

Separating Smartphone advertising from applications

Shashi Shekhar

Abstract

A wide variety of smartphone applications today rely on third-party advertising services,

which provide libraries that are linked into the hosting application. This situation is un-

desirable for both the application author and the advertiser. Advertising libraries require

additional permissions, resulting in additional permission requests to users. Likewise, a

malicious application could simulate the behavior of the advertising library, forging the

user’s interaction and effectively stealing money from the advertiser.

This thesis describes AdSplit, where we extended Android to allow an application and its

advertising to run as separate processes, under separate user-ids, eliminating the need for

applications to request permissions on behalf of their advertising libraries. We also lever-

age mechanisms from QUIRE to allow the remote server to validate the authenticity of

client-side behavior. In this thesis, we quantify the degree of permission bloat caused by

advertising, with a study of thousands of downloaded apps. AdSplit automatically recom-

piles apps to extract their ad services, and we measure minimal runtime overhead. We

also observe that most ad libraries just embed an HTML widget within and describe how

AdSplit can be designed with this in mind to avoid any need for ads to have native code.

Contents

Abstract ii

List of Illustrations vi

1 Introduction 1

2 Mobile Advertisements 4
2.1 Ad libraries analysis . 5

2.1.1 How many ad libraries? . 5

2.2 Permissions required . 6

2.3 Permission bloat . 7

2.3.1 Results . 7

3 Design and Implementation 9
3.1 Advertisement security on the web . 9

3.2 Design objectives . 10

3.3 Android Background . 11

3.3.1 Activities in Android . 11

3.3.2 View . 11

3.3.3 Activity stack . 11

3.4 Advertisement system overview . 12

3.5 Advertisement pairing . 14

3.6 Process separation . 15

3.7 Permission separation . 18

3.8 Advertisement lifecycle management . 18

3.9 Enabling screen sharing . 19

3.9.1 AdView . 20

3.9.2 Stacking advertisement and app 20

3.9.3 Layout information . 22

3.10 Handling user input . 23

3.11 Authenticated user input . 23

4 Evaluation 26
4.1 Effect on UI responsiveness . 26

4.2 Memory and CPU overhead . 27

5 Advertisement separation 30
5.1 Separation for legacy apps . 30

5.2 Deployment challenges . 32

6 Alternative design 34
6.1 HTML Ads . 34

6.1.1 WebView for ads . 35

6.1.2 Specification . 35

6.1.3 Handling user input . 36

6.1.4 Open issues . 37

6.2 Implementation . 37

6.2.1 Performance . 37

7 Mobile advertisements: policy enforcement 38
7.1 Policy enforcement . 38

7.1.1 Advertisement blocking . 38

7.1.2 Permissions and privacy . 40

8 Related Work 41
8.1 Mobile Ads . 41

8.2 Web security . 42

8.3 JavaScript sandboxes . 42

8.4 Advertisement privacy . 42

8.5 Smart phone platform security . 43

8.5.1 Privilege escalation . 43

8.5.2 Dynamic taint analysis on Android 44

9 Future Work 46

Bibliography 48

Illustrations

2.1 Number of apps with ad libraries installed. 5

2.2 Distribution of types of permissions reduced when advertisements are

separated from applications. 8

3.1 Block diagram of advertisement system showing communication between

components. 13

3.2 Screen sharing between host and advertisement apps. 14

3.3 Changes to the activity launch mechanism to start advertisement process. . 17

3.4 Activity launch and window creation without advertisement activity. 21

3.5 Activity launch and window creation with advertisement activity. 22

3.6 Motion event delivery to the advertisement activity. 24

4.1 Layout query time vs view depth of host activity (average of 10K runs). . . 29

5.1 Automated separation of advertisement libraries from their host applications. 31

6.1 Block diagram of advertisement system with HTML ads. 36

1

Chapter 1

Introduction

In the recent years smartphones have become increasing popular. This popularity is partly

due their ease of use and partly due to versatile and innovative functionality that can be

supported by modern smartphones. A modern smartphone not only supports high speed

access to the Internet but also has significant processing power. Further smartphones pro-

vide some unique hardware input devices like GPS, accelerometer, cameras, microphones

which provide access to local information about user environment. The access to Internet

combined with the access to local information allows smartphones to support new types of

applications, which can intelligently utilize the local context to customize user experience

and provide innovative functionality.

A large part of functionality of smartphones is implemented through different appli-

cations(”apps”) developed by third party developers. Whether on the iPhone or Android

platforms, apps often come in two flavors: a free version, with embedded advertising, and

a pay version without. Both models have been successful in the marketplace. To pick one

example, the popular Angry Birds game at one point brought in roughly equal revenue from

paid downloads on Apple iOS devices and from advertising-supported free downloads on

Android devices [1]. They now offer advertising-supported free downloads on both plat-

forms.

We cannot predict whether free or paid apps will dominate in the years to come, but

advertising-supported applications will certainly remain prominent. Already, a cottage in-

dustry of companies offer advertising services for smartphone application developers.

Today, these services are simply pre-compiled code libraries, linked and shipped to-

gether with the application. This means that a remote advertising server has no way to

2

validate a request it receives from a user legitimately clicking on an advertisement. A ma-

licious application could easily forge these messages, generating revenue for its developer

while hiding the advertisement displays in their entirety. To create a clear trust boundary,

advertisers would benefit from running separately from their host applications.

In Android, applications must request permission at install time for any sensitive priv-

ileges they wish to exercise [2]. Such privileges include access to the Internet, access to

coarse or fine location information, or even access to see what other apps are installed on

the phone. Advertisers want this information to better profile users and thus target ads at

them; in return, advertisers may pay more money to the developers of hosting applications.

Consequently, many applications which require no particular permissions, by themselves,

suffer permission bloat—being forced to request the privileges required by their advertising

libraries in addition to any of their own needed privileges. Since users might be scared away

by detailed permission requests, application developers would also benefit if ads could be

hosted in separate applications, which might then make their own privilege requests.

Besides reducing permission bloat, separating applications from their advertisements

creates better fault isolation. If the ad system fails or runs slowly, the host application

should be able to carry on without inconveniencing the user. Addressing these needs re-

quires developing a suitable software architecture, with OS assistance to make it robust.

Most of the security problems related to mobile advertisements arise due to mixing of

two distinct security domains, this intermingling of security domains is a known problem

on the web, where mashups originating from different websites are common. There has

been several proposed solutions for alleviating security problems related to mashups on

web, like separating various browser components in separate processes [3, 4], constructing

browser-based multi-principal operating systems [5, 6]. Many of these proposed mech-

anisms can be adapted to be used in smartphones and can serve as an inspiration for the

design of a secure mobile ad system.

One common mechanism by which web pages isolate advertisements from their content

is by placing ads in an iframe [7]. The content hosted in an iframe is isolated from the host-

3

ing webpage and browsers allow only specific cross frame interactions [8, 9]. For mobile

advertisements there is no primitive like an iframe to provide isolation. Engineering some-

thing like a full fledged iframe for mobile ads will be quite complex since the iframe itself

is a powerful primitive and even allows recursive embedding. In fact due to complexity of

embedding and cross frame interactions between iframe and hosting application there has

been quite a few attacks directed to exploit embedded iframes [10, 11, 12]. While having a

full fledged isolation primitive like iframe may be nice, the goal of this thesis is to engineer

a low complexity isolation mechanism specifically for mobile ads.

The contribution of this thesis are as follows:

• Apps and mobile advertisement analysis: We survey a large number of actual appli-

cations and advertisement libraries used by them. We study the the specific permis-

sions used by advertisements and empirically estimate the extent of permission-bloat

problem.

• Design of advertisement system: We engineer a mechanism to separate advertise-

ments from their hosting applications. This essentially allows applications and ad-

vertisements to run in separate application domains. We address the unique design

and implementation challenges involved in enabling such a separation in an efficient

manner.

• Applying separation to existing ad libraries: We show how our mechanism can be

used by existing advertisement libraries and present a design and implementation of

an automated system to separate advertisements.

• Alternative design for mobile ads: We propose an alternative advertisement frame-

work that allows mobile advertisements to have a more web-like architecture, obvi-

ating the need for native code libraries.

• Policy control of ads: Lastly, we discuss how advertisement separation enables policy

based control on mobile advertisements.

4

Chapter 2

Mobile Advertisements

The smartphone applications often come in two flavors: a free version, with embedded ad-

vertising, and a pay version without. Both models have been successful in the marketplace.

To pick one example, the popular Angry Birds game at one point brought in roughly equal

revenue from paid downloads on Apple iOS devices and from advertising-supported free

downloads on Android devices [1]. They now offer advertising-supported free downloads

on both platforms.

The need to monetize freely distributed smartphone applications has given rise to many

different ad provider networks and libraries. The companies competing for business in

the mobile ad world range from established web ad providers like Google’s AdMob to a

variety of dedicated smartphone advertising firms. Many of these advertisement providers

use personalized advertisements and serve targeted ads to improve the effectivness of their

advertising. For serving targeted advertisments these ad libraries access private information

and thus may require extra permissions to run. For example, many ad libraries request the

location permission to serve geolocation based ads, any application that includes these ad

libraries must also request the location permission even when application does not need it.

In order to maximize revenue many app developers include multiple ad libraries in their

apps. Additionally, with so many different options for serving mobile ads there is a new

trend of advertisement aggregators that allow an application developer to include multiple

ad libraries with their app and have the aggregator choose which ads to display in order to

maximize profits for the developer. Inclusion of multiple ad libraries only exacerbates the

permission bloat since the application must request the super set of all permissions needed

by the included ad libraries.

5

0 1 2 3 4 5 6 7 8
Number of ad libraries installed.

100

101

102

103

104

Nu
m

be
r o

f a
pp

s.
4433

3253

979
489

173

75

16
9

5

Figure 2.1 : Number of apps with ad libraries installed.

2.1 Ad libraries analysis

While we’re not particularly interested in advertising market share, we want to understand

how these ad libraries behave. What permissions do they require? And how many apps

would be operating with fewer permissions, if only their advertisement systems didn’t re-

quire them? To address these questions, we downloaded approximately 10,000 free apps

from the Android Market and the Amazon App Store and built tools to analyze them.

2.1.1 How many ad libraries?

Fig 2.1 shows the distribution of number of advertisement libraries used by apps in our

sample. From the distribution it is clear that many app developers choose to include mul-

tiple ad libraries in their application in order to maximize profits. Of the apps that use

advertisements, about 35% include two or more advertising libraries.

6

2.2 Permissions required

Ad Library In
te

rn
et

N
et

w
or

k
St

at
e

R
ea

d
Ph

on
e

St
at

e

W
ri

te
E

xt
er

na
lS

to
ra

ge

C
oa

rs
e

L
oc

at
io

n

C
al

lP
ho

ne

AdMob [13] X X ◦

Greystripe [14] X X X

Millennial

Media [15]

X X X X

InMobi [16] X ◦ ◦ ◦

MobClix [17] X ◦ X

TapJoy [18] X X X X

JumpTap [19] X X X ◦

X(required), ◦ (optional)

Table 2.1 : Different advertising libraries require different permissions.

We found that some ad libraries need more permissions than those mentioned in the

documentation, also the set of permissions may change with the version of the ad library.

Table 2.1 shows some of the required and optional permission sets for a number of popular

Android ad libraries. The permissions listed as optional are not required to use the ad

library but may be requested in order to improve the quality of advertisements; for example,

some ad libraries will use location information to customize ads. A developer using such a

library has the choice of including location-targeted ads or not. Presumably, better targeted

ads will bring greater revenue to the application developer.

7

2.3 Permission bloat

In Android, an application requests a set of permissions at the time it’s installed. Those

permissions must suffice for all of the app’s needs and for the needs of its advertising

library. We decided to measure how many of the permissions requested are used exclusively

by the advertising library (i.e., if the advertising library were removed, the permission

would be unnecessary).

This analysis required decompiling our apps into dex format [20] using the android-

apktool [21]. For each app, we then extracted a list of all API calls made. Since advertising

libraries have package names that are easy to distinguish, it’s straightforward to separate

their API calls from the main application. To map the list of API calls to the necessary

permissions, we use the data gathered by Felt et. al [2]. This allows us to compute the

minimal set of permissions required by an application, with and without its advertisement

libraries. We then compare this against the formal list of permissions that each app requests

from the system.

There may be cases where an app speculatively attempts to use an API call that requires

a permission that was never granted, or there may be dead code that exercises a permission,

but will never actually run. Our analysis will err on the side of believing that an application

requires a permission that, in fact, it never uses. This means that our estimates of permission

bloat are strictly a lower bound on the actual volume of permissions that are requested only

to support the needs of the advertising libraries.

2.3.1 Results

Our results, shown in Fig. 2.2 are quite striking. 15% of apps requesting Internet permis-

sions are doing it for the sole benefit of their advertising libraries. 26% of apps requesting

coarse location permissions are doing it for the sole benefit of their advertising libraries.

47% of apps requesting permission to get a list of the tasks running on the phone (the ad

libraries use this to check if the application hosting the advertisement is in foreground) are

doing it for the sole benefit of their advertising libraries. About 6.3% apps of the total

8

INTERNET

ACCESS_NETWORK_STATE

ACCESS_COARSE_LOCATION

READ_PHONE_STATE

GET_TASKS

ACCESS_FINE_LOCATION
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Nu

m
be

r o
f a

pp
s.

7925

4366

1976

3056

560

1722

6710

3369

1460

2726

297

1598

Total requested
Total used

Figure 2.2 : Distribution of types of permissions reduced when advertisements are sepa-
rated from applications.

9430 apps can run without any permissions once advertisements are removed.These results

suggest that any architecture that separates advertisements from applications will be able

to significantly reduce permission bloat.

9

Chapter 3

Design and Implementation

Advertisement services have been around since the very beginnings of the web. Conse-

quently, these services have adapted to use a wide variety of technologies that should be

able to influence our AdSplit design.

3.1 Advertisement security on the web

Fundamentally, a web page with a third-party advertisement falls under the rubric of a

mashup, where multiple web servers are involved in the presentation of a single web page.

Many web pages isolate advertisements from content by placing ads in an iframe [7].

The content hosted in an iframe is isolated from the hosting webpage and browsers allow

only specific cross frame interactions [8, 9], protecting the advertisement against intrusions

from the host page. Another valuable property of the iframe is that it allows an external

web server to distinguish requests coming from the advertisement from requests that might

be otherwise forged. Standard web security mechanisms assist with this; browsers enforce

the same origin policy, restricting the host web page from making arbitrary connections

to the advertiser. Defenses against cross site request forgery, like the Origin header [22],

further aid advertisers in detecting fraudulent clicks.

Adapting these ideas to a smartphone requires significant design changes. Most notably,

it’s common for Android applications to request the privilege to make arbitrary Internet

connections. There is nothing equivalent to the same origin policy, and consequently no

way for a remote server to have sufficient context, from any given click request it receives,

to determine whether that click is legitimate or fraudulent. This requires AdSplit to include

several new mechanisms.

10

3.2 Design objectives

The first and most prominent design decision of AdSplit is to separate a host application

from its advertisements. This separation has a number of ramifications:

Specification for advertisements. Currently the ad libraries are compiled and linked with

their corresponding host application. If advertisements are separate, then the host

activities must contain the description of of which advertisements to use. We intro-

duced a method by which the host activity can specify the particular ad libraries to

be used.

Permission separation. AdSplit allows advertisements and host applications to have dis-

tinct and independent permission sets.

Process separation. AdSplit advertisements run in separate processes, isolated from the

host application.

Lifecycle management. Advertisements only need to run when the host application is run-

ning, otherwise they can be safely killed; similiarly once the host application starts

running, the associated advertisement process must also start running. Our system

manages the lifecycle of advertisements.

Screen sharing. Advertisements are displayed inside host activity, so if advertisements are

separated there should be a way to share screen real estate between advertisements

and host application. AdSplit includes a mechanism for sharing screen real estate.

Authenticated user input. Advertisements generate revenue for their host applications;

this revenue is typically dependent on the amount of user interaction with the adver-

tisement. The host application can try to forge user input and generate fraudulent

revenue, hence the advertisements should have a way to determine that any input

events received from host application are genuine. AdSplit includes a method by

which advertising applications can validate user input, validate that they are being

11

displayed on-screen, and pass that verification, in an unforgeable fashion, to their

remote server.

The addition of all the above mechanisms effectively make Android advertisement

aware. Before describing our implementation we discuss the relevant Android background

in the next section.

3.3 Android Background

3.3.1 Activities in Android

In Android an activity is the primary mechanism for user interaction. An activity is a

single, focused thing which a user can do. Each activity has associated UI window which

is displayed to the user. When a user starts an application it typically launches an activity

which is displayed to the user.

3.3.2 View

A view is the basic block of user interface. A view itself is a rectangular area on the screen

which can have event handling code associated with it. Each activity window contains a

hierarchy of views and view containers. When a window is drawn to screen, each of the

individual visible views in the window are also drawn.

Every view has its associated layout information like height, width associated with it.

The layout information is used for drawing the view, also for locating the target of a user

input when user touches the screen.

3.3.3 Activity stack

Activities in Android are maintained on a stack. The purpose of keeping activities in a stack

is to facilitate switching between activities as well as allowing user to return to previous

activity by pressing the back button.

12

This switching between activities as well as other related functions to activity lifecycle

are performed by the ActivityManager service.

When an activity is started the ActivityManager creates appropriate data structures for

the activity, schedules the creation of process for activity and puts activity related infor-

mation on a stack. After the activity is started ActivityManager schedules the activity

to become visible by putting the activity in a visibility queue. The window and display

associated with an activity is performed by another system component called the Window-

Manager. The WindowManager maintains the z-order list of windows, these windows

have associations with activities. The ActivityManager informs the WindowManager about

changes to activity configuration and performs appropriate calls for changing the z-order

of application windows.

Since we want to factor out the advertising code into a separate process / activity, this

will require a variety of changes to the activity management to ensure that the user experi-

ence is unchanged (for details about changes see section 3.6).

3.4 Advertisement system overview

An app using AdSplit will require the collaboration of three major components: the host

activity, the advertisement activity, and the advertisement service. The host activity is

the app that the user wants to run, whether a game, a utility, or whatever else. It then

“hosts” the advertisement activity, which displays the advertisement. There is a one-to-one

mapping between host activity and advertisement activity instances. The Unix processes

behind these activities have distinct user-ids and distinct permissions granted to them. To

coordinate these two activities, we have a central advertisement service. The ad service is

responsible for delivering UI events to the ad activity. It also verifies that the ad activity

is being properly displayed and that the UI clicks aren’t forged. Figure 3.1 shows the

interaction between different components of the ad system.

AdSplit builds on QUIRE [23], which prototyped a feature shown in Fig. 3.2, allowing

the host and advertisement activities to share the screen together. First the window for

13

Host
Activity

Ad Activity
Instance

Ad Service

Figure 3.1 : Block diagram of advertisement system showing communication between
components.

14

Ad

Buy! Cool! Stuff!

Sample App

(transparent, so ad is visible)

Figure 3.2 : Screen sharing between host and advertisement apps.

advertisement activity is layered just below the host activity window. The host activity

window contains transparent regions where advertisement will be displayed. The adver-

tisement activity has advertisements present at places such that they are visible through

the transparent regions for the host activity. This effectively seems like advertisements are

visible through holes in the host activity window. More concrete details about the above

mechanism can be found in section 3.9.

3.5 Advertisement pairing

In AdSplit, we wish to take existing Android applications and separate out their advertising

to follow the model described above. We first must explain the variety of different ways in

which an existing application might arrange for an advertisement to be displayed. We will

use Google’s AdMob system as a running example. Other advertisement systems behave

similarly, at least with respect to displaying banner ads. (For simplicity of discussion, we

ignore full-screen interstitial ads.)

With current Android applications, if a developer wants to include an advertisement

15

from AdMob in an activity of her application, she imports the AdMob library, and then

either declares an AdMob.AdView in the XML layout, or she generates an instance of Ad-

Mob.AdView and inserts it in directly into the view hierarchy. This works without issue

since all AdMob classes are loaded alongside the hosting application; they are separated

only by having different package names.

Once we separate advertisements from applications, neither of these techniques will

work, since the code isn’t there any more. We first need a new mechanism. Later, in

Section 5.1, we will describe how AdSplit does this transformation automatically.

We added a new element AppFrame to activity description in the application mani-

fest(AndroidManifest.xml). The added element specifies the class and package names of

the advertisement activity and the advertisement service. We made changes to package

management and parsing mechanisms of Android for storing this information as part of ac-

tivity metadata maintained by Android. This information about advertisement activities is

used by the ActivityManager service, to manage the lifecycle of advertisements and setup

correct communication links between different advertisement components.

For illustrating how advertisements are specified in AdSplit, lets use the familiar exam-

ple of AdMob and how AdMob ads using AdSplit will be specified. In case of AdSplit,

the developer declares an AppFrame element specifying the advertisment activity which

contains AdMob, say AdMobSeparatedActivity and corresponding AdMobService. These

activity and service are installed separately from application. Now at the time of activ-

ity launch the associated advertisement activity is queried and an instance AdMobSepa-

ratedActivity is launched, this activity also gets information about the host activity and

associated service and can configure itself and setup connection with the AdMobService.

3.6 Process separation

For enabling isolation the advertisement activity should run in a different process. One

complication which arises from this is that advertising libraries like AdMob were engi-

neered to have one copy running in each process. If we create a single, global instance

16

of any given advertising library, it won’t have been engineered to maintain the state of the

many original applications which hosted it.

For example, suppose app A is a productivity app and app B is a gaming app. Both A

and B include the same advertisement library say AdMob. AdMob will display different

kind of ads for A which will be relevant for a productivity app and different type of ads

for B more relevant for a gaming app [24]. Moreover the developer of A may select only

a few categories of ads to be displayed in her applications. This means even though both

A and B share the same ad library, the ad library displays different set of ads for both of

them. Further a user can switch between A and B thus if there is only a single activity for

AdMob, the activity will have to switch the set of advertisements and even save the state of

some of these advertisements.

A cleaner way to support this scenario is by having separate activities running AdMob

for both A and B. Hence when activity A is launched a new process for AdMob-A is created

and when activity B is launched another process AdMob-B running advertisements for B

is created. Now both A and B can run concurrently and when window for activity A is

displayed, the window for advertisement activity AdMob-A will be below it and when user

switches to B, window for AdMob-B will be placed below. This ensures that there is no

unintentional sharing between advertisements of A and B, moreover this approach does not

require any changes to be made to the AdMob library.

Consequently, our advertisement service must manage distinct advertisement applica-

tions for each host application. If ten different applications include AdMob, then there

need to be ten different AdMob user-ids in the system, mapping one-to-one with the host

applications. The advertisement service is then responsible for ensuring that the proper

host application speaks to the proper advertising application.

This is sufficient to ensure that the existing advertising libraries can run without requir-

ing modifications. One complication concerns Android’s mechanism for sharing processes

across related activities. When a new activity is launched and there is already a process

associated with the user-id of the application, Android will launch the new activity in the

17

Figure 3.3 : Changes to the activity launch mechanism to start advertisement process.

same process as the old one [25]. If there is already an instance of an activity running, for

example, then Android will just resume the activity and bring its activity window to the

front of the stack. This is normally a feature, ensuring that there is only a single process at

a time for any given application. However, for AdSplit, we need to ensure that advertising

apps map one-to-one with hosting apps and we must ensure that their activity windows stay

“glued” to their hosts’ activities. Consequently, we changed the default Android behavior

such that advertisement activities are differentiated based not only by user-id, but also by

the host activity. AdSplit thus required modest changes in how activities are launched and

resumed as well as how windows are managed.

In order to have separate instance of advertisement activity per host activity, we changed

the activity launch and resume mechanism, the new launch mechanism summarized in fig

3.3 associates (host activity, advertisement activity) tuples for the advertisement processes.

18

The process id associated with the advertisement activity is unique per (host,ad) tuple. So

in our previous example of A and B activities. The new process for AdMob-A will be

associated with tuple (A, AdMob) so when B is launched, the ActivityManager tries to

lookup process associated with (B, AdMob) to launch AdMob-B since this tuple may not be

present when a new process is created. Thus both AdMob-A and AdMob-B can coexist.

3.7 Permission separation

With Android’s install-time permission system, an application requests every permission it

needs at the time of its installation. As we described in Section 2.3.1, advertising libraries

cause significant bloat in the permission requests made by their hosting applications. Our

AdSplit architecture allows the advertisements to run as separate Android users with their

own isolated permissions. Host applications no longer need to request permissions on

behalf of their advertisement libraries.

We note that AdSplit makes no attempt to block a host application from explicitly del-

egating permissions to its advertisements. For example, the host application might ob-

tain fine-grained location permissions (i.e., GPS coordinates with meter-level accuracy)

and pass these coordinates to an advertising library which lacks any location permissions.

Plenty of other Android extensions, including TaindDroid [26] and Paranoid Android [27],

offer information-flow mechanisms that might be able to forbid this sort of thing if it was

considered undesirable. We believe these techniques are complementary to our own, but

we note that if we cannot create a hospitable environment for advertisers, they will have

no incentive to run in an environment like AdSplit. We discuss this and other policy issues

further in chapter 7.

3.8 Advertisement lifecycle management

Mobile advertisements currently are embedded in the application, so they do not require

any explicit lifecycle management. When the host activity containing advertisements starts,

19

the advertisements which are simply a view in activity also start. Similiary when the host

pauses or stops, advertisements also stop running.

Once advertisements are running in separate processes, explicit lifecycle management

is needed. If a host activity starts running, the advertisement activity should also start,

similiarly if a host activity stops, advertisement activity must also stop. In case of AdSplit

this lifecycle management is relatively straightforward since the information for pairing

between host activity and advertisement activity is available. Thus when an activity starts

(or stops) ActivityManager checks for any advertisements are associated with the activity

and starts (or stops) these advertisements.

3.9 Enabling screen sharing

As discussed in 3.5 to insert an advertisement the developer inserts an instance of the ad-

vertisement view in the view hierarchy of the hosting activity. For example if activity A

is using AdMob, the developer inserts instances of AdMob.AdView at places where adver-

tisements need to be visible. These advertisement views then display advertisements.

When advertisements are separate we need a different mechanism to enable sharing of

screen. This sharing of screen real estate is similiar to problem which occurs in browsers

where iframe are used for hosting content from separate domains. Many many widely used

browsers however do not use different processes for iframes [28]. For iframes Gazelle [6]

builds operating system principals that assign ownership of screen area, and this ownership

is transferred to the iframe process through a call to the browser kernel. The browser

kernel essentially mantains information about display areas and provides a syscall by which

different principals can pass bitmaps for drawing.

Our goal is similiar to Gazelle but instead of changing ownership of display, we share

the screen through creating transparent regions for advertisements (through alpha blend-

ing). In order to enable sharing of screen between advertisement activity and host activity

we introduced the mechanism by which the area for advertisement will become transpar-

ent and the advertisement activity will be visible through the transparent region. This is

20

illustrated in Figure 3.2. For generating the transparent region, we introduced a new type

of view AdView. This view instead of drawing itself makes itself transparent. Further to

enable the advertisement to be visible through the transparent region we stack the window

of advertisement activity below the host activity. Thus if the developer of activity A needs

to insert an instance of AdMob advertisement then instead of adding inserting an instance

of AdMob.AdView she needs to insert an instance of AdView. This view will be transparent

and the advertisement will be visible from the advertisement activity below it.

3.9.1 AdView

AdView is a special type of view which:

• is transparent.

• setups connection with the advertisement service.

• forwards any received input events to the advertisement service.

AdView thus creates the necessary holes in the host activity and forwards any received

input events to the advertisement service. The advertisement service validates these events

and dispatches them to the advertisement activity. The next section describes how the

stacking of the advertisement and the host activity is implemented.

3.9.2 Stacking advertisement and app

In order for advertisement activity to be visible through the transparent region it should be

placed just below the host activity (see Fig. 3.2). For doing that we need to change the

WindowManager and ActivityManager to enable stacking of host and ad activities. Figure

3.4 shows the launch of an activity and its window creation. Figure 3.5 shows the modi-

fied launch process. In order to enable this stacking we keep track of host activity, when

the host activity position is changed in the ActivityManager activity stack we modify the

position of advertisement activity such that it is just below the host activity window. For

21

Activity Manager

a

User/App

Window Manager

a

Activity
Window

Window2

Window3

Activity2

Activity3

Wallpaper

New Activity

Start new activity

Add window

Figure 3.4 : Activity launch and window creation without advertisement activity.

example if activity A has the associated advertisement activity as AdMob-A then when

A is launched, the ActivityManager checks for advertisement, it then creates a process for

AdMob-A, further when the window for A is to be placed at the top, ActivityManager ar-

ranges the z-order of windows in WindowManager in such a way that AdMob-A window is

just below A window. Now if user navigates to wallpaper activity (using the home button),

the ActivityManager then removes both A and AdMob-A from the WindowManager list of

windows. If the user relaunches the A activity the corresponding AdMob-A activity is also

resumed and windows are stacked in similiar manner. If A finishes, then ActivityManager

also cleans up AdMob-A and removes the entries of advertisement activity from activity

stack and run processes data structures.

22

Activity Manager

a

User/App

Window Manager

a

Ad Window

Window2

Window3

Activity2

Activity3

Wallpaper

Ad Activity

Start new activity

Add window
Activity
Window

New Activity

Figure 3.5 : Activity launch and window creation with advertisement activity.

3.9.3 Layout information

In order to display advertisements such that they are visible through AdView in the host

activity, the advertisement service needs to know the layout of the hosting activity. The

advertisement service can then use this information to setup advertisements at the location

of AdView in the host activity. We modified Android to allow advertisement service to

query the specific layout information from the host activity. (Layout information contains

the size, position, type and visibility of views in the view hierarchy.) Our current imple-

mentation generates the representation by traversal of the host view hierarchy starting from

the topmost view and generates a JSON like representation of the layout hierarchy.

The layout information queried from host is parsed by the advertisement service and

23

is used to generate appropriate layout for advertisement activity. For generating the layout

the advertisement service first determines the size and position of AdViews and places the

advertisement views at places where the transparent regions are present.

3.10 Handling user input

While the AdView solves the display sharing problem, it also needs to communicate the

user input to the advertisement service to allow the user to interact with the advertisement.

In order to do so when an activity is started the AdView sets up a connection with the ad-

vertisement service. The AdView implements the event handling onTouchEvent, onKeyUp,

onKeyDown methods, these methods are called by the event system when there is a touch or

key event is destined for the AdView. The event handling code in AdView simply forwards

the input events to the advertisement service over the service connection setup during the

initialization phase. The advertisement service is then responsible for verifying the input

event and forwarding it to appropriate advertisement activity instance.

3.11 Authenticated user input

AdSplit leverages mechanisms from QUIRE [23] to detect counterfeit events, thus defeating

the opportunity for an Android host application to perform a click fraud attack against its

advertisers. While a variety of strategies are used to defeat click fraud on the web (see, e.g.,

Juels et al. [29]), we need distinct mechanisms for AdSplit, since a smartphone is a very

different environment from a web browser.

QUIRE uses an system built around HMAC-SHA1 where every process has a shared key

with a system service. This allows any process to cheaply compute a “signed statement”

and send it anywhere else in the system. The ultimate recipient can then ask the system

service to verify the statement. QUIRE uses this on user-generated click events, before they

are passed to the host activity. The host activity can then delegate a click or any other

UI event, passing it to the advertising activity which will then validate it without being

24

Input
Event

System

Host
Activity

Quire
Authority
Manager

Ad
Activity

Add
HMAC

signature

Verify
HMAC

Figure 3.6 : Motion event delivery to the advertisement activity.

required to trust the host activity. The performance overhead is minimal.

QUIRE has support for making these signed statements meaningful to remote network

services. Unlike the web, where we might trust a browser to speak truthfully about the

context of an event (see Section 3.1), any app might potentially send any message to any

network service. Instead, QUIRE provides a system service that can validate one of these

messages, re-sign it using traditional public-key cryptography, and send it to a remote ser-

vice over the network.

QUIRE’s event delivery mechanism is summarized in Fig. 3.6. The touch event is first

signed by the input system and delivered to the host activity. The stub in the host activity

then forwards the touch event to advertisement service which verifies the touch event and

forwards it to the advertisement activity instance. This could then be passed to another

system service (not shown) which would resign and transmit the message as described

above.

25

Despite QUIRE’s security mechanisms, there are still several ways the host might at-

tempt to defraud the advertiser. First, a host application might save old click events with

valid signatures, potentially replaying them onto an advertisement. We thus include times-

tamps for advertisements to validate message freshness. Second, host may send genuine

click events but move the AdView, we prevent this kind of tampering by allowing advertise-

ment service to query layout information about the host activity. Third, a host application

might attempt to hide the advertising. Android already includes mechanism for an activity

to sort out its visibility to the screen [30] (touch events may include a flag that indicates

the window is obscured); our advertising service uses these to ensure that the ad was being

displayed at the time the click occurred.

It’s also conceivable that the host application could simply drop input events rather

than passing them to the advertising application. This is not a concern because the host

application has no incentive to do this. The host only makes money from clicks that go

through, not from clicks that are denied. (Advertising generally works on two different

business models: payment per impression and payment per click. In our AdSplit efforts,

we’re focused on per-click payments, but the same QUIRE authenticated RPC mechanisms

could be used in per-impression systems, with the advertisement service making remotely

verifiable statements about the state of the screen.)

26

Chapter 4

Evaluation

In order to evaluate the performance overhead of our system we performed our experiments

on a standard Android developer phone, the Nexus One, which has a 1GHz ARM core

(a Qualcomm QSD 8250), 512MB of RAM, and 512MB of internal Flash storage. We

conducted our experiments with the phone displaying the home screen and running the

normal set of applications that spawn at start up. We replaced the default “live wallpaper”

with a static image to eliminate its background CPU load. All of our benchmarks are

measured using the Android Open Source Project’s (AOSP) Android 2.3 (“Gingerbread”)

plus the relevant portions of QUIRE, as discussed earlier.

Our performance analysis focuses on the effect of AdSplit on user interface responsive-

ness as well as the extra CPU and memory overhead.

4.1 Effect on UI responsiveness

We performed benchmarking to determine the overhead of AdSplit on touch event through-

put. By default Android has a 60 event per second hard coded limit; for our experiments

we removed this limit. Table 4.1 shows the event throughput in terms of number of touch

events per second. (The overhead added by our system is due to passing touch events from

the host activity to the advertisement activity. There is also additional overhead due to the

additional traversal of the view hierarchy in the advertisement activity.) We can see the

our system can still support about 183 events per second which is well above the default

limit of 60. Furthermore, the Nexus One is much slower than current-generation Android

hardware. CPU overhead, even in this extreme case, appears to be a non-issue.

27

Stock Android AdSplit Ratio

229.96 183.12 0.796

Table 4.1 : Comparison of click throughput (Events/sec), averaged over 1 million events.

4.2 Memory and CPU overhead

Measuring memory overhead on Android is complicated since Android optimizes mem-

ory usage by sharing read-only data for common libraries. Consequently, if an activity

has several copies of a UI widget, the effective overhead of adding a new instance of the

same widget is low. Every advertisement library that we examined displays advertisements

by embedding a WebView. A WebView is an instance of web browser. When the host

activity already has a WebView instance, a fairly common practice, and it includes an ad-

vertisement, then most of the code for the advertisement WebView will be shared, yielding

a relatively low additional overhead for the advertisement. (In our experiments we found

out that multiple WebViews in the same activity will share their cookies, which means that

an advertisement can steal cookies from any other WebViews in the activity.)

Consequently, in order to determine the actual memory overhead of separating adver-

tisements from their host applications, we need to differentiate between the cases when host

activities contain an instance of WebView and when they don’t. We did our measurements

by running the AdMob library, both inside the application and in a separate advertisement

activity. To measure memory overhead we used procrank [31], which tells us the propor-

tional set size (Pss) and unique set size (Uss). Pss is the amount of memory shared with

other processes, divided equally among the processes who share it. Uss is the amount

of memory used uniquely by the one process. Table 4.2 lists our results for the memory

measurements.

In interpreting our results we are primarily concerned with the sum of Pss and Uss.

From the table, we see that starting with a simply activity without any WebView (due to

AdMob or its own), consumes about 3.9 MB. This increases to about 9 MB if the activity

28

Activity setup Memory Overhead (MB)

Host Activity Ad Activity

Pss Uss Pss Uss

Without Ad or WebView 2.46 1.44 - -

Only WebView 5.52 3.30 - -

Only AdMob 9.67 6.58 - -

WebView and AdMob 9.82 6.73 - -

AdMob with AdSplit 2.46 1.56 9.55 6.56

WebView and AdMob with AdSplit 5.15 3.35 9.29 6.58

Table 4.2 : Memory overhead for host and advertisement activities with different system
configurations.

has a WebView. Having AdMob loaded and displaying an advertisement takes about 16.3

MB of memory. When an activity has both WebView and AdMob, the total memory used is

only about 16.5 MB, demonstrating the efficiency of Android’s memory sharing.

With AdMob in a separate process, we expect to pay additional costs for Android to

manage two separate activities, two separate processes, and so forth. The total memory

cost in this configuration, with AdMob running in AdSplit and no other WebView, is about

20.2MB, roughly a 4 MB increase relative to AdMob running locally. Furthermore, when a

separate WebView is running in the host activity, there is no longer an opportunity to share

the cost of that WebView. The total memory use in this scenario is 24.4MB, or roughly an 8

MB increase relative to hosting AdMob locally. We expect we would see similar overheads

with other advertising libraries.

The CPU overhead is same as the overhead of additional Dalvik virtual machine on

Android, in fact since the advertisement activities run in background they run with lower

priority and can be safely killed without any issues.

As briefly discussed in Section 3.11 we allow advertisement service to query layout

29

1 2 3 4
Depth of AdView in layout.

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

tim
e(

m
s)

4.18

5.24

6.51

7.64

Figure 4.1 : Layout query time vs view depth of host activity (average of 10K runs).

information (type, position and transparency of views) about host activity to prevent UI

rearrangement attacks. In order to evaluate the overhead of layout information queries we

experimented with different view configurations for host activities and varied the depth of

AdView in the view hierarchy. Fig. 4.1 shows how the query overhead varies with view

depth. The additional depth seems to add about constant (1ms) overhead, which is non-

trivial, but we expect these queries to only run once per click.

In summary, while AdSplit does introduce a marginal amount of additional memory and

CPU cost, these will have negligible impact in practice.

30

Chapter 5

Advertisement separation

5.1 Separation for legacy apps

The amount of permissions requested by mobile apps and lack of information about how

they are used has been a cause of concern (see, e.g., the U.S. government’s Federal Trade

Commision study of privacy disclosures for children’s smartphone apps [32]). To some

extent, the potential for information leakage is driven by advertisement permission bloat,

so separating out the ad systems and treating them distinctly is a valuable goal.

As we showed in Section 2.3.1, a significant number of current apps with embedded

advertising libraries would immediately benefit from AdSplit, reducing the permission bloat

necessary to host embedded ads. This section describes a proof-of-concept implementation

that can automatically rewrite an Android application to use AdSplit. Something like this

could be deployed in an app store or even directly on the smartphone itself.

31

co
m

.
ex

am
pl

e.
ap

p

A
nd

ro
id

M
an

ife
st

.x
m

l

co
m

/e
xa

m
pl

e/
ap

p

co
m

/a
dm

ob
/a

nd
ro

id

co
m

/a
dm

ob
/a

nd
ro

id

D
ec

om
pi

le

A
dM

ob
 s

tu
b

lib
ra

ry

A
nd

ro
id

M
an

ife
st

.x
m

l

M
od

ifi
ed

m

an
ife

st

co
m

/e
xa

m
pl

e/
ap

p

co
m

/a
dm

ob
/a

nd
ro

id

co
m

.
ex

am
pl

e.
ap

p
C

om
pi

le

M
an

ife
st

pr

oc
es

so
r

Fi
gu

re
5.

1
:A

ut
om

at
ed

se
pa

ra
tio

n
of

ad
ve

rt
is

em
en

tl
ib

ra
ri

es
fr

om
th

ei
rh

os
ta

pp
lic

at
io

ns
.

32

Figure 5.1 sketches the rewriting process. First the application is decompiled using

android-apktool, converting dex bytecode into smali files. (Smali is to dex bytecode what

assembly language is to binary machine code; smali is the human-readable version.) Be-

cause smali files are organized into directories based on their package names, it’s trivial

to distinguish the advertisement libraries from their hosting applications. All we have to

do is delete the advertisement code and drop in a stub library, supporting the same API,

which calls out to the AdSplit advertisement service. We also analyze the permissions

required without the advertisement present (see Section 2.3.1) and remove permission re-

quests which are no longer necessary, and edit the manifest appropriately.

For our proof of concept, we decided to focus our attention on AdMob. Our techniques

would easily generalize to support other advertising libraries, if desired. (Although we

believe we have a better solution, described next in Section 6.1.)

Our stub library was straightforward to implement. We manually implemented a hand-

ful of public methods from the AdMob library, whereafter we constructed a standard An-

droid IPC message to send to the AdSplit advertising service. It worked.

While it would be tempting to use automated tools to translate an entire API in one

go, any commercial implementation would require significant testing and, inevitably, there

would be corner cases where the automated tool didn’t quite do the right thing. Instead,

since there are a fairly small number of advertising vendors, we imagine that each one

would best be supported by hand-written code, perhaps even supplied directly by the vendor

in collaboration with an app store.

5.2 Deployment challenges

Unfortunately, there are a number of significant problems that would stand in the way of

an automated rewriting architecture becoming the preferred method of deploying AdSplit.

Ad installation. When advertisements exist as distinct applications in the Android

ecosystem, they will need to be installed somehow. We’re hesitant to give the host ap-

33

plication the necessary privileges to install a third-party advertising application. Perhaps

an application could declare that it had a dependency on a third-party app, and the main in-

staller could hide this complexity from the user, in much the same way that common Linux

package installers will follow dependencies as part of the installation process for any given

target.

Ad permissions. Even if we can get the ad libraries installed, we have the challenge

of understanding what permissions to grant them. Particularly when many advertising li-

braries know how to make optional use of a permission, such as measuring the smartphone’s

location if it’s allowed, how should we decide if the advertisement application has those

permissions? Must we install multiple instances of the advertising application based on the

different subsets of permissions that it might be granted by the host application? Alterna-

tively, should we go with a one-size-fits-all policy akin to the web’s same-origin-policy?

What’s the proper “origin” for an application that was installed from an app store? Unfor-

tunately, there is no good solution here, particularly not without generating complex user

interfaces to manage these security policies.

Similarly, what should we do about permissions that many users will find to be sensitive,

such as learning their fine-grained location, their phone number, or their address book?

Again, the obvious solutions involve creating dialog boxes and/or system settings that users

must interact with, which few user will understand, and which advertisers and application

authors will all hate.

Ad unloading. Like any Android application, an advertisement application must be pre-

pared to be killed at any time—a consequence of Android’s resource management system.

This could have some destabilizing consequences if the hosting application is trying to

communicate with its advertisement and the ad is killed. Also, what happens if a user

wants to uninstall an advertising application? Should that be forbidden unless every host

application which uses it is also uninstalled?

34

Chapter 6

Alternative design

While struggling with the shortcomings outlined in Section 5.2 with the installation and

permissions of advertising applications, we hit upon an alternative approach that uses the

same AdSplit architecture. The solution is to expand on something that advertising libraries

are already doing: HTML.

6.1 HTML Ads

If a customer want to purchase advertising on smartphones, they probably want to specify

their advertisements the same way they do for the web: as plain text, images, or perhaps

as a “rich” ad using JavaScript. Needless to say, a wide variety of tools are available to

create and manage such ads, and mobile advertising providers want to make it easy for ads

to appear on any platform (iPhone, Android, etc.) without requiring heroic effort from their

customer.

Consequently, all of the advertising libraries we examined simply include a WebView

within themselves. All of the native Android code is really nothing more than a wrapper

around a WebView. Based on this insight, we suggest that AdSplit will be easiest to deploy

by providing a single advertising application, build into the Android core distribution, that

satisfies the typical needs of Android advertising vendors.

Installation becomes a non-issue, since the only advertiser-provided content in the sys-

tem is HTML, JavaScript, and/or images. We still use the rest of the AdSplit architecture,

running the WebView with a separate user-id, in a separate process and activity, ensuring

that a malicious application cannot tamper with the advertisements it hosts. We still have

the AdSplit advertisement service, leveraging QUIRE, to validate user events before passing

35

them onto the WebView. We only need to extend the WebView’s outbound HTTP trans-

actions to include QUIRE RPC signatures, allowing the remote advertising server to have

confidence in the provenance of its advertising clicks.

Security permissions are more straightforward. The same-origin-policy, standard across

all the web, applies perfectly to HTML AdSplit. Since the Android WebView is built on

the same Webkit browser as the standalone “Browser” application, it has the same security

machinery to enforce the same-origin-policy. Thus permissions are granted to an origin

rather than the native code ad library. Further the user can optionally revoke the permission

at run time.

6.1.1 WebView for ads

Keeping all this in mind we prototyped a new form of WebView specifically targetted for

HTML ads : the AdWebView. The AdWebView is a way to host HTML ads in a constrained

manner. We introduced two advertisement specific permissions which can be controlled by

the user. These permissions control whether ads can make internet connections or use

HTML5 geoLocation api.

Figure 6.1 shows the communication between different components with ads hosted in

the AdWebView.

When an ad inside AdWebView requests to load a url or performs call to HTML5

geolocation api, the AdWebView performs a permission check to verify if the associated

advertisement origin has the needed advertisement permission. These advertisement per-

missions can be managed by the user.

The AdWebView is by itself hosted in Ad Activity which has internet and location

permissions. This activity simply serves as the container for the AdWebViews.

6.1.2 Specification

For specification our prototype needs two pieces of information.

• The initial URL for the advertisement to load: initURL.

36

Ad
activity

a

Ad
Service

QUIRE

 Network
Provider

Ad WebView

Figure 6.1 : Block diagram of advertisement system with HTML ads.

• An event handler URL for sending authenticated RPC when user interaction hap-

pens: onUserInteraction.

These two properties are specified by developer when she inserts the AdWebView in

the view hierarchy.

6.1.3 Handling user input

The AdWebView on initialization requests to load the initURL, before making a network

request there is a permission check to ensure that origin for initURL actually has internet

permission. If the permission check is successful then the advertisement is fetched and

loaded.

When a user interacts with the advertisement, the AdWebView receives an event, it for-

wards the even type information, along with relevant details(the coordinates, duration etc)

to the onUserInteraction URL. This outgoing request contains an X-Quire-Event header

37

which contains the serialized call chain of the event. Thus a remote server can verify the

call chain to validate if user interaction is legitimate.

6.1.4 Open issues

About the only open policy question is whether we should allow AdSplit HTML advertise-

ments to maintain long-term tracking cookies or whether we should disable any persistent

state. Certainly, persistent cookies are a standard practice for web advertising, so they seem

like a reasonable feature to support here a well. AdWebView, by default, doesn’t support

persistent cookies, but it would be trivial to add.

6.2 Implementation

We built an advertising application that embeds AdWebView widget, as discussed above.

The host application in this case specifies the URL of the advertisement server to be loaded

in the AdWebView at initialization. We were successfully in downloading and running

advertisements from our sample advertisement server.

6.2.1 Performance

Memory and performance overheads are indistinguishable from our AdMob experiments.

Both versions host a WebView in a separate process, and it’s the same HTML/JavaScript

content running inside the WebView.

38

Chapter 7

Mobile advertisements: policy enforcement

7.1 Policy enforcement

While AdSplit allows for and incentivizes applications to run distinct from their advertise-

ments, there are a variety of policy and user experience issues that we must still address.

7.1.1 Advertisement blocking

Once advertisements run as distinct processes, some fraction of the Android users will see

this as an opportunity to block advertisements for good. Certainly, with web browsers,

extension like AdBlock and AdBlock Plus are incredibly popular. The Chrome web store

lists these two extensions in its top six1 with “over a million” installs of each. (Google

doesn’t disclose exact numbers.)

The Firefox add-ons page offers more details, claiming that AdBlock Plus is far and

away the most popular Firefox extension, having been installed just over 14 million times,

versus 7 million for the next most popular extension2. The Mozilla Foundation estimates

that 85% of their users have installed an extension [33]. Many will install an ad blocker.

To pick one example, Ars Technica, a web site popular with tech-savvy users, estimated

that about 40% of its users ran ad blockers [34]. At point, it added code to display blank

pages to these users in an attempt to cajole them into either paying for ad-free “premium”

service, or at least configuring their ad blocker to “white list” the Ars Technica website.

Strategies such as this are perilous. Some users, faced with a broken web site, will

1https://chrome.google.com/webstore/category/popular

2https://addons.mozilla.org/en-US/firefox/extensions/?sort=users

39

simply stop visiting it rather than trying to sort out why it’s broken. Of course, many web

sites instead employ a variety of technical tricks to get around ad blockers, ensuring their

ads will still be displayed.

Given what’s happening on the web, it’s reasonable to expect a similar fraction of smart-

phone users might want an ad blocker if it was available, with the concomitant arms race

in ad block versus ad display technologies.

So long as users have not “rooted” their phones, a variety of core Android services

can be relied upon by host applications to ensure that the ads they’re trying to host are

being properly displayed with the appropriate advertisement content. Similarly, advertising

applications (or HTML ads) can make SSL connections to their remote servers, and even

embed the proper remote server’s public key certificate, to ensure they are downloading

data from the proper source, rather than empty images from a transparent proxy.

Once a user has rooted their phone, of course, all bets are off. While it’s hard to measure

the total number of rooted Android phones, the CyanogenMod Android distribution, which

requires a rooted phone for installation, is installed on roughly 722 thousand phones3—

a tiny fraction of the hundreds of millions of Android phones reported to be in circula-

tion [35]. Given the relatively small market share where such hacks might be possible,

advertisers might be willing to cede this fraction of the market rather than do battle against

it.

Consequently, for the bulk of the smartphone marketplace, advertising apps on An-

droid phones offer greater potential for blocking-detection and blocking-resistance than

advertising on the web, regardless of whether they are served by in-process libraries or

by AdSplit. Given all the other benefits of AdSplit, we believe advertisers and application

vendors would prefer AdSplit over the status quo.

3http://stats.cyanogenmod.com/

40

7.1.2 Permissions and privacy

Some advertisers would appear to love their ability to learn additional data about the user,

including location information, address book, other apps running on the phone, and so

forth. This information can help profile a user, which can help target ads. Targeted ads,

in turn, are worth more money to the advertiser and thus worth more money to the host-

ing application. When we offer HTML style advertisements, with HTML-like security

restrictions, the elegance of the solution seems to go against the higher value profiling that

advertisers desire.

Leaving aside whether it’s legal for advertisers to collect this information, we have

suggested that a host application could make its own requests that violate the users’ privacy

and pass these into the AdSplit advertising app. We hope that, if we can successfully

reduce apps’ default requests for privileges that they don’t really need, then users will be

less accustomed to seeing such permission requests. When they do occur, users will push

back, refusing to install the app. (Reading through the user-authored comments in the

Android Market, many apps with seemingly excessive permission requirements will often

have scathing comments from users, along with technical justifications posted by the app

authors to explain why each permission is necessary.)

Furthermore, if advertisers ultimately prefer the AdSplit architecture, perhaps due to

its improved resistance to click fraud and so forth, then they will be forced to make the

trade-off between whether they prefer improved integrity of their advertising platform, or

whether they instead want less integrity but more privacy-violating user details.

41

Chapter 8

Related Work

8.1 Mobile Ads

There has been some recent (concurrent) work which analyses mobile advertisements and

myriad of security and privacy problems associated with them. Grace et al. [36] performed

static analysis of 100 thousand Android apps and found advertisement libraries upload-

ing sensitive information to remote ad servers. They also found that some advertisement

libraries were fetching and dynamically executing code from remote ad servers. With Ad-

Split advertisement libraries run in separate processes from host applications and have lim-

ited permissions thus AdSplit prevents opportunities of stealing sensitive information as

well as executing code in host application domain. AdDroid [37] proposes separation of

advertisements similar to section 6.1 by introducing a system service for advertisements.

AdDroid does not run advertisement code in separate processes instead allows advertise-

ments to be only requested by the advertisement service. AdDroid thus does not mitigate

the host application from generating fraudulent revenue but is designed to enhance privacy

of host applications. Pathak et.al [38] analysed the energy spent in popular mobile apps

and found that 65%-75% energy of apps is spent in third party advertisement libraries. As

discussed in chapter 7 AdSplit facilitates implementation of a variety of policies hence to

prevent advertisements from using too much energy, a suitable energy consumption policy

can be specified and advertisments using a significant amount of energy can be killed safely

without affecting the host application.

42

8.2 Web security

AdSplit considers an architecture to allow for controlled mashups of advertisements and

applications on a smartphone. The web has been doing this for a while (as discussed in

Section 3.1). Additionally, researchers have considered a variety of web extensions to

further contain browser components in separate processes [3, 4], including constructing

browser-based multi-principal operating systems [5, 6].

8.3 JavaScript sandboxes

Caja [39] and ADsafe [40] work as JavaScript sandboxes which use static and dynamic

checks to safely host JavaScript code. They use a safe subset of JavaScript, eliminating

dangerous primitives like eval or document.write that could allow an advertisement

to take over an entire web page. Instead, advertisements are given a limited API to accom-

plish what they need. AdSplit can trivially host advertisements built against these systems,

and as their APIs evolve, they could be directly supported by out AdWebView class. Ad-

ditionally, because we run the AdWebView in a distinct process with its own user-id and

permissions, we provide a strong barrier against advertisement misbehavior impacting the

rest of the platform.

8.4 Advertisement privacy

Privad [41] and Juels et al. [42] address security issues related to privacy and targeted

advertising for web ads. They use client side software that prevents behavior profiling of

users and allows targeted advertisements without compromising user privacy.

AdSplit does not address privacy problems related to targeted advertisements but it pro-

vides framework for implementing various policies on advertisements.

43

8.5 Smart phone platform security

As mobile phone hardware and software increase in complexity the security of the code

running on a mobile devices has become a major concern.

The Kirin system [43] and Security-by-Contract [44] focus on enforcing install time

application permissions within the Android OS and .NET framework respectively. These

approaches to mobile phone security allow a user to protect themselves by enforcing blan-

ket restrictions on what applications may be installed or what installed applications may

do, but do little to protect the user from applications that collaborate to leak data or protect

applications from one another.

Saint [45] extends the functionality of the Kirin system to allow for runtime inspection

of the full system permission state before launching a given application. Apex [46] presents

another solution for the same problem where the user is responsible for defining run-time

constraints on top of the existing Android permission system. Both of these approaches

allow users to specify static policies to shield themselves from malicious applications, but

don’t allow apps to make dynamic policy decisions.

CRePE [47] presents a solution that attempts to artificially restrict an application’s

permissions based on environmental constraints such as location, noise, and time-of-day.

While CRePE considers contextual information to apply dynamic policy decisions, it does

not attempt to address privilege escalation attacks.

8.5.1 Privilege escalation

XManDroid [48] presents a solution for privilege escalation and collusion by restricting

communication at runtime between applications where the communication could open a

path leading to dangerous information flows based on Chinese Wall-style policies [?] (e.g.,

forbidding communication between an application with GPS privileges and an application

with Internet access). While this does protect against some privilege escalation attacks, and

allows for enforcing a more flexible range of policies, applications may launch denial of

service attacks on other applications (e.g., connecting to an application and thus preventing

44

it from using its full set of permissions) and it does not allow the flexibility for an applica-

tion to regain privileges which they lost due to communicating with other applications.

One feature of QUIRE that is not used in AdSplit is its ability to defeat confused deputy

attacks, by annotating IPCs with the entire call chain. In concurrent work to QUIRE, Felt et

al. present a solution to what they term “permission re-delegation” attacks against deputies

on the Android system [49]. With their “IPC inspection” system, apps that receive IPC

requests are poly-instantiated based on the privileges of their callers, ensuring that the callee

has no greater privileges than the caller. IPC inspection addresses the same confused deputy

attack as QUIRE’s “security passing” IPC annotations, however the approaches differ in

how intentional deputies are handled. With IPC inspection, the OS strictly ensures that

callees have reduced privileges. They have no mechanism for a callee to deliberately offer a

safe interface to an otherwise dangerous primitive. Unlike QUIRE, however, IPC inspection

doesn’t require apps to be recompiled or any other modifications to be made to how apps

make IPC requests.

(AdSplit does not require QUIRE’s IPC inspection system, and thus also does not require

apps to be recompiled to have the semantics described in this paper.)

More recent work has focused on kernel extensions that can observe IPC traffic, label

files, and enforce a variety of policies [50, 51]. These systems can enhance the assurance

of many of the above techniques by centralizing the policy specification and enforcement

mechanisms.

8.5.2 Dynamic taint analysis on Android

The TaintDroid [26] and ParanoidAndroid [27] projects present dynamic taint analysis

techniques to preventing runtime attacks and data leakage. These projects attempt to tag

objects with metadata in order to track information flow and enable policies based on the

path that data has taken through the system. TaintDroid’s approach to information flow

control is to restrict the transmission of tainted data to a remote server by monitoring the

outbound network connections made from the device and disallowing tainted data to flow

45

along the outbound channels.

AdSplit allows ads to run in separate processes but applications can still pass sensitive

information to separated advertisements. TaintDroid and ParanoidAndroid can be used to

detect and prevent any such flow of information. Thus they are complementary to AdSplit.

46

Chapter 9

Future Work

The work in this thesis touches on a trend that will become increasingly prevalent over the

next several years: the merger of the HTML security model and the smartphone application

security model. Today, HTML is rapidly evolving from its one-size-fits-all security origins

to allow additional permissions, such access to location information, for specific pages that

are granted those permissions by the user. HTML extensions are similarly granted varying

permissions rather than having all-or-nothing access [52, 53].

On the flip side, iOS apps originally ran with full, unrestricted access to the platform,

subject only to vague policies enforced by human auditors. Only access to location infor-

mation was restricted. In contrast, the Android security model restricts the permissions of

apps, with many popular apps running without any optional permissions at all. Despite

this, Android malware is a growing problem, particularly from third-party app stores (see,

e.g., [54, 55]). Clearly, there’s a need for more restrictive Android security, more like the

one-size-fits-all web security model.

While it’s unclear exactly how web apps and smartphone apps will eventually become

one thing, this thesis shows where this merger is already underway: when web content is

embedded in a smartphone app. Well beyond advertising, a variety of smartphone apps

take the strategy of using native code to set up one or more web views, then to the rest in

HTML and JavaScript. This has several advantages: it makes it easier to support an app

across many different smartphone platforms. It also allows authors to quickly update their

apps, without needing to go through a third-party review process.

These trends, plus the increasing functionality in HTML5, suggest that “native” apps

may well be entirely supplanted by some sort of “mobile HTML” variant, not unlike

47

HP/Palm’s WebOS, where every app is built this way1. For this convergence of mobile

and web apps to be smooth, the various security design issues for bridging the gap between

native and web apps need to be tackled. Our future work will be pursuing these interesting

security challenges.

1http://developer.palm.com/blog

48

Bibliography

[1] T. Cheshire, In depth: How Rovio made Angry Birds a winner (and what’s next).

Wired, Mar. 2011. http://www.wired.co.uk/magazine/archive/

2011/04/features/how-rovio-made-angry-birds-a-winner.

[2] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions demys-

tified,” in Proceedings of the 18th ACM conference on Computer and communications

security, CCS ’11, (Chicago, Illinois, USA), ACM, 2011.

[3] C. Grier, S. Tang, and S. T. King, “Secure web browsing with the op web browser,” in

Proceedings of the 2008 IEEE Symposium on Security and Privacy, IEEE Computer

Society, May 2008.

[4] C. Reis and S. D. Gribble, “Isolating web programs in modern browser architectures,”

in Proceedings of the 4th ACM European conference on Computer systems, EuroSys

’09, (Nuremberg, Germany), ACM, Apr. 2009.

[5] J. Howell, C. Jackson, H. J. Wang, and X. Fan, “MashupOS: Operating system ab-

stractions for client mashups,” in Proceedings of the 11th USENIX Workshop on Hot

Topics in Operating Systems (HotOS ’07), pp. 1–7, 2007.

[6] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and H. Venter, “The

multi-principal OS construction of the Gazelle web browser,” in Proceedings of the

18th USENIX Security Symposium, 2009.

[7] World Wide Web Consortium (W3C), Frames in HTML Documents, Nov.

2011. http://www.w3.org/TR/REC-html40/present/frames.html#

h-16.5.

49

[8] A. Barth, C. Jackson, and J. C. Mitchell, “Securing frame communication in

browsers,” in Proceedings of the 17th USENIX Security Symposium (USENIX Se-

curity 2008), 2008.

[9] MSDN, About Cross-Frame Scripting and Security., Oct. 2011. http://msdn.

microsoft.com/en-us/library/ms533028(v=vs.85).aspx.

[10] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson, “Busting frame busting: a study

of clickjacking vulnerabilities at popular sites,” in IEEE Oakland Web 2.0 Security

and Privacy (W2SP 2010), 2010. http://seclab.stanford.edu/websec/

framebusting/framebust.pdf.

[11] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose, “All your iFRAMEs point

to us,” in Proceedings of the 17th USENIX Security Symposium, (San Jose, CA), 2008.

[12] G. Rydstedt, E. Bursztein, and D. Boneh, “Framing attacks on smart phones and dumb

routers: Tap-jacking and geo-localization,” in Usenix Workshop on Offensive Tech-

nologies (wOOt 2010), 2010. http://seclab.stanford.edu/websec/

framebusting/tapjacking.pdf.

[13] Google Inc., Google AdMob Ads Android Fundamentals, Nov. 2011. http:

//code.google.com/mobile/ads/docs/android/fundamentals.

html.

[14] GreyStripe Inc., Android - SDK Integration Overview, Nov. 2011. http://wiki.

greystripe.com/index.php/Android#AndroidManifest.xml.

[15] Millenial Media, Millennial Media Android SDK - Version 4.5.0, Nov. 2011. http:

//wiki.millennialmedia.com/index.php/Android.

[16] InMobi, InMobi Android SDK - Version a300, Nov. 2011. http://developer.

inmobi.com/wiki/index.php?title=Android.

50

[17] Mobclix, Mobclix SDK Integration Guide Version 3.1.0, Nov. 2011. https://

developer.mobclix.com/help/advertising/sdk_api/android.

[18] Tapjoy, Getting Started with Publisher SDK, Nov. 2011. http://

knowledge.tapjoy.com/integration-8-x/android/publisher/

getting-started-with-offers-sdk.

[19] Jumptap, Jumptap Android SDK Integration, Nov. 2011. https://support.

jumptap.com/index.php/Jumptap_Android_SDK_Integration.

[20] Android Open Source Project., dex - Dalvik Executable Format, Nov. 2007. http:

//source.android.com/tech/dalvik/dex-format.html.

[21] Google Project Hosting., android-apktool - A tool for reengineering Android apk files,

Feb. 2012. http://code.google.com/p/android-apktool.

[22] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-site request

forgery,” in 15th ACM Conference on Computer and Communications Security (CCS

’08), (Alexandria, VA), Oct. 2008.

[23] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire: Lightweight

provenance for smart phone operating systems,” in 20th USENIX Security Symposium,

(San Francisco, CA), Aug. 2011.

[24] AdMob, Types of Ads That Appear on Your App or Site — Welcome to

AdMob Help, Nov. 2011. http://helpcenter.admob.com/content/

types-ads-appear-your-app-or-site.

[25] Android, Processes and Threads — Android Developers, Nov. 2011.

http://developer.android.com/guide/topics/fundamentals/

processes-and-threads.html.

[26] W. Enck, P. Gilbert, C. Byung-gon, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth,

“TaintDroid: An information-flow tracking system for realtime privacy monitoring on

51

smartphones,” in Proceeding of the 9th USENIX Symposium on Operating Systems

Design and Implementation (OSDI ’10), pp. 393–408, 2010.

[27] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid Android: Zero-

day protection for smartphones using the cloud,” in Annual Computer Security Appli-

cations Conference (ACSAC ’10), (Austin, TX), Dec. 2010.

[28] Google Project Hosting, Issue 99379 - chromium - Out of process iframes., Oct. 2011.

http://code.google.com/p/chromium/issues/detail?id=99379.

[29] A. Juels, S. Stamm, and M. Jakobsson, “Combating click fraud via premium clicks,”

in Proceedings of 16th USENIX Security Symposium on USENIX Security Sympo-

sium, (Boston, MA), USENIX Association, 2007.

[30] Google, View: Android developer reference, Feb. 2011. http://developer.

android.com/reference/android/view/View.html#Security.

[31] eLinux.org, Android Memory Usage, Feb. 2012. http://elinux.org/

Android_Memory_Usage.

[32] Federal Trade Commission, Mobile Privacy for Kids: Current Privacy Dis-

closures are Disappointing, Feb. 2012. http://ftc.gov/os/2012/02/

120216mobile_apps_kids.pdf.

[33] Mozilla Foundation, How Many Firefox Users Have Add-Ons Installed?

85%!, June 2011. http://blog.mozilla.com/addons/2011/06/21/

firefox-4-add-on-users/.

[34] L. McGann, How Ars Technica’s “experiment” with ad-blocking read-

ers built on its community’s affection for the site. Nieman Journal-

ism Lab, Mar. 2010. http://www.niemanlab.org/2010/03/

how-ars-technica-made-the-ask-of-ad-blocking-readers/.

52

[35] M. Panzarino, Google: About 190 Million Android Devices Activated

Worldwide. That’s About 576900 A Day Since May. The Next Web,

Oct. 2011. http://thenextweb.com/google/2011/10/13/

google-190-million-android-devices-activated-worldwide-thats-about-576900-a-day-since-may/.

[36] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure analysis of mobile

in-app advertisements,” in Proceedings of the 5th ACM Conference on Security and

Privacy in Wireless and Mobile Networks, WiSec ’12, (Tucson, Arizona), Apr. 2012.

[37] P. Pearce, A. P. Felt, and D. Wagner, “Addroid: Privilege separation for applications

and advertisers in android,” in 7th ACM Symposium on Information, Computer and

Communications Security (AsiaCCS), AsiaCCS ’12, (Seoul, Korea), May 2012.

[38] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside my app?:

fine grained energy accounting on smartphones with eprof,” in Proceedings of the 7th

ACM european conference on Computer Systems, EuroSys ’12, (Bern, Switzerland),

Apr. 2012.

[39] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay, Caja Safe active con-

tent in sanitized JavaScript. Google, Dec. 2007. http://google-caja.

googlecode.com/files/caja-2007.pdf.

[40] ADsafe, ADsafe, Feb. 2012. http://www.adsafe.org.

[41] S. Guha, B. Cheng, and P. Francis, “Privad: Practical privacy in online advertising,” in

Proceedings of the 8th Symposium on Networked Systems Design and Implementation

(NSDI), (Boston, MA), Mar 2011.

[42] A. Juels, “Targeted advertising ... and privacy too,” in Proceedings of the 2001 Con-

ference on Topics in Cryptology: The Cryptographer’s Track at RSA, CT-RSA 2001,

Springer-Verlag, 2001.

53

[43] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone application

certification,” in 16th ACM Conference on Computer and Communications Security

(CCS ’09), (Chicago, IL), Nov. 2009.

[44] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts, F. Piessens, I. Siahaan, and

D. Vanoverberghe, “Security-by-contract on the .NET platform,” Information Secu-

rity Technical Report, vol. 13, no. 1, pp. 25–32, 2008.

[45] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically rich

application-centric security in Android,” in Proceedings of the 25th Annual Computer

Security Applications Conference (ACSAC ’09), (Honolulu, HI), Dec. 2009.

[46] M. Nauman, S. Khan, and X. Zhang, “Apex: extending Android permission model

and enforcement with user-defined runtime constraints,” in Proceedings of the 5th

ACM Symposium on Information, Computer and Communications Security, pp. 328–

332, 2010.

[47] M. Conti, V. T. N. Nguyen, and B. Crispo, “CRePE: Context-related policy enforce-

ment for Android,” in Proceedings of the Thirteen Information Security Conference

(ISC ’10), (Boca Raton, FL), Oct. 2010.

[48] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi, “XMan-

Droid: A new Android evolution to mitigate privilege escalation attacks,”

Tech. Rep. TR-2011-04, Technische Universität Darmstadt, Apr. 2011.

http://www.trust.informatik.tu-darmstadt.de/fileadmin/

user_upload/Group_TRUST/PubsPDF/xmandroid.pdf.

[49] A. P. Felt, H. J. Wang, A. Moshchuck, S. Hanna, and E. Chin, “Permission re-

delegation: Attacks and defenses,” in 20th Usenix Security Symposium, (San Fan-

sisco, CA), Aug. 2011.

[50] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and B. Shastry, “To-

wards taming privilege-escalation attacks on Android,” in Proc. of the 19th Network

54

and Distributed System Security Symposium (NDSS 2012), (San Diego, CA), Feb.

2012.

[51] S. Smalley, “The case for SE Android,” in Linux Security Summit 2011, (Santa Rosa,

CA), Sept. 2011. http://selinuxproject.org/˜jmorris/lss2011_

slides/caseforseandroid.pdf.

[52] A. Barth, A. P. Felt, P. Saxena, and A. Boodman, “Protecting browsers from exten-

sion vulnerabilities,” in Proc. of the 17th Network and Distributed System Security

Symposium (NDSS 2010), (San Diego, CA), Feb. 2010.

[53] L. Liu, X. Zhang, G. Yan, and S. Chen, “Chrome extensions: Threat analysis and

countermeasures,” in Proc. of the 19th Network and Distributed System Security Sym-

posium (NDSS 2012), (San Diego, CA), Feb. 2012.

[54] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of mobile mal-

ware in the wild,” in Proceedings of the 1st ACM Workshop on Security and Privacy

in Smartphones and Mobile Devices (SPSM ’11), (Chicago, Illinois), Oct. 2011.

[55] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my market: Detect-

ing malicious apps in official and alternative android markets,” in Proc. of the 19th

Network and Distributed System Security Symposium (NDSS 2012), (San Diego, CA),

Feb. 2012.

	Signatures
	IMG_0001
	IMG_0002

	Shashi_masters

