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DECOMPOSITION PROCEDURES FOR PARABOLIC PROBLEMS 

BASED ON BLOCK-CENTERED FINITE DIFFERENCES 
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Abstract. Domain decomposition procedures for solving parabolic equations are considered. 

The underlying discretization is block-centered finite differences. In these procedures, fluxes at 

subdomain interfaces are calculated from the solution at the previous time level. These fluxes serve 

as Neumann boundary data for implicit, block-centered discretizations in the subdomains. A priori 

error estimates are derived, and numerical results examining the stability, accuracy, and parallelism 

of the scheme are presented. 
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1. Introduction. In this paper, we present a domain decomposition procedure 

for parabolic partial differential equations, where the underlying discretization is 

block-centered finite differences. Block-centered finite differences are widely used in 

applications, and are especially useful for problems in rectangular geometries where 

approximations to both solution values and fluxes are desired. Unlike point-centered 

finite differences, the block-centered method gives solution values and fluxes to the 

same order of accuracy. 
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For parabolic equations, it is often useful to use implicit time-stepping, due to the 

severe time step constraint which arises from explicit time-stepping. Thus, a global 

system of equations must be solved at each time step. Domain decomposition can 

be used to divide the global problem into smaller subdomain problems, which can be 

solved in parallel. The difficulty lies in piecing the subdomain solutions together into a 

reasonable approximation to the true solution. In the block-centered finite difference 

approach, solution values are approximated by constants at grid block centers, and 

fluxes are approximated on the block edges. In the domain decomposition procedure 

presented here, the interfaces between subdomains coincide with certain grid block 

edges. At the beginning of each time step, interface fluxes are calculated using the 

solution from the previous time step. These fluxes then serve as Neumann boundary 

data for implicit subdomain problems. We examine ways of calculating the interface 

fluxes so that no iterations between edges and subdomains are necessary. Hence, 

this domain decomposition approach should be nearly optimal, in the sense that the 

speed-up obtained is roughly equal to the number of subdomains. Furthermore, the 

method is easy to incorporate into existing implicit codes. As we will see, the explicit 

nature of the flux calculation gives rise to a constraint involving the time step and an 

interface discretization parameter; however, this constraint is much less severe than 

the constraint needed for a fully explicit scheme. 

It has been shown in [6, 7] that block-centered finite differences can be derived 

from the mixed finite element method, using the lowest-order Raviart-Thomas [5] 

approximating spaces, and special quadrature rules. The procedures defined here can 
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be extended to higher-order Raviart-Thomas spaces on rectangles; however, we will 

deal only with the lowest order case here. 

Galerkin domain decomposition techniques were developed in [1, 2, 3]. In [1, 2], 

finite element and point-centered finite difference domain decomposition procedures 

were analyzed; these methods used Dirichlet boundary data on subdomain interfaces. 

These approaches are of optimal order in error but have the disadvantage that they 

are not globally conservative. In [3], we defined conservative procedures based on 

Galerkin finite elements which use Neumann boundary data at interfaces. Here we use 

a related approach to treat block-centered finite differences. Although the approach 

is similar the details are quite different. 

In the next section, we describe the domain decomposition approach in a one­

dimensional setting, and derive an error estimate. In Section 3, we extend the pro­

cedures to the case of two subdomains in two space dimensions. In Section 4, we 

examine numerically the stability, accuracy, and parallelism of the scheme on certain 

test problems. The numerical rates of convergence for the two-dimensional test prob-

lems are slightly better than what we have been able to prove in general. However, 

they agree with the one-dimensional results derived in Section 2. 

2. One Space Dimension. We begin with a one-dimensional example. Let 

u( x, t) satisfy the heat equation: 

(2.1) 

(2.2) 

Ut - Uxx = 0, 0 < X < l, 0 < t ST, 

Ux(O, t) = Ux(l, t) = 0, 0 < t ST, 
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(2.3) u(x,0) = u0 (x), 0<x<l. 

Define 

(2.4) q(x, t) = -ux(x, t). 

Then 

(2.5) q(0, t) = q(l, t) = 0, 0 < t::; T, 

and 

(2.6) Ut + qx = 0. 

Let(·,·) and II· II represent the L2 (0,1) inner product and norm, respectively. 

Let HJ( 0, 1) denote the intersection of the Sobolev space H 1 ( 0, 1) with the functions 

which vanish at zero and one. Multiplying (2.4) by a function v E HJ(O, 1) and 

integrating by parts we obtain 

(2.7) (q(·,t),v)- (u(·,t),vx) = 0. 

Multiplying (2.6) by a function w E L2(0, 1) and integrating, we find 

(2.8) (ut(·, t), w) + (qx(·, t), w) = 0. 

Let 8x be a partition of (0, 1): 

{jx : 0 = X1/2 < X3/2 < ... < X[+I/2 = 1, 
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and set 

Xi-1/2 + Xi+l/2 x---~--~-
i - 2 ' 

hf = Xi+l/2 - Xi-1/2, 

hi+l/2 = Xi+l - Xi, 

Leth= maxi hf. For functions f(x), g(x), let fk = f(xk), fk+1/2 = f(xk+1;2), and 

define the discrete inner product 

I 

u, g) = I: !i+1/2 gi+l/2 hf+1;2, 
i=O 

and the corresponding semi-norm 

lllfl\l 2 
= u' f). 

As mentioned in the introduction, block-centered finite differences can be de-

rived from the mixed finite element method using the lowest-order Raviart-Thomas 

approximating spaces and special quadrature rules. Denote by M_ 1 ( d; hx) the finite 

dimensional subspace of L2 (0, 1) consisting of all functions which are polynomials of 

degree at most don each interval f!f. For r 2: 0, let Mr(d; hx) = M_ 1 (d; hx)nCr(o, 1), 

and 

M~(d; hx) = Mr(d; hx) n {v(x) I v(O) = v(l) = O}. 

Let Q, U be the lowest order Raviart-Thomas approximating spaces; 1.e., Q = 

M~(l; P) and U = M_ 1 (0; hx). The dimensions of Q and U are I - land I, respec-

tively. By using a standard nodal basis, namely, the linear "chapeau" functions in x, 
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a function v E Q is determined by its values at the points Xi+i;2 , i = 1, ... , I - 1. A 

function w E U is piecewise constant on Di[, i = 1, ... , I. Denote this constant by Wi. 

Assume a decomposition of (0, 1) into two intervals, n1 = (0, x) and n2 = (x, 1), 

where x = xk+l/2 E Dx for some integer k, 0 < k < I. Let 0 < H '.S min(x, 1 - x), 

and assume x - H, x +Hare also in Ox. 

For a given smooth function 1P(x ), let B( 'Ip) denote an approximation to -1Px(x), 

determined by 

(2.9) 
1 fl 

B(1P) = H lo ¢/(x)1P(x)dx, 

where <p E Q, 

x-;/H x - H '.S x '.S x, 

(2.10) </>(x) = x+;-x x '.S x '.S x + H, 

0, otherwise. 

It is easily seen that, for 'Ip thrice differentiable in x, 

(2.11) 

A block centered finite difference-domain decomposition procedure can be defined 

as follows. Let 0 = t0 < t1 < ... < tM = T be a given sequence, ~tn = tn - tn-l, and 

for f = f(t), let Jn = J(tn), and 

Assume un-l E U, un-l ~ un-l, is given. Let qn ~ Qn E Q. First, approximate 

(2.12) Qn(x) - Qi+1/2 = B(un-1 ). 
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Enforce the boundary condition (2.2) by 

(2.13) 

For 1 :s; i :s; I - l, i -::J k, approximate qf+i;2 by 

(2.14) Qn _ Utt-1 - Ut 
i+l/2 - hx ' 

i+l/2 

and approximate uf by ur' where 

(2.15) a U:1- + Qf+1;2 - Q7-1;2 = O . l I 
t ' h~ ' i = ' ... ' . 

' 

Substituting (2.12), (2.13), and (2.14) into (2.15) where appropriate, we obtain a 

positive definite, symmetric system of equations for determining un. Since the flux 

Qi+i/
2 

is determined independently of un, the resulting system of equations decouples 

into two disjoint sets of equations, corresponding to the subdomains 0 1 and 0 2 . These 

systems can be solved in parallel. 

This procedure is conservative in the following sense. Multiplying (2.15) by hf, 

summing on i, and applying (2.13), we find that (Un, l) = (un-1, 1), which the true 

solution also satisfies. 

The initial condition (2.3) is enforced by setting 

(2.16) Uo - uo 
- ' 

where u0 is the L2-projection of u0 into U; that is, 

(2.17) (u0 -u0 ,w)=O, wEU. 
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Equations (2.14)-(2.15) are equivalent to the following system of equations: 

(2.18) 

(2.19) (8tUn,w)+(Q~,w)=0, wEU, 

where Q = Q n { v I v ( x) = 0} . 

We now state an error estimate for the method given by (2.12)-(2.16). 

THEOREM 2.1. Let u(·, t) denote the L2 projection of u(·, t) into U. Assume u 

is sufficiently smooth, and 

(2.20) 
~t 1 
-<­H2 - 4' 

where ~t = maxn~tn. Then) there exists a constant CJ independent of h, ~t, and 

H, such that, 

Proof. Let CJ(·, t) E Q denote the interpolant of q(·, t); that is, 

(2.22) Q(xi+l/2, t) = q(xi+l/2, t), i = 0, ... , I. 

Note that 

(2.23) (CJx(·,t),w) = (qx(·,t),w) = -(ut(·,t),w), w EU. 

Define U(·, t) EU for each t E [O, T] by 

(2.24) U(x 1 , t) = u(O, t), 
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(2.25) 

(2.26) 

Q(x, t) = B(U(·, t)), 

(Q(·,t), v)-(U(·,t),vx) = 0, v E Q. 

The system (2.25), (2.26) represents J - 1 equations in J - 1 unknowns, and it is 

easily shown that [! ( ·, t) is unique. 

Setµ= Q - Q, µ(x) = µ(x)</>(x), and ( = U - U. Since¢> E M8(1; P), µ is in 

this space as well. Substract (2.26) from (2.18), and (2.23) from (2.19) to obtain 

(2.27) (µn, v) - (C,vx) = 0, v E Q, 

By (2.12), (2.25), (2.9), and (2.22), 

(2.29) 

Set v = µn - p,n in (2.27), w = en in (2.28), multiply (2.29) by Hµn(x), and add the 

resulting equations to obtain 

(2.30) 

+ (C-1 -(n,p,;) - H(qn(x) - qn-1(x))µn(x). 

::; illlµnlll2 + illlftnlll 2 + Cll&t(un - Un)ll2 + Clllnll2 

+ Cllu~ - &tunll2 + 
2
~tn llen-i - Cll2 + ~;n IIP:112 

+ CHlqn(x) - qn-1(x)l2 + tHlµn(x)l2, 
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where E is a small positive constant. In (2.30) we have applied the well-known in-

equality, 

E' 1 
ab< -a2 + -b2 a,b,E' ER, E1 > 0, 

- 2 2E1 ' 

for different choices of E
1

• 

Note that 

and 

Thus, choosing E = 1\, and enforcing the inequality (2.20) we find 

l 6-fn (2 b..fn ) 3111fenlll2 + -2-llfe;11 2 + t:Hlµn(x)l 2 < 3 + H2 + E Hlµn(x)l 2 

(2.31) < Hlµn(x)l 2
• 

For q and u sufficiently smooth, 

(2.32) 

and 

(2.33) 

Furthermore, 

(2.34) (otC,C) = 
2
~tn [llenii2- IIC-1 1!2 + IIC-c-1 1!2]. 
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Combine (2.30), (2.31)-(2.34) to find 

(2.35) 2~tn [11en112 -11en-l112] + i111µnlll 2 :S Cb.t2 + Cll8t(Un - un)W. 

Next, we estimate 8t(un - [rn). For 0 :St '.ST, let Ue(·, t) EU be defined by 

(2.36) 

(2.37) 

Ue(x 1 , t) = u(O, t), 

(Q(·,t), v)- (Ue(·,t),vx) = 0, VE Q. 

Drop t dependence momentarily. Let v = U -ue, and subtract (2.37) from (2.26) 

to obtain 

(2.38) (v, Vx) = 0, V E Q. 

(2.39) Vi = 0, i '.S k, 

and 

(2.40) 

Since Q(x) = q(x), by (2.22), 

o = B(U) - Q(x) 

- B(v) + B(Ue) - q(x). 

Thus, 

B(v) = -(B(Ue) - q(x)) 

- -[B(Ue - u) + B( u) - q(x)] 

(2.41) - p. 
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By (2.39) and (2.40), 

Thus, 

(2.42) 

In [7], it is shown that IUe(x;) - ii(x;)I = O(h2
). Thus, 

(2.43) 

Since <l>x EU, B(u) = B(u), and by (2.11), IB(u) - q(x)I = O(H2
). Combine these 

results to find 

(2.44) 

Thus 

(2.45) 

and, by (2.39), (2.40), 

(2.46) lv(x;)I = O(h2 + H 3
), i = 1, ... , I. 

By the triangle inequality, 

(2.47) lii(x;) - U(x;)I ::::: lii(x;) - ue(x;)I + lv(x;)I = O(h2 + H 3
). 

Differencing (2.22), (2.36) and (2.37) in time, the arguments in [7] can be used 

to show 

(2.48) 18t(un(xi) - ue,n(xi))I = O(h2
), i = 1, ... ,I. 
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Thus, differencing (2.24)-(2.26) in time, and following the same arguments as given 

above, the estimate (2.46) holds with v replaced by OtVn. Hence, 

(2.49) 

Substitute (2.49) into (2.35), multiply by 2!:ltn, sum on n, and apply Gronwall's 

Lemma, to obtain 

(2.50) 

Apply this result together with the triangle inequality and (2.22) to complete the 

proof of the Theorem. 

3. Extension to two dimensions. In this section, we extend the scheme pre-

sented above to a more general equation in two space dimensions. The extension to 

three space dimensions and higher is straightforward. 

Let n = (0, 1) x (0, 1). Assume that u0
, a, and bare smooth, real-valued functions 

on n, with a= diag(ax,aY). Assume bis nonnegative, and positive constants a~, af, 

ab, and at exist such that 

and 

For some T > 0, let u(x, y, t) satisfy 

(3.1) 
OU 
ot-V·(aVu)+bu=0, onOx(O,T], 
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(3.2) 
au ano = 0, on an x (0, Tl, 

(3.3) u(x, 0) = u0 (x), on n, 

where no is the outward normal to an. Let q denote the vector 

(3.4) _ ( X Y) _ ( X Y ) q - q , q - - a Ux, a Uy • 

Then, by (3.1 ), 

(3.5) 
au at + V · q +bu= 0, on n x (0, T], 

and, by (3.2), 

(3.6) q · no = 0, on an x ( 0, T]. 

Let Dx and Dy be partitions of (0, 1): 

Dx: 0 = X1/2 < X3/2 < .. · < XJ+l/2 = 1, 

Dy : 0 = Y1/2 < Y3/2 < ... < YJ+1/2 = 1, 

and define Xi, hf, hf+1; 2 , and nf as in the last section, with similar definitions for YJ, 

h;, hj+l/2' and n;, j = 1, ... 'J. Let hx = max; hf, hY = maxj hj, h = max(hx, hY), 

and ni,j = nf X n;. 

For f(x,y) and g(x,y), let fi,j = J(xi,YJ, fi+1/2,j = J(xi+1/2,Yj) and fi,j+1/2 = 

f(xi, Yj+I/2). Define the discrete inner products: 

(fl g) x,ax 

J I l 
LL x fi+l/2,j 9i+l/2,j hf+1/2 h;, 
j=l i=O ai+l/2,j 

u l g)y,aY 
J I l 
LL y fi,j+l/2 9i,j+l/2 hf hj+I/2 
j=O i=l ai,j+l/2 
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and the corresponding seminorms 

IIIJlll!,ax 

1111111!,aY 

u l nx,aX l 

u' ny,aY • 

Let (J, g)x, IIJJlllx denote (J, g)x,ax and lllflllx,ax with ax= 1, similarly for (J, g)y 

and lllfllly· Note that lllflllx (lllfllly) and lllflllx,ax (lllfllly,aY) are equivalent. 

Let Q, U be the lowest order Raviart-Thomas approximating spaces defined on 

the tensor-product mesh 8x ® 8y; that is, Q = Qx x QY, where 

Qx Mg(l; hx)@ M-1(0; hY), 

QY M-1(0; hx)@ Mg(l; hY), 

and 

The dimensions of Qx, QY, and U are (I - 1) · J, I · ( J - 1), and J · J, respectively. 

In this case, a function vx E Qx is determined by its values at the points (xi+l/2 , Yi), 

i = 1, ... , I - 1, j = 1, ... , J. Similarly, a function vY E QY is determined by its 

values at (xi, Yi+i/ 2 ), i = 1, ... , I, j = 1, ... , J - 1. A function w E U is piecewise 

constant on Di,j, i = 1, ... , I, j = 1, ... , J. Denote this constant by Wi,j. 

Assume a decomposition of O into two strips, 0 1 = (0, x) x (0, 1) and 0 2 = 

(x, 1) x (0, 1), where x = xk+I/z E 8x for some integer k, 0 < k < I. Let 0 < H :'.S: 

min(x, 1 - x), and assume x - H, x +Hare also in 8x. 
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Similar to one space dimension, define 

(3.7) 
1 /1 

B ( 1/J ( ·, y)) = H J
O 

</>' ( x) 1/J ( x, y) dx ~ -1/J x ( x, y), 

where </> is given by (2.10). 

A domain decomposition procedure can be defined as follows. Assume un-l EU 

Enforce the boundary condition (3.6) by setting 

(3.9) Qx,n _ Qx,n _ O · _ l J 
1/2,j - J+l/2,j - ' ) - , · · · ' , 

and 

(3.10) Q y,n Qy,n O . 1 J 
i,1/2 = i,J+l/2 = , z = , · · · , · 

For j = 1, ... , J, 1 :::; i :::; I - 1, i -/:- k, approximate q!+~/2 ,j by 

(3.11) 
u:i . - u:i. 

Qx,n x i+l,J i,J 
i+l/2,j = -ai+l/2,j hX 

i+l/2 

For i = 1, ... , I, j = 1, ... , J - 1, approximate qf.t+i/2 by 

(3.12) 
u:i. 1 - un. 

Q y,n _ y i,J+ i,J 
i,j+1/2 - -ai,j+1/2 hY , 

j+l/2 

and approximate u'f,j by Ufj, where 

(3.13) 
Q x,n Qx,n Qy,n Qy,n 

8 u:i. + i+i/2,j - i-112,j + i,j+i/2 - i,j-1/2 + b· .u:i. = 0 t i,J h:1! hy i,J i,J . 
' J 
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Substituting (3.8), (3.9), (3.10), (3.11), and (3.12) into (3.13), we obtain a positive 

definite, symmetric system of equations for determining Un. Since the flux Qi;i;z,j 

is determined independently of un, the resulting system of equations decouples into 

two disjoint sets of equations, corresponding to the subdomains r21 and r22 . These 

systems can be solved in parallel. 

The initial condition is enforced by setting 

(3.14) uo = uo. 

where u0 is the L2-projection of u0 into U. 

Equations (3.11)-(3.13) are equivalent to the following system of equations: 

(3.15) (Q x,n vx) + (Qy,n vY) - (Un '7 . v) = 0 E Q-
, x,ax ' y,aY ' V l V ' 

(3.16) 

where 

The extension of the one-dimensional arguments given in the last section to two 

space dimensions requires an assumption on the truncation error term p which is 

difficult to verify. Based on experimental results, the rate of convergence given in 

Theorem 1 may hold in two space dimensions as well. We have not been able to 

prove this in general, however. An estimate which is slightly less sharp is stated 

below. 
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Define Q E Q, [J E U to be the elliptic block-centered finite difference approxi­

mations to q and u [7); that is, for each t E [0, T], 

(3.17) (Qx( ·, t), vx) + (QY(·, t), vY) - ((!(·, t), y' · V) = 0, V E Q, 
x,ax y,aY 

(3.18) ( y' · Q ( ·, t), w) + ( b(J ( ·, t), w) = - ( Ut ( ·, t), w), w E U. 

Then, by extensions of Theorems 4.1, 4.2, and (5.27) in [7) to the case b > 0, 

where un is the L2-projection of un into U. Let ""= q - Q. The following theorem is 

proven in [4]. 

THEOREM 3.1. Assume u} ax} aYJ b} and u0 are sufficiently smooth} and 

(3.20) flt x( ) 1 -maxa x y· < -
H 2 j ' 3 - 4' 

where flt = maxn fltn. Then} there exists a constant CJ independent of h J flt J and 

HJ such that} 

(,t, [lllqx,n - Qx,n111; + lllq''n - Q'·n111;] t.tn) J/2 + m;x 11un - un11 

< C (fltHl/2 + H2.5 + H-1/2h2 + H [~ ~ IK,:i;_,n -12h1!fltn] 1/2) 
- L., L., k+l/2,J J 

n=lj=l 

(3.21) + C(h2 + flt). 

The fully implicit block-centered finite difference sheme, analyzed in [7), has a 

convergence rate of O(h2 + flt). Compared to this estimate, (3.21) appears to be 
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suboptimal by a half power of H. This result still represents a "superconvergent" 

estimate, however, since one would expect to do no better than O(h + flt) when 

approximating by piecewise constants. In certain cases, the H-1 /
2 h2 term can be 

improved to H 112h2
, depending on the mesh. In particular, this is the case if the 

mesh is symmetric about x in the interval [x - H, x + H], or if it is "translation 

invariant in H" in this interval. By "translation invariant in H" we mean that the 

mesh in the interval [x, x + H] can be obtained by adding H to each mesh point in the 

interval [x - H, x]. The fourth term on the right side of (3.21) is at worst O(Hh312
), 

by (3.19). 

By using different integration kernels in (3. 7), one can obtain approximations 

to the normal derivative on the interface which are higher order in H. For example, 

choose H = min( x /2, ( 1- x) /2), and assume x, x ± H, and x ± 2H are in the partition 

bx, Define</>= </>4 ((x - x)/ H), where 

(x - 2)/12, 1 :S X :S 2, 

-5x/4 + 7 /6, O:Sx:Sl, 

<jJ4(x)= 5x/4 + 7 /6, -1 :S X :S 0, 

-(x + 2)/12, -2<x<-1 
- - ' 

0, otherwise. 

This choice of</> in (3. 7) gives a CJ( H4
) approximation to the derivative. An algorithm 

which is second order in time may also be derived, using a second order backward 

time difference. These and other extensions of the method are discussed in [4]. 
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FIG. 1. Initial condition for stability test 

4. Numerical results. In this section, we present numerical results examining 

the stability, accuracy, and parallelism of the scheme described above. 

First, we examine the stability of the scheme as it relates to the time step con­

straint (3.20). We consider the algorithm (3.8)-(3.13), with a= diag(l, 1), b = 0, and 

with initial data given in Figure 1. In Figure 2, we plot IIU(·, t)II versus t for different 

values of !:l.t/ H
2

• As can be seen in this figure, when the constraint is violated by as 

much as a factor of 3, the L2 norm of U blows up with time. 
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FIG. 2. Plot of IJUII versus t 
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Next, we examine the errors in the solution and the diffusive flux for two test 

problems. Let n = (0, 1)2, and consider the problem 

Ut - ~u = 0, (x,y) E !1, t E (0,T], 

u0 (x,y) = cos(27rx)cos(7ry), (x,y) En, 

8u - 0 ( T] Bnr,. - , t E 0, , 

which has true solution u(x,y,t):::: u1(x,y,t) = e-5
1r

2
tcos(27rx)cos(7ry). We will 

look at three scenarios. Scenario 1 is fully implicit block-centered finite differences 

(no domain decomposition). Scenarios 2 and 3 involve domain decomposition with 

uniform and nonuniform mesh. We give the details of each case below. 

Scenarios: 

1. Fully implicit block-centered finite differences on uniform mesh h; ~t = 4h2
• 

2. Global uniform mesh; two subdomains n1 = (0, .5) X (0, 1), n2 = (.5, 1) X (0, 1), 

with H = 3h, ~t = 4h2 • 

3. Two subdomains !11 = (0, .4) x (0, 1), n2 = (.4, 1) x (0, 1). The coarsest mesh on 

!11 consists of 5 blocks in the x-direction and 20 blocks in the y-direction. 

On !12 , the coarsest mesh has 15 blocks in the x-direction and 20 in the 

y-direction. All subsequent mesh refinements are obtained by halving this 

mesh. Moreover, defining hf to be the mesh spacing in the x-direction for 

subdomain i, i = 1,2, then H = 3hf and ~t = 4(hf)2. 

The errors in the solution for Scenarios 1-3 for this problem are compared in 

Table 1. Here eh = 11 ( U - u) 11 at T = .1. Three mesh refinements were used, and an 
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Scenario 1 Scenario 2 Scenario 3 

h-1 
' eh* 104 Rate eh* 104 Rate eh* 104 Rate 

20 56.7 - 65.1 - 55.8 -

40 12.0 - 11.97 - 11.78 -

80 2.87 2.15 2.73 2.28 2.8 2.61 

TABLE 1 
Convergence of solution: u(x, t) = ui(x, y, t) 

Scenario 1 Scenario 2 Scenario 3 

h-1 
' 'Yh * 10

3 Rate 'Yh * 10
3 Rate 'Yh * 10

3 Rate 

20 54.9 - 51.9 - 67.0 -

40 15.0 - 14.2 - 17.5 -

80 3.87 1.91 3.63 1.92 4.30 1.98 

TABLE 2 
Convergence of diffusive flux: u(x, t) = ui(x, y, t) 

experimental rate of convergence was calculated using a least squares fit of the data. 

As can be seen in this table, the errors for each scenario are roughly of the same order 

of magnitude, and the errors appear to be 0( h2 ) in each case. This can be predicted 

from the proof of Theorem 2 in Scenario 2, but is better than what is predicted for 

Scenario 3, where nonuniform mesh is used. 

The errors in the diffusive flux are given in Table 2. Here 

1 

'Yh = ( ~ [lllqx,n - Qx,nlll; + lllqy,n - QY,nlll~] ~t) 2 

We see virtually the same phenomena in Table 2 as in Table 1. The errors are all of 

roughly the same magnitude, and converge like h2
• 
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Next, consider 

Ut - ~u = J, (x,y) En, t E (0,T], 

u0(x, y) = 0, 

au 
-a =O, 

no 

(x,y) E 0, 

t E (0, T], 

with f chosen so that u(x,y,t) = u2(x,y,t) = 100tx3(1- x)2cos(27ry). We consider 

the Scenarios 1-3 above, as well as a fourth scenario, which is simply the fully implicit 

scheme on the same grid used in Scenario 3. The errors in solution values and the 

diffusive flux are given in Tables 3 and 4, respectively. Here we see that on the 

coarser grids, the fully implicit solutions (Scenarios 1 and 4) have smaller error than 

the domain decomposition solutions (Scenarios 2 and 3). As the mesh is refined, 

the errors in the domain decomposition solutions drop dramatically, so that on the 

finest mesh, these errors are comparable in size to the fully implicit errors. This is 

not surprising; heuristically, one would expect the domain decomposition solution to 

approach the fully implicit solution as h, H, and ~t approach zero. Because the 

errors decrease so rapidly in the domain decomposition cases, the experimental rates 

of convergence are substantially higher than predicted by Theorem 2. 

The method has been implemented for problems in two and three space dimen-

sions on an Intel iPSC/860 Hypercube with 32 processors, located at Rice University. 

As an example of the performance consider the problem 

Ut - v' · (av'u) = f, (x, y, z) E (0, 1)3, t E (0, Tl, 

u0 (x, y, z) = cos( 1l"X) cos( 7ry) cos( 7rz), 
24 
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Scenario 1 Scenario 2 Scenario 3 Scenario 4 

h-1 
' eh* 104 Rate eh* 104 Rate eh* 104 Rate eh* 104 Rate 

20 11.8 - 24.2 - 65.8 - 10.6 -

40 2.85 - 4.45 - 10.9 - 2.56 -

80 .738 - .891 - 1.73 - .661 -

160 .183 2.00 .20 2.31 .29 2.61 .17 2.00 

TABLE 3 
Convergence of solution: u(x, t) = u2(x, y, t) 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

h-1 
' 'Yh * 10

3 Rate 'Yh * 10
3 Rate 'Yh * 10

3 Rate /h * 10
3 Rate 

20 .777 - 7.02 - 16.9 - .870 -

40 .171 - 1.03 - 2.76 - .194 -

80 .044 - .138 - .393 - .050 -

160 .011 2.04 .019 2.84 .053 2.78 .012 2.04 

TABLE 4 
Convergence of diffusive flux: u(x, t) = u2(x, y, t) 
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au 
--=0, 
8nn 

t E (0, T], 

with a = .005(1 + e2xe3Yez), and f chosen so that u(x, y, t) = e-21r
2tu0(x, y, z). In 

Table 5, we present timings and global L2 errors for different domain decompositions 

applied to this problem. In these runs a uniform mesh was used with 20 grid blocks 

in each direction. The timestep L':!.t = .005, T = .IO, and H = .20. A diagonally 

preconditioned conjugate gradient algorithm was used to solve the linear systems on 

each subdomain. In Table 5, the notation k x m X n refers to domain decomposition 

with k domains in the x-direction, m in the y-direction, and n in the z-direction. 

When k = m = n = I, this represents the fully implicit solution. For these runs, 

k * m * n processors were used. 

The table shows that, for this test problem, the domain decomposition algorithm 

produced results which were slighly more accurate than the fully implicit scheme, and 

the amount of clock time needed to solve the problem decreased essentially linearly 

with the number of processors used. In fact, in some cases the speed-up is slightly 

better than linear, due to the fact that the iterative linear solver converged in fewer 

iterations. These results also indicate that the time needed to calculate the interface 

derivatives and pass this information to neighboring subdomains is small relative to 

the time needed to solve subdomain problems. 

5. Conclusion. In conclusion, we have presented a domain decomposition ap-

proach for solving parabolic equations using an explicit/implicit, block-centered fi-

nite difference discretization. A priori error estimates have been derived for a one-
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dimensional version of the scheme, and error estimates have been stated for a two-

dimensional version of the scheme. The one dimensional results appear to be sharp, 

while the two-dimensional results are slightly suboptimal. Numerical experiments 

indicate that the scheme performs quite well and is highly parallelizable. 

6. Acknowledgments. The authors would like to thank the National Science 
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Decomposition Clock Time (sec) eh* 102 

lxlxl 224.13 1.13 

2xlxl 112.07 1.11 

lx2xl 111.15 1.11 

lxlx2 103.58 1.11 

2x2xl 55.16 1.09 

2xlx2 51.77 1.08 

lx2x2 50.61 1.08 

2x2x2 24.61 1.06 

4x2x2 12.75 1.04 

2x4x2 12.15 1.05 

2x2x4 11.82 1.04 

4x4x2 6.18 1.03 

4x2x4 5.95 1.02 

2x4x4 5.84 1.03 

TABLE 5 
Results on iPSC/860 Hypercube 
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