch from the controller. As the network scales in size, so will the number of flows

that need to be established by this process. If the controller does not have the capacity for

handling all these flow establishment requests, it will become a network bottleneck.

With OpenFlow switches already being used for designing large-scale networks con­

necting hundreds of thousands of servers, optimizing the performance of the controller

system is critical if OpenFlow were to be successful in high-end deployment scenarios

such as warehouse-scale datacenters and large enterprises. Recent measurements of traffic

in datacenters of various sizes and purposes [BAMlO] have shown that, in data center de­

ployments, the life span of concurrent active flows is short, which implies that OpenFlow

39

switches can be a well fit for being applied in building data center networks. However, the

authors show that for a data center which has 100 edge switches, the controller could see

up to 0.1 million flow requests per second per server rack today.

To address the performance challenge requires a multi-prong approach: (1) maximize

the performance of each physical controller machine; (2) enable a cluster of controller

machines to work as a single logical controller; (3) partition the network into zones with

separate controllers. While all three directions are equally important and are being investi­

gated, this thesis focuses on the first direction. In particular, we investigate what software

design strategies would optimize the performance of a controller machine under the work­

load characteristics of OpenFlow, assuming the hardware is a commodity computer based

on a modem multi-core processor architecture.

4.1.2 Fundamental requirements

Optimizing the performance of a controller means more than just hitting the highest ag­

gregate flow request handling throughput. A controller that does so but unintentionally

starves some subset of requests is useless. More generally, a controller that has arbitrary

performance bias against certain requests is undesirable. A controller that achieves high

throughput but has uncontrollable latency is also undesirable. Optimizing performance

requires a balance between fairness, latency, and throughput.

Fair capacity allocation: The capacity of the controller must be "fairly" allocated

among source switches that generate requests according to a well defined fairness policy.

Especially when the offered workload is larger than the capacity of the controller, the con­

troller must not arbitrarily favor certain sources. A reasonable fairness policy is weighted

max-min fairness, where the weights are specifiable by the operator. Equal weights can be

assigned to realize a basic max-min fairness policy.

Controllable latency: A controller's throughput in general can be improved by sac­

rificing latency. For instance, the overhead of a socket read system call can be amortized

across a larger number of pending requests by using a larger read buffer, thereby increasing

40

throughput. Many strategies of this nature could generally be called hatching. Batching,

however, increases the latency experienced by requests that are positioned early in the

batch. Furthermore, hatching could also hurt fairness at the fine timescale, resulting in

higher request handling latency even for a switch that originates requests at a low rate. An

optimized controller must restrain latency while pursuing high throughput.

Scalable throughput on multi-core: The controller must be able to run multiple copies

of user applications in parallel to scale up throughput on multi-core processors, and must

do so while maintaining fairness and controllable latency. Users of the system must have

the option to write simple single-threaded applications and leave it to the controller to

parallelize them. This option reduces the complexity of the application programs that users

have to write, thereby improves user productivity and system robustness.

4.2 Design of the Maestro System

In this section, we explore multiple design choices for addressing the fundamental require­

ments in scaling the OpenFlow control plane.

4.2.1 Overview of the Maestro system

c fi on1g
Chopping

~
Parsing Flow ... Learning Msgs ... Output

Stage Stage Requests SwitchApp - Stage Flow
Requests

Figure 4.1 : Learning switch functionality

Maestro provides the low level interfaces for interacting with an OpenFlow network,

such as the "chopping", "parsing", and "output" stages shown in Figure 4.1 & 4.2. Be­

cause the length of each OpenFlow packet is specified in its header, the "chopping" stage

is responsible for correctly chopping raw bytes read from a stream socket into correctly

41

Figure 4.2 : Routing functionality

aligned individual OpenFlow packets. Since a socket read operation could receive an in­

complete OpenFlow packet, the "chopping" stage for one socket cannot be parallelized,

and lock synchronization must be used for socket read to ensure the correctness of "chop­

ping". On the other hand, the "parsing" stage which parses raw OpenFlow packets into

specific messages such as flow requests, can be parallelized. The "output" stage puts out­

going data into OpenFlow format, and sends out to destination switches. If multiple threads

are writing to the same socket, synchronization is also needed.

Users of Maestro write their own applications, and use the provided user interface to

configure their execution sequences to realize different functionalities. Figure 4.1 shows

the "Learning Switch" example. There is only one application LearningSwi tchApp.

This application first remembers the switch port from which a request came from and as­

sociates the source address of the request packet to that port. It then checks to see if the

destination address of the request packet has been associated to a port before. If so, it in­

stalls a flow table entry at the origin switch for forwarding that destination address to that

port; subsequent packets for that destination can be directly handled by that switch. Other­

wise, the controller instructs that switch to flood the request packet along a spanning tree

maintained by the switch.

Figure 4.2 shows the "Routing" example. In the first user-defined application se­

quence, ProbingApp periodically sends out LLDP packets to all active ports of each

connected OpenFlow switch. As shown in the second application sequence, these LLDP

42

packets will be sent back to Maestro by the neighbor switches connected to these

ports, and DiscoveryApp processes these packets to know the topology of the net­

work. Based on such topology information, IntradomainRoutingApp calculates the

RoutingTable, which is used by RouteFlowApp in the third application sequence, to

calculate the entire path for incoming flow requests.

Maestro also provides a user interface for specifying applications, such as

LearningSwi tchApp and RouteFlowApp, to be parallelized by Maestro, so that

users only need to write single-threaded application but can still achieve high performance.

Depending on the number of available CPU cores in the system, Maestro dynamically

creates multiple worker threads, to work on multiple instances of the parallelized appli­

cation. Each application instance is executed in one worker thread to process a portion

of the incoming flow requests. In addition, Maestro adopts standard techniques to en­

sure the consistency of shared state among concurrent applications. For example, when

IntradomainRoutingApp updates the RoutingTable at run-time, Maestro stalls

pending RouteFlowApp instances until the RoutingTable updates finish. Unfortu­

nately, due to space constraint, we refer the readers to a technical report [CCNlO] for more

details about Maestro that have to be left out here. Note that the source code for Maestro is

available for download [mae].

4.2.2 Achieving fair capacity allocation while having scalable throughput

The offered workload needs to be distributed among all available CPU cores in order to

maximize the system's throughput. How such distribution is done will directly affect the

throughput scalability, and at the same time the fairness in allocating the capacity of the

system.

4.2.2.1 Maestro-Shared-Queue

To achieve a basic max-min fair allocation of the capacity of the system to all source

switches, the controller needs to give each switch an equal chance to be served. Initially

43

in [CCNlO] we started with a straight-forward design, in which Maestro has a dedicated

thread which is responsible for reading incoming bytes from socket buffers. This thread

uses a mechanism which is similar to "select()" in the Berkeley sockets API to select all

sockets that have pending bytes, performs socket read on all of them with the same max­

imum read size, and chops the raw bytes into raw OpenFlow packets. We call this thread

a "select thread". All the raw OpenFlow packets are put into a queue shared by all the

worker threads. We call this design Maestro-Shared-Queue from now on. The worker

threads fetch raw OpenFlow packets from the shared queue, parse them into OpenFlow

messages, and execute applications to process them. workload is evenly distributed among

all worker threads, because any idle worker thread will always be able to pick up pending

raw OpenFlow packets from the queue if there is any available.

This design theoretically can achieve a max-min fair allocation of the system's capacity,

because the select thread is giving each source switch equal chance (in terms of bytes) to

be served. If all the flow requests have the same number of bytes, which is the case for

TCP syn packets, each switch will also get equal service in terms of the number of flow

requests served. More generally, to achieve weighted max-min fairness, a source with

weight w will be given w chances to be served in each round. Although simple, this design

has fundamental drawbacks, especially in throughput scalability. First of all, all worker

threads have to share a request queue, so they have to rely on lock synchronization which

introduces a non-trivial amount of overhead. Second, reading and chopping of raw bytes

for a flow request is done by a different thread from the worker thread that handles the

remaining parts of the processing, which can lead to extra cross-CPU-core overhead. Third,

one single select thread can only process a certain amount of requests per second. If the

worker threads' aggregate processing capacity exceeds this dedicated select thread's, either

the throughput of the system becomes bottle-necked, or additional select threads need to be

added. The next design choices avoid having dedicated select threads.

44

4.2.2.2 Maestro-Static-Partition

To eliminate the overhead introduced by lock synchronization of concurrent read accesses

to a switch socket, switch sockets can be partitioned and assigned to specific worker

threads, so that each worker thread has exclusive read access to switch sockets in its par­

tition. This also minimizes the cross-CPU-core overhead because each flow request is

processed entirely by a worker thread (assuming that each worker thread is bound to a spe­

cific CPU core, which we will discuss in more details in Section 4.2.2.5). This is the design

chosen by NOX and Beacon. We also explore this design in Maestro and name it Maestro­

Static-Partition. Usually each worker thread is assigned the same number of switch sockets

to balance the workload among all worker threads. However, because each switch can

have a different flow request arrival rate (which we call the "input rate" from now on), an

equal number of assigned switches does not mean equal workload assignment. As a result,

such static partitioning may not be able to evenly distribute the workload among all worker

threads, so both the fairness and throughput of the system will be affected.

4.2.2.3 Maestro-Dynamic-Partition

For each worker thread t

Set t.assigned = 0

Put t into minH eap sorted by t.assigned

Sort all switches sw based on sw.inputRate, from high to low

For each sw in sorted list

Assign sw to worker thread tat minH eap.top()

t.assigned += sw.inputRate

update(minH eap)

Figure 4.3 : Re-partitioning algorithm

To improve upon Maestro-Static-Partition, we can dynamically divide switches into n

partitions, where n is also the number of worker threads. To fully utilize all worker threads

45

in the system, the dynamic partitioning needs to be done effectively so that the workload

is evenly distributed among all worker threads. First of all, we need to measure the re­

cent input rates of the switches, in order to predict the future input rates for dynamic re­

partitioning. The caveat is that this assumes the input rates are stable over a short timescale.

Such measurement and re-partitioning can neither be done too frequently because each re­

partitioning involves unavoidable lock synchronization overhead, nor can they be done too

infrequently because the measurement based prediction and re-partitioning could be much

less accurate. Second, the re-partitioning itself is a NP-complete problem to solve opti­

mally [GJS76]. In this study, we adopt a simple greedy algorithm as shown in Figure 5.1.

We call this design Maestro-Dynamic-Partition. Even if input rates can be reasonably

predicted, this design still has other limitations. First, max-min fairness in system capacity

allocation in general cannot be achieved even if each worker thread makes sure that all

switches within its partition receive equal chance of being handled. For example, suppose

there are 2 worker threads and 3 switches with input rates r, r, and 2r respectively. Switch

1 and 2 are therefore assigned to thread 1 while switch 3 is assigned to thread 2. In this case,

switch 1 and 2 can receive only up to 25% of the system capacity, while switch 3 can receive

up to 50%. Second, if the workload cannot be evenly partitioned among worker threads,

CPU cores may not be fully utilized, thus throughput will not be maximized. We will show

in Section 5.4 that the fairness problem and the CPU core under utilization problem, despite

being less severe than that in Maestro-Static-Partition, still exist.

4.2.2.4 Maestro-Round-Robin

A fourth design choice we consider is called Maestro-Round-Robin. In this design, each

worker thread is individually running a round-robin service loop among all switch sockets.

By doing this, each switch will be given equal chance to be serviced by each worker thread.

Thus, conceptually, the overall system also gives equal chance to each switch and achieves

max-min fairness, or weighted max-min fairness by giving a switch w chances to be served

per round per thread. However, due to the limitation that only one worker thread can read

46

bytes and perform chopping for a switch at a time, each worker thread needs to check

whether another thread is already performing reading and chopping on a switch socket.

This leads to some locking overhead which affects the throughput of the system. We will

show the trade-off between fairness and throughput achieved by Maestro-Round-Robin in

Section 5.4.

In Maestro-Round-Robin, each flow request is processed entirely by one of the worker

threads, thus cross-CPU-core overhead is also minimized. Because each worker thread can

process requests from all switches, Maestro-Round-Robin can have better throughput than

Maestro-Dynamic-Partition in the cases where the workload cannot be evenly partitioned.

Furthermore, when one worker thread finds out that another thread is performing chopping

on a switch, the worker thread skips this switch and tries the next switch, to prevent wasting

CPU cycles waiting for another thread to finish. However, such skipped switches need to be

remembered, so that before a worker thread finishes one round, these skipped switches are

revisited, so as to give each switch an equal chance to be serviced. The this optimization is

very important to achieve max-min fairness, and its effect is also evaluated in Section 5.4.

Another potential overhead of Maestro-Round-Robin is that, because all worker threads

have to perform none-blocking read on all the sockets to ensure fairness, if there are a lot of

idle sockets, many CPU cycles will be wasted in these reads which return zero bytes. What

we need is a mechanism which can help worker threads identify these idle sockets, so they

can be skipped during run-time. Fortunately this mechanism is available in Linux as the

"epoll" system call. Java wraps "epoll" in the "Selector" class which Maestro can utilize.

However, it is non-trivial to integrate such an optimization. First of all, concurrent access

to a "Selector" which "epoll"s all sockets is not lock-free, which could introduce very large

overhead if multiple worker threads are allowed to access at the same time. As a result

in our design, we let each worker thread check whether another worker thread is already

doing the "epoll", and if so, it will skip its "epoll" chance this time. Second, even if worker

threads are not concurrently doing, "epoll" still takes some CPU cycles which could have

been used in processing flow requests. Through our experiments we find out that by only

47

having one worker thread doing the "epoll", and having the idleness information retrieved

from "epoll" shared among all worker threads, we can improve the throughput performance

by a noticeable amount. Furthermore, the only worker thread which is performing "epoll"

should not do it too frequently, to further minimize the overhead introduced. Although

less frequent "epoll" can mean higher latency for low-rate flows, to strike a balance among

throughput, fairness and latency, based on our experimental results we choose our design

as: having only one worker thread performing "epoll" every time it finishes each round,

and update the shared idleness information. More details are shown in Section 5.4.

4.2.2.5 More on request and thread bindings

As alluded to earlier, minimizing cross-CPU-core overhead is critical to maximizing the

throughput. More experimental results can be found in our previous work [CCNlO], so

here we only describe our findings briefly. First of all, binding threads to cores is necessary,

because otherwise there will be a huge overhead introduced by thread context switch if the

operating system moves the execution of one worker thread to another CPU core at run­

time. Second, it is also important to bind requests to threads, so that each flow request

is processed as much as possible by the same worker thread. Such binding minimizes

the overhead introduced by data synchronization between threads. Recent work in multi­

core software router design has shown that in some cases, it is better to have each thread

working for one small processing step because this could reduce the cache misses of a

thread [DAI+tQ]. We leave it as future work to explore whether this design model could

be borrowed in Maestro.

4.2.2.6 Improve Memory Efficiency

When Maestro is processing flow requests at a very high throughput, it dynamically allocate

and deallocate memory also at a very high rate, especially when the routing application is

used. If such memory is dynamically allocated/deallocated (such as malloc in C/C++), it

introduces a certain amount of overhead which affects the throughput scalability of the sys-

48

tern. If the memory is garbage collected (such as Java), such overhead will be even worse.

As a result, we design and implement our own memory manager in Maestro, to explicitly

manage the memory allocationldeallocation for the data structures which are heavily used

when at high throughput. For each worker thread, we have a dedicated memory manager, so

that they do not have to synchronize on shared objects. All heavily used data structures are

allocated and deallocated explicitly in a most-recently-used manner by the memory man­

ager. By doing this we can not only reduce garbage collection overhead, but also minimize

memory footprint to minimize cache misses. Effect of such explicit memory management

will be shown in Section 5.4.

4.2.3 Achieving controllable latency while having high throughput

There is unavoidable overhead in system calls such as socket read/write, in executing ap­

plications to process flow requests such as preparing the state environment for applications,

warming up the CPU caches, etc. As a result, amortizing such unavoidable overhead across

multiple requests is critical for improving the throughput of the system. Such overhead

amortization can be done by reducing the number of system calls by reading/writing more

bytes per each socket call, and reducing the number of application executions by having an

application process a batch of requests in one execution.

Both NOX and Beacon adopt this approach: each worker thread tries to read up to a

large number of bytes (we call this the "maximum read size") from a socket each time.

The requests obtained from each socket read forms a batch. Note that the size of each

batch therefore depends on the amount of data pending at a socket at the time of the read.

The thread then processes all the requests in the batch, and writes all pending messages

for a switch by calling socket write once when the destination socket is write-ready. The

maximum read size is static and the result depends a lot on the value chosen. To provide a

comparison, we also configure Maestro-Static-Partition to perform a large socket read, and

let the application processes all requests generated from a socket read as a batch.

In the other three Maestro designs, we adopt a different approach for amortizing the

49

overhead that provides much more control over the hatching behavior. First of all, we

use a much smaller maximum read size in socket reads than NOX and Beacon. Although

this means more system call overhead, it provides much finer grained control over system

latency because the system can visit and serve each switch more frequently. Second, a

worker thread batches up to a certain number of flow requests, as determined by an auto­

matically selected parameter called the Input Batching Threshold (IBT), before it initiates

applications to process all flow requests in the batch at once. Thus, the size of a batch is

independent of the amount of pending data at individual sockets. Furthermore, the requests

in a batch could very well come from multiple socket reads from different switch sockets.

Finally, similar to NOX and Beacon, all the messages to the same destination generated

from processing a batch are also sent to the destination by calling socket write only once

when the socket is write-ready.

The key question then is, how should the IBT value be chosen? When the IBT is

increased, on one hand, throughput could theoretically become higher because the overhead

is further amortized. On the other hand, in reality the throughput does not keep growing

with ever larger IBT, because as more memory is used to form the batch, memory access

efficiency decreases and at some point it will out-weight the overhead amortization gain.

In addition, with a larger IBT, flow requests will experience longer latency in the system.

However, if the IBT is too small, not only the throughput of the system will be low, but

also the latency will increase because the low throughput increases the waiting time of

the flow requests in socket buffers. Furthermore, for different aggregate input rates, the

system needs different IBT values to achieve a good balance between high throughput and

low latency. Thus, what we need is an IBT adaptation algorithm according to the dynamic

input rate of the workload.

Each worker thread independently uses the IBT adaptation algorithm in Figure 5.2 to

maximize throughput while restraining latency. The algorithm measures the time spent

in the processing of a full IBT-sized batch, and calculates the throughput score S of this

batch. To eliminate noise from the measurements, the algorithm maintains a smoothed

Initialization:

Trend = increasing

I BT = 10 (always lower bound by 10)

Sn initialized directly to S in first use

S' = 0 in first use

After finishing one full mT-sized batch:

Let t = time spent in processing this batch

Let n = size of this batch, score S = nft

Smoothed score Sn = (1- w) * Sn + w * S

Let S' be the smoothed score of last full IBT-sized batch

If(Sn :5 S')

Trend = reverse(Trend)

If (t > BatchingDelayU pperbound)

Trend = decreasing

If (Trend== increasing)

IBT+=10

Else

IBT-=10

When no pending bytes left in any socket butTer:

Process the current batch ignoring IBT

Trend= decreasing

IBT-=10

Figure 4.4 : IBT adaptation algorithm

50

average score Sn = (1 - w) * Sn + w * S, where Sn is the smoothed score for batch

size n. Currently we use a weight of w = 0.2. The algorithm compares the smoothed

throughput score of this batch to that of the last full IBT-sized batch. If the score is higher,

the algorithm keeps the current IBT adjustment trend; otherwise, the trend is reversed. The

IBT is adjusted by a fixed amount each time, currently chosen to be 10 requests.

51

The algorithm uses the BatchingDelayUpperbound (BDU) parameter to control the

latency of the system. When the IBT adaptation algorithm finds the time spent in one batch

exceeds the BDU, the trend is directly set to decreasing. The BDU can be dynamically con­

figured by the user of Maestro. So if she can tolerate a higher latency, Maestro will operate

at higher IBT to achieve a higher throughput. If she requires a tighter in-system latency,

she can set a low BDU, at the cost of potentially lower throughput. Notice that although

related, BDU cannot be directly translated into end-to-end latency. Maestro cannot control

the latency outside of itself, such as the round-trip network propagation delay, the delay in

socket buffers, or the delay introduced by the kernel. In addition, BDU only controls the

latency of one batch, so if there are a large number of switches to be served, a flow request

from one switch may have to wait for more than one batch.

Finally, under light load, when the algorithm finds there is no pending bytes in any of

the sockets, the algorithm releases the current batch for immediate processing ignoring the

current IBT, decreases the IBT, and sets the trend to decreasing. The effectiveness of the

IBT adaptation algorithm is evaluated in Section 4.3.3.

4.2.3.1 Output Batcbing

Because for each socket send () call there are both fixed and variable, per-byte over­

heads, when there are multiple messages to be sent to the same destination, sending them

all in one socket send () call can be much less expensive than sending each of them

individually. We conduct a microbenchmark experiment to demonstrate this, the result is

shown in Figure 4.5.

In this microbenchmark, we vary the number of 100-byte messages (a typical size for

OpenFlow messages) to send to the same destination from 1 to 50. In the first experiment,

we send each of them individually, and in the second experiment we send all of them

together with one socket send () call. We run each experiment 100 times and measure

the average time spent in each run. As shown in the figure, the time for sending all messages

together grows much slower than that for sending them individually.

52

160
W/0 batching

140
"'0
c:

-r~~~~i~g+~~~~~i~ - -- t --T :--- :
. .

0
0 120 Q)
U)
0

.
0 ' • • • • ----------·------------·-············'------------·"'··---------- ____________ _, _____________ .. _______ _ '
I o 0 I o 0
I 0 o 0 o
0 0 I I I
I I I 0 I
o 0 I o I

0 .E 100
,._;-
c:
Q)
a. 80 U)

I 0 I 0 0
• 0 ' • •
I I I I 0
I I I 0 I I I I

:r:::!: ~ r :! , : : J
Q)

I I I 0 0 I 0
0 I I I o 0 o
I I I 0 I I I

E
o o o o 0 0 I
0 I I 0 I I I
0 I I o I 0 I
0 I I o 0 t 0

:;::::;

ctS 60
0 • • • 0 • •
o I I o I o
I t o I I I

0 I 0 o 0 o I I
• • • • • • • •• • 1 •• • • • •• • •• • • -.• • •• • • •• ·.- • • • • • • •• • •• •r •• • • • •• • •••• ~ • • • • •• • • • ••• -.· • •• • • • • • •• • .,... • • • •• • • • • • • r· •• •· • ••• • •• •• •• • •••• • •

0 • • •
0 • • • -0

~

40

. : :..,~~~~t,..._.,...

: :.., -:-----.. t 0 I I o , ... ______ 0 I

········:··········l':-·~·:.-;.~r-.. .._-:, r············:············i············j··········
: ----c--.... -· : : : : : : : -~ : : : : : :
0 0 • 0 • • •
• 0 • • • ' •

20 ~--~--~--~--~--~--~~--~--~--~--~
0 5 10 15 20 25 30 35 40 45 50

Number of packets to send

Figure 4.5 : Microbenchmark for output hatching.

To reduce this overhead in Maestro, we perform the output hatching. When the appli­

cation DAG processes one batch of flow requests, and generates a set of messages that need

to be sent, we first group these messages by their destinations. Then, all the messages for

the same destination are sent together in one single socket send {} call. If there are

too many bytes to send that it cannot be done with only one call, we will try multiple calls.

For each call we will send as many as possible, which is determined by the socket's then

available buffer space. In addition, because only one thread is allowed to call the socket

send {) on one socket at a time, we add the following feature to further minimize the

wait time. When a worker thread tries to call socket send {} on one socket but finds

out another worker thread is already locking that socket, instead of waiting, the thread will

process other pending outgoing packets, until it finds one socket that is not being locked.

53

This solution greatly improves the output efficiency.

4.3 Evaluation

4.3.1 Experiment setup and methodology

Instead of using the standard controller benchmark "cbench" provided by the OpenFlow

community, we have implemented and use our own network emulator. Our network emula­

tor provides greater functionality than cbench. It can not only emulate the functionality of

the OpenFlow switch's control plane, but also generate flow requests at different controlled

rates for the emulated switches. This additional feature enables us not only to precisely

measure how fairly the capacity of the controller is allocated among all switches, but also

to evaluate the performance of the controller under different workload scenarios.

In each experiment, the OpenFlow controller is running on a server machine with two

Quad-Core AMD Opteron 2393 processors (8 cores in total) with 16GB of memory. Be­

cause there are other processes/threads responsible for managing either the Java virtual

machine (such as class management and garbage collection), or serving other system func­

tionalities, we dedicate at least one processor core for such work, while the remaining 7

cores are used by the controller for worker threads. Thus the best throughput (for most of

the cases) is achieved with 7 worker threads on this 8 core server machine. This machine

has four lGbps NICs to provide enough network bandwidth. The controller machine is

running Ubuntu 9.10 with a 2.6.31 Linux kernel and the 64-bit version of JDK 1.6.0.25.

We run the emulator simultaneously on four machines to provide enough CPU cycles

and network bandwidth for the emulation, as shown in Figure 4.6. Each of the emulator

machines is connected to a gigabit Ethernet switch by a 1 Gbps link. Each of these ma­

chines emulates one fourth of all the OpenFlow switches in the emulated network. We run

experiments using both a 79-switch and 1347-switch topology [SMW02], to evaluate the

effect of network size. Together, the four machines can generate up to four million flow re­

quests per second. Additionally, the emulator allows us to control the distribution of these

54

Figure 4.6 : Experiment platform setup

requests in terms of which switch they originate from.

We use three primary metrics for measuring the performance of the controllers. The first

one is the throughput of the controllers, measured in requests per second (rps), for which

a larger value is better. The second one is the average delay experienced by a low-rate

(5rps) probing switch, measured in milliseconds, for which a smaller value is better. This

delay is the end-to-end delay measured by the emulator. We choose not to use the average

delay experienced by all requests, because the delay of requests from heavy-rate switches

is largely affected by the underlying TCP socket read/write buffer size configuration, which

could vary significantly across different systems. Instead the average delay of a low-rate

probing switch is a more accurate measurement of the latency introduced by the controller

plus the round trip time, because the TCP socket read/write buffer of the probing switch

will be empty most of the time. The third one is the fairness of the capacity allocation.

To measure the fairness, we first calculate the max-min fair share of the capacity for each

switch, given each switch's request rate and the controller's total throughput. Then we

calculate the deviation of the actual share that each switch receives from its fair share.

Finally we plot the CDF of such deviations. A deviation distribution around 0 means very

good fairness, while a wider deviation distribution means worse fairness.

55

4.3.2 Fairness of capacity allocation

In this section, we compare the fairness of capacity allocation for all Maestro designs

(Maestro-Round-Robin, Maestro-Dynamic-Partition, Maestro-Shared-Queue and Maestro­

Static-Partition) against NOX and Beacon, through two different scenarios. We use the 79-

switch topology instead of the 1347-switch one, because there is less fluctuation when the

emulators are generating requests for fewer switches, so that the fairness measurement is

more accurate. In all of these experiments, we run the controllers with four worker threads,

not only to ensure that the server machine with eight cores can provide enough CPU cycles

for the controller, but also to make sure that the capacity of the controller is always below

the aggregate request rate from the emulators at any instant in time. Otherwise, 100% of

the requests could be handled which leads to a naturally fair allocation.

100

CD 80 s
c:
CD
~ 60
CD c.
CD
-~ 40 iii
:;
E
::I
(.) 20

. ! ~;(.. ! ••• ..-----------Scenari.O one - l If''"''''''"' -..-.............. ~t: ... y.r.~;~ ..•.•.•.•. , ••
Scenano two ------- : ; : 1 :

Scenario three ••••••• • ·····t''~······.:·•~-~ ,~~! . .) ... _
Scenario four u.... .l : 1 :

... f:~ti.r.~ ~~-~.r~~~-~ ~~~~---·······'···-
,..HIIIHIIII IHI' • .,.w i ~ ... ~ ; 1

~rJ -I r 1 - - i - -
; :

·········r:J·······r·················r~J·······-y--·· ··················r···-

0~~·~~·~~~~~~~--------~----~~~~~~----~----~~~~~~

1000 10000 100000 1e+06

Flow requests input rate, requests per second

Figure 4. 7 : Distribution of flow request rates

In the first scenario, each emulator tries to generate flow requests for its emulated

switches at uniform rates. However, because the four emulators cannot be perfectly syn­

chronized while at the same time providing a high request rate, the switches from different

emulators do not have exactly equal request rates. The distribution of request rates is shown

as scenario one in Figure 4.7. An optimal fair capacity allocation will be that all switches

56

100r-r---------~n-------~~-------.----------~--------~ fl § •·4""

: 1:: :::::::: :~-: -:l ~~:-~: :: ::~!:-:- ::::::::3::: :: ~ :1 ::: :: ::: ~:~-
i .-1 i Maestro-R~und-R~1n -
: • : Maestro-Dynam1c-Part1t1on •••••••
i !~ :1 i Maestro-Static-Partition

20 f-····t·························;····;;f ·····································j······················· Maestro-Shared-Queue ,,_,_,, -
i .• · • · ·····' : : i NOX -·-·-·-........ • I .

j :;,1 i Beacon •••••·•·
o~L---------~----------~--------~----------~--------~

-50 0 50 100 150 200
Deviation, % of fair throughput allocation

Figure 4.8 : Fairness result of scenario one

get about the same share of the system's throughput. As shown in Figure 4.8, both Maestro­

Round-Robin and Maestro-Shared-Queue achieve very good fairness in capacity allocation.

All of the other designs that assign switches to worker threads have worse fairness, espe­

cially Beacon which can allocate up to 50% less or more throughput to some switches from

their fair share. This is because not all worker threads can process requests at exactly the

same rate, even in this simple scenario where work load can be evenly distributed among

worker threads, there is still arbitrary fairness bias introduced.

Next, we configure the emulators to generate requests for switches with vastly skewed

request rates shown as scenario two in Figure 4.7. This is a more challenging scenario for

all of the controllers. As shown in Figure 4.9, Maestro-Round-Robin and Maestro-Shared­

Queue again have the best fairness performance, with all deviations smaller than 1%. On

the other hand, all other controllers have worse fairness. We can see that the deviations are

much worse at the tails because the switches which generate heavier rates of requests get

much larger shares than is fair. Again Beacon has the worst fairness, where up to 200%

more throughput is allocated to some source switches than is their fair share. The reason

why Beacon's fairness performance is especially bad is because, its static partition is not

even at the beginning. Different from Maestro-Static-Partition and NOX, which try to bal-

57

100

G) 80
Cl

~
G)

e 60
G)
c.

1,,_ ·!'=1.::::::.~~ .. ······-r~· .. ······ ··· ·······r ... ··· -,_r:,

~~ ! !
····t···+··································+····································j······· .. ··························-

1 1 ! i
····f···+····································f·····································l···································-

: : : :
G)

~ 40
'S
E
:::::1
() 20

0

.... 1.. ... L. l L _
! ! Maestro-Round-Robin -
! ! Maestro-Dynamic-Partition -------
! ! Maestro-Static-Partition

····t······························:·:~ ·····································j······················· Maestro-Shared-Queue _,_,.. -
! .• .-1-'F• ! NOX -·-·-·-
! : // ! Beacon •·•·• ·••
. •·••• -~-· i

-50 0 50 100 150 200
Deviation, o/o of fair throughput allocation

Figure 4.9 : Fairness result of scenario two

ance the number of switches assigned to each worker thread, Beacon just assigns switches

basing on the hash value of the socket file descriptor of the switch. As a result, the partition

of switches in Beacon is not even, because the hash values of the socket file descriptor

are not uniformly distributed. When we change the switches assignment algorithm to the

one used by Maestro-Static-Partition, the fairness performance of Beacon is much better,

similar to that of Maestro-Static-Partition. However, because this is not the original design

of Beacon, in this paper we only present the result of original Beacon design.

Figure 4.10 shows the effect of the extra skip handling mechanism in the Maestro­

Round-Robin design, in the different input rates scenario. We can see that with this mech­

anism enabled, the fairness can be greatly improved, while at the same time worker threads

do not have to waste CPU cycles waiting for other worker thread to finish processing one

source.

4.3.3 Effectiveness of the mT adaptation algorithm

In this section, to evaluate the effectiveness of the IBT adaptation algorithm, we focus on

Maestro-Round-Robin using four worker threads and running on the 79-switch emulated

network with skewed request rates. To establish the baselines and to investigate the effect

"0
c:
0
0
CD
~

~
CD
:::::J
C"
~
.....:
:::::J a.

..c:
C)
:::::J e

..c:
I-

58

100r----.!-----r----Tl-----r--~.+z= ... ~ .. =. •• = .. ~.~~ .. ~ .. =. •• ~ •• = • .-~···~--~··=·~-~--~----~
i b'~ : ········i·····---- i i i i

60

40

20
,• i i i i With skip handling -

0 ~-~~~~~i====~----~i ____ _Li ----~i-----L---W~ith~o~~~s~ki~pLha~n~d~lin~g~-=--=·=--~-~
-2 -1 0 1 2 3 4 5 6 7 8

Deviation, % of fair throughput allocation

Figure 4.10: Fairness: with and without extra skip handling

2.5e+06 I I I I I I I 25
Throughput

Average probing delay -------
2e+06 1- Average batching delay -- 20

Hal! of av~rage ~atchi~g del~y
I o o o o
' 0 • • • . . . r. . ; ; ;

-----··:··-------·-·:··---------·:·······-····:·······-····:·······-····: 1.5e+06 15 --~----------.

1 e+06 ----------r------------:-----------:------------:-----------+-----------:--~~~>t:~~~: 1 0
: : : ... ~· -----:

5ooooo ~----------~-----------1------------1-----------.L--.:-:~;:~~~~~~~C-----.••. l. m!~·-·:.:: 5
: : : .. ~-.,.- : : •·••···· : : -~--= .. ~ : : ;•' :

~--------- -:- . ' : ~ ~ :... : : :
• ~!..· i~····· i' i' i' i' i' Q ~•"''''':,u•r"'u• Q

0 500 1000 1500 2000 2500 3000 3500 4000

Input batching threshhold

Figure 4.11 : 4 million rps request rate

"0
c:
0
0
CD
.~

·e
~
(i)
0

of different IBT values on the throughput and delay of the system, we manually measure

the performance of Maestro using different static IBT values under different workloads.

We choose three different workloads: 4 million rps as in Figure 4.7's scenario two, which

2.5e+06

"0 c::
0 2e+06 0
Q)

~
U)

1.5e+06 Q)
:::::J
0'"
Q)
~ 1e+06 :::::J a.
.c
C)
:::::J e 500000
.c
I-

0
0

Throughput
Average probing delay ------­

Average batching delay •••••••·

, ~:I~' ~T~~~r:~r ~~~:~ ... ,. ... ,. ..
. .

r- - - - 1 ~---~.r~:::~t~::t~~~-
: : : : : ··········· ----------:--···········:-·····-------:---.---~·-•---:··;,.·.-.... -fl!.:------------~---;,iiiit"ll~!-------

l ~ • ·l:. -:- ~··············r··· ~
: -.::---- : ~··~· .. ····· : : :

.,.,....... ..i :.. : : : : ············

25

20

15

10

5

,,
0

500 1000 1500 2000 2500 3000 3500 4000

Input batching threshhold

Figure 4.12 : 1.4 million rps request rate

59

"0 c::
0
0
Q)

-~
.E

~
Q)

0

is more than twice the maximum throughput of Maestro at four worker threads; 1.4 mil­

lion rps as in Figure 4. 7's scenario three, which is about 80% of the maximum attainable

throughput; and 0.85 million rps as in Figure 4.7's scenario four, which is about 50% of the

maximum attainable throughput.

As shown in Figure 4.11, under the 4 million rps workload, when we keep increasing the

IBT, the throughput of Maestro grows at first, but starts to decrease when the IBT is larger

than 1200. The probing delay decreases at the very beginning because of the significant

improvement in throughput. Then the probing delay keeps growing with larger IBT, and

is about half of the hatching delay plus the extra round trip time outside Maestro. This is

because in this 79-switch network where there are not too many sockets to read from in

a single round, and each time we read at most 2KB from a socket, the hatching delay is

essentially the worse case delay for a request to spend within a batch, so the average case is

that a request spends half of the worse case delay in the batch. A 3ms BDU would translate

to a maximum IBT of about 1100. For the 1.4 million rps workload in Figure 4.12, when

2.5e+06 r-------~.r-------•. --------•. --------~
Throughput -­

2e+06 -
Average probing delay ------­

Average batching delay • • • • •• • • __
Hal~ of average ~atching del~y

' '

1.5e+06 ' ' ' --······················i·························j·························t······················-
' ' ' ' ' ' '

1 e+06 -······················+·······················+·······················+·····················-
. ' '

' ' ' 500000 -~---····················i························-~·-······················-~·-····················-
' ' '

~ :
\._ i : :

25

20

15

10

5

-·--·-···•--·--··---·-•-····-··-··~·-···rr.~~~~~ 0 =a: ~IL.::.:'~ ... --..-._,.,.r.r.r.:.:.r.r.r.r.rjr.r.r.r.r.r................... O

0 50 100 150 200

Input batching threshhold

Figure 4.13: 0.85 million rps request rate

60

'0
r:::::
0
0
Q)

-~
·e
~
(i)
c

the IBT is larger than 500, the throughput starts to flatten out and decrease slowly. For the

0.85 million rps workload in Figure 4.13, an IBT value of 25 is sufficient for Maestro to

handle every request of the offered 0.85 million rps, while keeping the probing delay very

low. In this case of light load, the BDU should not be reached by the algorithm.

Now, we enable the IBT adaptation algorithm in Maestro-Round-Robin, set the BDU

to 3ms, and conduct an experiment where the aggregate request rate dynamically changes

over time. In this experiment, the aggregate request rate offered by the emulator changes

every ten seconds. It starts at 4 million rps, then drops to 1.4 million rps, then drops again

to 0.85 million rps, then goes back to 1.4 million rps, and finally returns to 4 million rps.

Through this dynamic configuration we want to show that the IBT adaptation algorithm can

effectively handle both an increasing and decreasing aggregate request rate. Figure 4.14

shows the dynamic IBT values generated by the adaptation algorithm over time, together

with the corresponding aggregate request rate. In this figure we can see that, first, although

IBT values generated by the adaptation algorithm is fluctuating, Maestro is operating at

61

1000 5e+06
"0 c

800
0

4e+06 u
Q)
(/)
CD

Q) 600
c..

::J 3e+06 (/)

~ 1ii
Q)

~
::J

400 2e+06
0"
!!!
a)
iii

200 1e+06 "S
c..
..5

0 0
0 5 10 15 20 25 30 35 40 45 50

Time point, second

Figure 4.14 : Dynamic IBT under changing request rate

reasonable IBT values (within peak throughput area) in all regions, while at the same time

keeping not only the hatching delay but also the end-to-end probing delay under 3ms (as

shown in Table 4.1). Second, the adaptation algorithm responds to changes in the workload

reasonably quickly.

CD
Cl

~
Q)

e
CD
c..
CD
>
~
::;
E
::J
0

100

80

.··········: ············· : .. ~----
~ ~ ,,

.. •• 1 • #·':
:·····················r····················-····t··············-··:~-:;'"·--l·-----------------·------1--- ---------------------l·-------------------------r-------------------------1···-----··

.
60

40

20
• ! 1 ! ! 1.4 million rps input rate •••••••

! .,/ ! ! 0.85 million rps input rate • • · • · •• •
0~-----~--~--~----~------~-----L-------L----~~------L-~

0 200 400 600 800
IBTvalue

1000 1200

Figure 4.15: IBT distribution upon different request rate

1400

For each of the time periods of different aggregate request rates, Figure 4.15 plots the

62

IBT value distribution, and Table 4.1 shows the measured throughput and probing delay.

For the 4 million rps workload, about 90% of the IBT values fall between 650 and 900, and

the actual throughput of Maestro is 1. 70 million rps, which is the same as the maximum rps

achieved with a static IBT of 1200 in the previous experiment. The average probing delay

for Maestro is 2.8ms. When the emulator's offered request rate is 1.4 million rps, about

90% of the IBT values fall between 250 and 650. The actual throughput of Maestro is 1.40

million rps, which is the same as the emulator's offered request rate. The average probing

delay for Maestro is 1.8ms. When the offered request rate is 0.85 million rps, about 90%

of the IBT values fall between 10 and 100, the throughput of Maestro is 0.85 million rps,

and the average probing delay is 1.4ms. The long tails in these distributions come from

the transition periods from one offered request rate to another, where the mT needs to be

gradually adjusted by the algorithm.

Request Rate Maestro-R-R NOX Beacon

4M 1.70M /2.8ms 1.84M /342.9ms 2.67M /10.7ms

1.4M 1.40M /l.Sms 1.40M /3.9ms 1.40M I S.Oms

0.85M 0.85M/1.4ms 0.85M /1.6ms 0.85M /2.1ms

Table 4.1: Throughput(rps) and probing delay under different request rates(rps)

We also evaluate the same scenario using NOX and Beacon, and Table 4.1 shows the

results. When the request rate is 4 million rps, although NOX and Beacon have better

throughput, their probing delay performance is much worse than that of Maestro-Round­

Robin. When the offered request rate is brought down to 1.4 and 0.85 million rps, where

all of the controllers can keep up, we can see that unlike Maestro, NOX and Beacon are not

operating at the best hatching behavior to keep a low probing delay.

4.3.4 Throughput and delay scaling

In this section, we conduct experiments that show the throughput and probing delay scaling

of all the controllers. We let the emulators generate flow requests at the maximum rate (4

63

million rps), to stress test all the controllers. We run each experiment five times, using

both the 79-switch and the 1347-switch network topologies. In each network topology, we

let emulators generate requests with both uniform and skewed rates. The 79-switch with

skewed request rates is essentially scenario two in Figure 4.7, while for the 1347-switch

case the rates distribution shape is similar, just with the difference that the requests are from

more switches.

5e+06~------~------~r-------~------~r-------~------~
Maestro-Round-Robin - ! ! !

4e+Os "" Ma~s~~~t~s~~:~~~:~m~~ ~~.:~:; ::r::::::::::::::::::::::::::::::t::::::::::::::::::::::::::::::r:::::::::::::::::::::::::::~
Maestro-Shared-Queue ;; ! i •. ···············*·······

4.5e+06

:§ .:.I.;;;,,:~;,:~E-~~~F=:::·:~!::~~J~~?:~
·····....• : ------ -~ : : 1.5e+06 ···:·;~~~~-, ... A ••••••• 1····························· ·················j······························t······························:···························· ~

r.:.~··• : ·-• : : : ••••'"'"'''·-••"'"""n•••-IMHtull"'"''" ~

5~: ~::~.~=:::::;:;;;;~;~-~~~~~:~-:~:~!~:::·:::~~-~~~~~:::=::r::::::::::::~::~r:~:~:::::::::::::::::::::::l::::::::::::::::::::::::::::
0~-------L------~~------~------~~------~------~

1 2 3 4 5 6 7

Number of Threads

Figure 4.16: Absolute throughput values, 79- uniform

Figures 4.16 4.17 4.18 and 4.19 show the absolute throughput values of all systems

with an increasing number of worker threads under the different distributions and topolo­

gies. In all cases Maestro-Static-Partition has the best throughput, which we believe is

because of its larger maximum read size than the other Maestro designs, and in Maestro

part of the memory is explicitly allocated/deallocated other than Beacon. As shown in these

figures, the throughput of both Maestro-Static-Partition and Beacon grows all the way up

to five threads. But after that, the throughput performance fiats out, which we believe is be­

cause of the Java memory system bottleneck. We look into the Java garbage collection trace

of these two systems, and we find out that before five threads, the frequency and the time

taken by garbage collection is much smaller than that of the systems with more than five

threads. This is also backed up by the fact that, the throughput of Maestro-Static-Partition

64

5e-t06

"'0 4.5e+06
c:
0 4e-t06 0
Cl)

~ 3.5e-t06

Cl) 3e-t06
:::l
0'" 2.5e+06 ~

"S 2e-t06
0.

.s:::. 1.5e-t06 Cl
:::l e 1e-t06

.s:::.
1- 500000

0
1 2 3 4 5 6 7

Number of Threads

Figure 4.17 : Absolute throughput values, 79 - skewed

5e-t06

"'0 4.5e-t06
c:
0 4e+06 0
Cl)

~ 3.5e-t06

Maestro-Round-Robin - . . :
Maestro-Dynamic-Partition !-·«-·"'! ··r·····························r·····························-r··························

Maestro-Static-Partition)•·•···: .. i l i..
Maestro-Shared-Queue ;, ~ : ~

iii 3e+06 Cl)
:::l
0'" 2.5e-t06 ~

"S 2e-t06
0.

.s:::. 1.5e-t06 Cl
:::l e 1e-t06

.s:::.
1- 500000

0
1 2 3 4 5 6 7

Number of Threads

Figure 4.18: Absolute throughput values, 1347- uniform

is higher than Beacon, because of the explicit memory management.

Maestro-Dynamic-Partition's throughput follows closely, especially in the experiments

with skewed request rate distributions. In these cases, the dynamic re-partitioning can better

balance the workload in the worker threads. Note that the better throughput of Maestro­

Static-Partition is also because of its larger buffer size, at the cost of increased delay. Also

we believe that in more dynamic scenarios where the request rate of switches changes over

65

5e+06

"C 4.5e+06
r::
0 4e+06 u
CD

~ 3.5e+06
'li)

3e+06 CD
::l
C'" 2.5e+06 ~

'S 2e+06
0.
.r= 1.5e+06 Cl
::l e 1e+06
.r=
1- 500000

Maestro-Round-Robin __. ! i i

Ma~s~:t~~~:~:~:~m~ ~~.:~~ ::r:::::::::::::::::::::::::::::I:::::::::::::::::::::::::::::r::::::::::::::::::::::::::
Maestro-Shared-Queue ! ... ··&····• i ! !

NOX t-·-·-t ·+·····························r········--····················j····························
Beacon !-··•···! i i i ...

::::::::::::::::::::::::::::r::::::::::::::::::::::::::::r:::::::::::::::::::::::::::r::~::~~:;:;~;:;~:;:~~:~J;~:~:~~;:~~:::~~:~~~~/~:~~~~--:-·:
: •... ,,:.':········· .. ············ ~·-·-·-·- .

~~t~4~~~
0

1 2 3 4 5 6 7

Number of Threads

Figure 4.19: Absolute throughput values, 1347- skewed

time, throughput of the Maestro-Static-Partition will be worse. Although the lock synchro­

nization in Maestro-Round-Robin prevents it from achieving the best throughput, it is not

too far behind. Although NOX also adopts the static design, its absolute throughput is not

as good as Maestro-Static-Partition and Beacon, which we believe is because of the imple­

mentation inefficiency which keeps it from fully optimized. Finally, the worst throughput

of Maestro-Shared-Queue is because that first there is only one thread performing the chop

stage, which could potentially be the bottleneck. Secondly, the whole path of processing a

request is done in two steps in two separate threads, which introduces cross-core synchro­

nization overhead.

Figures 4.20 4.21 4.22 and 4.23 show the throughput scalability with an increasing

number of worker threads under the different distributions and topologies. The vertical

axis in each figure is the achieved throughput relative to the absolute throughput value at

one worker thread. We can see that Maestro-Dynamic-Partition has the best scalability

all the way up to seven worker threads, while Maestro-Round-Robin follows in second

place. The throughput scalability of NOX follows as the third place, ahead of Maestro­

Shared-Queue in the 79-node topologies. For the 1347-node topologies, NOX is worse

than Maestro-Shared-Queue. Both Maestro-Static-Partition Beacon scale pretty well up to

66

5.5

5

~
4.5

~ 4
iij 3.5 u
Ill

"5 3
c.

.1:: 2.5 Cl
::I

Maestro-Round-Robin-+--~ ! ! ! ,

Ma:,s!~o;t~~rs~::~:~:~m~~ ~~-:~~ ::::::::~::::::::::::::::::::::::::::::]:::::::::::::::::::::::::::~;.;.;.;~:==~·--"·····
Maestro-Shared-Queue 1........... : : ·

:=::_:=!:=:::~~~;~
1 l l 1

E! 2
.1::
1- 1.5

1

······························i·······.. ·········-r······························-r·······························l·······························j······························

.......................... :::r:::::::::::::::::::::::::::::r:::::::::::::::::::::::::::::r::::::::::::::::::::::::::::::r::::::::::::::::::::::::::::::;::::::::::::::::::::::::::::::
0.5

1 2 3 4 5 6 7

Number of Threads

Figure 4.20 : Throughput scalability, 79 - uniform

5.5

5

~
4.5

~ 4
iij 3.5 u
Ill

"5 3
c.

.1:: 2.5 Cl
::I
E! 2

.1::
1- 1.5

1

0.5
1 2 3 4 5 6 7

Number of Threads

Figure 4.21: Throughput scalability, 79- skewed

four worker threads, but after that the scalability more or less flattens out. Again this is

because the throughput of Maestro-Static-Partition and Beacon is very high, they reach the

bottleneck of Java memory allocation. Maestro-Shared-Queue scales well up to six worker

threads, but either flattens out or becomes worse. Because all worker threads have to share

the same work queue, its poor scalability is expected.

As shown in Figure 4.24 and Figure 4.27, the probing delay performance of Maestro-

67

5.5

5

~
4.5

~ 4
iii 3.5 u
II)

'S 3
a. .r: 2.5 Cl
~

E! 2
.r:
1- 1.5

1

0.5
1 2 3 4 5 6 7

Number of Threads

Figure 4.22: Throughput scalability, 1347- uniform

5.5

5

~
4.5

~ 4
iii 3.5 u
II)

'S 3
a. .r: 2.5 Cl
~

E! 2
.r:
1- 1.5

0.5
1 2 3 4 5 6 7

Number of Threads

Figure 4.23: Throughput scalability, 1347- skewed

Round-Robin and Maestro-Dynamic-Partition (in which the IBT adaptation algorithm is

enabled) are much better than static designs. This is not only because Maestro has much

better fairness in throughput allocation, but also because of the IBT adaptation algorithm

which prevents the batch from growing too large. Because in Maestro-Shared-Queue

worker threads have to synchronize on a shared queue, and because its throughput is much

worse, its delay performance is not as good. We believe the very bad probing delay per-

- --

68

1~~-------.---------r--------~------~~------~--------~
:,,1 :,,_: :,,_: Maestro-Round-Robin t-+-1

Maestro-Dynamic-Partition !"·«-·-!

10000 ····························-r··-------------------------·-·-r··--------·--------·-·-----···r··· ~=:::~~~~~~~~~~~ :::: ~
·-·-·-·-·-·-·-· : 1 l Beacon ~··•···! 1000 --------------------------r·-·-·--·--·-;r;.;·;.;;;;;;;;~.-.-;.:;~;~-.-.::r.:::::::::::.:·.-.:::::::~:-t::.:~-.:::::::~-.::::::::=:·+=:~-.=:=:::=:=:~.

100 ~ ~) + + ;
... ~·~·~·~''".... • : .i : ~. . ~ . •••••~ . ~:.:.:~:~:~:~:~:;:.t:~=~=~··•••••••• T ••••••••••••••••l•••••••••••••••••f.•••••••••••••••••

1 0 l t······-----~~~-~~~~~~~~~~~~~~~~~~~~~~!:~. ! ~~M!'!r.~!!!\~MMMI>rt.&llr;,~!:~;!!::.1
---------ol[ll--------------·--------------..:.--------------·-----------···t.·····---------~

2 3 4 5 6 7

Number of Threads

Figure 4.24 : Probing delay in log scale, 79 - uniform

1 ·····o~[~~·-------------·--------------·--------------=--------------~-------------- .
2 3 4 5 6 7

Number of Threads

Figure 4.25 : Probing delay scalability, 79 - skewed

formance of NOX is due to its very large read hatching size (512KB). Again, we do not

include the figures for the two other experiments (79-switch with skewed rates and 1347-

switch with uniform rates) because they show similar results.

U) ,
r::::
0 u
CD

~ -E
~
Qj ,
Cl
r:::: :c e
a..

69

1e+06 r--------,--------~---------.---------r---------r--------~

100000 f·········-··--·-·--··-········r······························r···

Maestro-Round-Robin -
Maestro-Dynamic-Partition '"·"*'·~

Maestro-Static-Partition 1··•···: ...,
Maestro-Shared-Queue 1 i

·-·-·-·-·-·-·-·__l_ ! i NOX,.
--·-·-·-·-·-· • . B 1 0000 ·····························f·····--·-----·--·-----~-'.':::.t_:::~~::::::-.·.~~:::~~-·-~,!~.·-~!"''""'-"''"''.......,..-._·-·-·~£2!!..~.:.!:;:.:.~,

! ! l i 1
: : : : :

1 000 ! : ::~:~:::-::::;:·;:·:j::·::·:·;~:::·;·::;·~:·:·i·~-.-~·:::=·::·:~::·.-~·::i:·~-:~:-~:-~-:~:-~:-~-:~:t:~---------·------------·t··-· ---------~:-~:-~-:~: ~
·~ - ! • ! ·················~!'·················'!'···:;::::::::::::.:::;::::: ~'

100 ·----·--·--·-·········--·--"!1"'"'"----·.-.-,;;;;;,;;····•;;;,;;;;,;;,;;;;;,;.;;;;.~~;;;;,;;;;,;;;;;;,;;;;,;;:;.li:::.:::::.:::;;,;;:~,p~iMiiMiii:f.iiiiliiii:l\~

~--------------..i.---------···· 1 1 ----------·+"" 1.
10 ~------~--------~--------~--------~--------~--------~

1e+06

100000

10000

1000

100

10

1 2 3 4 5 6 7

1

Number of Threads

Figure 4.26: Probing delay scalability, 1347- uniform

Maestro-Round-Robin -
Maestro-Dynamic-Partition '"·"*'·~

----------------------------r-----------------------------i_r·----·-·--····-··--·--·----···r. ··- ~==~~~~~~~~:.~~:~~ ;~~::.:!
·-·-·-·-·-· ..._ NOX,.

-·-· : ·-·-·-·-·-·-·-·•-·-·-·-·-· ! Beacon !-...... ! ·····-·--·-····-··-··-··-··T·-··-·-··-···-·-····--------·r··-·-··-········"'·-r-·-·-w;_ T .. -.;;;;;,;;;;;,;-,;;;-,;;;~·.-::.:.:.-;;.-.=:::;~:·.:.:::::::..
-==:::-:::·:::·:==·==•;·~~-;·;~;·;;·;;;:=:·~·:r:·~-:~-:~:·~-:~-:~:·~-:~:·~-:~:~:·~-:~-:~:·~-:~-:~-~-:~-:~:-~·:::::·~-.-~:=i·.-~:~:-~-:~-:~:·~-:~-:~:

·::::·:~::·:::::~:~:·::~~-~~~ .. , _. __ ,: .. ::;:;: ! ~:;:.~~;~;:;;;;;:;:;;;:;;;;~:· ;;;;,;;;;;~:;;:::::.~:::::.::::·'--::::::::.:~;~:::::~~:::::~:::.-::~;:~::~:::::~~:::::.::~.;-~
·············-~·-············ i

2 3 4 5 6

Number of Threads

Figure 4.27: Probing delay in log scale, 1347- skewed

7

4.3.4.1 Effect of small number of source switches

Instead of having flow requests coming from a larger number of source switches, in this

experiment we let the emulators generate flow requests from a small network with only

four switches with a total request rate of 4 million rps. This workload is the worst case for

any design which assigns source switches to worker threads, because flow requests from

one switch can only be processed by one worker thread. Therefore, it is impossible to

70

5e+06 .--------,--------~--------~--------,---------~-------,
Maestro-Round-Robin _.....,. : : 1

4.5e+06

4e+06

3.5e+06

Ma~s~:t~S~~:~:~:~:~:~~ ~~.::: ::t::::::::::::::::::::::::::::::t::::::::::::::::::::::::::::::J::::::::::::::::::::::::::::=
Maestro-Shared-Queue ; ~ i i i

NOX .,..-.... ·+·····························f······························1····························-
Beacon !-··•···! i i i 3e+06 ···························-r···························T····························T·····························T·····························T"··························-

2.::: ::::::::::::::::::::::::::::1:::::::::::::::::::::::::::::.±~:~~~:~;~;:~:;;.;~~:1~::::~:~:·~-:~:~::::~~~;:~;~;~,-; ·;~~~~::;!::..::;:.~
·i···········:::::.'i········:.·,..··~·-·-·-·-·-·+·-·-·-·-·-·-·-·. ·-·-·-·-·-·-·-·-1

=.~~
0 ~------~---------L--------~--------~--------~------~

1 2 3 4 5 6 7

Number of Threads

Figure 4.28 : Absolute throughput values, 4 switches

evenly distribute the requests among more than four worker threads. As shown in Fig­

ure 4.28, Maestro-Round-Robin not only has the best scalability under this workload, but

also achieves the best absolute throughput for seven worker threads. The throughput of

Maestro-Shared-Queue also keeps growing, although it is still the worst in absolute terms.

Throughput of all other systems stops increasing for more than four worker threads.

5e+06

"0 4.5e+06
c
0 4e+06 u
Q)

~ 3.5e+06
7ii 3e+06 Q)
::l
r::T 2.5e+06 ~

-s 2e+06
a.
.s:: 1.5e+06 01
::l e 1e+06

.s::
1- 500000

0
1 2 3 4 5 6 7

Number of Threads

Figure 4.29: Absolute throughput values, 5% source switches in the 1347-node topology

71

In another scenario, we use the 1347-node topology, but only let 5% of all switches in

the network generate uniform traffic. We measure the throughput performance of Maestro­

Round-Robin, and compare the results of the designs with and without the "epoll" opti­

mization. As shown in Figure 4.29, the throughput of the design with "epoll" enabled can

be up to 50% higher than that of the design without "epoll" optimization. This clearly

demonstrates the benefit introduced by the efficient 1/0 mechanisms, where Maestro can

skip trying to read from idle sockets during run-time.

We also compare the two designs for Maestro-Round-Robin in other scenarios where

all switches are generating requests, and get the observation that for all the scenarios with

uniform traffic, the throughput of the design with "epoll" enabled is actually lower by

5%. This is totally within our expectation because: first, performing "epoll" adds some

overhead to the system, even if only one worker thread is performing; second, all switches

are uniformly generating requests traffic where none of the switch sockets is idle during

run-time, so the "epoll" performed is purely overhead. However, for the skewed traffic case,

it is more likely that some switch sockets are idle during run-time, so with "epoll" enabled,

the throughput degradation is only 2% for the case of 1347-node, and the throughput is

actually 5% better for the case of 79-node. With the result shown earlier where only 5%

of all switches are generating requests, we argue that the benefit of the "epoll" design

outweigh its overhead greatly, so in Maestro-Round-Robin it is our preferred design choice.

In addition, we also tried letting all worker threads perform "epoll". Although it can

reduce probing latency for about 10%, it also decrease the throughput performance of the

system by more than 10%. Because the latency is already very small thanks to our adaptive

hatching algorithm, we argue that the extra latency gain is not worth the throughput loss.

Furthermore, having only one worker thread performing "epoll" but at higher frequency

also has the same effect. By having the worker thread "epoll" more than once per round is

more than necessary in most cases, because before the worker threads service the remaining

sockets in this round, the status of these sockets will remain unchanged for most of the time.

If instead we let the worker thread perform "epoll" at lower frequency than every round,

72

the throughput is not improved, but both fairness and probing latency are getting worse.

Based on all these observations, we come to the conclusion that there should only be one

worker thread performing "epoll", and at the frequency of every round.

4.3.4.2 Effectiveness of explicit memory management

Scenario Round-Robin Dynamic-Partition Static-Partition Shared-Queue

Routing, W/0 MM 0.97Mrps 1.04Mrps 1.12Mrps 0.44Mrps

Routing, W/MM 1.75Mrps 1.90Mrps 1.98Mrps 0.60Mrps

Learning Switch, W/OMM 2.73Mrps 3.10Mrps 3.41Mrps 1.16Mrps

Learning Switch, W/ MM 2.76Mrps 3.11Mrps 3.43Mrps 1.25Mrps

Table 4.2 : Improvement made by memory management

The explicit memory management plays a very important role in improving the through­

put of Maestro, especially in the case of using the "routing" functionality which generates

much more flow configuration messages than the "learning switch" functionality. As shown

in Table 4.2, the memory manager improves the throughput of Maestro by from 36% for

the Shared-Queue design, to 82% for the Dynamic-Partition design, for the "routing" func­

tionality. While for "learning switch" because its memory usage is much smaller than

"routing", the improvement is also much less significant.

4.4 Summary

Flexibility and direct control make OpenFlow a popular choice for different networking

scenarios today, but the performance of the OpenFlow controller must be optimized not

only for raw aggregate throughput, but also to simultaneously achieve fair capacity allo­

cation and low latency. We have systematically evaluated and compared different design

choices. The results have shown that the Maestro-Round-Robin design can achieve near

optimal fairness in system capacity allocation, while at the same time having through­

put scalability second only to Maestro-Dynamic-Partition. The IBT adaptation algorithm

73

of Maestro can effectively adjust the hatching behavior dynamically according to the ag­

gregate input rate to control request handling latency, while at the same time achieving

high throughput. Simply put, the Maestro-Round-Robin design with the adaptive hatching

algorithm achieves the best balance between fairness, latency and throughput among all

available OpenFlow controller designs today.

74

ChapterS

Coordinating Centralized and Distributed Controls to
Build a Responsive and Robust Hybrid Control Plane with

Global Optimality

5.1 Introduction

5.1.1 Lack of Coordination

Today, a network operator must carefully handle numerous control tasks to ensure that ser­

vice level agreements (SLAs) are met. First, the operator must perform careful network

capacity planning to ensure that the network has enough bandwidth to meet the traffic de­

mand [Tel02]. Second, load-balanced routing is necessary to mitigate network hot spots

and to enhance the network's ability to absorb temporary spikes in traffic [FTOO]. Further­

more, in today's hostile Internet environment where a single DDoS attack could generate

more than 40 Gbps of sustained unwanted traffic [Arbb], it is crucial to use traffic filters to

stop such unwanted traffic from overwhelming the network.

The possibility of network failures further complicates the network operator's task. This

is because when a failure occurs, an Interior Gateway Protocol (IGP) such as IS-IS [Cal90]

and OSPF [Moy97] will immediately re-route traffic around the failure. Although auto­

matic failure recovery is generally desirable, the re-routed traffic may congest the network

even if the IGP link weights have already been carefully chosen by a load balancing mecha­

nism. Furthermore, changing routing without regard to DDoS traffic filtering could mistak­

enly re-route DDoS flows around the filters that aim to block them. The resulting service

level agreement violations can be serious and can persist for over 10 minutes [ICM+02],

even in a tier-1 backbone network.

75

Based on these observations, we argue that the fundamental problem is the lack of

coordination among these different control functions in the control plane. Specifically, the

IGP is allowed to operate in isolation from the load balancing and traffic policing functions

to meet the goal of SLA compliance. In reality, however, these functions are intertwined

and need to coordinate their actions.

5.1.2 Limitations of the Centralized Solution

It is possible to solve the coordination problem by just throwing away the traditional dis­

tributed network controls such as IGPs, and use Maestro to incorporate centralizing routing,

load balancing, and traffic policing into one single centralized system to explicitly coordi­

nate their interactions. Such possibility is confirmed in the earlier chapters. However,

the centralized solution has fundamental limitations which we need to solve: scalability,

responsiveness, and robustness. The scalability problem has already been addressed in

Chapter 4 by exploring parallelism in multi-core machines, so in this chapter we focus on

addressing the responsiveness and robustness limitations.

If only distributed local actions are enough to handle network events and achieve global

objectives effectively, then because distributed controls can be much closer to the events

Gust in the device where action needs to be taken) compared to the centralized control,

they can react much faster. In contrast, if it is a pure centralized solution, first the central

controller needs to be notified about the events, then it reacts, and after that the central

controller needs to send command back to the device where the action needs to be taken. At

least one extra one-trip-time delay is introduced by such centralized solution. But because

of the limitation of distributed controls, local actions could have uncertain global effects,

thus we cannot totally depend on local actions of distributed control. We argue that, if

we want to get both the responsiveness of distributed controls, and the effectiveness in

achieving global objectives of centralized controls, we need to realize a hybrid control

plane. In such a hybrid control plane, centralized and distributed controls co-exist, and

coordinate actions with each other.

76

Also, a pure centralized solution is not as robust as a distributed solution. If the central

controller fails, the whole network will suffer from catastrophic failures. In contrast, if the

network is managed by distributed controls running on distributed network devices, when

some part of the controls or the devices fail, the other part of the network can still function,

maybe with degraded performance. If we have a hybrid control plane where centralized

and distributed controls co-exist and coordinate with each other, if the central controller

fails, the distributed controls can make sure that the network still function with the local

actions of distributed controls. Although without the central controller, the performance

may degrade.

5.1.3 The CONTRACT Framework

To address all of these coordination, responsiveness and robustness problems, we propose

the COordiNated TRAffic ConTrol (CONTRACT) framework. In CONTRACT, routers

continue to run distributed control functions to be able to recover from failures in a dis­

tributed autonomous and responsive fashion. However, the key difference is that routers

coordinate their actions with a centralized network controller built on top of Maestro who

is responsible for enforcing global objectives. We use the existing Maestro programming

framework to manage the interactions among different control applications we compose for

CONTRACT, to build such a centralized network controller. The central controller modi­

fies both the routing and the filtering behavior of routers, and incorporates a set of original

algorithms for achieving coordination.

There are three key mechanisms underlying the CONTRACT framework. First, un­

der CONTRACT, routers participate in a distributed coordination protocol with the central

controller. The controller programmatically evaluates the impact of the routing changes,

decides whether the changes are SLA compliant, and performs load rebalancing and/or

packet filter reconfiguration as necessary. Second, because the overall impact of re-routed

traffic cannot be locally determined by a router, under CONTRACT, routers temporarily

lower the priority of the re-routed traffic, thus protecting other traffic. The priority will

77

return to normal once the changes are deemed SLA compliant by the controller. Finally.

under CONTRACT. routers also autonomously adapts their packet filter configuration as

routing changes to retain (when feasible) the packet filtering behavior.

The CONTRACT mechanisms work transparently beneath the IGP. Therefore. they can

be deployed without changes to the IGP. The CONTRACT coordination protocol guaran­

tees that all routers in the network partition containing the controller reach a consistent

coordinated routing state despite arbitrary network failures. Furthermore. if the controller

itself has failed or the network has been partitioned. and coordination is no longer possible.

the IGP continues to function responsively and autonomously. thus network survivability is

not compromised. CONTRACT therefore seamlessly combines the benefits of distributed

controls with the benefits of sophisticated centralized network-wide control mechanisms.

To evaluate CONTRACT. we conduct experiments across a wide range of network

conditions. We are able to show that CONTRACT can enforce the coordination objec­

tives among the IGP. traffic load balancing, and traffic policing functions even under rapid

network changes, while consuming reasonable router resources even for large networks.

Furthermore. we show that CONTRACT provides substantial improvements to network

performance and SLA compliance during network failures. In addition. in the future we

plan to also experimentally evaluate the responsiveness enhancement by introducing the

coordination comparing to a pure centralized solution.

5.2 Examples of Coordination Problems

5.2.1 Need for IGP and Load Balancing Coordination

The load on each individual link is determined by two factors: the traffic demand matrix

and routing. Previous studies have demonstrated how the traffic demand matrix can be

efficiently measured [MTS+02][ZRDG03]. Routing is determined by an IGP (e.g. OSPF.

IS-IS). Each individual network link is assigned a link cost and each router runs the IGP.

The IGP exchanges link-state announcements among routers to learn the complete topology

78

and link costs of the network. The IGP then distributedly selects a minimum cost routing

path.

Therefore, whether a network has well balanced load depends very much on the link

cost assignments. Fortz and Thorup [FfOO] were the first to formalize the problem of

optimizing link cost assignment for load balancing and proved that the problem is NP­

hard. Fortunately, they also showed that a local search heuristic for finding good link costs

can perform very well in practice. Follow-on work includes computing link costs that work

well across different traffic demand matrices [Ff02].

The main question is, even if a network's load is well balanced initially, will it continue

to behave well when the IGP unilaterally recomputes routes after detecting a failure? In an

experiment based on the Sprint North American backbone network, Nucci et al. [NBTD07]

pointed out that when a single link failure occurs, even an initially well-balanced network

with maximum link load of 68% can become overloaded with maximum link load of 135%.

Interestingly, this overload is not inevitable. If the IGP were coordinated with the link cost

selection mechanism, then the maximum link load after this failure can be kept below 90%

[NBTD07]. Therefore, the coordination between the IGP and load balancing is crucial for

maintaining SLA compliance.

5.2.2 Need for IGP and Traffic Policing Coordination

According to a recent survey of network operators [Arbb], from Aug 2007 to Jul2008, the

largest DDoS attacks reached 40 Gbps, with 27% of the attacks reaching 4 Gbps or more.

Therefore, without the proper policing of such unwanted traffic, even a tier-1 backbone

network could become congested.

The filtering or rate limiting of unwanted traffic is implemented by access control rules

in routers (or equivalently in specialized middleboxes). What complicates matters is that

a router is limited in the number of access control rules it can handle at wireline speed.

Network operators have cited the impact of access control lists on network performance

as the most serious infrastructure shortcoming [Arba]. To get around the performance

79

problem, access control rules often get distributed to internal network links as opposed

to being implemented entirely at traffic ingress links. Maltz et al. [MXZ+04] reported

that more than 70% of the operational networks they analyzed have access control rules

implemented at internal links.

In this environment, unilateral uncoordinated actions by an IGP could lead to severe net­

work congestion because any change to routing could let a large DoS traffic flow bypass the

link where the access control rule is implemented. To quantify the problem caused by this

poor coordination, we conduct experiments on the 79-node Rocketfuel topology [SMW02].

The goal is to quantify the likelihood of a flow bypassing its access control rule as a result

of the unilateral IGP reconvergence after a single link failure. In these experiments, we

only consider flows that have at least 5 hops. The network diameter is 10 hops and the

average path length for all these flows is 5.8 hops. We subject 2645 flows to access control

rules placed N hops from the ingress link, where N varies from 1 to 3.

For 10% of the link failure scenarios, there are more than 90, 156 and 173 flows bypass­

ing access control rules when the rules are placed at the 1st, 2nd, and 3rd hop respectively.

In the worst scenario, there are 373, 666 and 739 flows bypassing access control rules. If

an IGP were able to coordinate its actions with the configuration of access control rules,

permitting new rules to be configured when routing changes, then a DoS flow need not

bypass its access control rule.

5.3 CONTRACT: The Framework

CONTRACT works with link-state IGPs, including OSPF [Moy97] and IS-IS [Cal90]. It

does not modify the IGPs. For simplicity, we will describe CONTRACT in terms of OSPF.

We assume the reader is already familiar with OSPF. The purpose of CONTRACT is to

ensure that both the load balancing and traffic policing objectives are taken into account

during IGP reconvergence. The basic idea of CONTRACT is that, new routing entries

generated by the IGP are installed immediately, but put in the unapproved mode. Traf­

fic routed using these unapproved entries is put in low-priority queues, and tends to be

80

dropped first when there is congestion. At the same time, routers send approval requests to

the CONTRACT controller for evaluation. Furthermore, routers locally adjust their filter

configuration to cope with the routing changes. The controller participates in the link state

routing, so it also receives all LSAs (link state advertisement) flooded in the network. Only

routing entries which do not violate coordination objectives are approved by the controller,

and be brought back to the approved mode (where traffic is routed with a normal priority).

In addition, the controller also recomputes the filter configurations for routers accordingly

and try to balance the load in the network by optimizing the link cost assignment.

5.3.1 IGP and Load Balancing Coordination

CONTRACT assumes that the controller knows the traffic matrix in the network. The traffic

matrix is needed to evaluate routing changes and to optimize the link cost assignment. Next

we give detailed explanations about the notations we use.

Notations and Explanations:

• seqn(ti) denotes the sequence number each router n maintains at time ti. It increases

by 1 when a router's local link state changes. This number is contained in the LSA

flooded by each router. For another router m, once it receives such a LSA, it will

remember that sequence number in its link state database as seq~(ti)· This is the

sequence number of router n from router m's perspective. seq;!(ti) is equivalent to

seqn(ti)· The sequence number serves to uniquely identify each instance of the local

link state of each router in the network.

• xn(ti) denotes the network-wide link state from router n's perspective at time ti.

xn(ti) is the link state database of router n which also contains the seq~(ti) it has

observed from any other router m. If at time ti, all the routers and the controller

reach a consistent state, where Va, b, xa(ti) = xb(ti), we use X(ti) to denote this

consistent network link state.

• (HASH = SecureH ash(xn(ti)), SEQSU M = Em seq~ (ti)) denotes the finger-

81

print of state Xn(ti) in router n. Letting routers send actual routing tables to the con­

troller for evaluation is an unnecessary overhead. In CONTRACT it is more efficient

for the central controller to evaluate the network link state Xn (ti) instead. The finger­

print further compresses and identifies each unique network link state, and presents

an ordering of network link states. The first element is generated by a secure hash

function (e.g. MD5, SHA-1, SHA-2, etc.) which computes on an array buffer that

contains all seq~(ti)· This value uniquely identifies the network link state in router

nat time ti. The value Em seq~(ti) provides a local ordering of network link states.

In any particular node in the network (either a router or the controller), a state with

a smaller Em seq~(ti) is older than a state with a bigger one. This value does not

ensure a global ordering. For a fingerprint fn, we use fn.H ASH to specify these­

cure hash value in that fingerprint, and fn.SEQSU M to specify its sum of sequence

numbers. fingerprint() denotes the function we use to generate the fingerprint of a

network state.

• rt(xn(ti)) stands for the routing table of router n, generated by OSPF based on state

Xn(ti)· RT(X(ti)) denotes all routing tables of all routers in the network, corre­

sponding to a consistent state X(ti)· rt(xn(ti_1), Xn(ti)) stands for the changes in

the routing tables in router n from state Xn(ti_ 1) to Xn(ti)·

• For efficiency, the routing table is modified gradually by insertions and dele­

tions. rtdelete (Xn (ti-l), Xn (ti)) denotes the entries bound for deletion, and

rtinsert(Xn(ti-t), Xn(ti)) denotes new entries that are going to be installed. Updates

can be realized by deletions followed by insertions. For each entry in the routing

table, we remember the fingerprint of the network link state for which it is inserted.

fp(e) denotes such a fingerprint, where e is one entry.

• AprReq(xn(ti)) denotes the approval request sent to the controller by router n via

unicast, for the routing table associated with the new link state Xn (ti). For brevity, we

will loosely refer to this as an approval request for the link state xn(ti)· It contains

For Each Router

On local link state changes or receiving new LSAs at time ti:

Update the local link-state database;

Compute rt(xn(ti-1), Xn(ti));

Locally ..adjusLfilter _configuration(...);

/ffhis function will be expanded in next subsection

Update the router's routing table by rt(xn(ti-1), Xn(ti));

For each e in rtinsert(Xn(ti-1), Xn(ti))

fp(e) = (SecureHash(xn(ti)), Lm seq:;_(ti));

Flag these entries as Unapproved (traffic will have low priority);

Send AprReq(xn(ti)) to the controller;

Figure 5.1 :Local autonomous adaptation algorithm

the router's ID, and the fingerprint (SecureHash(xn(ti)), Em seq~(ti)).

82

• When the controller approves a routing table associated with some link state, the

approval Apr(X (ti)) is reliably flooded hop-by-hop into the network. For brevity, we

will loosely refer to Apr (X (ti)) as an approval for the link state X (ti). The controller

only approves consistent state. The approval message contains the fingerprint of that

state. For brevity we use approving link state to refer to the approval of the routing

table associated with that particular link state.

The Algorithms:

The CONTRACT framework is composed of two algorithms. The first algorithm works

locally at a router and allows it to autonomously adapt to network changes. The second

algorithm coordinates the routers and the controller.

Figure 5.1 shows the specifications of the autonomous adaptation algorithm in routers.

When one LSA is received, OSPF on each router will compute necessary routing entry

changes, update their fingerprint, and put them in the unapproved mode.

Figure 5.2 shows the specifications of the distributed coordination protocol. When a

For Each Router

On receiving Apr(X(ti))

For each entry e in its current routing table

if (fp(e).SEQSU M <= Apr(X (ti)).fingerprint.SEQSU M)

Approve this entry(traffic will be normal priority);

else

Keep it Unapproved;

For The Central Controller

On receiving AprReq(xn(ti))

FingerprintTable[n] = AprReq(xn(ti)).fingerprint;

Check all fingerprints in FingerprintTable to see whether

they are consistent with the controller's own fingerprint;

if (consistent)

Evaluate(X(ti);

if (approved)

Send out Apr(X(ti));

On receiving new LSAs

Update the link-state database;

Generate and send out new optimized link weights if necessary;

Figure 5.2: Distributed coordination protocol for IGP routing

83

router receives an approval, it searches through its routing entries, and approves all entries

with a fingerprint older than or exactly the same as the one in the approval message. This

effectively approves all routing entry changes that have accumulated up to the state spec­

ified in the approval message. When the controller receives one approval request, it first

checks whether all nodes in the network have reported the same fingerprint (which means

they have reached a consistent network link state), and if so it goes ahead and evaluates

that network link state to see whether the changes can be approved. In this case, the con-

84

troller sends out approval messages. When the controller receives new LSAs, it runs an

optimization algorithm to generate better link weights if possible. The optimization algo­

rithm can have different objective functions. As an example, in this chapter it minimizes

the total number of flows that are affected by packet loss. When routers receive the new

link weights, they will generate the corresponding routing changes, and the changes will

be evaluated and approved by the controller.

Router State Invariant:

Because of the time that the controller takes to evaluate a network link state and the

delays in the network, the approval message might take an arbitrary amount of time to

reach every router in the network. However, we show that any router's state does not

become arbitrarily complex but rather it satisfies a simple invariant at all time. Let us

assume that we start with the network state X (t0) in which every routing entry is approved.

Then, before Apr(X(ti)) arrives, a router could already reach state X(ti+k)· Based on

the coordination protocol, Apr(X(ti)) will only approve the routing entries resulting from

states ranging from X (t0) to X (ti). The routing entries that are generated corresponding

to network state from X(ti+1) to X(ti+k) will all remain unapproved. Therefore, a router's

state satisfies at all time the invariant that it always consists of an approved state followed

by zero or more unapproved state changes, no matter how long the approval messages are

delayed. In this case, after Apr(X (ti)) has been applied, the router's state is X (ti) followed

by X(ti+I) ... X(ti+k).

In addition, approval messages may arrive out of order. At time ti+k•

Apr(X(ti+a)), a< k may arrive before Apr(X(ti)). Apr(X(ti+a)) will approve all the en­

tries that are the results of network state fromX(t0) to X(ti+a)· When later on Apr(X(ti))

arrives, it becomes a no-op. As a result, such out-of-order approval message processing is

equivalent to advancing the router's state to X(ti+a) followed by X(ti+a+I) ... X(ti+k)· The

invariant is still preserved.

Discussion:

In order to evaluate a consistent network link state, CONTRACT requires all routers

85

to report that state. If the network link state changes very fast, such a consistency may

not be reached. In this case the controller cannot evaluate and approve any of these states,

so eventually all routing entries will become unapproved and all traffic will receive the

same low priority. This is one limitation of CONTRACT. We will evaluate this effect in

Section 5.4.

CONTRACT can also be applied to networks where equal-cost multipath routing is

used, as long as the ratio with which the traffic is distributed on the equal-cost paths is

known by the controller. In this situation, the controller can still predict the traffic distribu­

tion in the network.

OSPF creates separate routing entries for each unique destination prefix. Then, the

router performs CIDR aggregation on these routing entries and configures the hardware

forwarding table entries. Because unapproved routing entries are treated with low priority,

when doing the CIDR aggregation, only approved entries can be merged with approved

entries, and only unapproved entries can be merged with unapproved entries.

5.3.2 IGP and Traffic Policing Coordination

Filter rules are not only used to block malicious traffic, but also configured for traffic shap­

ing. In general, filter rules for specific traffic flows are configured in the network along the

path where the flows are routed.

When the network link state changes, traffic flows could be rerouted and thus bypass

some filter rules. The controller always tries to adjust filter configurations according to

network link state changes. However, since it takes time for the controller to generate

and send out new filter configurations, there could be transient periods where the filter rule

semantics are not preserved. Therefore, we propose that in addition to coordinating with the

controller, on link state changes, routers should locally adjust their filter rule configurations

based on the locally observed behavior of traffic policing

At each router, for all the traffic flows that go through the router, the router can observe

what filter rules are applied on which traffic flows. This observed traffic flow and filter

86

rule relation defines the local filter semantics at the router. A router seeks to preserve

these semantics when the network state changes. The global filter semantics of the whole

network is the traffic flow and filter rule relation that the controller wants to enforce.

Requirements:

First, because filters can be installed on inbound links, to know which inbound link

some traffic is going to take, a router needs to know the routing state of the entire network.

As a result, a router not only needs to compute the local routing table rt(xn(ti)). but also

needs to compute all-pair shortest path routing state of the entire network, based on its

current link state database. This computation can be efficiently performed using a dynamic

incremental shortest path algorithm. A router only needs to manage the approval state for

its local routing table rt(xn(ti)), hence the algorithms in the previous section can be readily

used. The global routing table is kept separated.

Second, the algorithm requires that the controller always generates exact traffic filters

for an approved network link state. By "exact" we mean that the source and destination

address ranges of the filter generated by the controller should be equal to or smaller than

the address ranges of the traffic that actually travels through the link where the filter is

going to be installed. Exact filters precisely define the filter semantics for one router for

one routing state. If a filter is exact, and the traffic it matches is rerouted to another link

(either inbound or outbound link), when the filter is moved to that new link, it will still

match the same traffic. Therefore, the local filter semantics can be preserved by locally

adjusting filter configurations.

Notations and Explanations:

• filtercurrent(xn(ti)) denotes the filter configuration on router n for a network link

state xn(ti)· It can contain filters both generated by the controller and by the router

locally.

• filter central (n, X (ti)) denotes the filter configuration generated by the controller for

router n for an approved network link state X(ti)· filtercentraz(X(ti)) denotes the

Locally ...adjusLfilter _configuration(new state Xn (tk))

For each filter fin filtercurrent(Xn(ti))

fls = all potential traffic matched by f given Xn (ti);

fls_changed = all potential traffic in fls that do not go through f.link

given Xn(tk);

fls_unchanged = fls - fls_changed;

if (fls_changed !=Empty)

Split f into f ..changed for fls_changed and f _unchanged

for fls_unchanged;

Install f _unchanged on link f.link;

if (f. link is an inbound link)

Install f _changed to the new inbound link(s) offls_changed;

else

Install f ..changed to the new outbound link(s) of fls_changed;

f ..changed.fingerprint = fingerprint(xn(tk));

f _unchanged. fingerprint= fingerprint(xn(tk));

Figure 5.3 : Specification of Locally _adjusLfilter_configuration(...)

87

collection of filter configurations generated for all the routers. Notice that the con­

troller will only generate filter configuration for an approved state.

• For each filter f in a router, we also associate it with a fingerprint, to remember for

which network link state this filter is generated. We use f. fingerprint to denote this

fingerprint.

• f.link stands for the link where filter f is installed. f.toremove is a flag used to

mark the filters that will be removed. By default it is set to false.

The Algorithms:

Figure 5.3 expands the function for locally adjusting the filter configuration that was

mentioned in figure 5.1 in the previous subsection. In this function, on receiving new link

For Each Router

On receiving filter configuration filtercentra!(n, X(ti))

For each filter fin filtercurrent(Xn(tk))

Ilk~ i, tk is the current time

if(fp(f).SEQSUM < fingerprint(X(ti)).SEQSUM)

f.toremove = true;

For each filter fin filtercentra!(n, X(ti))

Install f on link f.link;

/.fingerprint= fingerprint(X(ti));

Remove all filters with f.toremove == true;

Locally..adjusUilter_configuration(xn(tk));

Figure 5.4: Actions to be taken when receiving filter configuration

88

state, each router checks each of the filter entries to see whether the flows that they match

have been rerouted based on the IGP routing changes. If so the router puts a new filter

on the new path (either inbound or outbound). The old entries will be split or removed if

necessary, and the new entries will be marked with the fingerprint of the new link state.

Figure 5.4 specifies the actions to be taken when a router receives filter configuration

from the controller. The router removes any filter entries with a fingerprint older than the

fingerprint of the new filter configuration from the controller, installs the new filters and

locally adjusts them if necessary, using the function shown in figure 5.3.

Router State Invariant:

At the beginning, in the network state X (t 0), every routing entry is approved,

and every filter entry in filtercurrent(X(t0)) is configured by the controller. Before

filtercentraz(X(ti)) and Apr(X(ti)) arrive, the network could already reach state X(ti+k)·

Then, after filtercentraz(X(ti)) and Apr(X(ti)) arrive, all filter entries generated for net­

work state X(ta), a < i will be removed, and filtercentraz(X(ti)) will be installed. Fil­

ter entries locally generated for state X(ti+i),j = 1, 2, ... k are locally adjusted based on

filtercentraz(X(ti)). These update rules preserve the invariant that a router's state always

consists of an approved state followed by zero or more unapproved state changes.

Discussion:

89

Whether local filter configuration adjustments preserve the global filter semantics de­

pends on where the filter is installed with respect to the location of the routing change. If

the routing change happens at a router downstream of the filter rule, then the filter need not

be adjusted, and the global filter semantics are preserved. If the routing change happens at

the router where the filter rule is installed, then by locally adjusting the filter configuration,

the global filter semantics can be preserved. However, if the routing change happens at a

router upstream of the filter rule, then even if the filter configuration is locally adjusted, the

global filter semantics may not be preserved.

As a result, the local action at a router is only a best effort solution, and it does not

always ensure that the global filter semantics are preserved. Nonetheless, new filters are

computed by the controller and sent to routers, so the global filter semantics can be re­

established. However, it takes time for the controller to reach every router, so the local

action at a router helps to reduce the convergence time because it has an immediate effect.

5.3.3 CONTRACT Properties

Consistency Property:

CONTRACT ensures that an approval message conveys an endorsement of the rout­

ing actions corresponding to a consistent network link state which is known to have been

experienced by the controller and all routers in the network. Thus, the resulting approved

routing tables in the network are guaranteed to be consistent with the approved link state.

If routers experience different intermediate connectivity states because they experience

different connectivity update orderings, the inconsistent intermediate approval requests will

never be evaluated by the coordination protocol. Only an eventual set of consistent approval

requests would be evaluated.

Furthermore, since the approval message is reliably flooded, routers in any network

partition must either all get the approval message or none of them gets the message. Thus,

90

in the event of a network partition during the approval process, every network partition is

still internally consistent.

Survivability Property:

Even if the controller fails, or is partitioned from the rest of the network, all the routers

will continue to function autonomously, and thus the survivability of the network is not

affected. Routers continue to adjust autonomously, such as putting new routing configura­

tions in low-priority mode and trying to preserve local filter semantics while the controller

is unavailable. When the controller becomes available again, the CONTRACT coordination

mechanisms resume.

5.3.4 Applications and DAGs Design

Driver
Connectivity LinkWeight Link weights

Driver
Optimization

Approval
Global request FilterC Approval

Driver Objective
ontrol

Driver
Evaluation Filter

configuration

Figure 5.5 : Applications and DAGs for CONTRACT.

Figure 5.5 shows how we design the applications and DAGs in Maestro to realize the

centralized controller for the CONTRACT framework. Whenever there is a new LSA in­

dicating a "Connectivity" change, the "LinkWeightOptimization" application will try to

compute new link weights for the underlying network. This top DAG corresponds to the

part for handling new LSAs in Figure 5.2. Whenever there is a new approval request,

the "GlobalObjectiveEvaluation" application first will check whether the fingerprints of all

routers are consistent with the one of the controller, and then only if they are consistent, this

application will go evaluate this link state, to see whether it should be approved. Upon ap­

proval, the following "FilterControl" application will try to adjust the filter configurations

91

on related routers. This bottom DAG corresponds to the part for handling new approval

requests in Figure 5.2.

Such design is inherently simple and straightforward. This is because the programming

framework of Maestro can already ensure that when there are multiple concurrent events

coming for the same DAG, the executions of the DAG instances will be serialized by Mae­

stro automatically to ensure consistency. Furthermore, the local environment makes sure

that the two applications in the bottom DAG always base their computation on a consistent

set of input views. Thus, the output consistency is also ensured.

5.4 Evaluation

In this section, we evaluate the performance and overhead of CONTRACT.

5.4.1 Methodology

We use Maestro as the central controller for the CONTRACT framework, and an extended

version of the ns-2 simulator to conduct packet level simulations. The ns-2 simulator was

augmented to operate under the CONTRACT framework. The ns-2 routers support com­

munication with the controller, and are configurable. Specifically, the controller can install

link costs and configure filters. Support for CONTRACT control messages was also added.

Since the controller needs to take part in OSPF, it is represented by a router in the ns-2

simulation. We use different Rocketfuel topologies [SMW02] in our evaluation as they

provide us with a wide range of scenarios to test our framework.

For the optimization algorithm we use an approach based on a simplex downhill

search [NM65]. Although the results obtained from this algorithm are hardly optimal,

we can already see noticeable benefits in fulfilling the objective of the controller. With

more sophisticated methods, the performance (both in terms of optimality and computation

time) can be further improved. The link cost optimization is a separate process running in

parallel to the approval evaluation process.

We put 0.05 x n x (n- 1) randomly chosen best effort traffic flows in the network,

92

where n is the number of nodes in the network. CONTRACT will try to protect these best

effort flows from network congestion. At the same time, five malicious flows are set in the

network, with a high flow rate (200% of link capacity), to simulate DoS attacks. We intro­

duce different failures in the network, and we compare the performance of CONTRACT

to an uncoordinated IGP (OSPF), which we call "No Coordination". For fair comparison,

before the failures, we let the controller to generate the same link cost weights and packet

filters for both CONTRACT and No Coordination, so at the beginning the network load is

balanced, and no malicious flow is leaking.

We use two metrics for evaluating performance. The first metric, "Loss-Num", is the

coordination objective of the controller: the number of best effort flows which have packet

loss. For the second metric, we assume there is one SLA which covers all best effort flows.

This SLA guarantees that the end-to-end delay experienced by packets of these flows is

below a threshold. We vary this threshold by multiplying the minimum propagation delay

by a variable factor. As the second metric, "SLA-V", we measure the fraction of best effort

flows which have SLA violations during the experiments.

In addition to evaluating the performance of CONTRACT, we also evaluate its overhead

by varying the size of the network and the frequency of changes to the network.

5.4.2 Environment Variables

Here we list all network environment variables that we vary.

• Failure scenario: we try single link and single node failures in the network.

• Average flow rate: source/destination pairs are randomly chosen in the network, and

best effort flows with different average rates are created between them. This average

flow rate is represented as a percentage of link capacity, and it determines the load

level of the network.

• Variance of flow rates: We generate different distributions of the best effort flow rates

based on the Pareto distribution. We choose the K value to be 1.1, 2, 4, and 10, where

93

K=lO is closer to a uniform distribution, while K=l.l is more uneven.

• Noise level of traffic matrix: in a perfect situation, the controller can know exactly

the traffic matrix of the flows in the network. However this is not always true, so we

introduce Gaussian noise in every non-zero point of the traffic matrix. The standard

deviation (as a percentage of the average flow rate) of the Gaussian noise is called

the "noise level".

• Optimization time budget: if we allow the optimization algorithm to spend more time

balancing the load, it might generate a better link cost assignment that helps reduce

congestion, but it also increases the response time. So we give the optimization

algorithm a bounded time budget and vary it.

• Link state (LS) routing hold down timer: it is common that a link state routing proto­

col has a hold down timer to reduce computation overhead and decrease the number

of updates to the routing table. Such a timer in our simulated LS routing protocol can

also increase the simulation speed. This timer decides the OSPF convergence time.

5.4.3 Performance Evaluation

For the performance evaluation we use the 79 node Rocketfuel topology. Since different

failure scenarios can cause totally different behavior, in this subsection we analyze all pos­

sible failure scenarios we described. We limit the link capacity to 1Mb in order to keep

the simulation time tractable. We choose a set of default parameters for the environment

variables, and vary one variable at a time in each of experiments to show the effect that

variable has on the performance of CONTRACT.

By default we choose 4% of link capacity as the average flow rate, because failures

could cause congestion in the network, while the network is not heavily congested; we

choose K=lO as the variance of flow rate, which is close to a uniform distribution, but

with some variance; we choose a 5% noise level in the traffic matrix, which represents a

relatively small noise level; we choose a 2 second optimization time budget because for

94

most cases it can generate good if not optimal link costs; we choose a 1 second hold down

timer, which is typical in OSPF.

Varying Average Flow Rate:

In this set of experiments we evaluate the effect of different average flow rates on the

performance. We use 1%, 2%, 4%, and 10% of link capacity in four groups of experiments.

Scenario Overall With leaking malicious ftows

Avg Min Max Avg Min Max

CONTRAC'f1% 5.6 0 59 - - -
No Coordination 1% 10.9 0 143 67.2 24 143

CONTRAC'f2% 6.1 0 63 - - -
No Coordination 2% 12.8 0 167 80.9 30 167

CONTRAC'f4% 7.2 0 n - - -
No Coordination 4% 15.4 0 176 92.6 34 176

CONTRAC'f10% 197.8 178 229 - - -
No Coordination 10% 207.9 182 236 219.0 190 236

Table 5.1 : Number of flows with packet loss for varying average flow rate

Table 5.1 shows the results for the Loss-Num metric. In all these experiments, CON­

TRACT shows obvious benefits. Specifically, in CONTRACT there is no malicious flow

that ever bypasses the filters and gets leaked into the.network, while for the No Coordina­

tion case, for some failure scenarios there are leaked malicious flows which cause conges­

tion in the network. When the average flow rate is very high (10% of link capacity), the

network is so congested that CONTRACT cannot do too much to make the situation better,

thus the benefit is reduced.

Figure 5.6 plots the results for the SLA-V metric, for average flow rates of 2% and

10% of link capacity. The line is the average value, while the upper and lower bar are the

max and min values. In the 2% case, CONTRACT not only reduces the average fraction of

violations, but also sharply reduces the maximum fraction of violations, compared to No

Coordination. In the 10% case, even though the benefit of CONTRACT is smaller, it is still

better than No Coordination, especially in reducing the minimum fraction of violations.

95

"' .§
1;J

£ 0.8 >
j
Cl)

0.6 :€
~

"' 0.4 ~
0

!;::;
0 0.2 = 0 ·;:::
0

£ 0
1

CONTRACT,.........____.
, , No coordination ,_ __ ,.. __ ,
I: : : : :

:=-~ttr~;;r~;~;::=+:=:
I t I I I i 1, I I T T ,. ,. ,. ,. !,

-- --- .. .J.J.lJ .. i .. t . .!.l.t..l . ..!. .. i.J..iJ -.lli . .r ·
I I I i i!! IiI I i i! I I

I II I I! iII i !II
I II

1.5 2 2.5 3 3.5 4

0.8
!

... :::::~::J:=:c:!=~----
0.4 ! i ' ' i

l
0.2 ···············-~---··············-i----·-···········•················-.l ; ,_

. ' CONTRACT ~
No coordination ,__,.. _ _,

0 ~--~--~--~--~--~--~
1 4 1.5 2 2.5 3 3.5

SLA delay guarantee (X min prop. delay) SLA delay guarantee (X min prop. delay)

(a) 2% average flow rate (b) 10% average flow rate

Figure 5.6 : Number of SLA violations vs. SLA delay guarantee in terms of multiples of
minimum propagation delay

Varying Variance of Flow Rate:

In this set of experiments, we vary the variance of the flow rate distribution with K=l.l,

2, 4 and 10.

Scenario Overall With leaking malicious Bows

Avg Min Max Avg Min Max

CONTRACf K=l.l 5.0 0 63 - - -
No Coordination K=l.l 8.5 0 110 64.1 13 110

CONTRACf K=2 12.1 0 84 - - -
No Coordination K=2 20.3 0 174 88.8 33 174

CONTRACf K=4 7.2 0 89 - - -
No Coordination K=4 16.7 0 159 96.8 34 159

CONTRACfK=10 7.2 0 77 - - -
No Coordination K=10 15.4 0 176 92.6 34 176

Table 5.2 : Number of flows with packet loss for varying variance of flow rate

Table 5.2 shows the results for the Loss-Num metric. For different variance in the rates

of the traffic flows, CONTRACT always performs better than No Coordination in reducing

the number of flows with packet loss.

96

"' ·! CONTRACf ~---+---<

:9 0.8 >
j
rll

0.6 :€
~

"' 0.4 ~
0

to=
'a 0.2 = 0.2
.g

£ 0
1 1.5 2 2.5 3 3.5 4

o~--~~~~~~--~--~

1 1.5 2 2.5 3 3.5 4

SLA delay guarantee (X min prop. delay) SLA delay guarantee (X min prop. delay)

(a) K=2 (b)K=lO

Figure 5.7 : Number of SLA violations vs. SLA delay guarantee in terms of multiples of
minimum propagation delay

Figure 5.7 plots the SLA-V, for K=2 and K=10. Again, CONTRACT shows obvious

benefits over No Coordination.

Varying Noise Level of Traffic Matrix:

In this set of experiments, we vary the noise level with 5%, 10%, 50%, and 100% of av­

erage flow rate. The initial link costs generated for both CONTRACT and No Coordination

are based on the traffic matrix with no noise.

Scenario Loss-Num SLA-V, x3

Avg Min Max Avg Min Max

CONTRACTS% 7.2 0 77 0.123 0.099 0.394

CONTRACT10% 7.4 0 77 0.111 0.081 0.304

CONTRACT 50% 10.4 0 89 0.112 0.084 0.379

CONTRACT 100% 11.1 0 95 0.108 0.075 0.304

No Coordination 15.4 0 176 0.151 0.099 0.558

Table 5.3 : Number of flows with packet loss for varying noise level in the traffic matrix

Table 5.3 shows the results. Since No Coordination does not optimize link costs for net­

work failures, it is not affected by different noise levels. Also because of limited space, we

97

cannot present the full graphs of the SLA-V results, so we only show the number when the

threshold is 3 x minimum propagation delay. With a higher noise level in the traffic matrix,

the optimization in CONTRACT becomes less effective, and the performance as measured

by Loss-Num is worse. But even with the highest level of noise (100% standard deviation),

the performance of CONTRACT is still better than No Coordination. Examining the re­

sults in terms of SLA-V, it is interesting to see that, although CONTRACT is always better

than No Coordination, there is no obvious correlation between SLA-V and the noise level.

This is because the controller in our experiments optimizes for the Loss-Num metric, and

Loss-Num is not necessarily correlated with SLA-V. A higher Loss-Num could correspond

to a lower SLA-V because SLA-V is computed solely based on the delays experienced by

those packets that are not lost.

Varying Optimization Time Budget:

In this set of experiments, we vary the optimization time budget for CONTRACT. We

use 1, 2, 3, 4, 5, 6, 7, 8 and 16 seconds as the budget values and also present a case where

no optimization is performed.

Scenario Loss-Num SLA·V, x3

Avg Min Max Avg Min Max

CONTRACf no optimization 8.3 0 80 0.119 0.093 0.299

CONTRACf 1 second 8.3 0 80 0.125 0.096 0.346

CONTRACf 2 seconds 7.2 0 77 0.123 0.099 0.394

CONTRACf 3 seconds 7.2 0 73 0.124 0.096 0.394

CONTRACf 4 seconds 7.1 0 72 0.113 0.081 0.304

CONTRACf 5 seconds 7.2 0 71 0.108 0.081 0.281

CONTRACf 6 seconds 7.1 0 72 0.109 0.081 0.290

CONTRACf 7 seconds 7.1 0 72 0.116 0.081 0.296

CONTRACf 8 seconds 7.1 0 69 0.133 0.096 0.331

CONTRACf 16 seconds 7.1 0 69 0.143 0.101 0.328

No Coordination 15.4 0 176 0.151 0.099 0.558

Table 5.4 : Number of flows with packet loss for varying optimization time budget

The optimization time budget variation presents a trade-off. If the value is too small, the

98

algorithm cannot generate a good configuration. If the value is too large, then the network

stays longer in an unoptimized state thus also leading to bad performance. As the results

in Table 5.4 show, a time budget of 5 or 6 seconds leads to good performance in both

Loss-Num and SLA-V.

Varying LS Routing Hold Down Timer:

In this set of experiments, we vary the hold down timer as 0, 0.25, 0.5, 1 and 2 seconds.

Scenario Loss-Num SLA-V, x3

Avg Min Max Avg Min Max

CONTRACT 0 second 3.5 0 42 0.123 0.096 0.316

No Coordination 0 second 8.6 0 156 0.155 0.096 0.549

CONTRACT 0.25 second 3.8 0 44 0.118 0.096 0.313

No Coordination 0.25 second 10.2 0 162 0.138 0.096 0.591

CONTRACT 0.5 second 5.4 0 59 0.121 0.096 0.394

No Coordination 0.5 second 12.9 0 169 0.146 0.096 0.546

CONTRACT 1 second 7.2 0 77 0.123 0.099 0.394

No Coordination 1 second 15.4 0 176 0.151 0.099 0.558

CONTRACT 2 seconds 8.5 0 82 0.123 0.099 0.316

No Coordination 2 seconds 18.9 0 176 0.155 0.096 0.549

Table 5.5 : Number of flows with packet loss for varying hold down timer

Table 5.5 shows the results. With a smaller LS routing hold down timer, the conver­

gence periods for both OSPF routing, and for CONTRACT to finish approving a state, are

shorter so there will be less packet loss in the network, but the routers are more stressed

in computing routing tables. With larger LS routing hold down timer, the situation is the

opposite. CONTRACT is better than No Coordination in all cases.

5.4.4 Overhead Evaluation

Larger Network Topology Size:

In this set of experiments, we evaluate the overhead of CONTRACT by using larger

topologies of 161 and 315 nodes. Because these simulations require more time, we only

99

explore a subset of the possible failure cases. We use the default parameters, except for the

optimization budget. We use an unlimited optimization budget to see how long it takes to

do a full optimization.

In all of these failure cases CONTRACT is better than No Coordination under our two

metrics. For the 161 node topology, on average CONTRACT spends 40 milliseconds in

evaluating one consistent network link state. The convergence time for CONTRACT to

approve one state is on average 1.25 seconds. It is composed of the 1 second LS hold down

timer, the OSPF convergence time, the maximum round trip delay between the control

station and the farthest node, and the 40 milliseconds.

During one experiment the CONTRACT Java code uses on average 320MB of memory.

If we let the optimization algorithm run for an unlimited time, it finishes in 19.8 seconds,

but with a budget of 8 seconds it comes up with a reasonably good solution (the average

number of flows with packet loss is 4 for a 4 second budget, 2 for 8 seconds, and 2 for an

unlimited time budget).

For the 315 node topology, on average CONTRACT spent 173 milliseconds in evaluat­

ing one network link state. The convergence for CONTRACT is on average 1.46 seconds.

The CONTRACT Java code uses on average 620MB of memory. If we let the optimization

algorithm run for an unlimited time, it finishes in 68.4 seconds, but with a budget of 32

seconds, it comes up with a reasonably good solution (the average number of flows with

packet loss is 12 for a 16 second budget, 8 for 32 seconds, and 7 for an unlimited budget).

In addition, for the 79 node topology, on average CONTRACT uses 180MB of memory.

Therefore the memory consumption of CONTRACT approximately grows linearly with the

size of the network (number of nodes and edges).

Higher Network Change Frequency:

We stress CONTRACT by increasing the frequency of changes in the network. We

toggle the status of one link between up and down 10 times and choose different frequency

values for these toggles.

Table 5.6 shows the results ("CON" means CONTRACT, "No" means No Coordina-

100

Toggles frequency Number of Loss-Num SLA-V, x3

(toggles/second) approvals CON No CON No

50 1 11 7 0.146 0.131

10 1 8 5 0.110 0.107

6.6 4 4 4 0.113 0.116

5 10 2 4 0.113 0.116

2.5 10 2 4 0.113 0.119

Table 5.6 : Performance for varying change frequency

tion in this table). In the first two extreme cases where the network link state changes

very quickly, CONTRACT cannot catch up with all the transient network link states, so

there is only one approval at the end of the sequence of toggles. In these two cases the

performance of CONTRACT is worse than No Coordination. The reason is as follows. We

run simulations with a lMbps link bandwidth which is relatively low. When routers are

sending approval requests to the central controller frequently in these two extreme cases,

the approval requests consume a major fraction of the network bandwidth, thus congesting

the network and causing extra packet losses. When we run simulations with a more real­

istic lOMbps link bandwidth, the approval requests no longer congest any network link.

When the frequency is lower, CONTRACT can approve all the transient states, and the

performance is better than No Coordination.

Discussion:

CONTRACT introduces a modest amount of additional overhead on routers which in-

eludes running the all-pair shortest path routing algorithm, computing fingerprints, sending

approval requests, processing approvals, locally adjusting filter configurations, and process­

ing new filter configurations. The computation required by CONTRACT will be performed

by commercial routers in the control plane. Therefore, this will not cause extra delay in

the packet forwarding performed by the separated data plane. Commercial routers also

commonly support priority queuing. This functionality can be used by CONTRACT when

traffic needs to be placed in a low priority queue.

101

The link weight optimization algorithm we use is admittedly simple. More sophisti­

cated algorithms can be applied that perform better optimization or improve the computa­

tion time. However, the delay introduced by our simple link weight optimization algorithm

is not critical in the coordination protocol. The computation is performed in parallel with

the process to evaluate network link state, and the network continues to function even if the

current state is not approved.

Transient failures could cause temporary link weight and routing changes. Any solu­

tion that deals with failure faces an inherent trade-off. If a transient failure is reacted upon

then computation might be unnecessarily performed. On the other hand, prompt action is

required to limit the effect of any failure. CONTRACT also faces the same trade-off. How­

ever, in CONTRACT, the effects caused by a transient failure can be reduced by putting the

temporarily rerouted traffic into a low priority queue.

5.5 Summary

We have used Maestro to realize the CONTRACT framework to incorporate coordination

into the IP network control plane. On one hand, because the Maestro central controller

coordinates with distributed routing protocols, we effectively improve the responsiveness

and robustness of the control plane over a pure centralized solution. On the other hand, we

show that CONTRACT can efficiently and programmatically enforce coordination objec­

tives among distributed IGP, traffic load balancing, and traffic policing functions. Further­

more, CONTRACT provides substantial improvements to network performance and SLA

compliance during network failures, with reasonable overhead. While we acknowledge the

debate on whether more complexity should be added into the network core, we believe that

as more and more critical tasks are performed over the Internet, ensuring predictable per­

formance for some applications needs to be considered as a basic service requirement. The

CONTRACT framework trades the addition of some complexity into the IP control plane

with improving the SLA compliance of the network.

102

Chapter6

Future Work and Conclusion

6.1 Future Work

Our study demonstrates that Maestro is a centralized programming framework which en­

ables composing network control components and synchronizing network state to solve the

complexity problem of network control plane. Maestro solves the scalability problem for

OpenFlow networks, and Maestro addresses the responsiveness and robustness problem

by achieving coordination between distributed routing protocols and centralized controls.

However, we think there are certain domains where we can further investigate along the

path of centralized network control plane.

6.1.1 Scalability in More Complicated Scenarios

Up to now, we have only studied how to solve the scalability problem of OpenFlow con­

trollers by using relatively simple applications, such as "learning switch" or "routing". We

have also only considered the network in steady state where there are no changes or fail­

ures. However in reality, there could be much more complicated application scenarios,

or the network state is changing dynamically. As a result, we plan to investigate more

complicated scenarios in the future.

First of all, one interesting problem to address is how to design data structures for ap­

plications with scalability as the primary objective, especially under dynamic condition

where the network is undergoing changes. For example, how to design better routing tables

and security policy data structures, to support scalable and efficient accesses by concurrent

worker threads. If there are concurrent modifications, accesses should be efficient to mini-

103

mize synchronization overhead, while at the same the correctness must be enforced. When

the network topology is actively changing because of maintenance, migration, or link oscil­

lation, the throughput of the system should not degrade drastically. We think a systematic

evaluation of the system's performance under different failure or changing conditions is

necessary.

Second, fairness in capacity allocation needs to be reconsidered in more complicated

scenarios. Right now we have only considered the learning switch and routing application,

for which every request requires more or less similar amount of system resources (CPU

cycles, memory, etc) to process. As a result, if we give each source a fair chance to be

serviced, the resulting effect is fair allocation of the system's capacity. However, in more

complicated scenarios where each request requires drastically different amount of system

resources, fair system capacity allocation does not directly translate into fair chance in

being serviced. We might need to consider allocating CPU cycles fairly, allocating memory

fairly, or achieve fairness in terms of other system resources.

6.1.2 Resource Aware Routing

Each OpenFlow switch has limited number of flow entries. The number of high perfor­

mance TCAM entries is even much smaller. According to the OpenFlow document, the HP

Procurve5400 OpenFlow switch has about 1500 TCAM entries per line card. Furthermore,

each TCAM entry can only match L3 headers and port numbers, but is not able to match

L2 headers. If a flow rule has all 10-tuple, then only software entries in the DRAM can

be used. In addition, each link has limited bandwidth. Having all these constraints, the

problem is given the dynamic traffic load information, how to design algorithms to achieve

resource aware routing for OpenFlow networks?

There are three basic requirements for addressing this problem: first, traffic hot spot

should be avoided as much as possible, to prevent congestion. Second, TCAM entries

should be utilized efficiently, so that the case where some switches exhaust their TCAM

entries and start using DRAM entries while some other switches have their TCAM entries

104

unused, can be prevented. Third, the resource aware routing algorithm needs to be scalable

for both larger network size, and increasing number of processor cores. Our existing design

principles may be borrowed or adapted to fulfill this requirement.

Furthermore, all these requirements may not be addressed at the same time. The chal­

lenges are how to achieve a balance between these constraints, and how to build corre­

sponding testbed to evaluate different design choices. Distributed OpenFlow switches may

also participate in such resource aware routing, so experience and principles from the CON­

TRACT framework may be adapted to guide the algorithm design. Coordination between

OpenFlow switches and Maestro could not only improve the responsiveness of the network,

but also realize more efficient and effective resource aware routing.

6.1.3 Maestro for Clouds and Data Centers

With the increasing popularity and impact of cloud computing and data centers, server vir­

tualization, network virtualization and resource management have become hot topics which

attract more and more attention. With the advantage of openness and flexibility at flow level

granularity, OpenFlow is a natural fit in building the network virtualization architecture for

clouds and data centers. Using OpenFlow switches and the right programming framework

as controllers, network administrators only need to write their own network virtualization

applications, to achieve their specific virtualization objectives. The advantages of central­

ized network control plane promisingly make it much simpler and more straightforward to

complete such tasks.

In addition to the scalability, responsiveness, and robustness problems, we believe that

there will be new challenging problems to solve in this domain, especially with OpenFlow

switches as the foundation. With the Maestro programming framework, and all the experi­

ence we get from addressing existing problems, we believe that Maestro can be and should

be utilized in network virtualization, to help researchers investigate and address these new

problems. Furthermore, the Maestro programming framework can be generalized as a con­

trol platform not only for network virtualization, but also for managing configuration of

105

physical and virtual servers, for managing computation resource allocation, for manag­

ing job placement, for maintaining failure recovery, etc. With the ability to configure and

manage both servers and network devices, with the interfaces to explicitly manage state

consistency, and with the flexibility to introduce new control functionality, Maestro could

be one ideal platform for conducting research experiments in clouds and data centers. All

the investigation will also help find limitations in Maestro, so that we can further improve

both the design and implementation of Maestro, or even other centralized solutions.

6.2 Conclusion

In this thesis, we argue that the fundamental complexity of modem network control plane

lies in the fact that, different network control components are interacting with each other in

an ad-hoc way. Unavoidable dependencies exist between some of the components and they

may interact accidentally. Furthermore, distributed control functions make it even more

difficult to ensure the consistency of network-wide state. In other words, there is no single

mechanism for systematically governing the interactions between the various components.

To address such a problem, we propose Maestro, which is an "operating system" that

orchestrates the network control components that govern the behavior of a network. Mae­

stro provides interfaces for the modular implementation of network control components

to access and modify state of the network, while at the same time the consistency of net­

work state among different modular components is maintained by Maestro. Maestro is a

platform for achieving automatic and programmatic network control functions using these

modularized applications.

However, because of the centralization nature of Maestro, there are fundamental chal­

lenges. First, the centralized architecture is more difficult to scale up to large network

size or high requests rate. In addition, it is equally important to fairly service requests

and maintain low request-handling latency, while at the same time having highly scalable

throughput. Second, the centralized routing control is neither as responsive nor as robust

to failures as distributed routing protocols. In order to enhance the responsiveness and ro-

106

bustness, one approach is to achieve the coordination between the centralized control plane

and distributed routing protocols.

Trying to address both of the challenges, we systematically study Maestro in two sce­

narios. In the first scenario, we apply Maestro to an OpenFlow network. The fundamental

feature of an OpenFlow network is that the controller is responsible for every flow es­

tablishment by contacting related switches. The performance of the controller could be a

bottleneck, thus it requires the controller to be highly scalable in throughput performance.

In addition to high raw throughput, we argue that fairness in capacity allocation, control­

lable latency introduced by overhead amortization, and scalability on multi-core processes

are equally important fundamental requirements for Maestro. As a result, we investigate

through the design space, trying to study the pros & cons of different designs. Through

experimental evaluations, we show that the Maestro-Round-Robin design can achieve ex­

cellent throughput scalability while maintaining far superior and near optimal max-min

fairness. At the same time, low latency even at high throughput is achieved by Maestro's

workload-adaptive request batching.

In the second scenario, we apply Maestro to realize the CONTRACT framework to

address the responsiveness and robust problem of centralized network control. The CON­

TRACT framework makes it possible to coordinate centralized controls with distributed

routing protocols, to get the best from both worlds. Under this framework, routers con­

tinue to operate autonomously, but they also coordinate their actions with the centralized

Maestro, which evaluates the impact of local routing changes, decides whether the changes

have safe global effect, and performs load re-balancing and/or packet filter reconfiguration

as necessary. The key contribution of CONTRACT is a set of coordination algorithms.

Through experimental evaluations, we show that CONTRACT can effectively coordinate

the actions of routing, load balancing and traffic policing to improve the responsiveness

and robustness of a pure centralized solution, while at the same time it can improve the

SLA compliance of a pure distributed solution.

[ABC04]

[AC03]

[AC06]

107

Bibliography

D. Applegate, L. Breslau, and E. Cohen. Coping with network failures: Rout­

ing strategies for optimal demand oblivious restoration. In Proceedings of the

joint international conference on Measurement and modeling of computer

systems, pages 270-281. ACM New York, NY, USA, 2004.

D. Applegate and E. Cohen. Making intra-domain routing robust to chang­

ing and uncertain traffic demands: understanding fundamental tradeoffs. In

Proceedings of the 2003 conference on Applications, technologies, architec­

tures, and protocols for computer communications, pages 313-324. ACM

New York, NY, USA, 2003.

D. Applegate and E. Cohen. Making routing robust to changing traffic de­

mands: Algorithms and evaluation. IEEE/ACM Transactions on Networking

(TON), 14(6):1206, 2006.

[ACF+04] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. R

"acke. Optimal oblivious routing in polynomial time. Journal of Computer

and System Sciences, 69(3):383-394, 2004.

[AFRR+to] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Red­

era: Dynamic flow scheduling for data center networks. In USENIX NSDI,

2010.

[Arba] Arbor Networks Inc. Worldwide Infrastructure Security Report, Volume

III. http: I /www. arbornetworks. com/index.php?option=

com_docman&task=doc_download&gid=218.

[Arbb]

108

Arbor Networks Inc. Worldwide Infrastructure Security Report, Vol-

ume IV. http://www.arbornetworks.com/en/docman/

worldwide-infrastructure-security-report-volume-iv-2008-/

download. html.

[BAM10] Theophilus Benson, Aditya Akella, and David A. Maltz. Network Traffic

Characteristics of Data Centers in the Wild. In IMC, November 2010.

[bea] The Beacon OpenFlow controller. http: I /www.openflowhub.org/

display/Beacon/Beacon+Home.

[Bel99]

[BRAlO]

[Cai09]

[Cal90]

S.M. Bellovin. Distributed Firewalls. Journal of Login, 24(5):37-39, 1999.

J.R. Ballard, I. Rae, and A. Akella. Extensible and Scalable Network Moni­

toring Using OpenSAFE. apr 2010.

Zheng Cai. Design and implementation of the maestro network control plat­

form. Master's thesis, Rice University, Houston Texas, 2009.

R. Callon. RFC 1195 - Use of OS/ IS-IS for routing in TCPRP and dual

environments, 1990.

[CCF+05] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman

Shaikh, and Jacobus van der Merwe. Design and implementation of a Routing

Control Platform. In Proc. NSDI, May 2005.

[CCNlO] Zheng Cai, Alan L. Cox, and T. S. Eugene Ng. Maestro: A system for scal­

able openflow control. Technical Report 10-11, Rice University, December

2010.

[CFP+07] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McK­

eown, and Scott Shenker. Ethane: taking control of the enterprise. In SIG­

COMM '07: Proceedings of the 2007 conference on Applications, technolo-

109

gies, architectures, and protocols for computer communications, pages 1-12,

New York, NY, USA, 2007. ACM.

[CGA +o6] Martin Casado, Tal Garfinkel, Aditya Akella, Michael Freedman, Dan Boneh,

Nick McKeown, and Scott Shenker. SANE: A protection architecture for

enterprise networks. In Usenix Security, August 2006.

[Cha92] D.B. Chapman. Network (In) Security Through IP Packet Filtering. In Pro­

ceedings of the Third UNIX Security Symposium. September, 1992.

[DAI+10] Mihai Dobrescu, Katerina Argyraki, Gianluca Iannaccone, Maziar Manesh,

and Sylvia Ratnasamy. Controlling parallelism in a multicore software router.

In Proceedings of the Workshop on Programmable Routers for Extensible

Services of Tomorrow, PRESTO '10, pages 2:1-2:6, New York, NY, USA,

2010.ACM.

[DEA +o9] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung gon Chun, Kevin

Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Rat­

nasamy. Routebricks: Exploiting parallelism to scale software routers. In In

Proceedings of the 22nd ACM Symposium on Operating Systems Principles,

2009.

[FNK+1Q] N. Feamster, A. Nayak, H. Kim, R. Clark, Y. Mundada, A. Ramachandran,

and M. bin Tariq. Decoupling Policy from Configuration in Campus and

Enterprise Networks. 2010.

[FTOO]

[FT02]

Bernard Fortz and Mikkel Thorup. Internet traffic engineering by optimizing

ospf weights. In Proc. IEEE INFOCOM, March 2000.

B. Fortz and M. Thorup. Optimizing OSPFIIS-IS weights in a changing

world. Selected Areas in Communications, IEEE Journal on, 20(4):756-767,

2002.

110

[GGM+lQ] Hemant Gogineni, Albert Greenberg, David A. Maltz, T. S. Eugene Ng, Hong

Yan, and Hui Zhang. Mms: An autonomic network-layer foundation for net­

work management. IEEE JSAC Special Issue on Recent Advances in Auto­

nomic Communications, 28(1), January 2010.

[GHM+05] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer

Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A clean slate

4D approach to network control and management. ACM Computer Commu­

nication Review, October 2005.

[GJS76] M. R. Garey, D. S. Johnson, and Ravi Sethi. The complexity of flowshop and

jobshop scheduling. Mathematics of Operations Research, 1(2):117-129,

1976.

[GKP+08] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martn Casado, Nick

McKeown, and Scott Shenker. Nox: Towards an operating system for net­

works. ACM Computer Communication Review, July 2008. Short technical

Notes.

[HKK09] S.W. Han, N. Kim, and J.W. Kim. Designing a virtualized testbed for dy­

namic multimedia service composition. In Proceedings of the 4th Interna­

tional Conference on Future Internet Technologies, pages 1-4. ACM, 2009.

[ICM+02] G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot. Analy­

sis of link failures in an IP backbone. In Proceedings of the 2nd ACM SIG­

COMM Workshop on Internet measunnent, pages 237-242. ACM New York,

NY, USA, 2002.

[KCG+lQ] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, R. Ramanathan

M. Zhu, Y. Iwata, H. Inoue, T. Hama,, and S. Shenker. Onix: A distributed

control platform for large-scale production networks. In Proc. Operating

Systems Design and Implementation, pages 351-364, October 2010.

111

[MAB+09] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry

Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow:

enabling innovation in campus networks. ACM Computer Communication

Review, 38:69-74, April2009.

[mae] Maestro platform. http://code.google.com/p/

maestro-platform/.

[MNG+07] David A. Maltz, T. S. Eugene Ng, Hemant Gogineni, Hong Yan, Hui Zhang,

and Zheng Cai. Meta-management system for geni. GENI Design Document

06-37, Backbone Working Group, April 2007.

[Moy97] J. Moy. RFC 2178- OSPF Version 2, 1997.

[MTS+02] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. Traf­

fic matrix estimation: Existing techniques compared and new directions. In

Proc. ACM SIGCOMM, August 2002.

[MXZ+04] D. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and A. Greenberg.

Routing design in operational networks: A look from the inside. In Proc.

ACM SIGCOMM, August 2004.

[NBTD07] A. Nucci, S. Bhattacharyya, N. Taft, and C. Diot. IGP link weight assignment

for operational Tier-1 backbones. IEEEIACM Transactions on Networking

(TON), 15(4):789-802, 2007.

[NM65] J .A. Neider and R. Mead. A simplex method for function minimization. Com­

puter Journal, 7:308-313, 1965.

[NMPF+09] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad­

hakrishnan, V. Subramanya, and A. Vahdat. PortLand: a scalable fault­

tolerant layer 2 data center network fabric. ACM SIGCOMM Computer Com­

munication Review, 39(4):39-50, 2009.

112

[NRFC09] A.K. Nayak, A. Reimers, N. Feamster, and R. Clark. Resonance: dynamic

access control for enterprise networks. In Proceedings of the 1st ACM work­

shop on Research on enterprise networking, pages 11-18. ACM, 2009.

[NSF] NSF CISE. The GENI initiative. http : I lwww. nsf . gov I cisel

genii.

[NSM+09] J. Naous, R. Stutsman, D. Mazieres, N. McKeown, and N. Zeldovich. Del­

egating network security with more information. In Proceedings of the 1st

ACM workshop on Research on enterprise networking, pages 19-26. ACM,

2009.

[Scc+10] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Handigol,

T.Y. Huang, P. Kazemian, M. Kobayashi, J. Naous, et al. Carving research

slices out of your production networks with OpenFlow. ACM SIGCOMM

Computer Communication Review, 40(1):129-130, 2010.

[SG05] Aman Shaikh and Albert Greenberg. Operations and management of IP net­

works: What researchers should know, August 2005. ACM SIGCOMM Tu­

torial.

[SMW02] Neil Spring, Ratul Mahajan, and David Wetheral. Measuring ISP topologies

with RocketFuel. In Proc. ACM SIGCOMM, August 2002.

[TCKS09] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Applying NOX to the

Datacenter. In Eighth ACM Workshop on Hot Topics in Networks (HotNets­

VIII), 2009.

[Tel02]

[TG10]

T. Telkamp. Traffic Characteristics and Network Planning. In Proc. Internet

Statistics and Metrics Analysis Workshop, 2002.

Amin Tootoonchian and Yashar Ganjali. Hyperflow: A distributed control

plane for openfl.ow. In INMIWREN, 2010.

[TGG10]

[TR06]

- -- ------~-----------~

113

A. Tootoonchian, M. Ghobadi, and Y. Ganjali. OpenTM: Traffic Matrix Es­

timator for OpenFlow Networks. In Passive and Active Measurement, pages

201-210. Springer, 2010.

Renata Teixeira and Jennifer Rexford. Managing routing disruptions in inter­

net service provider netwo rks. IEEE Communications Magazine, Mar 2006.

[WCB01] Matt Welsh, David Culler, and Eric Brewer. Seda: An architecture for well­

conditioned, scalable internet services. In Proceedings of the Eighteenth Sym­

posium on Operating Systems Principles (SOSP-18), October 2001.

[YKU+09] K.K. Yap, M. Kobayashi, D. Underhill, S. Seetharaman, P. Kazemian, and

N. McKeown. The stanford openroads deployment. In Proceedings of the

4th ACM international workshop on Experimental evaluation and character­

ization, pages 59-66. ACM, 2009.

[YMN+07] Hong Yan, David A. Maltz, T. S. Eugene Ng, Hemant Gogineni, Hui Zhang,

and Zheng Cai. Tesseract: A 4D network control plane. In Proc. NSDI, April

2007.

[YRFWlO] M. Yu, J. Rexford, M.J. Freedman, and J. Wang. Scalable flow-based net­

working with DIFANE. In Proc. ACM SIGCOMM, August 2010.

[ZRDG03] Yin Zhang, Matthew Roughan, Nick Duffield, and Albert Greenberg. Fast,

accurate computation of large-scale IP traffic matrices from link loads. In

Proc. ACM SIGMETRICS, June 2003.

