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Viscoelastic Finite Difference Modeling 

ABSTRACT 

Real earth media disperse and attenuate propagating waves. This anelastic 

behavior can be well described by a viscoelastic model. We have developed a finite 

difference simulator to model wave propagation in viscoelastic media. The finite 

difference method was chosen in favor of other methods for several reasons. Finite 

difference codes are more portable than, for instance, pseudo-spectral codes. Moreover, 

finite difference schemes provide a convenient environment to define complicated 

boundaries. The finite difference method for viscoelastic wave propagation has been 

thoroughly investigated with convergence tests, dispersion and stability analyses. Two 2-

D examples illustrate the difference between viscoelastic and elastic wave propagation. 
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INTRODUCTION 

To a high degree, elasticity is a good model for wave propagation through the 

earth. No real materials, however, are perfectly elastic, but rather anelastic. In real 

media, wave energy is gradually converted into heat. Attenuation of propagating wave 

forms is in some cases quite significant and could be a source of erroneous results in 

forward modeling, inversion and imaging if neglected (Liu et al., 1976). The quality 

factor, Q, characterizes the attenuation of waves in a material. This is a measure of how 

many wavelengths a wave must propagate through the material before its amplitude drops 

by 1/e. It is a practical measure for field measurements and it is therefore desirable to 

develop a theoretical model using quality factors for pressure- and shear-waves. 

There are several ways of modeling anelastic phenomena. One approach is to 

model materials through their mechanical analogs using components such as springs and 

dashpots. Such a model is called a viscoelastic model and in the elastic limit this reduces 

to a single spring with a spring constant corresponding to the elastic properties of the 

material. The so called standard linear solid is a simple viscoelastic model containing of 

a spring in parallel with spring and a dashpot in series. An array of standard linear solids 

in parallel may be used to approximate a specific viscoelastic model with a certain Q 
versus frequency relation. 

Earth materials have been shown to have a nearly constant quality factor, Q, over 

the seismic frequency range (review in Bourbie et al., 1987). A viscoelastic model 

consisting of a series of standard linear solids in parallel can closely approximate a 

constant Q over a specified frequency range. We have developed a constant Q 
optimization algorithm based on work by Liu et al. [1976]. As a rule by thumb one 

standard linear solid per octave in the specified frequency band is sufficient to achieve a 

good approximation. Since attenuation and dispersion are related through Kramers­

Kronig's relation, the constant Q model also yields a realistic dispersion relation. 

Futterman [1962] derived a theoretical dispersion relation for materials with a constant 

Q. Wuensche/ [1965] experimentally showed Plexiglas and shale to have nearly 

frequency-independent quality factor over several octaves. 

We based our finite difference approach on a system of first order linear partial 

differential equations derived through the introduction of so called memory variables. 

The stress-strain relation contain a convolution in the viscoelastic case. Viscoelastic 

media may therefore be regarded as remembering earlier deformation states. This is 

reflected through the memory variables which are added to the equations governing the 

components of the stress tensor. The memory variables are governed by separate 
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differential equations. Day and Minster [1984] also derived a system of first order partial 

differential equations by using Pade approximations to approximate the convolution in 

the stress-strain relation. 

Control of numerical dispersion is important since viscoelastic media are 

intrinsically dispersive. For this reason earlier viscoelastic wave propagation simulators 

have been based on pseudo-spectral methods (e.g. Carcione et al., 1988). Numerical 

dispersion can to the same degree also be controlled using finite difference methods on 

denser grids. A computationally expensive part of pseudo-spectral schemes is the FFT 

that must be performed each time step. Moreover, efficient pseudo-spectral codes tend to 

be machine dependent due to FFT-routines, etc. This is not the case for finite difference 

codes. The principal arguments for choosing a finite difference method to simulate 

viscoelastic wave propagation are portability of efficient code, ability to model 

complicated boundaries accurately, and the ability to control the simulation accuracy. 

We have implemented and investigated 0(2,2), 0(2,4), and 0(4,4) accurate 

schemes. These have been thoroughly investigated through convergence tests, dispersion 

and stability analyses. The discrete dispersion relation for the system was found to be the 

product of a well known term responsible for wave propagation and another term 

responsible for attenuation. The stability criteria for the viscoelastic schemes are 

approximately the same as for the analog elastic schemes. The Courant number must 

however be adjusted to the highest phase velocity (found at the infinite frequency) in the 

viscoelastic medium. We have performed convergence tests where we compared the 

analytic solution for single wavenumbers to the numerical solution for identical initial 

conditions. 

In this paper we will start with a brief review of viscoelastic theory. We will then 

present our algorithm for constant Q optimization. We will then pursue the theory by 

deriving the equations governing viscoelastic wave propagation and also formulate these 

as a system of linear first order partial differential equations. Next we will summarize the 

implementation and the tests we did for the different schemes. After this we will present 

results from convergence tests and stability and dispersion analyses. For practical 

reasons we have limited this analysis to 1-D. Our results may be directly applied to 

modeling of higher dimensions viscoelastic wave propagation. We describe explicitly the 

2-D extension of our method and exhibit two examples where disregarding anelasticity 

seriously limit the realism of the problems. 
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THEORETICAL MODEL - LINEAR VISCOELASTICITY 

In this section we derive a theoretical anelastic model based on viscoelastic 

theory, a phenomenological way to describe combined elastic and viscous behavior of 

materials. The basic hypothesis is that a current value of the stress tensor depends upon 

the history of the strain tensor. The simplest viscoelastic models are the Maxwell and the 

Kelvin-Voigt models, which essentially represent a fluid and a solid respectively. Both 

models will be treated more thoroughly below. 

Basic definitions 

The viscoelastic hypothesis, can be described as, 

a/t) = lfli/eki(t-s),eki(t)) (1) 
s=O 

(Christensen, 1982) where 1/f is a linear tensor valued functional which transforms each 

strain history, e/t),-00 :::; t ~ 00 , into the corresponding stress history, ait). In general 

all field variables depend both on time and position. If the functional is linear and the 

strain history assumed to be continuous, Riesz' representation theorem allows us to write 

the functional as a Stieltjes integral, 

~ 

a/t) = f ekl(t-s)dG;j1ci(s). 
0 

(2) 

The fourth order tensor, G, collapses into two independent functions for an isotropic and 

homogeneous material, assuming the strain history to be a symmetric tensor defined as in 

linear elasticity. By including a step discontinuity for the strain at t=O, constraining 
eu(t) = 0 for t<O, and assuming that G;j1ci e C1

, the constitutive relation (2) reduces to, 

(3) 

In 1-D, the special case of simple shear in an isotropic homogeneous material (3) reduces 

to, 
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t 

er(t) = G(O)e(t) + f G(t - r)e( r)dr 

e(t) = de(t) 
dt 

0 

(4) 

G is called the stress relaxation function and is the viscoelastic analog to the Lame 

constant, µ, in linear elasticity. Equation (4) may also be written as, 

er= G*de = e*dG (5) 

where * denotes Stieltjes convolution. For sufficiently well behaving functions G and E, 

(5) can be written as, 

er= G*e = e*G (6) 

where * denotes conventional convolution. 

The creep compliance, J, is the inverse of G, in the sense that, 

(7) 

By Laplace transforming t L ,md (7) and eliminating the stress and the strain, we obtain, 

A A 

sJ(s)sG(s) = 1 (8) 

Viscoelastic solids and fluids may be distinguished by the behavior of their relaxation 

functions at infinite time, that is by studying G( oo ). If G( 00 )=0 the material is defined as a 

fluid, whereas when G(oo):;t:O the material is defined as a solid. 

Differential operator form of stress-strain relations in one dimension 

If we assume that the Laplace transform of G can be approximated by a rational 

function, this is 
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then the stress-strain relation is equivalent to, 

where 

P(D)a(t) = Q(D)e(t) 

N 

P(D)= LADk 
k=O 

N 

Q(D)= LQkDk 
k=O 

(9) 

(10) 

(11) 

Here, D is the differential operator d/dt and N is an arbitrary natural number. This is 

called the differential operator form of the stress-strain relations. By Laplace 

transforming ( 10) and ( 11) we obtain, 

Through identification with terms in (9) and (12) we obtain, 

(13) 
r=k r=k 

The above assumption of a rational approximation can be justified by realizing that a 

realistic relaxation function only can have step discontinuities, which results in a 1/s 

behavior for the Laplace transform of G for large s. Hence, if we assume the order of Q 
to be less than or equal to the order of P+ 1 and the rational sP(s)/Q(s) to have no multiple 

roots, we can express G as a constant plus a sum of N+ 1 (or less) inverse first order 

polynomials. That is, 

N a 
G(s)=K+L_k_ 

k=O bk+ S 

(14) 
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The case when the order of Q is greater than the order of P+ 1 represents infinite stress at 

finite strain or in other words, the non-physical case of rigid bodies. By inverse Laplace 

transfonning (14) the general solution for Gin the time domain is obtained as, 

N 

G(t) = K + Iicke i-
1 (15) 

k=O 

A mechanical viscoelastic model 

The mechanical models used in viscoelasticity are usually expressed as 

combinations of elastic and viscous elements. The elastic model is the spring and the 

viscous model is the dashpot (illustrated in Figure la). The constitutive relations for 

these are, 

a = kE, for the spring, 

and (16) 

(J = rye, for the dashpot. 

These models may be combined either in series or in parallel to form different 

viscoelastic elements. A spring and a dashpot connected in series is called the Maxwell 

model, whereas a parallel connection is called the Kelvin-Voigt model. The Maxwell 

model essentially represents a fluid, whereas the Kelvin-Voigt model represents a solid. 

Another important viscoelastic configuration, the standard linear solid, is composed of a 

Maxwell model in parallel with a spring. This is illustrated in Figure 1 b. A similar 

configuration is the so called Zener model, which consists of a Kelvin-Voigt model in 

series with a spring. Both the standard linear solid and the Zener model are viscoelastic 

solids. 

The relaxation function, G, for the standard linear solid is, 

(17) 

where 

and the creep compliance, J, is, 
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(18) 

where 

Equation ( 17) may also be written on the form, 

(19) 

L standard linear solids in parallel yield the relaxation function, G, as, 

L 
G(t) = K(l-L/l-~ )e-r/i-o1) 

l=I 't'cr/ 
(20) 

where 

Equations (15) and (20) are equivalent and we may therefore describe an essentially 

arbitrary linear viscoelastic material as an array of several standard linear solids in 

parallel. This is also equivalent to a spring in parallel with an array of several Maxwell 

elements in parallel. Expressing the causality constraint explicitly, the form we will use 

for a general viscoelastic material is, 

1/f(t) = MR(I- t(l- ~}-r/i-a, )0(t) 
1-1 't' er/ 

(21) 
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where MR is the relaxed modulus of the medium (Pipkin, 1986) and 0(t) is the Heaviside 

function defined as, 

{
o, t< o 

B(t)= 1, t ~ 0 
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REALISTIC ATTENUATION AND DISPERSION MODELING 

Certain experimental results have shown that earth materials generally have 

constant Q, both for pressure and shear waves over a limited range of frequencies (review 

in Bourbie et al., 1987). Thus it is highly desirable to find a way to model a constant Q, 

which in turn will yield a realistic dispersion relation (Futterman, 1962). In this section 

we describe an algorithm for Q-optimization for an array of standard linear solids in 

parallel. 

Constant Q optimization 

The quality factor, Q, is defined as, 

(22) 

where Mc(co) is the complex bulk modulus, defined as the Fourier transform of tp(t), 

which for the case of L standard linear solids was derived in (21). 
Our objective is to optimize Q such that it is approximately constant equal to Q0 

over a limited passband. The inverse problem is better formulated if we optimize 1/Q 

instead of Q, which of course does not limit us. For an array of L standard linear solids, 

this is, 

Find 

Min <P = Min f ('4-1 -Q-1 )2 dw 
Pass Band 

where 

(23) 
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This inverse problem is ill conditioned, and further simplifications are necessary to obtain 

an applicable algorithm. We found that for most cases of interest (Bourbie et al., 1987) 
one can make the approximation rel== r<11. This approximation and (23) yields, 

(24) 

From (23), we can calculate Q-1 for one pair of relaxation mechanisms. This is, 

(25) 

Note that when '"el== '"al' (24) can be regarded as the sum of one-pair relaxation 

mechanism models given by (25). 

For one pair of relaxation mechanisms, the function Q-1 has a unique maximum 

at a certain frequency given by, 

1 
(J) =--=== 

max ~ 
"\J ~I: ~CT 

(26) 

Since rel == r al, we use the notation "to fix a pair of relaxation mechanisms at a certain 

frequency" when setting, 

1 
'ra1=­

(J) 

at the desired frequency. 

(27) 

Using (23) we optimized Q-1 with respect to the variables (-r0 - 'ra1) and Teri, 

using the conjugate gradient method. In Figure 2, we have optimized 3 pairs of 

relaxation mechanisms for a constant Q of 100, between 100 and 500 Hz. Note that the 

optimized Q is very close to the desired Q in the frequency interval. It should be 
emphasized that the approximation '"el== ral is better the larger Q is. The method is 

slow, but as we shall see there is a more efficient way to do the optimization. In Figure 3 

we study the dependence of Q on perturbations of the optimized mechanisms. The effect 

of increasing all relaxation times by 20% is minimal. This is also the case if we would 
increase them with as much as 100%. The effect is much more dramatic when only -rer, is 

increased by 20%, while keeping -r 1:1 constant. Thus, a small perturbation in one of the 
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relaxation times in a pair has a significant impact on Q, while equal perturbations in both 

relaxation times in a pair have negligible effects. From the experiments we draw two 
conclusions. First, the difference between -rel and -r CTI essentially determines the 

magnitude of Q. Second, when optimizing Q, the relaxation times will be evenly 

distributed over a logarithmic scale ranging from the lower bound of the pass band to the 

upper bound, in the sense discussed above. One pair of relaxation mechanisms per octave 
is sufficient to yield a constant Q over a pass band. By distributing -rCTl in the way 

described above, our problem is reduced to an over-determined linear system of 

equations, where the only variables are (-rd - -ro-i). This was solved by using singular 

value decomposition. 

In Figure 4 we have optimized 3 relaxation mechanisms for a constant Q of 50, 

from 100 Hz to 500 Hz. Here Q is overestimated by an almost constant offset (Q=52 

instead of Q=50). The error is larger than in the case illustrated above, since the 

approximations are worse the lower Q is. This is due to the difference between the 

relaxation mechanisms in a pair which increases with decreasing Q. If we, for some 

reason, want to have a very accurate approximation of a constant Q of 50, the 

optimization may be done at Q=48 for instance. 

We now have an algorithm to generate a realistic attenuation and dispersion 

model to use in the viscoelastic code. 
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VISCOELASTIC WAVE PROPAGATION 

The equations describing wave propagation in viscoelastic media can be derived 

in terms of the creep compliance or the stress relaxation modulus. Here we choose to 

derive it from the latter. For simplicity, we will derive the equations for the one­

dimensional case where the viscoelastic equations are the same as the viscoacoustic. A 

generalization to higher dimensions is analogous to the derivation done here. The 

constitutive equation is, 

(28) 

The dot denotes a time derivative, a is the stress, e is the strain, and l/f is the complex 

modulus (Pipkin, 1986). As described above a viscoelastic medium may be modeled as 

an array of standard linear solids in parallel. Each is characterized by two variables, the 

stress relaxation time, -ra, and the strain relaxation time, -re· The relaxation modulus for 

an array of L parallel standard linear solids is given by (21). We will refer to a particular 

set of relaxation mechanisms as the two different relaxation times corresponding to one 

of the steps. 

From the definitions of pressure and dilatation ( Gurtin, 1981) we know that, 

a=-p (29) 

and 

e=v X (30) 

Taking the time derivative of (28) and using (21) leads to, 

(31) 

that is, 

(32) 

The convolution terms in (32) may be eliminated by introducing so called memory 
variables, which will be denoted r1 (Carcione et al., 1988). Equation (32) thereby 

reduces to, 
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-p= MR(1-i(~-1JJvx + Ir1 
1=1 'rul 1=1 

(33) 

where 

(34) 

From (34) we see that r1 are governed by convolutions of vx with exponential functions, 

i.e. the kernels of r1 are of exponential character. A set of first order linear differential 

equations may be obtained instead of the convolutions as follows. First, by taking the 

time derivative of (34) we obtain, 

(35) 

which gives us, 

(36) 

From (34) we see that (36) reduces to, 

(37) 

We have now derived a set of first order linear differential equations for the memory 

variables. Newton's second law completes the full description of wave propagation in a 

viscoelastic medium. This is, 

(38) 
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(33), (37) and, (38) is the system of first order linear differential equations that fully 

describe one dimensional viscoelastic wave propagation in a medium with L sets of 

standard linear solid relaxation mechanisms that we will use. 
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IMPLEMENTATION AND NUMERICAL EXPERIMENTS 

The system of L+2 first order linear partial differential equations we wish to solve 

is given by (33), (37), and (38). This is, 

; =--
1-r + M -

1-(1- Tel )v l 5, l 5, L I l R X• 
-r al -r al -r al 

We made several tests for different schemes using a Ricker wavelet with a central 

frequency at 35 Hz propagating in the positive x direction in a 2000 m long homogeneous 

interval with periodic boundary conditions. The initial condition is plotted in Figure 5. 

The relaxation modulus (corresponds to the Lame constant in the elastic case), MR, was 8 

GPa and the density 2000 kg/m 3
• This leads to a velocity of 2000 m/s in the O Hz limit. 

For simplicity we used one set of relaxation mechanisms per Q-model. These are listed 

in Table 1. 

Equation (37) proved to be stiff under some extreme circumstances but otherwise 

quite robust. We investigated several time stepping schemes to approximate (37) such as, 

Adams-Bashforth methods, Gear's methods, and the Crank-Nicholson scheme. In Figures 

6 and 7 we display two cases with severe numerical dispersion using an 0(2,4) scheme 

for (33) and (38), comparing the 4:th order Gear's method to Crank-Nicholson as 

approximation for (37). Even in these extreme cases the difference is minimal and hence 

we decided to use the Crank-Nicholson approximation for (37). 

We decided to use a Leapfrog scheme to approximate the time derivatives in (33) 

and (38). This conserves energy which is important since we must be able to distinguish 

between physical and numerical attenuation when modeling anelastic media. One of the 

principal arguments for using spectral methods instead of finite differences has been to 

avoid confusing physical dispersion with numerical dispersion. If all spatial derivatives 

in our system of differential equations is approximated by second order accurate central 

differences the numerical dispersion is indeed severe. This scheme will be referred to as 

the 0(2,2) scheme. A Courant number close to 1 and a spatial discretization of 1 m (25 
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grid-points per wavelength at the highest frequency) proved to be optimal. In Figure 8 

we compare snapshots at 2.25 s for the 0(2,2) code at different values of Q. Q=l0,000 

can be regarded as the acoustic limit and as we can see the wavelet has suffered from 

significant numerical dispersion. As we shall see later, this scheme also does not model 

the attenuation correctly. 

Dab lain ( 1986) and Levander ( 1988) have investigated the accuracy of high order 

spatial accurate schemes for wave propagation. Increasing the spatial accuracy from 

second to fourth order improves the dispersion characteristics dramatically. In what we 

will refer to as the 0(2,4) scheme all second order accurate approximations of the spatial 

derivatives have been replaced by fourth order accurate approximations. In Figure 9 we 

compare snapshots at 2.25 s at different values of Q. There is no visible numerical 

dispersion and moreover, as we shall see, the attenuation is modeled accurately. In 

Figures 10 and 11 we have varied the Courant number and the spatial discretization 

respectively. A Courant number of 0.2 and a spatial discretization of 2 m (12 grid-points 

per wavelength at the highest frequency) proved to be optimal. This scheme has several 

advantages. First, it is relatively computationally inexpensive (compared to the 0(2,2) 

scheme and the 0(4,4) scheme which we will describe next). It also models wave 

propagation in viscoelastic media accurately to a high degree. The major drawback is its 

poor characteristics at high Courant numbers. It is necessary to go as low as a Courant 

number of 0.2 in order to have sufficiently low numerical dispersion. On the other hand, 

half as many grid-points per wavelength are sufficient compared to the 0(2,2) scheme. 

The 0(2,4) finite difference approximation for the system of differential equations 

is, 

PJ~+ 1 _ p~-1 ( L (-r ))-v~ 2 + 8v~ 1 -8v~ 1 + v~ 2 ----"----"1-=-MR 1- L _gj___l J+ J+ J- J-
2~t l = I -r al 12~ 

L 
- I r~ 

l=l J,l 

n+l n-1 
V. -V. 

p J J 
2~t 

n n n n 
-p · 2 +Sp· 1 - Sp. 1 + p. 2 J+ J+ J- J-

12~ 

18 
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r'j,;1-r'JJ =--1-(r~71+r~ 1)+MR_1_(1- -rel]. 
~t 2 -r al 1' 1' 2 -r al -r al 

( 

n n n n n+l 8 n+l 8 n+l n+l) -v . 2 + 8v. l - 8v. l + v. 2 -v. 2 + v. l - v. l + v. 2 1+ 1+ 1- 1- 1+ 1+ 1- 1-. ----------------__::.---=--+------'"-----------------------'--
12.ix 12.ix 

(41) 

l =I,... . .. ,L 

The equivalent differential equations (EDE) are derived by using Taylor 

expansions in (39), (40), and (41). We obtain, 

( 
L ( r / JJ L ~t2 ( 4 4) p=-MR 1- L, _g__l Vx- I, r --p+O t.t ,Llx 

l=l ral l=I l 6 
(42) 

(43) 

. 1 1 ( -rel J ( 2 4) r1=--r
1
+MR- 1-- vx+O~t ,Llx , 1=1, ...... ,L 

ral rat ral 
(44) 

Hence, we have shown that the schemes are second order accurate in time and fourth 

order accurate in space. 

It is sometimes possible to improve the accuracy by using a so called compact 

scheme (Dablain, 1986). The accuracy of finite difference approximations such as (39) 

through ( 41) can be increased from second to fourth order in time by subtracting the 

highest order inaccurate term in the EDE (equations (42), (43), and (44)) as fourth order 

spatial finite difference approximations using the exact system of differential equations 

(equations (33), (37), and (38)). For the case when there only is one pair of relaxation 

mechanisms, the third order time derivatives expressed as spatial derivatives are, 

v = -M !_g__l p - _I _!._r - M _I _!._(!_g_ - 1Jv 
111 R 2= x R xx r,,. p r,,. p r,,. p r,,. 

(45) 
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(46) 

We used (45) and (46) in (42) and (43) to derive a fourth order space and time accurate 

compact scheme for (33) and (38). We did not increase the accuracy in time for (37) 

since this did not improve the result to any significant extent. We will refer to this 

scheme as the 0( 4,4) scheme. 

We found a Courant number close to 1 and 2m grid-spacing (12 grid-points per 

wavelength at the highest frequency) to be optimal. This is illustrated in Figures 12 and 

13. In Figure 14 we compare snapshots at 2.25 s for the 0(4,4) scheme at different values 

of Q. No numerical dispersion is visible. The accuracy gained compared to the 0(2,4) 

scheme is minimal but we are now able to use a four times as large Courant number. 

In Figures 15 and 16 we compare snapshots at 2.25 s for the 0(2,2), the 0(2,4), 

and the 0(4,4) scheme for a optimal choice of simulation parameters at Q=50 and 

Q=l0,000. The solutions from the 0(4,4) and the 0(2,4) schemes are close with minimal 

numerical dispersion while the 0(2,2) scheme is quite poor. 

It is possible to obtain analytic viscoacoustic solutions for some simple 

geometries by replacing the velocity in the Fourier transform of the acoustic wave 

equation by the complex velocity corresponding to the specific viscoacoustic model 

(Bland, 1960). This allows us to check the accuracy of our finite difference schemes. In 

Figures 17 and 18 we compare seismograms using two different values of Q (Q=200 and 

Q=l0,000) for the analytic solution and the 0(4,4) scheme. Here we used an amplitude 

modulated 50 Hz signal as our initial condition. The two solutions are very close to each 

other. Since we already have showed that solutions from the 0(2,4) and the 0(4,4) 

scheme are close we have now showed that both the 0(4,4) scheme and the 0(2,4) 

scheme model viscoelasticity very accurately. 

In Table 2 we display three pairs of relaxation mechanisms, obtained through the 

optimization algorithm described above, which yields an essentially constant Q of 200 

between 20 and 80 Hz. In Figure 19 we compare a snapshot at 2.25 s and a Q of 200 

using the 0(2,4) scheme for one pair of relaxation mechanisms (Table 1) to an identical 

simulation, but for a case when we use three pairs of relaxation mechanisms (Table 2). 

The difference is small and hence it seems like the optimization of a constant Q is not as 

crucial as might have been anticipated in simulating viscoelastic wave propagation. For 
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practical purposes it might even be sufficient to use even fewer pairs of relaxation 

mechanisms than one per octave, as we stated as good rule of thumb. The explanation for 

this is found from the memory variables. In Figure 20 we have plotted the memory 

variables corresponding to the different relaxation mechanisms for the case where we 

used three pairs to model a constant Q. The magnitude of the curves varies dramatically. 

Hence, the main contribution to the viscoelastic modeling stems from the memory 

variable corresponding to the first set of relaxation mechanisms which intuitively seems 

to be reasonable. In Figure 21 we compare this memory variable to the memory variable 

in the simulation where we only used one pair of relaxation mechanisms. The two curves 

are very close to each other. 

Finally, in Figure 22, we compare two snapshots (t=l.25 s and t=2.25 s) for a 

simulation using the three relaxation mechanisms listed in Table 2 and the 0(4,4) code. 

We found that the 0(4,4) and the 0(2,4) scheme model viscoelasticity sufficiently 

accurate and that the 0(2,2) scheme hardly is of any use. The 0(4,4) scheme is only 

slightly more accurate than the 0(2,4) scheme for moderate Courant numbers and is also 

computationally more expensive. This is reflected through the number of calculations per 

grid-point. In 1-D, the number of calculations per grid-point (counting addition's, 

subtraction's, multiplication's, and division's equally), is about 75 for the 0(4,4) scheme, 

45 for the 0(2,4) scheme, and 30 for the 0(2,2) scheme. An advantage with the 0(4,4) 

scheme is the ability of running simulations at high Courant numbers, i.e. fewer time 

steps are needed, which makes this scheme preferable in the 1-D case. To achieve high 

accuracy over a wide range of Courant numbers is also desirable when propagating waves 

through heterogeneous media where velocities may vary throughout the grid. However, 

when generalizing to the 2-D viscoelastic case, the 0(4,4) scheme becomes extremely 

computationally expensive so that the advantages with the 0(2,4) scheme are superior. 

The pseudo 0(4,4) scheme 

The high operation count and the asymmetry of the dispersion relation for the 

0(4,4) scheme led us to derive an approximately 0(4,4) scheme, which we chose to call a 

pseudo 0(4,4) scheme. The viscoelastic constitutive relation is used directly instead of 

the equation system with memory variables. Equation (31) and (38) are, 

{

P, =-t*v,. 
V =--p 

I p X 

(47) 
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To create a compact scheme we must find the third order time derivatives of pressure and 

velocity expressed as spatial derivatives. From (47) these are found to be 

1 . . ) 
Pm= --1/f*(l/f*Vx:u 

p 
1 . 

Vitt =-z 1/1* Pra 
p 

These correction terms in a finite difference scheme yields, 

. ( M2 . ) 
p""=-1/f* Vru:+-1/f*V 3 6p iu 

1 IJ..t 2 
• 

V /1,.t = - p p ru: - 6p2 1/f* p ru:' 

(48) 

(49) 

The !J.. denotes finite difference approximations of the derivatives. The time derivative of 

the relaxation function contains one term multiplied with a Dirac delta function and one 

term multiplied with a unit step function. To derive the pseudo 0(4,4) scheme the 

relaxation function, appearing in the convolutions with the third order spatial derivatives, 

is approximated with the term multiplied with the Dirac delta function. This 

approximation yields, 

(50) 

Introduction of the memory variable yields the following system of equations, for one 

relaxation mechanism, 
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(51) 

Compared to the 0(4,4) scheme fewer spatial derivatives have to be calculated in each 

time step. The accuracy and the dispersive properties of the pseudo 0(4,4) scheme are 

close to those of the 0(4,4) scheme, as is demonstrated in the Dispersion and Stability 

Analyses section. This is why we called this scheme the pseudo 0(4,4) scheme. 
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CONVERGENCE TESTS 

We performed a series of convergence tests for the different schemes to assure 

accuracy. Convergence was shown for the case of a propagating sinusoid, since an 

analytical solution for this problem is easy to obtain. We compared this to the numerical 

results from analog finite difference simulations and calculated the difference in the L2-

sense. 

Analytic solution for a single wavenumber 

An analytic solution for a single wavenumber, k, is easy to find. By Fourier 

transforming (33), (37), and (38) in space we obtain a system of ordinary differential 

equations for a fixed k, 

(52) 

where 

( 

0 

A= 0 
= -ik Ip 

This has the exponential solution which is obtained through the eigenvalues and 
corresponding eigenvectors of A. One eigenvalue is real and corresponds to an 

exponentially decaying solution. The other two eigenvalues are complex conjugates and 

correspond to propagating modes. By choosing one of the complex eigenvalues, the 

solution for a sinusoid propagating in one direction is found. The characteristic equation 

is a third order polynomial equation and the eigenvalues and eigenvectors must be 

determined numerically. We chose this analytic solution for convergence tests since 

these can b ·ietermined very accurately. 
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Test method 

The convergence tests were done using a 40 Hz harmonic wave propagating in a 

medium with a velocity of 2000 m/s and Q=50. The initial conditions for the finite 

difference schemes were calculated using the analytic solution. Snapshots after 1.00 s 

from finite difference tests were compared to corresponding analytic solutions. The finite 

difference schemes were tested for 50, 25, 10, 5, and 2 grid-points/wavelength. The ratio 

!it/fix was kept constant for the tests using the 0(2,2) and 0(4,4) schemes so that the 

error decreased equally in time and space. The ratio !it/(tix)2 was kept constant when 

testing the 0(2,4) scheme for the same reason. This results in a 0(4,4) behavior for the 

0(2,4) scheme during the convergence tests. The 0(2,4) scheme was also tested for a 

constant Courant number of 0.4. The tests were performed at a Courant number of 0.8 

for the 0(2,2) and 0(4,4) schemes. The simulation parameters are listed in Table 3. 

Results of the convergence tests 

The difference between the analytical solution and the results using the 0(2,2) 

scheme is displayed in Figure 23. As expected, the best fit line for the logarithm of the 

L2-error as a function of the number of grid-points/wavelength has a slope close to -2 (-

2.24). The surprisingly close fit for the 10 grid-points/wavelength test is due to the 

periodicity of the analytic solution. The numerical solution is actually numerically 

dispersed a full wavelength, which results in the apparent close fit. Snapshots for 

different numbers of grid-points/wavelength at 1.00 s are plotted in Figures 24 and 25. 

The result for the 0(2,4) scheme (non-constant Courant number) is displayed in Figure 

26. The best fit line for the logarithmic L2-error has a slope of -5.13 which is close to the 

predicted 0(4,4) behavior (-4). Snapshots at 1.00 s are plotted in Figures 27 and 28. The 

result for the 0(2,4) scheme using a constant Courant number is shown in Figure 29. The 

best fit line has a slope of -1.54. Snapshots at 1.00 s are plotted in Figures 30 and 31. 

The result of the 0(4,4) scheme tests is presented in Figure 32. The best fit line has a 

slope of -4.23, which is close to the expected (theoretically it should be -4). The 

snapshots at 1.00 s are plotted in Figures 33 and 34. The results for 2 and 5 grid­

points/wavelength are poor for all the schemes. We conclude that our schemes converge 

to the analytical solution as predicted by theory. 
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DISPERSION AND ST ABILITY ANALYSES 

Dispersion and stability analyses of finite difference schemes reveal behavior that 

otherwise may be obscure or difficult to understand. Viscoelastic media are intrinsically 

dispersive. The phase velocity increases with frequency as shown by Futterman [1962] 

and Wuensche[ [1965]. This is evident in Figure 36. In addition to this finite difference 

methods for wave propagation introduce numerical dispersion due to the time and space 

discretization. Hence, we are studying dispersive media with dispersive methods. We 

must therefore assure that the influence of numerical dispersion is minimal. 

We have already made some observations of dispersion and stability issues above 

under Implementation and Numerical Experiments. A more thoroughly study is however 

necessary in order to gain deeper understanding and to confirm our initial conclusions. 

For simplicity, in the following we will consider the case when we have one memory 

variable. The discrete finite difference schemes are Fourier (discrete) transformed to the 

frequency-wavenumber domain, where they are compared to the analytical dispersion of 

the viscoelastic medium. The numerical dispersion originates from two places in our 

schemes. First, unwanted dispersion might be introduced in the equation governing the 

memory variable, r. More familiar numerical dispersion is introduced through the part of 

the scheme governing the wave propagation. The dispersion relation for the viscoelastic 

schemes must be solved numerically, most convenient through an iterative method. 

Stability criteria were investigated using von Neumann analysis. The numerical scheme 

is Fourier transformed in space and Z transformed in time. The roots of the emerging 

polynomial equation yield information about the stability of the scheme. If the absolute 

value of all roots is less than one the scheme is stable. 

Dispersion analysis 

The discrete dispersion relations for the 0(2,2) and 0(2,4) schemes are the 

product of a term responsible for wave-propagation and another term responsible for 

viscoelastic damping and dispersion, originating from the memory variable equation. 

The relation for the 0(4,4) scheme does not have the same form. We will start by 

investigating the equation for the memory variable, r, since the new part of the full 

dispersion relation is coming directly from that equation. 

A conventional leapfrog scheme was used to update the stress and velocity 

equations. Since a dominating part of the numerical dispersion originate from the wave 

propagating part, 0(2,4) and 0(4,4) schemes were studied in addition to the 0(2,2) 
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scheme. The 0(2,2) and 0(2,4) schemes will be covered in the same paragraph, since 

these have similar dispersion relations, in contrast to the 0(4,4) scheme which is a 

compact scheme. 

Due to the dependence on Q and the complicated analytical dispersion relations, it 

is not possible to come up with a simple rule of thumb for how many grid-points per 

wavelength that is needed in a simulation to assure sufficiently low effects from 

numerical dispersion. 

1. The memory variable equation. 

We chose to use an unconditionally stable scheme for the memory variable, since 

there is a possibility that for some models, the stability criteria might be violated for 

schemes like Euler forward and Adams-Bashforths method. To gain higher accuracy we 

chose the Crank-Nicholson above the Euler backward scheme. The damping of the two 

schemes are compared in Figure 35, where, not surprisingly, the Euler backward scheme 

does not yield enough damping at high frequencies. The dispersion relation for the 

Crank-Nicholson scheme is, 

ol rt: 2sin(ro~t / 2) 
-2 = l + (- - 1)------it!i.-,----
<.Oo 1'a 2sin(ro~t / 2) +-cos(ro~t / 2) 

(53) 

"a 

The analytic expression for the dispersion can be found by taking the limit of infinitely 

small time steps ~t ~ o. 

(54) 

where ro0 is the angular frequency of a wave propagating in an elastic medium. 

2. The 0(2,2) and 0(2,4) schemes. 

The dispersion relations for the 0(2,2) and 0(2,4) schemes may be written as a 

factor for the numerical dispersion originating from an elastic scheme multiplied with a 

factor for the numerical dispersion from the equation for r. The dispersion relations for 

the elastic 0(2,2) and 0(2,4) schemes are, 

27 



Viscoelastic Finite Difference Modeling 

sin2 (a>o) = k2 sin2 (k0 ), for the 0(2,2)-scheme, (55) 

and 

. 2 2 . 2 4 - cos( ) 
[ ]

2 

sm (a>o) = k sm (k0 ) 
3 

ko , for the 0(2,4)-scheme, (56) 

where w0 = w!it, k0 = kwt1x, and k = c l!!.1/ t1x is the Courant number. Here c is the velocity 

of the medium and kw is the wavenumber. The dispersion relations for the viscoelastic 

schemes turns out to be as simple as relation (53) multiplied with either of relation (55) or 

(56), respectively. Hence, we obtain, 

(57) 

(58) 

where F = ( w2 
/ wi )-1 is obtained from (53). Equations (57) and (58) yield that the 

maximum Courant number for a stable scheme is lowered, since (1 +F) always is greater 

than 1. The stability limit (i.e. the maximum Courant number) is as a matter of fact 

decreased by approximately a factor 1/(1 + 1/Q), since F is almost proportional to 1/Q. 
The highest velocity in the medium is found at infinite frequency, cmax =..JrEM,/raP· 

Therefore, to determine the maximum Courant number this velocity has to be used. The 

dispersion curves for the 0(2,2) and 0(2,4) schemes are plotted in Figures 36 and 37. 

The damping curves for the schemes are plotted in Figures 38 and 39. The viscoelastic 

dispersion curves demonstrate the same characteristics as their elastic analogs. To model 

the velocity in the medium with sufficient accuracy, a large number of grid-points per 

wavelength is needed for the 0(2,2) scheme. The velocity is always modeled too low. 

The 0(2,4) scheme overestimates the velocity for high Courant numbers but does not, on 

the other hand, need as many grid-points per wavelength to accurately model the velocity. 

At high wavenumbers, the damping is underestimated by the 0(2,2) scheme, whereas the 

0(2,4) underestimates the damping at small Courant numbers and overestimates the 

damping at large Courant numbers. 
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3. The 0(4,4) scheme. 

A higher order scheme as the 0(4,4) scheme is useful since it models wave 

propagation accurately for a wide range of Courant numbers. This is an important 

property in simulations in heterogeneous media, since one often encounters large velocity 

variations within the area of simulation. The compact scheme is constructed by adding a 

correction term, to the 0(2,4) scheme consisting of spatial derivatives, as was described 

above. Only the equations for stress and velocity are corrected for higher time 

derivatives. Hence, the scheme used for the memory variable equation is still Crank­

Nicholson. Since the correction is not done through higher order time approximations the 

dispersion relation is no longer the product of a wave propagation term and a relation 

from the memory variable equation. The dispersion relation weights the remainders of 

the 0(2,4) scheme more than the correction terms. For low Q, this results in a behavior 

in between the 0(2,4) and 0(4,4) schemes. The dispersion relation for the 0(4,4) 

compact scheme is, 

(59) 

where 
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f _ . (k ) 4 - cos(k0 ) 
i -sm o 

3 

f 3 = sin(k0 )(cos(k0 )-1) 

At the elastic limit ( r1 ~ 0) the expression collapses to the elastic expression. This is, 

which is equivalent to, 

· 2( )-k2 . 2(k )(4-cos(k0 )+k2(cos(k0 )-1))2 
sm m0 - srn 0 

3 

(60) 

(61) 

For the acoustic scheme the stability limit is k=l .0, and, as mentioned above, slightly 
lower for the viscoelastic scheme. Equation (59), yield that the term (1 +F) weights f 1 
terms more than r3 terms. The f 1 terms correspond to the spatial relation for the 0(2,4) 

scheme while the f3 terms correspond to the correction terms in the 0(4,4) compact 

scheme. For low Q and relatively large values of F, this leads to a behavior similar to 

that for the 0(2,4) scheme. The dispersion curves for the 0(4,4) scheme are plotted in 

Figure 40. The fit is very good up to 10 grid-points/wavelength. The difference between 

the theoretical and the numerical curve is less than 1 %. The damping curves for the 

0(4,4) scheme are displayed in Figure 41. The damping is overestimated for large wave 

and Courant numbers. 

The dispersion relation for the pseudo 0(4,4) scheme is, as for the 0(2,2) and 

0(2,4) schemes, almost the dispersion relation for an elastic scheme multiplied with a 

term from the memory variable equation. This is, 

(62) 
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The dispersion curves for the 0(4,4) and pseudo 0(4,4) schemes are compared in Figure 

42 and the damping curves are compared in Figure 43. The dispersion curves are 

virtually the same and the damping behavior of the pseudo 0(4,4) scheme is actually 

slightly better than for the 0(4,4) scheme. Since F and Gin all above dispersion relations 

depend on mo in a sometimes quite complex way, ro, as a function of kw, is found through 

iteration. The value ro=ckw serves as a good initial value in this procedure. 

Stability analysis 

We used von Neumann analysis to investigate stability for the 0(2,2), 0(2,4), and 

the 0(4,4) schemes. This method consists of Fourier transforming the spatial difference 

approximations of the finite difference scheme. This yields a difference equation for each 

wavenumber. If the absolute values of the solutions to the difference equation are less 

than one the scheme is stable. The schemes were found to be intrinsically unstable. The 

poles of the modal equation, which have a negative real part, are shifted outside the unit 

circle, whereas the poles with positive real part are shifted inside. This should be 

regarded in contrast to a corresponding elastic scheme, were all the poles are on the unit 

circle. In Figure 44 we have plotted the poles for the 0(2,4) scheme. The absolute values 

of the poles with negative real part are plotted in Figure 45. The instability remains, even 

if the spatial derivatives are computed with spectral accuracy. The poles for this pseudo­

spectral scheme are plotted in Figure 46. Here, the poles with positive real part are found 

outside the unit circle. This is shown in Figure 47. Increasing the Courant number or 

decreasing Q increases the absolute values of the poles outside the unit circle. As a 

consequence, the effect of the instability is stronger in a simulation in these cases. A 

simple solution to overcome this problem is to add a dissipative term in one or both of the 

equations for the pressure and velocity. The term can be sufficiently small so that it has 

no effect on the accuracy. Equation (63) shows an example how to add the dissipative 

term in the equation for pressure. 

(63) 

where the second derivative is approximated by, 

P 
(m&);::, Pm+\+ Pm-I -2pm 

u LlX2 (64) 
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A spatial second derivative of the pressure is added to the equation to yield a dissipative 

(heat-equation) behavior. The parameter K(x) must be adjusted in accordance with the 

material properties of every grid-point. K has to be large enough to yield a stable scheme 

and still not affect the modeling of viscoelastic waves. The second derivative must be 

taken in the (n-1):th time step in (39) to yield the desired stabilizing effect Kreiss and 

Oliger [1973]. The modal equation gives a few hints how to scale K to achieve a stable 

scheme. Presently the size of K is determined by a formula derived from the modal 

equation and through trial and error. Figure 48 demonstrates a case where a dissipative 

term has been added to the equation for the stress in the 0(2,4) scheme. The term 

controls the instability as is illustrated in Figure 49, where the absolute values of the 

poles are less than or equal to one. The effect of the dissipative term on dispersion and 

damping is illustrated for the 0(2,4) scheme in Figures 50 and 51, where these are plotted 

with and without the stability controlling dissipative term. At high wavenumbers and at 

the peak of the damping curve, the damping is slightly increased by the dissipative term. 

The dispersion curves are practically identical. 

We found the schemes to model the viscoelastic equations well. The propagation 

of viscoelastic waves appears to be the most crucial issue, since the Crank-Nicholson 

scheme is sufficiently accurate for the memory variable equation. The use of leapfrog 

time stepping schemes seems to result in intrinsically unstable schemes. Fortunately, this 

problem is easy to overcome by adding a sufficiently small dissipative term which does 

not affect the solution. We are now ready to generalize our results to 2-D. 
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2-D VISCOELASTIC MODELING 

The theory derived for the 1-D case above is easy to generalize to 2-D and the 

results from the 1-D experiments are applicable also in the 2-D case. In the 2-D 

viscoelastic case of 1 relaxation mechanism both for the P-waves and the SY-waves the 

analog to (33), (37), and (38) is a system of 9 first order linear partial differential 

equations. This is, 

_xy_=µ _e _x +-Y +r acr r. (av av J 
at . 0-r~ dy ax 

a(j ( 'l'p 'l's J av 'l'p av ---11...= 7r _e -2µ _e _x +Jr _e _Y +p-2q 
dt O 'l'p O 'l's ax O 'l'p ..:l., 2 

er er er vy 

avx =.!.(acrll + acrxyJ 
dt p dx dy 

dp =--1 p+ Jr _1 (1- 'l'f J(avx + avy J 
at 'l'p O 'l'p 'l'p ax ;)., er er er vy 

ar =--1 r+µ _1 (l- -r;J(avx+avYJ 
at 'l's O 'l's 'l's ;). ' ax er er er vy 

(65) 

aq2 =--1 q +µ _1 (1- -r;Javx 
dt 'l's 2 0 r. 'l's dx 

er er er 
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aii denotes the ij:th component of the symmetric stress tensor. 

vi denotes the i:th component of the velocity. 

p, r, Qi, q2 are the memory-variables (4 are needed for the simplest 2-D case with one 

relaxation mechanism each for the P-waves and the SY-waves. 
-r:, -r~ are the strain and stress relaxation times for the P-waves. 

-r:, ~ are the strain and stress relaxation times for the SY-waves. 

µ 0 is the relaxation modulus corresponding to SY-waves and is analog to the Lame 

constant µ in the elastic case. 

,r0 is the relaxation modulus corresponding to P-waves and is analog to the sum of the 

Lame constant )., and 2 times the Lame constant µ . 

Here we have defined the relaxation functions so that these correspond to P- and 

SY-waves respectively. We are therefore able to derive the relaxation mechanisms 

directly from constraints on the quality factors for the P- and SY-waves separately, 

analogous to what was done in the 1-D case described above. This is why a relaxation 
modulus, 1r0 , not corresponding to a single Lame constant is introduced. 

In the simplest 1-D case when only one pair of relaxation mechanisms was used 

only one memory-variable was needed. In the 2-D case we need 4 memory-variables in 

the simplest case corresponding to one pair of relaxation mechanisms each for the P- and 

the SY-waves. This stems from the fact that different convolution terms arises in the 

equations governing the stress components. 

Stability and accuracy issues are treated as was described above. The scheme has 

the same properties as the 1-D 0(2,4) scheme. Leap-frog in time and 4:th order central 

differences in space are used for the equations governing velocity and stress components. 

Crank-Nicholson in time and 4:th order central differences in space are used for the 

equations governing the memory variables. The scheme is intrinsically unstable because 

it yields the 1-D 0(2,4) scheme when applied to plane waves in the coordinate directions, 

which was shown to be unstable above. In most cases the instability appears to be very 

weak and the scheme can be used directly on the system of equations in (65). 

The dispersion relation for the 2-D viscoelastic scheme has two solutions, one 

corresponding to P-wave velocity and one corresponding to S-wave velocity. This yields 

simple modeling of fluid-solid boundaries, since there is no coupling between P-waves 

and S-waves in a homogeneous medium. Dissipative terms have to be introduced, as 

shown above, in all equations for stress and velocity to yield a conditionally stable 

scheme with uncoupled P-wave and S-wave velocities, when this is necessary. The 
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stabilizing term is the same for both P-waves and S-waves, though. This means that if 

the S-waves are modeled in such a way that strong dissipation has to be introduced to 

keep the scheme stable, that the modeling of P-waves might be affected. 

We believe that our viscoelastic code has applications in a diversity of fields. To 

demonstrate this we will next show two different marine environments, one continental 

shelf and one deep sea, where the negligence of anelastic effects seriously limits realistic 

analyses. In these cases the instability does not pose any problems and no stabilizing 

terms were therefore added. Close to the mid-oceanic ridges the seafloor is lineated 

parallel to the ridges (Goff and Jordan, 1988). The geometries of the environments in the 

two examples hence have symmetric characters along one axis, and a 2-D study is 

therefore suitable for sufficiently realistic analyses. 

Numerical example 1. Realistic deep-sea seafloor scattering. 

In mono-static seafloor scattering measurements the reverberation of acoustic 

energy of low incidence grazing angle on the seafloor is of particular interest. Fluid 

saturated and porous media, such as sedimented seafloor, are highly anelastic. This 

behavior can be well described by a viscoelastic model. In this example we show the 

importance of including viscoelastic effects in such a scattering simulation. The seafloor 

and the parameters used are typical for young (10-50 m.y. old) seafloor close to the 

northern mid-Atlantic ridge. The largest scale of the seafloor obey an exponential 

decaying solution of the heat equation as a function of the distance to the mid oceanic 

ridges. When modeling the seafloor, larger features may be regarded as deterministic, 

while a stochastic model may be applied to smaller features. Goff and Jordan [1988] 

present a new way of analyzing the stochastic component of the seafloor, assuming it is 

of fractal character. Goff et al. [ 1992] describe a method of generating realistic stochastic 

seafloor profiles with sediments added. We used a profile generated by them from data 

from the proximity of the mid-Atlantic ridge. The full length seafloor profile is 20 km 

long and is discretized down to 1 m. We chose a 1 km segment to use in our finite 

difference simulations. This is enclosed in Figure 52. We used material properties 

appropriate for seafloor of this age in the Atlantic ocean (e.g. Hamilton et al., 1982). The 

sediments are characterized by a low Q (30-50 both for pressure and shear waves), 

pressure wave velocities close to that in water, low shear wave velocities (a few 100 m/s), 

and about 70% higher densities than that of water. This is typical for fluid saturated 

unconsolidated sediments. The material properties are listed in Table 4. 
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Our initial condition was a tapered amplitude modulated plane wave incident on 

the seafloor with 10 degrees grazing angle. The wave has a central frequency of 140 Hz 

and a bandwidth of approximately 50 Hz. The particular wave-form is similar to wave­

forms used in many sonar systems. Since the bandwidth occupies less than one octave 

only one pair of relaxation mechanisms for each P- and SY-waves is needed. The plane 

wave was inserted in the water column in the grid as an initial condition. In the first time 

step the desired wave-front was chosen. The second time step was simply calculated 

from the first time step using D'Alemberts formula, the angle of incidence, and the 

velocity in the water. In Figure 53a we show the P-wave energy snapshot for the initial 

condition (the s.:.wave energy is of course O everywhere). 

We chose a grid-spacing of 1 min both spatial directions. The grid was 1100 m 

times 315 m with an additional 80 m wide frame for the absorbing boundary added 

around this grid, acting as a sponge filter. In this frame we used a very low Q (Q=6 both 

for P- and S-waves) and tuned the Lame constants so that the dispersion relation yielded a 

constant velocity over the transition from the grid right inside the frame to its interior for 

the center frequency. Hence we were able to minimize reflections from impedance 

contrasts. Below we will present a suite of P- and SY-wave energy snapshots. We have 

cut away the absorbing frame in all of these. The time step was 0.1 ms which leads to a 

maximum Courant number of 0.26 which is well below the stability criterion and in 

accordance with the accuracy observations for the 0(2,4) scheme. It should be 

emphasized that if we sacrifice accuracy it would be possible to run simulations at a 

significantly higher Courant number if a radiating boundary condition would be used 

instead of a low Q frame (Higdon, 1991), since the regions of the grid with the highest 

Courant number are within the absorbing frame. The number of grid-points per 

wavelength varies of course throughout the grid both with P- and S-wave velocities. The 

lowest number of grid-points per wavelength occurs for SY-waves in the sediments 

where we are down to 4, while it is 19 for the P-waves in the basement. We have done 

convergence tests at the particular material properties for denser sampled grids to confirm 

that the field is not under-sampled. 

One has to keep in mind that a viscoelastic model not only introduce attenuative 

properties to the materials but also dispersive effects of realistic character (Futterman, 

1962). In this example we can therefore expect to observe two different effects on the 

scattered field when comparing elastic and a viscoelastic simulations. Both attenuation of 

wave energy and changes rn impedance's due to this dispersion will affect the scattered 

field. The velocities listed in Table 4 are the elastic velocities or the velocities for the 0 

Hz limit in the viscoelastic case. At 140 Hz and these values of Q the velocity increases 
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about 1 %. For instance, in the viscoelastic case at 140 Hz the velocity for the P-waves in 

the sediment layer increases from 1.54 to 1.55 km/s. We can expect the effects from 

these changes to be smaller than the effects from the attenuation, although these might be 

significant if we are close to transition from pre- to post-critical reflection. 

In Figures 53a through g we show a series of energy snapshots. Figure 53a shows 

the initial condition. We present snapshots for P- and SY-wave energies at 0.3 sand 0.5 s 

in Figures 53b through e. At 0.3 s there is a strong headwave propagating through the 

basement ahead of the wave-front. A surfacewave develops in the interface between 

sediments and the basement. At 0.5 s this, as well as the SY-wave energy in the 

sediments, has been attenuated due to the viscoelastic properties of the seafloor. In 

Figures 53f and g we show the P-wave energy snapshot at 0.5 s for an elastic sedimented 

seafloor and for a bare seafloor. The surfacewave is much stronger in the elastic case 

than in the viscoelastic case. Hence, the viscoelastic character of the sediments leads to 

attenuation of the surfacewave, an important source of backscattered energy in low 

frequency elastic scattering simulations (e.g. Dougherty and Stephen, 1988). The 

leftmost crest shadows the trough in the bare seafloor experiment, while the sediment 

layer traps energy when an elastic sediment cover is present. Therefore the surfacewave 

is stronger when elastic sediments are present compared to the bare seafloor. 

We have done several different experiments with numerous seafloor profiles 

which all show that anelastic properties play an important role in this kind of seafloor 

scattering experiments. It is beyond the scope of this paper to go into the details of these 

investigations but differences up to 15 dB between elastic and viscoelastic simulations are 

observed in the back-scattered direction. 

Numerical example 2. Wave propagation in sediments in an incised valley on the 

continental shelf. 

Common features on the continental shelf along the U. S. Gulf coast are incised 

valleys created by a variety of fluvial systems (ancient meandering rivers and deltas, etc.). 

During retrogradation such systems are back-filled with elastic sediments. These 

sediment fills are highly anelastic and moreover the properties changes with time as these 

are compressed by younger deposits. We chose a typical cross-section of such a system 

for a numerical simulation. This is enclosed in Figure 54 and the material properties are 

listed in Table 5. We chose not to model the water surface since multiple reflections from 

this would complicate a simple analysis of the differences between a viscoelastic and an 
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elastic simulation. Hence, we apply the same type of absorbing boundaries all around the 

grid as was used in the first example. 

As a source we used an 80 Hz Ricker wavelet modeling an air-gun impulse. The 

80 Hz Ricker wavelet is symmetric with respect to its radius and was inserted as a 

pressure pulse in the water column, constant in the first two time steps. AP-wave energy 

snapshot of this is enclosed in Figure 55. The Ricker wavelet spans over 3-4 octaves, and 

hence 3 to 4 relaxation mechanisms should be applied in order to assure a constant Q as a 

function of frequency over the full frequency interval to be in accordance with the 

algorithm discussed above. The fewer relaxation mechanisms that are used the less 

constant Q within the desired interval. It should however be emphasized that constant Q 

not is a universal truth for all earth materials but deviations from this rule of thumb is of 

course possible. The purpose of this example is to qualitatively demonstrate the 

difference between an elastic and viscoelastic simulation and hence we chose to use only 

one set of relaxation mechanisms. This leads to a very close to constant Q within 60 Hz 

to 120 Hz, which is where the main energy content of this Ricker wavelet is, and a fairly 

good approximation within the rest of the Ricker wavelet frequency band. This serves 

our purposes more than well. To further justify our decision we refer to the 1-D 

experiment discussed above, which is illustrated in Figure 19, where we compared 

snapshots for a Ricker wavelet propagating in media characterized by 1 and 3 relaxation 

mechanisms, respectively. 

The model is 190 m in the vertical direction of which the upper 70 m are water 

(see Figure 54), and 640 m in the horizontal direction. We have also in this example cut 

out the absorbing frame in all energy snapshots in Figure 55, Figures 56a through h, and 

Figures 57a through h. 1 m grid-spacing was used in both spatial directions and the time 

step was 0.15 ms which leads to a maximum Courant number of 0.33 which is well below 

the stability limit for our scheme. 

In Figures 56a through h we show P- and SY-wave energy snapshots of a 

viscoelastic simulation using the material properties in Table 5. In Figures 57 a through h 

we show snapshots from the analog experiment in the elastic limit where we have set all 

Q to 10,000 in Table 5. The SY-wave energy snapshots have been amplified three times 

more compared to the P-wave energy snapshots. In Figures 56a and b, and 57a and b, we 

show the P- and SY-wave energy snapshots at 0.05 s for the viscoelastic and the elastic 

simulation respectively. In the snapshots for the P-wave energy, reflections from the 

different sediment layers are clearly visible. There is a strong conversion of P-waves to 

SY-waves at the different boundaries. The initiation of SY-waves are found where the P­

wave intersect the boundaries of the model. This gives the impression that the SY-waves 
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are following the boundaries between the different sediment layers. This effect is not 

equally prominent at the water-solid boundary. There is hardly any difference between 

the elastic and viscoelastic case. The energy from the waves is also well absorbed by the 

boundaries (no reflections are visible). Figures 56c and 57c are snapshots of the P-wave 

energy after 0.1 s of propagation, for the viscoelastic respectively the elastic model. The 

P-wave in the viscoelastic medium is slightly diminished compared to the P-wave in the 

elastic medium. The conversion of P-waves to SY-waves along the sediment boundaries 

continues as can be seen in Figures 56d and 57d, which are snapshots of the SY-wave 

energy at 0.1 s for the viscoelastic respectively the elastic medium. The SY-waves in the 

viscoelastic medium have clearly smaller amplitudes compared to the SY-waves in the 

elastic medium. Details are also more difficult to observe in the snapshot from the 

viscoelastic simulation. In Figures 56e and f, and 57e and f, we show the P- and SY­

wave energy snapshots at 0.2 s. The amplitude of the P-headwave is significantly 

reduced from propagating through the viscoelastic sediments. The difference between the 

viscoelastic and the elastic simulations is even more striking in the SY-wave energy 

snapshots. Moreover, conversions from SY-to P-waves at the layer boundaries induce P­

wave energy in the water column. This process is much weaker in the viscoelastic case 

compared to the elastic case (this is not clearly visible in the snapshots due to an 

amplitude threshold in the plotting program). In Figures 56g and h, and 57g and h, we 

show the P- and SY-wave energy snapshots at 0.3 s. From these plots it is evident that 

wave propagation in a medium like this is of viscoelastic nature. There is hardly any 

energy left in the viscoelastic simulation compared to the elastic simulation. 

39 



Viscoelastic Finite Difference Modeling 

CONCLUSIONS 

Viscoelasticity provides a powerful tool for modeling real earth media. The 

viscoelastic relaxation function can easily be tuned to resemble the attenuative and 

dispersive effects that real earth materials have on propagating waves. We conclude that 

it is fully possible to use finite difference methods to simulate wave propagation through 

dispersive and attenuative viscoelastic media. It is easy to choose simulation accuracy 

and the code is highly portable. We have done viscoelastic wave propagation simulations 

using our schemes and have achieved high performance on several different computers 

such as, the Statdent 2000, different SUN computers, the Cray YMP, and the hypercube 

i860. 

The different schemes clearly converge towards the exact solution consistent with 

predicted accuracy. There are two different instabilities in the schemes. First there is the 

instability from the finite difference approximation of the elastic wave equation. This is 

possible to control and the stability limit is given in terms of the Courant number. The 

other instability is new and makes the schemes intrinsically unstable. For moderate 

simulation parameters and Q values, this tend not to be a problem. Generally the scheme 

is more unstable the lower Q is. An important observation is that low values of Q tend to 

occur where the velocity is low. Since the highest velocities in a model set the limit for 

the Courant number, the Courant number in low velocity zones will be relatively small 

and therefore also less unstable. In other cases, the instability can be controlled by 

adding a sufficiently small dissipative term which does not affect the accuracy of the 

scheme. 

The 0(2,4) scheme is less computationally expensive while the 0(4,4) scheme has 

a 30% higher stability limit and is exact over a significantly larger Courant number 

interval, which is important in wave propagation simulations in heterogeneous media. 

Despite the advantages of the 0(4,4) scheme, the computational expense in 2-D makes it 

impractical. 

Through our numerical examples we have shown that anelastic effects must be 

considered in many situations and that our scheme accurately models wave propagation 

through viscoelastic media. Our examples also prove that viscoelastic simulations using 

finite difference grids of practical sizes are possible. 

The code has primarily been developed to provide a useful tool for scattering and 

inversion projects. At present we are doing 2-D viscoelastic seafloor scattering 

experiments as well as Q-inversion studies. 
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Q 't'e(ms) 't'CT(ms) 

50 4.33 4.16 

100 4.287 4.202 

200 4.2654 4.2230 

1,000 4.2484 4.2399 

10,000 4.2446 4.2437 

Table 1. The relaxation mechanisms used in the experiments to simmulate the Q in the 

left most column. 
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Pair i-c(ms) i-a(ms) 

1 8.0186 7.9578 

2 1.1565 1.1488 

3 0.51173 0.51705 

Table 2. Optimized relaxation mechanisms to yield a constant q of 200 between 20 and 

80Hz. 
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grid-points/wavelength fuc(m) Lit (ms) 

50 1 0.40 

25 2 0.80 

10 5 2.00 

5 10 4.00 

2 25 10.0 

Table 3a. Simulation parameters for the 0(2,2) and 0(4,4) scheme. Q=50@ 40 Hz, 

velocity in medium is 2.0 km/s at 0 Hz. 

grid-points/wavelength Lix (m) Lit (ms) 

50 1 0.01 

25 2 0.04 

10 5 0.25 

5 10 1.00 

2 25 6.25 

Table 3b. Simulation parameters for the 0(2,4) scheme. Q=50@ 40 Hz, velocity in 

medium is 2.0 km/s at O Hz. 

grid-points/wavelentgth Lix (m) Lit (ms) 

50 1 0.20 

25 2 0.40 

10 5 1.00 

5 10 2.00 

2 25 5.00 

Table 3c. Simulation parameters for the 0(2,4) scheme. Q=50@ 40 Hz, velocity in 

medium is 2.0 km/sat O Hz. (constant Courant number= 0.4) 
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Water Sediments Basement 

VP (km/s) 1.54 1.54 2.6 

Qp 10,000 50 450 

V
5 

(km/s) 0 0.5 1.45 

Q. 0 35 225 

p (g/cm3
) 1.05 1.7 2.8 

Table 4. The average material properties used in the seafloor scattering experiment. v P 

is the velocity of pressure waves and QP its quality factor, v. is the shear wave velocity 

and Q. its quality factor, pis the density. 
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Water Layer 1 Layer 2 Layer 3 Layer 4 

VP (km/s) 1.52 1.60 1.75 1.9 2.2 

Qp 10,000 40 50 50 100 

vs (km/s) 0 0.4 0.8 1.0 1.2 

Qs 0 30 35 45 70 

p (g/cm3
) 1.05 1.3 1.5 1.5 2.0 

Table 5. The average material properties used for the ensized valley model. v P is the 

velocity of pressure waves and QP its quality factor, vs is the shear wave velocity and 

Qs its quality factor, pis the density. Layer 1, 2, 3, and 4 denotes the different sediment 

layers. 
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FIGURE CAPTIONS 

Figure 1. Mechanical models of viscoelastic elements. The spring and the dashpot are 

illustrated in (a) while the standard linear solid is illustrated in (b). 

Figure 2. Three optimized pairs of relaxation functions for a constant Q of 100 between 

100 and 500 Hz. Solid: The desired function (between 100 and 500 Hz). Dashed: The 

optimized function using the approximation described in the text. Dotted: Exact Q using 

the optimized relaxation times. 

Figure 3. Effects on Q by perturbations in the relaxation times. The case illustrated in 

Figure 1 was used as the unperturbed state. Solid: The desired function (between 100 and 

500 Hz). Dashed: Q after increasing both the stress relaxation time and the strain 

relaxation time by 20%. Dotted: Q after increasing only the strain relaxation time by 

20%. 

Figure 4. Three optimized pairs of relaxation functions for a constant Q of 50 between 

100 and 500 Hz. Solid: The desired function (between 100 and 500 Hz). Dashed: The 

optimized function using the approximation described in the text. Dotted: Exact Q using 

the optimized relaxation times. 

Figure 5. The initial condition (the stress) in the numerical experiments is a Ricker 

wavelet with a center frequency at 35 Hz, traveling in a 2000 m long interval with 

periodic boundary conditions in the direction of increasing x with a velocity of 2000 m/s. 

The density is 2000 kg/ m3 
• 

Figure 6. A case with severe numerical dispersion illustrating robust nature of the 

equation governing the memory variables. The same initial condition and material 

properties as in Figure 5 with a Q of 50 (relaxation times listed in Table 1) were used. 

The snapshot was taken at 2.25 s using a Courant number of 0.6 and a step size of 2m in 

the 0(2,4) code. Solid: Crank-Nicholson used as the time stepping scheme in the 

equation governing the memory variables. Dashed: Fourth order Gear's method used as 

the time stepping scheme in the equation governing the memory variables. 

49 



Viscoelastic Finite Difference Modeling 

Figure 7. A case with severe numerical dispersion illustrating robust nature of the 

equation governing the memory variables. The same initial condition and material 

properties as in Figure 5 with a Q of 10,000 (relaxation times listed in Table 1) were 

used. The snapshot was taken at 2.25 s using a Courant number of 0.6 and a step size of 

2m in the 0(2,4) code. Solid: Crank-Nicholson used as the time stepping scheme in the 

equation governing the memory variables. Dashed: Fourth order Gear's method used as 

the time stepping scheme in the equation governing the memory variables. 

Figure 8. Snapshots at 2.25 s illustrating the dependence on Q using the 0(2,2) code at a 

Courant number of 0.8 and a step size of lm. The same initial condition and material 

properties as in Figure 5 were used. The relaxation times for the different values of Q are 

listed in Table 1. Solid: Q=50. Dashed: 200. Dotted: 10,000. 

Figure 9. Snapshots at 2.25 s illustrating the dependence on Q using the 0(2,4) code at a 

Courant number of 0.2 and a step size of 2m. The same initial condition and material 

properties as in Figure 5 were used. The relaxation times for the different values of Q are 

list.ed in Table 1. Solid: Q=50. Dashed: 200. Dotted: 10,000. 

Figure 10. Snapshots at 2.25 s illustrating the dependence on the Courant number using 

the 0(2,4) code at a step size of 2m. The same initial condition and material properties as 

in Figure 5 and a Q of 10,000 were used. The relaxation times for the different values of 

Qare listed in Table 1. Solid: Courant number= 0.6. Dashed: Courant number= 0.4. 

Dotted: Courant number= 0.2. 

Figure 11. Snapshots at 2.25 s illustrating the dependence on the spatial step size using 

the 0(2,4) code at a Courant number of 0.2. The same initial condition and material 

properties as in Figure 5 and a Q of 10,000 were used. The relaxation times for the 

different values of Qare listed in Table 1. Solid: Spatial step size= lm. Dashed: Spatial 

step size = 2m. Dotted: Spatial step size = 3m. 

Figure 12. Snapshot at 2.25 s illustrating the dependence on the Courant number using 

the 0(4,4) code at a step size of 2m. The same initial condition and material properties as 

in Figure 5 and a Q of 10,000 were used. The relaxation times for the different values of 

Qare listed in Table 1. Solid: Courant number= 0.8. Dashed: Courant number= 0.4. 

Dotted: Courant number= 0.2. 
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Figure 13. Snapshots at 2.25 s illustrating the dependence on the spatial step size using 

the 0(4,4) code at a Courant number of 0.8. The same initial condition and material 

properties as in Figure 5 and a Q of 10,000 were used. The relaxation times for the 

different values of Qare listed in Table 1. Solid: Spatial step size= lm. Dashed: Spatial 

step size = 2m. Dotted: Spatial step size = 3m. 

Figure 14. Snapshots at 2.25 s illustrating the dependence on Q using the 0(4,4) code at 

a Courant number of 0.8 and a step size of lm. The same initial condition and material 

properties as in Figure 5 were used. The relaxation times for the different values of Q are 

listed in Table 1. Solid: Q=50. Dashed: 200. Dotted: 10,000. 

Figure 15. Snapshots at 2.25 s comparing the different schemes to each other using Q = 

50 (see Table 1) and optimal choices of simulation parameters for the different schemes. 

The same initial condition and material properties as in Figure 5 were used. Solid: The 

0(4,4) scheme at a Courant number 0.8 and a spatial step size of lm. Dashed: The 

0(2,4) scheme at a Courant number of 0.2 and a spatial step size of 2m. Dotted: The 

0(2,2) scheme at a Courant number of 0.8 and a spatial step size of lm. 

Figure 16. Snapshots at 2.25 s comparing the different schemes to each other using Q = 

10,000 (see Table 1) and optimal choices of simulation parameters for the different 

schemes. The same initial condition and material properties as in Figure 5 were used. 

Solid: The 0(4,4) scheme at a Courant number 0.8 and a spatial step size of lm. Dashed: 

The 0(2,4) scheme at a Courant number of 0.2 and a spatial step size of 2m. Dotted: The 

0(2,2) scheme at a Courant number of 0.8 and a spatial step size of 1 m. 

Figure 17. Seismogram at x=500 between 2.0 and 2.5 s comparing the 0(4,4) scheme to 

an analytical solution to the solution from the 0(4,4) scheme. Q = 10,000 (see Table 1) 

and the material properties are the same as in Figure 5. The initial condition is a narrow 

band amplitude modulated 50 Hz harmonic wave. Solid: Analytical solution from Bland 

[1960]. Dashed: Solution from the 0(4,4) scheme using a Courant number of 0.8 and a 

spatial step size of 1 m. 
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Figure 18. Seismogram at x=500 between 2.0 and 2.5 s comparing the 0(4,4) scheme to 

an analytical solution to the solution from the 0(4,4) scheme. Q = 200 (see Table 1) and 

the material properties are the same as in Figure 5. The initial condition is a narrow band 

amplitude modulated 50 Hz harmonic wave. Solid: Analytical solution from Bland 

[1960]. Dashed: Solution from the 0(4,4) scheme using a Courant number of 0.8 and a 

spatial step size of 1 m. 

Figure 19. Snapshots at 2.25 s comparing experiments with a constant Q of 200 and 

three relaxation mechanisms (listed in Table 2) to one with one relaxation mechanism 

(listed in Table l) using the 0(2,4) scheme at a Courant number of 0.2 and a spatial step 

size of 2m. The same initial condition and material properties as in Figure 5 were used. 

Solid: Three pairs of relaxation mechanisms. Dashed: One pair of relaxation 

mechanisms. 

Figure 20. Snapshots at 2.25 s comparing the memory variables in an experiment with a 

constant Q of 200 and three relaxation mechanisms (listed in Table 2) using the 0(2,4) 

scheme at a Courant number of 0.2 and a spatial step size of 2m. The same initial 

condition and material properties as in Figure 5 were used. Solid: The memory variable 

corresponding to pair 1 of the relaxation mechanisms in Table 2. Dashed: The memory 

variable corresponding to pair 2 of the relaxation mechanisms in Table 2. Dotted: The 

memory variable corresponding to pair 3 of the relaxation mechanisms in Table 2. 

Figure 21. Snapshots at 2.25 s comparing memory variables from experiments with a 

constant Q of 200 and three relaxation mechanisms (listed in Table 2) to one with one 

relaxation mechanism (listed in Table 1) using the 0(2,4) scheme at a Courant number of 

0.2 and a spatial step size of 2m. The same initial condition and material properties as in 

Figure 5 were used. Solid: The memory variable corresponding to pair 1 of the relaxation 

mechanisms in Table 2 from the experiment with three pairs of relaxation mechanisms. 

Dashed: The memory variable from the experiment using one pair of relaxation 

mechanisms (listed in Table 1). 

Figure 22. Snapshots at 1.25 sand 2.25 s using the 0(2,4) code at a Courant number of 

0.2, a step size of 2m. The same initial condition and material properties as in Figure 5 

were used with a constant Q of 200 using 3 pairs of relaxation mechanisms (listed in 

Table 2). Solid: Snapshot a 1.25 s. Dashed: Snapshot at 2.25 s. 

52 



Viscoelastic Finite Difference Modeling 

Figure 23. Logarithmic L2 error for the 0(2,2) scheme as a function of logarithm of 

grid-points/wavelength. The best fit line for the logarithmic L2 error decreases as -2.23, 

close to the theoretical value -2. Solid: Best fit line. Stars: L2 error 

Figure 24. Snapshot of propagating sinusoid after 1.00 s for the 0(2,2) scheme (velocity 

2.0 km/s in medium). Solid: Analytic solution. Dashed: Numerical result 5 grid­

points/wavelength. Dotted: Numerical result 2 grid-points/wavelength. 

Figure 25. Snapshot of propagating sinusoid after 1.00 s for the 0(2,2) scheme (velocity 

2.0 km/s in medium). Solid: Analytic solution. Dashed: Numerical result 50 grid­

points/wavelength. Dotted: Numerical result 25 grid-points/wavelength. Dash-dotted: 

Numerical result 10 grid-points/wavelength. 

Figure 26. Logarithmic L2 error for the 0(2,4) scheme as a function of logarithm of 

grid-points/wavelength. The best fit line for the logarithmic L2 error decreases as -5.13, 

close to the theoretical value -4. Solid: Best fit line. Stars: L2 error 

Figure 27. Snapshot of propagating sinusoid after 1.00 s for the 0(2,4) scheme (velocity 

2.0 km/s in medium). Solid: Analytic solution. Dashed: Numerical result 5 grid­

points/wavelength. Dotted: Numerical result 2 grid-points/wavelength. 

Figure 28. Snapshot of propagating sinusoid after 1.00 s for the 0(2,4) scheme (velocity 

2.0 km/s in medium). Solid: Analytic solution. Dashed: Numerical result 50 grid­

points/wavelength. Dotted: Numerical result 25 grid-points/wavelength. Dash-dotted: 

Numerical result 10 grid-points/wavelength. 

Figure 29. Logarithmic L2 error for the 0(2,4) scheme as a function of logarithm of 

grid-points/wavelength (constant Courant number=0.4). The best fit line for the 

logarithmic L2 error decreases as -1.54. The good fit at low number of grid­

points/wavelength depends on the large damping of the sinusoid. Solid: Best fit line. 

Stars: L2 error 

Figure 30. Snapshot of propagating sinusoid after 1.00 s for the 0(2,4) scheme (constant 

Courant number, velocity 2.0 km/s in medium). Solid: Analytic solution. Dashed: 

Numerical result 5 grid-points/wavelength. Dotted: Numerical result 2 grid­

points/wavelength. 
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Figure 31. Snapshot of propagating sinusoid after 1.00 s for the 0(2,4) scheme ( constant 

Courant number, velocity 2.0 km/s in medium). Solid: Analytic solution. Dashed: 

Numerical result 50 grid-points/wavelength. Dotted: Numerical result 25 grid­

points/wavelength. Dash-dotted: Numerical result 10 grid-points/wavelength. 

Figure 32. Logarithmic L2 error for the 0(4,4) scheme as a function of logarithm of 

grid-points/wavelength. The best fit line for the logarithmic L2 error decreases as -5.13, 

close to the theoretical value -4. Solid: Best fit line. Stars: L2 error 

Figure 33. Snapshot of propagating sinusoid after 1.00 s for the 0(4,4) scheme (velocity 

2.0 km/s in medium). Solid: Analytic solution. Dashed: Numerical result 5 grid­

points/wavelength. Dotted: Numerical result 2 grid-points/wavelength. 

Figure 34. Snapshot of propagating sinusoid after 1.00 s for the 0(4,4) scheme (velocity 

2.0 km/s in medium). Solid: Analytic solution. Dashed: Numerical result 50 grid­

points/wavelength. Dotted: Numerical result 25 grid-points/wavelength. Dash-dotted: 

Numerical result 10 grid-points/wavelength. 

Figure 35. Damping for Crank-Nicholson and Euler backward schemes in the equation 

for the memory variable. The curve for the Crank-Nicholson scheme is close to the 

theoretical curve at all frequencies. The Euler backward scheme underestimates the 

damping at high wavenumbers. Q=50@ 40 Hz, ~t/'t0 =0.24. This ratio between the 

relaxation time and the time step is very large and will seldom be encountered due to the 

stability criterion and dispersion properties for a full scheme. Solid: Theoretical curve. 

Dashed: Crank-Nicholson. Dotted: Euler backward. 

Figure 36. Dispersion for the 0(2,2) and 0(2,4) schemes. The Courant number 

increases from 0.05,0.2 to 0.4 for both schemes. The 0(2,4) scheme overestimates the 

velocity for a Courant number of 0.4. The 0(2,4) curve approximates the theoretical 

curve considerably better than the 0(2,2) curve. Maximum frequency 500 Hz. Q=50 @ 

7.5 Hz. Solid: Theoretical curve. Dashed: 0(2,4). Dotted: 0(2,2). 

Figure 37. Dispersion for the 0(2,2) and 0(2,4) schemes. The Courant number 

increases from 0.6 to 0.7 for both schemes. The 0(2,4) scheme overestimates the 

velocity for these Courant numbers. The fit of the 0(2,2) is still poor. Maximum 
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frequency 500 Hz. Q=50@ 37.5 Hz. Solid: Theoretical curve. Dashed: 0(2,4). Dotted: 

0(2,2). 

Figure 38. Damping for the 0(2,2) scheme. The Courant number varies from 0.4, 0.7 to 

0.9. The damping is underestimated for all Courant numbers. Maximum frequency 500 

Hz. Q=50@ 37 .5 Hz. Solid: Theoretical curve. Dashed: 0(2,2) C=0.4 . Dotted: 0(2,2) 

C=0.7. Dash-dotted: 0(2,2) C=0.9. 

Figure 39. Damping for the 0(2,4) scheme. The Courant number varies from 0.05, 0.4 

to 0.7. The damping is underestimated for Courant number=0.05, 0.4 and overestimated 

for Courant number=0.7 . Maximum frequency 500 Hz. Q=50@ 37.5 Hz. Solid: 

Theoretical curve. Dashed: 0(2,4) C=0.05. Dotted: 0(2,4) C=0.4. Dash-dotted: 0(2,4) 

C=0.7. 

Figure 40. Dispersion for the 0(4,4) scheme. The Courant number varies from 0.2, 0.4, 

0.6, 0.8 to 0.9 . The 0(4,4) aligns very well to the theoretical curve. Maximum 

frequency 500 Hz. Q=50@ 37.5 Hz. Solid (top): Theoretical curve. Dashed (bottom): 

0(4,4) C=0.2 . Dotted: 0(4,4) C=0.4 . Dash-dotted: 0(4,4) C=0.6 . Solid (bottom): 

0(4,4) C=0.8. Dashed (top): 0(4,4) C=0.9. 

Figure 41. Damping for the 0(4,4) scheme. The damping is overestimated for large 

Courant numbers and slightly underestimated for Courant number=0.2. Solid (bottom): 

Theoretical curve. Dashed (bottom): 0(4,4) C=0.2 . Dotted: 0(4,4) C=0.4 . Dash­

dotted: 0(4,4) C=0.6. Solid (top): 0(4,4) C=0.8. Dashed (top): 0(4,4) C=0.9. 

Figure 42. Dispersion for the 0(4,4) scheme and the pseudo 0(4,4) scheme for a Courant 

number = 0.8 . The dispersion for the two schemes is virtually identical. Solid: 

Theoretical curve. Dashed: 0( 4,4) scheme. Dotted: pseudo 0( 4,4) scheme. 

Figure 43. Damping for the 0(4,4) scheme and the pseudo 0(4,4) scheme for a Courant 

number = 0.8 . The pseudo 0( 4,4) scheme overestimates the damping slightly at the 

point of maximum damping, but it aligns better to the theoretical curve, for high 

wavenumbers, than the 0(4,4) scheme. Solid: Theoretical curve. Dashed: 0(4,4) 

scheme. Dotted: pseudo 0(4,4) scheme. 
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Figure 44. Poles of the modal equation for the 0(2,4) scheme. The poles with negative 

real part lies outside the unit circle. Poles located on the positive real axis inside the unit 

circle originates from the memory variable equation. Solid: Unit circle. Stars: Pole 

locations. 

Figure 45. The absolute values minus one for the poles with negative real part for the 

0(2,4) scheme. The poles corresponding to half the Nyquist frequency have the largest 

absolute values. Courant number=0.4, Q=50@ 37 .5 Hz. Solid: Absolute value of poles. 

Figure 46. Poles of the modal equation for a scheme with spectral accuracy for spatial 

derivatives. The poles with positive real part lies outside the unit circle. Q=50 @ 37 .5 

Hz. Solid: Unit circle. Stars and crosses: Pole locations. 

Figure 47. The absolute values minus one for the poles with positive real part for the 

spectral scheme. Q=50 @ 37 .5 Hz. Solid: Absolute values of poles. 

Figure 48. Poles of the modal equation for the 0(2,4) scheme. Dissipation introduced in 

p equation. All poles are on or inside the unit circle. Courant number=0.4, Q=50@ 37 .5 

Hz. Solid: Unit circle. Stars: pole locations. 

Figure 49. The absolute values minus one for the poles with negative real part for the 

0(2,4) scheme after dissipative term has been added to the p equation. The poles 

corresponding to half the Nyquist frequency have the smallest absolute values. Courant 

number=0.4, Q=50@ 37.5 Hz. Solid: Absolute value of poles. 

Figure SO. Dispersion for the 0(2,4) scheme with and without dissipative term. The 

dispersion curve for the scheme with dissipative term completely coincides with the 

dispersion curve for the scheme without a dissipative term. Courant number =0.4, Q=50 

@ 37 .5 Hz. Solid: Theoretical curve. Dashed: Dispersion curve for 0(2,4) with 

dissipative term. Dotted: Dispersion curve for 0(2,4) without dissipative term. 

Figure 51. Damping for the 0(2,4) scheme with and without dissipative term. The curve 

for the 0(2,4) with dissipative overestimates the damping for high wavenumbers and at 

the peak of the damping curve. Courant number=0.4, Q=50 @ 37.5 Hz. Solid: 

Theoretical curve. Dashed: Damping curve for 0(2,4) with dissipative term. Dotted: 

Damping curve for 0(2,4) without dissipative term. 
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Figure 52. The sedimented seafloor profile used in the seafloor scattering experiment 

(6.2 km-7.2 km from profile v2602c, Goff et al., 1992). Solid: Basement profile. 

Dashed: Sediment profile. 

Figure 53. Initial condition (a) and snapshots of the scattered energy from viscoelastic 

sedimented (b-e), elastic sedimented (f), and bare seafloors (g). The tapered amplitude 

modulated plane wave of 140 Hz is incident at 10 degrees grazing angle. The material 

properties are listed in Table 4. 

The absorbing boundaries are cut out from the snapshots. The unit of the scales on the 

axes are meters and are relative to the upper left corner in the grid when the absorbing 

boundaries are included. 

a. Initial condition, P-wave energy (S-wave energy is 0). 

b. P-wave energy for a viscoelastic sedimented seafloor at 0.2 s. 

c. S-wave energy for a viscoelastic sedimented seafloor at 0.2 s. 

d. P-wave energy for a viscoelastic sedimented seafloor at 0.4 s. 

e. S-wave energy for a viscoelastic sedimented seafloor at 0.4 s. 

f. P-wave energy for an elastic sedimented seafloor at 0.4 s. 

g. P-wave energy for a bare seafloor at 0.4 s. 

Figure 54. The model used in the incised valley experiment. The area above the solid 

line is water. The area between the solid and the dashed line represents Holocene 

transgressive marine deposits. The area between the dashed and the dotted line represents 

transgressive marine overlying transgressive estuarine deposits. The area between the 

dotted and the dash-dotted line represent regressive fluvial deposits. The dotted line 

indicates the bay line, the boundary between the regressive and transgressive sequences. 

The area below the solid line and above the dash-dotted line are late Pleistocene to 

Holocene deposits. The area below the dash-dotted line represents early Wisconsinian 

regressive deposits. The star shows the position of the source. 

Figure 55. Initial condition, P-wave energy (S-wave energy is 0). The absorbing 

boundaries are cut out from the snapshots. The unit of the scales on the axes are meters 

and are relative to the upper left comer in the grid when the absorbing boundaries are 

included. 
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Figure 56. Snapshots of P-wave energy (a, c, e, g) and SV-wave energy (b, d, f, h) for 

the viscoelastic incised valley model. Material properties are listed in Table 5. The 

absorbing boundaries are cut out from the snapshots. The unit of the scales on the axes 

are meters and are relative to the upper left corner in the grid when the absorbing 

boundaries are included. 

a. P-wave energy for the viscoelastic model at 0.05 s. 

b. SV-wave energy for the viscoelastic model at 0.05 s. 

c. P-wave energy for the viscoelastic model at 0.1 s. 

d. SV-wave energy for the viscoelastic model at 0.1 s. 

e. P-wave energy for the viscoelastic model at 0.2 s. 

f. SV-wave energy for the viscoelastic model at 0.2 s. 

g. P-wave energy for the viscoelastic model at 0.3 s. 

h. SV-wave energy for the viscoelastic model at 0.3 s. 

Figure 57. Snapshots of P-wave energy (a, c, e, g) and SV-wave energy (b, d, f, h) for 

the elastic incised valley model. Material properties are listed in Table 5. The absorbing 

boundaries are cut out from the snapshots. The unit of the scales on the axes are meters 

and are relative to the upper left corner in the grid when the absorbing boundaries are 

included. 

a. P-wave energy for the elastic model at 0.05 s. 

b. SV-wave energy for the elastic model at 0.05 s. 

c. P-wave energy for the elastic model at 0.1 s. 

d. SV-wave energy for the elastic model at 0.1 s. 

e. P-wave energy for the elastic model at 0.2 s. 

f. SV-wave energy for the elastic model at 0.2 s. 

g. P-wave energy for the elastic model at 0.3 s. 

h. SV-wave energy for the elastic model at 0.3 s. 
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The spring 

The dashpot 

(a) 

Standard linear solid 

k2 

• 
(b) 

Figure 1. Illustration of the spring and the dashpot (a) and the standard linear solid (b). 
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